An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
Borges, Rafael; Carmona, Monique; Costa, Bruno; Don, Wai Sun
2008-03-01
In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202-228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542-567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock-density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock-vortex interaction and a Mach 4.46 Richtmyer-Meshkov Instability (RMI) modeled via the two dimensional Euler equations.
On fully multidimensional and high order non oscillatory finite volume methods, I
International Nuclear Information System (INIS)
Lafon, F.
1992-11-01
A fully multidimensional flux formulation for solving nonlinear conservation laws of hyperbolic type is introduced to perform calculations on unstructured grids made of triangular or quadrangular cells. Fluxes are computed across dual median cells with a multidimensional 2D Riemann Solver (R2D Solver) whose intermediate states depend on either a three (on triangle R2DT solver) of four (on quadrangle, R2DQ solver) state solutions prescribed on the three or four sides of a gravity cell. Approximate Riemann solutions are computed via a linearization process of Roe's type involving multidimensional effects. Moreover, a monotonous scheme using stencil and central Lax-Friedrichs corrections on sonic curves are built in. Finally, high order accurate ENO-like (Essentially Non Oscillatory) reconstructions using plane and higher degree polynomial limitations are defined in the set up of finite element Lagrange spaces P k and Q k for k≥0, on triangles and quadrangles, respectively. Numerical experiments involving both linear and nonlinear conservation laws to be solved on unstructured grids indicate the ability of our techniques when dealing with strong multidimensional effects. An application to Euler's equations for the Mach three step problem illustrates the robustness and usefulness of our techniques using triangular and quadrangular grids. (Author). 33 refs., 13 figs
A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows
Lei, Xin; Li, Jiequan
2018-04-01
This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.
International Nuclear Information System (INIS)
Greenough, J.A.; Rider, W.J.
2004-01-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the 'peak' shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are
Taylor, Ellen Meredith
Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. This is accomplished by constructing multiple candidate numerical stencils that adaptively combine so as to provide high order of accuracy and high bandwidth-resolving efficiency in continuous flow regions while averting instability-provoking interpolation across discontinuities. Under certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after optimization of the linear optimal stencil combination that dominates in smooth regions. The remaining nonlinear error arises from two primary sources: (i) the smoothness measurement that governs the application of adaptation away from the optimal stencil and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when adaptation engages. In this work, both of these sources are investigated, and corrective modifications to the WENO methodology are proposed and evaluated. Excessive nonlinear error due to the first source is alleviated through two separately considered procedures appended to the standard smoothness measurement technique that are designated the "relative smoothness limiter" and the "relative total variation limiter." In theory, appropriate values of their associated parameters should be insensitive to flow configuration, thereby sidestepping the prospect of costly parameter tuning; and this expectation of broad effectiveness is assessed in direct numerical simulations (DNS) of one-dimensional inviscid test problems, three-dimensional compressible isotropic turbulence of varying Reynolds and turbulent Mach numbers, and shock/isotropic-turbulence interaction (SITI). In the process, tools for efficiently comparing WENO adaptation behavior in smooth versus shock-containing regions are developed. The
Directory of Open Access Journals (Sweden)
M. Boumaza
2015-07-01
Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.
On the Linear Stability of the Fifth-Order WENO Discretization
Motamed, Mohammad
2010-10-03
We study the linear stability of the fifth-order Weighted Essentially Non-Oscillatory spatial discretization (WENO5) combined with explicit time stepping applied to the one-dimensional advection equation. We show that it is not necessary for the stability domain of the time integrator to include a part of the imaginary axis. In particular, we show that the combination of WENO5 with either the forward Euler method or a two-stage, second-order Runge-Kutta method is linearly stable provided very small time step-sizes are taken. We also consider fifth-order multistep time discretizations whose stability domains do not include the imaginary axis. These are found to be linearly stable with moderate time steps when combined with WENO5. In particular, the fifth-order extrapolated BDF scheme gave superior results in practice to high-order Runge-Kutta methods whose stability domain includes the imaginary axis. Numerical tests are presented which confirm the analysis. © Springer Science+Business Media, LLC 2010.
International Nuclear Information System (INIS)
Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.
2004-01-01
The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual
International Nuclear Information System (INIS)
Piran, T.
1982-01-01
There are many recent developments in numerical relativity, but there remain important unsolved theoretical and practical problems. The author reviews existing numerical approaches to solution of the exact Einstein equations. A framework for classification and comparison of different numerical schemes is presented. Recent numerical codes are compared using this framework. The discussion focuses on new developments and on currently open questions, excluding a review of numerical techniques. (Auth.)
Khabaza, I M
1960-01-01
Numerical Analysis is an elementary introduction to numerical analysis, its applications, limitations, and pitfalls. Methods suitable for digital computers are emphasized, but some desk computations are also described. Topics covered range from the use of digital computers in numerical work to errors in computations using desk machines, finite difference methods, and numerical solution of ordinary differential equations. This book is comprised of eight chapters and begins with an overview of the importance of digital computers in numerical analysis, followed by a discussion on errors in comput
Shibata, Masaru
2016-01-01
This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
Bright, William
In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…
Rao, G Shanker
2006-01-01
About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...
Scott, L Ridgway
2011-01-01
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...
Brezinski, C
2012-01-01
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1998-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Nakamura, T
1993-01-01
In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difﬁculties in principle as well as in practice.
Numerical modelling of pulsation and convection in cepheids
International Nuclear Information System (INIS)
Mundprecht, E.
2011-01-01
In order to simulate the pulsation convection coupling in a Cepheid the ANTARES-code was equipped with a polar and moving grid. The numerical cost of a fully parallelized, sufficiently large, and fully resolved section would be immense. Thus it was not only necessary to find a suitable model, but also save to costs for parallelisation and grid refinement. The equations governing the hydrodynamics were derived for this particular grid and implemented in the code. The grey short characteristics method for the radiative transfer equation was also adjusted. Different methods of parallelisation for the radiative transfer were tested. Abstract Within ANTARES shocks are treated with an essentially non oscillatory (ENO) scheme with Marquina flux splitting. As this method is only valid for grids that are equidistant or uniformly stretched in all directions two differnt sets of ENO-coefficients were implemented and tested. It was found that the traditional approach is indeed no longer valid and the system is not conservative when the original set of coefficients is used. In the upper or hydrogen ionisation zone the gradient of density, temperature etc. is very steep, therefore a finer resolution with a minimum of additional time steps is needed. In order to resolve these few points a co-moving grid refinement was developed. Simulations in one and two dimensions were performed, a comparison between them helps to better understand the effects of convection on the e.c. light curve. Analysis of the fluxes and the work integral was done for the helium ionisation zone. The effects of subgrid modelling were tested on the hydrogen convection zone and compared with a resolved simulation of this zone. (author) [de
Jacques, Ian
1987-01-01
This book is primarily intended for undergraduates in mathematics, the physical sciences and engineering. It introduces students to most of the techniques forming the core component of courses in numerical analysis. The text is divided into eight chapters which are largely self-contained. However, with a subject as intricately woven as mathematics, there is inevitably some interdependence between them. The level of difficulty varies and, although emphasis is firmly placed on the methods themselves rather than their analysis, we have not hesitated to include theoretical material when we consider it to be sufficiently interesting. However, it should be possible to omit those parts that do seem daunting while still being able to follow the worked examples and to tackle the exercises accompanying each section. Familiarity with the basic results of analysis and linear algebra is assumed since these are normally taught in first courses on mathematical methods. For reference purposes a list of theorems used in the t...
Numerical Optimization in Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2017-01-01
Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....
Methods of numerical relativity
International Nuclear Information System (INIS)
Piran, T.
1983-01-01
Numerical Relativity is an alternative to analytical methods for obtaining solutions for Einstein equations. Numerical methods are particularly useful for studying generation of gravitational radiation by potential strong sources. The author reviews the analytical background, the numerical analysis aspects and techniques and some of the difficulties involved in numerical relativity. (Auth.)
Numerical methods using Matlab
Lindfield, George
2012-01-01
Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use
Ziegler, Gerhard
2011-01-01
Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s
Singh, Devraj
2015-01-01
Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept
Remarks on numerical semigroups
International Nuclear Information System (INIS)
Torres, F.
1995-12-01
We extend results on Weierstrass semigroups at ramified points of double covering of curves to any numerical semigroup whose genus is large enough. As an application we strengthen the properties concerning Weierstrass weights state in [To]. (author). 25 refs
Numerical semigroups and applications
Assi, Abdallah
2016-01-01
This work presents applications of numerical semigroups in Algebraic Geometry, Number Theory, and Coding Theory. Background on numerical semigroups is presented in the first two chapters, which introduce basic notation and fundamental concepts and irreducible numerical semigroups. The focus is in particular on free semigroups, which are irreducible; semigroups associated with planar curves are of this kind. The authors also introduce semigroups associated with irreducible meromorphic series, and show how these are used in order to present the properties of planar curves. Invariants of non-unique factorizations for numerical semigroups are also studied. These invariants are computationally accessible in this setting, and thus this monograph can be used as an introduction to Factorization Theory. Since factorizations and divisibility are strongly connected, the authors show some applications to AG Codes in the final section. The book will be of value for undergraduate students (especially those at a higher leve...
Mastorakis, Nikos E
2009-01-01
Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.
Introductory numerical analysis
Pettofrezzo, Anthony J
2006-01-01
Written for undergraduates who require a familiarity with the principles behind numerical analysis, this classical treatment encompasses finite differences, least squares theory, and harmonic analysis. Over 70 examples and 280 exercises. 1967 edition.
Introduction to numerical analysis
Hildebrand, F B
1987-01-01
Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, other topics in lucid presentation. Includes 150 additional problems in this edition. Bibliography.
Numerical analysis of bifurcations
International Nuclear Information System (INIS)
Guckenheimer, J.
1996-01-01
This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics
Numerical computations with GPUs
Kindratenko, Volodymyr
2014-01-01
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to
DEFF Research Database (Denmark)
Henriquez, Vicente Cutanda
This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....
On numerical Bessel transformation
International Nuclear Information System (INIS)
Sommer, B.; Zabolitzky, J.G.
1979-01-01
The authors present a computer program to calculate the three dimensional Fourier or Bessel transforms and definite integrals with Bessel functions. Numerical integration of systems containing Bessel functions occurs in many physical problems, e.g. electromagnetic form factor of nuclei, all transitions involving multipole expansions at high momenta. Filon's integration rule is extended to spherical Bessel functions. The numerical error is of the order of the Simpson error term of the function which has to be transformed. Thus one gets a stable integral even at large arguments of the transformed function. (Auth.)
International Nuclear Information System (INIS)
McKee, S.; Elliott, C.M.
1986-01-01
The applications of mathematics to industrial problems involves the formulation of problems which are amenable to mathematical investigation, mathematical modelling, the solution of the mathematical problem and the inter-pretation of the results. There are 12 chapters describing industrial problems where mathematics and numerical analysis can be applied. These range from the numerical assessment of the flatness of engineering surfaces and plates, the design of chain links, control problems in tidal power generation and low thrust satellite trajectory optimization to mathematical models in welding. One chapter, on the ageing of stainless steels, is indexed separately. (UK)
Anastassiou, George A
2015-01-01
This is the first numerical analysis text to use Sage for the implementation of algorithms and can be used in a one-semester course for undergraduates in mathematics, math education, computer science/information technology, engineering, and physical sciences. The primary aim of this text is to simplify understanding of the theories and ideas from a numerical analysis/numerical methods course via a modern programming language like Sage. Aside from the presentation of fundamental theoretical notions of numerical analysis throughout the text, each chapter concludes with several exercises that are oriented to real-world application. Answers may be verified using Sage. The presented code, written in core components of Sage, are backward compatible, i.e., easily applicable to other software systems such as Mathematica®. Sage is open source software and uses Python-like syntax. Previous Python programming experience is not a requirement for the reader, though familiarity with any programming language is a p...
Numerical Estimation in Preschoolers
Berteletti, Ilaria; Lucangeli, Daniela; Piazza, Manuela; Dehaene, Stanislas; Zorzi, Marco
2010-01-01
Children's sense of numbers before formal education is thought to rely on an approximate number system based on logarithmically compressed analog magnitudes that increases in resolution throughout childhood. School-age children performing a numerical estimation task have been shown to increasingly rely on a formally appropriate, linear…
International Nuclear Information System (INIS)
Sollogoub, Pierre
2001-01-01
Numerical analyses are needed in different steps of the overall design process. Complex models or non-linear reactor core behaviour are important for qualification and/or comparison of results obtained. Adequate models and test should be defined. Fuel assembly, fuel row, and the complete core should be tested for seismic effects causing LOCA and flow-induced vibrations (FIV)
Development of numerical concepts
Directory of Open Access Journals (Sweden)
Sabine Peucker
2013-06-01
Full Text Available The development of numerical concepts is described from infancy to preschool age. Infants a few days old exhibit an early sensitivity for numerosities. In the course of development, nonverbal mental models allow for the exact representation of small quantities as well as changes in these quantities. Subitising, as the accurate recognition of small numerosities (without counting, plays an important role. It can be assumed that numerical concepts and procedures start with insights about small numerosities. Protoquantitative schemata comprise fundamental knowledge about quantities. One-to-one-correspondence connects elements and numbers, and, for this reason, both quantitative and numerical knowledge. If children understand that they can determine the numerosity of a collection of elements by enumerating the elements, they have acquired the concept of cardinality. Protoquantitative knowledge becomes quantitative if it can be applied to numerosities and sequential numbers. The concepts of cardinality and part-part-whole are key to numerical development. Developmentally appropriate learning and teaching should focus on cardinality and part-part-whole concepts.
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Paradoxes in numerical calculations
Czech Academy of Sciences Publication Activity Database
Brandts, J.; Křížek, Michal; Zhang, Z.
2016-01-01
Roč. 26, č. 3 (2016), s. 317-330 ISSN 1210-0552 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : round-off errors * numerical instability * recurrence formulae Subject RIV: BA - General Mathematics Impact factor: 0.394, year: 2016
International Nuclear Information System (INIS)
Bodvarsson, G.S.; Lippmann, M.J.
1980-01-01
The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented
Borcard, Daniel; Legendre, Pierre
2018-01-01
This new edition of Numerical Ecology with R guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary mul...
Numerical simulation in astrophysics
International Nuclear Information System (INIS)
Miyama, Shoken
1985-01-01
There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)
Hybrid undulator numerical optimization
Energy Technology Data Exchange (ETDEWEB)
Hairetdinov, A.H. [Kurchatov Institute, Moscow (Russian Federation); Zukov, A.A. [Solid State Physics Institute, Chernogolovka (Russian Federation)
1995-12-31
3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.
Comments on numerical simulations
International Nuclear Information System (INIS)
Sato, T.
1984-01-01
The author comments on a couple of things about numerical simulation. One is just about the philosophical discussion that is, spontaneous or driven. The other thing is the numerical or technical one. Frankly, the author didn't want to touch on the technical matter because this should be a common sense one for those who are working at numerical simulation. But since many people take numerical simulation results at their face value, he would like to remind you of the reality hidden behind them. First, he would point out that the meaning of ''driven'' in driven reconnection is different from that defined by Schindler or Akasofu. The author's definition is closer to Axford's definition. In the spontaneous case, for some unpredicted reason an excess energy of the system is suddenly released at a certain point. However, one does not answer how such an unstable state far beyond a stable limit is realized in the magnetotail. In the driven case, there is a definite energy buildup phase starting from a stable state; namely, energy in the black box increases from a stable level subject to an external source. When the state has reached a certain position, the energy is released suddenly. The difference between driven and spontaneous is whether the cause (plasma flow) to trigger reconnection is specified or reconnection is triggered unpredictably. Another difference is that in driven reconnection the reconnection rate is dependent on the speed of the external plasma flow, but in spontaneous reconnection the rate is dependent on the internal condition such as the resistivity
Numerical simulation of plasmas
International Nuclear Information System (INIS)
Dnestrovskii, Y.N.; Kostomarov, D.P.
1986-01-01
This book contains a modern consistent and systematic presentation of numerical computer simulation of plasmas in controlled thermonuclear fusion. The authors focus on the Soviet research in mathematical modelling of Tokamak plasmas, and present kinetic hydrodynamic and transport models with special emphasis on the more recent hybrid models. Compared with the first edition (in Russian) this book has been greatly revised and updated. (orig./WL)
Numerical analysis II essentials
REA, The Editors of; Staff of Research Education Association
1989-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Numerical Analysis II covers simultaneous linear systems and matrix methods, differential equations, Fourier transformations, partial differential equations, and Monte Carlo methods.
Handbook of numerical analysis
Ciarlet, Philippe G
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas an
Henderson, Michael
1997-08-01
The Numerical Analysis Objects project (NAO) is a project in the Mathematics Department of IBM's TJ Watson Research Center. While there are plenty of numerical tools available today, it is not an easy task to combine them into a custom application. NAO is directed at the dual problems of building applications from a set of tools, and creating those tools. There are several "reuse" projects, which focus on the problems of identifying and cataloging tools. NAO is directed at the specific context of scientific computing. Because the type of tools is restricted, problems such as tools with incompatible data structures for input and output, and dissimilar interfaces to tools which solve similar problems can be addressed. The approach we've taken is to define interfaces to those objects used in numerical analysis, such as geometries, functions and operators, and to start collecting (and building) a set of tools which use these interfaces. We have written a class library (a set of abstract classes and implementations) in C++ which demonstrates the approach. Besides the classes, the class library includes "stub" routines which allow the library to be used from C or Fortran, and an interface to a Visual Programming Language. The library has been used to build a simulator for petroleum reservoirs, using a set of tools for discretizing nonlinear differential equations that we have written, and includes "wrapped" versions of packages from the Netlib repository. Documentation can be found on the Web at "http://www.research.ibm.com/nao". I will describe the objects and their interfaces, and give examples ranging from mesh generation to solving differential equations.
Numerical differential protection
Ziegler, Gerhard
2012-01-01
Differential protection is a fast and selective method of protection against short-circuits. It is applied in many variants for electrical machines, trans?formers, busbars, and electric lines.Initially this book covers the theory and fundamentals of analog and numerical differential protection. Current transformers are treated in detail including transient behaviour, impact on protection performance, and practical dimensioning. An extended chapter is dedicated to signal transmission for line protection, in particular, modern digital communication and GPS timing.The emphasis is then pla
Tunç, Cemil; Tunç, Osman
2016-01-01
In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.
Confidence in Numerical Simulations
Energy Technology Data Exchange (ETDEWEB)
Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Confidence in Numerical Simulations
International Nuclear Information System (INIS)
Hemez, Francois M.
2015-01-01
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to ''forecast,'' that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists ''think.'' This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. ''Confidence'' derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Essential numerical computer methods
Johnson, Michael L
2010-01-01
The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...
Numerical relativity beyond astrophysics
Garfinkle, David
2017-01-01
Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.
Testability of numerical systems
International Nuclear Information System (INIS)
Soulas, B.
