WorldWideScience

Sample records for non-orthogonal unstructured grids

  1. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal

  2. Best Practices for Unstructured Grid Shock Fitting

    Science.gov (United States)

    McCloud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock fitting is outlined and applied to production relevant cases. Results achieved by using the Loci-CHEM Computational Fluid Dynamics solver are provided.

  3. BSCW Unstructured Grids - VGRID software

    Data.gov (United States)

    National Aeronautics and Space Administration — These grids were constructed using VGRID software from NASA Langley. The grids designed for node based (labeled 'nc') and cell-centered solvers are supplied. Grids...

  4. HIRENASD Unstructured Grids - VGRID software

    Data.gov (United States)

    National Aeronautics and Space Administration — These grids were constructed using VGRID software from NASA Langley. The grids designed for node based (labeled 'nc') and cell-centered solvers are supplied. Grids...

  5. HIRENASD Unstructured Grids - Centaur software

    Data.gov (United States)

    National Aeronautics and Space Administration — These grids were constructed using Centaur software at DLR in Germany. The grids designed for node based (labeled 'cv') and cell-centered solvers (labeled 'cc') are...

  6. APPLICATION OF A MODIFIED QUICK SCHEME TO DEPTHAVERAGED k-( TURBULENCE MODEL BASED ON UNSTRUCTURED GRIDS

    Institute of Scientific and Technical Information of China (English)

    HUA Zu-lin; XING Ling-hang; GU Li

    2008-01-01

    The modified QUICK scheme on unstructured grid was used to improve the advection flux approximation, and the depth-averaged turbulence model with the scheme based on FVM by SIMPLE series algorithm was established and applied to spur-dike flow computation. In this model, the over-relaxed approach was adopted to estimate the diffusion flux in view of its advantages in reducing errors and sustaining numerical stability usually encountered in non-orthogonal meshes. Two spur-dike cases with different defection angles (90oand 135o) were analyzed to validate the model. Computed results show that the predicted velocities and recirculation lengths are in good agreement with the observed data. Moreover, the computations on structured and unstructured grids were compared in terms of the approximately equivalent grid numbers. It can be concluded that the precision with unstructured grids is higher than that with structured grids in spite that the CPU time required is slightly more with unstructured grids. Thus, it is significant to apply the method to numerical simulation of practical hydraulic engineering.

  7. Best Practices for Unstructured Grid Shock-Fitting

    Science.gov (United States)

    McCoud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock-fitting is outlined and applied to production-relevant cases. Results

  8. PRESSURE CORRECTION METHOD ON UNSTRUCTURED GRIDS

    Institute of Scientific and Technical Information of China (English)

    LAI Xi-jun; WANG De-guan; CHEN Yang

    2004-01-01

    In this paper, an unstructured, collocated finite volume method for solving the Navier-Stokes equations was developed by virtue of auxiliary points. The derivatives were determined by the Gauss theorem. The proposed method could provide control volumes with arbitrary geometry and preserve the second-order accuracy even if highly distorted grids are used. Although arbitrary number of cell faces can be used, the hybrid quadrilateral/triangular grids are more desirable for the simplicity of implementation and applications to engineering problems. The pressure-velocity coupling was treated using a SIMPLE-like algorithm. The Generalized Minimum Residual (GMRES) method with the Incomplete LU (ILU) preconditioner was used to solve linear equations. Four test cases were studied for validating the proposed method. In using this method, grid quality is not important. Thus, engineers can pay mostly attention to physical mechanism of problems. Turbulence models can be simply integrated and the method can be straightforwardly extended to treat three-dimensional problems.

  9. A new numerical method on unstructured grids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new numerical method-basic function method is proposed. This method can directly discrete differential operators on unstructured grids. By using the expansion of basic function to approach the exact function,the central and upwind schemes of derivative are constructed. By using the polynomial as basic function,applying the technique of flux splitting method and the combination of central and upwind schemes,the non-physical fluctuation near the shock wave is suppressed. The first-order basic function scheme of polynomial type for solving inviscid compressible flow numerically is constructed in this paper. Several numerical results of many typical examples for one-,two-and three-dimensional inviscid compressible steady flow illustrate that it is a new scheme with high accuracy and high resolution for shock wave. Especially,combining with the adaptive remeshing technique,the satisfactory results can be obtained by these schemes.

  10. A study of the effects of grid non-orthogonality on the solution of shallow water equations in boundary-fitted coordinate systems

    CERN Document Server

    Sankaranarayanan, S

    2003-01-01

    In the present study, an existing two-dimensional boundary-fitted model [J. Hydraul. Eng.-ASCE 122 (9) (1996) 512] is used to study the effect of grid non-orthogonality on the solution of shallow water equations using boundary-fitted grids. The linearized two-dimensional shallow water equations are expressed in terms of the grid angle and aspect ratio. The truncation errors of the finite difference approximations used in the solution of the governing equations are shown to be dependent on the grid angle and the aspect ratio. The coefficient of the truncation error was shown to increase, with the decrease in the grid angle. The RMS errors in model predicted surface elevations and velocities for the case of seiching in a rectangular basin are found to increase gradually, as the grid resolution decreases from 174 to 80 gridpoints per wavelength or as the grid angle decreases from 90 deg. to 50 deg. and increases rather sharply for a grid angle of 30 deg. at grid resolutions less than 80 gridpoints per wavelength...

  11. BSCW Unstructured Grids - VGRID software FINAL

    Data.gov (United States)

    National Aeronautics and Space Administration — These grids were constructed using VGRID software from NASA Langley. The grids designed for node based (labeled 'nc') and cell-centered solvers are supplied. Grids...

  12. Visualization of transient finite element analyses on large unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Dovey, D.

    1995-03-22

    Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).

  13. HIRENASD Unstructured Grids - VGRID software FINAL

    Data.gov (United States)

    National Aeronautics and Space Administration — These grids were constructed using VGRID software from NASA Langley. The grids designed for node based (labeled 'nc') and cell-centered (labeled 'cc') solvers are...

  14. Multigrid on unstructured grids using an auxiliary set of structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.C.; Malhotra, S.; Schultz, M.H. [Yale Univ., New Haven, CT (United States)

    1996-12-31

    Unstructured grids do not have a convenient and natural multigrid framework for actually computing and maintaining a high floating point rate on standard computers. In fact, just the coarsening process is expensive for many applications. Since unstructured grids play a vital role in many scientific computing applications, many modifications have been proposed to solve this problem. One suggested solution is to map the original unstructured grid onto a structured grid. This can be used as a fine grid in a standard multigrid algorithm to precondition the original problem on the unstructured grid. We show that unless extreme care is taken, this mapping can lead to a system with a high condition number which eliminates the usefulness of the multigrid method. Theorems with lower and upper bounds are provided. Simple examples show that the upper bounds are sharp.

  15. Adaptive refinement tools for tetrahedral unstructured grids

    Science.gov (United States)

    Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)

    2011-01-01

    An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.

  16. Unstructured Grids and the Multigroup Neutron Diffusion Equation

    Directory of Open Access Journals (Sweden)

    German Theler

    2013-01-01

    Full Text Available The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by discretizing the neutron leakage term using a structured grid. This work introduces the alternatives that unstructured grids can provide to aid the engineers to solve the neutron diffusion problem and gives a brief overview of the variety of possibilities they offer. It is by understanding the basic mathematics that lie beneath the equations that model real physical systems; better technical decisions can be made. It is in this spirit that this paper is written, giving a first introduction to the basic concepts which can be incorporated into core-level neutron flux computations. A simple two-dimensional homogeneous circular reactor is solved using a coarse unstructured grid in order to illustrate some basic differences between the finite volumes and the finite elements method. Also, the classic 2D IAEA PWR benchmark problem is solved for eighty combinations of symmetries, meshing algorithms, basic geometric entities, discretization schemes, and characteristic grid lengths, giving even more insight into the peculiarities that arise when solving the neutron diffusion equation using unstructured grids.

  17. A fast and reliable overset unstructured grids approach

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Kang; Chao Yan; Jian Yu; Yuan-Yuan Fang

    2013-01-01

    A cell-centred overset unstructured grids approach is developed.In this approach,the intergrid boundary is initially established based on the wall distance from the cell centre,and is then optimized.To accelerate the intergrid-boundary definition much more,a neighbor-to-neighbor donor search algorithm based on advancing-front method is modified with the help of minimum cuboid boxes.To simplify the communications between different grid cell types and to obtain second-order spatial accuracy,a new interpolation method is constructed based on linear reconstruction,which employs only one layer of fringe cells along the intergrid boundary.For unsteady flows with relative motion,the intergrid boundary can be redefined fast and automatically.Several numerical results show that the present dynamic overset unstructured grids approach is accurate and reliable.

  18. A robust implicit shallow water equations solver on unstructured grid

    Energy Technology Data Exchange (ETDEWEB)

    Komaei, S.

    2004-07-01

    Flows in open channels are often modelled by a set of hyperbolic partial differential equations, i.e. the well known shallow water equations (SWE). Algorithms for solving SWE on structured grids have become widespread in recent years (Delis, Skeels and Ryrie 2000; Fennema and Chaudhry 1989; Panagiotopoulos and Soulis 2000; Valiani, Caleffi and Zanni 1999). However, these algorithms have shown difficulties in predicting satisfactory results in complex geometries due to mesh irregularities. As a result, attention has turned to the development of solution algorithms on arbitrary unstructured grids. The target of the present research is to develop an implicit robust scheme for solving two-dimensional SWE on unstructured grids. The proposed scheme should have capabilities to model flows in channels and natural rivers, flood propagation problems and flow over irregular beds. To achieve this goal, the following steps are necessary: 1. Studying the channel and river flows and flood propagation phenomena. 2. Developing an implicit two-dimensional hydrodynamic model on unstructured grids. 3. Verifying and validating the present model by experimental measurements, field data and the other numerical models. (orig.)

  19. A Parallel Computational Fluid Dynamics Unstructured Grid Generator

    Science.gov (United States)

    1993-12-01

    and parallel processing. I had a great deal of help in this effort. I would especially like to thank my advisor, LtCol Hobart, and my committee members...Mathematics Sciences Section at Oak Ridgr ’ -ratory, especially Barry Peyton and Dave MacKay for their help in providing me with their parallel recursive...solvers is due, in part, to the evoluion Of unstructured grids. Problem This research develops a parallel algorithm to create a two-dimensional

  20. Heterogeneous Computing on Mixed Unstructured Grids with PyFR

    CERN Document Server

    Witherden, F D; Vincent, P E

    2014-01-01

    PyFR is an open-source high-order accurate computational fluid dynamics solver for mixed unstructured grids that can target a range of hardware platforms from a single codebase. In this paper we demonstrate the ability of PyFR to perform high-order accurate unsteady simulations of flow on mixed unstructured grids using heterogeneous multi-node hardware. Specifically, after benchmarking single-node performance for various platforms, PyFR v0.2.2 is used to undertake simulations of unsteady flow over a circular cylinder at Reynolds number 3 900 using a mixed unstructured grid of prismatic and tetrahedral elements on a desktop workstation containing an Intel Xeon E5-2697 v2 CPU, an NVIDIA Tesla K40c GPU, and an AMD FirePro W9100 GPU. Both the performance and accuracy of PyFR are assessed. PyFR v0.2.2 is freely available under a 3-Clause New Style BSD license (see www.pyfr.org).

  1. Magnetohydrodynamics on an unstructured moving grid

    CERN Document Server

    Pakmor, Ruediger; Springel, Volker

    2011-01-01

    Magnetic fields play an important role in astrophysics on a wide variety of scales, ranging from the Sun and compact objects to galaxies and galaxy clusters. Here we discuss a novel implementation of ideal magnetohydrodynamics (MHD) in the moving mesh code AREPO which combines many of the advantages of Eulerian and Lagrangian methods in a single computational technique. The employed grid is defined as the Voronoi tessellation of a set of mesh-generating points which can move along with the flow, yielding an automatic adaptivity of the mesh and a substantial reduction of advection errors. Our scheme solves the MHD Riemann problem in the rest frame of the Voronoi interfaces using the HLLD Riemann solver. To satisfy the divergence constraint of the magnetic field in multiple dimensions, the Dedner divergence cleaning method is applied. In a set of standard test problems we show that the new code produces accurate results, and that the divergence of the magnetic field is kept sufficiently small to closely preserv...

  2. 3D COMPOSITIONAL RESERVOIR SIMULATION IN CONJUNCTION WITH UNSTRUCTURED GRIDS

    Directory of Open Access Journals (Sweden)

    A. L. S. Araújo

    Full Text Available Abstract In the last decade, unstructured grids have been a very important step in the development of petroleum reservoir simulators. In fact, the so-called third generation simulators are based on Perpendicular Bisection (PEBI unstructured grids. Nevertheless, the use of PEBI grids is not very general when full anisotropic reservoirs are modeled. Another possibility is the use of the Element based Finite Volume Method (EbFVM. This approach has been tested for several reservoir types and in principle has no limitation in application. In this paper, we implement this approach in an in-house simulator called UTCOMP using four element types: hexahedron, tetrahedron, prism, and pyramid. UTCOMP is a compositional, multiphase/multi-component simulator based on an Implicit Pressure Explicit Composition (IMPEC approach designed to handle several hydrocarbon recovery processes. All properties, except permeability and porosity, are evaluated in each grid vertex. In this work, four case studies were selected to evaluate the implementation, two of them involving irregular geometries. Results are shown in terms of oil and gas rates and saturated gas field.

  3. Multigrid and multilevel domain decomposition for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.; Smith, B.

    1994-12-31

    Multigrid has proven itself to be a very versatile method for the iterative solution of linear and nonlinear systems of equations arising from the discretization of PDES. In some applications, however, no natural multilevel structure of grids is available, and these must be generated as part of the solution procedure. In this presentation the authors will consider the problem of generating a multigrid algorithm when only a fine, unstructured grid is given. Their techniques generate a sequence of coarser grids by first forming an approximate maximal independent set of the vertices and then applying a Cavendish type algorithm to form the coarser triangulation. Numerical tests indicate that convergence using this approach can be as fast as standard multigrid on a structured mesh, at least in two dimensions.

  4. Finite volume methods for the incompressible Navier-Stokes equations on unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Meese, Ernst Arne

    1998-07-01

    Most solution methods of computational fluid dynamics (CFD) use structured grids based on curvilinear coordinates for compliance with complex geometries. In a typical industry application, about 80% of the time used to produce the results is spent constructing computational grids. Recently the use of unstructured grids has been strongly advocated. For unstructured grids there are methods for generating them automatically on quite complex domains. This thesis focuses on the design of Navier-Stokes solvers that can cope with unstructured grids and ''low quality grids'', thus reducing the need for human intervention in the grid generation.

  5. Aerodynamic analysis of complex configurations using unstructured grids

    Science.gov (United States)

    Frink, Neal T.; Parikh, Paresh; Pirzadeh, Shahyar

    1991-01-01

    The purpose of this paper is to assess the accuracy and utility of a new unstructured, inviscid, upwind flow solver for the aerodynamic analysis of two aircraft configurations. The two configurations consist of a low-wing transport with nacelle/pylon on and off, and a generic high-speed civil transport. Computations are made at subsonic and transonic Mach numbers for the low-wing transport and at transonic and low-supersonic speeds for the high-speed civil transport. The results include an assessment of grid sensitivity and provide comparisons with experimental data.

  6. SAUNA: A system for grid generation and flow simulation using hybrid structured/unstructured grids

    Science.gov (United States)

    Childs, P. N.; Shaw, J. A.; Peace, A. J.; Georgala, J. M.

    1992-05-01

    The development of a flow simulation facility for predicting the aerodynamics of complex configurations wherein the grid is composed of both structured and unstructured regions is described. Issues relating to the generation and analysis of such grids and to the accurate and efficient computation of both inviscid and viscous flows thereon are considered. Further the development of a comprehensive post-processing and visualization facility is explored. Techniques are illustrated throughout by application to realistic aircraft geometries.

  7. Gpu Implementation of a Viscous Flow Solver on Unstructured Grids

    Science.gov (United States)

    Xu, Tianhao; Chen, Long

    2016-06-01

    Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.

  8. Benchmarking an Unstructured-Grid Model for Tsunami Current Modeling

    Science.gov (United States)

    Zhang, Yinglong J.; Priest, George; Allan, Jonathan; Stimely, Laura

    2016-12-01

    We present model results derived from a tsunami current benchmarking workshop held by the NTHMP (National Tsunami Hazard Mitigation Program) in February 2015. Modeling was undertaken using our own 3D unstructured-grid model that has been previously certified by the NTHMP for tsunami inundation. Results for two benchmark tests are described here, including: (1) vortex structure in the wake of a submerged shoal and (2) impact of tsunami waves on Hilo Harbor in the 2011 Tohoku event. The modeled current velocities are compared with available lab and field data. We demonstrate that the model is able to accurately capture the velocity field in the two benchmark tests; in particular, the 3D model gives a much more accurate wake structure than the 2D model for the first test, with the root-mean-square error and mean bias no more than 2 cm s-1 and 8 mm s-1, respectively, for the modeled velocity.

  9. A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids

    Science.gov (United States)

    Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.

    2007-05-01

    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.

  10. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  11. Simulation of Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving and Stationary Grids

    Science.gov (United States)

    Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.

    2005-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.

  12. A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction

    Science.gov (United States)

    Carter, Melissa B.; Deere, Karen A.

    2008-01-01

    NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.

  13. An unstructured grid, three-dimensional model based on the shallow water equations

    Science.gov (United States)

    Casulli, V.; Walters, R.A.

    2000-01-01

    A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.

  14. A multigrid method for steady Euler equations on unstructured adaptive grids

    Science.gov (United States)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  15. An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations

    Directory of Open Access Journals (Sweden)

    João Luiz F. Azevedo

    2009-06-01

    Full Text Available A comparison of five different spatial discretization schemes is performed considering a typical high speed flow application. Flowfields are simulated using the 2-D Euler equations, discretized in a cell-centered finite volume procedure on unstructured triangular meshes. The algorithms studied include a central difference-type scheme, and 1st- and 2nd-order van Leer and Liou flux-vector splitting schemes. These methods are implemented in an efficient, edge-based, unstructured grid procedure which allows for adaptive mesh refinement based on flow property gradients. Details of the unstructured grid implementation of the methods are presented together with a discussion of the data structure and of the adaptive refinement strategy. The application of interest is the cold gas flow through a typical hypersonic inlet. Results for different entrance Mach numbers and mesh topologies are discussed in order to assess the comparative performance of the various spatial discretization schemes.

  16. Multi-resolution unstructured grid-generation for geophysical applications on the sphere

    CERN Document Server

    Engwirda, Darren

    2015-01-01

    An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user...

  17. FLAG: A multi-dimensional adaptive free-Lagrange code for fully unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.E.; Miller, D.S.; Palmer, T. [Lawrence Livermore National Lab., CA (United States)

    1995-07-01

    The authors describe FLAG, a 3D adaptive free-Lagrange method for unstructured grids. The grid elements were 3D polygons, which move with the flow, and are refined or reconnected as necessary to achieve uniform accuracy. The authors stressed that they were able to construct a 3D hydro version of this code in 3 months, using an object-oriented FORTRAN approach.

  18. A high-precision calculation method for interface normal and curvature on an unstructured grid

    Science.gov (United States)

    Ito, Kei; Kunugi, Tomoaki; Ohno, Shuji; Kamide, Hideki; Ohshima, Hiroyuki

    2014-09-01

    In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.

  19. Locally-orthogonal, unstructured grid-generation for general circulation modelling on the sphere

    CERN Document Server

    Engwirda, Darren

    2016-01-01

    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured grids on spheroidal geometries is described. This technique is designed to generate high-quality staggered Voronoi/Delaunay dual meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather predication. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of guaranteed-quality, unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. The initial staggered Voronoi/Delaunay tessellation is iteratively improved through hill-climbing optimisation techniques. It is shown that this approach typically produces grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a se...

  20. MPDATA: An edge-based unstructured-grid formulation

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna

    2005-07-01

    We present an advancement in the evolution of MPDATA (multidimensional positive definite advection transport algorithm). Over the last two decades, MPDATA has proven successful in applications using single-block structured cuboidal meshes (viz. Cartesian meshes), while employing homeomorphic mappings to accommodate time-dependent curvilinear domains. Motivated by the strengths of the Cartesian-mesh MPDATA, we develop a new formulation in an arbitrary finite-volume framework with a fully unstructured polyhedral hybrid mesh. In MPDATA, as in any Taylor-series based integration method for PDE, the choice of data structure has a pronounced impact on the technical details of the algorithm. Aiming at a broad range of applications with a large number of control-volume cells, we select a general, compact and computationally efficient, edge-based data structure. This facilitates the use of MPDATA for problems involving complex geometries and/or inhomogeneous anisotropic flows where mesh adaptivity is advantageous. In this paper, we describe the theory and implementation of the basic finite-volume MPDATA, and document extensions important for applications: a fully monotone scheme, diffusion scheme, and generalization to complete flow solvers. Theoretical discussions are illustrated with benchmark results in two and three spatial dimensions.

  1. Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)

    2007-03-15

    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.

  2. Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    Science.gov (United States)

    Shang, H. M.; Chen, Y. S.; Liaw, P.; Shih, M. H.; Wang, T. S.

    1996-01-01

    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors.

  3. Flows around moving bodies using a dynamic unstructured overset-grid method

    Science.gov (United States)

    Liu, Jingxin; Akay, Hasan U.; Ecer, Akin; Payli, Resat U.

    2010-07-01

    In this article, a computational fluid dynamics algorithm is presented for simulations of complex unsteady flows around rigid moving bodies using an unstructured overset-grid method. For this purpose, a highly automated, three-dimensional, tetrahedral, unstructured overset-grid method is developed with one-cell-width overlapping zone in order to model the arbitrary geometries for steady and unsteady flow simulations. A method has been described to obtain the inter-grid boundaries of the one-cell-wide overlapping zone shared by a background grid and a minor grid. In the overset-grid methodology, vector intersection algorithm and bounding box techniques have been utilised. The mesh refinement and overset-scheme conservation studies proved the accuracy and efficiency of the method developed here. The applications of the developed algorithms were also performed through simulations that included complex internal flows around a flow-control butterfly valve as well as flows in an internal combustion engine with a moving piston. Lastly, validations with experimental data were conducted for both steady and unsteady flows around rigid bodies with relative motions.

  4. ADAPTIVE LAYERED CARTESIAN CUT CELL METHOD FOR THE UNSTRUCTURED HEXAHEDRAL GRIDS GENERATION

    Institute of Scientific and Technical Information of China (English)

    WU Peining; TAN Jianrong; LIU Zhenyu

    2007-01-01

    Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the unstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.

  5. Element-Partition-Based Methods for Visualization of 3D Unstructured Grid Data

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Element-partition-based methods for visualization of 3D unstructured grid data are presented.First,partition schemes for common elements,including curvilinear tetrahedra,pentahedra,hexahedra,etc.,are given,so that complex elements can be divided into several rectilinear tetrahedra,and the visualization processes can be simplified.Then,a slice method for cloud map and an iso-surface method based on the partition schemes are described.

  6. Aerodynamic Shape Sensitivity Analysis and Design Optimization of Complex Configurations Using Unstructured Grids

    Science.gov (United States)

    Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.

    1997-01-01

    A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.

  7. Unsteady Non-Newtonian Solver on Unstructured Grid for the Simulation of Blood Flow

    Directory of Open Access Journals (Sweden)

    Guojie Li

    2013-01-01

    Full Text Available Blood is in fact a suspension of different cells with yield stress, shear thinning, and viscoelastic properties, which can be represented by different non-Newtonian models. Taking Casson fluid as an example, an unsteady solver on unstructured grid for non-Newtonian fluid is developed to simulate transient blood flow in complex flow region. In this paper, a steady solver for Newtonian fluid is firstly developed with the discretization of convective flux, diffusion flux, and source term on unstructured grid. For the non-Newtonian characteristics of blood, the Casson fluid is approximated by the Papanastasiou's model and treated as Newtonian fluid with variable viscosity. Then considering the transient property of blood flow, an unsteady non-Newtonian solver based on unstructured grid is developed by introducing the temporal term by first-order upwind difference scheme. Using the proposed solver, the blood flows in carotid bifurcation of hypertensive patients and healthy people are simulated. The result shows that the possibility of the genesis and development of atherosclerosis is increased, because of the increase in incoming flow shock and backflow areas of the hypertensive patients, whose WSS was 20~87.1% lower in outer vascular wall near the bifurcation than that of the normal persons and 3.7~5.5% lower in inner vascular wall downstream the bifurcation.

  8. Non-orthogonal subband/transform coder

    Science.gov (United States)

    Glover, Daniel R. (Inventor)

    1993-01-01

    The present invention is directed to a simplified digital subband coder/decoder. In the present invention a signal is fed into a coder. The coder uses a non-orthogonal algorithm that is simply implemented in the coder hardware. The simple non-orthogonal design is then used in the implementation of the decoder to decode the signal.

  9. 2.5D complex resistivity modeling and inversion using unstructured grids

    Science.gov (United States)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are

  10. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-04-30

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable.

  11. JIGSAW-GEO (1.0): Locally Orthogonal Staggered Unstructured Grid Generation for General Circulation Modelling on the Sphere

    Science.gov (United States)

    Engwirda, Darren

    2017-01-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  12. Thermal Protection System Cavity Heating for Simplified and Actual Geometries Using Computational Fluid Dynamics Simulations with Unstructured Grids

    Science.gov (United States)

    McCloud, Peter L.

    2010-01-01

    Thermal Protection System (TPS) Cavity Heating is predicted using Computational Fluid Dynamics (CFD) on unstructured grids for both simplified cavities and actual cavity geometries. Validation was performed using comparisons to wind tunnel experimental results and CFD predictions using structured grids. Full-scale predictions were made for simplified and actual geometry configurations on the Space Shuttle Orbiter in a mission support timeframe.

  13. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids

    Science.gov (United States)

    Møyner, Olav; Lie, Knut-Andreas

    2016-01-01

    A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructed by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell

  14. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers

    Science.gov (United States)

    Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.

    2004-01-01

    A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not

  15. A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    CERN Document Server

    Bakosi, J; Boybeyi, Z; 10.1016/j.jcp.2008.02.024

    2010-01-01

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statis...

  16. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    Science.gov (United States)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  17. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    Science.gov (United States)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  18. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids

    CERN Document Server

    Moortgat, Joachim

    2016-01-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...

  19. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    Science.gov (United States)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  20. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    Science.gov (United States)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  1. Unstructured grid solutions to a wing/pylon/store configuration using VGRID3D/USM3D

    Science.gov (United States)

    Parikh, Paresh; Pirzadeh, Shahyar; Frink, Neal T.

    1992-01-01

    The purpose of this paper is to validate an inviscid flow solution package based on a new unstructured grid methodology using experimental data on a wing/pylon/store configuration. The solution package consists of an advancing front unstructured grid generator, VGRID3D, and an efficient Euler equation solver, USM3D. Comparisons of computed data versus experimental data are made for two free-stream Mach numbers at five store locations relative to the wing. Both rigid body aerodynamics and mutual interference effects are explored. A very good agreement is observed between computed and wind tunnel data.

  2. A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows

    Science.gov (United States)

    Xie, Bin; Xiao, Feng

    2016-12-01

    We proposed a multi-moment constrained finite volume method which can simulate incompressible flows of high Reynolds number in complex geometries. Following the underlying idea of the volume-average/point-value multi-moment (VPM) method (Xie et al. (2014) [71]), this formulation is developed on arbitrary unstructured hybrid grids by employing the point values (PV) at both cell vertex and barycenter as the prognostic variables. The cell center value is updated via an evolution equation derived from a constraint condition of finite volume form, which ensures the rigorous numerical conservativeness. Novel numerical formulations based on the local PVs over compact stencil are proposed to enhance the accuracy, robustness and efficiency of computations on unstructured meshes of hybrid and arbitrary elements. Numerical experiments demonstrate that the present numerical model has nearly 3-order convergence rate with numerical errors much smaller than the VPM method. The numerical dissipation has been significantly suppressed, which facilitates numerical simulations of high Reynolds number flows in complex geometries.

  3. Dune-CurvilinearGrid: Parallel Dune Grid Manager for Unstructured Tetrahedral Curvilinear Meshes

    OpenAIRE

    Fomins, Aleksejs; Oswald, Benedikt

    2016-01-01

    We introduce the dune-curvilineargrid module. The module provides the self-contained, parallel grid manager, as well as the underlying elementary curvilinear geometry module dune-curvilineargeometry. This work is motivated by the need for reliable and scalable electromagnetic design of nanooptical devices. Curvilinear geometries improve both the accuracy of modeling smooth material boundaries, and the h/p-convergence rate of PDE solutions, reducing the necessary computational effort. dune-cur...

  4. A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids

    Science.gov (United States)

    Hu, Guanghui

    2017-02-01

    In this paper, a framework of adaptive finite volume solutions for the reactive Euler equations on unstructured grids is proposed. The main ingredients of the algorithm include a second order total variation diminishing Runge-Kutta method for temporal discretization, and the finite volume method with piecewise linear solution reconstruction of the conservative variables for the spatial discretization in which the least square method is employed for the reconstruction, and weighted essentially nonoscillatory strategy is used to restrain the potential numerical oscillation. To resolve the high demanding on the computational resources due to the stiffness of the system caused by the reaction term and the shock structure in the solutions, the h-adaptive method is introduced. OpenMP parallelization of the algorithm is also adopted to further improve the efficiency of the implementation. Several one and two dimensional benchmark tests on the ZND model are studied in detail, and numerical results successfully show the effectiveness of the proposed method.

  5. A Finite Volume Method with Unstructured Triangular Grids for Numerical Modeling of Tidal Current

    Institute of Scientific and Technical Information of China (English)

    SHI Hong-da; LIU zhen

    2005-01-01

    The finite volume method (FVM) has many advantages in 2-D shallow water numerical simulation. In this study, the finite volume method is used with unstructured triangular grids to simulate the tidal currents. The Roe scheme is applied in the calculation of the intercell numerical flux, and the MUSCL method is introduced to improve its accuracy. The time integral is a two-step scheme of forecast and revision. For the verification of the present method, the Stoker's problem is calculated and the result is compared with the mathematically analytic solutions. The comparison indicates that the method is feasible. A sea area of a port is used as an example to test the method established here. The result shows that the present computational method is satisfactory, and it could be applied to the engineering fields.

  6. A GPU-enabled Finite Volume solver for global magnetospheric simulations on unstructured grids

    Science.gov (United States)

    Lani, Andrea; Yalim, Mehmet Sarp; Poedts, Stefaan

    2014-10-01

    This paper describes an ideal Magnetohydrodynamics (MHD) solver for global magnetospheric simulations based on a B1 +B0 splitting approach, which has been implemented within the COOLFluiD platform and adapted to run on modern heterogeneous architectures featuring General Purpose Graphical Processing Units (GPGPUs). The code is based on a state-of-the-art Finite Volume discretization for unstructured grids and either explicit or implicit time integration, suitable for both steady and time accurate problems. Innovative object-oriented design and coding techniques mixing C++ and CUDA are discussed. Performance results of the modified code on single and multiple processors are presented and compared with those provided by the original solver.

  7. Hybrid, explicit-implicit, finite-volume schemes on unstructured grids for unsteady compressible flows

    Science.gov (United States)

    Timofeev, Evgeny; Norouzi, Farhang

    2016-06-01

    The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.

  8. Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids

    CERN Document Server

    Bakosi, J; Boybeyi, Z

    2010-01-01

    In probability density function (PDF) methods a transport equation is solved numerically to compute the time and space dependent probability distribution of several flow variables in a turbulent flow. The joint PDF of the velocity components contains information on all one-point one-time statistics of the turbulent velocity field, including the mean, the Reynolds stresses and higher-order statistics. We developed a series of numerical algorithms to model the joint PDF of turbulent velocity, frequency and scalar compositions for high-Reynolds-number incompressible flows in complex geometries using unstructured grids. Advection, viscous diffusion and chemical reaction appear in closed form in the PDF formulation, thus require no closure hypotheses. The generalized Langevin model (GLM) is combined with an elliptic relaxation technique to represent the non-local effect of walls on the pressure redistribution and anisotropic dissipation of turbulent kinetic energy. The governing system of equations is solved fully...