1992-01-01
In order to face up to the growing complexity of systems, the authors undertook to define a new approach for the qualification of systems. This approach is based on the concept of Testability which, supported by system modelization, validation and verification methods and tools, would allow Integrated Qualification process, applied throughout the life-span of systems. The general principles of this approach are introduced in the general case of numerical systems; in particular, this presentation points out the difference between the specification activity and the modelization and validation activity. This approach is illustrated firstly by the study of a global system and then by case of communication protocol as the software point of view. Finally MODEL which support this approach is described. MODEL tool is a commercial tool providing modelization and validation techniques based on Petri Nets with triple extension: Predicate/Transition, Timed and Stochastic Petri Nets
Numerical relativity beyond astrophysics.
Garfinkle, David
2017-01-01
Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Kavka, P.; Jeřábek, J.; Strouhal, L.
2016-12-01
The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for
Numerical aerodynamic simulation (NAS)
International Nuclear Information System (INIS)
Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.
1984-01-01
The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes
Introduction to precise numerical methods
Aberth, Oliver
2007-01-01
Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.
Representation of Numerical and Non-Numerical Order in Children
Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2012-01-01
The representation of numerical and non-numerical ordered sequences was investigated in children from preschool to grade 3. The child's conception of how sequence items map onto a spatial scale was tested using the Number-to-Position task (Siegler & Opfer, 2003) and new variants of the task designed to probe the representation of the alphabet…
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
How to Circumvent Church Numerals
DEFF Research Database (Denmark)
Goldberg, Mayer; Torgersen, Mads
2002-01-01
In this work we consider a standard numeral system in the lambda-calculus, and the elementary arithmetic and Boolean functions and predicates defined on this numeral system, and show how to construct terms that "circumvent" or "defeat" these functions: The equality predicate is satisfied when com...
Numerical Gram-Schmidt orthonormalization
International Nuclear Information System (INIS)
Werneth, Charles M; Dhar, Mallika; Maung, Khin Maung; Sirola, Christopher; Norbury, John W
2010-01-01
A numerical Gram-Schmidt orthonormalization procedure is presented for constructing an orthonormal basis function set from a non-orthonormal set, when the number of basis functions is large. This method will provide a pedagogical illustration of the Gram-Schmidt procedure and can be presented in classes on numerical methods or computational physics.
Numerical simulation of laser resonators
International Nuclear Information System (INIS)
Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.
2004-01-01
We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.
Numerical Verification Of Equilibrium Chemistry
International Nuclear Information System (INIS)
Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.
2010-01-01
A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.
BCJ numerators from reduced Pfaffian
Energy Technology Data Exchange (ETDEWEB)
Du, Yi-Jian [Center for Theoretical Physics, School of Physics and Technology, Wuhan University,No. 299 Bayi Road, Wuhan 430072 (China); Teng, Fei [Department of Physics and Astronomy, University of Utah,115 South 1400 East, Salt Lake City, UT 84112 (United States)
2017-04-07
By expanding the reduced Pfaffian in the tree level Cachazo-He-Yuan (CHY) integrands for Yang-Mills (YM) and nonlinear sigma model (NLSM), we can get the Bern-Carrasco-Johansson (BCJ) numerators in Del Duca-Dixon-Maltoni (DDM) form for arbitrary number of particles in any spacetime dimensions. In this work, we give a set of very straightforward graphic rules based on spanning trees for a direct evaluation of the BCJ numerators for YM and NLSM. Such rules can be derived from the Laplace expansion of the corresponding reduced Pfaffian. For YM, the each one of the (n−2)! DDM form BCJ numerators contains exactly (n−1)! terms, corresponding to the increasing trees with respect to the color order. For NLSM, the number of nonzero numerators is at most (n−2)!−(n−3)!, less than those of several previous constructions.
Numerical Analysis of Multiscale Computations
Engquist, Björn; Tsai, Yen-Hsi R
2012-01-01
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
Numerical calculations near spatial infinity
International Nuclear Information System (INIS)
Zenginoglu, Anil
2007-01-01
After describing in short some problems and methods regarding the smoothness of null infinity for isolated systems, I present numerical calculations in which both spatial and null infinity can be studied. The reduced conformal field equations based on the conformal Gauss gauge allow us in spherical symmetry to calculate numerically the entire Schwarzschild-Kruskal spacetime in a smooth way including spacelike, null and timelike infinity and the domain close to the singularity
Numerical modelling of mine workings.
CSIR Research Space (South Africa)
Lightfoot, N
1999-03-01
Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...
Czech Academy of Sciences Publication Activity Database
Drnovšek, R.; Müller, Vladimír
2014-01-01
Roč. 62, č. 9 (2014), s. 1197-1204 ISSN 0308-1087 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : joint numerical range * numerical radius Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2014 http://www.tandfonline.com/doi/abs/10.1080/03081087.2013.816303
Numerical Hydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2003-01-01
Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Numerical methods in multibody dynamics
Eich-Soellner, Edda
1998-01-01
Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...
Extensible numerical library in JAVA
International Nuclear Information System (INIS)
Aso, T.; Okazawa, H.; Takashimizu, N.
2001-01-01
The authors present the current status of the project for developing the numerical library in JAVA. The authors have presented how object-oriented techniques improve usage and also development of numerical libraries compared with the conventional way at previous conference. The authors need many functions for data analysis which is not provided within JAVA language, for example, good random number generators, special functions and so on. Authors' development strategy is focused on easiness of implementation and adding new features by users themselves not only by developers. In HPC field, there are other focus efforts to develop numerical libraries in JAVA. However, their focus is on the performance of execution, not easiness of extension. Following the strategy, the authors have designed and implemented more classes for random number generators and so on
Numerical analysis of electromagnetic fields
Zhou Pei Bai
1993-01-01
Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...
Numerical models for differential problems
Quarteroni, Alfio
2017-01-01
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...
Numerical simulation of flood barriers
Srb, Pavel; Petrů, Michal; Kulhavý, Petr
This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.
Numeral Incorporation in Japanese Sign Language
Ktejik, Mish
2013-01-01
This article explores the morphological process of numeral incorporation in Japanese Sign Language. Numeral incorporation is defined and the available research on numeral incorporation in signed language is discussed. The numeral signs in Japanese Sign Language are then introduced and followed by an explanation of the numeral morphemes which are…
Numerical precision control and GRACE
International Nuclear Information System (INIS)
Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kaneko, T.; Morita, H.; Perret-Gallix, D.; Tokura, A.; Shimizu, Y.
2006-01-01
The control of the numerical precision of large-scale computations like those generated by the GRACE system for automatic Feynman diagram calculations has become an intrinsic part of those packages. Recently, Hitachi Ltd. has developed in FORTRAN a new library HMLIB for quadruple and octuple precision arithmetic where the number of lost-bits is made available. This library has been tested with success on the 1-loop radiative correction to e + e - ->e + e - τ + τ - . It is shown that the approach followed by HMLIB provides an efficient way to track down the source of numerical significance losses and to deliver high-precision results yet minimizing computing time
Matlab programming for numerical analysis
Lopez, Cesar
2014-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. Programming MATLAB for Numerical Analysis introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. You will first become
Numeric invariants from multidimensional persistence
Energy Technology Data Exchange (ETDEWEB)
Skryzalin, Jacek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlsson, Gunnar [Stanford Univ., Stanford, CA (United States)
2017-05-19
In this paper, we analyze the space of multidimensional persistence modules from the perspectives of algebraic geometry. We first build a moduli space of a certain subclass of easily analyzed multidimensional persistence modules, which we construct specifically to capture much of the information which can be gained by using multidimensional persistence over one-dimensional persistence. We argue that the global sections of this space provide interesting numeric invariants when evaluated against our subclass of multidimensional persistence modules. Lastly, we extend these global sections to the space of all multidimensional persistence modules and discuss how the resulting numeric invariants might be used to study data.
Numerical investigations of gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)
2010-03-01
Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.
Numerical modeling of economic uncertainty
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2007-01-01
Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....
Numerical relativity and asymptotic flatness
International Nuclear Information System (INIS)
Deadman, E; Stewart, J M
2009-01-01
It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.
Numerical solution of Boltzmann's equation
International Nuclear Information System (INIS)
Sod, G.A.
1976-04-01
The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig
Numerical experiments with neural networks
International Nuclear Information System (INIS)
Miranda, Enrique.
1990-01-01
Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)
Gaps in nonsymmetric numerical semigroups
International Nuclear Information System (INIS)
Fel, Leonid G.; Aicardi, Francesca
2006-12-01
There exist two different types of gaps in the nonsymmetric numerical semigroups S(d 1 , . . . , d m ) finitely generated by a minimal set of positive integers {d 1 , . . . , d m }. We give the generating functions for the corresponding sets of gaps. Detailed description of both gap types is given for the 1st nontrivial case m = 3. (author)
Numerical simulation in plasma physics
International Nuclear Information System (INIS)
Samarskii, A.A.
1980-01-01
Plasma physics is not only a field for development of physical theories and mathematical models but also an object of application of the computational experiment comprising analytical and numerical methods adapted for computers. The author considers only MHD plasma physics problems. Examples treated are dissipative structures in plasma; MHD model of solar dynamo; supernova explosion simulation; and plasma compression by a liner. (Auth.)
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
International Nuclear Information System (INIS)
Douglas, Michael R.; Karp, Robert L.; Lukic, Sergio; Reinbacher, Rene
2008-01-01
We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results
Numerical modeling of slow shocks
International Nuclear Information System (INIS)
Winske, D.
1987-01-01
This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs
Numerical simulation of Higgs models
International Nuclear Information System (INIS)
Jaster, A.
1995-10-01
The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)
Numerical methods for metamaterial design
2013-01-01
This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...
Numerical Modelling of Electrical Discharges
International Nuclear Information System (INIS)
Durán-Olivencia, F J; Pontiga, F; Castellanos, A
2014-01-01
The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way
Numerical Modeling of Shoreline Undulations
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg
model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...
Numerical simulation of fire vortex
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Numerical and Evolutionary Optimization Workshop
Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin
2017-01-01
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...
Uncertainty Quantification in Numerical Aerodynamics
Litvinenko, Alexander; Matthies, Hermann G.; Liu, Dishi; Schillings, Claudia; Schulz, Volker
2017-01-01
In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al '17]. For modeling we used the TAU code, developed in DLR, Germany.
Numerical Tokamak Project code comparison
International Nuclear Information System (INIS)
Waltz, R.E.; Cohen, B.I.; Beer, M.A.
1994-01-01
The Numerical Tokamak Project undertook a code comparison using a set of TFTR tokamak parameters. Local radial annulus codes of both gyrokinetic and gyrofluid types were compared for both slab and toroidal case limits assuming ion temperature gradient mode turbulence in a pure plasma with adiabatic electrons. The heat diffusivities were found to be in good internal agreement within ± 50% of the group average over five codes
Numerical algorithms in secondary creep
International Nuclear Information System (INIS)
Feijoo, R.A.; Taroco, E.
1980-01-01
The problem of stationary creep is presented as well as its variational formulation, when weak constraints are established, capable of assuring one single solution. A second, so-called elasto-creep problem, is further analysed, together with its variational formulation. It is shown that its stationary solution coincides with that of the stationary creep and the advantages of this formulation with respect to the former one is emphasized. Some numerical applications showing the efficiency of the method propesed are finally presented [pt
Numerical and symbolic scientific computing
Langer, Ulrich
2011-01-01
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from
Cuba: Multidimensional numerical integration library
Hahn, Thomas
2016-08-01
The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.
Numerical ability predicts mortgage default.
Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan
2013-07-09
Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one's mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage.
Constrained evolution in numerical relativity
Anderson, Matthew William
The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.
Numerical ability predicts mortgage default
Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan
2013-01-01
Unprecedented levels of US subprime mortgage defaults precipitated a severe global financial crisis in late 2008, plunging much of the industrialized world into a deep recession. However, the fundamental reasons for why US mortgages defaulted at such spectacular rates remain largely unknown. This paper presents empirical evidence showing that the ability to perform basic mathematical calculations is negatively associated with the propensity to default on one’s mortgage. We measure several aspects of financial literacy and cognitive ability in a survey of subprime mortgage borrowers who took out loans in 2006 and 2007, and match them to objective, detailed administrative data on mortgage characteristics and payment histories. The relationship between numerical ability and mortgage default is robust to controlling for a broad set of sociodemographic variables, and is not driven by other aspects of cognitive ability. We find no support for the hypothesis that numerical ability impacts mortgage outcomes through the choice of the mortgage contract. Rather, our results suggest that individuals with limited numerical ability default on their mortgage due to behavior unrelated to the initial choice of their mortgage. PMID:23798401
Smith, David Eugene
1911-01-01
The numbers that we call Arabic are so familiar throughout Europe and the Americas that it can be difficult to realize that their general acceptance in commercial transactions is a matter of only the last four centuries and they still remain unknown in parts of the world.In this volume, one of the earliest texts to trace the origin and development of our number system, two distinguished mathematicians collaborated to bring together many fragmentary narrations to produce a concise history of Hindu-Arabic numerals. Clearly and succinctly, they recount the labors of scholars who have studied the
Radiation transport in numerical astrophysics
International Nuclear Information System (INIS)
Lund, C.M.
1983-02-01
In this article, we discuss some of the numerical techniques developed by Jim Wilson and co-workers for the calculation of time-dependent radiation flow. Difference equations for multifrequency transport are given for both a discrete-angle representation of radiation transport and a Fick's law-like representation. These methods have the important property that they correctly describe both the streaming and diffusion limits of transport theory in problems where the mean free path divided by characteristic distances varies from much less than one to much greater than one. They are also stable for timesteps comparable to the changes in physical variables, rather than being limited by stability requirements
Odelouca Dam Construction: Numerical Analysis
Brito, A.; Maranha, J. R.; Caldeira, L.
2012-01-01
Odelouca dam is an embankment dam, with 76 m height, recently constructed in the south of Portugal. It is zoned with a core consisting of colluvial and residual schist soil and with soil-rockfill mixtures making up the shells (weathered schist with a significant fraction of coarse sized particles). This paper presents a numerical analysis of Odelouca Dam`s construction. The material con-stants of the soil model used are determined from a comprehensive testing programme carried out in the C...
On numerically pluricanonical cyclic coverings
International Nuclear Information System (INIS)
Kulikov, V S; Kharlamov, V M
2014-01-01
We investigate some properties of cyclic coverings f:Y→X (where X is a complex surface of general type) branched along smooth curves B⊂X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p g =0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates
Numerical methods for image registration
Modersitzki, Jan
2003-01-01
Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag
Disruptive Innovation in Numerical Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Waltz, Jacob I. [Los Alamos National Laboratory
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Gyrotactic trapping: A numerical study
Ghorai, S.
2016-04-01
Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.
Time's arrow: A numerical experiment
Fowles, G. Richard
1994-04-01
The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.
Results from Numerical General Relativity
Baker, John G.
2011-01-01
For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.
Uncertainty Quantification in Numerical Aerodynamics
Litvinenko, Alexander
2017-05-16
We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.
Numerical modeling of foam flows
International Nuclear Information System (INIS)
Cheddadi, Ibrahim
2010-01-01
Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)
Numerical Hydrodynamics in Special Relativity.
Martí, José Maria; Müller, Ewald
2003-01-01
This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.
Numerical model of thyroid counter
Directory of Open Access Journals (Sweden)
Szuchta Maciej
2016-03-01
Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.
Numerical methods used in simulation
International Nuclear Information System (INIS)
Caseau, Paul; Perrin, Michel; Planchard, Jacques
1978-01-01
The fundamental numerical problem posed by simulation problems is the stability of the resolution diagram. The system of the most used equations is defined, since there is a family of models of increasing complexity with 3, 4 or 5 equations although only models with 3 and 4 equations have been used extensively. After defining what is meant by explicit or implicit, the best established stability results is given for one-dimension problems and then for two-dimension problems. It is shown that two types of discretisation may be defined: four and eight point diagrams (in one or two dimensions) and six and ten point diagrams (in one or two dimensions). To end, some results are given on problems that are not usually treated very much, i.e. non-asymptotic stability and the stability of diagrams based on finite elements [fr
Numerical optimization using flow equations
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Automatic validation of numerical solutions
DEFF Research Database (Denmark)
Stauning, Ole
1997-01-01
This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...
Operator theory and numerical methods
Fujita, H; Suzuki, T
2001-01-01
In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true. This book has the following chapters: 1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3. Evolution Equations and FEM. 4. Other Methods in Time Discretization. 5. Other Methods in Space Discretization. 6. Nonlinear Problems. 7. Domain Decomposition Method.
Plasma modelling and numerical simulation
International Nuclear Information System (INIS)
Van Dijk, J; Kroesen, G M W; Bogaerts, A
2009-01-01
Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Comprehensive numerical modelling of tokamaks
International Nuclear Information System (INIS)
Cohen, R.H.; Cohen, B.I.; Dubois, P.F.
1991-01-01
We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell
Numerical studies on divertor experiments
International Nuclear Information System (INIS)
Ueda, N.; Itoh, K.; Itoh, S.-I.; Tanaka, M.; Hasegawa, M.; Shoji, T.; Sugihara, M.
1988-04-01
Numerical analysis on the divertor experiments such as JFT-2M tokamak is made by use of the two-dimensional time-dependent simulation code. The plasma in the scrape-off layer (SOL) and divertor region is solved for the given particle and heat sources from the main plasma, Γ p and Q T . Effect of the direction of the toroidal magnetic field is studied. It is found that the heat flux which is proportional to b vector x ∇T i has influences on the divertor plasmas, but has a small effect on the parameters on the midplane in the framework of the fluid model. Parameter survey on Γ p and Q T is made. The transient response of the SOL/divertor plasma to the sudden change of Γ p and Q T is studied. Time delay in the SOL and divertor region is calculated. (author)
Numerical methods in matrix computations
Björck, Åke
2015-01-01
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work. Åke Björck is a professor emeritus at the Department of Mathematics, Linköping University. He is a Fellow of the Society of Industrial and Applied Mathematics.
Numerical evidence for 'multiscalar stars'
International Nuclear Information System (INIS)
Hawley, Scott H.; Choptuik, Matthew W.
2003-01-01
We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ''phase-shifted boson stars'' (parametrized by central density ρ 0 and phase δ), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought
Combining Narrative and Numerical Simulation
DEFF Research Database (Denmark)
Hansen, Mette Sanne; Ladeby, Klaes Rohde; Rasmussen, Lauge Baungaard
2011-01-01
for decision makers to systematically test several different outputs of possible solutions in order to prepare for future consequences. The CSA can be a way to evaluate risks and address possible unforeseen problems in a more methodical way than either guessing or forecasting. This paper contributes...... to the decision making in operations and production management by providing new insights into modelling and simulation based on the combined narrative and numerical simulation approach as a tool for strategy making. The research question asks, “How can the CSA be applied in a practical context to support strategy...... making?” The paper uses a case study where interviews and observations were carried out in a Danish corporation. The CSA is a new way to address decision making and has both practical value and further expands the use of strategic simulation as a management tool....
Numerical modelling of fuel sprays
Energy Technology Data Exchange (ETDEWEB)
Bergstroem, C.
1999-06-01
The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs
Numerical calculations in quantum field theories
International Nuclear Information System (INIS)
Rebbi, C.
1984-01-01
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
Numerical prediction of shoreline adjacent to breakwater
Digital Repository Service at National Institute of Oceanography (India)
Mahadevan, R.; Chandramohan, P.; Nayak, B.U.
Existing mathematical models for prediction of shoreline changes in the vicinity of a breakwater were reviewed The analytical and numerical results obtained from these models have been compared Under the numerical approach, two different implicit...
Comparative study of numerical schemes of TVD3, UNO3-ACM and optimized compact scheme
Lee, Duck-Joo; Hwang, Chang-Jeon; Ko, Duck-Kon; Kim, Jae-Wook
1995-01-01
Three different schemes are employed to solve the benchmark problem. The first one is a conventional TVD-MUSCL (Monotone Upwind Schemes for Conservation Laws) scheme. The second scheme is a UNO3-ACM (Uniformly Non-Oscillatory Artificial Compression Method) scheme. The third scheme is an optimized compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order pentadiagonal compact spatial discretization with the maximum resolution characteristics. The problems of category 1 are solved by using the second (UNO3-ACM) and third (Optimized Compact) schemes. The problems of category 2 are solved by using the first (TVD3) and second (UNO3-ACM) schemes. The problem of category 5 is solved by using the first (TVD3) scheme. It can be concluded from the present calculations that the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 respectively.
Interagency mechanical operations group numerical systems group
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-09-01
This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.
Numerical schemes for explosion hazards
International Nuclear Information System (INIS)
Therme, Nicolas
2015-01-01
In nuclear facilities, internal or external explosions can cause confinement breaches and radioactive materials release in the environment. Hence, modeling such phenomena is crucial for safety matters. Blast waves resulting from explosions are modeled by the system of Euler equations for compressible flows, whereas Navier-Stokes equations with reactive source terms and level set techniques are used to simulate the propagation of flame front during the deflagration phase. The purpose of this thesis is to contribute to the creation of efficient numerical schemes to solve these complex models. The work presented here focuses on two major aspects: first, the development of consistent schemes for the Euler equations, then the buildup of reliable schemes for the front propagation. In both cases, explicit in time schemes are used, but we also introduce a pressure correction scheme for the Euler equations. Staggered discretization is used in space. It is based on the internal energy formulation of the Euler system, which insures its positivity and avoids tedious discretization of the total energy over staggered grids. A discrete kinetic energy balance is derived from the scheme and a source term is added in the discrete internal energy balance equation to preserve the exact total energy balance at the limit. High order methods of MUSCL type are used in the discrete convective operators, based solely on material velocity. They lead to positivity of density and internal energy under CFL conditions. This ensures that the total energy cannot grow and we can furthermore derive a discrete entropy inequality. Under stability assumptions of the discrete L8 and BV norms of the scheme's solutions one can prove that a sequence of converging discrete solutions necessarily converges towards the weak solution of the Euler system. Besides it satisfies a weak entropy inequality at the limit. Concerning the front propagation, we transform the flame front evolution equation (the so called
Zhu, Jun; Shu, Chi-Wang
2017-11-01
A new class of high order weighted essentially non-oscillatory (WENO) schemes (Zhu and Qiu, 2016, [50]) is applied to solve Euler equations with steady state solutions. It is known that the classical WENO schemes (Jiang and Shu, 1996, [23]) might suffer from slight post-shock oscillations. Even though such post-shock oscillations are small enough in magnitude and do not visually affect the essentially non-oscillatory property, they are truly responsible for the residue to hang at a truncation error level instead of converging to machine zero. With the application of this new class of WENO schemes, such slight post-shock oscillations are essentially removed and the residue can settle down to machine zero in steady state simulations. This new class of WENO schemes uses a convex combination of a quartic polynomial with two linear polynomials on unequal size spatial stencils in one dimension and is extended to two dimensions in a dimension-by-dimension fashion. By doing so, such WENO schemes use the same information as the classical WENO schemes in Jiang and Shu (1996) [23] and yield the same formal order of accuracy in smooth regions, yet they could converge to steady state solutions with very tiny residue close to machine zero for our extensive list of test problems including shocks, contact discontinuities, rarefaction waves or their interactions, and with these complex waves passing through the boundaries of the computational domain.
Numerical linear algebra with applications using Matlab
Ford, William
2014-01-01
Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for
Numerical Computation of Detonation Stability
Kabanov, Dmitry
2018-06-03
Detonation is a supersonic mode of combustion that is modeled by a system of conservation laws of compressible fluid mechanics coupled with the equations describing thermodynamic and chemical properties of the fluid. Mathematically, these governing equations admit steady-state travelling-wave solutions consisting of a leading shock wave followed by a reaction zone. However, such solutions are often unstable to perturbations and rarely observed in laboratory experiments. The goal of this work is to study the stability of travelling-wave solutions of detonation models by the following novel approach. We linearize the governing equations about a base travelling-wave solution and solve the resultant linearized problem using high-order numerical methods. The results of these computations are postprocessed using dynamic mode decomposition to extract growth rates and frequencies of the perturbations and predict stability of travelling-wave solutions to infinitesimal perturbations. We apply this approach to two models based on the reactive Euler equations for perfect gases. For the first model with a one-step reaction mechanism, we find agreement of our results with the results of normal-mode analysis. For the second model with a two-step mechanism, we find that both types of admissible travelling-wave solutions exhibit the same stability spectra. Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.
Numerical Modeling of Ocean Circulation
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Methods for enhancing numerical integration
International Nuclear Information System (INIS)
Doncker, Elise de
2003-01-01
We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications
Numerical study of turbulent diffusion
International Nuclear Information System (INIS)
McCoy, M.G.
1975-01-01
The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested
Relativistic positioning systems: Numerical simulations
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
Playing Linear Numerical Board Games Promotes Low-Income Children's Numerical Development
Siegler, Robert S.; Ramani, Geetha B.
2008-01-01
The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…
Zdeněk Kopal: Numerical Analyst
Křížek, M.
2015-07-01
We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
Numerically and experimentally analysis of creep
International Nuclear Information System (INIS)
Fontanive, J.A.
1982-11-01
The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt
Spurious Numerical Solutions Of Differential Equations
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
An introduction to numerical methods and analysis
Epperson, James F
2013-01-01
Praise for the First Edition "". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises.""-Zentralblatt MATH "". . . carefully structured with many detailed worked examples.""-The Mathematical Gazette The Second Edition of the highly regarded An Introduction to Numerical Methods and Analysis provides a fully revised guide to numerical approximation. The book continues to be accessible and expertly guides readers through the many available techniques of numerical methods and analysis. An Introduction to
Numerical simulation of hypersonic flight experiment vehicle
Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子
1994-01-01
Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...
Numerical Feedback Stabilization with Applications to Networks
Directory of Open Access Journals (Sweden)
Simone Göttlich
2017-01-01
Full Text Available The focus is on the numerical consideration of feedback boundary control problems for linear systems of conservation laws including source terms. We explain under which conditions the numerical discretization can be used to design feedback boundary values for network applications such as electric transmission lines or traffic flow systems. Several numerical examples illustrate the properties of the results for different types of networks.
Theoretical numerical analysis a functional analysis framework
Atkinson, Kendall
2005-01-01
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu
Nonlinear dynamics and numerical uncertainties in CFD
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
Numerical approach to one-loop integrals
International Nuclear Information System (INIS)
Fujimoto, Junpei; Shimizu, Yoshimitsu; Kato, Kiyoshi; Oyanagi, Yoshio.
1992-01-01
Two numerical methods are proposed for the calculation of one-loop scalar integrals. In the first method, the singularity is cancelled by the symmetrization of the integrand and the integration is done by a Monte-Carlo method. In the second one, after the transform of the integrand into a standard form, the integral is reduced into a regular numerical integral. These methods provide us practical tools to evaluate one-loop Feynman diagrams with desired numerical accuracy. They are extended to the integral with numerator and the treatment of the one-loop virtual correction to the cross section is also presented. (author)
Numerical methods in software and analysis
Rice, John R
1992-01-01
Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem-there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithm
Probabilistic numerics and uncertainty in computations.
Hennig, Philipp; Osborne, Michael A; Girolami, Mark
2015-07-08
We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.
Transportation package design using numerical optimization
International Nuclear Information System (INIS)
Harding, D.C.; Witkowski, W.R.
1991-01-01
The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process
Numerical investigation of freak waves
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent
A delta-rule model of numerical and non-numerical order processing.
Verguts, Tom; Van Opstal, Filip
2014-06-01
Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Numerical Magnitude Representations Influence Arithmetic Learning
Booth, Julie L.; Siegler, Robert S.
2008-01-01
This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…
An outline review of numerical transport methods
International Nuclear Information System (INIS)
Budd, C.
1981-01-01
A brief review is presented of numerical methods for solving the neutron transport equation in the context of reactor physics. First the various forms of transport equation are given. Second, the various ways of classifying numerical transport methods are discussed. Finally each method (or class of methods) is outlined in turn. (U.K.)
An Integrative Theory of Numerical Development
Siegler, Robert; Lortie-Forgues, Hugues
2014-01-01
Understanding of numerical development is growing rapidly, but the volume and diversity of findings can make it difficult to perceive any coherence in the process. The integrative theory of numerical development posits that a coherent theme is present, however--progressive broadening of the set of numbers whose magnitudes can be accurately…
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
Numerical methods for hydrodynamic stability problems
International Nuclear Information System (INIS)
Fujimura, Kaoru
1985-11-01
Numerical methods for solving the Orr-Sommerfeld equation, which is the fundamental equation of the hydrodynamic stability theory for various shear flows, are reviewed and typical numerical results are presented. The methods of asymptotic solution, finite difference methods, initial value methods and expansions in orthogonal functions are compared. (author)
Pure Left Neglect for Arabic Numerals
Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco
2013-01-01
Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…
A Numerical Simulation for a Deterministic Compartmental ...
African Journals Online (AJOL)
In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...
Numerical simulation of pulse-tube refrigerators
Lyulina, I.A.; Mattheij, R.M.M.; Tijsseling, A.S.; Waele, de A.T.A.M.
2004-01-01
A new numerical model has been introduced to study steady oscillatory heat and mass transfer in the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the tube are solved numerically, using high resolution schemes. The equation of conservation of
Gravitational radiation and 3D numerical relativity
International Nuclear Information System (INIS)
Nakamura, T.
1986-01-01
Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented
Mathematical and Numerical Modeling in Maritime Geomechanics
Directory of Open Access Journals (Sweden)
Miguel Martín Stickle
2012-04-01
Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.
Numerical linear algebra theory and applications
Beilina, Larisa; Karchevskii, Mikhail
2017-01-01
This book combines a solid theoretical background in linear algebra with practical algorithms for numerical solution of linear algebra problems. Developed from a number of courses taught repeatedly by the authors, the material covers topics like matrix algebra, theory for linear systems of equations, spectral theory, vector and matrix norms combined with main direct and iterative numerical methods, least squares problems, and eigen problems. Numerical algorithms illustrated by computer programs written in MATLAB® are also provided as supplementary material on SpringerLink to give the reader a better understanding of professional numerical software for the solution of real-life problems. Perfect for a one- or two-semester course on numerical linear algebra, matrix computation, and large sparse matrices, this text will interest students at the advanced undergraduate or graduate level.
Excel spreadsheet in teaching numerical methods
Djamila, Harimi
2017-09-01
One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.
Numeral-Incorporating Roots in Numeral Systems: A Comparative Analysis of Two Sign Languages
Fuentes, Mariana; Massone, Maria Ignacia; Fernandez-Viader, Maria del Pilar; Makotrinsky, Alejandro; Pulgarin, Francisca
2010-01-01
Numeral-incorporating roots in the numeral systems of Argentine Sign Language (LSA) and Catalan Sign Language (LSC), as well as the main features of the number systems of both languages, are described and compared. Informants discussed the use of numerals and roots in both languages (in most cases in natural contexts). Ten informants took part in…
A literature survey on numerical heat transfer
Shih, T. M.
1982-12-01
Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.
Numerical methods in simulation of resistance welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi
2015-01-01
Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...... thecontact area and the distribution of contact pressure. The numerical simulation of resistancewelding is illustrated by a spot welding example that includes subsequent tensile shear testing...
Average-case analysis of numerical problems
2000-01-01
The average-case analysis of numerical problems is the counterpart of the more traditional worst-case approach. The analysis of average error and cost leads to new insight on numerical problems as well as to new algorithms. The book provides a survey of results that were mainly obtained during the last 10 years and also contains new results. The problems under consideration include approximation/optimal recovery and numerical integration of univariate and multivariate functions as well as zero-finding and global optimization. Background material, e.g. on reproducing kernel Hilbert spaces and random fields, is provided.
Numerical studies of the linear theta pinch
International Nuclear Information System (INIS)
Brackbill, J.U.; Menzel, M.T.; Barnes, D.C.
1975-01-01
Aspects of several physical problems associated with linear theta pinches were studied using recently developed numerical methods for the solution of the nonlinear equations for time-dependent magnetohydrodynamic flow in two- and three-dimensions. The problems studied include the propagation of end-loss produced rarefaction waves, the flow produced in a proposed injection experiment geometry, and the linear growth and nonlinear saturation of instabilities in rotating plasmas, all in linear geometries. The studies illustrate how numerical computations aid in flow visualization, and how the small amplitude behavior and nonlinear fate of plasmas in unstable equilibria can be connected through the numerical solution of the dynamical equations. (auth)
3rd International Conference on Numerical Combustion
Larrouturou, Bernard; Numerical Combustion
1989-01-01
Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.
Numerical Algorithm for Delta of Asian Option
Directory of Open Access Journals (Sweden)
Boxiang Zhang
2015-01-01
Full Text Available We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.
Coincidental match of numerical simulation and physics
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.
Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula
2017-12-01
Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.
Numerical models for high beta magnetohydrodynamic flow
International Nuclear Information System (INIS)
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs
Visualization of numerically simulated aerodynamic flow fields
International Nuclear Information System (INIS)
Hian, Q.L.; Damodaran, M.
1991-01-01
The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs
Development of Pelton turbine using numerical simulation
Energy Technology Data Exchange (ETDEWEB)
Patel, K; Patel, B; Yadav, M [Hydraulic Engineer, ALSTOM Hydro R and D India Ltd., GIDC Maneja, Vadodara - 390 013, Gujarat (India); Foggia, T, E-mail: patel@power.alstom.co [Hydraulic Engineer, Alstom Hydro France, Etablissement de Grenoble, 82, avenue Leon Blum BP 75, 38041 Grenoble Cedex (France)
2010-08-15
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Development of Pelton turbine using numerical simulation
Patel, K.; Patel, B.; Yadav, M.; Foggia, T.
2010-08-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Numerical modelling approach for mine backfill
Indian Academy of Sciences (India)
Muhammad Zaka Emad
2017-07-24
Jul 24, 2017 ... conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. The .... placed in an ore pass that leads the ore to the ore bin and crusher, from ... 1 year, depending on the mine plan.
Development of Pelton turbine using numerical simulation
International Nuclear Information System (INIS)
Patel, K; Patel, B; Yadav, M; Foggia, T
2010-01-01
This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian; Sparber, Christof; Markowich, Peter A.
2014-01-01
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass
Softening behaviour of concrete : numerical research
Bongers, J.P.W.; Rutten, H.S.; Fijneman, H.J.
1994-01-01
Experimental research shows, apart from the influence of multiaxial loading conditions, that softening of concrete loaded in compression is accompanied by localization of deformations. Therefore, numerical modelling of concrete material behaviour has to take this effect into account. This implies
Experimental and Numerical Investigation of Ablation Kinetics
National Aeronautics and Space Administration — The University of Vermont (UVM) and the University of Michigan (UMI) propose a 2-year experimental and numerical research effort aimed at providing critically needed...
Recent advances in numerical modeling of detonations
Energy Technology Data Exchange (ETDEWEB)
Mader, C.L.
1986-12-01
Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.
On the complexity of numerical analysis
DEFF Research Database (Denmark)
Miltersen, Peter Bro; Allender, Eric; Burgisser, Peter
2009-01-01
an integer N, decide whether N>0. • In the Blum-Shub-Smale model, polynomial time computation over the reals (on discrete inputs) is polynomial-time equivalent to PosSLP, when there are only algebraic constants. We conjecture that using transcendental constants provides no additional power, beyond nonuniform...... reductions to PosSLP, and we present some preliminary results supporting this conjecture. • The Generic Task of Numerical Computation is also polynomial-time equivalent to PosSLP. We prove that PosSLP lies in the counting hierarchy. Combining this with work of Tiwari, we obtain that the Euclidean Traveling......We study two quite different approaches to understanding the complexity of fundamental problems in numerical analysis: • The Blum-Shub-Smale model of computation over the reals. • A problem we call the “Generic Task of Numerical Computation,” which captures an aspect of doing numerical computation...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
A numerical reference model for themomechanical subduction
DEFF Research Database (Denmark)
Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola
2010-01-01
Building an advanced numerical model of subduction requires choosing values for various geometrical parameters and material properties, among others, the initial lithosphere thicknesses, representative lithological types and their mechanical and thermal properties, rheologies, initial temperature...
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Numerical modelling of multicomponent LNAPL dissolution kinetics ...
Indian Academy of Sciences (India)
subsequent removal of free phase liquid, still the organic compounds are present .... Since the flow through porous media is mainly restricted to the pore space ..... initial and boundary conditions for the numerical scheme are given in table 2.
Value-Engineering Review for Numerical Control
Warner, J. L.
1984-01-01
Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.
Numerical convergence for a sewage disposal problem
Alvarez-Vázquez, L.J.; Martínez, A.; Rodríguez, C.; Vázquez-Méndez, M.E.
2001-01-01
The management of sewage disposal and the design of wastewater treatment systems can be formulated as a constrained pointwise optimal control problem. In this paper we study the convergence of the numerical resolution for the corresponding state system by means of a characteristics Galerkin method. The main difficulty of the problem is due to the existence of Radon measures in the right-hand side of the state system. Finally, we present numerical results for a realistic problem posed in a ria...
Comparing numerically exact and modelled static friction
Directory of Open Access Journals (Sweden)
Krengel Dominik
2017-01-01
Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.
Are Humans too Numerous to Become Extinct?
Cairns, John
2009-01-01
Some claim that humans are too numerous to become extinct. However, passenger pigeon, once the most numerous birds on the planet, are now extinct. For years, humankind has been damaging its habitat, discharging toxic chemicals into the environment, and having harmful effects on agricultural productivity due to climate change. Humankind s extinction depends on the continuation of various human activities including economic growth, addiction to fossil fuel, over consumption, overpopulation, oc...
Numerical investigation of sixth order Boussinesq equation
Kolkovska, N.; Vucheva, V.
2017-10-01
We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.
Numerical simulation of single bubble boiling behavior
Directory of Open Access Journals (Sweden)
Junjie Liu
2017-06-01
Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-01-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land–atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe...
Evaluation of steel corrosion by numerical analysis
Kawahigashi, Tatsuo
2017-01-01
Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...
Numerical modelling of elastic space tethers
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.
2012-01-01
In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....