  9. A Multigrid Block LU-SGS Algorithm for Euler Equations on Unstructured Grids

    Institute of Scientific and Technical Information of China (English)

    Ruo Li; Xin Wang; Weibo Zhao

    2008-01-01

    We propose an efficient and robust algorithm to solve the steady Euler equations on unstructured grids. The new algorithm is a Newton-iteration method in which each iteration step is a linear multigrid method using block lower-upper symmetric Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of Newton-iteration, we adopted a local residual dependent regularization as the replace ment of the standard time-stepping relaxation technique based on the local CFL number. The proposed method can be extended to high order approximations and three spatial dimensions in a nature way. The solver was tested on a sequence of benchmark prob lems on both quasi-uniform and local adaptive meshes. The numerical results illustrated the efficiency and robustness of our algorithm.

  10. An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N; White, D A; Wallin, B K; Solberg, J M

    2006-06-12

    We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

  11. An Efficient and Robust Method for Lagrangian Magnetic Particle Tracking in Fluid Flow Simulations on Unstructured Grids

    NARCIS (Netherlands)

    Cohen Stuart, D.C.; Kleijn, C.R.; Kenjeres, S.

    2010-01-01

    In this paper we report on a newly developed particle tracking scheme for fluid flow simulations on 3D unstructured grids, aiming to provide detailed insights in the particle behaviour in complex geometries. A possible field of applications is the Magnetic Drug Targeting (MDT) technique, on which th

  12. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    Science.gov (United States)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  13. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    Science.gov (United States)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  14. Simulation of a Periodic Jet in a Crossflow with a RANS Solver Using an Unstructured Grid

    Science.gov (United States)

    Atkins, H. L.

    2007-01-01

    A second-order unstructured-grid code, developed and used primarily for steady aerodynamic simulations, is applied to the synthetic jet in a cross flow. The code, FUN3D, is a vertex-centered finite-volume method originally developed by Anderson[1, 2], and is currently supported by members of the Fast Adaptive Aerospace Tools team at NASA Langley. Used primarily for design[3] and analysis[4] of steady aerodynamic configurations, FUN3D incorporates a discrete adjoint capability, and supports parallel computations using MPI. A detailed description of the FUN3D code can be found in the references given above. The code is under continuous development and contains a variety of flux splitting algorithms for the inviscid terms, two methods for computing gradients, several turbulence models, and several solution methodologies; all in varying states of development. Only the most robust and reliable components, based on experiences with steady aerodynamic simulations, were employed in this work. As applied in this work, FUN3D solves the Reynolds averaged Navier-Stokes equations using the one equation turbulence model of Spalart and Allmaras[5]. The spatial discretization is formed on unstructured meshes using a vertex-centered approach. The inviscid terms are evaluated by a flux-difference splitting formulation using least-squares reconstruction and Roe-type approximate Riemann fluxes. Green-Gauss gradient evaluations are used for viscous and turbulence modeling terms. The discrete spatial operator is combined with a backward time operator which is then solved iteratively using point or line Gauss-Seidel and local time stepping in a pseudo time. For steady flows, the physical time step is set to infinity and the pseudo time step is ramped up with the iteration count. A second-order backward in time operator is used for time accurate flows with 20 to 50 steps in the pseudo time applied at each physical time step. For this effort, FUN3D was modified to support spatially varying

  15. River salinity on a mega-delta, an unstructured grid model approach.

    Science.gov (United States)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  16. A Two-Dimensional MagnetoHydrodynamics Scheme for General Unstructured Grids

    CERN Document Server

    Livne, E; Burrows, A; Meakin, C A; Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.

    2007-01-01

    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of $div(\\bB)$ by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for...

  17. Compact high order finite volume method on unstructured grids III: Variational reconstruction

    Science.gov (United States)

    Wang, Qian; Ren, Yu-Xin; Pan, Jianhua; Li, Wanai

    2017-05-01

    This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier-Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction.

  18. Agglomeration multigrid methods with implicit Runge-Kutta smoothers applied to aerodynamic simulations on unstructured grids

    Science.gov (United States)

    Langer, Stefan

    2014-11-01

    For unstructured finite volume methods an agglomeration multigrid with an implicit multistage Runge-Kutta method as a smoother is developed for solving the compressible Reynolds averaged Navier-Stokes (RANS) equations. The implicit Runge-Kutta method is interpreted as a preconditioned explicit Runge-Kutta method. The construction of the preconditioner is based on an approximate derivative. The linear systems are solved approximately with a symmetric Gauss-Seidel method. To significantly improve this solution method grid anisotropy is treated within the Gauss-Seidel iteration in such a way that the strong couplings in the linear system are resolved by tridiagonal systems constructed along these directions of strong coupling. The agglomeration strategy is adapted to this procedure by taking into account exactly these anisotropies in such a way that a directional coarsening is applied along these directions of strong coupling. Turbulence effects are included by a Spalart-Allmaras model, and the additional transport-type equation is approximately solved in a loosely coupled manner with the same method. For two-dimensional and three-dimensional numerical examples and a variety of differently generated meshes we show the wide range of applicability of the solution method. Finally, we exploit the GMRES method to determine approximate spectral information of the linearized RANS equations. This approximate spectral information is used to discuss and compare characteristics of multistage Runge-Kutta methods.

  19. Verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States); Wang, Yaqi [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-20

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above-listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  20. A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism

    Science.gov (United States)

    Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia

    2017-08-01

    A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.

  1. Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows

    CERN Document Server

    Liu, Qing; Li, Dong

    2015-01-01

    In this paper, a non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method for simulating incompressible thermal flows is presented. In the method, the incompressible Navier-Stokes equations and temperature equation (or convection-diffusion equation) are solved separately by two different MRT-LB models, which are proposed based on non-orthogonal transformation matrices constructed in terms of some proper non-orthogonal basis vectors obtained from the combinations of the lattice velocity components. The macroscopic equations for incompressible thermal flows can be recovered from the present method through the Chapman-Enskog analysis in the incompressible limit. Numerical simulations of several typical two-dimensional problems are carried out to validate the present method. It is found that the present numerical results are in good agreement with the analytical solutions or other numerical results of previous studies. Furthermore, the grid convergence tests indicate that the present MRT-LB met...

  2. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas

    Science.gov (United States)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Lecci, Rita; Mossa, Michele

    2017-01-01

    SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3-4 km) to coastal areas (50-500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity-temperature-depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS

  3. Development of an unstructured-grid wave-current coupled model and its application

    Science.gov (United States)

    Feng, Xingru; Yin, Baoshu; Yang, Dezhou

    2016-08-01

    An unstructured grid wave-current coupled model was developed by coupling the SWAN (Simulating Waves Nearshore) wave model and ADCIRC (Advanced Circulation model) ocean model through the Model Coupling Toolkit (MCT). The developed coupled model has high spatial resolution in the coastal area and is efficient for computation. The efficiency of the newly developed SWAN + ADCIRC model was compared with that of the widely-used SWAN + ADCIRC coupled model, in which SWAN and ADCIRC are coupled directly rather than through the MCT. Results show that the directly-coupled model is more efficient when the total number of computational cores is small, but the MCT-coupled model begin to run faster than the directly-coupled model when more computational cores are used. The MCT-coupled model maintains the scalability longer and can increase the simulation efficiency more than 35% by comparing the minimum wall clock time of one day simulation in the test runs. The MCT-coupled SWAN + ADCIRC model was used to simulate the storm surge and waves during the typhoon Usagi which formed in the western Pacific on September 17, 2013 and landed at Shanwei, China. Three numerical experiments were performed to investigate the effect of wave-current interaction on the storm surge and waves. The results show that the coupled model can better simulate the storm surge and waves when considering the wave-induced radiation stress, the wave effect on the wind stress drag coefficient and the modulation of current and water level on waves. During the typhoon Usagi, the effect of wave radiation stress could result in a maximum of 0.75 m increase in the extreme storm surge, and the wave induced wind stress could cause a -0.82∼0.48 m change of the extreme storm surge near the coastal area. Besides, the radiation stress forced currents cannot be ignored either in the study of mass transport at coastal zones. Results of this study are useful for understanding the wave-current interaction processes and

  4. GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids

    Science.gov (United States)

    Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.

    2015-01-01

    GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.

  5. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling

    Science.gov (United States)

    Bilgili, Ata; Smith, Keston W.; Lynch, Daniel R.

    2006-06-01

    A brief summary of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is provided and mesh generation requirements that are imperative to meet the criteria of the circulation modeling community are defined. A Matlab public-domain two-dimensional (2-D) mesh generation package (BatTri) based on these requirements is then presented and its efficiency shown through examples. BatTri consists of a graphical mesh editing interface and several bathymetry-based refinement algorithms, complemented by a set of diagnostic utilities to check and improve grid quality. The final output mesh node locations, node depths and element incidence list are obtained starting from only a basic set of bathymetric data. This simple but efficient setup allows fast interactive mesh customization and provides circulation modelers with problem-specific flexibility while satisfying the usual requirements on mesh size and element quality. A test of the "off-centers" method performed on 100 domains with randomly generated coastline and bathymetry shows an overall 25% reduction in the number of elements with only slight decrease in element quality. More importantly, this shows that BatTri is easily upgradeable to meet the future demands by the addition of new grid generation algorithms and Delaunay refinement schemes as they are made available.

  6. Euler Technology Assessment program for preliminary aircraft design employing SPLITFLOW code with Cartesian unstructured grid method

    Science.gov (United States)

    Finley, Dennis B.

    1995-01-01

    This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  7. MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation

    Science.gov (United States)

    Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.

    2013-01-01

    A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton

  8. Portable Parallel Programming for the Dynamic Load Balancing of Unstructured Grid Applications

    Science.gov (United States)

    Biswas, Rupak; Das, Sajal K.; Harvey, Daniel; Oliker, Leonid

    1999-01-01

    The ability to dynamically adapt an unstructured -rid (or mesh) is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult, particularly from the view point of portability on various multiprocessor platforms We address this problem by developing PLUM, tin automatic anti architecture-independent framework for adaptive numerical computations in a message-passing environment. Portability is demonstrated by comparing performance on an SP2, an Origin2000, and a T3E, without any code modifications. We also present a general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication pattern, with a goal to providing a global view of system loads across processors. Experiments on, an SP2 and an Origin2000 demonstrate the portability of our approach which achieves superb load balance at the cost of minimal extra overhead.

  9. Final Report - High-Order Spectral Volume Method for the Navier-Stokes Equations On Unstructured Tetrahedral Grids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z J

    2012-12-06

    The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equations for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.

  10. Fast 3-D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method

    Science.gov (United States)

    Ren, Zhengyong; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi

    2017-01-01

    A novel fast and accurate algorithm is developed for large-scale 3-D gravity and magnetic modeling problems. An unstructured grid discretization is used to approximate sources with arbitrary mass and magnetization distributions. A novel adaptive multilevel fast multipole (AMFM) method is developed to reduce the modeling time. An observation octree is constructed on a set of arbitrarily distributed observation sites, while a source octree is constructed on a source tetrahedral grid. A novel characteristic is the independence between the observation octree and the source octree, which simplifies the implementation of different survey configurations such as airborne and ground surveys. Two synthetic models, a cubic model and a half-space model with mountain-valley topography, are tested. As compared to analytical solutions of gravity and magnetic signals, excellent agreements of the solutions verify the accuracy of our AMFM algorithm. Finally, our AMFM method is used to calculate the terrain effect on an airborne gravity data set for a realistic topography model represented by a triangular surface retrieved from a digital elevation model. Using 16 threads, more than 5800 billion interactions between 1,002,001 observation points and 5,839,830 tetrahedral elements are computed in 453.6 s. A traditional first-order Gaussian quadrature approach requires 3.77 days. Hence, our new AMFM algorithm not only can quickly compute the gravity and magnetic signals for complicated problems but also can substantially accelerate the solution of 3-D inversion problems.

  11. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

    Science.gov (United States)

    Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.

    2017-10-01

    We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.

  12. A New Efficient Finite Volume Modeling of Small Amplitude Free Surface Flows with Unstructured Grid

    Institute of Scientific and Technical Information of China (English)

    L(U) Biao

    2013-01-01

    A staggered finite-volume technique for non-hydrostatic,small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time.The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and,while it has the attractive property of being conservative.The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy.A conservative scalar transport algorithm is also applied to discretize k-ε equations in this model.The eddy viscosity is calculated from the k-ε turbulent model.The resulting model is mass and momentum conservative.The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field,and then applied to simulate the tidal flow in the Bohai Sea.

  13. Comparison between staggered grid finite-volume and edge-based finite-element modelling of geophysical electromagnetic data on unstructured grids

    Science.gov (United States)

    Jahandari, Hormoz; Ansari, SeyedMasoud; Farquharson, Colin G.

    2017-03-01

    This study compares two finite-element (FE) and three finite-volume (FV) schemes which use unstructured tetrahedral grids for the modelling of electromagnetic (EM) data. All these schemes belong to a group of differential methods where the electric field is defined along the edges of the elements. The FE and FV schemes are based on both the EM-field and the potential formulations of Maxwell's equations. The EM-field FE scheme uses edge-based (vector) basis functions while the potential FE scheme uses vector and scalar basis functions. All the FV schemes use staggered tetrahedral-Voronoï grids. Three examples are used for comparisons in terms of accuracy and in terms of the computation resources required by generic iterative and direct solvers for solving the problems. Two of these examples represent survey scenarios with electric and magnetic sources and the results are compared with those from the literature while the third example is a comparison against analytical solutions for an electric dipole source. Exactly the same mesh is used for all examples to allow for direct comparison of the various schemes. The results show that while the FE and FV schemes are comparable in terms of accuracy and computation resources, the FE schemes are slightly more accurate but also more expensive than the FV schemes.

  14. Non-Orthogonal Opportunistic Beamforming: Performance Analysis and Implementation

    KAUST Repository

    Xia, Minghua

    2012-04-01

    Aiming to achieve the sum-rate capacity in multi-user multi-antenna systems where $N_t$ antennas are implemented at the transmitter, opportunistic beamforming (OBF) generates~$N_t$ orthonormal beams and serves $N_t$ users during each channel use, which results in high scheduling delay over the users, especially in densely populated networks. Non-orthogonal OBF with more than~$N_t$ transmit beams can be exploited to serve more users simultaneously and further decrease scheduling delay. However, the inter-beam interference will inevitably deteriorate the sum-rate. Therefore, there is a tradeoff between sum-rate and scheduling delay for non-orthogonal OBF. In this context, system performance and implementation of non-orthogonal OBF with $N>N_t$ beams are investigated in this paper. Specifically, it is analytically shown that non-orthogonal OBF is an interference-limited system as the number of users $K \\\\to \\\\infty$. When the inter-beam interference reaches its minimum for fixed $N_t$ and~$N$, the sum-rate scales as $N\\\\ln\\\\left(\\\\frac{N}{N-N_t}\\ ight)$ and it degrades monotonically with the number of beams $N$ for fixed $N_t$. On the contrary, the average scheduling delay is shown to scale as $\\\\frac{1}{N}K\\\\ln{K}$ channel uses and it improves monotonically with $N$. Furthermore, two practical non-orthogonal beamforming schemes are explicitly constructed and they are demonstrated to yield the minimum inter-beam interference for fixed $N_t$ and $N$. This study reveals that, if user traffic is light and one user can be successfully served within a single transmission, non-orthogonal OBF can be applied to obtain lower worst-case delay among the users. On the other hand, if user traffic is heavy, non-orthogonal OBF is inferior to orthogonal OBF in terms of sum-rate and packet delay.

  15. THE FINITE VOLUME PROJECTION METHOD WITH HYBRID UNSTRUCTURED TRIANGULAR COLLOCATED GRIDS FOR INCOMPRESSIBLE FLOWS

    Institute of Scientific and Technical Information of China (English)

    GAO Wei; DUAN Ya-li; LIU Ru-xun

    2009-01-01

    In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.

  16. Unstructured Grid Euler Method Assessment for Aerodynamics Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.

  17. Evaluation and optimization of multi-lateral wells using MODFLOW unstructured grids

    Directory of Open Access Journals (Sweden)

    Lux Marcell

    2016-01-01

    Full Text Available Multi-lateral wells have been increasingly used in recent years by different industries including oil- and gas industry along with coal bed methane- and water production. The common purpose of these wells is to achieve a higher production rate per well. More and more sophisticated well patterns and geometries can be implemented in practice which calls for improved modelling techniques. Complicated well geometries and small lateral diameters require high resolution models in the vicinity of the wells. With structured finite difference grids this can only be achieved by unnecessary refinements even far away from the wellbores. However the model may still suffer from orientation problems if laterals do not coincide with the rows or columns of the rectangular mesh.

  18. A hybrid pressure-density-based Mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method

    Science.gov (United States)

    Xie, Bin; Deng, Xi; Sun, Ziyao; Xiao, Feng

    2017-04-01

    We propose a novel Mach-uniform numerical model for 2D Euler equations on unstructured grids by using multi-moment finite volume method. The model integrates two key components newly developed to solve compressible flows on unstructured grids with improved accuracy and robustness. A new variant of AUSM scheme, so-called AUSM+-pcp (AUSM+ with pressure-correction projection), has been devised including a pressure-correction projection to the AUSM+ flux splitting, which maintains the exact numerical conservativeness and works well for all Mach numbers. A novel 3th-order, non-oscillatory and less-dissipative reconstruction has been proposed by introducing a multi-dimensional limiting and a BVD (boundary variation diminishing) treatment to the VPM (volume integrated average (VIA) and point value (PV) based multi-moment) reconstruction. The resulting reconstruction scheme, the limited VPM-BVD formulation, is able to resolve both smooth and non-smooth solutions with high fidelity. Benchmark tests have been used to verify the present model. The numerical results substantiate the present model as an accurate and robust unstructured-grid formulation for flows of all Mach numbers.

  19. Oscillation-Free Methods for Modeling Fluid-Porous Interfaces Using Segregated Solvers on Unstructured Grids

    Science.gov (United States)

    Stanic, Milos; Nordlund, Markus; Kuczaj, Arkadiusz; Frederix, Edoardo; Geurts, Bernard

    2014-11-01

    Porous media flows can be found in a large number of fields ranging from engineering to medical applications. A volume-averaged approach to simulating porous media is often used because of its practicality and computational efficiency. Derivation of the volume-averaged porous flow equations introduces additional porous resistance terms to the momentum equation. When discretized these porous resistance terms create a body force discontinuity at the porous-fluid interface, which may lead to spurious oscillations if not accounted for properly. A variety of numerical techniques has been proposed to solve this problem, but few of them have concentrated on collocated grids and segregated solvers, which have wide applications in academia and industry. In this work we discuss the source of the spurious oscillations, quantify their amplitude and apply interface treatments methods that successfully remove the oscillations. The interface treatment methods are tested in a variety of realistic scenarios, including the porous plug and Beaver-Joseph test cases and show excellent results, minimizing or entirely removing the spurious oscillations at the porous-fluid interface. This research was financially supported by Philip Morris Products S.A.

  20. Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.E.

    1994-10-17

    We consider the conservation properties of a staggered-grid Lagrange formulation of the hydrodynamics equations (SGH). Hydrodynamics algorithms are often formulated in a relatively ad hoc manner in which independent discretizations are proposed for mass, momentum, energy, and so forth. We show that, once discretizations for mass and momentum are stated, the remaining discretizations are very nearly uniquely determined, so there is very little latitude for variation. As has been known for some time, the kinetic energy discretization must follow directly from the momentum equation; and the internal energy must follow directly from the energy currents affecting the kinetic energy. A fundamental requirement (termed isentropicity) for numerical hydrodynamics algorithms is the ability to remain on an isentrope in the absence of heating or viscous forces and in the limit of small timesteps. We show that the requirements of energy conservation and isentropicity lead to the replacement of the usual volume calculation with a conservation integral. They further forbid the use of higher order functional representations for either velocity or stress within zones or control volumes, forcing the use of a constant stress element and a constant velocity control volume. This, in turn, causes the point and zone coordinates to formally disappear from the Cartesian formulation. The form of the work equations and the requirement for dissipation by viscous forces strongly limits the possible algebraic forms for artificial viscosity. The momentum equation and a center-of-mass definition lead directly to an angular momentum conservation law that is satisfied by the system. With a few straightforward substitutions, the Cartesian formulation can be converted to a multidimensional curvilinear one. The formulation in 2D symmetric geometry preserves rotational symmetry.

  1. Non-orthogonal approaches to the study of magnetic interactions

    NARCIS (Netherlands)

    Broer-Braam, H.B.; Hozoi, L; Nieuwpoort, WC

    2003-01-01

    Early theoretical studies of magnetic interactions between paramagnetic centres in solids and molecules are briefly reviewed as an introduction to the main theme of this paper: nonorthogonal CI approaches for the prediction and interpretation of magnetic couplings. In a non-orthogonal CI approach, t

  2. 非结构网格的并行多重网格解算器%Parallel Multigrid Solver for Unstructured Grid

    Institute of Scientific and Technical Information of China (English)

    李宗哲; 王正华; 姚路; 曹维

    2013-01-01

      多重网格方法作为非结构网格的高效解算器,其串行与并行实现在时空上都具有优良特性。以控制方程离散过程为切入点,说明非结构网格在并行数值模拟的流程,指出多重网格方法主要用于求解时间推进格式产生的大规模代数系统方程,简述了算法实现的基本结构,分析了其高效性原理;其次,综述性地概括了几何多重网格与代数多种网格研究动态,并对其并行化的热点问题进行重点论述。同时,针对非结构网格的实际应用,总结了多重网格解算器采用的光滑算子;随后列举了非结构网格应用的部分开源项目软件,并简要说明了其应用功能;最后,指出并行多重网格解算器在非结构网格应用中的若干关键问题和未来的研究方向。%As an unstructured-grid high efficient solver, the multigrid algorithm, with its serial and parallel application, can achieve the optimal properties of being on time and having space complexity. To illustrate the numerical simulation process of an unstructured grid, this paper begins with the discretization of governing equations and points out that the multigrid algorithm is mainly used for solving large scale algebraic equation, which is derived from the time marching scheme. For the multigrid algorithm, the study briefly describes its basic structure and efficient principle. Secondly, the paper reviews research that trend about the geometric multigrid and algebraic multigrid and discusses the basic design principles and hot topics on parallelization. At the same time, for the practical application of unstructured grid, the paper summarizes and classifies many smoothers, followed by examples of open source software about unstructured grid industrial application. Finally, some applications and key problems in this field are highlighted, as well as the future progress of parallel multigrid solver on unstructured grid.

  3. A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kelly Glen [Texas A & M Univ., College Station, TX (United States)

    2000-11-01

    In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness

  4. A hybrid reconstructed discontinuous Galerkin and continuous Galerkin finite element method for incompressible flows on unstructured grids

    Science.gov (United States)

    Pandare, Aditya K.; Luo, Hong

    2016-10-01

    A hybrid reconstructed discontinuous Galerkin and continuous Galerkin method based on an incremental pressure projection formulation, termed rDG (PnPm) + CG (Pn) in this paper, is developed for solving the unsteady incompressible Navier-Stokes equations on unstructured grids. In this method, a reconstructed discontinuous Galerkin method (rDG (PnPm)) is used to discretize the velocity and a standard continuous Galerkin method (CG (Pn)) is used to approximate the pressure. The rDG (PnPm) + CG (Pn) method is designed to increase the accuracy of the hybrid DG (Pn) + CG (Pn) method and yet still satisfy Ladyženskaja-Babuška-Brezzi (LBB) condition, thus avoiding the pressure checkerboard instability. An upwind method is used to discretize the nonlinear convective fluxes in the momentum equations in order to suppress spurious oscillations in the velocity field. A number of incompressible flow problems for a variety of flow conditions are computed to numerically assess the spatial order of convergence of the rDG (PnPm) + CG (Pn) method. The numerical experiments indicate that both rDG (P0P1) + CG (P1) and rDG (P1P2) + CG (P1) methods can attain the designed 2nd order and 3rd order accuracy in space for the velocity respectively. Moreover, the 3rd order rDG (P1P2) + CG (P1) method significantly outperforms its 2nd order rDG (P0P1) + CG (P1) and rDG (P1P1) + CG (P1) counterparts: being able to not only increase the accuracy of the velocity by one order but also improve the accuracy of the pressure.

  5. Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers

    Science.gov (United States)

    Biryukov, V. A.; Muratov, M. V.; Petrov, I. B.; Sannikov, A. V.; Favorskaya, A. V.

    2015-10-01

    Seismic responses from fractured geological layers are mathematically simulated by applying the grid-characteristic method on unstructured tetrahedral meshes with the use of high-performance computer systems. The method is intended for computing complicated spatial dynamical processes in complex heterogeneous media and is characterized by exact formulation of contact conditions. As a result, it can be applied to the simulation of seismic exploration problems, including in regions with a large number of inhomogeneities, examples of which are fractured structures. The use of unstructured tetrahedral meshes makes it possible to specify geological cracks of various shapes and spatial orientations. As a result, problems are solved in a formulation maximally close to an actual situation. A cluster of computers is used to improve the accuracy of the computation by optimizing its duration.

  6. Productivity of Non-Orthogonal Term Rewrite Systems

    CERN Document Server

    Raffelsieper, Matthias

    2012-01-01

    Productivity is the property that finite prefixes of an infinite constructor term can be computed using a given term rewrite system. Hitherto, productivity has only been considered for orthogonal systems, where non-determinism is not allowed. This paper presents techniques to also prove productivity of non-orthogonal term rewrite systems. For such systems, it is desired that one does not have to guess the reduction steps to perform, instead any outermost-fair reduction should compute an infinite constructor term in the limit. As a main result, it is shown that for possibly non-orthogonal term rewrite systems this kind of productivity can be concluded from context-sensitive termination. This result can be applied to prove stabilization of digital circuits, as will be illustrated by means of an example.

  7. 3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid

    Energy Technology Data Exchange (ETDEWEB)

    Alloui, L., E-mail: lotfi.alloui@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Laboratoire de modelisation des systemes energetiques (LMSE), Universite de Biskra, 07000 Biskra (Algeria); Bouillault, F., E-mail: bouillault@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Bernard, L., E-mail: laurent.bernardl@lgep.supelc.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Leveque, J., E-mail: jean.leveque@green.uhp-nancy.fr [Groupe de recherche en electronique et electrotechnique de Nancy, Universite Henry Poincare, BP 239, 54506 Vandoeuvre les Nancy (France)

    2012-05-15

    In this paper we present new 3D numerical model to calculate the vertical and the guidance forces in high temperature superconductors taking into account the influence of the flux creep phenomena. In the suggested numerical model, we adopt a new approach of the control volume method. This approach is based on the use of an unstructured grid which can be used to model more complex geometries. A comparison of the control volume method results with experiments verifies the validity of this approach and the proposed numerical model. Based on this model, the levitation force's relaxation at different temperatures was also studied.

  8. A Non-orthogonal STFC-OFDM on Frequency-Selective Fading Channels

    Institute of Scientific and Technical Information of China (English)

    XUE Yi; JIANG Ling-ge; HE Chen

    2005-01-01

    A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC OFDM and non-orthogonal STC-OFDM systems.

  9. Downlink scheduling using non-orthogonal uplink beams

    KAUST Repository

    Eltayeb, Mohammed E.

    2014-04-01

    Opportunistic schedulers rely on the feedback of the channel state information of users in order to perform user selection and downlink scheduling. This feedback increases with the number of users, and can lead to inefficient use of network resources and scheduling delays. We tackle the problem of feedback design, and propose a novel class of nonorthogonal codes to feed back channel state information. Users with favorable channel conditions simultaneously transmit their channel state information via non-orthogonal beams to the base station. The proposed formulation allows the base station to identify the strong users via a simple correlation process. After deriving the minimum required code length and closed-form expressions for the feedback load and downlink capacity, we show that i) the proposed algorithm reduces the feedback load while matching the achievable rate of full feedback algorithms operating over a noiseless feedback channel, and ii) the proposed codes are superior to the Gaussian codes.

  10. Total energy global optimizations using non orthogonal localized orbitals

    CERN Document Server

    Kim, J; Galli, G; Kim, Jeongnim; Mauri, Francesco; Galli, Giulia

    1994-01-01

    An energy functional for orbital based $O(N)$ calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based $O(N)$ methods; it therefore makes it possible to perform $O(N)$ calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation...

  11. Quantum Walks with Non-Orthogonal Position States

    CERN Document Server

    Matjeschk, R; Enderlein, M; Cedzich, Ch; Werner, A H; Keyl, M; Schaetz, T; Werner, R F

    2012-01-01

    Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.

  12. Euler Technology Assessment for Preliminary Aircraft Design: Compressibility Predictions by Employing the Cartesian Unstructured Grid SPLITFLOW Code

    Science.gov (United States)

    Finley, Dennis B.; Karman, Steve L., Jr.

    1996-01-01

    The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.

  13. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, Thierry, E-mail: thierry.goudon@inria.fr [Team COFFEE, INRIA Sophia Antipolis Mediterranee (France); Labo. J.A. Dieudonne CNRS and Univ. Nice-Sophia Antipolis (UMR 7351), Parc Valrose, 06108 Nice cedex 02 (France); Parisot, Martin, E-mail: martin.parisot@gmail.com [Project-Team SIMPAF, INRIA Lille Nord Europe, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d' Ascq cedex (France)

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  14. Extreme Wave Simulation due to Typhoon Bolaven based on locally Enhanced Fine-Mesh Unstructured Grid Model

    Science.gov (United States)

    Kim, Kyeong Ok; Choi, Byung Ho; Jung, Kyung Tae

    2016-04-01

    The performance of an integrally coupled wave-tide-surge model using the unstructured mesh system has been tested for the typhoon Bolaven which is regarded as the most powerful storm to strike the Korean Peninsula in nearly a decade with wind gusts measured up to 50 m/s, causing serious damages with 19 victims. Use of the unstructured mesh in coastal sea regions of marginal scale allows all energy from deep to shallow waters to be seamlessly followed; the physics of wave-circulation interactions can be then correctly resolved. The model covers the whole Yellow and East China Seas with locally refined meshes near the regions of Gageo Island (offshore southwestern corner of the Korean Peninsula) and south of Jeju Island (Gangjeong and Seogwipo ports). The wind and pressure fields during the passage of typhoon Bolaven are generated by the blending method. Generally the numerical atmospheric model cannot satisfactorily reproduce the strength of typhoons due to dynamic and resolution restrictions. In this study we could achieve an improved conservation of the typhoon strength by blending the Holland typhoon model result by the empirical formula onto the ambient meteorological fields of NCEP dataset. The model results are compared with the observations and the model performance is then evaluated. The computed wave spectrums for one and two dimensions are compared with the observation in Ieodo station. Results show that the wind wave significantly enhances the current intensity and surge elevation, addressing that to incorporate the wave-current interaction effect in the wave-tide-surge coupled model is important for the accurate prediction of current and sea surface elevation as well as extreme waves in shallow coastal sea regions. The resulting modeling system can be used for hindcasting and forecasting the wave-tide-surges in marine environments with complex coastlines, shallow water depth and fine sediment.

  15. Euler Technology Assessment for Preliminary Aircraft Design-Unstructured/Structured Grid NASTD Application for Aerodynamic Analysis of an Advanced Fighter/Tailless Configuration

    Science.gov (United States)

    Michal, Todd R.

    1998-01-01

    This study supports the NASA Langley sponsored project aimed at determining the viability of using Euler technology for preliminary design use. The primary objective of this study was to assess the accuracy and efficiency of the Boeing, St. Louis unstructured grid flow field analysis system, consisting of the MACGS grid generation and NASTD flow solver codes. Euler solutions about the Aero Configuration/Weapons Fighter Technology (ACWFT) 1204 aircraft configuration were generated. Several variations of the geometry were investigated including a standard wing, cambered wing, deflected elevon, and deflected body flap. A wide range of flow conditions, most of which were in the non-linear regimes of the flight envelope, including variations in speed (subsonic, transonic, supersonic), angles of attack, and sideslip were investigated. Several flowfield non-linearities were present in these solutions including shock waves, vortical flows and the resulting interactions. The accuracy of this method was evaluated by comparing solutions with test data and Navier-Stokes solutions. The ability to accurately predict lateral-directional characteristics and control effectiveness was investigated by computing solutions with sideslip, and with deflected control surfaces. Problem set up times and computational resource requirements were documented and used to evaluate the efficiency of this approach for use in the fast paced preliminary design environment.

  16. Exact exchange with non-orthogonal generalized Wannier functions

    Science.gov (United States)

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J.

    2017-03-01

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  17. New non-orthogonality treatment for atmospheric boundary layer flow simulation above highly non-uniform terrains

    Directory of Open Access Journals (Sweden)

    Mirkov Nikola S.