Reactor Thermal Hydraulic Numerical Calculation And Modeling
International Nuclear Information System (INIS)
Duong Ngoc Hai; Dang The Ba
2008-01-01
In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)
The Numerical Psychology of Performance Information
DEFF Research Database (Denmark)
Olsen, Asmus Leth
2015-01-01
Performance information attaches numbers to the inputs, outputs, and outcomes of public services. Numbers are what separate performance information from other sources of information about public sector performance. In cognitive and social psychology, there are vast amounts of research...... on the profound effects of numbers on human attitudes and behavior, but these insights are largely unexplored by scholars of performance information. This article introduces the importance of numerical psychology for the study of performance information, pointing out how numerical research both challenges...
Analysis of numerical solutions for Bateman equations
International Nuclear Information System (INIS)
Loch, Guilherme G.; Bevilacqua, Joyce S.
2013-01-01
The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)
Towards standard testbeds for numerical relativity
International Nuclear Information System (INIS)
Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff
2004-01-01
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community
Towards standard testbeds for numerical relativity
Energy Technology Data Exchange (ETDEWEB)
Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)
2004-01-21
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.
Hybrid methods for airframe noise numerical prediction
Energy Technology Data Exchange (ETDEWEB)
Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)
2005-07-01
This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)
Numerical solution of ordinary differential equations
Fox, L
1987-01-01
Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...
Numerical Characterization of Piezoceramics Using Resonance Curves
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-01
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875
Numerical Characterization of Piezoceramics Using Resonance Curves
Directory of Open Access Journals (Sweden)
Nicolás Pérez
2016-01-01
Full Text Available Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM, to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.
Numerical Analysis of Dusty-Gas Flows
Saito, T.
2002-02-01
This paper presents the development of a numerical code for simulating unsteady dusty-gas flows including shock and rarefaction waves. The numerical results obtained for a shock tube problem are used for validating the accuracy and performance of the code. The code is then extended for simulating two-dimensional problems. Since the interactions between the gas and particle phases are calculated with the operator splitting technique, we can choose numerical schemes independently for the different phases. A semi-analytical method is developed for the dust phase, while the TVD scheme of Harten and Yee is chosen for the gas phase. Throughout this study, computations are carried out on SGI Origin2000, a parallel computer with multiple of RISC based processors. The efficient use of the parallel computer system is an important issue and the code implementation on Origin2000 is also described. Flow profiles of both the gas and solid particles behind the steady shock wave are calculated by integrating the steady conservation equations. The good agreement between the pseudo-stationary solutions and those from the current numerical code validates the numerical approach and the actual coding. The pseudo-stationary shock profiles can also be used as initial conditions of unsteady multidimensional simulations.
An Evaluation of Java for Numerical Computing
Directory of Open Access Journals (Sweden)
Brian Blount
1999-01-01
Full Text Available This paper describes the design and implementation of high performance numerical software in Java. Our primary goals are to characterize the performance of object‐oriented numerical software written in Java and to investigate whether Java is a suitable language for such endeavors. We have implemented JLAPACK, a subset of the LAPACK library in Java. LAPACK is a high‐performance Fortran 77 library used to solve common linear algebra problems. JLAPACK is an object‐oriented library, using encapsulation, inheritance, and exception handling. It performs within a factor of four of the optimized Fortran version for certain platforms and test cases. When used with the native BLAS library, JLAPACK performs comparably with the Fortran version using the native BLAS library. We conclude that high‐performance numerical software could be written in Java if a handful of concerns about language features and compilation strategies are adequately addressed.
The concept of stability in numerical mathematics
Hackbusch, Wolfgang
2014-01-01
In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
Exact solutions, numerical relativity and gravitational radiation
International Nuclear Information System (INIS)
Winicour, J.
1986-01-01
In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Analytic and numerical studies of Scyllac equilibrium
International Nuclear Information System (INIS)
Barnes, D.C.; Brackbill, J.U.; Dagazian, R.Y.; Freidberg, J.P.; Schneider, W.; Betancourt, O.; Garabedian, P.
1976-01-01
The results of both numerical and analytic studies of the Scyllac equilibria are presented. Analytic expansions are used to derive equilibrium equations appropriate to noncircular cross sections, and compute the stellarator fields which produce toroidal force balance. Numerical algorithms are used to solve both the equilibrium equations and the full system of dynamical equations in three dimensions. Numerical equilibria are found for both l = 1,0 and l= 1,2 systems. It is found that the stellarator fields which produce equilibria in the l = 1.0 system are larger for diffuse than for sharp boundary plasma profiles, and that the stability of the equilibria depends strongly on the harmonic content of the stellarator fields
Numerical Simulation of Cyclic Thermodynamic Processes
DEFF Research Database (Denmark)
Andersen, Stig Kildegård
2006-01-01
This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced...... and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide...... models flexible and easy to modify, and to make simulations fast. A high level of accuracy was achieved for integrations of a model created using the modelling approach; the accuracy depended on the settings for the numerical solvers in a very predictable way. Selection of fast numerical algorithms...
Numerical methods and analysis of multiscale problems
Madureira, Alexandre L
2017-01-01
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Energy Technology Data Exchange (ETDEWEB)
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
An integrated numerical protection system (SPIN)
International Nuclear Information System (INIS)
Savornin, J.L.; Bouchet, J.M.; Furet, J.L.; Jover, P.; Sala, A.
1978-01-01
Developments in technology have now made it possible to perform more sophisticated protection functions which follow more closely the physical phenomena to be monitored. For this reason the Commissariat a l'energie atomique, Merlin-Gerin, Cerci and Framatome have embarked on the joint development of an Integrated Numerical Protection System (SPIN) which will fulfil this objective and will improve the safety and availability of power stations. The system described involves the use of programmed numerical techniques and a structure based on multiprocessors. The architecture has a redundancy of four. Throughout the development of the project the validity of the studies was confirmed by experiments. A first numerical model of a protection function was tested in the laboratory and is now in operation in a power station. A set of models was then introduced for checking the main components of the equipment finally chosen prior to building and testing a prototype. (author)
Introduction to numerical computation in Pascal
Dew, P M
1983-01-01
Our intention in this book is to cover the core material in numerical analysis normally taught to students on degree courses in computer science. The main emphasis is placed on the use of analysis and programming techniques to produce well-designed, reliable mathematical software. The treatment should be of interest also to students of mathematics, science and engineering who wish to learn how to write good programs for mathematical computations. The reader is assumed to have some acquaintance with Pascal programming. Aspects of Pascal particularly relevant to numerical computation are revised and developed in the first chapter. Although Pascal has some drawbacks for serious numerical work (for example, only one precision for real numbers), the language has major compensating advantages: it is a widely used teaching language that will be familiar to many students and it encourages the writing of clear, well structured programs. By careful use of structure and documentation, we have produced codes that we be...
Numerical methods and modelling for engineering
Khoury, Richard
2016-01-01
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...
Numerical stability in problems of linear algebra.
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
International Nuclear Information System (INIS)
Klein, R I; Stone, J M
2007-01-01
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments
Extraction of gravitational waves in numerical relativity.
Bishop, Nigel T; Rezzolla, Luciano
2016-01-01
A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.
Numerical analysis of the Anderson localization
International Nuclear Information System (INIS)
Markos, P.
2006-01-01
The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)
The plasma focus - numerical experiments leading technology
International Nuclear Information System (INIS)
Saw, S.H.; Lee, S.
2013-01-01
Numerical experiments on the plasma focus are now used routinely to assist design and provide reference points for diagnostics. More importantly guidance has been given regarding the implementation of technology for new generations of plasma focus devices. For example intensive series of experiments have shown that it is of no use to reduce static bank inductance L0 below certain values because of the consistent loading effects of the plasma focus dynamics on the capacitor bank. Thus whilst it was thought that the PF1000 could receive major benefits by reducing its bank inductance L 0 , numerical experiments have shown to the contrary that its present L 0 of 30 nH is already optimum and that reducing L 0 would be a very expensive fruitless exercise. This knowledge gained from numerical experiments now acts as a general valuable guideline to all high performance (ie low inductance) plasma focus devices not to unnecessarily attempt to further lower the static inductance L 0 . The numerical experiments also show that the deterioration of the yield scaling law (e.g. the fusion neutron yield scaling with storage energy) is inevitable again due to the consistent loading effect of the plasma focus, which becomes more and more dominant as capacitor bank impedance reduces with increasing capacitance C 0 as storage energy is increased. This line of thinking has led to the suggestion of using higher voltages (as an alternative to increasing C 0 ) and to seeding of Deuterium with noble gases in order to enhance compression through thermodynamic mechanisms and through radiation cooling effects of strong line radiation. Circuit manipulation e.g. to enhance focus pinch compression by current-stepping is also being numerically experimented upon. Ultimately however systems have to be built, guided by numerical experiments, so that the predicted technology may be proven and realized. (author)
Design of heat exchangers by numerical methods
International Nuclear Information System (INIS)
Konuk, A.A.
1981-01-01
Differential equations describing the heat tranfer in shell - and tube heat exchangers are derived and solved numerically. The method of ΔT sub(lm) is compared with the proposed method in cases where the specific heat at constant pressure, Cp and the overall heat transfer coefficient, U, vary with temperature. The error of the method of ΔT sub (lm) for the computation of the exchanger lenght is less than + 10%. However, the numerical method, being more accurate and at the same time easy to use and economical, is recommended for the design of shell-and-tube heat exchangers. (Author) [pt
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Numerical processing of ultrasonic holographic data
International Nuclear Information System (INIS)
Langenberg, K.J.; Kiefer, R.; Wosnitza, M.; Schmitz, V.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Saarbruecken
1980-01-01
Reconstructing ultrasonic holographic data numerically, the well-known Fresnel approximation is a first step in evaluating the Rayleigh-Sommerfeld diffraction formula, that is to say, a one- or two-dimensional Fourier-transform of the holographic data multiplied by a complex phase factor has to be computed. The present contribution investigates the relation between flaw depth and aperture size yielding the more advantageous use of the spatial frequency approach where the advantage is in terms of the number of samples and hence computation time in evaluating Fourier transforms numerically. (orig.) [de
Numerical Analysis of Partial Differential Equations
Lions, Jacques-Louis
2011-01-01
S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro
Numerical computation of linear instability of detonations
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
Numerical analysis in electromagnetics the TLM method
Saguet, Pierre
2013-01-01
The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general.The TLM method has acquired a reputation for being a powerful and effective tool by numerous teams and still benefits today from significant theoretical developments. In particular, in recent years, its ability to simulate various situations with excellent precision, including complex materials, has been
A numerical method for resonance integral calculations
International Nuclear Information System (INIS)
Tanbay, Tayfun; Ozgener, Bilge
2013-01-01
A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.)
Introduction to 3+1 numerical relativity
Alcubierre, Miguel
2008-01-01
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail arethe following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evol
Theoretical and numerical method in aeroacoustics
Directory of Open Access Journals (Sweden)
Nicuşor ALEXANDRESCU
2010-06-01
Full Text Available The paper deals with the mathematical and numerical modeling of the aerodynamic noisegenerated by the fluid flow interaction with the solid structure of a rotor blade.Our analysis use Lighthill’s acoustic analogy. Lighthill idea was to express the fundamental equationsof motion into a wave equation for acoustic fluctuation with a source term on the right-hand side. Theobtained wave equation is solved numerically by the spatial discretization. The method is applied inthe case of monopole source placed in different points of blade surfaces to find this effect of noisepropagation.
Numerical orbit generators of artificial earth satellites
Kugar, H. K.; Dasilva, W. C. C.
1984-04-01
A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.
Fundamentals of Numerical Modelling of Casting Processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper
Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...
Masonry constructions mechanical models and numerical applications
Lucchesi, Massimiliano; Padovani, Cristina
2008-01-01
Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w
Susy theories and QCD: numerical approaches
International Nuclear Information System (INIS)
Ita, Harald
2011-01-01
We review on-shell and unitarity methods and discuss their application to precision predictions for Large Hadron Collider (LHC) physics. Being universal and numerically robust, these methods are straightforward to automate for next-to-leading-order computations within standard model and beyond. Several state-of-the-art results including studies of (W/Z+3)-jet and (W+4)-jet production have explicitly demonstrated the effectiveness of the unitarity method for describing multi-parton scattering. Here we review central ideas needed to obtain efficient numerical implementations. This includes on-shell loop-level recursions, the unitarity method, color management and further refined tricks. (review)
Numerical models of groundwater flow and transport
International Nuclear Information System (INIS)
Konikow, L.F.
1996-01-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs
Numerical Analysis of Partial Differential Equations
Lui, S H
2011-01-01
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis
Numerical methods for scientists and engineers
Antia, H M
2012-01-01
This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems. The main addition in the third edition is a new Chapter on Statistical Inferences. There is also some addition and editing in the next chapter on Approximations. With this addition 12 new programs have also been added.
Numerical models of groundwater flow and transport
Energy Technology Data Exchange (ETDEWEB)
Konikow, L F [Geological Survey, Reston, VA (United States)
1996-10-01
This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian
2014-10-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
On the Hughes model and numerical aspects
Gomes, Diogo A.
2017-01-05
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.
Hot forming of composite prepreg: Numerical analyses
Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin
2017-10-01
The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.
Lecture notes in numerical analysis with Mathematica
Styś, Tadeusz
2014-01-01
The contents of this book include chapters on floating point computer arithmetic, natural and generalized interpolating polynomials, uniform approximation, numerical integration, polynomial splines and many more.This book is intended for undergraduate and graduate students in institutes, colleges, universities and academies who want to specialize in this field. The readers will develop a solid understanding of the concepts of numerical methods and their application. The inclusion of Lagrane and Hermite approximation by polynomials, Trapezian rule, Simpsons rule, Gauss methods and Romberg`s met
Numerical Methods for Partial Differential Equations
Guo, Ben-yu
1987-01-01
These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.
Lourenco, Stella F.; Bonny, Justin W.
2017-01-01
A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Some Experiences with Numerical Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.
2007-01-01
across the edge of the overflow. To ensure critical flow across the edge, the upstream flow must be subcritical whereas the downstream flow is either supercritical or a free jet. Experimentally overflows are well studied. Based on laboratory experiments and Froude number scaling, numerous accurate...
Development of Numerical Estimation in Young Children
Siegler, Robert S.; Booth, Julie L.
2004-01-01
Two experiments examined kindergartners', first graders', and second graders' numerical estimation, the internal representations that gave rise to the estimates, and the general hypothesis that developmental sequences within a domain tend to repeat themselves in new contexts. Development of estimation in this age range on 0-to-100 number lines…
Representational Change and Children's Numerical Estimation
Opfer, John E.; Siegler, Robert S.
2007-01-01
We applied overlapping waves theory and microgenetic methods to examine how children improve their estimation proficiency, and in particular how they shift from reliance on immature to mature representations of numerical magnitude. We also tested the theoretical prediction that feedback on problems on which the discrepancy between two…
Parallel computing: numerics, applications, and trends
National Research Council Canada - National Science Library
Trobec, Roman; Vajteršic, Marián; Zinterhof, Peter
2009-01-01
... and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today's parallel computing. These range from parallel algorithmics, programming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerica...
Numerical Study of Planar GPR Antenna Measurements
DEFF Research Database (Denmark)
Meincke, Peter; Hansen, Thorkild
2004-01-01
The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...
Numerical solution of large sparse linear systems
International Nuclear Information System (INIS)
Meurant, Gerard; Golub, Gene.
1982-02-01
This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr
Analytical and numerical modeling of sandbanks dynamics
Idier, Deborah; Astruc, Dominique
2003-01-01
Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model
Parametrical Numerical Study on Breakwater SSG Application
DEFF Research Database (Denmark)
Margheritini, Lucia; Kofoed, Jens Peter
The report presents numerical investigations on the performance of the SSG concept for different tide and wave conditions towards different levels of discretization to an optimal solution. Benefit of extra reservoir utilization and reservoir length has also been investigated. The report must be c...
A numerical primer for the chemical engineer
Zondervan, E.
2015-01-01
This book provides an introduction to numerical methods for students in chemical engineering. The book starts with a recap on linear algebra. It then presents methods for solving linear and nonlinear equations, with a special focus on Gaussian elimination and Newton’s method. It also discusses
Ducted wind turbine optimization : A numerical approach
Dighe, V.V.; De Oliveira Andrade, G.L.; van Bussel, G.J.W.
2017-01-01
The practice of ducting wind turbines has shown a beneficial effect on the overall performance, when compared to an open turbine of the same rotor diameter1. However, an optimization study specifically for ducted wind turbines (DWT’s) is missing or incomplete. This work focuses on a numerical
Numerically satisfactory solutions of Kummer recurrence relations
J. Segura (Javier); N.M. Temme (Nico)
2008-01-01
textabstractPairs of numerically satisfactory solutions as $n\\rightarrow \\infty$ for the three-term recurrence relations satisfied by the families of functions $_1\\mbox{F}_1(a+\\epsilon_1 n; b +\\epsilon_2 n;z)$, $\\epsilon_i \\in {\\mathbb Z}$, are given. It is proved that minimal solutions always
Numerical 3-D Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.
2008-01-01
-dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...
Power and thermal efficient numerical processing
DEFF Research Database (Denmark)
Liu, Wei; Nannarelli, Alberto
2015-01-01
Numerical processing is at the core of applications in many areas ranging from scientific and engineering calculations to financial computing. These applications are usually executed on large servers or supercomputers to exploit their high speed, high level of parallelism and high bandwidth...
Numerical Limit Analysis of Precast Concrete Structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2016-01-01
; the framework is based on the theory of rigid-plasticity, and the resulting mathematical optimisation problem can be solved efficiently using modern algorithms. This paper gives a brief introduction to convex optimisation and numerical limit analysis. The mathematical formulation of lower bound load...
Direct Numerical Simulation of Driven Cavity Flows
Verstappen, R.; Wissink, J.G.; Veldman, A.E.P.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been
Numerical methods in electron magnetic resonance
International Nuclear Information System (INIS)
Soernes, A.R.
1998-01-01
The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system
Numerical methods in electron magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Soernes, A.R
1998-07-01
The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.
Basset force in numerical models of saltation
Czech Academy of Sciences Publication Activity Database
Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel
2012-01-01
Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012
Numerical methods and optimization a consumer guide
Walter, Éric
2014-01-01
Initial training in pure and applied sciences tends to present problem-solving as the process of elaborating explicit closed-form solutions from basic principles, and then using these solutions in numerical applications. This approach is only applicable to very limited classes of problems that are simple enough for such closed-form solutions to exist. Unfortunately, most real-life problems are too complex to be amenable to this type of treatment. Numerical Methods and Optimization – A Consumer Guide presents methods for dealing with them. Shifting the paradigm from formal calculus to numerical computation, the text makes it possible for the reader to · discover how to escape the dictatorship of those particular cases that are simple enough to receive a closed-form solution, and thus gain the ability to solve complex, real-life problems; · understand the principles behind recognized algorithms used in state-of-the-art numerical software; · learn the advantag...
Detailed numerical simulations of laser cooling processes
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
Numerical simulation of sand jet in water
Energy Technology Data Exchange (ETDEWEB)
Azimi, A.H.; Zhu, D.; Rajaratnam, N. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering
2008-07-01
A numerical simulation of sand jet in water was presented. The study involved a two-phase flow using two-phase turbulent jets. A literature review was also presented, including an experiment on particle laden air jet using laser doppler velocimetry (LDV); experiments on the effect of particle size and concentration on solid-gas jets; an experimental study of solid-liquid jets using particle image velocimetry (PIV) technique where mean velocity and fluctuations were measured; and an experimental study on solid-liquid jets using the laser doppler anemometry (LDA) technique measuring both water axial and radial velocities. Other literature review results included a photographic study of sand jets in water; a comparison of many two-phase turbulent flow; and direct numerical simulation and large-eddy simulation to study the effect of particle in gas jet flow. The mathematical model and experimental setup were also included in the presentation along with simulation results for sand jets, concentration, and kinetic energy. The presentation concluded with some proposed future studies including numerical simulation of slurry jets in water and numerical simulation of slurry jets in MFT. tabs., figs.
Thin sheet numerical modelling of continental collision
Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.
2005-01-01
We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping
Numerical methods in nuclear engineering. Part 1
International Nuclear Information System (INIS)
Phillips, G.J.
1983-08-01
These proceedings, published in two parts contain the full text of 56 papers and summaries of six papers presented at the conference. They cover the use of numerical methods in thermal hydraulics, reactor physics, neutron diffusion, subchannel analysis, risk assessment, transport theory, and fuel behaviour
Review of numerical special relativistic hydrodynamics
D.E.A. van Odyck (Daniel)
2002-01-01
textabstractThis paper gives an overview of numerical methods for special relativistichydrodynamics (SRHD). First, a short summary of special relativity is given. Next, the SRHD equations are introduced. The exact solution for the SRHD Riemann problem is described. This solution is used in a Godunov
Numerical time integration for air pollution models
J.G. Verwer (Jan); W. Hundsdorfer (Willem); J.G. Blom (Joke)
1998-01-01
textabstractDue to the large number of chemical species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for the numerical time integration of stiff systems of advection-diffusion-reaction equations [ fracpar{c{t + nabla cdot left( vu{u c right) = nabla cdot left(
Numerical modelling of steel arc welding
International Nuclear Information System (INIS)
Hamide, M.
2008-07-01
Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)
Numerical techniques for lattice gauge theories
International Nuclear Information System (INIS)
Creutz, M.
1981-01-01
The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields
CEMRACS 2010: Numerical methods for fusion
International Nuclear Information System (INIS)
2011-01-01
This CEMRACS summer school is devoted to the mathematical and numerical modeling of plasma problems that occur in magnetic or inertial fusion. The main topics of this year are the following: -) asymptotic solutions for fluid models of plasma, -) the hydrodynamics of the implosion and the coupling with radiative transfer in inertial fusion, -) gyrokinetic simulations of magnetic fusion plasmas, and -) Landau damping.
Numerical methods for hyperbolic differential functional problems
Directory of Open Access Journals (Sweden)
Roman Ciarski
2008-01-01
Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
Feedback options in nonlinear numerical finance
DEFF Research Database (Denmark)
Hugger, Jens; Mashayekhi, Sima
2012-01-01
on an infinite slab is presented and boundary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional initial-boundary value problem is solved numerically using a number of standard finite difference schemes and the methods incorporated in the symbolic software Maple™....
Spectral Methods in Numerical Plasma Simulation
DEFF Research Database (Denmark)
Coutsias, E.A.; Hansen, F.R.; Huld, T.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Some Numerical Characteristics of Image Texture
Directory of Open Access Journals (Sweden)
O. Samarina
2012-05-01
Full Text Available Texture classification is one of the basic images processing tasks. In this paper we present some numerical characteristics to the images analysis and processing. It can be used at the solving of images classification problems, their recognition, problems of remote sounding, biomedical images analysis, geological researches.
Numerical modeling of magma-repository interactions
Bokhove, Onno
2001-01-01
This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic
Rotation harmonics for a numerical diatomic potential
International Nuclear Information System (INIS)
Kobeissi, H.; Korek, M.
1983-01-01
The problem of the determination of the rotation harmonics phi 1 , phi 2 , ... for the case of a numerical diatomic potential is considered. These harmonics defined in a recent work by psisub(vJ) = psisub(vO) + lambda 2 phi 2 + ... (where psisub(vJ) is the wave function of the vibration level v and the rotation level J, and lambda = J(J+1)) are studied for the case of the Dunham potential and for a numerical potential defined by the coordinates of its turning points with polynomial interpolations and extrapolations. It is proved that the analytical expressions of the harmonics phi 1 , phi 2 , ... reduce to polynomials where the coefficients are simply related to those of the potential in the case of the Dunham potential, and to the coordinates of the turning points in the case of the numerical potential. The numerical application is simple. The examples presented show that the vibration-rotation wave function psisub(vJ) calculated by using two harmonics only is ''exact'' up to eight significant figures
Numerical analysis of Swiss roll metamaterials
International Nuclear Information System (INIS)
Demetriadou, A; Pendry, J B
2009-01-01
A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.
Numerical CFD Comparison of Lillgrund Employing RANS
DEFF Research Database (Denmark)
Simisiroglou, N.; Breton, S.-P.; Crasto, G.
2014-01-01
The following article will validate the results obtained using the actuator disc method in the state of the art numerical Computational Fluid Dynamic (CFD) tool WindSim using on-site measurements from the offshore wind farm Lillgrund. WindSim solves the mass, momentum and energy conservation...
On the Hughes model and numerical aspects
Gomes, Diogo A.; Machado Velho, Roberto
2017-01-01
We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori
Graphical interpretation of numerical model results
International Nuclear Information System (INIS)
Drewes, D.R.
1979-01-01
Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements
Numerical analysis of thermoluminescence glow curves
International Nuclear Information System (INIS)
Gomez Ros, J. M.; Delgado, A.
1989-01-01
This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs
Simple Numerical Simulation of Strain Measurement
Tai, H.
2002-01-01
By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.
RECOGNITION AND VERIFICATION OF TOUCHING HANDWRITTEN NUMERALS
Zhou, J.; Kryzak, A.; Suen, C.Y.
2004-01-01
In the field of financial document processing, recognition of touching handwritten numerals has been limited by lack of good benchmarking databases and low reliability of algorithms. This paper addresses the efforts toward solving the two problems. Two databases IRIS-Bell\\\\\\'98 and TNIST are
A History of Computer Numerical Control.
Haggen, Gilbert L.
Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Transportation package design using numerical optimization
International Nuclear Information System (INIS)
Harding, D.C.; Witkowski, W.R.
1992-01-01
The design of structures and engineering systems has always been an iterative process whose complexity was dependent upon the boundary conditions, constraints and available analytical tools. Transportation packaging design is no exception with structural, thermal and radiation shielding constraints based on regulatory hypothetical accident conditions. Transportation packaging design is often accomplished by a group of specialists, each designing a single component based on one or more simple criteria, pooling results with the group, evaluating the open-quotes pooledclose quotes design, and then reiterating the entire process until a satisfactory design is reached. The manual iterative methods used by the designer/analyst can be summarized in the following steps: design the part, analyze the part, interpret the analysis results, modify the part, and re-analyze the part. The inefficiency of this design practice and the frequently conservative result suggests the need for a more structured design methodology, which can simultaneously consider all of the design constraints. Numerical optimization is a structured design methodology whose maturity in development has allowed it to become a primary design tool in many industries. The purpose of this overview is twofold: first, to outline the theory and basic elements of numerical optimization; and second, to show how numerical optimization can be applied to the transportation packaging industry and used to increase efficiency and safety of radioactive and hazardous material transportation packages. A more extensive review of numerical optimization and its applications to radioactive material transportation package design was performed previously by the authors (Witkowski and Harding 1992). A proof-of-concept Type B package design is also presented as a simplified example of potential improvements achievable using numerical optimization in the design process
Product numerical range in a space with tensor product structure
Puchała, Zbigniew; Gawron, Piotr; Miszczak, Jarosław Adam; Skowronek, Łukasz; Choi, Man-Duen; Życzkowski, Karol
2010-01-01
We study operators acting on a tensor product Hilbert space and investigate their product numerical range, product numerical radius and separable numerical range. Concrete bounds for the product numerical range for Hermitian operators are derived. Product numerical range of a non-Hermitian operator forms a subset of the standard numerical range containing the barycenter of the spectrum. While the latter set is convex, the product range needs not to be convex nor simply connected. The product ...
Contributions to reinforced concrete structures numerical simulations
International Nuclear Information System (INIS)
Badel, P.B.
2001-07-01
In order to be able to carry out simulations of reinforced concrete structures, it is necessary to know two aspects: the behaviour laws have to reflect the complex behaviour of concrete and a numerical environment has to be developed in order to avoid to the user difficulties due to the softening nature of the behaviour. This work deals with these two subjects. After an accurate estimation of two behaviour models (micro-plan and mesoscopic models), two damage models (the first one using a scalar variable, the other one a tensorial damage of the 2 order) are proposed. These two models belong to the framework of generalized standard materials, which renders their numerical integration easy and efficient. A method of load control is developed in order to make easier the convergence of the calculations. At last, simulations of industrial structures illustrate the efficiency of the method. (O.M.)
Numerical shaping of the ultrasonic wavelet
International Nuclear Information System (INIS)
Bonis, M.
1991-01-01
Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test
On the numerical solution of fault trees
International Nuclear Information System (INIS)
Demichela, M.; Piccinini, N.; Ciarambino, I.; Contini, S.
2003-01-01
In this paper an account will be given of the numerical solution of the logic trees directly extracted from the Recursive Operability Analysis. Particular attention will be devoted to the use of the NOT and INH logic gates for correct logical representation of Fault Trees prior to their quantitative resolution. The NOT gate is needed for correct logical representation of events when both non-intervention and correct intervention of a protective system may lead to a Top Event. The INH gate must be used to correctly represent the time link between two events that are both necessary, but must occur in sequence. Some numerical examples will be employed to show both the correct identification of the events entering the INH gates and how use of the AND gate instead of the INH gate leads to overestimation of the probability of occurrence of a Top Event
Intelligent numerical methods applications to fractional calculus
Anastassiou, George A
2016-01-01
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.
Elliptic differential equations theory and numerical treatment
Hackbusch, Wolfgang
2017-01-01
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Numerical methods: Analytical benchmarking in transport theory
International Nuclear Information System (INIS)
Ganapol, B.D.
1988-01-01
Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
Experimental and numerical investigations of plasma turbulence
International Nuclear Information System (INIS)
Huld, T.
1990-07-01
Turbulence in plasmas has been investigated experimentally and numerically. The work described here is divided into four parts: - experiments on edge turbulence in a single-ended Q-machine. Convective cells are investigated in detail together with the anomalous transport caused by them. - Numerical simulation of the edge turbulence in the Q-machine. This simulation uses spectral methods to solve Euler's equation in a cylindrical geometry. - Measurements on wave propagation and the ion beam instability in an unmagnetized plasma with an ion beam with a finite diameter. - Development of software for the automated acquisition of data. This program can control an experiment as well as make measurements. It also include a graphics part. (author) 66 ills., 47 refs
Numerical solutions of the Vlasov equation
International Nuclear Information System (INIS)
Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi
1985-01-01
A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)
Class Generation for Numerical Wind Atlases
DEFF Research Database (Denmark)
Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær
2006-01-01
A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...
Numerical estimation in individuals with Down syndrome.
Lanfranchi, Silvia; Berteletti, Ilaria; Torrisi, Erika; Vianello, Renzo; Zorzi, Marco
2014-10-31
We investigated numerical estimation in children with Down syndrome (DS) in order to assess whether their pattern of performance is tied to experience (age), overall cognitive level, or specifically impaired. Siegler and Opfer's (2003) number to position task, which requires translating a number into a spatial position on a number line, was administered to a group of 21 children with DS and to two control groups of typically developing children (TD), matched for mental and chronological age. Results suggest that numerical estimation and the developmental transition between logarithm and linear patterns of estimates in children with DS is more similar to that of children with the same mental age than to children with the same chronological age. Moreover linearity was related to the cognitive level in DS while in TD children it was related to the experience level. Copyright © 2014. Published by Elsevier Ltd.
Numerical approach of the quantum circuit theory
International Nuclear Information System (INIS)
Silva, J.J.B.; Duarte-Filho, G.C.; Almeida, F.A.G.
2017-01-01
In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.
Numerical approach of the quantum circuit theory
Silva, J. J. B.; Duarte-Filho, G. C.; Almeida, F. A. G.
2017-03-01
In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.
Numerical approach of the quantum circuit theory
Energy Technology Data Exchange (ETDEWEB)
Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.
2017-03-15
In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.
Partial differential equations with numerical methods
Larsson, Stig
2003-01-01
The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.
Children, algorithm and the decimal numeral system
Directory of Open Access Journals (Sweden)
Clélia Maria Ignatius Nogueira
2010-08-01
Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.
A student's guide to numerical methods
Hutchinson, Ian H
2015-01-01
This concise, plain-language guide for senior undergraduates and graduate students aims to develop intuition, practical skills and an understanding of the framework of numerical methods for the physical sciences and engineering. It provides accessible self-contained explanations of mathematical principles, avoiding intimidating formal proofs. Worked examples and targeted exercises enable the student to master the realities of using numerical techniques for common needs such as solution of ordinary and partial differential equations, fitting experimental data, and simulation using particle and Monte Carlo methods. Topics are carefully selected and structured to build understanding, and illustrate key principles such as: accuracy, stability, order of convergence, iterative refinement, and computational effort estimation. Enrichment sections and in-depth footnotes form a springboard to more advanced material and provide additional background. Whether used for self-study, or as the basis of an accelerated introdu...
Numerical modelling in non linear fracture mechanics
Directory of Open Access Journals (Sweden)
Viggo Tvergaard
2007-07-01
Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.
Numerical modeling in materials science and engineering
Rappaz, Michel; Deville, Michel
2003-01-01
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
Numerically controlled oscillator for the Fermilab Booster
International Nuclear Information System (INIS)
Crisp, J.L.; Ducar, R.J.
1989-01-01
In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Compact tokamak reactors part 2 (numerical results)
International Nuclear Information System (INIS)
Wiley, J.C.; Wootton, A.J.; Ross, D.W.
1996-01-01
The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced
Lagrangian numerical methods for ocean biogeochemical simulations
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
Numerical and experimental investigations on cavitation erosion
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Numerical simulation of edge plasma in tokamak
International Nuclear Information System (INIS)
Chen Yiping; Qiu Lijian
1996-02-01
The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)
Numerical calculation of backfilling of scour holes
DEFF Research Database (Denmark)
Sumer, B. Mutlu; Baykal, Cüneyt; Fuhrman, David R.
2014-01-01
A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of sepa...... of structures: piles, and pipelines. Initial scour holes are generated by the same model. The numerical results appear to be in accord with the existing experimental information....
Numerical properties of staggered overlap fermions
de Forcrand, Philippe; Panero, Marco
2010-01-01
We report the results of a numerical study of staggered overlap fermions, following the construction of Adams which reduces the number of tastes from 4 to 2 without fine-tuning. We study the sensitivity of the operator to the topology of the gauge field, its locality and its robustness to fluctuations of the gauge field. We make a first estimate of the computing cost of a quark propagator calculation, and compare with Neuberger's overlap.
Hybrid numerical calculation method for bend waveguides
Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno
2017-01-01
National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...
Numerical experiments on unstructured PIC stability.
Energy Technology Data Exchange (ETDEWEB)
Day, David Minot
2011-04-01
Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.
Numerical simulation of electrostatic waves in plasmas
International Nuclear Information System (INIS)
Erz, U.
1981-08-01
In this paper the propagation of electrostatic waves in plasmas and the non-linear interactions, which occur in the case of large wave amplitudes, are studied using a new numerical method for plasma simulation. This mathematical description is based on the Vlasov-model. Changes in the distribution-function are taken into account and thus plasma kinetic effects can be treated. (orig./HT) [de
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Directory of Open Access Journals (Sweden)
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
A hybrid numerical method for orbit correction
International Nuclear Information System (INIS)
White, G.; Himel, T.; Shoaee, H.
1997-09-01
The authors describe a simple hybrid numerical method for beam orbit correction in particle accelerators. The method overcomes both degeneracy in the linear system being solved and respects boundaries on the solution. It uses the Singular Value Decomposition (SVD) to find and remove the null-space in the system, followed by a bounded Linear Least Squares analysis of the remaining recast problem. It was developed for correcting orbit and dispersion in the B-factory rings
Numerical Simulation of the Kinetic Critical Nucleus
Sanada, Masaaki; Nishioka, Kazumi; Okada, Masahumi; Maksimov, Igor, L.
1997-01-01
Our main interest is to see whether the number density indicates a peak at the kinetically stable critical nucleus due to its kinetical stability. We have numerically calculated the time evolution of the number densities of clusters in the case of water vapor nucleation. We employ the condition in which the difference between the size of the thermodynamic crtitical nucleus and that of the kinetic one is appreciable. The results show that the peak does not appear in the number densities of clu...
Numerical simulations on ion acoustic double layers
International Nuclear Information System (INIS)
Sato, T.; Okuda, H.
1980-07-01
A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length
Numerical Study of Electric Field Enhanced Combustion
Han, Jie
2016-12-26
Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions
Numerical Simulation of Steady Supercavitating Flows
Ali Jafarian; Ahmad-Reza Pishevar
2016-01-01
In this research, the Supercavitation phenomenon in compressible liquid flows is simulated. The one-fluid method based on a new exact two-phase Riemann solver is used for modeling. The cavitation is considered as an isothermal process and a consistent equation of state with the physical behavior of the water is used. High speed flow of water over a cylinder and a projectile are simulated and the results are compared with the previous numerical and experimental results. The cavitation bubble p...
Implementation of standard testbeds for numerical relativity
Energy Technology Data Exchange (ETDEWEB)
Babiuc, M C [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Husa, S [Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Alic, D [Department of Physics, University of the Balearic Islands, Cra Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinder, I [Center for Gravitational Wave Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lechner, C [Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin (Germany); Schnetter, E [Center for Computation and Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Szilagyi, B; Dorband, N; Pollney, D; Winicour, J [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, 14076 Golm (Germany); Zlochower, Y [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, New York 14623 (United States)
2008-06-21
We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.
Infrared radiation parameterizations in numerical climate models
Chou, Ming-Dah; Kratz, David P.; Ridgway, William
1991-01-01
This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.
Numerical Simulation Of Silicon-Ribbon Growth
Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar
1987-01-01
Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.
On the numerical verification of industrial codes
International Nuclear Information System (INIS)
Montan, Sethy Akpemado
2013-01-01
Numerical verification of industrial codes, such as those developed at EDF R and D, is required to estimate the precision and the quality of computed results, even more for code running in HPC environments where millions of instructions are performed each second. These programs usually use external libraries (MPI, BLACS, BLAS, LAPACK). In this context, it is required to have a tool as non intrusive as possible to avoid rewriting the original code. In this regard, the CADNA library, which implements the Discrete Stochastic Arithmetic, appears to be one of a promising approach for industrial applications. In the first part of this work, we are interested in an efficient implementation of the BLAS routine DGEMM (General Matrix Multiply) implementing Discrete Stochastic Arithmetic. The implementation of a basic algorithm for matrix product using stochastic types leads to an overhead greater than 1000 for a matrix of 1024 * 1024 compared to the standard version and commercial versions of xGEMM. Here, we detail different solutions to reduce this overhead and the results we have obtained. A new routine Dgemm- CADNA have been designed. This routine has allowed to reduce the overhead from 1100 to 35 compare to optimized BLAS implementations (GotoBLAS). Then, we focus on the numerical verification of Telemac-2D computed results. Performing a numerical validation with the CADNA library shows that more than 30% of the numerical instabilities occurring during an execution come from the dot product function. A more accurate implementation of the dot product with compensated algorithms is presented in this work. We show that implementing these kinds of algorithms, in order to improve the accuracy of computed results does not alter the code performance. (author)
Exploring New Physics Frontiers Through Numerical Relativity.
Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Sperhake, Ulrich
2015-01-01
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology.
Conservative numerical methods for solitary wave interactions
Energy Technology Data Exchange (ETDEWEB)
Duran, A; Lopez-Marcos, M A [Departamento de Matematica Aplicada y Computacion, Facultad de Ciencias, Universidad de Valladolid, Paseo del Prado de la Magdalena s/n, 47005 Valladolid (Spain)
2003-07-18
The purpose of this paper is to show the advantages that represent the use of numerical methods that preserve invariant quantities in the study of solitary wave interactions for the regularized long wave equation. It is shown that the so-called conservative methods are more appropriate to study the phenomenon and provide a dynamic point of view that allows us to estimate the changes in the parameters of the solitary waves after the collision.
Numerical Simulations of Hyperfine Transitions of Antihydrogen
Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.
2015-02-04
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical simulations of hyperfine transitions of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)
2015-08-15
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical modeling of fires on gas pipelines
International Nuclear Information System (INIS)
Zhao Yang; Jianbo Lai; Lu Liu
2011-01-01
When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.
Experiments and Numerical Simulations of Electrodynamic Tether
Iki, Kentaro; Kawamoto, Satomi; Takahashi, Ayaka; Ishimoto, Tomori; Yanagida, Atsushi; Toda, Susumu
As an effective means of suppressing space debris growth, the Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) has been investigating an active space debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates tether deployment dynamics by means of on-ground experiments and numerical simulations of an electrodynamic tether system. Some key parameters used in the numerical simulations, such as the elastic modulus and damping ratio of the tether, the spring constant of the coiling of the tether, and deployment friction, must be estimated, and various experiments are conducted to determine these values. As a result, the following values were obtained: The elastic modulus of the tether was 40 GPa, and the damping ratio of the tether was 0.02. The spring constant and the damping ratio of the tether coiling were 10-4 N/m and 0.025 respectively. The deployment friction was 0.038ν + 0.005 N. In numerical simulations using a multiple mass tether model, tethers with lengths of several kilometers are deployed and the attitude dynamics of satellites attached to the end of the tether and tether libration are calculated. As a result, the simulations confirmed successful deployment of the tether with a length of 500 m using the electrodynamic tether system.
Selecting numerical scales for pairwise comparisons
International Nuclear Information System (INIS)
Elliott, Michael A.
2010-01-01
It is often desirable in decision analysis problems to elicit from an individual the rankings of a population of attributes according to the individual's preference and to understand the degree to which each attribute is preferred to the others. A common method for obtaining this information involves the use of pairwise comparisons, which allows an analyst to convert subjective expressions of preference between two attributes into numerical values indicating preferences across the entire population of attributes. Key to the use of pairwise comparisons is the underlying numerical scale that is used to convert subjective linguistic expressions of preference into numerical values. This scale represents the psychological manner in which individuals perceive increments of preference among abstract attributes and it has important implications about the distribution and consistency of an individual's preferences. Three popular scale types, the traditional integer scales, balanced scales and power scales are examined. Results of a study of 64 individuals responding to a hypothetical decision problem show that none of these scales can accurately capture the preferences of all individuals. A study of three individuals working on an actual engineering decision problem involving the design of a decay heat removal system for a nuclear fission reactor show that the choice of scale can affect the preferred decision. It is concluded that applications of pairwise comparisons would benefit from permitting participants to choose the scale that best models their own particular way of thinking about the relative preference of attributes.
A Numerical Model for Trickle Bed Reactors
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
Numerical calculations on heterogeneity of groundwater flow
International Nuclear Information System (INIS)
Follin, S.
1992-01-01
The upscaling of model parameters is a key issue in many research fields concerned with parameter heterogeneity. The upscaling process allows for fewer model blocks and relaxes the numerical problems caused by high contrasts in the hydraulic conductivity. The trade-offs are dependent on the object but the general drawback is an increasing uncertainty about the representativeness. The present study deals with numerical calculations of heterogeneity of groundwater flow and solute transport in hypothetical blocks of fractured hard rock in a '3m scale' and addresses both conceptual and practical problems in numerical simulation. Evidence that the hydraulic conductivity (K) of the rock mass between major fracture zones is highly heterogeneous in a 3m scale is provided by a large number of field investigations. The present uses the documented heterogeneity and investigates flow and transport in a two-dimensional stochastic continuum characterized by a variance in Y = In(K) of σ y 2 = 16, corresponding to about 12 log 10 cycles in K. The study considers anisotropy, channelling, non-Fickian and Fickian transport, and conditional simulation. The major conclusions are: * heterogeneity gives rise to anisotropy in the upscaling process, * the choice of support scale is crucial for the modelling of solute transport. As a consequence of the obtained results, a two-dimensional stochastic discontinuum model is presented, which provides a tool for linking stochastic continuum models to discrete fracture network models. (au) (14 figs., 136 refs.)
Numerical abilities in fish: A methodological review.
Agrillo, Christian; Miletto Petrazzini, Maria Elena; Bisazza, Angelo
2017-08-01
The ability to utilize numerical information can be adaptive in a number of ecological contexts including foraging, mating, parental care, and anti-predator strategies. Numerical abilities of mammals and birds have been studied both in natural conditions and in controlled laboratory conditions using a variety of approaches. During the last decade this ability was also investigated in some fish species. Here we reviewed the main methods used to study this group, highlighting the strengths and weaknesses of each of the methods used. Fish have only been studied under laboratory conditions and among the methods used with other species, only two have been systematically used in fish-spontaneous choice tests and discrimination learning procedures. In the former case, the choice between two options is observed in a biologically relevant situation and the degree of preference for the larger/smaller group is taken as a measure of the capacity to discriminate the two quantities (e.g., two shoals differing in number). In discrimination learning tasks, fish are trained to select the larger or the smaller of two sets of abstract objects, typically two-dimensional geometric figures, using food or social companions as reward. Beyond methodological differences, what emerges from the literature is a substantial similarity of the numerical abilities of fish with those of other vertebrates studied. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical Modelling Of Pumpkin Balloon Instability
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Numerical Investigation of Corrugated Wire Mesh Laminate
Directory of Open Access Journals (Sweden)
Jeongho Choi
2013-01-01
Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.
Correlation of Numerical Anxiety and Mathematics Performance
Directory of Open Access Journals (Sweden)
Michael Howard D. Morada
2015-12-01
Full Text Available It has been observed that most students had negative view towards mathematics and as a result, they also performed poorly.As such, it is imperative for every math teacher to understand the reasons behind this negative view to improve their student’s performance. This observation led the researcher to conduct a study on Correlation of Mathematics Performance and Anxiety of third and fourth year students for school year 2012-2013 across the different programs.This study determined the numerical anxiety level and mathematics performance of the respondents along age, gender and programs. The study revealed that students, regardless of age had passing performance. However, female and male students had fair and passing mathematics performance, respectively. Students from College of Business Education, Teacher Education and Computer Studies had fair performance while those from Marine Transportation, Criminal Justice Education and Engineering had passing performance. The study also revealed that students across different variables had moderate numerical anxiety level. Furthermore, it was found out that mathematics performance is significantly related to numerical anxiety. However, the relationship was inverse and small.
NUMERICAL DETERMINATION OF HORIZONTAL SETTLERS PERFORMANCE
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2015-08-01
Full Text Available Purpose.Horizontal settlers are one of the most important elements in the technological scheme of water purification. Their use is associated with the possibility to pass a sufficiently large volume of water. The important task at the stage of their designing is evaluating of their effectiveness. Calculation of the efficiency of the settler can be made by mathematical modeling. Empirical, analytical models and techniques that are currently used to solve the problem, do not allow to take into account the shape of the sump and various design features that significantly affects the loyalty to a decision on the choice of the size of the settling tank and its design features. The use of analytical models is limited only to one-dimensional solutions, does not allow accounting for nonuniform velocity field of the flow in the settler. The use of advanced turbulence models for the calculation of the hydrodynamics in the settler complex forms now requires very powerful computers. In addition, the calculation of one variant of the settler may last for dozens of hours. The aim of the paper is to build a numerical model to evaluate the effectiveness of horizontal settling tank modified design. Methodology. Numerical models are based on: 1 equation of potential flow; 2 equation of inviscid fluid vortex flow; 3 equation of viscous fluid dynamics; 4 mass transfer equation. For numerical simulation the finite difference schemes are used. The numerical calculation is carried out on a rectangular grid. For the formation of the computational domain markers are used. Findings.The models allow calculating the clarification process in the settler with different form and different configuration of baffles. Originality. A new approach to investigate the mass transfer process in horizontal settler was proposed. This approach is based on the developed CFD models. Three fluid dynamics models were used for the numerical investigation of flows and waste waters purification
Sensitivity analysis of numerical solutions for environmental fluid problems
International Nuclear Information System (INIS)
Tanaka, Nobuatsu; Motoyama, Yasunori
2003-01-01
In this study, we present a new numerical method to quantitatively analyze the error of numerical solutions by using the sensitivity analysis. If a reference case of typical parameters is one calculated with the method, no additional calculation is required to estimate the results of the other numerical parameters such as more detailed solutions. Furthermore, we can estimate the strict solution from the sensitivity analysis results and can quantitatively evaluate the reliability of the numerical solution by calculating the numerical error. (author)
Development of a numerical pump testing framework.
Kaufmann, Tim A S; Gregory, Shaun D; Büsen, Martin R; Tansley, Geoff D; Steinseifer, Ulrich
2014-09-01
It has been shown that left ventricular assist devices (LVADs) increase the survival rate in end-stage heart failure patients. However, there is an ongoing demand for an increased quality of life, fewer adverse events, and more physiological devices. These challenges necessitate new approaches during the design process. In this study, computational fluid dynamics (CFD), lumped parameter (LP) modeling, mock circulatory loops (MCLs), and particle image velocimetry (PIV) are combined to develop a numerical Pump Testing Framework (nPTF) capable of analyzing local flow patterns and the systemic response of LVADs. The nPTF was created by connecting a CFD model of the aortic arch, including an LVAD outflow graft to an LP model of the circulatory system. Based on the same geometry, a three-dimensional silicone model was crafted using rapid prototyping and connected to an MCL. PIV studies of this setup were performed to validate the local flow fields (PIV) and the systemic response (MCL) of the nPTF. After validation, different outflow graft positions were compared using the nPTF. Both the numerical and the experimental setup were able to generate physiological responses by adjusting resistances and systemic compliance, with mean aortic pressures of 72.2-132.6 mm Hg for rotational speeds of 2200-3050 rpm. During LVAD support, an average flow to the distal branches (cerebral and subclavian) of 24% was found in the experiments and the nPTF. The flow fields from PIV and CFD were in good agreement. Numerical and experimental tools were combined to develop and validate the nPTF, which can be used to analyze local flow fields and the systemic response of LVADs during the design process. This allows analysis of physiological control parameters at early development stages and may, therefore, help to improve patient outcomes. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Numerical Investigation of Masonry Strengthened with Composites
Directory of Open Access Journals (Sweden)
Giancarlo Ramaglia
2018-03-01
Full Text Available In this work, two main fiber strengthening systems typically applied in masonry structures have been investigated: composites made of basalt and hemp fibers, coupled with inorganic matrix. Starting from the experimental results on composites, the out-of-plane behavior of the strengthened masonry was assessed according to several numerical analyses. In a first step, the ultimate behavior was assessed in terms of P (axial load-M (bending moment domain (i.e., failure surface, changing several mechanical parameters. In order to assess the ductility capacity of the strengthened masonry elements, the P-M domain was estimated starting from the bending moment-curvature diagrams. Key information about the impact of several mechanical parameters on both the capacity and the ductility was considered. Furthermore, the numerical analyses allow the assessment of the efficiency of the strengthening system, changing the main mechanical properties. Basalt fibers had lower efficiency when applied to weak masonry. In this case, the elastic properties of the masonry did not influence the structural behavior under a no tension assumption for the masonry. Conversely, their impact became non-negligible, especially for higher values of the compressive strength of the masonry. The stress-strain curve used to model the composite impacted the flexural strength. Natural fibers provided similar outcomes, but a first difference regards the higher mechanical compatibility of the strengthening system with the substrate. In this case, the ultimate condition is due to the failure mode of the composite. The stress-strain curves used to model the strengthening system are crucial in the ductility estimation of the strengthened masonry. However, the behavior of the composite strongly influences the curvature ductility in the case of higher compressive strength for masonry. The numerical results discussed in this paper provide the base to develop normalized capacity models able to
Directory of Open Access Journals (Sweden)
Xiaorong eCheng
2015-11-01
Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.
Numerical Schemes for Rough Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)
2012-04-15
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.
Spectral methods in numerical plasma simulation
International Nuclear Information System (INIS)
Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)
Numerical double layer solutions with ionization
International Nuclear Information System (INIS)
Andersson, D.; Soerensen, J.
1982-08-01
Maxwell's equation div D = ro in one dimension is solved numerically, taking ionization into account. Time independent anode sheath and double layer solutions are obtained. By varying voltage, neutral gas pressure, temperature of the trapped ions on the cathode side and density and temperature of the trapped electrones on the anode side, diagrams are constructed that show permissible combinations of these parameters. Results from a recent experiment form a subset. Distribution functions, the Langmuir condition, some scaling laws and a possible application to the lower ionosphere are discussed. (Authors)
Numerical optimization of circulation control airfoils
Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.
1981-01-01
A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.
Numerical simulation of the cavitation's hydrodynamic excitement
International Nuclear Information System (INIS)
Hassis, H.; Dueymes, E.; Lauro, J.F.
1993-01-01
First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)
DEFF Research Database (Denmark)
Møhlenberg, Flemming; Christensen, Erik Damgaard
2015-01-01
. The planning and design of MUPS in MERMAID has therefore not only involved standard engineering methods, but also advanced numerical tools, that can enable a detailed understanding of the environment and the interactions between the MUP and the surrounding water environments. The intention of this report...... is to summarise the advanced methods developed and used during MERMAID to support the planning and design of MUP’s and form a guideline and inspiration to planners on how to meet the challenges that turns up during design of such structures....
Numerical modeling of atmospheric washout processes
International Nuclear Information System (INIS)
Bayer, D.; Beheng, K.D.; Herbert, F.
1987-01-01
For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de
Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Johnson, J.L.; Dalhed, H.E.; Greene, J.M.
1978-07-01
Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given
Numerical investigations of hybrid rocket engines
Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.
2018-03-01
Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.
A numerical technique for reactor subchannel analysis
International Nuclear Information System (INIS)
Fath, Hassan E.S.
1983-01-01
A numerical technique is developed for the solution of the transient boundary layer equations with a moving liquid-vapour interface boundary. The technique uses the finite difference method with the velocity components defined over an Eulerian mesh. A system of interface massless markers is defined where the markers move with the flow field according to a simple kinematic relation between the interface geometry and the fluid velocity. Different applications of nuclear engineering interest are reported with some available results. The present technique is capable of predicting the interface profile near the wall which is important in the reactor subchannel analysis
Language and the origin of numerical concepts.
Gelman, Rochel; Gallistel, C R
2004-10-15
Reports of research with the Pirahã and Mundurukú Amazonian Indians of Brazil lend themselves to discussions of the role of language in the origin of numerical concepts. The research findings indicate that, whether or not humans have an extensive counting list, they share with nonverbal animals a language-independent representation of number, with limited, scale-invariant precision. What causal role, then, does knowledge of the language of counting serve? We consider the strong Whorfian proposal, that of linguistic determinism; the weak Whorfian hypothesis, that language influences how we think; and that the "language of thought" maps to spoken language or symbol systems.
Numerical calculation of impurity charge state distributions
International Nuclear Information System (INIS)
Crume, E.C.; Arnurius, D.E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly
Numerical Simulations Of Flagellated Micro-Swimmers
Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey
2017-11-01
We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.
Assigning Numerical Scores to Linguistic Expressions
Directory of Open Access Journals (Sweden)
María Jesús Campión
2017-07-01
Full Text Available In this paper, we study different methods of scoring linguistic expressions defined on a finite set, in the search for a linear order that ranks all those possible expressions. Among them, particular attention is paid to the canonical extension, and its representability through distances in a graph plus some suitable penalization of imprecision. The relationship between this setting and the classical problems of numerical representability of orderings, as well as extension of orderings from a set to a superset is also explored. Finally, aggregation procedures of qualitative rankings and scorings are also analyzed.
Numerator: un material manipulativo en el aula
Barreto, Juan Pedro; Herrera, Manuel
2009-01-01
El Numerator es un material manipulativo que se utiliza en la clase de Matemática como apoyo para el profesorado a la hora de que los alumnos desarrollen su capacidad de abstracción y razonamiento, partiendo de la manipulación y realidad concreta de éste, tanto en la enseñanza de la numeración, como en la referida al bloque de operaciones en esta área. Este artículo recoge la experiencia desarrollada con este material en dos grupos del Segundo Ciclo de Primaria, en las que el alumnado ha sido...
Numerically abnormal chromosome constitutions in humans
Energy Technology Data Exchange (ETDEWEB)
NONE
1993-12-31
Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.
Geometric and numerical foundations of movements
Mansard, Nicolas; Lasserre, Jean-Bernard
2017-01-01
This book aims at gathering roboticists, control theorists, neuroscientists, and mathematicians, in order to promote a multidisciplinary research on movement analysis. It follows the workshop “ Geometric and Numerical Foundations of Movements ” held at LAAS-CNRS in Toulouse in November 2015[1]. Its objective is to lay the foundations for a mutual understanding that is essential for synergetic development in motion research. In particular, the book promotes applications to robotics --and control in general-- of new optimization techniques based on recent results from real algebraic geometry.
Mathematical and numerical analysis of plasma stability
International Nuclear Information System (INIS)
Saramito, B.
1987-11-01
Equilibrium of a tokamak plasma is analyzed using two two-dimensional numerical models. Plasma configuration; convection in a cylindrical plasma layer; and tearing instabilities in a flat layer are considered. The finite element code used is explained. The existence of analogous stationary solutions for a problem concerning compressible fluids is shown. Stationary convection created by the equilibrium density gradient is treated. Approximation using fluid equations is employed in the case of convection resulting from the equilibrium temperature gradient. Evolution towards turbulence of incompressible fluid models is followed [fr
Numerical methods for differential equations and applications
International Nuclear Information System (INIS)
Ixaru, L.G.
1984-01-01
This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)
Applications of neural network to numerical analyses
International Nuclear Information System (INIS)
Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali
1999-01-01
Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)
Numerical solutions of diffusive logistic equation
International Nuclear Information System (INIS)
Afrouzi, G.A.; Khademloo, S.