    2016-01-01

    Full Text Available In this paper we validate an improved finite volume approximation of Reynolds Averaged Navier-Stokes equations for simulation of wind flows in body-fitted grids generated by algebraic extrusion from digital terrain elevation data, proposed in N. Mirkov et. al. J. Comput. Phys. 287, 18-45(2015, [1]. The approach is based on second-order accurate finite volume method with collocated variable arrangement and pressure-velocity coupling trough SIMPLE algorithm. The main objective is the attenuation of spurious pressure field oscillations in regions with discontinuity in grid line slopes, as encountered in grids representing highly non-uniform terrains. Moreover, the approach relaxes the need for grid generation based on elliptic PDEs or grid smoothing by applying fixed point iterations (i.e. Gauss-Seidel to initial grid node positions resulting from algebraic grid generators. Drawbacks of previous approaches which ignored treatment of finite volume grid cell cases with intersection point offset in non-orthogonality corrections are removed. Application to real-life wind farm project at Dobrič (Srvljig, Serbia is used to assess the effectiveness of the method. The results validate the view in which accurate discretization of governing equations play more important role than the choice of turbulence modelling closures. [Projekat Ministarstva nauke Republike Srbije, br. TR-33036

  18. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  19. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Stability Analysis of the HSR Reference H Configuration at Transonic Speeds

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Transonic Euler computations, based on unstructured grid methodology, are performed for a proposed High Speed Civil Transport (HSCT) configuration, designated as the Reference H configuration within the High Speed Research (HSR) Program. The predicted results are correlated with appropriate experimental wind-tunnel data for the baseline configuration with and without control surface deflections for a range of angle of attack at M(sub infinity) = 0.95. Good correlations between the predictions and measured data have been obtained for the longitudinal aerodynamic characteristics of the baseline configuration. The incremental effects in the longitudinal aerodynamic characteristics due to horizontal rail deflections as well as wing leading-edge and trailing-edge flap deflections have also been predicted reasonably well. Computational results and correlations with data are also presented for the lateral and directional stability characteristics for a range of angle of attack at a constant sideslip angle as well as a range of sideslip angles at a constant angle of attack. In addition, the results are presented to assess the computational method performance and convergence characteristics.

  20. Which are more accurate, orthogonal or non-orthogonal sonic anemometers?

    Science.gov (United States)

    Massman, W. J.; Frank, J. M.; Swiatek, E.; Zimmerman, H.; Ewers, B. E.

    2013-12-01

    Sonic anemometry is fundamental to all eddy-covariance studies of surface energy, ecosystem carbon, and water balance. Recent studies have shown the potential underestimation of the vertical wind fluctuations among the most commonly encountered anemometer models, but thus far testing has been focused on non-orthogonal sonic anemometer designs. We hypothesize that these underestimates are systematic to the non-orthogonal design and not attributable to a single manufacturer. If so, orthogonal measurements of vertical wind should be more accurate. We tested this by conducting an experiment to measure the relative consistency between vertical and horizontal wind measurements for three sonic anemometer designs: orthogonal, non-orthogonal, and quasi-orthogonal. Both the orthogonal and non-orthogonal models were from a single manufacturer (K-probe and A-probe, Applied Technologies, Inc.) while the quasi-orthogonal design featured non-orthogonal u- and v-axes but with an orthogonal w-axis (CSAT3V, Campbell Scientific, Inc.). We conducted a 12-week experiment, testing four sonic anemometers relative to a control (CSAT3, Campbell Scientific, Inc.), each week randomly selecting at least one of each model from a pool of twelve instruments (three of each model) and randomly locating the test anemometers around the control. Half-way through the week the test anemometers were re-mounted in a horizontal position. Work was done at the GLEES AmeriFlux site (southeastern Wyoming, USA) which experiences large, uni-directional wind and turbulence. Results are discussed.

  1. On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin

    2011-01-01

    An analytical solution for non-orthogonal stagnation point for the steady flow of a viscous and incompressible fluid is presented. The governing nonlinear partial differential equations for the flow field are reduced to ordinary differential equations by using similarity transformations existed i...

  2. Teleportation of a qubit using entangled non-orthogonal states: a comparative study

    Science.gov (United States)

    Sisodia, Mitali; Verma, Vikram; Thapliyal, Kishore; Pathak, Anirban

    2017-03-01

    The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice's, Bob's and to be teleported qubits), but the converse may be observed in some particular cases.

  3. Computed Verification of Drag Prediction for DLR-F6 Wing Body on Unstructured Grids Flow Solver%基于非结构平台的DLR-F6标模阻力预测

    Institute of Scientific and Technical Information of China (English)

    章锦威; 戚姝妮; 郭承鹏; 董军

    2015-01-01

    This paper used the unstructured grids flow solver UNSMB to have a computed verification of the drag force for the DLR –F6 wing body configuration .Selective analysis on grid convergence , lift-drag curves and pressure distribute of the wing body configuration , and compare the computing results with the results of different solversand the wind tunnel data .The analysis results showsthat the computing results ofthe unstructured grids flow solver are close to the results of different solvers and the wind tunnel data ,to a certain extent it has a verification and validation forthe accuracy of computed drag of the solver .%采用自研的非结构网格解算器UNSMB进行了AIAA第三届阻力会议提供的DLR-F6翼身组合体的阻力计算验证。重点分析了模型的网格收敛特性、升阻力曲线以及压力分布等,并把计算结果与阻力预测会议上各个软件的计算结果以及试验数据进行比较,在此基础上分析计算结果。分析结果显示,非结构混合网格解算器的计算结果与各个软件的计算结果以及风洞试验数据吻合度较好,一定程度上验证与确认了解算器的阻力预测精度。

  4. MHD simulations on an unstructured mesh

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.R. [New York Univ., NY (United States); Park, W.; Belova, E.; Fu, G.Y. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Longcope, D.W. [Univ. of Montana, Missoula, MT (United States); Sugiyama, L.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  5. Power allocation for non-orthogonal decode-and-forward cooperation protocol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; XU YouYun; CAI YueMing

    2009-01-01

    This paper studies the power allocation problem for the non-orthogonal decode-and-forward (NDF) cooperation protocol with selection relaying. With the availability of the magnitudes of all channel gains at the source, the power allocation is explored that maximizes the mutual information between the source and destination subject to a total power constraint. The minimum power that avoids the outage of the relay is set as a condition, under which the power allocation problem becomes one of selecting the optimal one from several allocation factor triplets. It is shown that the power allocation scheme can provide considerable performance gain, and the non-orthogonal cooperation protocol is superior to the orthogonal protocol and direct transmission.

  6. Distinguishing between non-orthogonal quantum states of a single spin

    CERN Document Server

    Waldherr, Gerald; Neumann, Philipp; Jelezko, Fedor; Andersson, Erika; Wrachtrup, Jorg

    2012-01-01

    An important task for quantum information processing is optimal discrimination between two non-orthogonal quantum states, which until now has only been realized optically. Here, we present and compare experimental realizations of optimal quantum measurements for distinguishing between two non-orthogonal quantum states encoded in a single ^14 N nuclear spin. Implemented measurement schemes are the minimum-error measurement (known as Helstrom measurement), unambiguous state discrimination using a standard projective mea-surement, and optimal unambiguous state discrimination (known as IDP measurement), which utilizes a three-dimensional Hilbert space. Measurement efficiencies are found to be above 80% for all schemes and reach a value of 90% for the IDP measurement

  7. Practical non-orthogonal decoy state quantum key distribution with heralded single photon source

    Institute of Scientific and Technical Information of China (English)

    Mi Jing-Long; Wang Fa-Qiang; Lin Qing-Qun; Liang Rui-Sheng

    2008-01-01

    Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities, i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states arc for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.

  8. Non-orthogonal optical multicarrier access based on filter bank and SCMA.

    Science.gov (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-10-19

    This paper proposes a novel non-orthogonal optical multicarrier access system based on filter bank and sparse code multiple access (SCMA). It offers released frequency offset and better spectral efficiency for multicarrier access. An experiment of 73.68 Gb/s filter bank-based multicarrier (FBMC) SCMA system with 60 km single mode fiber link is performed to demonstrate the feasibility. The comparison between fast Fourier transform (FFT) based multicarrier and the proposed scheme is also investigated in the experiment.

  9. Non-orthogonal transmission in multi-user systems with Grassmannian beamforming

    KAUST Repository

    Xia, Minghua

    2011-06-01

    Aiming to achieve the sum-rate capacity in multiuser multi-input multi-output (MIMO) channels with N t antennas implemented at the transmitter, opportunistic beamforming (OBF) generates N t orthonormal beams and serves N t users during each transmission, which results in high scheduling delay over the users, especially in densely populated wireless networks. Non-orthogonal OBF with more than N t transmit beams can be exploited to serve more users simultaneously and further decreases scheduling delay. However, the inter-beam interference will inevitably deteriorate the sum-rate. Therefore, there is a tradeoff between the sum-rate and the increasing number of transmit beams. In this context, the sum-rate of non-orthogonal OBF with N > N t beams are studied, where the transmitter is based on the Grassmannian beamforming. Our results show that non-orthogonal OBF is an interference-limited system. Moreover, when the inter-beam interference reaches its minimum for fixed N t and N, the sum-rate scales as N ln (N/N-N t) and it decreases monotonically with N for fixed N t. Numerical results corroborate the accuracy of our analyses. © 2011 IEEE.

  10. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Science.gov (United States)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  11. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  12. Fairness for Non-Orthogonal Multiple Access in 5G Systems

    Science.gov (United States)

    Timotheou, Stelios; Krikidis, Ioannis

    2015-10-01

    In non-orthogonal multiple access (NOMA) downlink, multiple data flows are superimposed in the power domain and user decoding is based on successive interference cancellation. NOMA's performance highly depends on the power split among the data flows and the associated power allocation (PA) problem. In this letter, we study NOMA from a fairness standpoint and we investigate PA techniques that ensure fairness for the downlink users under i) instantaneous channel state information (CSI) at the transmitter, and ii) average CSI. Although the formulated problems are non-convex, we have developed low-complexity polynomial algorithms that yield the optimal solution in both cases considered.

  13. A novel calibration method for non-orthogonal shaft laser theodolite measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin, E-mail: wubin@tju.edu.cn, E-mail: xueting@tju.edu.cn; Yang, Fengting; Ding, Wen [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072 (China); Xue, Ting, E-mail: wubin@tju.edu.cn, E-mail: xueting@tju.edu.cn [College of Electrical Engineering and Automation, Tianjin Key Laboratory of Process Measurement and Control, Tianjin University, Tianjin 300072 (China)

    2016-03-15

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  14. A novel calibration method for non-orthogonal shaft laser theodolite measurement system

    Science.gov (United States)

    Wu, Bin; Yang, Fengting; Ding, Wen; Xue, Ting

    2016-03-01

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  15. GENERATION AND APPLICATION OF UNSTRUCTURED ADAPTIVE MESHES WITH MOVING BOUNDARIES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method to generate unstructured adaptive meshes with moving boundaries and its application to CFD. Delaunay triangulation criterion in conjunction with the automatic point creation is used to generate 2-D and 3-D unstructured grids. A local grid regeneration method is proposed to cope with moving boundaries. Numerical examples include the interactions of shock waves with movable bodies and the movement of a projectile within a ram accelerator, illustrating an efficient and robust mesh generation method developed.``

  16. Application of improved dynamic unstructured grids in aeroelastic model%改进的动弹网格方法在航空气弹计算中的应用

    Institute of Scientific and Technical Information of China (English)

    胡凡; 范锐军

    2015-01-01

    气动弹性是现代航空气动力计算中一个突出的问题。主要研究基于Delaunay图映射方法的动弹网格的欧拉方程CFD计算及其在航空标模M6机翼上的静气动弹性应用。以Delaunay图映射方法为基础,针对三维非结构运动网格技术进行了研究、开发和改进,同时利用计算流体力学的方法,开发了一套适用性较好的非结构网格欧拉方程流场求解器,进一步通过流固耦合的力学方法,对航空标模M6机翼的静气动弹性问题进行了研究和分析,给出了CFD并行计算的设计方法及算例。%Aeroelastic model is significant for large amount of airplanes in modern aerodynamics computing .This paper presents a strategy for generating 3D unstructured grids and the dynamic grids based on Delaunay graph mapping method .On the base of above , it performs a set of flow field solver based on Euler equations into estab-lishmeng of the static aeroelastic cases of the M 6 standard model coupled with structure dynamic equation , shows the design of the parallel computing method and numerical example .

  17. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  18. Goldstone-Brueckner Perturbation Theory Extended in Terms of Mixed Non-Orthogonal Slater-Determinants

    CERN Document Server

    Duguet, T

    2003-01-01

    The Goldstone-Brueckner perturbation theory is extended to incorporate in a simple way correlations associated with large amplitude collective motions in nuclei. The new energy expansion making use of non-orthogonal vacua still allows to remove the divergences originating from the hard-core of the bare interaction. This is done through the definition of a new Brueckner matrix summing generalized Brueckner ladders. At the lowest-order, this formalism motivates variational calculations beyond the mean-field such as the Generator Coordinate Method (GCM) and the Projected Mean-Field Method from a perturbative point of view for the first time. Going to higher orders amounts to incorporate diabatic effects in the GCM and to extend the projection technique from product states to well-defined correlated states.

  19. Efficient computation of Hamiltonian matrix elements between non-orthogonal Slater determinants

    CERN Document Server

    Utsuno, Yutaka; Otsuka, Takaharu; Abe, Takashi

    2012-01-01

    We present an efficient numerical method for computing Hamiltonian matrix elements between non-orthogonal Slater determinants, focusing on the most time-consuming component of the calculation that involves a sparse array. In the usual case where many matrix elements should be calculated, this computation can be transformed into a multiplication of dense matrices. It is demonstrated that the present method based on the matrix-matrix multiplication attains $\\sim$80\\% of the theoretical peak performance measured on systems equipped with modern microprocessors, a factor of 5-10 better than the normal method using indirectly indexed arrays to treat a sparse array. The reason for such different performances is discussed from the viewpoint of memory access.

  20. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.

    Science.gov (United States)

    Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua

    2013-12-14

    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

  1. Study on the SVPWM algorithm of N-level Inverter in the context of non-orthogonal coordinates

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang-ning; JIANG Xu; LIU Hao; LIU Hui-wei; KONG Sheng-li

    2006-01-01

    In this paper,the authors propose a new space vector pulse width modulation (SVPWM) algorithm based on non-orthogonal coordinates for N-level inverters.First,it is pointed out that classical aft coordinates-based SVPWM has many shortcomings because of improper coordinate choice.Then,a non-orthogonal coordinates-based SVPWM is proposed to solve these problems.The proposed algorithm can easily identify which sector the reference space vector falls in and conduct simple operations to find the duty cycle of each vector.Finally,it is verified that the proposed SVPWM is actually a pulse-width modulation (PWM) technology based on line voltages.

  2. Non-Orthogonal Multiple Access for Large-Scale 5G Networks: Interference Aware Design

    KAUST Repository

    Ali, Konpal S.

    2017-09-18

    Non-orthogonal multiple access (NOMA) is promoted as a key component of 5G cellular networks. As the name implies, NOMA operation introduces intracell interference (i.e., interference arising within the cell) to the cellular operation. The intracell interference is managed by careful NOMA design (e.g., user clustering and resource allocation) along with successive interference cancellation. However, most of the proposed NOMA designs are agnostic to intercell interference (i.e., interference from outside the cell), which is a major performance limiting parameter in 5G networks. This article sheds light on the drastic negative-impact of intercell interference on the NOMA performance and advocates interference-aware NOMA design that jointly accounts for both intracell and intercell interference. To this end, a case study for fair NOMA operation is presented and intercell interference mitigation techniques for NOMA networks are discussed. This article also investigates the potential of integrating NOMA with two important 5G transmission schemes, namely, full duplex and device-to-device communication. This is important since the ambitious performance defined by the 3rd Generation Partnership Project (3GPP) for 5G is foreseen to be realized via seamless integration of several new technologies and transmission techniques.

  3. Non-orthogonal tool/flange and robot/world calibration.

    Science.gov (United States)

    Ernst, Floris; Richter, Lars; Matthäus, Lars; Martens, Volker; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2012-12-01

    For many robot-assisted medical applications, it is necessary to accurately compute the relation between the robot's coordinate system and the coordinate system of a localisation or tracking device. Today, this is typically carried out using hand-eye calibration methods like those proposed by Tsai/Lenz or Daniilidis. We present a new method for simultaneous tool/flange and robot/world calibration by estimating a solution to the matrix equation AX = YB. It is computed using a least-squares approach. Because real robots and localisation are all afflicted by errors, our approach allows for non-orthogonal matrices, partially compensating for imperfect calibration of the robot or localisation device. We also introduce a new method where full robot/world and partial tool/flange calibration is possible by using localisation devices providing less than six degrees of freedom (DOFs). The methods are evaluated on simulation data and on real-world measurements from optical and magnetical tracking devices, volumetric ultrasound providing 3-DOF data, and a surface laser scanning device. We compare our methods with two classical approaches: the method by Tsai/Lenz and the method by Daniilidis. In all experiments, the new algorithms outperform the classical methods in terms of translational accuracy by up to 80% and perform similarly in terms of rotational accuracy. Additionally, the methods are shown to be stable: the number of calibration stations used has far less influence on calibration quality than for the classical methods. Our work shows that the new method can be used for estimating the relationship between the robot's and the localisation device's coordinate systems. The new method can also be used for deficient systems providing only 3-DOF data, and it can be employed in real-time scenarios because of its speed. Copyright © 2012 John Wiley & Sons, Ltd.

  4. An unstructured-mesh atmospheric model for nonhydrostatic dynamics

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Wyszogrodzki, Andrzej A.

    2013-12-01

    A three-dimensional semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic anelastic equations, suitable for simulation of small-to-mesoscale atmospheric flows. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and admitting unstructured meshes with arbitrarily shaped cells. The numerical advancements are evaluated with canonical simulations of convective planetary boundary layer and strongly (stably) stratified orographic flows, epitomizing diverse aspects of highly nonlinear nonhydrostatic dynamics. The unstructured-mesh solutions are compared to equivalent results generated with an established structured-grid model and observation.

  5. Volume Rendering for Curvilinear and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Williams, P; Silva, C; Cook, R

    2003-03-05

    We discuss two volume rendering methods developed at Lawrence Livermore National Laboratory. The first, cell projection, renders the polygons in the projection of each cell. It requires a global visibility sort in order to composite the cells in back to front order, and we discuss several different algorithms for this sort. The second method uses regularly spaced slice planes perpendicular to the X, Y, or Z axes, which slice the cells into polygons. Both methods are supplemented with anti-aliasing techniques to deal with small cells that might fall between pixel samples or slice planes, and both have been parallelized.

  6. Non-orthogonality and $\\kappa$-dependence eccentricity of polarized electromagnetic waves in CPT-even Lorentz violation

    CERN Document Server

    Prudencio, Thiago

    2016-01-01

    We discuss the modified Maxwell action of a $K_{F}$-type Lorentz symmetry breaking theory and present a solution of Maxwell equations derived in the cases of linear and elliptically polarized electromagnetic waves in the vacuum of CPT-even Lorentz violation. We show in this case the Lorentz violation has the effect of changing the amplitude of one component of the magnetic field, while leaving the electric field unchanged, leading to non-orthogonal propagation of eletromagnetic fields and dependence of the eccentricity on $\\kappa$-term. Further, we exhibit numerically the consequences of this effect in the cases of linear and elliptical polarization, in particular, the regimes of non-orthogonality of the electromagnetic wave fields and the eccentricity of the elliptical polarization of the magnetic field with dependence on the $\\kappa$-term.

  7. Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations

    Science.gov (United States)

    Matthews, Devin A.; Stanton, John F.

    2015-02-01

    The theory of non-orthogonal spin-adaptation for closed-shell molecular systems is applied to coupled cluster methods with quadruple excitations (CCSDTQ). Calculations at this level of detail are of critical importance in describing the properties of molecular systems to an accuracy which can meet or exceed modern experimental techniques. Such calculations are of significant (and growing) importance in such fields as thermodynamics, kinetics, and atomic and molecular spectroscopies. With respect to the implementation of CCSDTQ and related methods, we show that there are significant advantages to non-orthogonal spin-adaption with respect to simplification and factorization of the working equations and to creating an efficient implementation. The resulting algorithm is implemented in the CFOUR program suite for CCSDT, CCSDTQ, and various approximate methods (CCSD(T), CC3, CCSDT-n, and CCSDT(Q)).

  8. Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation

    OpenAIRE

    Lei, Lei; Yuan, Di; Ho, Chin Keong; Sun, Sumei

    2016-01-01

    Network capacity calls for significant increase for 5G cellular systems. A promising multi-user access scheme, non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), is currently under consideration. In NOMA, spectrum efficiency is improved by allowing more than one user to simultaneously access the same frequency-time resource and separating multi-user signals by SIC at the receiver. These render resource allocation and optimization in NOMA different from orth...

  9. NEW RSW & Wall Coarse Tet Only Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the RSW Coarse Tet Only grid with the root viscous tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 0 Tria Surface Faces=...

  10. NEW RSW & Wall Medium Fully Tetrahedral Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — New Medium Fully Tetrahedral RSW Grid with viscous wind tunnel wall at the root. This grid is for a node-based unstructured solver. Medium Tet: Quad Surface Faces= 0...

  11. NEW RSW & Wall Medium Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — RSW Medium Mixed Element Grid with Viscous Wind Tunnel Wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 18432 Tria Surface...

  12. NEW RSW & Wall Fine Fully Tetrahedral Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — NEW RSW Fine Fully Tetrahedral Grid with Viscous Wind Tunnel wall at the root. This grid is for a node-based unstructured solver. Note that the CGNS file is very...

  13. NEW RSW & Wall Fine Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — RSW Fine Mixed Element Grid with viscous root wind tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 38016 Tria Surface Faces=...

  14. NEW RSW & Wall Coarse Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Coarse Mixed Element Grid for the RSW with a viscous wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 9728 Tria...

  15. The Unstructured Clinical Interview

    Science.gov (United States)

    Jones, Karyn Dayle

    2010-01-01

    In mental health, family, and community counseling settings, master's-level counselors engage in unstructured clinical interviewing to develop diagnoses based on the "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., text rev.; "DSM-IV-TR"; American Psychiatric Association, 2000). Although counselors receive education about…

  16. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    Science.gov (United States)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves

  17. CFD非结构化网格格心格式数据高质量体绘制方法%High-Quality Volume Rendering of Unstructured-Grid Cell-Centered Data in CFD

    Institute of Scientific and Technical Information of China (English)

    马千里; 李思昆; 白晓征; 程志全; 徐华勋

    2011-01-01

    3D unstructured-grid cell-centered data are commonly produced by the recent numerical simulations. For visualization, existing approaches usually pre-extrapolate cell-centered data into cell-vertexed data, which depress the rendering accuracy and the image quality. This paper proposes to do direct sampling for these cell-centered data avoiding extrapolation on the framework of multi-pass raycasting. During sampling, the whole computing work is done using the original data leading to a high rendering accuracy. The field at a sample is reconstructed by the cell-centered data and the cell-gradient. A cell-gradient is well estimated by the Green-Gauss theorem with the aid of face-flux construction. Considering the relationship among the flow variables, this paper constructs the face-flux by the Roe-average method using the two cell-centered data values of the face-adjacencies. The analysis and experiments demonstrate that the approach gains high-accuracy sampling and a high-quality image leading to powerful insight into the characteristic of the flow fields.%3D非结构化网格格心格式数据是近年流场数值模拟结果的常见形式,目前的可视化方法无法直接绘制此类数据,通常采用外推技术将其转换为格点格式数据后再进行绘制.导致数据精度损失,严重影响绘制质量.在多遍光线投射算法框架下,设计一种非结构化网格格心格式数据直接采样计算方法(避免外推),使采样过程中的所有计算任务基于原始数据完成,以提高采样计算精度.具体为:设计了基于胞心值和单元梯度的采样点流场数据重构方法:采用基于面通量的格林公式计算单元梯度;考虑流场中物理量的相互关联,首次在流场可视化中引入Roe平均方法,用相邻单元胞心值构造面通量.分析和实验表明,该方法能明显提高采样计算精度,产生高质量的体绘制图像,使用户更准确地洞察和分析流场特性.

  18. On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

    Science.gov (United States)

    Ding, Zhiguo; Yang, Zheng; Fan, Pingzhi; Poor, H. Vincent

    2014-12-01

    In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users. The developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of NOMA depends critically on the choices of the users' targeted data rates and allocated power. In particular, a wrong choice of the targeted data rates and allocated power can lead to a situation in which the user's outage probability is always one, i.e. the user's targeted quality of service will never be met.

  19. The approximate state transition matrix based on non-orthogonal decomposition and its application in orbit determination

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Unit Vector Method (UVM) is an orbit determination method extensively applied. In this paper, the UVM and classical Differential Orbit Improvement (DOI) are compared, and a fusion method is given for the orbit determination with different kind data. Based on non-orthogonal decomposition of position and velocity vectors, an approximation scheme is constructed to calculate the state transition matrix. This method simplifies the calculation of the approximate state transition matrix, analyzes the convergence mechanism of the UVM, and makes clear the defect of weight strategy in UVM. Results of orbit the determination with simulating and real data show that this method has good numerical stability and rational weight distribution.

  20. A linear variational exercise with a simple non-orthogonal basis for the particle-in-the-box problem

    Energy Technology Data Exchange (ETDEWEB)

    Luana, VIctor; Otero-de la Roza, A; Blanco, M A; Recio, J M [Universidad de Oviedo, Departamento de Quimica Fisica y AnalItica, E-33006-Oviedo (Spain)], E-mail: victor@carbono.quimica.uniovi.es

    2010-01-15

    The particle-in-the-box, with or without an additional potential, is proposed as an excellent laboratory to teach and explore the details of the linear variational method using a non-orthogonal basis. The x{sup n}(a - x){sup n} and x{sup n}(a/2 - x)(a - x){sup n} polynomials are shown to form a complete basis for the even and odd states, respectively, of the particle confined to the x in [0, a] interval. A short and simple Octave code is presented as the natural extension to the hand calculations when the basis set grows in size.

  1. Parallel performance of a preconditioned CG solver for unstructured finite element applications

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.

  2. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization...... that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted...

  3. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    Science.gov (United States)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  4. Unstructured Documents Categorization: A Study

    Directory of Open Access Journals (Sweden)

    Debnath Bhattacharyya

    2008-12-01

    Full Text Available The main purpose of communication is to transfer information from onecorner to another of the world. The information is basically stored in forms of documents or files created on the basis of requirements. So, the randomness of creation and storage makes them unstructured in nature. As a consequence, data retrieval and modification become hard nut to crack. The data, that is required frequently, should maintain certain pattern. Otherwise, problems like retrievingerroneous data or anomalies in modification or time consumption in retrieving process may hike. As every problem has its own solution, these unstructured documents have also given the solution named unstructured document categorization. That means, the collected unstructured documents will be categorized based on some given constraints. This paper is a review which deals with different techniques like text and data mining, genetic algorithm, lexicalchaining, binarization method to reach the fulfillment of desired unstructured document categorization appeared in the literature.

  5. Soundproof simulations of stratospheric gravity waves on unstructured meshes

    Science.gov (United States)

    Smolarkiewicz, P.; Szmelter, J.

    2012-04-01

    An edge-based unstructured-mesh semi-implicit model is presented that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model numerics employ nonoscillatory forward-in-time MPDATA methods [Smolarkiewicz, 2006, Int. J. Numer. Meth. Fl., 50, 1123-1144] using finite-volume spatial discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudo-incompressible results are quantified in reference to a recent asymptotic theory [Achatz et al., 2010, J. Fluid Mech., 663, 120-147].

  6. An unstructured parallel least-squares spectral element solver for incompressible flow problems

    NARCIS (Netherlands)

    Nool, M.; Proot, M.M.J.

    2003-01-01

    The parallelization of the least-squares spectral element formulation of the Stokes problem has recently been discussed for incompressible flow problems on structured grids. In the present work, the extension to unstructured grids is discussed. It will be shown that, to obtain an efficient and scala

  7. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson

  8. Reliable Attention Network Scores and Mutually Inhibited Inter-network Relationships Revealed by Mixed Design and Non-orthogonal Method.

    Science.gov (United States)

    Wang, Yi-Feng; Jing, Xiu-Juan; Liu, Feng; Li, Mei-Ling; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu

    2015-05-21

    The attention system can be divided into alerting, orienting, and executive control networks. The efficiency and independence of attention networks have been widely tested with the attention network test (ANT) and its revised versions. However, many studies have failed to find effects of attention network scores (ANSs) and inter-network relationships (INRs). Moreover, the low reliability of ANSs can not meet the demands of theoretical and empirical investigations. Two methodological factors (the inter-trial influence in the event-related design and the inter-network interference in orthogonal contrast) may be responsible for the unreliability of ANT. In this study, we combined the mixed design and non-orthogonal method to explore ANSs and directional INRs. With a small number of trials, we obtained reliable and independent ANSs (split-half reliability of alerting: 0.684; orienting: 0.588; and executive control: 0.616), suggesting an individual and specific attention system. Furthermore, mutual inhibition was observed when two networks were operated simultaneously, indicating a differentiated but integrated attention system. Overall, the reliable and individual specific ANSs and mutually inhibited INRs provide novel insight into the understanding of the developmental, physiological and pathological mechanisms of attention networks, and can benefit future experimental and clinical investigations of attention using ANT.

  9. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions.

    Science.gov (United States)

    Dziedzic, J; Hill, Q; Skylaris, C-K

    2013-12-07

    We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.

  10. GridTool: A surface modeling and grid generation tool

    Science.gov (United States)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  11. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  12. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  13. 基于时空一致性的非结构化网格时变流场高效体绘制方法%High-Efficiency Volume Rendering of Unstructured-Grid Time-Varying Flows Using Temporal and Spatial Coherence

    Institute of Scientific and Technical Information of China (English)

    马千里; 刘涛; 王攀; 刘瑜; 李思昆

    2011-01-01

    The temporal and spatial coherence which is an important characteristic of unsteady flows plays an essential role in visualizing time-varying fields. This paper presents an approach for high- efficiency volume rendering of unstructured time-varying flows using the temporal and spatial coherence on the framework of the hardware-based ray casting algorithm (HRC). Firstly, a method is provided to analyze the temporal coherence of both the cell and the vertex data on unstructured grids. Then the cell and the vertex data temporal tables are built to achieve a lower time cost during rendering. Secondly, a novel texture structure is designed to separate the vertex data from the cell data, and a smart gradient matrix is used to reduce the pressure of GPU memory. The scheme of data management can effectively avoid rendering stalls and lead to a compact and efficient storage. The experiments demonstrate that our approach not only gains a much higher efficiency than the existing method, but also achieves a lower space cost, allowing rendering time-varying data on a larger mesh scale.%时空一致性是时变流场的重要性质,也是加速时变数据可视化算法的关键.以硬件加速的光线投射算法(HRC)为框架,设计并实现了一种基于时空一致性的非结构化网格时变流场高效体绘制方法.首先提出一种分析非结构化网格单元和顶点数据时间一致性的方法,分别建立单元和顶点数据时间表,以降低绘制过程中的计算开销;然后设计一种单元和顶点数据相分离的GPU纹理结构,并采用一种小巧的单元梯度矩阵来降低显存开销;同时,设计了一种合理的数据调度策略,既能有效地避免绘制停顿,又使显存纹理结构更为紧致、高效.实验结果表明,该方法不仅明显地提高了绘制效率,而且具有更优显存空间利用率,能实现更大网格规模的非结构化网格时变流场数据体绘制.

  14. RANS Calculations of the Evolution of Vortices on Unstructured Grids

    Science.gov (United States)

    2009-11-01

    Gerber Dept. of Mechanical Engineering University of New Brunswick P.O. Box 4400 Fredericton , New Brunswick E3B 5A3 1 Prof. Gordon Holloway Dept. of...Mechanical Engineering University of New Brunswick P.O. Box 4400 Fredericton , New Brunswick E3B 5A3 1 Library and Archives Canada 395 Wellington Street

  15. Fast polyhedral cell sorting for interactive rendering of unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Combra, J; Klosowski, J T; Max, N; Silva, C T; Williams, P L

    1998-10-30

    Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is ''well-behaved'' (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes. In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.

  16. Newton-Krylov-Schwarz methods in unstructured grid Euler flow

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, D.E. [Old Dominion Univ., Norfolk, VA (United States)

    1996-12-31

    Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton`s method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons with a standard defect-correction approach and subdomain preconditioner consistency.

  17. Benchmarking an unstructured grid sediment model in an energetic estuary

    Science.gov (United States)

    Lopez, Jesse E.; Baptista, António M.

    2017-02-01

    A sediment model coupled to the hydrodynamic model SELFE is validated against a benchmark combining a set of idealized tests and an application to a field-data rich energetic estuary. After sensitivity studies, model results for the idealized tests largely agree with previously reported results from other models in addition to analytical, semi-analytical, or laboratory results. Results of suspended sediment in an open channel test with fixed bottom are sensitive to turbulence closure and treatment for hydrodynamic bottom boundary. Results for the migration of a trench are very sensitive to critical stress and erosion rate, but largely insensitive to turbulence closure. The model is able to qualitatively represent sediment dynamics associated with estuarine turbidity maxima in an idealized estuary. Applied to the Columbia River estuary, the model qualitatively captures sediment dynamics observed by fixed stations and shipborne profiles. Representation of the vertical structure of suspended sediment degrades when stratification is underpredicted. Across all tests, skill metrics of suspended sediments lag those of hydrodynamics even when qualitatively representing dynamics. The benchmark is fully documented in an openly available repository to encourage unambiguous comparisons against other models.

  18. Unstructured finite volume method for water impact on a rigid body

    Institute of Scientific and Technical Information of China (English)

    YU Yan; MING Ping-jian; DUAN Wen-yang

    2014-01-01

    A new method is presented for the water impact simulation, in which the air-water two phase flow is solved using the pressure-based computational fluid dynamics method. Theoretically, the air effects can be taken into account in the water structure interaction. The key point of this method is the air-water interface capture, which is treated as a physical discontinuity and can be captured by a well-designed high order scheme. According to a normalized variable diagram, a high order discrete scheme on unstructured grids is realised, so a numerical method for the free surface flow on a fixed grid can be established. This method is implemented using an in-house code, the General Transport Equation Analyzer, which is an unstructured grid finite volume solver. The method is verified with the wedge water and structure interaction problem.

  19. From Pore Scale to Turbulent Flow with the Unstructured Lattice Boltzmann Method

    DEFF Research Database (Denmark)

    Matin, Rastin

    Abstract: The lattice Boltzmann method is a class of methods in computational fluid dynamics for simulating fluid flow. Implementations on unstructured grids are particularly relevant for various engineering applications, where geometric flexibility or high resolution near a body or a wall...... is required. The main topic of this thesis is to further develop unstructured lattice Boltzmann methods for simulations of Newtonian fluid flow in three dimensions, in particular porous flow. Two methods are considered in this thesis based on the finite volume method and finite element method, respectively...

  20. Parallel implementation of a dynamic unstructured chimera method in the DLR finite volume TAU-code

    Energy Technology Data Exchange (ETDEWEB)

    Madrane, A.; Raichle, A.; Stuermer, A. [German Aerospace Center, DLR, Numerical Methods, Inst. of Aerodynamics and Flow Technology, Braunschweig (Germany)]. E-mail: aziz.madrane@dlr.de

    2004-07-01

    Aerodynamic problems involving moving geometries have many applications, including store separation, high-speed train entering into a tunnel, simulation of full configurations of the helicopter and fast maneuverability. Overset grid method offers the option of calculating these procedures. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping unstructured grids that update and exchange boundary information through interpolation. However, such computations are complicated and time consuming. Parallel computing offers a very effective way to improve the productivity in doing computational fluid dynamics (CFD). Therefore the purpose of this study is to develop an efficient parallel computation algorithm for analyzing the flowfield of complex geometries using overset grids method. The strategy adopted in the parallelization of the overset grids method including the use of data structures and communication, is described. Numerical results are presented to demonstrate the efficiency of the resulting parallel overset grids method. (author)

  1. GENIE - Generation of computational geometry-grids for internal-external flow configurations

    Science.gov (United States)

    Soni, B. K.

    1988-01-01

    Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.

  2. Adaptive and Unstructured Mesh Cleaving

    Science.gov (United States)

    Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.

    2015-01-01

    We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171

  3. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves

    Science.gov (United States)

    Smolarkiewicz, Piotr; Szmelter, Joanna

    2011-12-01

    A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-147)].

  4. gCube Grid services

    CERN Document Server

    Andrade, Pedro

    2008-01-01

    gCube is a service-based framework for eScience applications requiring collaboratory, on-demand, and intensive information processing. It provides to these communities Virtual Research Environments (VREs) to support their activities. gCube is build on top of standard technologies for computational Grids, namely the gLite middleware. The software was produced by the DILIGENT project and will continue to be supported and further developed by the D4Science project. gCube reflects within its name a three-sided interpretation of the Grid vision of resource sharing: sharing of computational resources, sharing of structured data, and sharing of application services. As such, gCube embodies the defining characteristics of computational Grids, data Grids, and virtual data Grids. Precisely, it builds on gLite middleware for managing distributed computations and unstructured data, includes dedicated services for managing data and metadata, provides services for distributed information retrieval, allows the orchestration...

  5. Multiphase flow modelling using non orthogonal collocated finite volumes : application to fluid catalytical cracking and large scale geophysical flows.

    Science.gov (United States)

    Martin, R. M.; Nicolas, A. N.

    2003-04-01

    A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so

  6. Effects of mesh style and grid convergence on numerical simulation accuracy of centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 刘明明; 白羽; 董亮

    2015-01-01

    In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage. Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.

  7. Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling

    Science.gov (United States)

    Biedron, Robert T.; Lee-Rausch, Elizabeth M.

    2008-01-01

    The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require

  8. POLYNOMIAL PRESERVING RECOVERY FOR ANISOTROPIC AND IRREGULAR GRIDS

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zhang

    2004-01-01

    Some properties of a newly developed polynomial preserving gradient recovery technique are discussed. Both practical and theoretical issues are addressed. Bounded-ness property is considered especially under anisotropic grids. For even-order finite element space, an ultra-convergence property is established under translation invariant meshes; for linear element, a superconvergence result is proven for unstructured grids generated by the Delaunay triangulation.

  9. TRIM: A finite-volume MHD algorithm for an unstructured adaptive mesh

    Energy Technology Data Exchange (ETDEWEB)

    Schnack, D.D.; Lottati, I.; Mikic, Z. [Science Applications International Corp., San Diego, CA (United States)] [and others

    1995-07-01

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  10. Turbulent convection in the Sun: modeling in unstructured meshes

    CERN Document Server

    Olshevsky, Vyacheslav; Ham, Frank

    2014-01-01

    We adopted an unstructured hydrodynamical solver CharLES to the problem of global convection in the Sun. With the aim to investigate the properties of solar turbulent convection and reproduce differential rotation pattern. We performed simulations in two spherical shells, with 1.3 and 10 million cells. In the first, coarse mesh, the solution does not reproduce realistic convection, and is dominated by numerical effects. In the second mesh, thermal conduction leads to cooling of bottom layers, that could not be compensated by solar irradiance. More simulations in the 10M cells mesh should be performed to investigate the influence of transport coefficients and numerical effects. Our estimate of the code performance suggests, that realistic simulations in even finer grids could be performed for reasonable computational cost.

  11. Development of unstructured mesh generator on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Kazuhiro [Japan Atomic Energy Research Inst., Tokyo (Japan); Shimada, Akio; Murakami, Hiroyuki; Higashida, Akihiro; Wakatsuki, Shigeto [Fuji Research Institute Corporation, Computational Engineering II, Tokyo (Japan)

    2000-09-01

    A general-purpose unstructured mesh generator, 'GRID3D/UNST', has been developed on parallel computers. High-speed operations and large-scale memory capacity of parallel computers enable the system to generate a large-scale mesh at high speed. As a matter of fact, the system generates large-scale mesh composed of 2,400,000 nodes and 14,000,000 elements about 1.5 hours on HITACHI SR2201, 64 PEs (Processing Elements) through 2.5 hours pre-process on SUN. Also the system is built on standard FORTRAN, C and Motif, and therefore has high portability. The system enables us to solve a large-scale problem that has been impossible to be solved, and to break new ground in the field of science and engineering. (author)

  12. Implicit Unstructured Computational Aerodynamics on Many-Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.

    2014-05-04

    This research aims to understand the performance of PETSc-FUN3D, a fully nonlinear implicit unstructured grid incompressible or compressible Euler code with origins at NASA and the U.S. DOE, on many-integrated core architecture and how a hybridprogramming paradigm (MPI+OpenMP) can exploit Intel Xeon Phi hardware with upwards of 60 cores per node and 4 threads per core. For the current contribution, we focus on strong scaling with many-integrated core hardware. In most implicit PDE-based codes, while the linear algebraic kernel is limited by the bottleneck of memory bandwidth, the flux kernel arising in control volume discretization of the conservation law residuals and the preconditioner for the Jacobian exploits the Phi hardware well.

  13. Non-Orthogonal Iris Segmentation

    Science.gov (United States)

    2005-05-09

    Gonzalez , Rafael C., R. E. Woods, and Steven L. Eddins. Digital Image Processing using MATLAB. Upper Saddle River, New Jersey: Prentice Hall, 2004... images . Over the last ten years, algorithms used to digitize and process biometric signals have been enhanced to increase both accuracy over repeated...Steven L. Eddins. “ Digital Image Processing using MATLAB.” Prentice Hall, Upper Saddle River, NJ. 20044. [15] A. J. Bron, R. C. Tripathi, and B. J

  14. Subsonic Analysis of 0.04-Scale F-16XL Models Using an Unstructured Euler Code

    Science.gov (United States)

    Lessard, Wendy B.

    1996-01-01

    The subsonic flow field about an F-16XL airplane model configuration was investigated with an inviscid unstructured grid technique. The computed surface pressures were compared to wind-tunnel test results at Mach 0.148 for a range of angles of attack from 0 deg to 20 deg. To evaluate the effect of grid dependency on the solution, a grid study was performed in which fine, medium, and coarse grid meshes were generated. The off-surface vortical flow field was locally adapted and showed improved correlation to the wind-tunnel data when compared to the nonadapted flow field. Computational results are also compared to experimental five-hole pressure probe data. A detailed analysis of the off-body computed pressure contours, velocity vectors, and particle traces are presented and discussed.

  15. Implicit Finite Volume and Discontinuous Galerkin Methods for Multicomponent Flow in Unstructured 3D Fractured Porous Media

    CERN Document Server

    Moortgat, Joachim; Soltanian, Mohamad Reza

    2016-01-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of mag...

  16. Uncovering Topological Structures in Unstructured Data

    Science.gov (United States)

    2015-04-20

    AFRL-OSR-VA-TR-2015-0091 Uncovering Topological Structures in Unstructured Data Keith Bowman ILLINOIS INSTITUTE OF TECHNOLOGY Final Report 04/20/2015...COVERED (From - To)      01-05-2012 to 30-04-2015 4.  TITLE AND SUBTITLE Uncovering Topological Structures in Unstructured Data 5a.  CONTRACT NUMBER 5b...scanned point-cloud data . It has two stages. In the first stage, we analyzed scan data and extracted topologically critical points. We used these critical

  17. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill;

    2016-01-01

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly ...

  18. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa

    2015-05-01

    In this work, we revisit the 1999 Gordon Bell Prize winning PETSc-FUN3D aerodynamics code, extending it with highly-tuned shared-memory parallelization and detailed performance analysis on modern highly parallel architectures. An unstructured-grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain decomposition approach, exposes tradeoffs between the number of threads assigned to each MPI-rank sub domain, and the total number of domains. By applying several algorithm- and architecture-aware optimization techniques for unstructured grids, we show a 6.9X speed-up in performance on a single-node Intel® XeonTM1 E5 2690 v2 processor relative to the out-of-the-box compilation. Our scaling studies on TACC Stampede supercomputer show that our optimizations continue to provide performance benefits over baseline implementation as we scale up to 256 nodes.

  19. A Computational Differential Geometry Approach to Grid Generation

    CERN Document Server

    Liseikin, Vladimir D

    2007-01-01

    The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. This monograph gives a detailed treatment of applications of geometric methods to advanced grid technology. It focuses on and describes a comprehensive approach based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces. In this second edition the author takes a more detailed and practice-oriented approach towards explaining how to implement the method by: Employing geometric and numerical analyses of monitor metrics as the basis for developing efficient tools for controlling grid properties. Describing new grid generation codes based on finite differences for generating both structured and unstructured surface and domain grids. Providing examples of applications of the codes to the genera...

  20. An Unstructured Finite Volume Method for Impact Dynamics of a Thin Plate

    Institute of Scientific and Technical Information of China (English)

    Weidong Chen; Yanchun Yu

    2012-01-01

    The examination of an unstructured finite volume method for structural dynamics is assessed for simulations of systematic impact dynamics.A robust display dual-time stepping method is utilized to obtain time accurate solutions.The study of impact dynamics is a complex problem that should consider strength models and state equations to describe the mechanical behavior of materials.The current method has several features.1) Discrete equations of unstructured finite volume method naturally follow the conservation law.2)Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate solutions.3) The method did not produce grid distortion when large deformation appeared.The method is validated by the problem of impact dynamics of an elastic plate with initial conditions and material properties.The results validate the finite element numerical data.

  1. Numerical approach for unstructured quantum key distribution

    Science.gov (United States)

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-05-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study `unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

  2. A Denotational Semantics for Communicating Unstructured Code

    Directory of Open Access Journals (Sweden)

    Nils Jähnig

    2015-03-01

    Full Text Available An important property of programming language semantics is that they should be compositional. However, unstructured low-level code contains goto-like commands making it hard to define a semantics that is compositional. In this paper, we follow the ideas of Saabas and Uustalu to structure low-level code. This gives us the possibility to define a compositional denotational semantics based on least fixed points to allow for the use of inductive verification methods. We capture the semantics of communication using finite traces similar to the denotations of CSP. In addition, we examine properties of this semantics and give an example that demonstrates reasoning about communication and jumps. With this semantics, we lay the foundations for a proof calculus that captures both, the semantics of unstructured low-level code and communication.

  3. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill

    2016-01-01

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations....... We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions. (C) 2016 AIP...

  4. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  5. The Tera Multithreaded Architecture and Unstructured Meshes

    Science.gov (United States)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  6. Unstructured discontinuous Galerkin for seismic inversion.

    Energy Technology Data Exchange (ETDEWEB)

    van Bloemen Waanders, Bart Gustaaf; Ober, Curtis Curry; Collis, Samuel Scott

    2010-04-01

    This abstract explores the potential advantages of discontinuous Galerkin (DG) methods for the time-domain inversion of media parameters within the earth's interior. In particular, DG methods enable local polynomial refinement to better capture localized geological features within an area of interest while also allowing the use of unstructured meshes that can accurately capture discontinuous material interfaces. This abstract describes our initial findings when using DG methods combined with Runge-Kutta time integration and adjoint-based optimization algorithms for full-waveform inversion. Our initial results suggest that DG methods allow great flexibility in matching the media characteristics (faults, ocean bottom and salt structures) while also providing higher fidelity representations in target regions. Time-domain inversion using discontinuous Galerkin on unstructured meshes and with local polynomial refinement is shown to better capture localized geological features and accurately capture discontinuous-material interfaces. These approaches provide the ability to surgically refine representations in order to improve predicted models for specific geological features. Our future work will entail automated extensions to directly incorporate local refinement and adaptive unstructured meshes within the inversion process.

  7. A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes

    Science.gov (United States)

    Lee, D.; Lowrie, R.; Petersen, M.; Ringler, T.; Hecht, M.

    2016-11-01

    A new characteristic discontinuous Galerkin (CDG) advection scheme is presented. In contrast to standard discontinuous Galerkin schemes, the test functions themselves follow characteristics in order to ensure conservation and the edges of each element are also traced backwards along characteristics in order to create a swept region, which is integrated in order to determine the mass flux across the edge. Both the accuracy and performance of the scheme are greatly improved by the use of large Courant-Friedrichs-Lewy numbers for a shear flow test case and the scheme is shown to scale sublinearly with the number of tracers being advected, outperforming a standard flux corrected transport scheme for 10 or more tracers with a linear basis. Moreover the CDG scheme may be run to arbitrarily high order spatial accuracy and on unstructured grids, and is shown to give the correct order of error convergence for piecewise linear and quadratic bases on regular quadrilateral and hexahedral planar grids. Using a modal Taylor series basis, the scheme may be made monotone while preserving conservation with the use of a standard slope limiter, although this reduces the formal accuracy of the scheme to first order. The second order scheme is roughly as accurate as the incremental remap scheme with nonlocal gradient reconstruction at half the horizontal resolution. The scheme is being developed for implementation within the Model for Prediction Across Scales (MPAS) Ocean model, an unstructured grid finite volume ocean model.

  8. Grid Computing

    Indian Academy of Sciences (India)

    2016-05-01

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers on demand. In this article,we describe the grid computing model and enumerate themajor differences between grid and cloud computing.

  9. Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.J.; Turner, C.D.

    1995-12-01

    The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid regions in obtaining a solution to the time-domain Maxwell`s equations. The method is based on explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and nonorthogonal finite-volume time-domain (FVTD). The technique directly couples structured FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices. Local tetrahedron grids are used to model portions of the device under study, with the remainder of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating microstrip-guided waves from a low-density hexahedron region through a high-density tetrahedron grid is investigated.

  10. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis

    Science.gov (United States)

    Batina, John T.

    1989-01-01

    A finite-volume unstructured-grid FEM scheme with multistage Runge-Kutta time stepping is applied to the three-dimensional time-dependent Euler equations for inviscid flows on complex aircraft configurations undergoing structural deformation. The derivation of the model, the solution procedure, and the computer implementation are described, and results are presented graphically for a NASA Langley supersonic fighter aircraft model in steady and unsteady (harmonic oscillation in complete-vehicle bending mode) flow regimes. Good agreement between FEM predictions and experimental data is demonstrated.

  11. Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes.

    Science.gov (United States)

    Sethian, J A; Vladimirsky, A

    2000-05-23

    The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. The scheme relies on an upwind finite difference approximation to the gradient and a resulting causality relationship that lends itself to a Dijkstra-like programming approach. In this paper, we discuss several extensions to this technique, including higher order versions on unstructured meshes in Rn and on manifolds and connections to more general static Hamilton-Jacobi equations.

  12. Stability analysis of unstructured finite volume methods for linear shallow water flows using pseudospectra and singular value decomposition

    Science.gov (United States)

    Beljadid, Abdelaziz; Mohammadian, Abdolmajid; Qiblawey, Hazim

    2016-10-01

    The discretization of the shallow water system on unstructured grids can lead to spurious modes which usually can affect accuracy and/or cause stability problems. This paper introduces a new approach for stability analysis of unstructured linear finite volume schemes for linear shallow water equations with the Coriolis Effect using spectra, pseudospectra, and singular value decomposition. The discrete operator of the scheme is the principal parameter used in the analysis. It is shown that unstructured grids have a large influence on operator normality. In some cases the eigenvectors of the operator can be far from orthogonal, which leads to amplification of solutions and/or stability problems. Large amplifications of the solution can be observed, even for discrete operators which respect the condition of asymptotic stability, and in some cases even for Lax-Richtmyer stable methods. The pseudospectra are shown to be efficient for the verification of stability of finite volume methods for linear shallow water equations. In some cases, the singular value decomposition is employed for further analysis in order to provide more information about the existence of unstable modes. The results of the analysis can be helpful in choosing the type of mesh, the appropriate placements of the variables of the system on the grid, and the suitable discretization method which is stable for a wide range of modes.

  13. Recognition and characterization of unstructured environmental sounds

    Science.gov (United States)

    Chu, Selina

    2011-12-01

    Environmental sounds are what we hear everyday, or more generally sounds that surround us ambient or background audio. Humans utilize both vision and hearing to respond to their surroundings, a capability still quite limited in machine processing. The first step toward achieving multimodal input applications is the ability to process unstructured audio and recognize audio scenes (or environments). Such ability would have applications in content analysis and mining of multimedia data or improving robustness in context aware applications through multi-modality, such as in assistive robotics, surveillances, or mobile device-based services. The goal of this thesis is on the characterization of unstructured environmental sounds for understanding and predicting the context surrounding of an agent or device. Most research on audio recognition has focused primarily on speech and music. Less attention has been paid to the challenges and opportunities for using audio to characterize unstructured audio. My research focuses on investigating challenging issues in characterizing unstructured environmental audio and to develop novel algorithms for modeling the variations of the environment. The first step in building a recognition system for unstructured auditory environment was to investigate on techniques and audio features for working with such audio data. We begin by performing a study that explore suitable features and the feasibility of designing an automatic environment recognition system using audio information. In my initial investigation to explore the feasibility of designing an automatic environment recognition system using audio information, I have found that traditional recognition and feature extraction for audio were not suitable for environmental sound, as they lack any type of structures, unlike those of speech and music which contain formantic and harmonic structures, thus dispelling the notion that traditional speech and music recognition techniques can simply

  14. Conformal refinement of unstructured quadrilateral meshes

    Energy Technology Data Exchange (ETDEWEB)

    Garmella, Rao [Los Alamos National Laboratory

    2009-01-01

    We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.

  15. Constrained and joint inversion on unstructured meshes

    Science.gov (United States)

    Doetsch, J.; Jordi, C.; Rieckh, V.; Guenther, T.; Schmelzbach, C.

    2015-12-01

    Unstructured meshes allow for inclusion of arbitrary surface topography, complex acquisition geometry and undulating geological interfaces in the inversion of geophysical data. This flexibility opens new opportunities for coupling different geophysical and hydrological data sets in constrained and joint inversions. For example, incorporating geological interfaces that have been derived from high-resolution geophysical data (e.g., ground penetrating radar) can add geological constraints to inversions of electrical resistivity data. These constraints can be critical for a hydrogeological interpretation of the inversion results. For time-lapse inversions of geophysical data, constraints can be derived from hydrological point measurements in boreholes, but it is difficult to include these hard constraints in the inversion of electrical resistivity monitoring data. Especially mesh density and the regularization footprint around the hydrological point measurements are important for an improved inversion compared to the unconstrained case. With the help of synthetic and field examples, we analyze how regularization and coupling operators should be chosen for time-lapse inversions constrained by point measurements and for joint inversions of geophysical data in order to take full advantage of the flexibility of unstructured meshes. For the case of constraining to point measurements, it is important to choose a regularization operator that extends beyond the neighboring cells and the uncertainty in the point measurements needs to be accounted for. For joint inversion, the choice of the regularization depends on the expected subsurface heterogeneity and the cell size of the parameter mesh.

  16. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    Science.gov (United States)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  17. Cube Kohonen self-organizing map (CKSOM) model with new equations in organizing unstructured data.

    Science.gov (United States)

    Lim, Seng Poh; Haron, Habibollah

    2013-09-01

    Surface reconstruction by using 3-D data is used to represent the surface of an object and perform important tasks. The type of data used is important and can be described as either structured or unstructured. For unstructured data, there is no connectivity information between data points. As a result, incorrect shapes will be obtained during the imaging process. Therefore, the data should be reorganized by finding the correct topology so that the correct shape can be obtained. Previous studies have shown that the Kohonen self-organizing map (KSOM) could be used to solve data organizing problems. However, 2-D Kohonen maps are limited because they are unable to cover the whole surface of closed 3-D surface data. Furthermore, the neurons inside the 3-D KSOM structure should be removed in order to create a correct wireframe model. This is because only the outside neurons are used to represent the surface of an object. The aim of this paper is to use KSOM to organize unstructured data for closed surfaces. KSOM isused in this paper by testing its ability to organize medical image data because KSOM is mostly used in constructing engineering field data. Enhancements are added to the model by introducing class number and the index vector, and new equations are created. Various grid sizes and maximum iterations are tested in the experiments. Based on the results, the number of redundancies is found to be directly proportional to the grid size. When we increase the maximum iterations, the surface of the image becomes smoother. An area formula is used and manual calculations are performed to validate the results. This model is implemented and images are created using Dev C++ and GNUPlot.

  18. Development of an Unstructured Mesh Code for Flows About Complete Vehicles

    Science.gov (United States)

    Peraire, Jaime; Gupta, K. K. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the

  19. Fibonacci Grids

    Science.gov (United States)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  20. Alpha Multipliers Breadth-First Search Technique for Resource Discovery in Unstructured Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Azrul Amri Jamal

    2017-08-01

    Full Text Available Resource discovery in unstructured peer-to-peer (P2P networks is important in the field of grid computing. Breadth-first search (BFS is widely used for resource discovery in unstructured P2P networks. The technique is proven to return as many search results as possible. However, the network cost of the technique is high due to the flooding of query messages that can degenerate the performance of the whole network. The objective of this study is to optimise the BFS technique, so that it will produce good search results without flooding the network with unnecessary walkers. Several resource discovery techniques used in unstructured P2P networks are discussed and categorised. P2P simulators that are used for P2P network experiments were studied in accordance to their characteristics such as, scalability, extensibility and support status. Several network topology generators were also scrutinised and selected in order to find out the most real-life like network generation model for unstructured P2P experiments. Multiple combinations of five-tuple alpha multipliers have been experimented to find out the best set to make -BFS. In our test, the -BFS increases the query efficiency of the conventional BFS from 55.67% to 63.15%.

  1. Children's Active Learning through Unstructured Play in Malaysia

    Science.gov (United States)

    Fatai O., Ismail Abdul; Faqih, Asrul; Bustan, Wafa K.

    2014-01-01

    Play is generally identified as a basic tool for effective learning and development in children. This study explores the ways in which amorphous or unstructured play contributes to children's overall development at the pre-primary level, helping to develop cognitive, social, and motor skills. The findings indicate that through unstructured play,…

  2. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  3. Lead grids

    CERN Multimedia

    1974-01-01

    One of the 150 lead grids used in the multiwire proportional chamber g-ray detector. The 0.75 mm diameter holes are spaced 1 mm centre to centre. The grids were made by chemical cutting techniques in the Godet Workshop of the SB Physics.

  4. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    Science.gov (United States)

    2015-06-22

    applications involving complex geometries . The ability to predict the gradients on irregular grids is even more critical for grid adaptation, a vital technique...require curved geometries to be represented by high-order curved elements (see Ref. 3). • Non-Unified Approach: Instead of the fully integrated...least-squares solution of Cauchy- Riemann equations on unstructured triangular grids. Int. J. Numer. Meth. Fluids, 53:443–454, 2007. 24Katate Masatsuka. I

  5. Robust Unstructured Road Detection: The Importance of Contextual Information

    Directory of Open Access Journals (Sweden)

    Erke Shang

    2013-03-01

    Full Text Available Unstructured road detection is a key step in an unmanned guided vehicle (UGV system for road following. However, current vision‐based unstructured road detection algorithms are usually affected by continuously changing backgrounds, different road types (shape, colour, variable lighting conditions and weather conditions. Therefore, a confidence map of road distribution, one of contextual information cues, is theoretically analysed and experimentally generated to help detect unstructured roads. Two traditional algorithms, support vector machine (SVM and k‐nearest neighbour (KNN, are carried out to verify the helpfulness of the proposed confidence map. Following this, a novel algorithm, which combines SVM, KNN and the confidence map under a Bayesian framework, is proposed to improve the overall performance of the unstructured road detections. The proposed algorithm has been evaluated using different types of unstructured roads and the experimental results show its effectiveness.

  6. Extraction of information from unstructured text

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; DeLand, S.M.; Crowder, S.V.

    1995-11-01

    Extracting information from unstructured text has become an emphasis in recent years due to the large amount of text now electronically available. This status report describes the findings and work done by the end of the first year of a two-year LDRD. Requirements of the approach included that it model the information in a domain independent way. This means that it would differ from current systems by not relying on previously built domain knowledge and that it would do more than keyword identification. Three areas that are discussed and expected to contribute to a solution include (1) identifying key entities through document level profiling and preprocessing, (2) identifying relationships between entities through sentence level syntax, and (3) combining the first two with semantic knowledge about the terms.

  7. Unstructured Object Recognition using Morphological Learning

    Directory of Open Access Journals (Sweden)

    S. Kar

    2002-07-01

    Full Text Available A technique of object recognition which can detect absence or presence of objects of interest without making explicit use of their underlying geometric structure is deemed suitable for many practical applications. In this work, a method of recognising unstructured objects has been presented, wherein several gray patterns are input as examples to a morphological rule-based learning algorithm. The output of the algorithm are the corresponding gray structuring elements capable of recognising patterns in query images. The learning is carried out offline before recognition of the queries. The technique has been tested to identify fuel pellet surface imperfections. Robustness wrt intensity, orientation, and shape variations of the query patterns is built into the method. Moreover, simplicity of the recognition process leading to reduced computational time makes the method attractive to solve many practical problems.

  8. Implicit compressible flow solvers on unstructured meshes

    Science.gov (United States)

    Nagaoka, Makoto; Horinouchi, Nariaki

    1993-09-01

    An implicit solver for compressible flows using Bi-CGSTAB method is proposed. The Euler equations are discretized with the delta-form by the finite volume method on the cell-centered triangular unstructured meshes. The numerical flux is calculated by Roe's upwind scheme. The linearized simultaneous equations with the irregular nonsymmetric sparse matrix are solved by the Bi-CGSTAB method with the preconditioner of incomplete LU factorization. This method is also vectorized by the multi-colored ordering. Although the solver requires more computational memory, it shows faster and more robust convergence than the other conventional methods: three-stage Runge-Kutta method, point Gauss-Seidel method, and Jacobi method for two-dimensional inviscid steady flows.

  9. Coarse-grid selection for parallel algebraic multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, A. J., LLNL

    1998-06-01

    The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity

  10. A three-dimensional solid-liquid two-phase turbulence model with the effect of vegetation in non-orthogonal curvilinear coordinates

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng; SHEN YongMing

    2009-01-01

    A three-dimensional k-ε-Ap solid-liquid two-phase two-fluid model with the effect of vegetation Is solved numerically with a finite-volume method on an adaptive grid to study water-sediment movements and bed evolution in vegetated channels. The additional drag force and additional turbulence generation due to vegetation are added to the relevant control equations for simulating the interaction between vegetation and flow. The flow structure and the bed-topography changes in a 60° partly vegetated channel bend are calculated by the model. The numerical results agree well with the measured ones. Calculated and measured results show that the primary flow velocity reduces much in the vegetation zone and increases in the non-vegetation zone, the secondary flow velocity weakens in the vegetation zone and strengthens in the non-vegetation zone, the sediment movement and bed-topography change also weaken in the vegetation zone and strengthen in the non-vegetation zone, a well-planed vegetation arrangement can improve bank stabilization program, and the k-ε-Ap model can deal with bed-load transport with a more reasonable method than the one-fluid model.

  11. A three-dimensional solid-liquid two-phase turbulence model with the effect of vegetation in non-orthogonal curvilinear coordinates

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A three-dimensional k-ε-Ap solid-liquid two-phase two-fluid model with the effect of vegetation is solved numerically with a finite-volume method on an adaptive grid to study water-sediment movements and bed evolution in vegetated channels. The additional drag force and additional turbulence generation due to vegetation are added to the relevant control equations for simulating the interaction between vegetation and flow. The flow structure and the bed-topography changes in a 60° partly vegetated channel bend are calculated by the model. The numerical results agree well with the measured ones. Calculated and measured results show that the primary flow velocity reduces much in the vegetation zone and increases in the non-vegetation zone, the secondary flow velocity weakens in the vegetation zone and strengthens in the non-vegetation zone, the sediment movement and bed-topography change also weaken in the vegetation zone and strengthen in the non-vegetation zone, a well-planed vegetation arrangement can improve bank stabilization program, and the k-ε-Ap model can deal with bed-load transport with a more reasonable method than the one-fluid model.

  12. Simulation of all-scale atmospheric dynamics on unstructured meshes

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  13. Grid Security

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  14. BIG Data Analytics: A Framework for Unstructured Data Analysis

    Directory of Open Access Journals (Sweden)

    P.Mohan Kumar

    2013-02-01

    Full Text Available Nowadays, most of information saved in companies are unstructured models. Retrieval and extraction of the information is essential works and importance in semantic web areas. Many of these requirements will be depend on the unstructured data analysis. More than 80% of all potentially useful business information is unstructured data, in kind of sensor readings, console logs and so on. The large number and complexity of unstructured data opens up many new possibilities for the analyst. Text mining and natural language processing are two techniques with their methods for knowledge discovery from textual context in documents. This is an approach to organize a complex unstructured data and to retrieve necessary information. The paper is to find an efficient way of storing unstructured data and appropriate approach of fetching data. Unstructured data targeted in this work to organize, is the publictweets of Twitter. Building an Big Data application that gets stream of public tweets from twitter which is latter stored in the HBase using Hadoop cluster and followed by data analysis for data retrieved from HBase by REST calls is the pragmatic approach of this project.

  15. Grid oscillators

    Science.gov (United States)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  16. Grid Computing

    Science.gov (United States)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  17. Mesh Adaptation and Shape Optimization on Unstructured Meshes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  18. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...... complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization....

  19. Grid reliability

    Science.gov (United States)

    Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.

    2008-07-01

    Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.

  20. Towards Hybrid Overset Grid Simulations of the Launch Environment

    Science.gov (United States)

    Moini-Yekta, Shayan

    A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.

  1. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  2. DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH

    Institute of Scientific and Technical Information of China (English)

    DONG Genjin; LU Xiyun; ZHUANG Lixian

    2004-01-01

    A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.

  3. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution

    Science.gov (United States)

    Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.

    2015-08-01

    The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.

  4. Adaptive unstructured simulations of diaphragm rupture and perforation opening to start hypersonic air inlets

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, E.V.; Tahir, R.B. [McGill Univ., Dept. of Mechanical Engineering, Montreal, Quebec (Canada)]. E-mail: evgeny.timofeev@mcgill.ca; Voinovich, P.A. [A.F. Ioffe Physical-Technical Inst., St. Petersburg Branch of the Joint Supercomputer Center, St. Petersburg (Russian Federation); Moelder, S. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada)

    2004-07-01

    The concept of 'twin' grid nodes is discussed in the context of unstructured, adaptive meshes that are suitable for highly unsteady flows. The concept is applicable to internal boundary contours (within the computational domain) where the boundary conditions may need to be changed dynamically; for instance, an impermeable solid wall segment can be redefined as a fully permeable invisible boundary segment during the course of the simulation. This can be used to simulate unsteady gas flows with internal boundaries where the flow conditions may change rapidly and drastically. As a demonstration, the idea is applied to study the starting process in hypersonic air inlets by rupturing a diaphragm or by opening wall-perforations. (author)

  5. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    Science.gov (United States)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  6. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN

    Science.gov (United States)

    Mao, Miaohua; van der Westhuysen, André J.; Xia, Meng; Schwab, David J.; Chawla, Arun

    2016-06-01

    Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured-grid models have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker indices and mesh types.

  7. HIRENASD NLR grid

    Data.gov (United States)

    National Aeronautics and Space Administration — Structured multiblock grid of HIRENASD wing with medium grid density, about 10 mill grid points, 9.5 mill cells. Starting from coarse AIAA AEPW structured grid,...

  8. Grid reliability

    CERN Document Server

    Saiz, P; Rocha, R; Andreeva, J

    2007-01-01

    We are offering a system to track the efficiency of different components of the GRID. We can study the performance of both the WMS and the data transfers At the moment, we have set different parts of the system for ALICE, ATLAS, CMS and LHCb. None of the components that we have developed are VO specific, therefore it would be very easy to deploy them for any other VO. Our main goal is basically to improve the reliability of the GRID. The main idea is to discover as soon as possible the different problems that have happened, and inform the responsible. Since we study the jobs and transfers issued by real users, we see the same problems that users see. As a matter of fact, we see even more problems than the end user does, since we are also interested in following up the errors that GRID components can overcome by themselves (like for instance, in case of a job failure, resubmitting the job to a different site). This kind of information is very useful to site and VO administrators. They can find out the efficien...

  9. Hybrid lattice Boltzmann method on overlapping grids.

    Science.gov (United States)

    Di Ilio, G; Chiappini, D; Ubertini, S; Bella, G; Succi, S

    2017-01-01

    In this work, a hybrid lattice Boltzmann method (HLBM) is proposed, where the standard lattice Boltzmann implementation based on the Bhatnagar-Gross-Krook (LBGK) approximation is combined together with an unstructured finite-volume lattice Boltzmann model. The method is constructed on an overlapping grid system, which allows the coexistence of a uniform lattice nodes spacing and a coordinate-free lattice structure. The natural adaptivity of the hybrid grid system makes the method particularly suitable to handle problems involving complex geometries. Moreover, the provided scheme ensures a high-accuracy solution near walls, given the capability of the unstructured submodel of achieving the desired level of refinement in a very flexible way. For these reasons, the HLBM represents a prospective tool for solving multiscale problems. The proposed method is here applied to the benchmark problem of a two-dimensional flow past a circular cylinder for a wide range of Reynolds numbers and its numerical performances are measured and compared with the standard LBGK ones.

  10. A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors

    Science.gov (United States)

    Loh, Ching Y.; Jorgenson, Philip C. E.

    2007-01-01

    A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However even with these up-to-date improvements, the basic upwind scheme is still plagued by the so-called "pathological behaviors," e.g., the carbuncle phenomenon, the expansion shock, etc. A solution to these limitations is presented which uses a very simple dissipation model while still preserving second order accuracy. This scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the methods.

  11. 一种非正交MEMS惯导系统的快速标定补偿方法%A Quick Calibration Method of Non-orthogonal MEMS Inertial Systems

    Institute of Scientific and Technical Information of China (English)

    周绍磊; 祁亚辉; 李瑞涛

    2012-01-01

    One gyro calibration method for low-precision,non-orthogonal MEMS inertial system is presented.Through the analysis of the static characteristics of the MEMS gyroscope,the static output can be seen as the gyro bias,then based on the knowledge of space vector transformation,the relationship between the gyro output and angular rate be directly derived.With six static positions and six angular rate points,the calibration can be achieved.With calibration,compensation and validation on the actual systems,the results proved the effectiveness of this method.%介绍了一种针对低精度、非正交安装的MEMS惯导系统的标定方法。在分析MEMS陀螺的静态性能的基础上,将陀螺的静态输出作为陀螺零偏,利用惯性器件空间向量的转换关系,直接得出微惯性器件输出与惯导系统测量坐标系的关系矩阵,通过六个位置和六个速率点即可完成MEMS惯导系统标定,极大的提高了系统的标定效率。某微机械惯导系统的标定、补偿验证试验结果表明此种方法有效可行。

  12. The Predictability of Near-Coastal Currents Using a Baroclinic Unstructured Grid Model

    Science.gov (United States)

    2011-12-28

    continuity equation is solved for the vertical velocity, subject to kinematic boundary conditions (Luettich et al. 2002; Muccino et al. 1997). For the baro ...2001. J Atmos Ocean Tcchnol21(12):l876-l894 Barron CN, Kara A, Martin P, Rhodes R, Smedstad L (2006) Formulation, implementation and examination of...larval recruitment. Bull Mar Sei 57:726-738 Kara AB, Barron C, Martin P, Smedstad L, Rhodes R (2006) Validation of intcrannual simulations from the 1

  13. F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids

    Science.gov (United States)

    Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2015-01-01

    This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.

  14. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  15. Wave climatology of Lake Erie based on an unstructured-grid wave model

    Science.gov (United States)

    Niu, Qianru; Xia, Meng

    2016-10-01

    Hindcast of wave dynamics in Lake Erie during 2002 to 2012 was conducted using a state-of-art finite-volume coastal ocean surface wave model (FVCOM-SWAVE). After model calibration, the surface gravity wave dynamics were examined from the aspects of wave climate and seasonality, inter-basin wave interactions, as well as its potential susceptibility to regional climate change. Compared to the Central and Eastern Basins, the Western Basin has relatively gentle wave climate. The Western Basin and the nearshore areas are most susceptible to the wave-induced bottom orbital oscillations on the seasonal mean scale, and the offshore Central Basin is sensitive to them as well during episodic events. Profound seasonality was found in both mean and extreme wave dynamics during ice-free cycles. Mean significant wave height (SWH) is highest during fall with more occurrences of extreme events (SWH > 3.1 m) and is lowest during summer, which is controlled by wind speed and direction collectively. Besides, swells generated in the Central and Eastern Basins could interact with each other under various wind directions, whereas wave generated in the Central Basin could hardly propagate into the Western Basin. In addition, the regression analysis of surrounding meteorological stations indicates increasing SWH in the Western Basin and decreasing SWH in the Eastern Basin.

  16. A Hierarchical Multiscale Particle Computational Method for Simulation of Nanoscale Flows on 3D Unstructured Grids

    Science.gov (United States)

    2009-08-14

    involving particle simu- lation of fluid flows at the mesoscale. The Smooth Dissipative Particle Dynamics (SDPD) method developed by Espanol and...coefficients in the SDPD model equations are given in Espanol and Revenga (2003), 30 2.1 SDPD Computational Implementation The SDPD model has been...pp. 786-793. 10 Espanol , P. and Revenga, M. Smoothed Dissipative Particle Dynamics. Physical Review, 2003, Vol. 67. 31 Liu G.R. and Liu, M.B

  17. Development of MODFLOW-USG: an un-structured grid version of MODFLOW

    Science.gov (United States)

    Panday, Sorab

    2013-01-01

    MODFLOW was revolutionary when it was first unveiled by the USGS in 1988, and since then it has been the most widely used groundwater flow modeling program in the world. MODFLOW’s simulation capabilities have evolved substantially since its initial release and it has been an inspiration for more comprehensive analysis simulators including surface-water/groundwater interaction models (e.g., GSFLOW, SWF, MODHMS, ISGW), flow and transport analysis simulators (e.g., MT3D, MODFLOWSURFACT, MODFLOW-T), and saltwater intrusion models (e.g., SEAWAT).

  18. An Optimized Multicolor Point-Implicit Solver for Unstructured Grid Applications on Graphics Processing Units

    Science.gov (United States)

    Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana

    2016-01-01

    In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.

  19. THREE-DIMENSIONAL NON-HYDROSTATIC MODEL FOR FREE-SURFACE FLOWS WITH UNSTRUCTURED GRID

    Institute of Scientific and Technical Information of China (English)

    AI Cong-fang; JIN Sheng

    2008-01-01

    The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.

  20. Efficient numerical methods to compute unsteady subsonic flows on unstructured grids

    NARCIS (Netherlands)

    Lucas, P.

    2010-01-01

    Over the last four decades the increase in computer power and the advances in solver technology has resulted in an estimated reduction of 10 orders in magnitude to compute flow problems. However, to solve the instationairy Reynolds-averaged Navier-Stokes equations, even today, a massive amount of C

  1. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables

    Science.gov (United States)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  2. Efficient Construction of Discrete Adjoint Operators on Unstructured Grids by Using Complex Variables

    Science.gov (United States)

    Nielsen, Eric J.; Kleb, William L.

    2005-01-01

    A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.

  3. Efficient High-Order Accurate Methods using Unstructured Grids for Hydrodynamics and Acoustics

    Science.gov (United States)

    2007-08-31

    mass, momentum and total energy are given in vectorial form SU(x,t)aU---t) +V.F(U) =0 (4) subject to appropriate boundary and initial conditions...Conference, Seattle, WA., November 2005. [63] E. Hairer and G. Warner. Solving Ordinary Differential Equations II: Stiff and Differential- Algebraic

  4. A New Procedure for Dynamic Adaptation of Three-Dimensional Unstructured Grids

    Science.gov (United States)

    1993-01-01

    each control volume given pointwise values An edge is defined as a line segment that connects of the solution at the vertices of the mesh. The so- two...coarsened, edge 2 can be automati- they allow for extremely fast subdivision of elements. cally restored, since it was not explicitly markt .. ’o

  5. Coupling of Wave and Current Numerical Model with Unstructured Quadtree Grid for Nearshore Coastal Waters

    Science.gov (United States)

    2012-02-01

    are computed based on the HLL (Harten-Lax-van Leer ) approximate Riemann solver with shock capturing capability for computing the dry-to-wet inter- face...3.3 HLL scheme A detailed description of the HLL (Harten-Lax-van Leer ) scheme can be found in Toro [17] and Ying [8] including a complete

  6. An Unstructured Grid Morphodynamic Model with a Discontinuous Galerkin Method for Bed Evolution

    Science.gov (United States)

    2005-04-24

    3), 193-224. Exner, F.M., 1925. Uber die wechselwirkung zwischen wasser und geschiebe in flussen. Sitzenberichte Akad. Wiss. Wien. 165 (3-4...Westerink, J.J., Luettich, R.A., Mark, D.J. 2002. A tidal constituent database for the western north Atlantic Ocean, Gulf of Mexico and Caribbean Sea

  7. A Pipeline for Large Data Processing Using Regular Sampling for Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adhinarayanan, Vignesh [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Turton, Terece [Univ. of Texas, Austin, TX (United States); Feng, Wu [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rogers, David Honegger [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-12

    Large simulation data requires a lot of time and computational resources to compute, store, analyze, visualize, and run user studies. Today, the largest cost of a supercomputer is not hardware but maintenance, in particular energy consumption. Our goal is to balance energy consumption and cognitive value of visualizations of resulting data. This requires us to go through the entire processing pipeline, from simulation to user studies. To reduce the amount of resources, data can be sampled or compressed. While this adds more computation time, the computational overhead is negligible compared to the simulation time. We built a processing pipeline at the example of regular sampling. The reasons for this choice are two-fold: using a simple example reduces unnecessary complexity as we know what to expect from the results. Furthermore, it provides a good baseline for future, more elaborate sampling methods. We measured time and energy for each test we did, and we conducted user studies in Amazon Mechanical Turk (AMT) for a range of different results we produced through sampling.

  8. Belief in the unstructured interview: The persistence of an illusion

    Directory of Open Access Journals (Sweden)

    Jason Dana

    2013-09-01

    Full Text Available Unstructured interviews are a ubiquitous tool for making screening decisions despite a vast literature suggesting that they have little validity. We sought to establish reasons why people might persist in the illusion that unstructured interviews are valid and what features about them actually lead to poor predictive accuracy. In three studies, we investigated the propensity for ``sensemaking'' - the ability for interviewers to make sense of virtually anything the interviewee says---and ``dilution''---the tendency for available but non-diagnostic information to weaken the predictive value of quality information. In Study 1, participants predicted two fellow students' semester GPAs from valid background information like prior GPA and, for one of them, an unstructured interview. In one condition, the interview was essentially nonsense in that the interviewee was actually answering questions using a random response system. Consistent with sensemaking, participants formed interview impressions just as confidently after getting random responses as they did after real responses. Consistent with dilution, interviews actually led participants to make worse predictions. Study 2 showed that watching a random interview, rather than personally conducting it, did little to mitigate sensemaking. Study 3 showed that participants believe unstructured interviews will help accuracy, so much so that they would rather have random interviews than no interview. People form confident impressions even interviews are defined to be invalid, like our random interview, and these impressions can interfere with the use of valid information. Our simple recommendation for those making screening decisions is not to use them.

  9. Unsupervised Ontology Generation from Unstructured Text. CRESST Report 827

    Science.gov (United States)

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2013-01-01

    Ontologies are a vital component of most knowledge acquisition systems, and recently there has been a huge demand for generating ontologies automatically since manual or supervised techniques are not scalable. In this paper, we introduce "OntoMiner", a rule-based, iterative method to extract and populate ontologies from unstructured or…

  10. Application of the VOF method based on unstructured quadrilateral mesh

    Institute of Scientific and Technical Information of China (English)

    JI Chun-ning; SHI Ying

    2008-01-01

    To simulate two-dimensional free-surface flows with complex boundaries directly and accurately, a novel VOF (Volume-of-fluid) method based on unstructured quadrilateral mesh is presented. Without introducing any complicated boundary treatment or artificial diffusion, this method treated curved boundaries directly by utilizing the inherent merit of unstructured mesh in fitting curves. The PLIC (Piecewise Linear Interface Calculation) method was adopted to obtain a second-order accurate linearized reconstruction approximation and the MLER (Modified Lagrangian-Eulerian Re-map) method was introduced to advect fluid volumes on unstructured mesh. Moreover, an analytical relation for the interface's line constant vs. the volume clipped by the interface was developed so as to improve the method's efficiency. To validate this method, a comprehensive series of large straining advection tests were performed. Numerical results provide convincing evidences for the method's high volume conservative accuracy and second-order shape error convergence rate. Also, a dramatic improvement on computational accuracy over its unstructured triangular mesh counterpart is checked.

  11. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, R; Manset, D; Hauer, T; Estrella, F; Saiz, P; Rogulin, D; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  12. Introduction to grid computing

    CERN Document Server

    Magoules, Frederic; Tan, Kiat-An; Kumar, Abhinit

    2009-01-01

    A Thorough Overview of the Next Generation in ComputingPoised to follow in the footsteps of the Internet, grid computing is on the verge of becoming more robust and accessible to the public in the near future. Focusing on this novel, yet already powerful, technology, Introduction to Grid Computing explores state-of-the-art grid projects, core grid technologies, and applications of the grid.After comparing the grid with other distributed systems, the book covers two important aspects of a grid system: scheduling of jobs and resource discovery and monitoring in grid. It then discusses existing a

  13. Smart Grid Special; Smart Grid Special

    Energy Technology Data Exchange (ETDEWEB)

    Mokoginta, L. [Energiecooperatie ' Wij Krijgen Kippen' , Amsterdam (Netherlands); Messing, M. [Stichting Energietransitie Nederland, Boxtel (Netherlands); Slootweg, H. [Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Van der Steen, L.; Brugman, L. [SquareWise, Amsterdam (Netherlands); Bles, M.; Blom, M. [CE Delft, Delft (Netherlands); Nachtegaal, H.; Hoekstra, R. [Bijl partners in public relations, Rotterdam (Netherlands); Van Zutphen, M. [CapGemini, Utrecht (Netherlands); Bakker, D. [PNO Consultants, Schiphol (Netherlands); Van Leeuwen, M. [Norton Rose, Amsterdam (Netherlands); Van Vlerken, J.; De Leeuw, M.; Wijnants, H.J.; Holwerda, B.; Bosch, N.

    2012-06-15

    A series of 17 articles is dedicated to various aspects of smart grids: expert opinions, the key role of smart grids in a sustainable energy transition, the role of the energy consumer and the grid operators, an energy transition project in the South of Amsterdam (Netherlands), the need for collaboration (e.g. through the Smart Energy Collective), the establishment of local energy corporations, the question whether smart grids are a hype or a necessity, costs and benefits of smart grids, deployment of intelligent smart grids in business areas (experimental areas), the opportunity of deploying Direct Current (DC) grids for an improved energy balance, the Smart Power City Apeldoorn project (SPCA), the experimental area of CloudPower on the isle of Texel, innovation contracts for smart grids, the increase of local, small-scale electricity production, and smart grid pilot projects on Europe. [Dutch] In 17 artikelen wordt aandacht besteed aan diverse aspecten van 'smart grids': meningen van experts, de sleutelrol van smart grids in een duurzame energietransitie, de rol van de energieconsument en de netbeheerders, een energietransitie-project in Amsterdam-Zuid, de noodzaak tot samenwerking (onder meer d.m.v. het Smart Energy Collective), de oprichting van lokale energiecooperaties, de vraag of smart grids een hype zijn of noodzaak, kosten en baten van smart grids, de toepassing van intelligente energienetwerken op bedrijventerreinen ('proeftuinen'), de mogelijkheid om gelijkspanningsnetten toe te passen voor een betere energiebalans, het project Smart Power City Apeldoorn (SPCA), de proeftuin CloudPower op Texel, innovatiecontracten m.b.t. smart grids, de toename van lokale, kleinschalige elektriciteitsproductie, smart grid demonstratieprojecten in Europa.

  14. Automated grid generation from models of complex geologic structure and stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Gable, C.; Trease, H.; Cherry, T.

    1996-04-01

    The construction of computational grids which accurately reflect complex geologic structure and stratigraphy for flow and transport models poses a formidable task. With an understanding of stratigraphy, material properties and boundary and initial conditions, the task of incorporating this data into a numerical model can be difficult and time consuming. Most GIS tools for representing complex geologic volumes and surfaces are not designed for producing optimal grids for flow and transport computation. We have developed a tool, GEOMESH, for generating finite element grids that maintain the geometric integrity of input volumes, surfaces, and geologic data and produce an optimal (Delaunay) tetrahedral grid that can be used for flow and transport computations. GEOMESH also satisfies the constraint that the geometric coupling coefficients of the grid are positive for all elements. GEOMESH generates grids for two dimensional cross sections, three dimensional regional models, represents faults and fractures, and has the capability of including finer grids representing tunnels and well bores into grids. GEOMESH also permits adaptive grid refinement in three dimensions. The tools to glue, merge and insert grids together demonstrate how complex grids can be built from simpler pieces. The resulting grid can be utilized by unstructured finite element or integrated finite difference computational physics codes.

  15. The Case for a Structured Approach to Managing Unstructured Data

    CERN Document Server

    Doan, AnHai; Baid, Akanksha; Chai, Xiaoyong; Chen, Fei; Chen, Ting; Chu, Eric; DeRose, Pedro; Gao, Byron; Gokhale, Chaitanya; Huang, Jiansheng; Shen, Warren; Vuong, Ba-Quy

    2009-01-01

    The challenge of managing unstructured data represents perhaps the largest data management opportunity for our community since managing relational data. And yet we are risking letting this opportunity go by, ceding the playing field to other players, ranging from communities such as AI, KDD, IR, Web, and Semantic Web, to industrial players such as Google, Yahoo, and Microsoft. In this essay we explore what we can do to improve upon this situation. Drawing on the lessons learned while managing relational data, we outline a structured approach to managing unstructured data. We conclude by discussing the potential implications of this approach to managing other kinds of non-relational data, and to the identify of our field.

  16. An edge-based unstructured mesh discretisation in geospherical framework

    Science.gov (United States)

    Szmelter, Joanna; Smolarkiewicz, Piotr K.

    2010-07-01

    An arbitrary finite-volume approach is developed for discretising partial differential equations governing fluid flows on the sphere. Unconventionally for unstructured-mesh global models, the governing equations are cast in the anholonomic geospherical framework established in computational meteorology. The resulting discretisation retains proven properties of the geospherical formulation, while it offers the flexibility of unstructured meshes in enabling irregular spatial resolution. The latter allows for a global enhancement of the spatial resolution away from the polar regions as well as for a local mesh refinement. A class of non-oscillatory forward-in-time edge-based solvers is developed and applied to numerical examples of three-dimensional hydrostatic flows, including shallow-water benchmarks, on a rotating sphere.

  17. Intelligent Mobile Robot Motion Control in Unstructured Environments

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2010-11-01

    Full Text Available This paper presents the intelligent wheeled mobile robot motion control inunstructured environments. The fuzzy control of a wheeled mobile robot motion inunstructured environments with obstacles and slopes is proposed. Outputs of the fuzzycontroller are the angular speed difference between the left and right wheels of the mobilerobot and the mobile robot velocity. The simulation results show the effectiveness and thevalidity of the obstacle avoidance behavior in an unstructured environment and the velocitycontrol of a wheeled mobile robot motion of the proposed fuzzy control strategy. Wirelesssensor-based remote control of mobile robots motion in unstructured environments usingthe Sun SPOT technology is proposed. The proposed method has been implemented on theminiature mobile robot Khepera that is equipped with sensors. Finally, the effectivenessand efficiency of the proposed sensor-based remote control strategy are demonstrated byexperimental studies and good experimental results.

  18. Optimal state discrimination and unstructured search in nonlinear quantum mechanics

    Science.gov (United States)

    Childs, Andrew M.; Young, Joshua

    2016-02-01

    Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.

  19. Grid generation for the solution of partial differential equations

    Science.gov (United States)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  20. Viscous flow modelling using unstructured meshes for aeronautical applications

    Science.gov (United States)

    Szmelter, J.; Pagano, A.

    The novel application of viscous coupling to unstructured meshes has been proposed and developed. The method allows fro viscous flows modelling and avoids the difficulty of generating highly stretched tetrahedral in 3D or triangular in 2D elements required for Navier-Stokes solvers. The time step allowed by the explicit euler solver is limited by the size of the "Euler" mesh, resulting in faster algorithms than standard explicit Navier-Stokes solvers.

  1. Exploring Transition of Large Technological Systems through Relational Data - A Study of The Danish Smart Grid Development

    DEFF Research Database (Denmark)

    Jurowetzki, Roman

    2016-01-01

    Combining elements form the Science, Technology and Society (STS) tradition with the Technological Innovation System (TIS) framework and utilising unstructured and relational data as well as novel analysis tools, this thesis explores the development of the Danish smart grid and the associated tra...... development, research funding, and the definition of standards....

  2. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation.

    Science.gov (United States)

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed.

  3. Finding geospatial pattern of unstructured data by clustering routes

    Science.gov (United States)

    Boustani, M.; Mattmann, C. A.; Ramirez, P.; Burke, W.

    2016-12-01

    Today the majority of data generated has a geospatial context to it. Either in attribute form as a latitude or longitude, or name of location or cross referenceable using other means such as an external gazetteer or location service. Our research is interested in exploiting geospatial location and context in unstructured data such as that found on the web in HTML pages, images, videos, documents, and other areas, and in structured information repositories found on intranets, in scientific environments, and otherwise. We are working together on the DARPA MEMEX project to exploit open source software tools such as the Lucene Geo Gazetteer, Apache Tika, Apache Lucene, and Apache OpenNLP, to automatically extract, and make meaning out of geospatial information. In particular, we are interested in unstructured descriptors e.g., a phone number, or a named entity, and the ability to automatically learn geospatial paths related to these descriptors. For example, a particular phone number may represent an entity that travels on a monthly basis, according to easily identifiable and somes more difficult to track patterns. We will present a set of automatic techniques to extract descriptors, and then to geospatially infer their paths across unstructured data.

  4. Unstructured Models for Lactic Acid Fermentation – A Review

    Directory of Open Access Journals (Sweden)

    Abdallah Bouguettoucha

    2011-01-01

    Full Text Available To describe a microbial process, two kinds of models can be developed, structured and unstructured models. Contrary to structured models, which take into account some basic aspects of cell structure, their function and composition, no physiological characterization of cells is considered in unstructured models, which only consider total cellular concentration. However, in spite of their simplicity, unstructured models have proven to accurately describe lactic acid fermentation in a wide range of experimental conditions and media. A partial link between cell growth and production, namely the Luedeking and Piret model, is mostly considered by the authors. Culture pH is the main parameter to be considered for model development. Acidic pH leads to inhibitory concentrations of undissociated lactic acid, the main inhibitory component, which causes cessation of growth and then production. On the other hand, pH control at optimal value for LAB growth allows to overcome product inhibition (by the total lactic acid produced or its undissociated part; hence nutritional limitations have to be considered for model development. Nitrogen is mainly involved in cessation of growth, owing to the fastidious nutritional requirements of LAB, while lactic acid production ceased when carbon was exhausted from the medium. The lack of substrate inhibition when usual concentrations of carbon substrate are used should be noted.

  5. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which...... nodes and the arc prior models variations in row and column spacing across the grid. Grid matching is done by placing an initial rough grid over the image and applying an ensemble annealing scheme to maximize the posterior distribution of the grid. The method can be applied to noisy images with missing...

  6. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    Science.gov (United States)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  7. Computational physical oceanography -- A comprehensive approach based on generalized CFD/grid techniques for planetary scale simulations of oceanic flows. Final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.; Taylor, L.K.; Arabshahi, A.

    1997-02-20

    The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces to discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.

  8. DataMining with Grid Computing Concepts

    Directory of Open Access Journals (Sweden)

    Mohammad Ashfaq Hussain

    2015-07-01

    Full Text Available Now days the organizations often use data from several resources. Data is characterized to be heterogeneous, unstructured and usually involves a huge amount of records. This implies that data must be transformed in a set of clusters, parts, rules or different kind of formulae, which helps to understand the exact information. The participation of several organizations in this process makes the assimilation of data more difficult. Data mining is a widely used approach for the transformation of data to useful patterns, aiding the comprehensive knowledge of the concrete domain information. Nevertheless, traditional data mining techniques find difficulties in their application on current scenarios, due to the complexity previously mentioned. Data Mining Grid tries to fix these problems, allowing data mining process to be deployed in a grid environment, in which data and services resources are geographically distributed belong to several virtual organizations and the security can be flexibly solved. We propose both a novel architecture for Data Mining Grid, named DMG.

  9. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  10. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...... for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads...

  11. SVPWM of dual three-phase motor based on non-orthogonal coordinate%非正交坐标系下双三相感应电机SVPWM控制策略

    Institute of Scientific and Technical Information of China (English)

    李洪亮; 姜建国

    2014-01-01

    To address the traditional space vector pulse width modulation algorithm of dual three-phase motor which contains a large number of trigonometric functions and finding roots of computing, and the motor stator current contains a large number of harmonic components,combined with dual three-phase mo-tor vector classification, a dual three-phase induction motor space vector pulse width modulation algorithm was proposed in non-orthogonal coordinate system of 120 ° . The maximum and minimum values of given three-phase voltage signals were determined. There is no need to calculate the sector and the role of the fundamental voltage vector time,and it can directly obtain switching time with each phase by summarizing the law. The simulation and experimental results show that compared with conventional dual three-phase SVPWM algorithm, the novel dual three-phase induction motor SVPWM algorithm effectively inhibits the motor stator current harmonics, while greatly reducing the execution time of the algorithm. Stator current harmonic suppression improves motor control performances, and shorten the execution time of the algo-rithm which saves processor resources.%针对传统双三相电机空间矢量脉冲宽度调制( space vector pulse width modulation,SVPWM)算法中含有大量的三角函数和求根运算,且电机定子电流谐波含量大的问题。结合双三相电机的矢量分类技术,在120°的非正交坐标系下提出了一种双三相感应电机的空间矢量脉冲宽度调制算法。判断三相给定电压信号的最大值和最小值,通过总结规律,可直接求得各相开关的切换时刻,无须进行扇区和基本电压矢量作用时间的计算。对仿真和实验结果的分析表明,与传统双三相SVPWM算法相比,所提出的双三相感应电机SVPWM算法可以有效抑制电机定子电流谐波的同时,大大缩短算法执行时间。定子电流谐波的抑制可提高电机控制性能,算法执行时间的缩短将为处理器节约资源。

  12. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

    Science.gov (United States)

    Tavelli, Maurizio; Dumbser, Michael

    2016-08-01

    In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved

  13. Direct numerical simulation of scalar transport using unstructured finite-volume schemes

    Science.gov (United States)

    Rossi, Riccardo

    2009-03-01

    An unstructured finite-volume method for direct and large-eddy simulations of scalar transport in complex geometries is presented and investigated. The numerical technique is based on a three-level fully implicit time advancement scheme and central spatial interpolation operators. The scalar variable at cell faces is obtained by a symmetric central interpolation scheme, which is formally first-order accurate, or by further employing a high-order correction term which leads to formal second-order accuracy irrespective of the underlying grid. In this framework, deferred-correction and slope-limiter techniques are introduced in order to avoid numerical instabilities in the resulting algebraic transport equation. The accuracy and robustness of the code are initially evaluated by means of basic numerical experiments where the flow field is assigned a priori. A direct numerical simulation of turbulent scalar transport in a channel flow is finally performed to validate the numerical technique against a numerical dataset established by a spectral method. In spite of the linear character of the scalar transport equation, the computed statistics and spectra of the scalar field are found to be significantly affected by the spectral-properties of interpolation schemes. Although the results show an improved spectral-resolution and greater spatial-accuracy for the high-order operator in the analysis of basic scalar transport problems, the low-order central scheme is found superior for high-fidelity simulations of turbulent scalar transport.

  14. Cell-Centred Finite Difference Methodology for Solving Partial Differential Equations on an Unstructured Mesh

    Science.gov (United States)

    Situ, J. J.; Barron, R. M.; Higgins, M.

    2011-11-01

    Partial differential equations (PDEs) arise in connection with many physical phenomena involving two or more independent variables. Boundary conditions associated with the PDEs are either Dirichlet, Neumann or mixed conditions. Analytical solutions for most of these problems are not easy to obtain, and may not even be posssible. For such reasons, numerical methodologies for solving PDEs have been developed, such as finite element (FE), finite volume (FV) and finite difference (FD) methods. In the present paper, an innovative finite difference formulation, referred to as the cell-centred finite difference (CCFD) method, is proposed. Instead of applying finite difference approximations at the grid points as in the traditional finite difference method, the new methodology implements a finite difference scheme at each cell centroid in a predefined mesh topology. The prominent advantage of the proposed methodology is that it allows finite differencing to be applied on any arbitrary mesh topology, i.e. structured, unstructured or hybrid. The CCFD formulation is developed in this paper and implemented on a test problem to demonstrate its capabilities.

  15. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.

    Science.gov (United States)

    Li, Yusong; LeBoeuf, Eugene J; Basu, P K

    2005-10-01

    A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank-Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility.

  16. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    Science.gov (United States)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-06-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  17. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    Science.gov (United States)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  18. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  19. Using 3D Voronoi grids in radiative transfer simulations

    CERN Document Server

    Camps, Peter; Saftly, Waad

    2013-01-01

    Probing the structure of complex astrophysical objects requires effective three-dimensional (3D) numerical simulation of the relevant radiative transfer (RT) processes. As with any numerical simulation code, the choice of an appropriate discretization is crucial. Adaptive grids with cuboidal cells such as octrees have proven very popular, however several recently introduced hydrodynamical and RT codes are based on a Voronoi tessellation of the spatial domain. Such an unstructured grid poses new challenges in laying down the rays (straight paths) needed in RT codes. We show that it is straightforward to implement accurate and efficient RT on 3D Voronoi grids. We present a method for computing straight paths between two arbitrary points through a 3D Voronoi grid in the context of a RT code. We implement such a grid in our RT code SKIRT, using the open source library Voro++ to obtain the relevant properties of the Voronoi grid cells based solely on the generating points. We compare the results obtained through t...

  20. Adaptive grid finite element model of the tokamak scrapeoff layer

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)

    1995-07-01

    The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.

  1. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  2. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

  3. Survey on Anonymity in Unstructured Peer-to-Peer Systems

    Institute of Scientific and Technical Information of China (English)

    Ren-Yi Xiao

    2008-01-01

    Although anonymizing Peer-to-Peer (P2P) networks often means extra cost in terms of transfer efficiency, many systems try to mask the identities of their users for privacy consideration. By comparison and analysis of existing approaches,we investigate the properties of unstructured P2P anonymity, and summarize current attack models on these designs. Most of these approaches are path-based, which require peers to pre-construct anonymous paths before transmission, thus suffering significant overhead and poor reliability. We also discuss the open problems in this field and propose several future research directions.

  4. Random walk search in unstructured P2P

    Institute of Scientific and Technical Information of China (English)

    Jia Zhaoqing; You Jinyuan; Rao Ruonan; Li Minglu

    2006-01-01

    Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.

  5. Research on Parallel Unstructured Mesh Generation Technology Based on GPU%基于GPU的并行非结构网格生成技术研究

    Institute of Scientific and Technical Information of China (English)

    齐龙; 肖素梅; 刘云楚; 廖玲玲; 蔡云龙

    2013-01-01

    In order to solve the problems of unstructured mesh generation technology in time and memory, the parallel generation method of unstructured grid is researched, and the GPU unstructured mesh generation technology based on the framework of CUDA is put forward. In CUDA programming framework, unstructured mesh generation technology is applied to GPU parallel environment, Combining the high-speed parallel GPU with parallel delaunay generation technology. Its performance is evaluated by the analysis of the speedup rate and efficiency. According to the experimental results, the suggested method is of high efficiency. Compared with traditional methods, it greatly reduces the time consumption in the same mesh quality.%为了解决非结构网格生成在时间和内存上的问题,研究了非结构网格的并行生成方法,提出了一种基于CUDA架构的GPU并行非结构网格生成技术.该技术结合了GPU的高速并行性和并行Delaunay网格生成技术的优点,在CUDA编程框架下,将非结构网格生成的技术应用到GPU并行环境中.通过分析此方法的加速比和效率,对其性能进行了评估.实验结果表明,所提出的方法具备有高效性,与传统方法相比,在保证网格质量的同时,大幅度减少了其时间消耗.

  6. RSW Modified Inflow Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — After discussions by the organizing committee, and some research using the RSW grids, a modification has been made on the RSW grids. The inflow boundary has now been...

  7. HIRENASD coarse structured grid

    Data.gov (United States)

    National Aeronautics and Space Administration — blockstructured hexahedral grid, 6.7 mio elements, 24 degree minimum grid angle, CGNS format version 2.4, double precision Binary, Plot3D file Please contact...

  8. Reaction rates for reaction-diffusion kinetics on unstructured meshes

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2017-02-01

    The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper, we develop a method for computing accurate reaction rates between molecules occupying the same voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing step, depending only on the mesh and not on the model parameters, and we devise an efficient numerical scheme to estimate them to high accuracy. We show in several numerical examples that as we refine the mesh, the results obtained with the reaction-diffusion master equation approach those of a more fine-grained Smoluchowski particle-tracking model.

  9. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  10. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  11. Framework for Grid Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈笠; 邓宏; 邓倩妮; 吴振宇

    2004-01-01

    With the development of networked manufacturing, it is more and more imminent to solve problems caused by inherent limitations of network technology, such as heterogeneity, collaboration collision, and decentralized control.This paper presents a framework for grid manufacturing, which neatly combines grid technology with the infrastructure of advanced manufacturing technology.The paper studies grid-oriented knowledge description and acquisition, and constructs a distributed knowledge grid model.The paper also deals with the protocol of node description in collaborative design, and describes a distributed collaborative design model.The protocol and node technology leads to a collaborative production model for grid manufacturing.The framework for grid manufacturing offers an effective and feasible solution for the problems of networked manufacturing.The grid manufacturing will become an advanced distributed manufacturing model and promote the development of advanced manufacturing technologies.

  12. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  13. Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max

    2013-03-12

    The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

  14. Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D

    Science.gov (United States)

    Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery

    2015-01-01

    In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.

  15. Euler Flow Computations on Non-Matching Unstructured Meshes

    Science.gov (United States)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  16. Domain-independent information extraction in unstructured text

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H. [Sandia National Labs., Albuquerque, NM (United States). Software Surety Dept.

    1996-09-01

    Extracting information from unstructured text has become an important research area in recent years due to the large amount of text now electronically available. This status report describes the findings and work done during the second year of a two-year Laboratory Directed Research and Development Project. Building on the first-year`s work of identifying important entities, this report details techniques used to group words into semantic categories and to output templates containing selective document content. Using word profiles and category clustering derived during a training run, the time-consuming knowledge-building task can be avoided. Though the output still lacks in completeness when compared to systems with domain-specific knowledge bases, the results do look promising. The two approaches are compatible and could complement each other within the same system. Domain-independent approaches retain appeal as a system that adapts and learns will soon outpace a system with any amount of a priori knowledge.

  17. 3D unstructured mesh discontinuous finite element hydro

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J. [Lawrence Livermore National Lab., CA (United States)

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  18. SOMBI: Bayesian identification of parameter relations in unstructured cosmological data

    CERN Document Server

    Frank, Philipp; Enßlin, Torsten A

    2016-01-01

    This work describes the implementation and application of a correlation determination method based on Self Organizing Maps and Bayesian Inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the Self Organizing Map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian Information Criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide ...

  19. Key frame extraction from unstructured consumer video clips

    Science.gov (United States)

    Papin, Christophe; Luo, Jiebo

    2007-01-01

    We present a key frame extraction method dedicated to summarize unstructured consumer video clips acquired from digital cameras. Analysis of spatio-temporal changes over time provides meaningful information about the scene and the cameraman's general intents. First, camera and object motion are estimated and used to derive motion descriptors. A video is segmented into homogeneous segments based on major types of camera motion (e.g., pan, zoom, pause, steady). Dedicated rules are used to extract candidate key frames from each segment. Confidence measures are computed for the candidates to enable ranking in semantic relevance. This method is scalable so that we can produce any desired number of key frames from the candidates. We demonstrated the effectiveness of our method by comparing results with the ground truth agreed by multiple judges.

  20. 3D unstructured-mesh radiation transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J. [Los Alamos National Lab., NM (United States)

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  1. Securing smart grid technology

    Science.gov (United States)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  2. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  3. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total

  4. The Grid : english version

    CERN Multimedia

    Rosy Mondardini Producer

    2003-01-01

    The Grid : . Sharing resources owned by many different organizations to access remote computers, software, and data efficiently and automatically . Secure access to establish the identity of a user or resource, after defining conditions under which sharing occurs . Bridging distance using high-speed connections between computers to create a global Grid . Open standards to allow applications designed for one Grid to run on all others

  5. GRID Activities in ALICE

    Institute of Scientific and Technical Information of China (English)

    P.Cerello; T.Anticic; 等

    2001-01-01

    The challenge of LHC computing,with data rates in the range of several PB/year,requires the development of GRID technologies,to optimize the exploitation of distributed computing power and the authomatic access to distributed data storage.In the framework of the EU-DataGrid project,the ALICE experiment is one of the selected test applications for the early development and implementation of GRID Services.Presently,about 15 ALICE sites are makin use of available GRID tools and a large scale test production involving 9 of them was carried out with our simulation program.Results are discussed in detail,as well as future plans.

  6. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  7. The play grid

    DEFF Research Database (Denmark)

    Fogh, Rune; Johansen, Asger

    2013-01-01

    In this paper we propose The Play Grid, a model for systemizing different play types. The approach is psychological by nature and the actual Play Grid is based, therefore, on two pairs of fundamental and widely acknowledged distinguishing characteristics of the ego, namely: extraversion vs...... at the Play Grid. Thus, the model has four quadrants, each of them describing one of four play types: the Assembler, the Director, the Explorer, and the Improviser. It is our hope that the Play Grid can be a useful design tool for making entertainment products for children....

  8. 复合材料用机织物非正交本构模型的半球形冲压成型验证%Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation

    Institute of Scientific and Technical Information of China (English)

    丁纺纺; 彭雄奇

    2011-01-01

    A non-orthogonal constitutive model, previously developed by the authors to characterize the anisotropic material behavior of woven composite fabrics under large deformation, which results from the angle change between warp and weft yarns, was validated by a hemispherical stamping simulation of a square plain woven composite fabric at room temperature. As a comparison, the forming is simulated by using a corresponding orthotropic constitutive model. The simulation results show that the non-orthogonal constitutive model brings out almost the same boundary profile as that in the experiment and shear angles are in the experimental standard deviation range. While quite large discrepancy is found in the case with orthogonal constitutive model. The proposed non-orthogonal model is better than the orthogonal model in characterizing the anisotropic material behavior of woven composites under large shear deformation.%为了描述复合材料用机织物在大变形下由于经纱和纬纱之间角度变化所引起的非线性各向异性材料行为,前期工作中建立了一个非正交本构模型.利用半球形冲头对复合材料用平纹机织物进行冲压模拟,并将非正交本构模型和正交本构模型的模拟结果与实验结果进行对比,对非正交本构模型进行验证,以充分说明该模型的有效性和正确性.结果表明:采用非正交本构模型模拟的复合材料用平纹机织物变形后的边界轮廓与实验结果基本一致,并且剪切角都在实验结果的误差范围内;而采用正交本构模型,复合材料用机织物变形后的边界轮廓和剪切角与实验结果相差较大.研究表明,与正交本构模型相比非正交本构模型能更好地描述复合材料用机织物在大变形下的材料属性.

  9. Survey of Search and Replication Schemes in Unstructured P2P Networks

    CERN Document Server

    Thampi, Sabu M

    2010-01-01

    P2P computing lifts taxing issues in various areas of computer science. The largely used decentralized unstructured P2P systems are ad hoc in nature and present a number of research challenges. In this paper, we provide a comprehensive theoretical survey of various state-of-the-art search and replication schemes in unstructured P2P networks for file-sharing applications. The classifications of search and replication techniques and their advantages and disadvantages are briefly explained. Finally, the various issues on searching and replication for unstructured P2P networks are discussed.

  10. Trends in life science grid: from computing grid to knowledge grid

    OpenAIRE

    Konagaya Akihiko

    2006-01-01

    Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid...

  11. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  12. Unstructured Computational Aerodynamics on Many Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.

    2016-06-08

    Shared memory parallelization of the flux kernel of PETSc-FUN3D, an unstructured tetrahedral mesh Euler flow code previously studied for distributed memory and multi-core shared memory, is evaluated on up to 61 cores per node and up to 4 threads per core. We explore several thread-level optimizations to improve flux kernel performance on the state-of-the-art many integrated core (MIC) Intel processor Xeon Phi “Knights Corner,” with a focus on strong thread scaling. While the linear algebraic kernel is bottlenecked by memory bandwidth for even modest numbers of cores sharing a common memory, the flux kernel, which arises in the control volume discretization of the conservation law residuals and in the formation of the preconditioner for the Jacobian by finite-differencing the conservation law residuals, is compute-intensive and is known to exploit effectively contemporary multi-core hardware. We extend study of the performance of the flux kernel to the Xeon Phi in three thread affinity modes, namely scatter, compact, and balanced, in both offload and native mode, with and without various code optimizations to improve alignment and reduce cache coherency penalties. Relative to baseline “out-of-the-box” optimized compilation, code restructuring optimizations provide about 3.8x speedup using the offload mode and about 5x speedup using the native mode. Even with these gains for the flux kernel, with respect to execution time the MIC simply achieves par with optimized compilation on a contemporary multi-core Intel CPU, the 16-core Sandy Bridge E5 2670. Nevertheless, the optimizations employed to reduce the data motion and cache coherency protocol penalties of the MIC are expected to be of value for CFD and many other unstructured applications as many-core architecture evolves. We explore large-scale distributed-shared memory performance on the Cray XC40 supercomputer, to demonstrate that optimizations employed on Phi hybridize to this context, where each of

  13. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  14. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  15. DataGrid

    CERN Multimedia

    Silvano de Gennaro

    2003-01-01

    DataGrid is a project funded by the European Union that aims to enable access to geographically distributed computing power and storage facilities belonging to different institutions. This will provide scientists with an unprecedented computing and data management tool. DataGrid is led by CERN, together with 20 other scientific and industrial partners.

  16. Data Grid Implementations

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  17. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2017-01-01

    This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.

  18. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...... and costs. This paper elaborates on the key stakeholders, crucial polices and general challenges in the context of the Chinese smart grid development. The paper finds that the Chinese energy market is a state monopoly and foreign companies can only become key stakeholders in the role of suppliers or service...... providers. It can be concluded that the Chinese smart grid development has still to overcome technological and political issues, such as overlapping authority structures, not installed or immature key technologies, the absence of standards and governmental market protectionism....

  19. Parallel unstructured AMR and gigabit networking for Beowulf-class clusters

    Science.gov (United States)

    Norton, C. D.; Cwik, T. A.

    2001-01-01

    The impact of gigabit networking with Myrinet 2000 hardware and MPICH-GM software on a 2-way SMP Beowulf-class cluster for parallel unstructured adaptive mesh refinement using the PYRAMID library is described.

  20. 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements

    Science.gov (United States)

    Sarakorn, Weerachai

    2017-04-01

    In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.

  1. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    Science.gov (United States)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  2. Improved Degree Search Algorithms in Unstructured P2P Networks

    Directory of Open Access Journals (Sweden)

    Guole Liu

    2012-01-01

    Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

  3. Development and acceleration of unstructured mesh-based cfd solver

    Science.gov (United States)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  4. Information Extraction from Unstructured Text for the Biodefense Knowledge Center

    Energy Technology Data Exchange (ETDEWEB)

    Samatova, N F; Park, B; Krishnamurthy, R; Munavalli, R; Symons, C; Buttler, D J; Cottom, T; Critchlow, T J; Slezak, T

    2005-04-29

    The Bio-Encyclopedia at the Biodefense Knowledge Center (BKC) is being constructed to allow an early detection of emerging biological threats to homeland security. It requires highly structured information extracted from variety of data sources. However, the quantity of new and vital information available from every day sources cannot be assimilated by hand, and therefore reliable high-throughput information extraction techniques are much anticipated. In support of the BKC, Lawrence Livermore National Laboratory and Oak Ridge National Laboratory, together with the University of Utah, are developing an information extraction system built around the bioterrorism domain. This paper reports two important pieces of our effort integrated in the system: key phrase extraction and semantic tagging. Whereas two key phrase extraction technologies developed during the course of project help identify relevant texts, our state-of-the-art semantic tagging system can pinpoint phrases related to emerging biological threats. Also we are enhancing and tailoring the Bio-Encyclopedia by augmenting semantic dictionaries and extracting details of important events, such as suspected disease outbreaks. Some of these technologies have already been applied to large corpora of free text sources vital to the BKC mission, including ProMED-mail, PubMed abstracts, and the DHS's Information Analysis and Infrastructure Protection (IAIP) news clippings. In order to address the challenges involved in incorporating such large amounts of unstructured text, the overall system is focused on precise extraction of the most relevant information for inclusion in the BKC.

  5. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  6. Numerical Modelling of Volcanic Ash Settling in Water Using Adaptive Unstructured Meshes

    Science.gov (United States)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R.

    2011-12-01

    numerically predicted settling velocities for both individual particles and plumes, as well as the instability behaviour, agree well with experimental observations. Building on this successful validation, we use results from a suite of simulations spanning a variety of characteristic particle sizes and inflow flux rates to test theoretical criteria for determining whether particles settle individually or collectively. This suggests that the relevant criterion for predicting the onset of plume formation must take into account the turbulent (rather than laminar) nature of plume settling. An important benefit of our unstructured adaptive mesh model over multi-phase models that use regular structured grids of uniform resolution is that it is able to focus numerical resolution in areas important to the dynamics while decreasing resolution where it is not needed. We show that this gives the same solution accuracy for reduced computational cost compared with uniform resolution. Moreover, the multi-scale capabilities of our model allows us to consider small-scale plume evolution in domains many times larger than is achievable in the laboratory.

  7. Transmission grid security

    CERN Document Server

    Haarla, Liisa; Hirvonen, Ritva; Labeau, Pierre-Etienne

    2011-01-01

    In response to the growing importance of power system security and reliability, ""Transmission Grid Security"" proposes a systematic and probabilistic approach for transmission grid security analysis. The analysis presented uses probabilistic safety assessment (PSA) and takes into account the power system dynamics after severe faults. In the method shown in this book the power system states (stable, not stable, system breakdown, etc.) are connected with the substation reliability model. In this way it is possible to: estimate the system-wide consequences of grid faults; identify a chain of eve

  8. Instant 960 Grid System

    CERN Document Server

    Tres, Diego

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Instant 960 Grid System uses step-by-step instructions, covering the basic understanding needed to create a quick, high quality responsive website prototype using the 960 Grid System.The book is intended for beginner web developers and information architects looking to create a quick responsive website prototype. Basic knowledge of web development and a little understanding of grids is encouraged.

  9. Desktop grid computing

    CERN Document Server

    Cerin, Christophe

    2012-01-01

    Desktop Grid Computing presents common techniques used in numerous models, algorithms, and tools developed during the last decade to implement desktop grid computing. These techniques enable the solution of many important sub-problems for middleware design, including scheduling, data management, security, load balancing, result certification, and fault tolerance. The book's first part covers the initial ideas and basic concepts of desktop grid computing. The second part explores challenging current and future problems. Each chapter presents the sub-problems, discusses theoretical and practical

  10. GridAPPS-D

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-28

    GridAPPS-D is an open-source, open architecture, standards based platform for development of advanced electric power system planning and operations applications. GridAPPS-D provides a documented data abstraction for the application developer enabling creation of applications that can be run in any compliant system or platform. This enables development of applications that are platform vendor independent applications and applications that take advantage of the possibility of data rich and data driven applications based on deployment of smart grid devices and systems.

  11. New Advances In Multiphase Flow Numerical Modelling Using A General Domain Decomposition and Non-orthogonal Collocated Finite Volume Algorithm: Application To Industrial Fluid Catalytical Cracking Process and Large Scale Geophysical Fluids.

    Science.gov (United States)

    Martin, R.; Gonzalez Ortiz, A.

    In the industry as well as in the geophysical community, multiphase flows are mod- elled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents os- cillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillatons of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. A pentadiagonal system in 2D or a septadiagonal in 3D must be solve but here we have chosen to solve 3 tridiagonal linear systems (the so called Alternate Direction Implicit algorithm), one in each spatial direction, to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. At the end the energy conservation equations are solved. In all this process the

  12. RSW Cell Centered Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — New cell centered grids are generated to complement the node-centered ones uploaded. Six tarballs containing the coarse, medium, and fine mixed-element and pure tet....

  13. Grid Computing Education Support

    Energy Technology Data Exchange (ETDEWEB)

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  14. Technology Roadmaps: Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The development of Technology Roadmaps: Smart Grids -- which the IEA defines as an electricity network that uses digital and other advanced technologies to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users -- is essential if the global community is to achieve shared goals for energy security, economic development and climate change mitigation. Unfortunately, existing misunderstandings of exactly what smart grids are and the physical and institutional complexity of electricity systems make it difficult to implement smart grids on the scale that is needed. This roadmap sets out specific steps needed over the coming years to achieve milestones that will allow smart grids to deliver a clean energy future.

  15. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  16. Controlling smart grid adaptivity

    NARCIS (Netherlands)

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption

  17. Scheduling for Responsive Grids

    CERN Document Server

    Germain-Renaud, C; Moscicki,JT; Texier, R

    2008-01-01

    Grids are facing the challenge of seamless integration of the Grid power into everyday use. One critical component for this integration is responsiveness, the capacity to support on-demand computing and interactivity. Grid scheduling is involved at two levels in order to provide responsiveness: the policy level and the implementation level. The main contributions of this paper are as follows. First, we present a detailed analysis of the performance of the EGEE Grid with respect to responsiveness. Second, we examine two user-level schedulers located between the general scheduling layer and the application layer. These are the DIANE (distributed analysis environment) framework, a general-purpose overlay system, and a specialized, embedded scheduler for gPTM3D, an interactive medical image analysis application. Finally, we define and demonstrate a virtualization scheme, which achieves guaranteed turnaround time, schedulability analysis, and provides the basis for differentiated services. Both methods target a br...

  18. World Wide Grid

    CERN Multimedia

    Grätzel von Grätz, Philipp

    2007-01-01

    Whether for genetic risk analysis or 3D-rekonstruktion of the cerebral vessels: the modern medicine requires more computing power. With a grid infrastructure, this one can be if necessary called by the network. (4 pages)

  19. US National Grid

    Data.gov (United States)

    Kansas Data Access and Support Center — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...

  20. SOMBI: Bayesian identification of parameter relations in unstructured cosmological data

    Science.gov (United States)

    Frank, Philipp; Jasche, Jens; Enßlin, Torsten A.

    2016-11-01

    This work describes the implementation and application of a correlation determination method based on self organizing maps and Bayesian inference (SOMBI). SOMBI aims to automatically identify relations between different observed parameters in unstructured cosmological or astrophysical surveys by automatically identifying data clusters in high-dimensional datasets via the self organizing map neural network algorithm. Parameter relations are then revealed by means of a Bayesian inference within respective identified data clusters. Specifically such relations are assumed to be parametrized as a polynomial of unknown order. The Bayesian approach results in a posterior probability distribution function for respective polynomial coefficients. To decide which polynomial order suffices to describe correlation structures in data, we include a method for model selection, the Bayesian information criterion, to the analysis. The performance of the SOMBI algorithm is tested with mock data. As illustration we also provide applications of our method to cosmological data. In particular, we present results of a correlation analysis between galaxy and active galactic nucleus (AGN) properties provided by the SDSS catalog with the cosmic large-scale-structure (LSS). The results indicate that the combined galaxy and LSS dataset indeed is clustered into several sub-samples of data with different average properties (for example different stellar masses or web-type classifications). The majority of data clusters appear to have a similar correlation structure between galaxy properties and the LSS. In particular we revealed a positive and linear dependency between the stellar mass, the absolute magnitude and the color of a galaxy with the corresponding cosmic density field. A remaining subset of data shows inverted correlations, which might be an artifact of non-linear redshift distortions.

  1. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    Science.gov (United States)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  2. International Lattice Data Grid

    CERN Document Server

    Davies, C T H; Kenway, R D; Maynard, C M

    2002-01-01

    We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.

  3. Algorithms for the automatic generation of 2-D structured multi-block grids

    Science.gov (United States)

    Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.

    1995-01-01

    Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.

  4. dgtoexo2: A Distorted Grid Output File to Exodus II Finite Element Database Conversion Utility

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, H.K.

    1998-12-01

    This report describes how to obtain publication-quality graphics from distorted grid electronic structure codes using the combination of the conversion utility, dgtoexo2, and mustafa, an AVS Express application. dgtoexo2 converts scalar function results from a format applicable to distorted grid codes into the Exodus II unstructured finite element data representation. nmstafa can read Exodus II files and use the AVS Express engine to visualize data on unix and Windows NT platforms. Though not designed for the purpose, the dgtoexo2/EXOdUS II/mustafa combination is sufficiently versatile to provide for the specialized graphics needs of electronic structure codes. The combination also scales well, producing robust performance for problems involving millions of grid points.

  5. A hybrid vertex-centered finite volume/element method for viscous incompressible flows on non-staggered unstructured meshes

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Ru-Xun Liu; Hong Li

    2012-01-01

    This paper proposes a hybrid vertex-centered finite volume/finite element method for sol ution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.

  6. Arc Length Based Grid Distribution For Surface and Volume Grids

    Science.gov (United States)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  7. Arc length based grid distribution for surface and volume grids

    Energy Technology Data Exchange (ETDEWEB)

    Mastin, C.W. [NASA Langley Research Center, Hampton, VA (United States)

    1996-12-31

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  8. High-order/Spectral Methods on Unstructured Grids I. Time-domain Solution of Maxwell’s Equations

    Science.gov (United States)

    2001-03-01

    pp. 216-230. [12] B. Yang and J. S. Hesthaven, A Pseudospectral Method for Time-Domain Computation of Electro - magnetic Scattering by Bodies of...Orthogonal Polynomials in "Theory and Application of Special Functions", R. A. Askey ed., Academic Press, 1975, pp. 435-495. [50] M. Dubiner , Spectral

  9. On the application of locally adaptive unstructured grids to the problems of blast wave propagation and attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, E.V.; Saito, T.; Takayama, K. [Tohoku Univ., Inst. of Fluid Science, Shock Wave Research Center, Sendai (Japan)]. E-mail: timo@ceres.ifs.tohoku.ac.jp; Voinovich, P.A. [Russian Academy of Sciences, Supercomputer Center at the A.F. Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Galyukov. A.O. [Soft-Impact Ltd., St. Petersburg (Russian Federation); Tahir, R.B.; Molder, S. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada)

    2002-07-01

    The problem of blast wave propagation and attenuation have always been of considerable basic and practical interest. Due to diffraction effects, reflections and possible focusing, blast wave intensity may vary considerably even at the same distance from the explosion center. From the computational point of view, these problems deal typically with computational domains of complex geometry, often requiring the resolution of gas dynamics phenomena having characteristic scales much smaller than the scale of a computational domain. This paper presents experiences and capabilities in applying the above techniques to various practical problems involving blast wave propagation and attenuation.

  10. High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids

    Science.gov (United States)

    Huynh, H. T.; Wang, Z. J.; Vincent, P. E.

    2013-01-01

    Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as well as some pacing items.

  11. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  12. SMART GRIDS LABORATORIES INVENTORY 2015

    OpenAIRE

    PONCELA BLANCO MARTA; PRETTICO GIUSEPPE; ANDREADOU NIKOLETA; OLARIAGA-GUARDIOLA Miguel; FULLI Gianluca; COVRIG CATALIN-FELIX

    2015-01-01

    A smart electricity grid opens the door to a myriad of new applications aimed at enhancing security of supply, sustainability and market competitiveness. Gathering detailed information about smart grid laboratories activities represents a primary need. In order to obtain a better picture of the ongoing Smart Grid developments, after the successful smart grid project survey initiated in 2011, we recently launched a focused on-line survey addressed to organisations owning or running Smart Grid ...

  13. Extension of ALE methodology to unstructured conical meshes

    Directory of Open Access Journals (Sweden)

    Hoch Philippe

    2011-11-01

    Full Text Available We propose a bi-dimensional finite volume extension of a continuous ALE method on unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge, the control point possess a weight that permits to represent any conic (see for example [LIGACH] and thanks to [WAGUSEDE,WAGU], we are able to compute the exact area of our cells. We then give an extension of scheme for remapping step based on volume fluxing [MARSHA] and self-intersection flux [ALE2DHAL]. For the rezoning phase, we propose a three step process based on moving nodes, followed by control point and weight re-adjustment. Finally, for the hydrodynamic step, we present the GLACE scheme [GLACE] extension (at first-order on conic cell using the same formalism. We only propose some preliminary first-order simulations for each steps: Remap, Pure Lagrangian and finally ALE (rezoning and remapping. Nous proposons une extension volumes finis bi-dimensionnelle d’une méthode ALE continue sur des cellules non structurées dont les bords sont paramétrés par des courbes de Bézier quadratiques rationnelles. Pour chaque arête, le point de contrôle possède un poids qui permet de représenter n’importe quelle conique [LIGACH] et grâce à [WAGUSEDE,WAGU], nous pouvons calculer l’aire exacte de nos cellules. Pour la phase de remapping, on donne l’extension de deux schéma, l’un basé sur le calcul de flux de volumes [MARSHA] et l’autre par flux avec auto-intersection [ALE2DHAL]. Pour la phase de lissage de maillage, nous proposons un processus en trois étapes basées sur le déplacement des noeuds, suivi de celui des points de contrôle puis finalement du rajustement du poids. Enfin, pour la phase hydrodynamique, on présente l’extension du schéma GLACE [GLACE] (à l’ordre un sur les cellules coniques en utilisant le même formalisme. Nous montrons seulement des simulations préliminairesl’ordre 1 sur chaque tape : Remap, Lagrange pur et ALE

  14. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    Science.gov (United States)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction

  15. Estimating abundance of mountain lions from unstructured spatial sampling

    Science.gov (United States)

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    distance x sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% Cl 182–451) to 529 (95% Cl 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities.

  16. OMEGA: The operational multiscale environment model with grid adaptivity

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, D.P.

    1995-07-01

    This review talk describes the OMEGA code, used for weather simulation and the modeling of aerosol transport through the atmosphere. Omega employs a 3D mesh of wedge shaped elements (triangles when viewed from above) that adapt with time. Because wedges are laid out in layers of triangular elements, the scheme can utilize structured storage and differencing techniques along the elevation coordinate, and is thus a hybrid of structured and unstructured methods. The utility of adaptive gridding in this moded, near geographic features such as coastlines, where material properties change discontinuously, is illustrated. Temporal adaptivity was used additionally to track moving internal fronts, such as clouds of aerosol contaminants. The author also discusses limitations specific to this problem, including manipulation of huge data bases and fixed turn-around times. In practice, the latter requires a carefully tuned optimization between accuracy and computation speed.

  17. ETL Design of Unstructured Data%非结构化数据的ETL设计

    Institute of Scientific and Technical Information of China (English)

    曹金山; 张泽滨

    2011-01-01

    为了实现非结构化数据的ETL处理,分析了数据整合的发展现状和业务需求,描述了目前国际流行的公共仓库元模型(CWM)以及在ETL实现中的作用,详细分析了结构化数据和非结构化数据的不同特点.针对两种数据的差异,提出了解决非结构化数据的属性提取和数据打包的方法,为非结构化数据形成元数据奠定了基础,从而实现了非结构化数据的ETL设计,设计完全满足标准的数据整合要求.%In order to realize ETL processing of unstructured data, the current situation and demands of data integration are analyzed. The popular CWM model and its application in ETL are described. The different features between structured dato and unstructured data are analized to get the property of unstructured data. This work provides a foundation for meta-data of unstructured data, and meets the demands of unstructured data ETL and data integration.

  18. Grid and Entrepreneurship Workshop

    CERN Multimedia

    2006-01-01

    The CERN openlab is organising a special workshop about Grid opportunities for entrepreneurship. This one-day event will provide an overview of what is involved in spin-off technology, with a special reference to the context of computing and data Grids. Lectures by experienced entrepreneurs will introduce the key concepts of entrepreneurship and review, in particular, the industrial potential of EGEE (the EU co-funded Enabling Grids for E-sciencE project, led by CERN). Case studies will be given by CEOs of European start-ups already active in the Grid and computing cluster area, and regional experts will provide an overview of efforts in several European regions to stimulate entrepreneurship. This workshop is designed to encourage students and researchers involved or interested in Grid technology to consider the entrepreneurial opportunities that this technology may create in the coming years. This workshop is organized as part of the CERN openlab student programme, which is co-sponsored by CERN, HP, ...

  19. Smart Grid Architectures

    DEFF Research Database (Denmark)

    Dondossola, Giovanna; Terruggia, Roberta; Bessler, Sandford

    2014-01-01

    The scope of this paper is to address the evolution of distribution grid architectures following the widespread introduction of renewable energy sources. The increasing connection of distributed resources has a strong impact on the topology and the control functionality of the current distribution...... grids requiring the development of new Information and Communication Technology (ICT) solutions with various degrees of adaptation of the monitoring, communication and control technologies. The costs of ICT based solutions need however to be taken into account, hence it is desirable to work...... with existing communication networks. The objective of the European FP7 project SmartC2Net in this regard is to enable robust smart grid control utilizing heterogeneous third party communication infrastructures....

  20. The Computing Grids

    Energy Technology Data Exchange (ETDEWEB)

    Govoni, P. [Universita and INFN Milano-Bicocca (Italy)

    2009-12-15

    Since the beginning of the millennium, High Energy Physics research institutions like CERN and INFN pioneered several projects aimed at exploiting the synergy among computing power, storage and network resources, and creating an infrastructure of distributed computing on a worldwide scale. In the year 2000, after the Monarch project [(http://monarc.web.cern.ch/MONARC/)], DataGrid started [(http://eu-datagrid.web.cern.ch/eu-datagrid/)] aimed at providing High Energy Physics with the computing power needed for the LHC enterprise. This program evolved into the EU DataGrid project, that implemented the first actual prototype of a Grid middleware running on a testbed environment. The next step consisted in the application to the LHC experiments, with the LCG project [(http://lcg.web.cern.ch/LCG/)], in turn followed by the EGEE [(http://www.eu-egee.org/)] and EGEE II programs.

  1. Fusion Data Grid Service

    Science.gov (United States)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  2. Obstacle Avoidance for Unmanned Undersea Vehicle in Unknown Unstructured Environment

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2013-01-01

    Full Text Available To avoid obstacle in the unknown environment for unmanned undersea vehicle (UUV, an obstacle avoiding system based on improved vector field histogram (VFH is designed. Forward looking sonar is used to detect the environment, and the divisional sonar modal is applied to deal with the measure uncertainty. To adapt to the VFH, rolling occupancy grids are used for the map building, and high accuracy details of local environment are obtained. The threshold is adaptively adjusted by the statistic of obstacles to solve the problem that VFH is sensitive to threshold. To improve the environment adaptability, the hybrid-behaviors strategy is proposed, which selects the optimal avoidance command according to the motion status and environment character. The simulation shows that UUV could avoid the obstacles fast and escape from the U shape obstacles.

  3. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...... the research taking place in the biology laboratory. This should promote contribu-tions to the grid, and thereby mediate the appropriation of the grid technology. GridOrbit visualizes the activity in the grid, shows information about the different active projects, and supports a messaging functionality where...... people comment on projects. Our work explores the usage of interactive technologies as enablers for the appropriation of an otherwise invisible infrastructure....

  4. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  5. Smart Grid Architectures

    DEFF Research Database (Denmark)

    Dondossola, Giovanna; Terruggia, Roberta; Bessler, Sandford

    2014-01-01

    grids requiring the development of new Information and Communication Technology (ICT) solutions with various degrees of adaptation of the monitoring, communication and control technologies. The costs of ICT based solutions need however to be taken into account, hence it is desirable to work......The scope of this paper is to address the evolution of distribution grid architectures following the widespread introduction of renewable energy sources. The increasing connection of distributed resources has a strong impact on the topology and the control functionality of the current distribution...

  6. Viewpoints on Grid Standards

    Institute of Scientific and Technical Information of China (English)

    Andrew A. Chien; Xian-He Sun; Zhi-Wei Xu

    2005-01-01

    @@ At GCC 2003 in Shanghai in December 2003, a panel discussion was held on the future of grid computing and on the role of the Globus Toolkit in future grid standards. Panelists include Andrew Chien (UCSD, USA), Wolfgang Gentzsch (Sun),Francis Lau (HKU, China), Carl Kesselman (USC, USA), Satoshi Matsuoka (TIT, Japan), Xian-He Sun (IIT, USA), Richard Wirt (Intel), Liang-Jie Zhang (IBM Research), Song-Nian Zhou (Platform Computing), and Zhi-Wei Xu (ICT, China), with Hai Jin (HUST, China) served as the coordinator. The panel talks were stimulating and well received. Three of the panel talk notes are selected and included in this viewpoint.

  7. Instant jqGrid

    CERN Document Server

    Manricks, Gabriel

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A step-by-step, practical Starter book, Instant jqGrid embraces you while you take your first steps, and introduces you to the content in an easy-to-follow order.This book is aimed at people who have some knowledge of HTML and JavaScript. Knowledge of PHP and SQL would also prove to be beneficial. No prior knowledge of jqGrid is expected.

  8. Grids, Clouds and Virtualization

    CERN Document Server

    Cafaro, Massimo

    2011-01-01

    Research into grid computing has been driven by the need to solve large-scale, increasingly complex problems for scientific applications. Yet the applications of grid computing for business and casual users did not begin to emerge until the development of the concept of cloud computing, fueled by advances in virtualization techniques, coupled with the increased availability of ever-greater Internet bandwidth. The appeal of this new paradigm is mainly based on its simplicity, and the affordable price for seamless access to both computational and storage resources. This timely text/reference int

  9. Transmission probability method based on triangle meshes for solving the unstructured geometry neutron transport problem

    Institute of Scientific and Technical Information of China (English)

    WU Hongchun; LIU Pingping; ZHOU Yongqiang; CAO Liangzhi

    2007-01-01

    The fuel assembly or core with unstructured geometry is frequently used in the advanced reactor. To calculate the fuel assembly, the transmission probability method (TPM) is widely used. However, the rectangular or hexagonal meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though the finite element method and Monte-Carlo methodare well suited for solving the unstructured geometry problem, they are very time-consuming. Therefore, a TPM code based on the triangle meshes is developed here. This code was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of the comparison were consistent with each other. The TPM with triangle meshes can thus be applied to the two-dimensional arbitrary fuel assembly.

  10. Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility

    Science.gov (United States)

    Ito, Kei; Kunugi, Tomoaki; Ohshima, Hiroyuki

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells.

  11. Grid computing the European Data Grid Project

    CERN Document Server

    Segal, B; Gagliardi, F; Carminati, F

    2000-01-01

    The goal of this project is the development of a novel environment to support globally distributed scientific exploration involving multi- PetaByte datasets. The project will devise and develop middleware solutions and testbeds capable of scaling to handle many PetaBytes of distributed data, tens of thousands of resources (processors, disks, etc.), and thousands of simultaneous users. The scale of the problem and the distribution of the resources and user community preclude straightforward replication of the data at different sites, while the aim of providing a general purpose application environment precludes distributing the data using static policies. We will construct this environment by combining and extending newly emerging "Grid" technologies to manage large distributed datasets in addition to computational elements. A consequence of this project will be the emergence of fundamental new modes of scientific exploration, as access to fundamental scientific data is no longer constrained to the producer of...

  12. GRID super scalar: from the Grid to the Cell processor

    Energy Technology Data Exchange (ETDEWEB)

    Badia, R. M.; Bellerns, P.; Palol, M. de; Ejarque, J.; Labarta, J.; Perez, J. M.; Sirvent, R.; Tejedor, E.

    2007-07-01

    GRID superscalar is a Grid programming environment that allows to easily program applications that will be efficiently run on a computational Grid. Is able to parallelise, at runtime and at task level, a sequential application and execute it in the Grid. The used approach is able to take benefit from those applications that are composed of coarse grained tasks. These tasks can be the size of a simulation, a program, a solver... These kinds of applications are very common in bioinformatics, computational chemistry and other scientific fields. From the very initial prototype in Condor, GRID superscalar has evolved in a robust framework based in Globus and other middlewares. The effort of the GRID superscalar project goes beyond the Grid computing field, tackling now the newest field of programming multi-core chip's platforms. This paper describes the currently available versions of GRID superscalar. (Author)

  13. Spherical harmonics method for neutron transport equation based on unstructured-meshes

    Institute of Scientific and Technical Information of China (English)

    CAO Liang-Zhi; WU Hong-Chun

    2004-01-01

    Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on unstructured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.

  14. Changing from computing grid to knowledge grid in life-science grid.

    Science.gov (United States)

    Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy

    2009-09-01

    Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  15. Modelling Chinese Smart Grid

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    In this document, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using...

  16. NSTAR Smart Grid Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Rabari, Anil [NSTAR Electric, Manchester, NH (United States); Fadipe, Oloruntomi [NSTAR Electric, Manchester, NH (United States)

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  17. Utah Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2.5 kilometer Bouguer anomaly grid for the state of Utah. Number of columns is 196 and number of rows is 245. The order of the data is from the lower left to the...

  18. Kids Enjoy Grids

    CERN Multimedia

    2007-01-01

    I want to come back and work here when I'm older,' was the spontaneous reaction of one of the children invited to CERN by the Enabling Grids for E-sciencE project for a 'Grids for Kids' day at the end of January. The EGEE project is led by CERN, and the EGEE gender action team organized the day to introduce children to grid technology at an early age. The school group included both boys and girls, aged 9 to 11. All of the presenters were women. 'In general, before this visit, the children thought that scientists always wore white coats and were usually male, with wild Einstein-like hair,' said Jackie Beaver, the class's teacher at the Institut International de Lancy, a school near Geneva. 'They were surprised and pleased to see that women became scientists, and that scientists were quite 'normal'.' The half-day event included presentations about why Grids are needed, a visit of the computer centre, some online games, and plenty of time for questions. In the end, everyone agreed that it was a big success a...

  19. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  20. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  1. Ohio Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer anomaly grid for the state of Ohio. Number of columns is 187 and number of rows is 217. The order of the data is from the lower left to the...

  2. Grid attacks avian flu

    CERN Multimedia

    2006-01-01

    During April, a collaboration of Asian and European laboratories analysed 300,000 possible drug components against the avian flu virus H5N1 using the EGEE Grid infrastructure. Schematic presentation of the avian flu virus.The distribution of the EGEE sites in the world on which the avian flu scan was performed. The goal was to find potential compounds that can inhibit the activities of an enzyme on the surface of the influenza virus, the so-called neuraminidase, subtype N1. Using the Grid to identify the most promising leads for biological tests could speed up the development process for drugs against the influenza virus. Co-ordinated by CERN and funded by the European Commission, the EGEE project (Enabling Grids for E-sciencE) aims to set up a worldwide grid infrastructure for science. The challenge of the in silico drug discovery application is to identify those molecules which can dock on the active sites of the virus in order to inhibit its action. To study the impact of small scale mutations on drug r...

  3. Control of a grid connected converter during weak grid conditions

    DEFF Research Database (Denmark)

    Lorenzen, Søren Lund; Nielsen, Alex Buus; Bede, L.

    2016-01-01

    the case for offshore wind turbines. This can cause the wind farm grid networks to be weak. A weak network is an extra challenge to inject energy into, since it might exceed grid codes and grid standard values, if not compensated for. To ensure quality of the energy injected to the network, a Voltage...

  4. Implementation of Computational Grid Services in Enterprise Grid Environments

    Directory of Open Access Journals (Sweden)

    R. J.A. Richard

    2008-01-01

    Full Text Available Grid Computing refers to the development of high performance computing environment or virtual super computing environment by utilizing available computing resources in a LAN, WAN and Internet. This new emerging research field offers enormous opportunities for e-Science applications such as astrophysics, bioinformatics, aerospace modeling, cancer research etc. Grid involves coordinating and sharing of computing power, application, data storage, network resources etc., across dynamically and geographically dispersed organizations. Most Grid environments are developed using Globus toolkit which is a UNIX/Linux based middleware to integrate computational resources over the network. The emergence of Global Grid concept provides an excellent opportunity for Grid based e-Science applications to use high performance super computing environments. Thus windows based enterprise grid environments can't be neglected in the development of Global Grids. This study discusses the basics of enterprise grids and the implementation of enterprise computational grids using Alchemi Tool Kit. This review study is organized into three parts. They are (i Introduction of Grid Technologies, (ii Design Concepts of Enterprise Grids and (iii Implementation of Computational Grid Services.

  5. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids

    Science.gov (United States)

    Boschitsch, Alexander H.; Fenley, Marcia O.

    2011-01-01

    An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous

  6. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  7. Allegheny County Map Index Grid

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Map Index Sheets from Block and Lot Grid of Property Assessment and based on aerial photography, showing 1983 datum with solid line and NAD 27 with 5 second grid...

  8. Non-Orthogonal Multiple Access Schemes for 5G

    Institute of Scientific and Technical Information of China (English)

    YAN Chunlin; YUAN Zhifeng; LI Weimin; YUAN Yifei

    2016-01-01

    Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica⁃tion is featured by a new multiple access scheme from 1G to 4G. In this article we review several non⁃orthogonal multiple access schemes for 5G. Their principles, advantages and disadvantages are discussed, and followed by a comprehensive comparison of these solutions from the perspective of user overload, receiver type, receiver complexity and so on. We also discuss the applica⁃tion challenges of non⁃orthogonal multiple access schemes in 5G.

  9. Applications of algebraic grid generation

    Science.gov (United States)

    Eiseman, Peter R.; Smith, Robert E.

    1990-01-01

    Techniques and applications of algebraic grid generation are described. The techniques are univariate interpolations and transfinite assemblies of univariate interpolations. Because algebraic grid generation is computationally efficient, the use of interactive graphics in conjunction with the techniques is advocated. A flexible approach, which works extremely well in an interactive environment, called the control point form of algebraic grid generation is described. The applications discussed are three-dimensional grids constructed about airplane and submarine configurations.

  10. Towards a Semantic Grid Architecture

    OpenAIRE

    Goble, Carole

    2005-01-01

    The Semantic Grid is an extension of the current Grid in which information and services are given well defined and explicitly represented meaning, better enabling computers and people to work in cooperation. In the last few years, several projects have embraced this vision and there are already successful pioneering applications that combine the strengths of the Grid and of semantic technologies. However, the Semantic Grid currently lacks a reference architecture, or a systematic approach for...

  11. Grid3: An Application Grid Laboratory for Science

    CERN Document Server

    CERN. Geneva

    2004-01-01

    level services required by the participating experiments. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. The Grid3 infrastructure was deployed from grid level services provided by groups and applications within the collaboration. The services were organized into four distinct "grid level services" including: Grid3 Packaging, Monitoring and Information systems, User Authentication and the iGOC Grid Operatio...

  12. Grid Interaction Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  13. Smart grid: hope or hype?

    DEFF Research Database (Denmark)

    Lunde, Morten; Røpke, Inge; Heiskanen, Eva

    2016-01-01

    The smart grid is an important but ambiguous element in the future transition of the European energy system. The current paper unpacks one influential national vision of the smart grid to identify what kinds of expectations guide the work of smart grid innovators and how the boundaries of the sma...

  14. Young Children's Opportunities for Unstructured Environmental Exploration of Nature: Links to Adults' Experiences in Childhood

    Science.gov (United States)

    Laird, Shelby Gull; McFarland-Piazza, Laura; Allen, Sydnye

    2014-01-01

    Outdoor environmental education and provision of unstructured exploration of nature are often forgotten aspects of the early childhood experience. The aim of this study was to understand how adults' early experiences in nature relate to their attitudes and practices in providing such experiences for young children. This study surveyed 33 parents…

  15. Hanging out with Which Friends? Friendship-Level Predictors of Unstructured and Unsupervised Socializing in Adolescence

    Science.gov (United States)

    Siennick, Sonja E.; Osgood, D. Wayne

    2012-01-01

    Companions are central to explanations of the risky nature of unstructured and unsupervised socializing, yet we know little about whom adolescents are with when hanging out. We examine predictors of how often friendship dyads hang out via multilevel analyses of longitudinal friendship-level data on over 5,000 middle schoolers. Adolescents hang out…

  16. On the performance of a 2D unstructured computational rheology code on a GPU

    NARCIS (Netherlands)

    Pereira, S.P.; Vuik, K.; Pinho, F.T.; Nobrega, J.M.

    2013-01-01

    The present work explores the massively parallel capabilities of the most advanced architecture of graphics processing units (GPUs) code named “Fermi”, on a two-dimensional unstructured cell-centred finite volume code. We use the SIMPLE algorithm to solve the continuity and momentum equations that

  17. Comparison of Dream Interpretation, Event Interpretation, and Unstructured Sessions in Brief Therapy.

    Science.gov (United States)

    Diemer, Roberta A.; And Others

    1996-01-01

    Twenty-five distressed adult clients received 2 sessions each of dream and event interpretation using the Hill model during 12 sessions of successful therapy. No differences were found in depth, insight, and working alliance among dream interpretation, event interpretation, and unstructured sessions, suggesting that dream interpretation is as…

  18. On the performance of a 2D unstructured computational rheology code on a GPU

    NARCIS (Netherlands)

    Pereira, S.P.; Vuik, K.; Pinho, F.T.; Nobrega, J.M.

    2013-01-01

    The present work explores the massively parallel capabilities of the most advanced architecture of graphics processing units (GPUs) code named “Fermi”, on a two-dimensional unstructured cell-centred finite volume code. We use the SIMPLE algorithm to solve the continuity and momentum equations that w

  19. Using Text Analytics to Derive Customer Service Management Benefits from Unstructured Data

    DEFF Research Database (Denmark)

    Müller, Oliver; Junglas, Iris; Debortoli, Stefan

    2016-01-01

    Deriving value from structured data is now commonplace. The value of unstructured textual data, however, remains mostly untapped and often unrecognized. This article describes the text analytics journeys of three organizations in the customer service management area. Based on their experiences, we...

  20. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    Science.gov (United States)

    Denner, Fabian; van Wachem, Berend G. M.

    2015-10-01

    Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.

  1. Comparison of Dream Interpretation, Event Interpretation, and Unstructured Sessions in Brief Therapy.

    Science.gov (United States)

    Diemer, Roberta A.; And Others

    1996-01-01

    Twenty-five distressed adult clients received 2 sessions each of dream and event interpretation using the Hill model during 12 sessions of successful therapy. No differences were found in depth, insight, and working alliance among dream interpretation, event interpretation, and unstructured sessions, suggesting that dream interpretation is as…

  2. Revisiting Decision Support Systems for Cognitive Readiness : A Contribution to Unstructured and Complex Scheduling Situations

    NARCIS (Netherlands)

    Cegarra, J.; van Wezel, Wouter

    2012-01-01

    In this article, the authors focus on scheduling situations. Because of their unstructured nature and hard combinatorial complexity, scheduling situations have always been a predominant application area for decision support systems (DSSes). After setting out the generic characteristics of a DSS, the

  3. Using Text Analytics to Derive Customer Service Management Benefits from Unstructured Data

    DEFF Research Database (Denmark)

    Müller, Oliver; Junglas, Iris; Debortoli, Stefan

    2016-01-01

    Deriving value from structured data is now commonplace. The value of unstructured textual data, however, remains mostly untapped and often unrecognized. This article describes the text analytics journeys of three organizations in the customer service management area. Based on their experiences, we...... provide four lessons that can guide other organizations as they embark on their text analytics journeys....

  4. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  5. Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Craig [National Rural Electric Cooperative Association, Arlington, VA (United States); Carroll, Paul [National Rural Electric Cooperative Association, Arlington, VA (United States); Bell, Abigail [National Rural Electric Cooperative Association, Arlington, VA (United States)

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  6. Resilient Grid Operational Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Extreme weather-related disturbances, such as hurricanes, are a leading cause of grid outages historically. Although physical asset hardening is perhaps the most common way to mitigate the impacts of severe weather, operational strategies may be deployed to limit the extent of societal and economic losses associated with weather-related physical damage.1 The purpose of this study is to examine bulk power-system operational strategies that can be deployed to mitigate the impact of severe weather disruptions caused by hurricanes, thereby increasing grid resilience to maintain continuity of critical infrastructure during extreme weather. To estimate the impacts of resilient grid operational strategies, Los Alamos National Laboratory (LANL) developed a framework for hurricane probabilistic risk analysis (PRA). The probabilistic nature of this framework allows us to estimate the probability distribution of likely impacts, as opposed to the worst-case impacts. The project scope does not include strategies that are not operations related, such as transmission system hardening (e.g., undergrounding, transmission tower reinforcement and substation flood protection) and solutions in the distribution network.

  7. An Improved LU-SGS Implicit Scheme for High Reynolds Number Flow Computations on Hybrid Unstructured Mesh

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; JIANG Yuewen; YE Zhengyin

    2012-01-01

    The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit relaxation has been widely used because it has the merits of less dependency on grid topology,low numerical complexity and modest memory requirements.In original LU-SGS scheme,the implicit system matrix is construeted based on the splitting of convective flux Jacobian according to its spectral radius.Although this treatment has the merit of reducing computational complexity and helps to ensure the diagonally dominant property of the implicit system marx,it can also cause serious distortions on the implicit system matrix because too many approximations are introduced by this splitting method if the contravariant velocity is small or close to sonic speed.To overcome this shortcoming,an improved LU-SGS scheme with a hybrid construction method for the implicit system matrix is developed in this paper.The hybrid way is that:on the cell faces having small contravariant velocity or transonic contravariant velocity,the accurate derivative of the convective flux term is used to construct more accurate implicit system matrix,while the original Jacobian splitting method is adopted on the other cell faces to reduce computational complexity and ensure the diagonally dominant property of the implicit system matrix.To investigate the convergence performance of the improved LU-SGS scheme,2D and 3D turbulent flows around the NACA0012 airfoil,RAE2822 airfoil and LANN wing are simulated on hybrid unstructured meshes.The numerical results show that the improved LU-SGS scheme is significantly more efficient than the original LU-SGS scheme.

  8. Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop

    Science.gov (United States)

    Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

    2014-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

  9. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2005-07-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)

  10. A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T S; Adams, M L; Yang, B; Zika, M R

    2005-07-15

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  11. Smart Grid Risk Management

    Science.gov (United States)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  12. DLR-F6翼身组合体数值计算%Drag prediction of DLR-F6 using MFlow unstructured mesh solver

    Institute of Scientific and Technical Information of China (English)

    张耀冰; 邓有奇; 吴晓军; 孟凡菊

    2011-01-01

    Drag predictions of the DLR-F6 wing-body, with and without the FX2B fairing from the 3rd AIAA drag prediction workshop, are made using the self-made unstructured grid solver MFlow. The focus of this study are grid convergence characteristics, drag polars, and pressure distribution for the two configurations. The comparison is made between our result and the result from drag prediction workshop. The influence of flow separtion in the wing-fuselage junctions using different grids is detailed discussed. Throughout this result, the precision of our MFlow for drag prediction is similar to the CFD software, such as TAU, TAS, and USM3 D, and it can be applied to drag prediction.%使用自行研制的混合网格亚跨超声速流场解算器程序MFlow计算了AIAA第三届阻力会议提供的DLR-F6及其带整流装置FX2B情况下的阻力.重点分析了两者的网格收敛特性、阻力极曲线以及压力分布等,并与阻力会议的各个软件的计算结果进行比较.详细分析了DLR-F6翼身结合处后缘附近网格精度对分离气泡计算的影响.计算结果表明,MFlow程序的计算精度与国外软件相近,能够为阻力计算提供比较精确的结果.

  13. Unstructured medical image query using big data - An epilepsy case study.

    Science.gov (United States)

    Istephan, Sarmad; Siadat, Mohammad-Reza

    2016-02-01

    Big data technologies are critical to the medical field which requires new frameworks to leverage them. Such frameworks would benefit medical experts to test hypotheses by querying huge volumes of unstructured medical data to provide better patient care. The objective of this work is to implement and examine the feasibility of having such a framework to provide efficient querying of unstructured data in unlimited ways. The feasibility study was conducted specifically in the epilepsy field. The proposed framework evaluates a query in two phases. In phase 1, structured data is used to filter the clinical data warehouse. In phase 2, feature extraction modules are executed on the unstructured data in a distributed manner via Hadoop to complete the query. Three modules have been created, volume comparer, surface to volume conversion and average intensity. The framework allows for user-defined modules to be imported to provide unlimited ways to process the unstructured data hence potentially extending the application of this framework beyond epilepsy field. Two types of criteria were used to validate the feasibility of the proposed framework - the ability/accuracy of fulfilling an advanced medical query and the efficiency that Hadoop provides. For the first criterion, the framework executed an advanced medical query that spanned both structured and unstructured data with accurate results. For the second criterion, different architectures were explored to evaluate the performance of various Hadoop configurations and were compared to a traditional Single Server Architecture (SSA). The surface to volume conversion module performed up to 40 times faster than the SSA (using a 20 node Hadoop cluster) and the average intensity module performed up to 85 times faster than the SSA (using a 40 node Hadoop cluster). Furthermore, the 40 node Hadoop cluster executed the average intensity module on 10,000 models in 3h which was not even practical for the SSA. The current study is

  14. Smart power grids 2011

    CERN Document Server

    Keyhani, Ali

    2012-01-01

    Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. This book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines

  15. The Knowledge Grid

    CERN Document Server

    Zhuge, Hai

    2004-01-01

    The Knowledge Grid is an intelligent and sustainable interconnection environment that enables people and machines to effectively capture, publish, share and manage knowledge resources. It also provides appropriate on-demand services to support scientific research, technological innovation, cooperative teamwork, problem solving, and decision making. It incorporates epistemology and ontology to reflect human cognitive characteristics; exploits social, ecological and economic principles; and adopts techniques and standards developed during work toward the future web. This book presents its methodology, theory, models and applications systematically for the first time.

  16. myGrid: personalised bioinformatics on the information grid.

    Science.gov (United States)

    Stevens, Robert D; Robinson, Alan J; Goble, Carole A

    2003-01-01

    The (my)Grid project aims to exploit Grid technology, with an emphasis on the Information Grid, and provide middleware layers that make it appropriate for the needs of bioinformatics. (my)Grid is building high level services for data and application integration such as resource discovery, workflow enactment and distributed query processing. Additional services are provided to support the scientific method and best practice found at the bench but often neglected at the workstation, notably provenance management, change notification and personalisation. We give an overview of these services and their metadata. In particular, semantically rich metadata expressed using ontologies necessary to discover, select and compose services into dynamic workflows.

  17. Workshop on Future Generation Grids

    CERN Document Server

    Laforenza, Domenico; Reinefeld, Alexander

    2006-01-01

    The Internet and the Web continue to have a major impact on society. By allowing us to discover and access information on a global scale, they have created entirely new businesses and brought new meaning to the term surf. In addition, however, we want processing, and increasingly, we want collaborative processing within distributed teams. This need has led to the creation of the Grid - an infrastructure that enables us to share capabilities, and integrate services and resources within and across enterprises. "Future Generation Grids" is the second in the "CoreGRID" series. This edited volume brings together contributed articles by scientists and researchers in the Grid community in an attempt to draw a clearer picture of the future generation Grids. This book also identifies some of the most challenging problems on the way to achieving the invisible Grid ideas

  18. Synchrony-optimized power grids

    CERN Document Server

    Pinto, Rafael S

    2014-01-01

    We investigate synchronization in power grids, which we assume to be modeled by a network of Kuramoto oscillators with inertia. More specifically, we study the optimization of the power grid topology to favor the network synchronization. We introduce a rewiring algorithm which consists basically in a hill climb scheme where the edges of the network are swapped in order enhance the main measures of synchronization. As a byproduct of the optimization algorithm, we typically have also the anticipation of the synchronization onset for the optimized network. We perform several robustness tests for the synchrony-optimized power grids, including the impact of consumption peaks. In our analyses, we investigate synthetic random networks, which we consider as hypothetical decentralized power generation situations, and also a network based in the actual power grid of Spain, which corresponds to the current paradigm of centralized power grids. The synchrony-optimized power grids obtained by our algorithm have some intere...

  19. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  20. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  1. 3G POWER GRID SYSTEM

    OpenAIRE

    Saiyad Tausif Ali *; Gaurav Pawar; Pragati Rathi; Mandar Pathak

    2016-01-01

    3G Power grid system is dual side stream of electricity and automated construct information and distributed advanced energy delivery network. In this 3G Power grid system avoided the thermal and hydro sources of energy. By using the solar power and wind power energy will generate electricity according with the condition of nature. 3G Power grid system provides the facility of generating as well as marketing of electricity not only for the producers but also for consumers. By using megabytes o...

  2. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  3. Data Exchange in Grid Workflow

    Institute of Scientific and Technical Information of China (English)

    ZENG Hongwei; MIAO Huaikou

    2006-01-01

    In existing web services-based workflow, data exchanging across the web services is centralized, the workflow engine intermediates at each step of the application sequence.However, many grid applications, especially data intensive scientific applications, require exchanging large amount of data across the grid services.Having a central workfiow engine relay the data between the services would results in a bottleneck in these cases.This paper proposes a data exchange model for individual grid workflow and multiworkflows composition respectively.The model enables direct communication for large amounts of data between two grid services.To enable data to exchange among multiple workflows, the bridge data service is used.

  4. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes

    Science.gov (United States)

    Zou, Dongyang; Xu, Chunguang; Dong, Haibo; Liu, Jun

    2017-09-01

    In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine-Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian-Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.

  5. How to Measure Quality of Service Using Unstructured Data Analysis: A General Method Design

    Directory of Open Access Journals (Sweden)

    Lucie Sperková,

    2015-10-01

    Full Text Available The aim of the paper is to design a general method usable for measuring the quality of the service from the customer’s point of view with the help of content analytics. Large amount of unstructured data is created by customers of the service. This data can provide a valuable feedback from the service usage. Customers talk among themselves about their experiences and feelings from consumption of the service. The design of the method is based on a systematic literature review in the area of the service quality and unstructured data analysis. Analytics and quality measurement models are collected and critically evaluated regarding their potential use for measuring IT service quality. The method can be used by IT service provider to measure and monitor service quality based on World-of-Mouth in order to continual service improvement.

  6. WebDat: bridging the gap between unstructured and structured data

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, Jerzy M.; Trombly-Freytag, Kelley; Carcagno, Ruben; /Fermilab

    2008-11-01

    Accelerator R&D environments produce data characterized by different levels of organization. Whereas some systems produce repetitively predictable and standardized structured data, others may produce data of unknown or changing structure. In addition, structured data, typically sets of numeric values, are frequently logically connected with unstructured content (e.g., images, graphs, comments). Despite these different characteristics, a coherent, organized and integrated view of all information is sought out. WebDat is a system conceived as a result of efforts in this direction. It provides a uniform and searchable view of structured and unstructured data via common metadata, regardless of the repository used (DBMS or file system). It also allows for processing data and creating interactive reports. WebDat supports metadata management, administration, data and content access, application integration via Web services, and Web-based collaborative analysis.

  7. A Compressible High-Order Unstructured Spectral Difference Code for Stratified Convection in Rotating Spherical Shells

    CERN Document Server

    Wang, Junfeng; Miesch, Mark S

    2015-01-01

    We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12,000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar co...

  8. Reducing Network Traffic in Unstructured P2P Systems Using Top-k Queries

    CERN Document Server

    Akbarinia, Reza; Valduriez, Patrick; 10.1007/s10619-006-8313-5

    2009-01-01

    A major problem of unstructured P2P systems is their heavy network traffic. This is caused mainly by high numbers of query answers, many of which are irrelevant for users. One solution to this problem is to use Top-k queries whereby the user can specify a limited number (k) of the most relevant answers. In this paper, we present FD, a (Fully Distributed) framework for executing Top-k queries in unstructured P2P systems, with the objective of reducing network traffic. FD consists of a family of algorithms that are simple but effec-tive. FD is completely distributed, does not depend on the existence of certain peers, and addresses the volatility of peers during query execution. We vali-dated FD through implementation over a 64-node cluster and simulation using the BRITE topology generator and SimJava. Our performance evaluation shows that FD can achieve major performance gains in terms of communication and response time.

  9. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  10. Implicit Unstructured Aerodynamics on Emerging Multi- and Many-Core HPC Architectures

    KAUST Repository

    Al Farhan, Mohammed A.

    2017-03-13

    Shared memory parallelization of PETSc-FUN3D, an unstructured tetrahedral mesh Euler code previously characterized for distributed memory Single Program, Multiple Data (SPMD) for thousands of nodes, is hybridized with shared memory Single Instruction, Multiple Data (SIMD) for hundreds of threads per node. We explore thread-level performance optimizations on state-of-the-art multi- and many-core Intel processors, including the second generation of Xeon Phi, Knights Landing (KNL). We study the performance on the KNL with different configurations of memory and cluster modes, with code optimizations to minimize indirect addressing and enhance the cache locality. The optimizations employed are expected to be of value other unstructured applications as many-core architecture evolves.

  11. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  12. Multiple chiral topological states in liquid crystals from unstructured light beams

    Energy Technology Data Exchange (ETDEWEB)

    Loussert, Charles; Brasselet, Etienne, E-mail: e.brasselet@loma.u-bordeaux1.fr [Laboratoire Ondes et Matière d' Aquitaine, Univ. Bordeaux, CNRS, UMR 5798, F-33400 Talence (France)

    2014-02-03

    It is shown experimentally that unstructured light beams can generate a wealth of distinct metastable defect structures in thin films of chiral liquid crystals. Various kinds of individual chiral topological states are obtained as well as dimers and trimers, which correspond to the entanglement of several topological unit cells. Self-assembled nested assemblies of several metastable particle-like topological states can also be formed. Finally, we propose and experimentally demonstrate an opto-electrical approach to generate tailor-made architectures.

  13. The role of preschool teacher in child structured and unstructured play

    OpenAIRE

    Bajde, Karmen

    2016-01-01

    The thesis entitled The Role of Preschool Teacher in Child Structured and Unstructured Play focuses on play, play materials and the role of preschool teacher in the preschool period. The theoretical part focuses on the meaning of child’s play and play materials as well as the role of the preschool professionals. Various types, factors and characteristics of child’s play were presented and play materials were defined. Toy quality criteria are also briefly described. The chapter dealing with th...

  14. From the grid to the smart grid, topologically

    Science.gov (United States)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  15. Power grid complex network evolutions for the smart grid

    NARCIS (Netherlands)

    Pagani, Giuliano Andrea; Aiello, Marco

    2014-01-01

    The shift towards an energy grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the electricity distribution infrastructure. Today the grid is a hierarchical one delivering energy from large scale facilities to end-users. Tomorrow it will be a capill

  16. Power grid complex network evolutions for the smart grid

    NARCIS (Netherlands)

    Pagani, Giuliano Andrea; Aiello, Marco

    2014-01-01

    The shift towards an energy grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the electricity distribution infrastructure. Today the grid is a hierarchical one delivering energy from large scale facilities to end-users. Tomorrow it will be a capill

  17. Mining Local Specialties for Travelers by Leveraging Structured and Unstructured Data

    Directory of Open Access Journals (Sweden)

    Kai Jiang

    2012-01-01

    Full Text Available Recently, many local review websites such as Yelp are emerging, which have greatly facilitated people's daily life such as cuisine hunting. However they failed to meet travelers' demands because travelers are more concerned about a city's local specialties instead of the city's high ranked restaurants. To solve this problem, this paper presents a local specialty mining algorithm, which utilizes both the structured data from local review websites and the unstructured user-generated content (UGC from community Q&A websites, and travelogues. The proposed algorithm extracts dish names from local review data to build a document for each city, and applies tfidf weighting algorithm on these documents to rank dishes. Dish-city correlations are calculated from unstructured UGC, and combined with the tfidf ranking score to discover local specialties. Finally, duplicates in the local specialty mining results are merged. A recommendation service is built to present local specialties to travelers, along with specialties' associated restaurants, Q&A threads, and travelogues. Experiments on a large data set show that the proposed algorithm can achieve a good performance, and compared to using local review data alone, leveraging unstructured UGC can boost the mining performance a lot, especially in large cities.

  18. Towards a supervised rescoring system for unstructured data bases used to build specialized dictionaries

    Directory of Open Access Journals (Sweden)

    Antonio Rico-Sulayes

    2014-12-01

    Full Text Available This article proposes the architecture for a system that uses previously learned weights to sort query results from unstructured data bases when building specialized dictionaries. A common resource in the construction of dictionaries, unstructured data bases have been especially useful in providing information about lexical items frequencies and examples in use. However, when building specialized dictionaries, whose selection of lexical items does not rely on frequency, the use of these data bases gets restricted to a simple provider of examples. Even in this task, the information unstructured data bases provide may not be very useful when looking for specialized uses of lexical items with various meanings and very long lists of results. In the face of this problem, long lists of hits can be rescored based on a supervised learning model that relies on previously helpful results. The allocation of a vast set of high quality training data for this rescoring system is reported here. Finally, the architecture of sucha system,an unprecedented tool in specialized lexicography, is proposed.

  19. Collaborative human-machine analysis to disambiguate entities in unstructured text and structured datasets

    Science.gov (United States)

    Davenport, Jack H.

    2016-05-01

    Intelligence analysts demand rapid information fusion capabilities to develop and maintain accurate situational awareness and understanding of dynamic enemy threats in asymmetric military operations. The ability to extract relationships between people, groups, and locations from a variety of text datasets is critical to proactive decision making. The derived network of entities must be automatically created and presented to analysts to assist in decision making. DECISIVE ANALYTICS Corporation (DAC) provides capabilities to automatically extract entities, relationships between entities, semantic concepts about entities, and network models of entities from text and multi-source datasets. DAC's Natural Language Processing (NLP) Entity Analytics model entities as complex systems of attributes and interrelationships which are extracted from unstructured text via NLP algorithms. The extracted entities are automatically disambiguated via machine learning algorithms, and resolution recommendations are presented to the analyst for validation; the analyst's expertise is leveraged in this hybrid human/computer collaborative model. Military capability is enhanced by these NLP Entity Analytics because analysts can now create/update an entity profile with intelligence automatically extracted from unstructured text, thereby fusing entity knowledge from structured and unstructured data sources. Operational and sustainment costs are reduced since analysts do not have to manually tag and resolve entities.

  20. Unstructured hydrophilic sequences in prokaryotic proteomes correlate with dehydration tolerance and host association.

    Science.gov (United States)

    Kriško, Anita; Smole, Zlatko; Debret, Gaelle; Nikolić, Nela; Radman, Miroslav

    2010-10-08

    Water loss or desiccation is among the most life-threatening stresses. It leads to DNA double-strand breakage, protein aggregation, cell shrinkage, and low water activity precluding all biological functions. Yet, in all kingdoms of life, rare organisms are resistant to desiccation through prevention or reversibility of such damage. Here, we explore possible hallmarks of prokaryotic desiccation tolerance in their proteomes. The content of unstructured, low complexity (LC) regions was analyzed in a total of 460 bacterial and archaeal proteomes. It appears that species endowed with proteomes abundant in unstructured hydrophilic LC regions are desiccation-tolerant or sporulating bacteria, halophilic archaea and bacteria, or host-associated species. In the desiccation- and radiation-resistant bacterium Deinococcus radiodurans, most proteins that contain large hydrophilic LC regions have unassigned function, but those with known function are mostly involved in diverse cellular recovery processes. Such LC regions are typically absent in orthologous proteins in desiccation-sensitive species. D. radiodurans encodes also special LC proteins, akin to those associated with desiccation resistance of plant seeds and some plants and animals. Therefore, we postulate that large unstructured hydrophilic LC regions and proteins provide for cellular resistance to dehydration and we discuss mechanisms of their protective activity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Coronary artery disease risk assessment from unstructured electronic health records using text mining.

    Science.gov (United States)

    Jonnagaddala, Jitendra; Liaw, Siaw-Teng; Ray, Pradeep; Kumar, Manish; Chang, Nai-Wen; Dai, Hong-Jie

    2015-12-01

    Coronary artery disease (CAD) often leads to myocardial infarction, which may be fatal. Risk factors can be used to predict CAD, which may subsequently lead to prevention or early intervention. Patient data such as co-morbidities, medication history, social history and family history are required to determine the risk factors for a disease. However, risk factor data are usually embedded in unstructured clinical narratives if the data is not collected specifically for risk assessment purposes. Clinical text mining can be used to extract data related to risk factors from unstructured clinical notes. This study presents methods to extract Framingham risk factors from unstructured electronic health records using clinical text mining and to calculate 10-year coronary artery disease risk scores in a cohort of diabetic patients. We developed a rule-based system to extract risk factors: age, gender, total cholesterol, HDL-C, blood pressure, diabetes history and smoking history. The results showed that the output from the text mining system was reliable, but there was a significant amount of missing data to calculate the Framingham risk score. A systematic approach for understanding missing data was followed by implementation of imputation strategies. An analysis of the 10-year Framingham risk scores for coronary artery disease in this cohort has shown that the majority of the diabetic patients are at moderate risk of CAD.

  2. The Grid2003 Production Grid Principles and Practice

    CERN Document Server

    Foster, I; Gose, S; Maltsev, N; May, E; Rodríguez, A; Sulakhe, D; Vaniachine, A; Shank, J; Youssef, S; Adams, D; Baker, R; Deng, W; Smith, J; Yu, D; Legrand, I; Singh, S; Steenberg, C; Xia, Y; Afaq, A; Berman, E; Annis, J; Bauerdick, L A T; Ernst, M; Fisk, I; Giacchetti, L; Graham, G; Heavey, A; Kaiser, J; Kuropatkin, N; Pordes, R; Sekhri, V; Weigand, J; Wu, Y; Baker, K; Sorrillo, L; Huth, J; Allen, M; Grundhoefer, L; Hicks, J; Luehring, F C; Peck, S; Quick, R; Simms, S; Fekete, G; Van den Berg, J; Cho, K; Kwon, K; Son, D; Park, H; Canon, S; Jackson, K; Konerding, D E; Lee, J; Olson, D; Sakrejda, I; Tierney, B; Green, M; Miller, R; Letts, J; Martin, T; Bury, D; Dumitrescu, C; Engh, D; Gardner, R; Mambelli, M; Smirnov, Y; Voeckler, J; Wilde, M; Zhao, Y; Zhao, X; Avery, P; Cavanaugh, R J; Kim, B; Prescott, C; Rodríguez, J; Zahn, A; McKee, S; Jordan, C; Prewett, J; Thomas, T; Severini, H; Clifford, B; Deelman, E; Flon, L; Kesselman, C; Mehta, G; Olomu, N; Vahi, K; De, K; McGuigan, P; Sosebee, M; Bradley, D; Couvares, P; De Smet, A; Kireyev, C; Paulson, E; Roy, A; Koranda, S; Moe, B; Brown, B; Sheldon, P

    2004-01-01

    The Grid2003 Project has deployed a multi-virtual organization, application-driven grid laboratory ("GridS") that has sustained for several months the production-level services required by physics experiments of the Large Hadron Collider at CERN (ATLAS and CMS), the Sloan Digital Sky Survey project, the gravitational wave search experiment LIGO, the BTeV experiment at Fermilab, as well as applications in molecular structure analysis and genome analysis, and computer science research projects in such areas as job and data scheduling. The deployed infrastructure has been operating since November 2003 with 27 sites, a peak of 2800 processors, work loads from 10 different applications exceeding 1300 simultaneous jobs, and data transfers among sites of greater than 2 TB/day. We describe the principles that have guided the development of this unique infrastructure and the practical experiences that have resulted from its creation and use. We discuss application requirements for grid services deployment and configur...

  3. Knowledge Base Grid: A Generic Grid Architecture for Semantic Web

    Institute of Scientific and Technical Information of China (English)

    WU ZhaoHui(吴朝晖); CHEN HuaJun(陈华钧); XU JieFeng(徐杰锋)

    2003-01-01

    The emergence of semantic web will result in an enormous amount of knowledge base resources on the web. In this paper, a generic Knowledge Base Grid Architecture (KB-Grid)for building large-scale knowledge systems on the semantic web is presented. KB-Grid suggests a paradigm that emphasizes how to organize, discover, utilize, and manage web knowledge base resources. Four principal components are under development: a semantic browser for retrieving and browsing semantically enriched information, a knowledge server acting as the web container for knowledge, an ontology server for managing web ontologies, and a knowledge base directory server acting as the registry and catalog of KBs. Also a referential model of knowledge service and the mechanisms required for semantic communication within KB-Grid are defined. To verify the design rationale underlying the KB-Grid, an implementation of Traditional Chinese Medicine(TCM) is described.

  4. A bioinformatics knowledge discovery in text application for grid computing.

    Science.gov (United States)

    Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco

    2009-06-16

    A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of

  5. The Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab; Kramer, Bill; Olson, Doug; / /LBL, Berkeley; Livny, Miron; Roy, Alain; /Wisconsin U., Madison; Avery, Paul; /Florida U.; Blackburn, Kent; /Caltech; Wenaus, Torre; /Brookhaven; Wurthwein, Frank; /UC, San Diego; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  6. The Open Science Grid

    CERN Document Server

    Pordes, Ruth; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wuerthwein, Frank K.; Gardner, Rob; Wilde, Mike; Blatecky, Alan; McGee, John; Quick, Rob

    2007-01-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support it's use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  7. The open science grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth [Fermi National Accelerator Laboratory (United States); Petravick, Don [Fermi National Accelerator Laboratory (United States); Kramer, Bill [Lawrence Berkeley National Laboratory (United States); Olson, Doug [Lawrence Berkeley National Laboratory (United States); Livny, Miron [University of Wisconsin, Madison (United States); Roy, Alain [University of Wisconsin, Madison (United States); Avery, Paul [University of Florida (United States); Blackburn, Kent [California Institute of Technology (United States); Wenaus, Torre [Brookhaven National Laboratory (United States); Wuerthwein, Frank [University of California, San Diego (United States); Foster, Ian [University of Chicago (United States); Gardner, Rob [University of Chicago (United States); Wilde, Mike [University of Chicago (United States); Blatecky, Alan [Renaissance Computing Institute (United States); McGee, John [Renaissance Computing Institute (United States); Quick, Rob [Indiana University (United States)

    2007-07-15

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support it's use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared and common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  8. Monitoring of Grid scientific workflows

    NARCIS (Netherlands)

    Balis, B.; Bubak, M.; Łabno, B.

    2008-01-01

    Scientific workflows are a means of conducting in silico experiments in modern computing infrastructures for e-Science, often built on top of Grids. Monitoring of Grid scientific workflows is essential not only for performance analysis but also to collect provenance data and gather feedback useful

  9. Monitoring of Grid scientific workflows

    NARCIS (Netherlands)

    Balis, B.; Bubak, M.; Łabno, B.

    2008-01-01

    Scientific workflows are a means of conducting in silico experiments in modern computing infrastructures for e-Science, often built on top of Grids. Monitoring of Grid scientific workflows is essential not only for performance analysis but also to collect provenance data and gather feedback useful i

  10. Smart Grid Communication Middleware Comparison

    DEFF Research Database (Denmark)

    Petersen, Bo Søborg; Bindner, Henrik W.; Poulsen, Bjarne

    2017-01-01

    are possible by their performance, which is limited by the middleware characteristics, primarily interchangeable serialization and the Publish-Subscribe messaging pattern. The earlier paper “Smart Grid Serialization Comparison” (Petersen et al. 2017) aids in the choice of serialization, which has a big impact...... the strongest candidates for Smart Grid distributed control, but WAMP should also be considered in the future....

  11. On Robustness of Power Grids

    NARCIS (Netherlands)

    Koç, Y.

    2015-01-01

    Current and future trends in environmental, economical, and human-caused factors (such as power demand growth, over-ageing of assets in power grids, and extreme weather conditions) challenge power grid robustness in the near future, necessitating research to better analyse and understand the notion

  12. GRID INFORMATION SECURITY FUNCTIONAL REQUIREMENT

    Directory of Open Access Journals (Sweden)

    Amy Poh Ai Ling

    2011-07-01

    Full Text Available This paper describes the background of smart information infrastructure and the needs for smart grid information security. It introduces the conceptual analysis to the methodology with the application ofhermeneutic circle and information security functional requirement identification. Information security for the grid market cover matters includes automation and communications industry that affects the operation of electric power systems and the functioning of the utilities that manage them and its awareness of this information infrastructure has become critical to the reliability of the power system. Community benefits from of cost savings, flexibility and deployment along with the establishment of wireless communications. However, concern revolves around the security protections for easily accessible devices such as the smart meter and the related communications hardware. On the other hand, the changing points between traditional versus smart grid networking trend and the information security importance on the communication field reflects the criticality of grid information security functional requirement identification. The goal of this paper is to identify the functional requirement and relate its significance addresses to the consumer requirement of an information security of a smart grid. Vulnerabilities may bring forth possibility for an attacker to penetrate a network, make headway admission to control software, alter it to load conditions that destabilize the grid in unpredictable ways. Focusing on the grid information security functional requirement is stepping ahead in developing consumer trust and satisfaction towardsmart grid completeness.

  13. The DataGrid Project

    CERN Document Server

    Ruggieri, F

    2001-01-01

    An overview of the objectives and status of the DataGrid Project is presented, together with a brief introduction to the Grid metaphor and some references to the Grid activities and initiatives related to DataGrid. High energy physics experiments have always requested state of the art computing facilities to efficiently perform several computing activities related with the handling of large amounts of data and fairly large computing resources. Some of the ideas born inside the community to enhance the user friendliness of all the steps in the computing chain have been, sometimes, successfully applied also in other contexts: one bright example is the World Wide Web. The LHC computing challenge has triggered inside the high energy physics community, the start of the DataGrid Project. The objective of the project is to enable next generation scientific exploration requiring intensive computation and analysis of shared large-scale databases. (12 refs).

  14. CMS Requirements for the Grid

    Institute of Scientific and Technical Information of China (English)

    K.Holtman; J.Amundson; 等

    2001-01-01

    CMS physicists need to seamlessly access their experimental data and results,independent of location and storage medium,in order to focus on the exploration for the new physics signals arther than the complexities of worldwide data management .In order to achieve this goal,CMS has adopted a tiered worldwide computing model which will incorporate emerging Grid technology.CMS has started to use Grid tools for data processing,replication and migration,Important Grid components are expected to be delivered by the Data Grid projects.like projects,CMS has created a set of long-term requirements to the Grid projects.These requirements are presented and discussed.

  15. Towards trusted volunteer grid environments

    CERN Document Server

    Khemakhem, Maher; University, Sousse; Tunisia,; University, Manouba; Tunisia),; 10.5121/ijcnc.2010.2207

    2010-01-01

    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable enviro...

  16. On Multigrid for Overlapping Grids

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, W

    2004-01-13

    The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.

  17. FIRAS wire grid characterization techniques

    Science.gov (United States)

    Barney, Richard D.; Magner, Thomas J.

    1989-01-01

    Characterization techniques used to verify the quality and spectral performance of the large freestanding wire grid polarizing beamsplitters and input/output polarizers used in the Far Infrared Absolute Spectrophotometer (FIRAS) are presented. The clear aperture of these grids is lined with 20.8 micron diameter gold coated tungsten wire, spaced 33 microns apart. The grid characteristics measured throughout fabrication and space flight qualification are the center to center wire spacing and wire plane flatness. Ideally, the wire grids should produce coherent wavefronts with equal reflectance and transmittance properties. When the spacing is inconsistent, these wavefront intensities are unequal, thus decreasing the efficiency of the grids and reducing the output signal of the FIRAS. The magnitude of the output interferogram is also reduced by incoherence in the interfering wave fronts caused by uneven flatness.

  18. From the Grid to the Smart Grid, Topologically

    CERN Document Server

    Pagani, Giuliano Andrea

    2013-01-01

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

  19. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...... of the instantaneous symmetrical components of the grid voltage under unbalanced and distorted grid conditions. This paper analyzes the performance of the proposed synchronization method including different design issues. Moreover, the behavior of the method for synchronizing with highly unbalanced grid is proven...

  20. Sensing and Measurement Architecture for Grid Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); De Martini, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-02-01

    This paper addresses architecture for grid sensor networks, with primary emphasis on distribution grids. It describes a forward-looking view of sensor network architecture for advanced distribution grids, and discusses key regulatory, financial, and planning issues.

  1. SMART BUILDINGS: Meet The Smart Grid

    National Research Council Canada - National Science Library

    Paul Ehrlich; Ira Goldschmidt

    2009-01-01

    The Smart Grid concept is to develop a more intelligent and integrated electrical transmission infrastructure including use of smart two-way meters, connections of regional grids, and new grid management tools...

  2. Smart grid security innovative solutions for a modernized grid

    CERN Document Server

    Skopik, Florian

    2015-01-01

    The Smart Grid security ecosystem is complex and multi-disciplinary, and relatively under-researched compared to the traditional information and network security disciplines. While the Smart Grid has provided increased efficiencies in monitoring power usage, directing power supplies to serve peak power needs and improving efficiency of power delivery, the Smart Grid has also opened the way for information security breaches and other types of security breaches. Potential threats range from meter manipulation to directed, high-impact attacks on critical infrastructure that could bring down regi

  3. Statistical Computations with AstroGrid and the Grid

    CERN Document Server

    Nichol, R C; Miller, C J; Genovese, C; Wasserman, L; Bryan, B; Gray, A; Schneider, J; Moore, A W; Nichol, Robert C; Smith, Garry; Miller, Christopher J; Genovese, Chris; Wasserman, Larry; Bryan, Brent; Gray, Alexander; Schneider, Jeff; Moore, Andrew W

    2005-01-01

    We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of n-point correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.

  4. GRID superscalar: a programming model for the Grid

    OpenAIRE

    2009-01-01

    Durant els darrers anys el Grid ha sorgit com una nova plataforma per la computació distribuïda. La tecnologia Gris permet unir diferents recursos de diferents dominis administratius i formar un superordinador virtual amb tots ells. Molts grups de recerca han dedicat els seus esforços a desenvolupar un conjunt de serveis bàsics per oferir un middleware de Grid: una capa que permet l'ús del Grid. De tota manera, utilitzar aquests serveis no és una tasca fácil per molts usuaris finals, cosa que...

  5. National Smart Water Grid

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water

  6. Zonal Detached Eddy Simulation of a simplified nose landing-gear for flow and noise predictions using an unstructured Navier-Stokes solver

    Science.gov (United States)

    de la Puente Cerezo, Fernando; Sanders, Laurent; Vuillot, François; Druault, Philippe; Manoha, Eric

    2017-09-01

    A Zonal Detached Eddy Simulation has been performed on the simplified LAGOON nose landing gear geometry using a Navier-Stokes solver on a fully unstructured grid. The attached boundary layers have been finely resolved using Y+ values in the order of unity, while the high curvature zones have been intensively meshed in order to accurately solving adverse pressure gradients present in these regions. The mean and fluctuating flow fields have been compared with the experimental results, proving that both the mean flow field and the spectral content recorded at the wall are accurately reproduced. Following these comparisons, a detailed analysis of the topology of the flow has been carried out through the analysis of the skin friction coefficient and friction lines, coupled with three dimensional visualizations of the landing gear wake. The far-field acoustics, computed through the Ffowcs-Williams and Hawkings equation from the computed pressure on the landing gear skin, has been compared with the experimental results, obtaining a very good agreement for the different microphones and directions. Finally, the CFD methodology presented in this study proves to be a moderate cost approach, enabling an accurate flow and noise prediction for bluff bodies such as landing gears.

  7. Energy Conservation In Computational Grids

    Directory of Open Access Journals (Sweden)

    Monika Yadav

    2012-07-01

    Full Text Available With the increasing development of high-speed wide-area networks and powerful though low cost computational resources, grid computing has emerged as an attractive computing paradigm.With recent advances in computing, the scope of grid computing has been expanded to include mobile and pervasive devices. Grids have become one of the highest consumers of energy. High performance computing is achieved at the cost of energy consumption. Increasing the performance of computer systems requires increasing number of resources which leads to higher power consumption and it creates negative impact on environment. Idle sites in grid are direct sources of energy waste. Saving energy causes twodirect advantages: financial and environmental cost reduction and sustainability. With the Grid becoming a viable high-performance alternative to the traditional supercomputing environment, various aspects of Grid resource utilization which can help in energy conservation are gaining significance. In this paper we explore the possibility of reduction in energy consumption of a grid of heterogeneous computers by making use of different power states of cpu.

  8. An electrostatic analog for generating cascade grids

    Science.gov (United States)

    Adamczyk, J. J.

    1980-01-01

    Accurate and efficient numerical simulation of flows through turbomachinery blade rows depends on the topology of the computational grids. These grids must reflect the periodic nature of turbomachinery blade row geometries and conform to the blade shapes. Three types of grids can be generated that meet these minimal requirements: through-flow grids, O-type grids, and C-type grids. A procedure which can be used to generate all three types of grids is presented. The resulting grids are orthogonal and can be stretched to capture the essential physics of the flow. A discussion is also presented detailing the extension of the generation procedure to three dimensional geometries.

  9. First scientific results from the Estonian Grid

    CERN Document Server

    Hektor, A; Kadastik, M; Skaburskas, K; Teder, H; Hektor, Andi; Anton, Lauri; Kadastik, Mario; Skaburskas, Konstantin; Teder, Hardi

    2004-01-01

    We present first scientific results, technical details and recent developments in the Estonian Grid. Ideas and concepts behind Grid technology are described. We mention some most crucial parts of a Grid system, as well as some unique possibilities in the Estonian situation. Scientific applications currently running on Estonian Grid are listed. We discuss the first scientific computations and results the Estonian Grid. The computations show that the middleware is well chosen and the Estonian Grid has remarkable stability and scalability. The authors present the collected results and experiences of the development of the Estonian Grid and add some ideas of the near future of the Estonian Grid.

  10. National transmission grid study

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Spencer [USDOE Office of the Secretary of Energy, Washington, DC (United States)

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  11. The Grid Resource Broker, A Ubiquitous Grid Computing Framework

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2002-01-01

    Full Text Available Portals to computational/data grids provide the scientific community with a friendly environment in order to solve large-scale computational problems. The Grid Resource Broker (GRB is a grid portal that allows trusted users to create and handle computational/data grids on the fly exploiting a simple and friendly web-based GUI. GRB provides location-transparent secure access to Globus services, automatic discovery of resources matching the user's criteria, selection and scheduling on behalf of the user. Moreover, users are not required to learn Globus and they do not need to write specialized code or to rewrite their existing legacy codes. We describe GRB architecture, its components and current GRB features addressing the main differences between our approach and related work in the area.

  12. Profitability of smart grid solutions applied in power grid

    Directory of Open Access Journals (Sweden)

    Katić Nenad A.

    2016-01-01

    Full Text Available The idea of a Smart Grid solution has been developing for years, as complete solution for a power utility, consisting of different advanced technologies aimed at improving of the efficiency of operation. The trend of implementing various smart systems continues, e.g. Energy Management Systems, Grid Automation Systems, Advanced Metering Infrastructure, Smart power equipment, Distributed Energy Resources, Demand Response systems, etc. Futhermore, emerging technologies, such as energy storages, electrical vehicles or distributed generators, become integrated in distribution networks and systems. Nowadays, the idea of a Smart Grid solution becomes more realistic by full integration of all advanced operation technologies (OT within IT environment, providing the complete digitalization of an Utility (IT/OT integration. The overview of smart grid solutions, estimation of investments, operation costs and possible benefits are presented in this article, with discusison about profitability of such systems.

  13. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kropski, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pratt, Rob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  14. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high level MPC controller, a second level of so-called aggregators, which reduces the computational and communication-related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...

  15. SDPG: Spatial Data Processing Grid

    Institute of Scientific and Technical Information of China (English)

    XIAO Nong(肖侬); FUV Wei(付伟)

    2003-01-01

    Spatial applications will gain high complexity as the volume of spatial data increases rapidly. A suitable data processing and computing infrastructure for spatial applications needs to be established. Over the past decade, grid has become a powerful computing environment for data intensive and computing intensive applications. Integrating grid computing with spatial data processing technology, the authors designed a spatial data processing grid (called SDPG) to address the related problems. Requirements of spatial applications are examined and the architecture of SDPG is described in this paper. Key technologies for implementing SDPG are discussed with emphasis.

  16. Secondary emission monitor (SEM) grids.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A great variety of Secondary Emission Monitors (SEM) are used all over the PS Complex. At other accelerators they are also called wire-grids, harps, etc. They are used to measure beam density profiles (from which beam size and emittance can be derived) in single-pass locations (not on circulating beams). Top left: two individual wire-planes. Top right: a combination of a horizontal and a vertical wire plane. Bottom left: a ribbon grid in its frame, with connecting wires. Bottom right: a SEM-grid with its insertion/retraction mechanism.

  17. Mapping of grid faults and grid codes[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F. [Aalborg Univ., Inst. of Energy Technology (Denmark); Hansen, Anca D.; Soerensen, Poul; Cutululis, N.A. [Risoe National Lab. - DTU, Wind Enegy Dept., Roskilde (Denmark)

    2007-06-15

    The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. The goal of this report is to present a mapping of different grid fault types and their frequency in different countries. The report provides also a detailed overview of the Low Voltage Ride-Through Capabilities for wind turbines in different relevant countries. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. (au)

  18. IA3, an aspartic proteinase inhibitor from Saccharomyces cerevisiae, is intrinsically unstructured in solution.

    Science.gov (United States)

    Green, Terry B; Ganesh, Omjoy; Perry, Kyle; Smith, Leif; Phylip, Lowri H; Logan, Timothy M; Hagen, Stephen J; Dunn, Ben M; Edison, Arthur S

    2004-04-13

    IA(3) is a highly specific and potent 68-amino acid endogenous inhibitor of yeast proteinase A (YprA), and X-ray crystallographic studies have shown that IA(3) binds to YprA as an alpha-helix [Li, M., Phylip, L. H., Lees, W. E., Winther, J. R., Dunn, B. M., Wlodawer, A., Kay, J., and Gustchina, A. (2000) Nat. Struct. Biol. 7, 113-117]. Surprisingly, only residues 2-32 of IA(3) are seen in the X-ray structure, and the remaining residues are believed to be disordered in the complex. We have used circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy to show that IA(3) is unstructured in the absence of YprA. Specifically, IA(3) produced a CD spectrum characteristic of an unstructured peptide, and the (15)N HSQC NMR spectra of IA(3) were characteristic of a polypeptide lacking intrinsic structure. We characterized the unstructured state of IA(3) by using singular-value decomposition (SVD) to analyze the CD data in the presence of TFE, by fully assigning the unbound IA(3) protein by NMR and comparing the chemical shifts to published random-coil values, and by measuring (1)H-(15)N heteronuclear NOEs, which are all consistent with an unfolded protein. The IA(3) samples used for NMR analyses were active and inhibited YprA with an inhibition constant (K(i)) of 1.7 nM, and the addition of YprA led to a large spectral transition in IA(3). Calorimetric (ITC) data also show that the overall enthalpy of the interaction between IA(3) and YprA is exothermic.

  19. Local structural preferences of calpastatin, the intrinsically unstructured protein inhibitor of calpain.

    Science.gov (United States)

    Kiss, Robert; Kovács, Dénes; Tompa, Péter; Perczel, András

    2008-07-01

    Calpain, the calcium-activated intracellular cysteine protease, is under the tight control of its intrinsically unstructured inhibitor, calpastatin. Understanding how potent inhibition by calpastatin can be reconciled with its unstructured nature provides deeper insight into calpain function and a more general understanding of how proteins devoid of a well-defined structure carry out their function. To this end, we performed a full NMR assignment of hCSD1 to characterize it in its solution state. Secondary chemical shift values and NMR relaxation data, R 1, R 2, and hetero-NOE, as well as spectral density function analysis have shown that conserved regions of calpastatin, subdomains A and C, which are responsible for calcium-dependent anchoring of the inhibitor to the enzyme, preferentially sample partially helical backbone conformations of a reduced flexibility. Moreover, the linker regions between subdomains are more flexible with no structural preference. The primary determinant of calpain inhibition, subdomain B, also has a non-fully random conformational preference, resembling a beta-turn structure also ascertained by prior studies of a 27-residue peptide encompassing the inhibitory region. This local structural preference is also confirmed by a deviation in chemical shift values between full-length calpastatin domain 1 and a truncated construct cut in the middle of subdomain B. At the C-terminal end of the molecule, a nascent helical region was found, which in contrast to the overall structural properties of the molecule may indicate a previously unknown functional region. Overall, these observations provide further evidence that supports previous suggestions that intrinsically unstructured proteins use preformed structural elements in efficient partner recognition.

  20. Resource Search in Unstructured Peer-to-Peer System Based on Multiple-Tree Overlay Structure

    Institute of Scientific and Technical Information of China (English)

    YU Jianqiao; LIAO Jianwei

    2007-01-01

    We propose a multiple-tree overlay structure for resource discovery in unstructured P2P systems. Peers that have similar interests or hold similar type of resources will be grouped into a tree-like cluster. We exploit the heterogeneity of peers in each cluster by connecting peers with more capacities closer to the root of the tree. The capacity of a peer can be defined in different ways (e.g. higher network bandwidth, larger disk space, more data items of a certain type etc.) according to different needs of users or applications.