2007-01-01
In this paper we investigate numerically positive solutions of a superlinear Elliptic equation on bounded domains. The study of Diffusive logistic equation continues to be an active field of research. The subject has important applications to population migration as well as many other branches of science and engineering. In this paper the 'finite difference scheme' will be developed and compared for solving the one- and three-dimensional Diffusive logistic equation. The basis of the analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from many authors these years
Numerical simulation of large deformation polycrystalline plasticity
International Nuclear Information System (INIS)
Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.
2000-01-01
A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)
Introduction to numerical electrostatics using MATLAB
Dworsky, Lawrence N
2014-01-01
The first of its kind uniquely devoted to the field of computational electrostatics, this book dives headfirst into the actual problems that engineers are expected to solve using method of moment (MoM), finite difference, and finite element techniques. Readers are guided step by step through specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. Focusing on practical examples, mathematical equations, and common issues with algorithms, this is an ideal text for students in engineering, physics, and electrostatics-and working engineers
Advanced Numerical Model for Irradiated Concrete
Energy Technology Data Exchange (ETDEWEB)
Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Reactor numerical simulation and hydraulic test research
International Nuclear Information System (INIS)
Yang, L. S.
2009-01-01
In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device
Numerical relativity and the early Universe
Directory of Open Access Journals (Sweden)
Mironov Sergey
2016-01-01
Full Text Available We consider numerical simulations in general relativity in ADM formalism with cosmological ansatz for the metric. This ansatz is convenient for investigations of the Universe creation in laboratory with Galileons. Here we consider toy model for the software: spherically symmetric scalar field minimally coupled to the gravity with asymmetric double well potential. We studied the dependence of radius of critical bubble on the parameters of the theory. It demonstrates the wide applicability of thin-wall approximation. We did not find any kind of stable bubble solution.
Numerical method for partial equilibrium flow
International Nuclear Information System (INIS)
Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)
1981-01-01
A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
The Beam Break-Up Numerical Simulator
International Nuclear Information System (INIS)
Travish, G.A.
1989-11-01
Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs
Visualization techniques in plasma numerical simulations
International Nuclear Information System (INIS)
Kulhanek, P.; Smetana, M.
2004-01-01
Numerical simulations of plasma processes usually yield a huge amount of raw numerical data. Information about electric and magnetic fields and particle positions and velocities can be typically obtained. There are two major ways of elaborating these data. First of them is called plasma diagnostics. We can calculate average values, variances, correlations of variables, etc. These results may be directly comparable with experiments and serve as the typical quantitative output of plasma simulations. The second possibility is the plasma visualization. The results are qualitative only, but serve as vivid display of phenomena in the plasma followed-up. An experience with visualizing electric and magnetic fields via Line Integral Convolution method is described in the first part of the paper. The LIC method serves for visualization of vector fields in two dimensional section of the three dimensional plasma. The field values can be known only in grid points of three-dimensional grid. The second part of the paper is devoted to the visualization techniques of the charged particle motion. The colour tint can be used for particle temperature representation. The motion can be visualized by a trace fading away with the distance from the particle. In this manner the impressive animations of the particle motion can be achieved. (author)
Posttraumatic Orbital Emphysema: A Numerical Model
Directory of Open Access Journals (Sweden)
Andrzej Skorek
2014-01-01
Full Text Available Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall. The observation was made from 1·10-3 to 1·10-2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.
Numerical study of nonspherical black hole accretion
International Nuclear Information System (INIS)
Hawley, J.F.
1984-01-01
This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots
Numerical simulation of installation of skirt foundations
Energy Technology Data Exchange (ETDEWEB)
Vangelsten, Bjoern Vidar
1997-12-31
Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.
Numerical simulation of real-world flows
Energy Technology Data Exchange (ETDEWEB)
Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)
2015-10-15
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)
Numerical methods for engine-airframe integration
International Nuclear Information System (INIS)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment
Abstract numerical discrimination learning in rats.
Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko
2016-06-01
In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.
Numerical study of jets secondary instabilities
International Nuclear Information System (INIS)
Brancher, Pierre
1996-01-01
The work presented in this dissertation is a contribution to the study of the transition to turbulence in open shear flows. Results from direct numerical simulations are interpreted within the framework of hydrodynamic stability theory. The first chapter is an introduction to the primary and secondary instabilities observed in jets and mixing layers. The numerical method used in the present study is detailed in the second chapter. The dynamics of homogeneous circular jets subjected to stream wise and azimuthal perturbations are investigated in the third chapter. A complete scenario describing the evolution of the jet is proposed with emphasis on the dynamics of vorticity within the flow. In the fourth chapter a parametric study reveals a three-dimensional secondary instability mainly controlled in the linear regime by the Strouhal number of the primary instability. In the nonlinear regime the dynamics of the azimuthal harmonies are described by means of model equations and are linked to the formation of stream wise vortices in the braid. The fifth chapter is dedicated to the convective or absolute nature of the secondary instabilities in plane shear layers. It is shown that there are flow configurations for which the two-dimensional secondary instability (pairing) is absolute even though the primary instability (Kelvin-Helmholtz) is convective. Some preliminary results concerning the three-dimensional secondary instabilities arc presented at the end of this chapter. The last chapter summarizes the main results and examines possible extensions of this work. (author) [fr
Numerical model simulation of atmospheric coolant plumes
International Nuclear Information System (INIS)
Gaillard, P.
1980-01-01
The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr
Numerical solution of the polymer system
Energy Technology Data Exchange (ETDEWEB)
Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.
1999-05-01
The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.
Numerical modeling techniques for flood analysis
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
Numerical modelling of methanol liquid pool fires
Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.
1999-12-01
The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.
Research on ARM Numerical Control System
Wei, Xu; JiHong, Chen
Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.
Transportation package design using numerical optimization
International Nuclear Information System (INIS)
Harding, D.C.; Witkowski, W.R.
1993-01-01
Since the design of transportation packages involves a complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design constraints, numerical optimization provides the potential for more efficient container designs. In numerical optimization, the requirements of the design problem are mathematically formulated through the use of an objective function and constraints. The objective function(s), e.g., package weight, cost, volume, or combination thereof, is the function to be minimized or maximized by altering a set of design variables that define the package's shape and dimensions. Constraints are limitations on the performance of the system, such as resisting structural and thermal accident environments. Two constraints defined for an example wire mesh composite Type B package are: 1) deformation in the containment vessel seal region remains small enough throughout the 10 CFR-71 accident conditions to meet containment criteria, and 2) the elastomeric seal region remains below its operational temperature limit to guarantee seal integrity in the fire environment. The first constraint of a minimum energy absorbing layer thickness is evaluated with finite element analyses of the proposed dynamic crush accident criteria. The second constraint is evaluated with a 1-D transient thermal finite difference code parametrized for variable composite layer thicknesses, and is integrated with the optimization process. (J.P.N.)
Numerical calculation of two-phase flows
International Nuclear Information System (INIS)
Travis, J.R.; Harlow, F.H.; Amsden, A.A.
1975-06-01
The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
Energy Technology Data Exchange (ETDEWEB)
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
Numerical Methods for Free Boundary Problems
1991-01-01
About 80 participants from 16 countries attended the Conference on Numerical Methods for Free Boundary Problems, held at the University of Jyviiskylii, Finland, July 23-27, 1990. The main purpose of this conference was to provide up-to-date information on important directions of research in the field of free boundary problems and their numerical solutions. The contributions contained in this volume cover the lectures given in the conference. The invited lectures were given by H.W. Alt, V. Barbu, K-H. Hoffmann, H. Mittelmann and V. Rivkind. In his lecture H.W. Alt considered a mathematical model and existence theory for non-isothermal phase separations in binary systems. The lecture of V. Barbu was on the approximate solvability of the inverse one phase Stefan problem. K-H. Hoff mann gave an up-to-date survey of several directions in free boundary problems and listed several applications, but the material of his lecture is not included in this proceedings. H.D. Mittelmann handled the stability of thermo capi...
Getting a Kick Out of Numerical Relativity
2006-01-01
Operating ground-based gravitational wave detectors and a planned instrument in space are bringing about the new field of gravitational wave astronomy. A prime source for any of these observatories is the merger of a system of two black holes. Brought together by copious losses of gravitational-wave energy, these systems merge in a burst of energy with a peak power exceeding any electromagnetic source. Observations of these sources will generate a wealth of astrophysical information, and may provide an unparalleled probe of strong-field gravitational physics, but a full interpretation of the observations will require detailed predictions from General Relativity. I will discuss recent advances in numerical simulations of binary black hole systems which are generating dramatic progress in understanding binary black hole mergers. Recent achievements include the first simulations of binary black hole systems through several orbits and merger, leading to detailed predictions for the final portion of the gravitational radiation waveforms from equal-mass mergers. For unequal-mass mergers, it has recently become possible to measure the impulsive kick imparted to the final black hole, by the asymmetry of the merger radiation. These first results announce an accelerating wave of progress soon to come from the energetic field of numerical relativity.
Numerical simulation of avascular tumor growth
Energy Technology Data Exchange (ETDEWEB)
Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)
2007-11-15
A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.
Mathematica with a Numerical Methods Course
Varley, Rodney
2003-04-01
An interdisciplinary "Numerical Methods" course has been shared between physics, mathematics and computer science since 1992 at Hunter C. Recently, the lectures and workshops for this course have become formalized and placed on the internet at http://www.ph.hunter.cuny.edu (follow the links "Course Listings and Websites" >> "PHYS385 (Numerical Methods)". Mathematica notebooks for the lectures are available for automatic download (by "double clicking" the lecture icon) for student use in the classroom or at home. AOL (or Netscape/Explorer) can be used provided Mathematica (or the "free" MathReader) has been made a "helper application". Using Mathematica has the virtue that mathematical equations (no LaTex required) can easily be included with the text and Mathematica's graphing is easy to use. Computational cells can be included within the notebook and students may easily modify the calculation to see the result of "what if..." questions. Homework is sent as Mathematica notebooks to the instructor via the internet and the corrected workshops are returned in the same manner. Most exam questions require computational solutions.
International Nuclear Information System (INIS)
Witkowski, W.R.; Eldred, M.S.; Harding, D.C.
1994-01-01
The use of state-of-the-art numerical analysis tools to determine the optimal design of a radioactive material (RAM) transportation container is investigated. The design of a RAM package's components involves a complex coupling of structural, thermal, and radioactive shielding analyses. The final design must adhere to very strict design constraints. The current technique used by cask designers is uncoupled and involves designing each component separately with respect to its driving constraint. With the use of numerical optimization schemes, the complex couplings can be considered directly, and the performance of the integrated package can be maximized with respect to the analysis conditions. This can lead to more efficient package designs. Thermal and structural accident conditions are analyzed in the shape optimization of a simplified cask design. In this paper, details of the integration of numerical analysis tools, development of a process model, nonsmoothness difficulties with the optimization of the cask, and preliminary results are discussed
Coupled numerical simulation of fire in tunnel
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Numerical simulation of heterogeneous phase transformations
International Nuclear Information System (INIS)
Combeau, H.; Lacaze, J.
1993-01-01
A numerical model is presented for the simulation of diffusion controlled phase transformations in multicomponent alloys. A closed system is considered, with simple geometric shape, either planar, cylindrical or spherical. The temperature inside this microscopic volume is homogeneous, but can vary according to any specified monoteneous law. Particular care has been given to the description of the solute profiles where the concentration gradients are the steepest, i.e. near the interface between the parent and the resultant phases. Solute redistribution at the interface is described by means of an original method which ensures that the overall solute balance is satisfied. A non linear system is obtained which includes the diffusion equations in both phases and the boundary conditions. The solution of this system makes use of a special algorithm which has been devised for a quick convergence. An example is presented which deals with microsegregation build-up during solidification of a multi-component nickel base alloy. (orig.)
Numerical simulation of distributed parameter processes
Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad
2013-01-01
The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...
Numerical cosmology: Revealing the universe using computers
International Nuclear Information System (INIS)
Centrella, J.; Matzner, R.A.; Tolman, B.W.
1986-01-01
In this paper the authors present two research projects which study the evolution of different periods in the history of the universe using numerical simulations. The first investigates the synthesis of light elements in an inhomogeneous early universe dominated by shocks and non-linear gravitational waves. The second follows the evolution of large scale structures during the later history of the universe and calculates their effect on the 3K background radiation. Their simulations are carried out using modern supercomputers and make heavy use of multidimensional color graphics, including film to elucidate the results. Both projects provide the authors the opportunity to do experiments in cosmology and assess their results against fundamental cosmological observations
Uncertainty relation and probability. Numerical illustration
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Umetsu, Koichiro
2011-01-01
The uncertainty relation and the probability interpretation of quantum mechanics are intrinsically connected, as is evidenced by the evaluation of standard deviations. It is thus natural to ask if one can associate a very small uncertainty product of suitably sampled events with a very small probability. We have shown elsewhere that some examples of the evasion of the uncertainty relation noted in the past are in fact understood in this way. We here numerically illustrate that a very small uncertainty product is realized if one performs a suitable sampling of measured data that occur with a very small probability. We introduce a notion of cyclic measurements. It is also shown that our analysis is consistent with the Landau-Pollak-type uncertainty relation. It is suggested that the present analysis may help reconcile the contradicting views about the 'standard quantum limit' in the detection of gravitational waves. (author)
Numerical investigation of a Hall thruster plasma
International Nuclear Information System (INIS)
Roy, Subrata; Pandey, B.P.
2002-01-01
The dynamics of the Hall thruster is investigated numerically in the framework of a one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite element formulation. The model includes neutral dynamics, inelastic processes, and plasma-wall interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of time-dependent equations, while electrons are considered in steady state. Based on the experimental observations, a third order polynomial in electron temperature is used to calculate ionization rate. The results show that in the acceleration channel the increase in the ion number density is related to the decrease in the neutral number density. The electron and ion velocity profiles are consistent with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent with the predicted electron gyration velocity distribution
Aerosol numerical modelling at local scale
International Nuclear Information System (INIS)
Albriet, Bastien
2007-01-01
At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr
Numerical Simulation of a Tornado Generating Supercell
Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2012-01-01
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.
Analytical and numerical tools for vacuum systems
Kersevan, R
2007-01-01
Modern particle accelerators have reached a level of sophistication which require a thorough analysis of all their sub-systems. Among the latter, the vacuum system is often a major contributor to the operating performance of a particle accelerator. The vacuum engineer has nowadays a large choice of computational schemes and tools for the correct analysis, design, and engineering of the vacuum system. This paper is a review of the different type of algorithms and methodologies which have been developed and employed in the field since the birth of vacuum technology. The different level of detail between simple back-of-the-envelope calculations and more complex numerical analysis is discussed by means of comparisons. The domain of applicability of each method is discussed, together with its pros and cons.
The numerical simulation of accelerator components
International Nuclear Information System (INIS)
Herrmannsfeldt, W.B.; Hanerfeld, H.
1987-05-01
The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs
SMD-based numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)
2017-05-15
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
SMD-based numerical stochastic perturbation theory
International Nuclear Information System (INIS)
Dalla Brida, Mattia; Luescher, Martin
2017-01-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
High energy gravitational scattering: a numerical study
Marchesini, Giuseppe
2008-01-01
The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Numerical modeling of polar mesocyclones generation mechanisms
Sergeev, Dennis; Stepanenko, Victor
2013-04-01
Polar mesocyclones, commonly referred to as polar lows, remain of great interest due to their complicated dynamics. These mesoscale vortices are small short-living objects that are formed over the observation-sparse high-latitude oceans, and therefore, their evolution can hardly be observed and predicted numerically. The origin of polar mesoscale cyclones is still a matter of uncertainty, though the recent numerical investigations [3] have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity. Nevertheless, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously. None of the earlier studies suggested a clear picture of polar mesocyclone generation within an idealized experiment, where it is possible to look deeper into each single physical process. The present paper concentrates on the initial triggering mechanism of the polar mesocyclone. As it is reported by many researchers, some mesocyclones are formed by the surface forcing, namely the uneven distribution of heat fluxes. That feature is common on the ice boundaries [2], where intense air stream flows from the cold ice surface to the warm sea surface. Hence, the resulting conditions are shallow baroclinicity and strong surface heat fluxes, which provide an arising polar mesocyclone with potential energy source converting it to the kinetic energy of the vortex. It is shown in this paper that different surface characteristics, including thermal parameters and, for example, the shape of an ice edge, determine an initial phase of a polar low life cycle. Moreover, it is shown what initial atmospheric state is most preferable for the formation of a new polar mesocyclone or in maintaining and reinforcing the existing one. The study is based on idealized high-resolution (~2 km) numerical experiment in which baroclinicity, stratification, initial wind profile and disturbance, surface
Quantum dynamic imaging theoretical and numerical methods
Ivanov, Misha
2011-01-01
Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differ...
Numerical solution of the multichannel scattering problem
International Nuclear Information System (INIS)
Korobov, V.I.
1992-01-01
A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab
Numerical studies of impurities in fusion plasmas
International Nuclear Information System (INIS)
Hulse, R.A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest
Numerical methods in dynamic fracture mechanics
International Nuclear Information System (INIS)
Beskos, D.E.
1987-01-01
A review of numerical methods for the solution of dynamic problems of fracture mechanics is presented. Finite difference, finite element and boundary element methods as applied to linear elastic or viscoelastic and non-linear elastoplastic or elastoviscoplastic dynamic fracture mechanics problems are described and critically evaluated. Both cases of stationary cracks and rapidly propagating cracks of simple I, II, III or mixed modes are considered. Harmonically varying with time or general transient dynamic disturbances in the form of external loading or incident waves are taken into account. Determination of the dynamic stress intensity factor for stationary cracks or moving cracks with known velocity history as well as determination of the crack-tip propagation history for given dynamic fracture toughness versus crack velocity relation are described and illustrated by means of certain representative examples. Finally, a brief assessment of the present state of knowledge is made and research needs are identified
Efficient Numerical Simulation of Aerothermoelastic Hypersonic Vehicles
Klock, Ryan J.
Hypersonic vehicles operate in a high-energy flight environment characterized by high dynamic pressures, high thermal loads, and non-equilibrium flow dynamics. This environment induces strong fluid, thermal, and structural dynamics interactions that are unique to this flight regime. If these vehicles are to be effectively designed and controlled, then a robust and intuitive understanding of each of these disciplines must be developed not only in isolation, but also when coupled. Limitations on scaling and the availability of adequate test facilities mean that physical investigation is infeasible. Ever growing computational power offers the ability to perform elaborate numerical simulations, but also has its own limitations. The state of the art in numerical simulation is either to create ever more high-fidelity physics models that do not couple well and require too much processing power to consider more than a few seconds of flight, or to use low-fidelity analytical models that can be tightly coupled and processed quickly, but do not represent realistic systems due to their simplifying assumptions. Reduced-order models offer a middle ground by distilling the dominant trends of high-fidelity training solutions into a form that can be quickly processed and more tightly coupled. This thesis presents a variably coupled, variable-fidelity, aerothermoelastic framework for the simulation and analysis of high-speed vehicle systems using analytical, reduced-order, and surrogate modeling techniques. Full launch-to-landing flights of complete vehicles are considered and used to define flight envelopes with aeroelastic, aerothermal, and thermoelastic limits, tune in-the-loop flight controllers, and inform future design considerations. A partitioned approach to vehicle simulation is considered in which regions dominated by particular combinations of processes are made separate from the overall solution and simulated by a specialized set of models to improve overall processing
A theoretical introduction to numerical analysis
Ryaben'kii, Victor S
2006-01-01
PREFACE ACKNOWLEDGMENTS INTRODUCTION Discretization Conditioning Error On Methods of Computation INTERPOLATION OF FUNCTIONS. QUADRATURES ALGEBRAIC INTERPOLATION Existence and Uniqueness of Interpolating Polynomial Classical Piecewise Polynomial Interpolation Smooth Piecewise Polynomial Interpolation (Splines) Interpolation of Functions of Two Variables TRIGONOMETRIC INTERPOLATION Interpolation of Periodic Functions Interpolation of Functions on an Interval. Relation between Algebraic and Trigonometric Interpolation COMPUTATION OF DEFINITE INTEGRALS. QUADRATURES Trapezoidal Rule, Simpson's Formula, and the Like Quadrature Formulae with No Saturation. Gaussian Quadratures Improper Integrals. Combination of Numerical and Analytical Methods Multiple Integrals SYSTEMS OF SCALAR EQUATIONS SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS: DIRECT METHODS Different Forms of Consistent Linear Systems Linear Spaces, Norms, and Operators Conditioning of Linear Systems Gaussian Elimination and Its Tri-Diag...
SMD-based numerical stochastic perturbation theory
Dalla Brida, Mattia; Lüscher, Martin
2017-05-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.
Numerical Investigations of Dynamic Stall Control
Directory of Open Access Journals (Sweden)
Florin FRUNZULICA
2014-04-01
Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.
Numerical Prediction of Green Water Incidents
DEFF Research Database (Denmark)
Nielsen, K. B.; Mayer, Stefan
2004-01-01
loads on a moored FPSO exposed to head sea waves. Two cases are investigated: first, green water ona fixed vessel has been analysed, where resulting waterheight on deck, and impact pressure on a deck mounted structure have been computed. These results have been compared to experimental data obtained......Green water loads on moored or sailing ships occur when an incoming wave signigicantly exceeds the freeboard and water runs onto the deck. In this paper, a Navier-Stokes solver with a free surface capturing scheme (i.e. the VOF model; Hirt and Nichols, 1981) is used to numerically model green water...... by Greco (2001) and show very favourable agreement. Second, a full green water incident, including vessel motions has been modelled. In these computations, the vertical motion has been modelled by the use of transfer functions for heave and pitch, but the rotational contribution from the pitch motion has...
Numerical Study of Corrosion Crack Opening
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan
2008-01-01
is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...
Numerical modeling of materials under extreme conditions
Brown, Eric
2014-01-01
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Integrated optical circuits for numerical computation
Verber, C. M.; Kenan, R. P.
1983-01-01
The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Numerical simulation of distorted crystal Darwin width
International Nuclear Information System (INIS)
Wang Li; Xu Zhongmin; Wang Naxiu
2012-01-01
A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)
Numerical simulation of magnetic heat pumps
International Nuclear Information System (INIS)
Smaili, A.; Masson, C.
2002-01-01
This article presents a numerical method for performance predictions of magnetic heat pump (MHP) devices. Such devices consist primarily of a magnetic regenerator (solid refrigerant media) and circulating fluid. Unlike conventional gas-cycles, MHP devices function according to thermomagnetic cycles which do not require neither compressor nor expander. In this paper, the flow field throughout the regenerator is described by continuity and unsteady incompressible Navier-Stokes equations. The heat transfer between fluid and solid is introduced by considering the corresponding energy equations. The proposed mathematical model has been solved using a control volume finite element method. The fully implicit scheme is used for time discretization. Simulation results including heating capacity and coefficient of performance are presented for a given MHP cycle. Mainly, the effects of cycle frequency, mass flow rate and the magnetic regenerator mass are investigated. (author)
Numerical Analysis of Magnetic Sail Spacecraft
International Nuclear Information System (INIS)
Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu
2008-01-01
To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.
Numerical modeling capabilities to predict repository performance
International Nuclear Information System (INIS)
1979-09-01
This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used
Numerical simulation of human biped locomotion
International Nuclear Information System (INIS)
Ishiguro, Misako; Fujisaki, Masahide
1988-04-01
This report describes the numerical simulation of the motion of human-like robot which is one of the research theme of human acts simulation program (HASP) begun at the Computing Center of JAERI in 1987. The purpose of the theme is to model the human motion using robotics kinematic/kinetic equations and to get the joint angles as the solution. As the first trial, we treat the biped locomotion (walking) which is the most fundamental human motion. We implemented a computer program on FACOM M-780 computer, where the program is originated from the book of M. Vukobratovic in Yugoslavia, and made a graphic program to draw a walking shot sequence. Mainly described here are the mathematical model of the biped locomotion, implementation method of the computer program, input data for basic walking pattern, computed results and its validation, and graphic representation of human walking image. Literature survey on robotics equation and biped locomotion is also included. (author)
Direct numerical simulation of annular flows
Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.
2017-11-01
Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
A survey of numerical cubature over triangles
Energy Technology Data Exchange (ETDEWEB)
Lyness, J.N.; Cools, R.
1993-12-31
This survey collects together theoretical results in the area of numerical cubature over triangles and is a vehicle for a current bibliography. We treat first the theory relating to regular integrands and then the corresponding theory for singular integrands with emphasis on the ``full comer singularity.`` Within these two sections we treat successively approaches based on transforming the triangle into a square, formulas based on polynomial moment fitting, and extrapolation techniques. Within each category we quote key theoretical results without proof, and relate other results and references to these. Nearly all the references we have found may be readily placed in one of these categories. This survey is theoretical in character and does not include recent work in adaptive and automatic integration.
Numerical Limit Analysis of Reinforced Concrete Structures
DEFF Research Database (Denmark)
Larsen, Kasper Paaske
For more than half a century, limit state analysis based on the extremum principles have been used to assess the load bearing capacity of reinforced concrete structures. Extensi- ve research within the field has lead to several techniques for performing such analysis manually. While these manual...... methods provide engineers with valuable tools for limit sta- te analysis, their application becomes difficult with increased structural complexity. The main challenge is to solve the optimization problem posed by the extremum principles. This thesis is a study of how numerical methods can be used to solve...... limit state analysis problems. The work focuses on determination of the load bearing capacity of reinforced concrete structures by employing the lower bound theorem and a finite element method using equilibrium elements is developed. The recent year’s development within the field of convex optimization...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
On the Numerical Accuracy of Spreadsheets
Directory of Open Access Journals (Sweden)
Alejandro C. Frery
2010-10-01
Full Text Available This paper discusses the numerical precision of five spreadsheets (Calc, Excel, Gnumeric, NeoOffice and Oleo running on two hardware platforms (i386 and amd64 and on three operating systems (Windows Vista, Ubuntu Intrepid and Mac OS Leopard. The methodology consists of checking the number of correct significant digits returned by each spreadsheet when computing the sample mean, standard deviation, first-order autocorrelation, F statistic in ANOVA tests, linear and nonlinear regression and distribution functions. A discussion about the algorithms for pseudorandom number generation provided by these platforms is also conducted. We conclude that there is no safe choice among the spreadsheets here assessed: they all fail in nonlinear regression and they are not suited for Monte Carlo experiments.
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Numerical treatment of creep crack growth
International Nuclear Information System (INIS)
Kienzler, R.; Hollstein, T.
1990-06-01
To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)
Numerical simulations of convectively excited gravity waves
International Nuclear Information System (INIS)
Glatzmaier, G.A.
1983-01-01
Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region
Numerical solution of the radionuclide transport equation
International Nuclear Information System (INIS)
Hadermann, J.; Roesel, F.
1983-11-01
A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)
Numerical Simulation of Duplex Steel Multipass Welding
Directory of Open Access Journals (Sweden)
Giętka T.
2016-12-01
Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Numerical precision calculations for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Reuschle, Christian Andreas
2013-02-05
In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N{sub c}) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N{sub c} limit.
Numerical precision calculations for LHC physics
International Nuclear Information System (INIS)
Reuschle, Christian Andreas
2013-01-01
In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N c ) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N c limit.
Numerical investigation of dielectric barrier discharges
Li, Jing
1997-12-01
A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
On Sums of Numerical Series and Fourier Series
Pavao, H. Germano; de Oliveira, E. Capelas
2008-01-01
We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)
Theoretical and numerical study of highly anisotropic turbulent flows
Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.
2004-01-01
We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical
Numerical analysis of systems of ordinary and stochastic differential equations
Artemiev, S S
1997-01-01
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Biofouling in forward osmosis systems: An experimental and numerical study
Bucs, Szilard; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S.; Picioreanu, Cristian
2016-01-01
This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Numerical simulation of a semi-indirect evaporative cooler
Energy Technology Data Exchange (ETDEWEB)
Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)
2009-11-15
This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)
Numerical Modelling of Flow and Settling in Secondary Settling Tanks
DEFF Research Database (Denmark)
Dahl, Claus Poulsen
This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....
Topics in numerical partial differential equations and scientific computing
2016-01-01
Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.
Numerical MHD study for plasmoid instability in uniform resistivity
Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji
2017-11-01
The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.
Large scale experiments as a tool for numerical model development
DEFF Research Database (Denmark)
Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper
2003-01-01
Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...
Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.
Crosswhite, Dwight
This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…
Early Numerical Competence and Number Line Task Performance in Kindergarteners
Fanari, Rachele; Meloni, Carla; Massidda, Davide
2017-01-01
This work aims to evaluate the relationship between early numerical competence in kindergarteners and their numerical representations as measured by the number line task (NLT). Thirty-four 5-year-old children participated in the study. Children's early performance on symbolic and non-symbolic numerical tasks was considered to determine which was a…
Numerical homogenization on approach for stokesian suspensions.
Energy Technology Data Exchange (ETDEWEB)
Haines, B. M.; Berlyand, L. V.; Karpeev, D. A. (Mathematics and Computer Science); (Department of Mathematics, Pennsylvania State Univ.)
2012-01-20
In this technical report we investigate efficient methods for numerical simulation of active suspensions. The prototypical system is a suspension of swimming bacteria in a Newtonian fluid. Rheological and other macroscopic properties of such suspensions can differ dramatically from the same properties of the suspending fluid alone or of suspensions of similar but inactive particles. Elongated bacteria, such as E. coli or B. subtilis, swim along their principal axis, propelling themselves with the help of flagella, attached at the anterior of the organism and pushing it forward in the manner of a propeller. They interact hydrodynamically with the surrounding fluid and, because of their asymmetrical shape, have the propensity to align with the local flow. This, along with the dipolar nature of bacteria (the two forces a bacterium exerts on a fluid - one due to self-propulsion and the other opposing drag - have equal magnitude and point in opposite directions), causes nearby bacteria to tend to align, resulting in a intermittent local ordering on the mesoscopic scale, which is between the microscopic scale of an individual bacterium and the macroscopic scale of the suspension (e.g., its container). The local ordering is sometimes called a collective mode or collective swimming. Thanks to self-propulsion, collective modes inject momentum into the fluid in a coherent way. This enhances the local strain rate without changing the macroscopic stress applied at the boundary of the container. The macroscopic effective viscosity of the suspension is defined roughly as the ratio of the applied stress to the bulk strain rate. If local alignment and therefore local strain-rate enhancement, are significant, the effective viscosity can be appreciably lower than that of the corresponding passive suspension or even of the surrounding fluid alone. Indeed, a sevenfold decrease in the effective viscosity was observed in experiments with B. subtilis. More generally, local collective
Understanding Etna flank instability through numerical models
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Numerical Investigation of the IFMIF Lithium Target
International Nuclear Information System (INIS)
Gordeev, S.; Heinzel, V.; Slobodchuk, V.; Leichtle, D.; Anton Moeslang, A.
2006-01-01
The International Fusion Materials Facility (IFMIF) facility uses a high speed (10-20 m/s) Lithium (Li) jet flow as a target for two 40 MeV / 125 mA deuteron beams. The major function of the Li target is to provide a stable Li jet for the production of an intense neutron flux. For the understanding the lithium jet behaviour and elimination of the free-surface flow instabilities a detailed analysis of the Li jet flow is necessary. Numerical investigations of the IFMIF Li - Target have been performed with the CFD code Star-CD. A number of turbulence models were tested on the experimental data obtained at the water jet test facility of the Institute for Physics and Power Engineering (IPPE), Obninsk, Russia. Calculated and measured velocity profiles and thickness of the flow cross sections have been compared. The most suitable turbulence models were used for numerical investigations of the IFMIF Li-jet. For the analysis of the IFMIF Li target 3D models of the nozzle and jet flows have been developed. In the first part of analyses the nozzle flow effects, such as relaminarization of the accelerated flow, secondary motions and their influence on the development of the viscous layer and velocity profile have been investigated. Further evaluation of turbulence models was performed and recommendations for suitable turbulence models are given. Calculations predict the complete laminarization of the flow at the nozzle outlet for velocities less than 10 m/s. Within the transition region of velocities between 10 and 20 m/s calculations show the laminarization only in the first convergent part. In this case the acceleration dose not suppress secondary flows in the straight part near the nozzle exit. The second task is devoted to the stability of the Li jet flow. To this end, the influence of the nozzle outlet boundaries, jet curvature effects, gravity and surface tension on the free surface stability has been analysed. First calculations show, that such factors as gravity and
Numerical activities on seismic isolation in Italy
International Nuclear Information System (INIS)
Bettinali, F.; Martelli, A.; Bonacina, G.; Olivieri, M.
1992-01-01
The numerical activities which are in progress in Italy in the framework of the seismic isolation studies mainly concern the definition of models for bearings and isolated structures, and their use for test design and the analysis of experimental results. Simple bearing models have been set up, and the development of finite-element (f.e.) three-dimensional (3D) and 2D axisymmetric models is in progress. simple models have been based on the results of single bearing tests: models formed by a spring in parallel to a viscous damper, where both horizontal stiffness and viscous damping vary with displacements, have been developed by ENEA. Models based on hysteretic damping have also been developed by DISP and ISMES. Detailed bearing models include separate elements for the rubber and steel plates. A 3D model has been implemented by ENEA in the ABAQUS code. Linear elastic calculations have been performed with this model. The implementation of an elastic-plastic model for steel is also being completed, together with that of a hyper elastic model of the rubber, based on tests on specimens. Detailed models will be validated based on measured data. They will be used for bearing design and analysis of the effects of defects: some bearings with artificial defects have been fabricated to this purpose. As to the isolated structures, finite-difference programs were set up for the analysis of such structures in the case that they can be represented by sets of one-degree-of-freedom oscillators. The program ISOLA includes the aforementioned simple bearing model of ENEA, where both stiffness and damping depend on displacement and the effects of viscous creep are accounted for. A similar program has been based on the bearing model developed at ISMES. These models have been successfully used to analyse the experimental results concerning both isolated structure mock-ups and actual isolated buildings, based on the single bearing test data for both horizontal stiffness and damping (see a
Numerical simulation of "an American haboob"
Vukovic, A.; Vujadinovic, M.; Pejanovic, G.; Andric, J.; Kumjian, M. R.; Djurdjevic, V.; Dacic, M.; Prasad, A. K.; El-Askary, H. M.; Paris, B. C.; Petkovic, S.; Nickovic, S.; Sprigg, W. A.
2014-04-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg m-3, but
Adaptive Numerical Algorithms in Space Weather Modeling
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Integrating spatial and numerical structure in mathematical patterning
Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.
2018-03-01
This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.
Numerical investigation on exterior conformal mappings with application to airfoils
International Nuclear Information System (INIS)
Mohamad Rashidi Md Razali; Hu Laey Nee
2000-01-01
A numerical method is described in computing a conformal map from an exterior region onto the exterior of the unit disk. The numerical method is based on a boundary integral equation which is similar to the Kerzman-Stein integral equation for interior mapping. Some examples show that numerical results of high accuracy can be obtained provided that the boundaries are smooth. This numerical method has been applied to the mapping airfoils. However, due to the fact that the parametric representation of an air foil is not known, a cubic spline interpolation method has been used. Some numerical examples with satisfying results have been obtained for the symmetrical and cambered airfoils. (Author)
NINJA: Java for High Performance Numerical Computing
Directory of Open Access Journals (Sweden)
José E. Moreira
2002-01-01
Full Text Available When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently. These performance deficiencies can be attacked with a combination of class libraries (packages, in Java that implement truly multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.
Numerical Tribute to Achievement of Euler
Figueroa-Navarro, Carlos; Molinar-Tabares, Martín Eduardo; Castro-Arce, Lamberto; Campos-García, Julio Cesar
2014-03-01
This work aims to make a tribute to one of the world's brightest personalities as it was the mathematical physicist Leonhard Euler (1707-1783). Some results where the influence of Euler persists with the novelty of applying numerical analysis using Matlab are here exposed. A first analysis was done with the series that defines Euler numbers and polynomials of Frobenius-Euler; another result is the characterization of the functions that carry to Euler-Macheroni constant. In hydrodynamics is also feasible to evaluate graphically the relationship between dimensions in diameter and the exit angle of the height of Euler for turbomachines. In differential equations of Cauchy-Euler solutions for the cases of distinct real roots and complex roots are generated. Furthermore we report the generation of the Fourier series and the Fourier transform calculated by using Direct Commands of Matlab. In variational calculus it is possible to obtain plots from a problem of the Euler Lagrange equations. Finally, the Euler function is analyzed. Our purpose is to present a tribute to this giant of science also it could be an excuse to study his legacy by utilizing modern computational techniques.
Transonic aeroelastic numerical simulation in aeronautical engineering
International Nuclear Information System (INIS)
Yang, G.
2005-01-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
Numerical solution for heave of expansive soils
International Nuclear Information System (INIS)
Sadrnezhad, S. A.
1999-01-01
A numerical solution for heave prediction is developed within the context theories for both saturated and unsaturated soil behaviors. Basically, lowering the potential level of compressing on a saturated layer will cause heaving due to water absorption. This water absorption is in an opposite way, similar to water dissipation as what happens during unloading in consolidation process. However, in unsaturated layers any change of the stability of potential energy level will cause the tendency of change in particle interconnection forces. So, any change by either distressing or the variation of moisture ratio will lead to soil heave. In this paper a finite element solution is employed for predicting the heave in saturated soil similar to unloading in consolidation. Also, in the case of unsaturated soil, equivalent soil suction as negative pore water pressures in applied to soil elements as equivalent nodal forces. To show the potential of this method, test results were com pated with those obtained from computations. These comparisons show that the presented method is capable of predicting the heave phenomenon quite well
Proton decay: Numerical simulations confront grand unification
International Nuclear Information System (INIS)
Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.
1985-01-01
The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.)
Numerical Simulation of a Seaway with Breaking
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
Numerical modeling of bubble dynamics in magmas
Huber, Christian; Su, Yanqing; Parmigiani, Andrea
2014-05-01
Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.
Numerical study of suspensions of deformable particles.
Brandt, Luca; Rosti, Marco Edoardo
2017-11-01
We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Numerical simulations of capillary barrier field tests
International Nuclear Information System (INIS)
Morris, C.E.; Stormont, J.C.
1997-01-01
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior