WorldWideScience

Sample records for non-opaque maize populations

  1. MAIZE POPULATIONS

    African Journals Online (AJOL)

    2003-06-17

    Jun 17, 2003 ... ZM607 at two drought stressed and one well-watered environment for yield and secondary traits. ... et à la grande interaction génotype-environnement entre le Mexique ou dépistage a ...... by CIMMYT and the Maize and Wheat .... Thesis. May, L.H. and Milthorpe, F.L. 1962. Drought resistance of crop plants.

  2. Combining ability of twelve maize populations

    Directory of Open Access Journals (Sweden)

    Vacaro Elton

    2002-01-01

    Full Text Available Genetic progress depends on germplasm quality and breeding methods. Twelve maize populations and their crosses were evaluated to estimate combining ability and potential to be included as source populations in breeding programs. Plant height, point of insertion of the first ear, number of ears per plant, number of grains per ear, root and stalk lodging and grain yield were studied in two locations in Brazil, during the 1997/98 season. Genotype sum of squares was divided into general (GCA and specific (SCA combining ability. Results indicated the existence of genetic divergence for all traits analyzed, where additive effects were predominant. The high heterosis levels observed, mainly in Xanxerê, suggested the environmental influence on the manifestation of this genetic phenomenon. Populations revealed potential to be used in breeding programs; however, those more intensively submitted to selection could provide larger genetic progress, showing the importance of population improvement for the increment of the heterosis in maize.

  3. Rapid cycling genomic selection in a multiparental tropical maize population

    Science.gov (United States)

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...

  4. Alkaline Cooking Quality of Polyembryonic and Non-Polyembryonic Maize Populations

    OpenAIRE

    Marisol Cruz Requena; Raúl Rodríguez Herrera; Cristóbal N. Aguilar González; José Espinoza Velázquez; Marcela Gaytán Martínez; Juan de D. Figueroa Cárdenas

    2011-01-01

    Polyembryony is the formation of several embryos in a seed and is present in many plants, included maize. In the present study the chemical, physical and rheological properties of nixtamalized maize flour, masa and tortilla of maize kernel with high polyembryony levels and brachytic population were evaluated and compared to three control populations. The nixtamalized maize flour and tortillas of brachytic population were similar to the control population in most of the tests. The retrogradati...

  5. Alkaline Cooking Quality of Polyembryonic and Non-Polyembryonic Maize Populations

    Directory of Open Access Journals (Sweden)

    Marisol Cruz Requena

    2011-08-01

    Full Text Available Polyembryony is the formation of several embryos in a seed and is present in many plants, included maize. In the present study the chemical, physical and rheological properties of nixtamalized maize flour, masa and tortilla of maize kernel with high polyembryony levels and brachytic population were evaluated and compared to three control populations. The nixtamalized maize flour and tortillas of brachytic population were similar to the control population in most of the tests. The retrogradation in nixtamalized maize flour of brachytic population was lower than the control nixtamalized maize flour showed 191.77 RVU; the protein content of nixtamalized maize flour of brachytic population was greater and content of ash in tortilla was lower than the controls. The flour made from maize brachytic population is an option for the flour and tortilla industry.

  6. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    pc

    2016-11-02

    Nov 2, 2016 ... diversity and genetic structure of 35 maize accessions using 10 microsatellite markers. These accessions ... In addition, they provide new sources of resistance to ..... http://taylor0.biology.ucla.edu/structureHarvester/.The .... environment and in other areas. ..... Molecular population genetics and evolution. In:.

  7. Isoenzymatic variability in tropical maize populations under reciprocal recurrent selection

    Directory of Open Access Journals (Sweden)

    Pinto Luciana Rossini

    2003-01-01

    Full Text Available Maize (Zea mays L. is one of the crops in which the genetic variability has been extensively studied at isoenzymatic loci. The genetic variability of the maize populations BR-105 and BR-106, and the synthetics IG-3 and IG-4, obtained after one cycle of a high-intensity reciprocal recurrent selection (RRS, was investigated at seven isoenzymatic loci. A total of twenty alleles were identified, and most of the private alleles were found in the BR-106 population. One cycle of reciprocal recurrent selection (RRS caused reductions of 12% in the number of alleles in both populations. Changes in allele frequencies were also observed between populations and synthetics, mainly for the Est 2 locus. Populations presented similar values for the number of alleles per locus, percentage of polymorphic loci, and observed and expected heterozygosities. A decrease of the genetic variation values was observed for the synthetics as a consequence of genetic drift effects and reduction of the effective population sizes. The distribution of the genetic diversity within and between populations revealed that most of the diversity was maintained within them, i.e. BR-105 x BR-106 (G ST = 3.5% and IG-3 x IG-4 (G ST = 4.0%. The genetic distances between populations and synthetics increased approximately 21%. An increase in the genetic divergence between the populations occurred without limiting new selection procedures.

  8. Nitrogen use efficiency in forage yield of tropical maize populations

    Directory of Open Access Journals (Sweden)

    Leandro Lopes Cancellier

    2014-06-01

    Full Text Available The development of adapted cultivars to nitrogen stress conditions is shown as an ecologically sustainable option to ensure higher yields in low input agricultural systems. This study aimed to evaluate the NUE in tropical maize (Zea mays L. populations to forage production in the south of the State of Tocantins. Two experiments were done corresponding to low and high N availability sown on November 21, 2009. Twenty four maize populations and a commercial cultivar BR 106 were used in the experiments. The experimental design was a randomized block with two replicates. Plant height, ear height, ear participation in plant total green mass, ear green mass; plant green mass without ear, total green mass and NUE in forage production were evaluated. Through Moll methodology differences among populations for nitrogen use efficiency were found, however these differences weren’t found on Fischer methodology. Populations 12-4, 1-3, 12-6, 12-5, 26-1, 15-2, 25-2 and 1-5 are considered efficient in nitrogen use. The populations 12-6, 12-5, 12-4, 1-3, 1-4, 1-5 and 15-2 are the best populations to use in high and low N environment, combining great production of green mass and being efficient in N use.

  9. Genetic variation of phytate and ionorganic phosphorus in maize population

    OpenAIRE

    2009-01-01

    Analysis of 60 maize populations was conducted to identify genotypes that had either low or high concentration of phytate. Genetic variability in seed phytate content was observed, with values ranging from 1,147 to 4, 13 g kg-1. Inorganic phosphorus (Pi) concentrations were between 0, 35 and 1, 29 and averaged 0, 65 g kg-1. Three groups of populations were identified as having low, intermediate and high phytate content. The low phytate concentration was measured in eight, intermediate in 25 a...

  10. Genetic variation of phytate and ionorganic phosphorus in maize population

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2009-01-01

    Full Text Available Analysis of 60 maize populations was conducted to identify genotypes that had either low or high concentration of phytate. Genetic variability in seed phytate content was observed, with values ranging from 1,147 to 4, 13 g kg-1. Inorganic phosphorus (Pi concentrations were between 0, 35 and 1, 29 and averaged 0, 65 g kg-1. Three groups of populations were identified as having low, intermediate and high phytate content. The low phytate concentration was measured in eight, intermediate in 25 and high in 27 populations. Positive correlation was found between phytate and protein. Population 216 had the lowest phytate concentration of 1, 14 gkg-1, and a Pi concentration 40% greater than Pi mean but lower than average protein content. This population will be used for further breeding genotypes with low phytate content and good agronomic traits.

  11. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.

    Science.gov (United States)

    Basler, Ryan

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops.

  12. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean

    Science.gov (United States)

    Bedoya, Claudia A.; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M.; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L.

    2017-01-01

    This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes. PMID:28403177

  13. Heritability of several traits in a early population of maize

    OpenAIRE

    1987-01-01

    [EN] The heritability in the narrow sense of days to pollen shedding, days to silking plant height, ear height, lodging, kernel moisture, number of ears per plant, number of ear rows, ear length, 1000-kernel weight and yield were estimated in an early population of maize (Zea mays L) using 40 families of half sibs grown in a blocks-in-replications desing for two years. The estimates ranged from 0.13 for kernel moisture to 1.00 for number of ear rows. The heritabiliy for yield was 0.38. [ES...

  14. Heterosis expression in crosses between maize populations: ear yield

    Directory of Open Access Journals (Sweden)

    Silva Ricardo Machado da

    2003-01-01

    Full Text Available The phenomenon of heterosis has been exploited extensively in maize (Zea mays L. breeding. The objective of this study was to evaluate the genetic potential of ten maize populations for ear yield following the diallel mating scheme. Six parental populations were obtained through phenotypic selection of open-pollinated ears in Rio Verde, GO, Brazil, (GO populations and four parental populations were synthesized in Piracicaba, SP, Brazil (GN populations: GO-D (DENTADO, GO- F (FLINT, GO-A (AMARELO, GO-B (BRANCO, GO-L (LONGO, GO-G (GROSSO, GN-01, GN-02, GN-03 and GN-04. Experiments were carried out in three environments: Anhembi (SP and Rio Verde (GO in 1998/99 (normal season crop and Piracicaba (SP in 1999 (off-season crop. All experiments were in completely randomized blocks with six replications. Analysis of variance grouped over environments showed high significance for heterosis and its components, although mid-parent heterosis and average heterosis were of low expression. The interaction treatments x environments was not significant. Total mid-parent heterosis effects ranged from de -4.3% to 17.3% with an average heterosis of 3.37%. Population with the highest yield (7.4 t ha-1 and with the highest effect of population (v i = 0.746 was GN-03, while the highest yielding cross was GO-B x GN-03 with 7,567 t ha-1. The highest specific heterosis effect (s ii' = 0.547 was observed in the cross GO-B x GN-03.

  15. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    Science.gov (United States)

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  16. Diallel crossing among maize populations for resistance to fall armyworm

    Directory of Open Access Journals (Sweden)

    Alvarez María del Pilar

    2002-01-01

    Full Text Available Among the insects infecting the maize (Zea mays L. crop in Brazil, the fall armyworm (Spodoptera frugiperda Smith, 1797, Lepdoptera: Noctuidae is considered one of the most important because it causes the highest damage to yield. Genetic resistance to the fall armyworm has be an effective control strategy. The main objective of this work was to evaluate new germplasm sources for resistance to the fall armyworm, the key pest for the maize crop in Brazil. A partial diallel design between 20 varieties of Brazilian germplasm and nine exotic and semi-exotic varieties of different origin was used. The 180 crosses and 29 parental varieties along with two commercial checks were evaluated in three locations in the State of São Paulo State (Brasil. Fall armyworm resistance (FAWR under artificial and natural infestations, grain yield (GY, and plant height (PH were analyzed. The populations CMS14C and MIRT, and hybrid São José x MIRT showed the highest resistance, with values of 1.8, 1.7 and 1.4, respectively. Populations PMI9401 and PR91B, and the hybrid CMS14C x (B97xITU had best yields, with 4893, 3858 and 5677 kg ha-1, respectively. Heterosis ranged from -28% to 47% for FAWR and from -21% to 125% for GY, with mean values of -0,43% and 31%, respectively. Genotype by environment interaction was not significant for FAWR. The effects of varieties and heterosis were significant for all traits, showing that both additive and dominance effects may be important as sources of variation. For FAWR, only specific heterosis presented significance, suggesting strong genetic divergence between specific pairs of parental populations. Brasilian populations PMI9302 and São José, and the exotic population PR91B presented high performance per se, and also in croses for FAWR and GY. Crosses PMI9401 x (Cuba110 x EsalqPB1 and São José x MIRT presented high specific heterosis effects for both characters. These populations can be useful to be introgressed in maize

  17. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population

    OpenAIRE

    Shuaidong Hu; Thomas Lübberstedt; Guangwu Zhao; Michael Lee

    2016-01-01

    Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-rela...

  18. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize

    Science.gov (United States)

    Sousa, Fernanda F.; Mendes, Simone M.; Santos-Amaya, Oscar F.; Araújo, Octávio G.; Oliveira, Eugenio E.

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  19. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Science.gov (United States)

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  20. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Directory of Open Access Journals (Sweden)

    Fernanda F Sousa

    Full Text Available Exposure to Bacillus thuringiensis (Bt toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in

  1. Comparative population genomics of maize domestication and improvement.

    Science.gov (United States)

    Hufford, Matthew B; Xu, Xun; van Heerwaarden, Joost; Pyhäjärvi, Tanja; Chia, Jer-Ming; Cartwright, Reed A; Elshire, Robert J; Glaubitz, Jeffrey C; Guill, Kate E; Kaeppler, Shawn M; Lai, Jinsheng; Morrell, Peter L; Shannon, Laura M; Song, Chi; Springer, Nathan M; Swanson-Wagner, Ruth A; Tiffin, Peter; Wang, Jun; Zhang, Gengyun; Doebley, John; McMullen, Michael D; Ware, Doreen; Buckler, Edward S; Yang, Shuang; Ross-Ibarra, Jeffrey

    2012-06-03

    Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.

  2. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays.

    Science.gov (United States)

    Dell'Acqua, Matteo; Gatti, Daniel M; Pea, Giorgio; Cattonaro, Federica; Coppens, Frederik; Magris, Gabriele; Hlaing, Aye L; Aung, Htay H; Nelissen, Hilde; Baute, Joke; Frascaroli, Elisabetta; Churchill, Gary A; Inzé, Dirk; Morgante, Michele; Pè, Mario Enrico

    2015-09-11

    Maize (Zea mays) is a globally produced crop with broad genetic and phenotypic variation. New tools that improve our understanding of the genetic basis of quantitative traits are needed to guide predictive crop breeding. We have produced the first balanced multi-parental population in maize, a tool that provides high diversity and dense recombination events to allow routine quantitative trait loci (QTL) mapping in maize. We produced 1,636 MAGIC maize recombinant inbred lines derived from eight genetically diverse founder lines. The characterization of 529 MAGIC maize lines shows that the population is a balanced, evenly differentiated mosaic of the eight founders, with mapping power and resolution strengthened by high minor allele frequencies and a fast decay of linkage disequilibrium. We show how MAGIC maize may find strong candidate genes by incorporating genome sequencing and transcriptomics data. We discuss three QTL for grain yield and three for flowering time, reporting candidate genes. Power simulations show that subsets of MAGIC maize might achieve high-power and high-definition QTL mapping. We demonstrate MAGIC maize's value in identifying the genetic bases of complex traits of agronomic relevance. The design of MAGIC maize allows the accumulation of sequencing and transcriptomics layers to guide the identification of candidate genes for a number of maize traits at different developmental stages. The characterization of the full MAGIC maize population will lead to higher power and definition in QTL mapping, and lay the basis for improved understanding of maize phenotypes, heterosis included. MAGIC maize is available to researchers.

  3. [Population of entophytic bacteria in maize roots and its dynamic analysis].

    Science.gov (United States)

    Gao, Zenggui; Zhuang, Jinghua; Chen, Jie; Liu, Xian; Tang, Shuge

    2004-08-01

    In 2001-2002, 14 maize cultivars in Liaoning Province were used for the analysis of their entophytic bacteria population. The entophytic bacteria strains with a higher frequency in maize roots were Bacillus spp., Enterobacter spp., Serratia spp., Pseudomonas spp., Xanthomonas spp., Clavibacter spp., Bacillus spp., Enterobacter spp. and Serratia spp. Comparatively, Bacillus spp. was the most prevalent entophytic bacterium, including 8 species, B. subtilis, B. megaterium, B. cereus, B. licheniformis, B. anthracis, B. mycoides, B. pumilus and B. circulans, and with an average isolation frequency of 75.5% at seedling stage and 77.6% at adult stage. There existed significant differences in the population and dynamics of endophytic bacteria among maize cultivars and growth periods, and a significant correlation was found between maize genetic background and entophytic bacteria population.

  4. QTL mapping for test weight by using F2:3 population in maize

    Indian Academy of Sciences (India)

    Jun-Qiang Ding; Jin-Liang Ma; Chun-Rong Zhang; Hua-Fang Dong; Zhang-Ying Xi; Zong-Liang Xia; Jian-Yu Wu

    2011-04-01

    Test weight is an important trait in maize breeding. Understanding the genetic mechanism of test weight is important for effective selection of maize test weight improvement. In this study, quantitative trait loci (QTL) for maize test weight were identified. In the years 2007 and 2008, a F2:3 population along with the parents Chang7-2 and Zheng58 were planted in Zhengzhou, People’s Republic of China. Significant genotypic variation for maize test weight was observed in both years. Based on the genetic map containing 180 polymorphic SSR markers with an average linkage distance of 11.0 cM, QTL for maize test weight were analysed by mixed-model composite interval mapping. Five QTL, including four QTL with only additive effects, were identified on chromosomes 1, 2, 3, 4 and 5, and together explained 25.2% of the phenotypic variation. Seven pairs of epistatic interactions were also detected, involving 11 loci distributed on chromosomes 1, 2, 3, 4, 5 and 7, respectively, which totally contributed 18.2% of the phenotypic variation. However, no significant QTL × environment (Q×E) interaction and epistasis × environment interaction effects were detected. The results showed that besides the additive QTL, epistatic interactions also formed an important genetic basis for test weight in maize.

  5. Analysis of Genetic Diversity and Population Structure of Maize Landraces from the South Maize Region of China

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-zhai; WANG Tian-yu; LI Yu; GUO Rong-hua; ZHAO Jiu-ran; CAI Yi-lin; WANG Feng-ge; CAO Mo-ju; WANG Rong-huan; SHI Yun-su; SONG Yan-chun

    2010-01-01

    Understanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs.In the present study,a total of 143 core maize landraces from the South Maize Region(SR)of China,which can represent the general profile of the genetic diversity in the landraces germplasm of SR,were genotyped by 54DNA microsatellite markers.Totally,517 alleles(ranging from 4 to 22)were detected among these iandraces,with an average of 9.57 alleles per locus.The total gene diversity of these core landraces was 0.61,suggesting a rather higher level of genetic diversity.Analysis of population structure based on Bayesian method obtained the samilar result as the phylogeny neighbor-joining(NJ)method.The results indicated that the whole set of 143 core landraces could be clustered into two distinct groups.All landraces from Guangdong,Hainan,and 15 landraces from Jiangxi were clustered into group 1,while those from the other regions of SR formed the group 2.The results from the analysis of genetic diversity showed that both of groups possessed a similar gene diversity,but group 1 possessed relatively lower mean alleles per locus(6.63)and distinet alleles(91)than group 2(7.94 and 110,respectively).The relatively high richness of total alleles and distinet alleles preserved in the core landraces from SR suggested that all these germplasm could be useful resources in germplasm enhancement and maize breeding in China.

  6. Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing.

    Science.gov (United States)

    Dalmastri, Claudia; Baldwin, Adam; Tabacchioni, Silvia; Bevivino, Annamaria; Mahenthiralingam, Eshwar; Chiarini, Luigi; Dowson, Christopher

    2007-07-01

    The Burkholderia cepacia complex (BCC) comprises at least nine closely related species of abundant environmental microorganisms. Some of these species are highly spread in the rhizosphere of several crop plants, particularly of maize; additionally, as opportunistic pathogens, strains of the BCC are capable of colonizing humans. We have developed and validated a multilocus sequence typing (MLST) scheme for the BCC. Although widely applied to understand the epidemiology of bacterial pathogens, MLST has seen limited application to the population analysis of species residing in the natural environment; we describe its novel application to BCC populations within maize rhizospheres. 115 BCC isolates were recovered from the roots of different maize cultivars from three different Italian regions over a 9-year period (1994-2002). A total of 44 sequence types (STs) were found of which 41 were novel when compared with existing MLST data which encompassed a global database of 1000 clinical and environmental strains representing nearly 400 STs. In this study of rhizosphere isolates approximately 2.5 isolates per ST was found, comparable to that found for the whole BCC population. Multilocus sequence typing also resolved inaccuracies associated with previous identification of the maize isolates based on recA gene restriction fragment length polymorphims and species-specific polymerase chain reaction. The 115 maize isolates comprised the following BCC species groups, B. ambifaria (39%), BCC6 (29%), BCC5 (10%), B. pyrrocinia (8%), B. cenocepacia IIIB (7%) and B. cepacia (6%), with BCC5 and BCC6 potentially constituting novel species groups within the complex. Closely related clonal complexes of strains were identified within B. cepacia, B. cenocepacia IIIB, BCC5 and BCC6, with one of the BCC5 clonal complexes being distributed across all three sampling sites. Overall, our analysis demonstrates that the maize rhizosphere harbours a massive diversity of novel BCC STs, so that their

  7. Planting geometry and plant population affect dryland maize grain yield and harvest index

    Science.gov (United States)

    Water for dryland grain production in the Texas panhandle is limited. Agronomic practices such as reduction in plant population or change in sowing time may help increase maize (Zea mays L.) yield potential. Tiller formation under dryland conditions leads to more vegetative growth and reduced yield....

  8. Effect of weeding management on the performance of local maize populations

    Directory of Open Access Journals (Sweden)

    J. Peña-Asin

    2013-11-01

    Full Text Available One of the most important stress factors in maize (Zea mays L. fields is weed competition, which reduces the crop yield. Weeds chiefly interfere with maize and establish considerable competition for light, water and nutrients. To avoid these harmful effects, there are different agronomic measures and factors among which, the most relevant are the interactions between crop and weed, weed management practices and type of germplasm. This study attempts to evaluate maize germplasm for tolerance to weed competition in order to achieve competitive ability and suitability for farming. Ten genotypes of maize, classified into two groups, i.e. improved populations and traditional cultivars, were grown under four types of weed management practices (mechanical harrowing control, chemical control, combination of harrowing and chemical control and untreated control as check for three years (from 2009 to 2011 in Zaragoza (Spain. We found that the effect of weed management practices was not significantly different, whereas the genotype effect was highly significant, with genotype EZS34 (mean yield of 7.7 Mg ha-1 showing the highest yield. Other traits, such as earliness, displayed a good behaviour under weed competition. On the other hand, harrowing management proved to be the most effective method of weed control although it did not show a significant response. The best results are associated with some maize genotypes that have a specific adaptation to local conditions, according to their genetic background.

  9. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population

    Science.gov (United States)

    Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi- genetic background population that contained more than 8000 l...

  10. Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations.

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2005-08-01

    A rhizobacterial population of 2430 Pseudomonas isolates, originating from one maize hybrid and from its parents, was screened for auxins production. Four hundred and twelve isolates were found to be auxin producers (aia+), and 27 of them were also part of a previously described PhlD+ sub-population. Interestingly, most part of the aia(+)-PhlD+ isolates came from the hybrid. This finding indicates that heterosis allows an increased colonisation by multi-beneficial PGPR strains. Furthermore, results on the abundance and genetic diversity of aia+ isolates gave evidence that maize root colonisation by aia+ Pseudomonas is an inherited trait regulated by heterosis. In fact, two times more aia+ isolates were obtained from the rhizosphere of the hybrid than from the rhizospheres of the parents, and an amplified rDNA restriction analysis showed that the hybrid increases the genetic diversity of aia+ populations when compared to its parents.

  11. Effect of pre-planting irrigation, maize planting pattern and nitrogen on weed seed bank population.

    Science.gov (United States)

    Hemmati, E; Vazan, S; Oveisi, M

    2011-01-01

    Pre-planting irrigation and planting patterns are important factors in weed management that effect on seed bank. Additionally, the nitrogen is the most important factor in plant growth that affects weed-crop competition and ultimately, seed rain into the soil. A field experiment was conducted to study the effect of nitrogen application rates, pre-planting irrigation and maize planting patterns on weed seed bank population. Experimental factors were nitrogen rates at 4 levels (200, 300, 400 and 500 kg per hectare) as main plot; and pre-planting irrigation at 2 levels (irrigation before planting plus weeding emerged seedlings and, irrigation after sowing), and maize planting patterns (one-row and two-row planting of maize with same density per square of row length) that were assigned in a factorial arrangement to the sub plots. Soil samples were taken at the beginning of the season (before planting of maize) and at the end of the season (after harvest) at depth of 0-5 cm in the fixed quadrates (60 cm x 60 cm). The weed seeds were extracted from the soil samples and were identified using standard methods. The majority of weed seed bank populations included 6 weed species: Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Sorghum halepense, Daturea stramonium, Xanthium strumarium. Results showed that population of weed seed bank increased significantly with increasing nitrogen rate. The increasing rate was different between one-row and two-row planting patterns. The parameters indicated that seed bank population was much higher in a one row planting pattern of maize. With two-row planting, seed bank was decreased by 34, 26, 20 and 5% at 200, 300, 400 and 500 kg N/ha, respectively. Pre-planting irrigation was also found an effective implement to reduce the weed seed bank. When pre-planting irrigation was applied, seed bank was decreased by 57, 43, 34 and 9% at 200, 300, 400 and 500 kg N/ha. Increasing nitrogen because of weed's better growth and higher seed

  12. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population.

    Science.gov (United States)

    Fu, Zhongjun; Li, Weihua; Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua

    2014-01-01

    To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs).

  13. Quantitative trait loci for mercury accumulation in maize (Zea mays L. identified using a RIL population.

    Directory of Open Access Journals (Sweden)

    Zhongjun Fu

    Full Text Available To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L., a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs.

  14. The variation of phytic and inorganic phosphorus in leaves and grain in maize populations

    Directory of Open Access Journals (Sweden)

    Dragićević Vesna

    2010-01-01

    Full Text Available The phytate function in plants is still not completely understood: it is the primary storage P form in seeds that is utilized during germination and early seedling development. Approaches to resolve problem of the bad nutritive quality of grain phytate include engineering of crops with reduced levels of seed phytic acid. The objective of this study was to investigate genetic variability and correlation of phytic (Pphy and inorganic phosphorus (Pi and soluble proteins among 28 maize populations, consisted into three groups: low-, intermediate- and high-phytic populations, with the aim to determine the potential of enhancing the P profile of maize plants and high grain yield through selection. The highest genetic variability of Pi and Pphy content in leaves was expressed in group with intermediate Pphy content in grain. Meanwhile, leaves of low-phytic populations were characterized with low Pphy, too (averagely 18% and high content of soluble proteins (averagely 15% in relation to high- and intermediate-phytic populations. Additionally, the lowest genetic variability of protein content was also noticeable in leaves of low-phytic populations. Positive correlation between Pi and protein content was observed in leaves of low- and high-phytic populations. The negative correlation between Pphy and Pi was detected in maize grain, but correlation was significant only in intermediate-phytic group. The highest, but not significant, average yield was observed in group of low-phytic populations, as well as its relative high genetic variability. That indicates that development of high yielding genotypes with lower phytate in grain is reasonable, and could be potentially useful in enhancing the sustainability and decreasing of environmental impact in agricultural production.

  15. Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation.

    Science.gov (United States)

    Rebourg, C; Gouesnard, B; Charcosset, A

    2001-05-01

    A representative sample of 130 European traditional maize populations was analysed for both their morphological and molecular variation. The morphological analysis of 19 variables revealed a significant variability. Correlation analysis allowed us to distinguish between traits affected by earliness (plant and ear height) and structural traits (plant architecture, grain structure). Two main morphological types could be distinguished. Molecular analyses were performed for 29 RFLP loci on DNA bulks. The number of alleles detected was high when compared to previous studies (9.59 alleles per locus). Genetic diversity was also high (0.55), with a strong differentiation between populations (GST value of 35.6%). A clear relationship between the genetic diversity of the populations and their agronomic performances was highlighted. Morphological and molecular distances showed a tendency towards a triangular relationship. We therefore considered a two-phase process to be the most efficient approach for the classification of genetic resources: firstly, a molecular study to define groups of genetically close populations, and secondly a morphological description of populations from each group. In our European collection, this approach allowed us to separate the populations from Northern and Southern Europe and to define six groups of genetically close populations, comparable to European races. This study opens new prospects concerning the molecular analysis of very large collections of genetic resources, hitherto limited by the necessity of individual analyses, and proposes a first molecular classification of European maize germplasm.

  16. RELATIONS AMONG SIX MICRONUTRIENTS IN GRAIN DETERMINED IN A MAIZE POPULATION

    Directory of Open Access Journals (Sweden)

    Domagoj Šimić

    2009-12-01

    Full Text Available Limited results are published about the relations among micronutrients in cereal grains, although micronutrients play important physiological roles in animals and humans. The objective of this study was to determine relations among boron (B, copper (Cu, iron (Fe, manganese (Mn, molybdenum (Mo and zinc (Zn concentrations in grain of 297 genotypes of a maize population measured by inductively coupled plasma – optical emission spectrometry (ICP-OES in two years. Correlation coefficients showed generally weak, though positive associations between individual micronutrient concentrations in both years. Principal component analysis revealed not the same relations among the micronutrients across two years, indicating the importance of environment. Still, close relations between Cu and Fe, and to lesser extent between B and Mo were observed in both years. Mn was consistently one of the least related micronutrients to others. Our results suggest that it is possible to improve density of various micronutrients in maize grain simultaneously, although the progress would be very slow.

  17. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil.

    Science.gov (United States)

    Martinelli, Samuel; Barata, Reinaldo Montrazi; Zucchi, Maria Imaculada; Silva-Filho, Marcio de Castro; Omoto, Celso

    2006-04-01

    The molecular variability among 10 populations of Spodoptera frugiperda (J.E. Smith), collected from maize, Zea mays L., or cotton Gossypium hirsutum L. crops located at distinctive geographical regions in Brazil, was assessed through random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR). In total, 208 RAPD markers were evaluated, and 98% of them were polymorphic. The mean genetic similarity was 0.6621 and 0.2499 by the Simple Matching and Jaccard matrices, respectively. In general, the unweighted pair-group method with arithmetic average dendrograms separated the populations into clusters related to the geographical origin of the samples. No branch of the dendrograms underpinning a molecular association of S. frugiperda has been identified to either of the two host plants. The molecular variance analysis showed that 18 and 82% of the genetic variation was distributed among and within the groups of populations, respectively. The principal coordinate analysis reinforced the pattern of population clustering found with the unweighted pair-group method with arithmetic average method. These results suggest the occurrence of considerable gene flow between S. frugiperda populations from maize and cotton fields located in the same region in Brazil. Therefore, for an effective management of this pest, there is an urgent need for a better understanding of the gene flow of S. frugiperda populations associated to different host plants along the distribution range of this pest over time in a specific cropping system.

  18. Genetic Diversity Evaluation of Maize Recurrent Selection Population with RAPD Marker

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The genetic diversity of maize populations Wuxi (W) from Southwest China, BSSS9(B) from America, Mohuangjiu (M) from Mexico, WBMC0 synthesized by W, B, M as main parents,WBMC1 one cycle selected from WBMC0 were evaluated by RAPD molecular marker. The results showed that :(1) Totally 89 fragments (loci) were amplified by 15 10-mar random primers, the proportion of polymorphic loci were W 76. 4%, B 75. 3%, M 79. 8%,WBMC0 85. 4% and WBMC1 92. 1% respectively; (2) The mean gene heterozygosity based on 89 loci was W 0. 285, B 0. 252, M 0. 296, WBMC0 0. 327 and WBMC1 0. 346; (3) The mean genetic distance based on 89 loci were W 0. 2533, B 0. 2246, M 0. 2481, WBMC0 0. 3006 and WBMC1 0. 3119; (4) The genotypic mean numbers amplified by 15 primers were W 9.1, B 7.8, M 8.5, WBMC0 10. 1 and WBMC1 10. All indexes indicated that the synthesized maize population were more polymorphic than the parent populations in DNA level. One cycle selection did not reduce the variation. The new conception of "genotypic diversity" (the number of genotypes in a population) was provided to describe the genetic diversity for any population being equilibrium or unequilibrium in genetics. The principle and technical system were discussed for evaluating genetic variation of recurrent selection population using RAPD molecular marker.

  19. Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population.

    Science.gov (United States)

    Lee, Michael; Sharopova, Natalya; Beavis, William D; Grant, David; Katt, Maria; Blair, Deborah; Hallauer, Arnel

    2002-01-01

    The effects of intermating on recombination and the development of linkage maps were assessed in maize. Progeny derived from a common population (B73 x Mo17) before and after five generations of intermating were genotyped at the same set of 190 RFLP loci. Intermating resulted in nearly a four-fold increase in the genetic map distance and increased the potential for improved genetic resolution in 91% of the intervals evaluated. This mapping population and related information should connect research involving dense genetic maps, physical mapping, gene isolation, comparative genomics, analysis of quantitative trait loci and investigations of heterosis.

  20. Population ecology of rodents of maize fields and grassland in central Ethiopia

    DEFF Research Database (Denmark)

    Bekel'e, Afework; Leirs, Herwig

    1997-01-01

    We report on the presence of rodents in grassland and maize fields in central Ethiopia, during the course of a 21-month study by means of removal and capture-recapture trapping. In both habitats, the small mammal fauna consisted of the same species but in different relative proportions: Arvicanthis...... of A.dembeensis reached high values in the grassland. Breeding was seasonal and related to rainfall periods: extended rainy seasons resulting in longer periods with breeding females and higher litter sizes and, consequently, population size increases. These observations suggest that rodent population...

  1. Stalk rot resistance in Maksimir 3 synthetic maize population after four cycles of recurrent selection

    Directory of Open Access Journals (Sweden)

    Bukan Miroslav

    2013-01-01

    Full Text Available Fusarium stalk rot (FSR and anthracnose stalk rot (ASR, caused by Fusarium spp. and Colletotrichum graminicola (Ces. G.W. Wils. respectively, are the two most important stalk diseases in maize which increase the incidence of stalk lodging and reduce grain yield. The aim of the present study was to (1 evaluate the effect of four cycles of recurrent selection in the Maksimir 3 Synthetic (M3S maize population on ASR and FSR resistance and (2 to investigate the correlation among the different disease rating methods. The experiment included six M3S cycle populations per se and their test-crosses with a single cross hybrid. ASR resistance was estimated on artificially inoculated plant rows using three ratings (the number of infected internodes, the number of internodes rotten more than 75% and evaluation of outer stalk discoloration whereas FSR resistance was estimated in artificially inoculated rows as well as in naturally inoculated rows by rating severity of disease symptoms on longitudinally cut stalks using the standard resistance scale. The results of the present study showed that four cycles of selection in the M3S maize population, conducted primarily for grain yield improvement, did not significantly affect its resistance to both ASR and FSR. Among the disease ratings a moderate positive correlation was found only between two ASR resistance ratings (the number of infected internodes and the number of internodes rotted more than 75% in both population per se (r=0.49** and population test-crosses (r=0.56**.

  2. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B₁ in Limpopo Province, South Africa.

    Science.gov (United States)

    Phoku, J Z; Dutton, M F; Njobeh, P B; Mwanza, M; Egbuta, M A; Chilaka, C A

    2012-01-01

    Fusarium species (spp.) and fumonisin B₁ (FB₁) contaminations were monitored in maize and porridge consumed by a rural population of Limpopo Province, South Africa. Faecal samples were also analysed for FB₁ as a means of estimating the degree of dietary exposure to this mycotoxin. In total, 142 samples of maize (n = 54), porridge (47) and faeces (41) were screened for Fusarium spp. using a serial dilution technique followed by DNA sequencing, while FB₁ was further screened and quantified by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), respectively. At least four species of Fusarium were identified, of which F. verticillioides was the most prevalent in all three sample types analysed. The contamination levels of FB₁ were significantly higher in 87% of maize sampled (range = 101-53,863 µg kg⁻¹) as compared with porridge (74% incidence rate; range = 0.2-20 µg kg⁻¹) and faecal samples (100% incidence rate; range = 0.3-464 µg kg⁻¹). Thus, it can be deduced that the level of human exposure to FB₁ via the consumption of maize was high as several samples contained levels exceeding 1000 µg kg⁻¹, which was strongly supported by the levels found in faecal samples. Further data revealed that a high proportion of FB₁ is destroyed or removed by processing maize into porridge. As maize porridge is consumed as a staple, the low levels found provide a means to limit exposure to FB₁. Levels of FB₁ found in the faeces which were higher indicate that other foods contaminated with the toxin are also consumed.

  3. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    Directory of Open Access Journals (Sweden)

    Zhengbin Liu

    2016-08-01

    Full Text Available Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis. In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits.

  4. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.

    Science.gov (United States)

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A

    2016-08-09

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits.

  5. Performance of crosses among flint maize populations under infestation by Sesamia nonagrioides (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Soengas, P; Butrón, A; Revilla, P; Ordás, A; Malvar, R A

    2004-08-01

    Flint maize, Zea mays L., varieties provide some interesting agronomic characteristics and kernels that possess a better ability than other kernels for developing high-quality flour. The pink stem borer, Sesamia nonagrioides Lefebvre, is an important constraint for the maize crop in Mediterranean regions. The objective of this work was to identify a "flint x flint" heterotic pattern that would perform well under artificial infestation by S. nonagrioides. A 10-population diallel was evaluated under infestation by S. nonagrioides in 2 yr. Variety effects were the only significant effects involved in stem and ear resistance to S. nonagrioides attack. Variety effects and average heterosis effects were the only significant effects for grain yield under artificial infestation conditions. Considering variety effects and cross-performance, the heterotic pattern Basto/Enano levantixo x Longfellow (BA/EL x LO) would be recommended for obtaining flint maize hybrids tolerant to S. nonagrioides attack because BA/EL had the most favorable variety effects for stem resistance, LO exhibited the most positive variety effects for grain yield, and the cross BA/EL x LO yielded significantly more than the remaining crosses.

  6. EFFICASY OF NATURAL POPULATION OF Trichogramma WASPS AGAINST EUROPEAN CORN BORER IN FIELD MAIZE

    Directory of Open Access Journals (Sweden)

    Ankica Sarajlić

    2014-12-01

    Full Text Available The aim of this study was to determine the natural infestation of European corn borer (ECB eggs by Trichogramma wasps (Hymenoptera: Trichogrammatidae under field conditions. The experiment was set up in Osijek, Croatia in 2013. The experiment included two levels of irrigations, two nitrogen rates and two maize genotypes. Parameters of ECB feeding activity and maize tolerance (cob mass, tunnel length, number of ECB larvae per plant, as well as number of parasitized ECB eggs by Trihogramma wasps were evaluated. Genotypes were significantly different in terms of tolerance to ECB injury. In treatments with nitrogen fertilization, ECB feeding activity was increased at both nitrogen rates. Agricultural practices did not significantly affect parasitism of ECB eggs by Trichogramma. Correlation between parameters of ECB feeding activity and parasitism by Trichogramma was slight to moderate and not significant. Natural occurrence of Trichogramma wasps were not significantly affected by agricultural practices in maize, and population of these parasitoids was low significantly affect ECB feeding activity.

  7. EFFECT OF PLANT DENSITY ON AGRONOMIC TRAITS AND PHOTOSYNTHETIC PERFORMANCE IN THE MAIZE IBM POPULATION

    Directory of Open Access Journals (Sweden)

    Mario Franić

    2015-12-01

    Full Text Available Photosynthesis is a vital process in plant physiology. Performance index is an indicator of plant vitality and is used as a main parameter in chlorophyll fluorescence measurements. Plant density is an important factor in maize production that can affect grain yield. Objective of this paper was to estimate the effect of plant density on agronomic traits and photosynthetic efficiency in the maize IBM population. The results showed a decrease in grain yield per plant basis (20 plants per plot in higher plant density (normal density - 3.88 kg per plot, high density - 2.95 kg per plot and an increase in grain yield per unit area (yield/ha in higher plant density (normal density - 11.03t ha-1, high density - 13.64 t ha-1. Performance index was decreased in higher plant density (normal density - 5.31, high density - 4.95. Statistical analysis showed highly significant effect (p<0.001 of density on performance index and highly significant effects (p<0.001 of plant density and genotype on maize yield. Low positive correlation was observed between grain yield per plot and performance index (r = 0.36, p<0.001.

  8. Identification of QTLs for arsenic accumulation in maize (Zea mays L. using a RIL population.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available The Arsenic (As concentration in different tissues of maize was analyzed using a set of RIL populations derived from an elite hybrid, Nongda108. The results showed that the trend of As concentration in the four measured tissues was leaves>stems>bracts>kernels. Eleven QTLs for As concentration were detected in the four tissues. Three QTLs for As concentration in leaves were mapped on chromosomes 1, 5, and 8, respectively. For As concentration in the bracts, two QTLs were identified, with 9.61% and 10.03% phenotypic variance. For As concentration in the stems, three QTLs were detected with 8.24%, 14.86%, and 15.23% phenotypic variance. Three QTLs were identified for kernels on chromosomes 3, 5, and 7, respectively, with 10.73%, 8.52%, and 9.10% phenotypic variance. Only one common chromosomal region between SSR marker bnlg1811 and umc1243 was detected for QTLs qLAV1 and qSAC1. The results implied that the As accumulation in different tissues in maize was controlled by different molecular mechanism. The study demonstrated that maize could be a useful plant for phytoremediation of As-contaminated paddy soil, and the QTLs will be useful for selecting inbred lines and hybrids with low As concentration in their kernels.

  9. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana.

    Science.gov (United States)

    Perrone, Giancarlo; Haidukowski, Miriam; Stea, Gaetano; Epifani, Filomena; Bandyopadhyay, Ranajit; Leslie, John F; Logrieco, Antonio

    2014-08-01

    Aflatoxins are highly toxic carcinogens that contaminate crops worldwide. Previous studies conducted in Nigeria and Ghana found high concentrations of aflatoxins in pre- and post-harvest maize. However, little information is available on the population structure of Aspergillus Sect. Flavi in West Africa. We determined the incidence of Aspergillus Sect. Flavi and the level of aflatoxin contamination in 91 maize samples from farms and markets in Nigeria and Ghana. Aspergillus spp. were recovered from 61/91 maize samples and aflatoxins B1 and/or B2 occurred in 36/91 samples. Three samples from the farms also contained aflatoxin G1 and/or G2. Farm samples were more highly contaminated than were samples from the market, in terms of both the percentage of the samples contaminated and the level of mycotoxin contamination. One-hundred-and-thirty-five strains representative of the 1163 strains collected were identified by using a multilocus sequence analysis of portions of the genes encoding calmodulin, β-tubulin and actin, and evaluated for aflatoxin production. Of the 135 strains, there were 110 - Aspergillus flavus, 20 - Aspergillus tamarii, 2 - Aspergillus wentii, 2 - Aspergillus flavofurcatus, and 1 - Aspergillus parvisclerotigenus. Twenty-five of the A. flavus strains and the A. parvisclerotigenus strain were the only strains that produced aflatoxins. The higher contamination of the farm than the market samples suggests that the aflatoxin exposure of rural farmers is even higher than previously estimated based on reported contamination of market samples. The relative infrequency of the A. flavus SBG strains, producing small sclerotia and high levels of both aflatoxins (B and G), suggests that long-term chronic exposure to this mycotoxin are a much higher health risk in West Africa than is the acute toxicity due to very highly contaminated maize in east Africa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy.

    Science.gov (United States)

    Susca, Antonia; Moretti, Antonio; Stea, Gaetano; Villani, Alessandra; Haidukowski, Miriam; Logrieco, Antonio; Munkvold, Gary

    2014-10-01

    Fumonisin contamination of maize is considered a serious problem in most maize-growing regions of the world, due to the widespread occurrence of these mycotoxins and their association with toxicosis in livestock and humans. Fumonisins are produced primarily by species of Fusarium that are common in maize grain, but also by some species of Aspergillus sect. Nigri, which can also occur on maize kernels as opportunistic pathogens. Understanding the origin of fumonisin contamination in maize is a key component in developing effective management strategies. Although some fungi in Aspergillus sect. Nigri are known to produce fumonisins, little is known about the species which are common in maize and whether they make a measurable contribution to fumonisin contamination of maize grain. In this work, we evaluated populations of Aspergillus sect. Nigri isolated from maize in USA and Italy, focusing on analysis of housekeeping genes, the fum8 gene and in vitro capability of producing fumonisins. DNA sequencing was used to identify Aspergillus strains belonging to sect. Nigri, in order to compare species composition between the two populations, which might influence specific mycotoxicological risks. Combined beta-tubulin/calmodulin sequences were used to genetically characterize 300 strains (199 from Italy and 101 from USA) which grouped into 4 clades: Aspergillus welwitschiae (syn. Aspergillus awamori, 14.7%), Aspergillus tubingensis (37.0%) and Aspergillus niger group 1 (6.7%) and group 2 (41.3%). Only one strain was identified as Aspergillus carbonarius. Species composition differed between the two populations; A. niger predominated among the USA isolates (69%), but comprised a smaller percentage (38%) of Italian isolates. Conversely, A. tubingensis and A. welwitschiae occurred at higher frequencies in the Italian population (42% and 20%, respectively) than in the USA population (27% and 5%). The evaluation of FB2 production on CY20S agar revealed 118 FB2 producing and 84

  11. SNP and SSR marker analysis and mapping of a maize population

    Directory of Open Access Journals (Sweden)

    Šimić Domagoj

    2009-01-01

    Full Text Available Although highly polymorphic SSRs are currently the marker of choice worldwide in maize breeding, single nucleotide polymorphisms (SNPs as a newer marker system are recently used more extensively. The objective of this study was investigate the utility of SSR and SNP markers for mapping of a maize population adapted to conditions of Southeast Europe. Total of 294 F2:3 lines derived from a biparental mapping population were genotyped using 121 polymorphic SNP and SSR markers. The SNP markers were analyzed using the SNPlex technology. 56 of the 142 tested SNPs (39% were polymorphic between the parents of the mapping population and were successfully mapped. The remaining markers were either not functional (5 = 3.5% or not polymorphic (81 = 57%. No mapped SNP marker showed more than 10% missing data. On average, the level of missing data for SNPs (1.5% was considerably lower than that for SSRs (3.4%. For the mapping procedure, the SNP data were combined SSR data. A comparison of the mapping data with the publicly available mapping data on SSR markers and the proprietary mapping data indicates that the map is of good quality and that the map position of almost all markers agrees with their published map position. Thus, information obtained from both marker systems is utilizable for further QTL analysis.

  12. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population.

    Directory of Open Access Journals (Sweden)

    Shuaidong Hu

    Full Text Available Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM Syn4 recombinant inbred line (RIL population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16 h, 18°C/8 h and optimum temperature (28°C/24 h between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM were umc1303 (265.1 cM on chromosome 4, umc1 (246.4 cM on chromosome 5, umc62 (459.1 cM on chromosome 6, bnl14.28a (477.4 cM on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org. Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize.

  13. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population.

    Science.gov (United States)

    Hu, Shuaidong; Lübberstedt, Thomas; Zhao, Guangwu; Lee, Michael

    2016-01-01

    Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16 h, 18°C/8 h) and optimum temperature (28°C/24 h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize.

  14. Construction and genetic analysis of mutator insertion mutant population in maize

    Institute of Scientific and Technical Information of China (English)

    LIU Wenting; GAO Youjun; TENG Feng; SHI Qing; ZHENG Yonglian

    2006-01-01

    A total of 26718 M1 plants were obtained by crossing the active mutator transposon donor parents (Q105, WW51, 115F, V26-2 and 919J)with the recipient parents (Hz85,W328 with Bz gene and S-Mo17Rf3Rf3). The phenotypes of M1 plants were observed in the field. M1 plants were self-pollinated to develop the mutator insertion-mutagenized M2 seeds. The transposition frequency of the mutator in the genome was calculated based on the spotted aleurone phenotype of the M2 seeds. The results showed that: (1) the mutation frequency of M1 phenotypes in the field was 0.07 in the population of W328×Mu; (2) the mutation frequency of spotted aleurone seeds on the M2 ears was 0.122 in the population of W328×Mu; (3) five S-cytoplasm male-sterile plants were found among 22500 M1 plants of S-Mo17Rf3Rf3×Mu, with the transposition frequency about 2.2×10-4 per locus. 99 flanking sequences of mutator transposition were amplified by the modified MuTAIL-PCR, and 59 non-redundant sequences with length around 400 bp were obtained.After bioinformatic analysis, 27 sequences of them could be annotated, using non-redundant nucleotide database of maize, rice, and Arabidopsis. 36 sequences of them were located on the genetic map of maize by comparative genomics, and several flanking sequences of mutator insertion were mapped on the single marker locus. Hotspot sequences of mutator transposition were revealed by comparing the homologies between the 9-bp target site duplication of the mutator insertion. The putative functions of 8 flanking sequences of rnutator transposition had identity with the functions of their corresponding marker. The constructed mutator insertion mutant population in maize will facilitate the new gene discovery and functional genomics study in maize.

  15. Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

    Directory of Open Access Journals (Sweden)

    Jianbo Qiu

    2014-08-01

    Full Text Available Members of the Fusarium graminearum species complex (FGSC are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV and deoxynivalenol (DON and the estrogenic mycotoxin zearalenone (ZEN, which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str. was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture.

  16. Genetic Relationships, Carbendazim Sensitivity and Mycotoxin Production of the Fusarium Graminearum Populations from Maize, Wheat and Rice in Eastern China

    Science.gov (United States)

    Qiu, Jianbo; Shi, Jianrong

    2014-01-01

    Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture. PMID:25093387

  17. Ssr analysis for genetic structure and diversity determination of maize local populations from former Yugoslavia territories.

    Science.gov (United States)

    Ignjatović-Micić, D; Drinić, S Mladenović; Nikolić, A; Lazić-Jancić, V

    2008-11-01

    A collection of 2178 local populations from ex-Yugoslavia territories is maintained in Maize Research Institute (MRI) gene bank. These populations were characterized mainly by morphological markers. In this work 21 local populations belonging to seven different agro-ecological groups have been subjected to SSR analysis using a DNA-pooling strategy. The objective of this work was to develop genetic fingerprints for characterization, identification and classification of the populations, as well as for estimation of their genetic diversity. Also, a DNA-pooling strategy was employed with the aim to certify if it could be applied for population analysis with SSR markers. Statistical analysis of 25 informative SSR primers revealing 224 alleles (bands) showed that the average within-population mean number of alleles was 2.55, the average values for total and within-population diversity were 0.784 and 0.502, respectively and G(ST) value was 0.360. Genetic distance values calculated using Modified Rogers' Distance were in the range from 0.35 to 0.60. The silver staining method of DNA used for bulked samples showed some weakness that could be overcome with a more sensitive staining method. Nevertheless, the results in this work indicate that the SSR analysis of bulks could be used for characterizing a large number of populations in gene banks.

  18. Genomic Dissection of Leaf Angle in Maize (Zea mays L. Using a Four-Way Cross Mapping Population.

    Directory of Open Access Journals (Sweden)

    Junqiang Ding

    Full Text Available Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL on leaf angle detected by inclusive composite interval mapping (ICIM. ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs. Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.

  19. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations

    Science.gov (United States)

    Maize requires more water than most other crops; therefore, the water use efficiency of this crop must be improved for maize production under undesirable land and changing environmental conditions. To elucidate the genetic control of drought in maize, we evaluated approximately 5000 inbred lines fr...

  20. Investigation on diversity and population succession dynamics of indigenous bacteria of the maize spermosphere.

    Science.gov (United States)

    Liu, Yang; Zuo, Shan; Zou, Yuanyuan; Wang, Jianhua; Song, Wei

    2012-01-01

    The spermosphere, an important habitat to the plant micro-ecosystem, has a unique significance to seed microbial ecology, but has been poorly researched. In this study, the mature seeds of reciprocal cross maize (Zea mays L., Nongda108) were collected to investigate the diversity and population succession dynamics of indigenous spermosphere bacteria at 12, 24 and 36 h into seed germination using 16S rDNA library construction. In the spermosphere of Nongda108A (Huang C × 178), the dominant bacteria genera identified were Pseudomonas and Burkholderia. The proportion of Pseudomonas increased from 59.60 to 75.00% then 82.61%; while Burkholderia decreased from 39.39 to 25.00% then 15.22% at 12, 24 and 36 h, respectively. Bacillus, Paenibacillus and Stenotrophomonas were the dominant genera in Nongda108B. The proportion of Paenibacillus after 12, 24 and 36 h into germination decreased from 68.00 to 46.15 to 13.27%, respectively. The proportion of non-Paenibacillus genera increased from 32.00 (Stenotrophomonas) to 53.85 (Bacillus) to 77.55% (Burkholderia) from 12 h to 24 h to 36 h, respectively. Some dominant bacteria genera identified from maize spermosphere have been identified as common PGPR.

  1. Minute Pirate Bug (Orius Insidiosus Say) populations on transgenic and non-transgenic maize using different sampling techniques

    Science.gov (United States)

    Field experiments were conducted to evaluate the populations of minute pirate bug [Orius insidiosus (Say)] using visual, sticky cards, and destructive sampling techniques in transgenic and non-transgenic maize in three locations in Nebraska (Mead, Clay Center, and Concord), United States of America,...

  2. Selection for Silage Yield and Composition Did Not Affect Genomic Diversity Within the Wisconsin Quality Synthetic Maize Population

    Science.gov (United States)

    Lorenz, Aaron J.; Beissinger, Timothy M.; Silva, Renato Rodrigues; de Leon, Natalia

    2015-01-01

    Maize silage is forage of high quality and yield, and represents the second most important use of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population. The application of high-density molecular markers allows breeders and geneticists to identify important loci through association analysis and selection mapping, as well as to monitor changes in the distribution of genetic diversity across the genome. The objectives of this study were to identify loci controlling variation for maize silage traits through association analysis and the assessment of selection signatures and to describe changes in the genomic distribution of gene diversity through selection and genetic drift in the WQS recurrent selection program. We failed to find any significant marker-trait associations using the historical phenotypic data from WQS breeding trials combined with 17,719 high-quality, informative single nucleotide polymorphisms. Likewise, no strong genomic signatures were left by selection on silage yield and quality in the WQS despite genetic gain for these traits. These results could be due to the genetic complexity underlying these traits, or the role of selection on standing genetic variation. Variation in loss of diversity through drift was observed across the genome. Some large regions experienced much greater loss in diversity than what is expected, suggesting limited recombination combined with small populations in recurrent selection programs could easily lead to fixation of large swaths of the genome. PMID:25645532

  3. Selection for silage yield and composition did not affect genomic diversity within the Wisconsin Quality Synthetic maize population.

    Science.gov (United States)

    Lorenz, Aaron J; Beissinger, Timothy M; Silva, Renato Rodrigues; de Leon, Natalia

    2015-02-02

    Maize silage is forage of high quality and yield, and represents the second most important use of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population. The application of high-density molecular markers allows breeders and geneticists to identify important loci through association analysis and selection mapping, as well as to monitor changes in the distribution of genetic diversity across the genome. The objectives of this study were to identify loci controlling variation for maize silage traits through association analysis and the assessment of selection signatures and to describe changes in the genomic distribution of gene diversity through selection and genetic drift in the WQS recurrent selection program. We failed to find any significant marker-trait associations using the historical phenotypic data from WQS breeding trials combined with 17,719 high-quality, informative single nucleotide polymorphisms. Likewise, no strong genomic signatures were left by selection on silage yield and quality in the WQS despite genetic gain for these traits. These results could be due to the genetic complexity underlying these traits, or the role of selection on standing genetic variation. Variation in loss of diversity through drift was observed across the genome. Some large regions experienced much greater loss in diversity than what is expected, suggesting limited recombination combined with small populations in recurrent selection programs could easily lead to fixation of large swaths of the genome.

  4. QTL detection for stover yield and quality traits using two connected populations in high-oil maize.

    Science.gov (United States)

    Wei, Mengguan; Li, Xuehui; Li, Junzhou; Fu, Jiafeng; Wang, Yanzhao; Li, Yuling

    2009-10-01

    Both yield and quality traits for stover portion were important for forage and biofuel production utility in maize. A high-oil maize inbred GY220 was crossed with two normal-oil dent maize inbred lines 8984 and 8622 to generate two connected F(2:3) populations with 284 and 265 F(2:3) families. Seven yield and quality traits were evaluated under two environments. The variance components of genotype (sigma(g)(2)), environment (sigma(e)(2)) and genotype x environment interactions (sigma(ge)(2)) were all significant for most traits in both populations. Different levels of correlations were observed for all traits. QTL mapping was conducted using composite interval mapping (CIM) for data under each environment and in combined analysis in both populations. Totally, 45 and 42 QTL were detected in the two populations. Only five common QTL across the two populations, and one and three common QTL across the two environments in the two populations were detected, reflecting substantial influence of genetic backgrounds and environments on the results of QTL detection for stover traits. Combined analysis across two environments failed to detect most QTL mapped using individual environmental data in both populations. Few of the detected QTL displayed digenic epistatic interactions. Common QTL among all traits were consistent with their correlations. Some QTL herein have been detected in previous researches, and linked with candidate genes for enzymes postulated to have direct and indirect roles in cell wall components biosynthesis.

  5. No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp.

    Science.gov (United States)

    Sun, Chongsi; Geng, Lili; Wang, Meiling; Shao, Gaoxiang; Liu, Yongfeng; Shu, Changlong; Zhang, Jie

    2017-02-01

    Endophytic bacterial communities play a key role in promoting plant growth and combating plant diseases. However, little is known about their population dynamics in plant tissues and bulk soil, especially in transgenic crops. This study investigated the colonization of transgenic maize harboring the Bacillus thuringiensis (Bt) cry1Ah gene by Bacillus subtilis strain B916-gfp present in plant tissues and soil. Bt and nontransgenic maize were inoculated with B916-gfp by seed soaking, or root irrigation under both laboratory greenhouse and field conditions. During the growing season, B916-gfp colonized transgenic as well as nontransgenic plants by both inoculation methods. No differences were observed in B916-gfp population size between transgenic and nontransgenic plants, except at one or two time points in the roots and stems that did not persist over the examination period. Furthermore, planting transgenic maize did not affect the number of B916-gfp in bulk soil in either laboratory or field trials. These results indicate that transgenic modification of maize with the cry1Ah gene has no influence on colonization by the endophytic bacteria B916-gfp present in the plant and in bulk soil. © 2016 The Authors. MicrobiologyOpenpublished by John Wiley & Sons Ltd.

  6. Structure of Allozymatic Diversity of Ten Temperate and Adapted Exotic Breeding Populations of Maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Da-hao; YU Yang; WANG Zhen-ping; LI Yan-ru

    2009-01-01

    Ten temperate and adapted exotic breeding populations of maize were studied with electrophoretic techniques. Three isozyme systems coded by nine allozyme loci were used for evaluating the genetic variability within and among populations.The results revealed that 78.57% of allozyme loci were polymorphic. Low allelic variation with a mean number of 1.84 alleles per locus per population was detected. But, these populations still maintained higher level of heterozygosity;moreover, the exotic populations had greater gene diversity than the temperate populations. All the populations were non-panmictic with negative Wright's fixation indexes (-0.091- -0.424). The tropical BS16 was typified by maximum allelic richness, percent of polymorphic loci and heterozygosity. More than 93% of the gene diversity maintained within populations, and the genetic differentiation among populations was low (0.002-0.191). Multivariate analysis demonstrated that the tropical BS29 diverged from other populations in the reverse direction. The temperate BS9 and tropical BS 16 were divergent each other, and highly differentiated from other temperate and tropical populations, consequently, these two populations would be analogically postulated as potential germplasms to establish new heterotic groups for temperate maize breeding programs.

  7. Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays).

    Science.gov (United States)

    Herschkovitz, Yoav; Lerner, Anat; Davidov, Yaacov; Okon, Yaacov; Jurkevitch, Edouard

    2005-11-01

    Positive response of plant species to plant growth-promoting rhizobacteria have led to an increased interest in their use as bacterial inoculants. However, the introduction of exogenous bacteria into natural ecosystems may perturb bacterial populations within the microbial community and lead to the disruption of indigenous populations performing key functional roles. In this study the effect of Azospirillum brasilense inoculation on maize (Zea mays) rhizosphere Actinobacteria, Bacteroidetes, alpha-Proteobacteria, Pseudomonas and Bdellovibrio spp. was assessed using a polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) approach in conjunction with group-specific primers. The DGGE fingerprints analysis revealed that the introduction of A. brasilense did not alter or disrupt the microbial system at the group-specific level. However, some communities such as the alpha-Proteobacteria and Bdellovibrio were influenced by plant age while the other bacterial groups remained unaffected. Based on these as well as previous data, it can be inferred that inoculation with A. brasilense does not perturb the natural bacterial populations investigated.

  8. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population

    Directory of Open Access Journals (Sweden)

    Baier John

    2007-05-01

    Full Text Available Abstract Background Gene knockouts are a critical resource for functional genomics. In Arabidopsis, comprehensive knockout collections were generated by amplifying and sequencing genomic DNA flanking insertion mutants. These Flanking Sequence Tags (FSTs map each mutant to a specific locus within the genome. In maize, FSTs have been generated using DNA transposons. Transposable elements can generate unstable insertions that are difficult to analyze for simple knockout phenotypes. Transposons can also generate somatic insertions that fail to segregate in subsequent generations. Results Transposon insertion sites from 106 UniformMu FSTs were tested for inheritance by locus-specific PCR. We confirmed 89% of the FSTs to be germinal transposon insertions. We found no evidence for somatic insertions within the 11% of insertion sites that were not confirmed. Instead, this subset of insertion sites had errors in locus-specific primer design due to incomplete or low-quality genomic sequences. The locus-specific PCR assays identified a knockout of a 6-phosphogluconate dehydrogenase gene that co-segregates with a seed mutant phenotype. The mutant phenotype linked to this knockout generates novel hypotheses about the role for the plastid-localized oxidative pentose phosphate pathway during grain-fill. Conclusion We show that FSTs from the UniformMu population identify stable, germinal insertion sites in maize. Moreover, we show that these sequence-indexed mutations can be readily used for reverse genetic analysis. We conclude from these data that the current collection of 1,882 non-redundant insertion sites from UniformMu provide a genome-wide resource for reverse genetics.

  9. Susceptibility of field populations of sugarcane borer from non-Bt and Bt maize plants to five individual Cry toxins

    Institute of Scientific and Technical Information of China (English)

    Fangneng Huang; Mukti N.Ghimire; B.Rogers Leonard; Yu-Cheng Zhu; Graham P.Head

    2012-01-01

    Sugarcane borer,Diatraea saccharalis (F.),is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US midsouth region.Resistance development in targct pest populations is a major threat to the sustainable use of Bt crops.In our field trials in 2009,a significant number of live borers and plant injury from D.saccharalis were observed in an experimental SmartStaxTM maize line.The objective of this study was to assess the relative susceptibility of two field populations ofD.saccharalis collected from non-Bt and Bt maize plants containing SmartStaxTM traits to five individual Cry proteins.The five Bt proteins included two proteins (Cry1A.105 and Cry2Ab2) that were expressed in SmartStaxTM maize plants and three other common Bt proteins (Cry1Aa,Cry1Ab and Cry1Ac) that were not produced in SmartStaxTM.Larval mortality and growth inhibition on Bt diet of the fourth gcneration after field collections were evaluated 7 days after release of neonates on the diet surface.The laboratory bioassays showed that 50% lethal concentration (LC50) values for Cry1 A.105 and Cry2Ab2 for the population originated from Bt plants were 3.55-and 1.34-fold greater,respectively,than those of the population collected from non-Bt plants.In contrast,relative to the population from non-Bt plants,the LC50 of the population sampled from Bt plants were 3.85-,2.5-and 1.64-fold more sensitive to Cry1Aa,Cry1Ab and Cry1Ac,respectively.The resuits did not provide clear evidence to conclude that the observed field survival of D.saccharalis on Bt plants was associated with increased levels of resistance.

  10. Nine cycle of mass section to increased oil content in the two synthetics populations of maize (Zea mays L.)

    OpenAIRE

    Rošulj Milorad; Vančetović Jelena; Todorović Goran

    2001-01-01

    The objectives of this study were to estimate changes in oil content and grain yield in the maize populations DS7u and YuSSSu. As estimations were performed at CO and C9 for both populations, it was possible to observe changes occurring following long-term mass selection for high oil content. The synthetic population DS7u was developed by recombination of 29 inbreeds of Yugoslav, Canadian and US origin. The synthetic population YuSSSu is an Iowa Stiff Stalk Synthetic - BSS(R)C5. The following...

  11. Genetic Diversity of Maize Populations Developed by Two Kinds of Recurrent Selection Methods Investigated with SSR Markers

    Institute of Scientific and Technical Information of China (English)

    LI Lu-jiang; YANG Ke-cheng; PAN Guang-tang; RONG Ting-zhao

    2008-01-01

    Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously.The genetic diversity of 8 maize populations,including both the basic populations and their developed populations,were evaluated by 30 SSR primers.On the 30 SSR loci,a total of 184 alleles had been detected in these populations.At each locus,the number of alleles varied from 2 to 14,with an average of 6.13.The number and ratio of polymorphic loci in both the basic populations were higher than those of their developed populations,respectively.There was nearly no difference after MS but decreased after HS-S3 in both the basic populations in the mean gene heterozygosity.The mean genetic distance changed slightly after MS but decreased in a bigger degree after HS-S3 in both the basic populations.Analyses on the distribution of genetic distances showed that the ranges of the genetic distance were wider after MS and most of the genetic distances in populations developed by HS-S3 were smaller than those in both the basic populations.The number of genotypes increased after MS but decreased after HS-S3 in both the basic populations.The genetic diversity of intra-population was much more than genetic diversity of inter-population in both the basic populations.All these indexes demonstrated that the genetic diversity of populations after MS was similar to their basic populations,and the genetic diversity was maintained during MS,whereas the genetic diversity of populations decreased after HS-S3.This result indicated that heterogeneity between some of the individuals in the developed populations increased after MS,whereas the populations become more homozygotic after HS-S3.

  12. QTL analysis of Kernel-related traits in maize using an immortalized F2 population.

    Science.gov (United States)

    Zhang, Zhanhui; Liu, Zonghua; Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04-6.06, 7.02-7.03, and 10.06-10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%).

  13. A bacterial population analysis of granular sludge from an anaerobic digester treating a maize-processing waste

    Energy Technology Data Exchange (ETDEWEB)

    Howgrave-Graham, A.R.; Wallis, F.M. (Natal Univ., Pietermaritzburg (ZA). Dept. of Microbiology and Plant Pathology); Steyn, P.L. (Pretoria Univ. (South Africa))

    1991-01-01

    Microbial population studies were conducted on a dense granular sludge, with excellent settling, thickening and nutrient removal properties, from a South African clarigester treating effluent from a factory producing glucose and other carbohydrates from maize. The bacterial population comprised a heterogeneous group including acetogens, enterobacteria, sulphate-reducers, spirochaetes, heterofermentative lactobacilli and methanogens. The presence of these bacteria and lack of propionic acid and butyric acid bacteria suggests that the microbial activity of this anaerobic digester involved acetate and lactate metabolism rather than propionate or butyrate catabolism as a source of precursors for methane production. (author).

  14. Comparative QTL analysis of maize seed artificial aging between an immortalized F2 population and its corresponding RILs

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Zhanhui Zhang; Zhiyuan Fu; Zonghua Liu; Yanmin Hu; Jihua Tang

    2016-01-01

    Seed aging decreases the quality and vigor of crop seeds, thereby causing substantial agricultural and economic losses in crops. To identify genetic differences in seed aging between homozygotes and heterozygotes in maize, the seeds of a set of recombinant inbred lines (RILs) and an immortalized F2 (IF2) population were subjected to artificial aging treatments for 0, 2, 3, and 4 days under 45 ºC and 85%relative humidity and seed vigor was then evaluated in a field experiment. Seed vigor of all entries tested decreased sharply with longer aging treatment and seed vigor decreased more slowly in heterozygotes than in homozygotes. Forty-nine QTL were detected for four measured seed vigor traits in the RIL (28 QTL) and IF2 (21 QTL) populations. Only one QTL, qGP5, was detected in both populations, indicating that the genes involved in anti-aging mechanisms differed between inbred lines and hybrids. Several QTL were identified to be responsible for multiple seed vigor traits simultaneously in the RIL and IF2 populations under artificial aging conditions. These QTL may include major genes for seed vigor or seed aging. QTL qVI4b and qGE3a detected in the RIL population coincided with genes ZmLOX1 and ZmPLD1 in the same respective chromosomal regions. These QTL would be useful for screening for anti-aging genes in maize breeding.

  15. Comparative QTL analysis of maize seed artificial aging between an immortalized F2 population and its corresponding RILs

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Zhanhui Zhang; Zhiyuan Fu; Zonghua Liu; Yanmin Hu; Jihua Tang

    2016-01-01

    Seed aging decreases the quality and vigor of crop seeds,thereby causing substantial agricultural and economic losses in crops.To identify genetic differences in seed aging between homozygotes and heterozygotes in maize,the seeds of a set of recombinant inbred lines(RILs) and an immortalized F2(IF2) population were subjected to artificial aging treatments for 0,2,3,and 4 days under 45℃ and 85%relative humidity and seed vigor was then evaluated in a field experiment.Seed vigor of all entries tested decreased sharply with longer aging treatment and seed vigor decreased more slowly in heterozygotes than in homozygotes.Forty-nine QTL were detected for four measured seed vigor traits in the RIL(28QTL) and IF2(21 QTL) populations.Only one QTL,qGP5,was detected in both populations,indicating that the genes involved in anti-aging mechanisms differed between inbred lines and hybrids.Several QTL were identified to be responsible for multiple seed vigor traits simultaneously in the RIL and IF2 populations under artificial aging conditions.These QTL may include major genes for seed vigor or seed aging.QTL qVI4 b and qGE3 a detected in the RIL population coincided with genes ZmLOX1 and ZmPLD1 in the same respective chromosomal regions.These QTL would be useful for screening for anti-aging genes in maize breeding.

  16. Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Bernhard; Bauer, Christoph; Gronauer, Andreas; Lebuhn, Michael [Bavarian State Research Center of Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Freising (Germany)

    2010-12-15

    Limitations in the supply of essential trace elements for methanogenic Archaea can arise in biogas production from renewable resources in flow-through systems particularly when no manure is added. Without compensating supplementation, primarily Co and Na{sup +} can become limiting in long-term mono-digestion of maize silage at threshold values of ca. 0.03 and 10 mg/L, respectively. These deficiencies apparently triggered process acidification. Using molecular biological methods (PCR-SSCP and quantitative real-time PCR), microbial population dynamics were monitored qualitatively and quantitatively at distinct stages during the experiments, investigating mcrA/mrtA, coding for a subunit of the key enzyme of methanogenesis. An exponential correlation between mcrA/mrtA copies and methane productivity was obtained. Members of obligately acetoclastic Methanosaetaceae were found only at low acetate concentrations (below 1 g/L). At organic loading rates>1 g volatile solids/(L x d) and without acidification symptoms, obligately hydrogenotrophic (oh) Methanobacteriales and versatile Methanosarcinaceae were dominating, and an abundance of up to 10{sup 10} methanogens per mL fermenter content was determined. In the acidified process, however, ca. 4 orders of magnitude less methanogens were detected, and Methanomicrobiales (oh), more specifically Methanospirillum hungatei or Methanoculleus spp., were dominating. Species diversity at the DNA level was highest at efficient process performance without stress symptoms and at a relatively low organic loading rate (1-2 g volatile solids/(L x d)). According to the quantitative real-time PCR data, the process was not sustained below an availability of 10{sup -8} to 10{sup -9}{mu}g Co per methanogenic cell. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Heterozygosis drives maize hybrids to select elite 2,4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations.

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2006-11-01

    By comparing the distribution of two genomic markers among Pseudomonas strains recovered from the rhizosphere of two maize hybrids with those of strains recovered from the rhizosphere of their four respective parental lines, we showed that both hybrids supported more elite probiotic strains than the parents. Elite Pseudomonas strains showed genomic potential for both an appropriate in vitro 2,4-diacetylphloroglucinol (DAPG) productivity, and a superior root-colonization ability. The actual biocontrol and root-colonization abilities of these strains were confirmed by bioassays on five fungal strains and on axenic maize plants. Furthermore, results on the abundance and genetic diversity of resident DAPG+ Pseudomonas strains indicated that each hybrid was able to select its own specific DAPG+ population, whereas the four parental lines were not. The evidence that heterozygosis can drive maize plants to select elite probiotic rhizospheric DAPG+ Pseudomonas strains opens the way to a new strategy in the set up of plant breeding for low-input and organic agriculture.

  18. The effects of a winter cover crop on Diabrotica virgifera (Coleoptera: Chrysomelidae) populations and beneficial arthropod communities in no-till maize.

    Science.gov (United States)

    Lundgren, Jonathan G; Fergen, Janet K

    2010-12-01

    The effects of an autumn-planted, spring-killed, grass cover crop (Elymus trachycaulus [Link] Gould ex Shinners) on populations of Diabrotica virgifera virgifera LeConte and its predator community were evaluated in South Dakota maize fields over two seasons. Abundance and size of D. virgifera larvae and adults and sex ratio of adults were measured in maize produced under two treatments (i.e., a winter cover crop or bare soil), as were maize root damage and the abundance and diversity of the predator communities collected on the soil surface and in the soil column. First and second instars and adults of D. virgifera were similarly abundant in the two treatments, but third instars were significantly fewer in maize planted after a winter cover crop. Larvae developed at different rates in the two treatments, and second instars were significantly smaller (head capsule width and body length) in the maize planted after a cover crop. First and third instars and adults were of similar size in the two treatments, and adult sex ratios were also similar. Although initially similar, predator populations increased steadily in the cover-cropped maize, which led to a significantly greater predator population by the time D. virgifera pupated. There was significantly less root damage in the cover-cropped maize. Predator communities were similarly diverse in both treatments. Predator abundance per plot was significantly and negatively correlated with the abundance of third instars per plot. Clearly, winter cover crops reduce D. virgifera performance and their damage to the crop, and we suspect that this reduction is caused by both environmental effects of the treatment on D. virgifera size and development, and of increased predation on the third instars of the pest. Additional data on the impact of cover crops on actual predation levels, grain yield and quality, and farmer profitability, and correlations among pest performance, crop characteristics, and predator populations and

  19. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations

    NARCIS (Netherlands)

    Pineyro-Nelson, A.; Heerwaarden, van J.; Perales, H.R.; Serratos-Hernandez, J.A.; Rangel, A.; Hufford, M.B.; Gepts, P.; Garay-Arroyo, A.; Rivera-Bustamante, R.; Alvarez-Buylla, E.R.

    2009-01-01

    A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. An

  20. Enhancing genomic prediction with genome-wide association studies in multiparental maize populations

    Science.gov (United States)

    Genome-wide association mapping using dense marker sets has identified some nucleotide variants affecting complex traits which have been validated with fine-mapping and functional analysis. Many sequence variants associated with complex traits in maize have small effects and low repeatability, howev...

  1. Study of The Use Of Maize as Barrier Crop in Chili to Control Bemisia tabaci (Gennadius Population

    Directory of Open Access Journals (Sweden)

    Yogi Puspo Friarini

    2016-12-01

    Full Text Available This study was conducted to determine the effect of maize as barrier crop to prevent the spread of Bemisia tabaci (Gennadius, the yellow virus vector in pepper farming. The research was conducted in the field at Pakem, Sleman, during two cropping seasons from October 2014 to February 2015 as first planting period and in April to August 2015 as second planting period. The escalation of B. tabaci (Gennadius populations was directly correlated with virus yellow peppers increment. The result indicated that planting barrier was effective in reducing the spread of B. tabaci (Gennadius in pepper plants. The population of B. tabaci (Gennadius in plots with pepper surrounded by maize was lower compared to plots without maize barrier, showed that the yellow virus spreads on pepper can be minimized, and hence the incidence of yellow disease was also decreased.   INTISARI   Penelitian ini dilakukan untuk mengetahui pengaruh penanaman jagung sebagai pemberian tanaman pembatas (barrier untuk mengatasi penyebaran Bemisia tabaci (Gennadius yang merupakan vektor virus kuning pada tanaman cabai. Penelitian dilakukan di lahan pertanaman cabai di Pakem, Sleman. Penelitian dilaksanakan selama dua musim tanam dari bulan Oktober 2014 sampai dengan bulan Februari 2015 pada periode tanam I dan bulan April 2015 sampai dengan bulan Agustus 2015 pada periode tanam II. Meningkatnya populasi B. tabaci (Gennadius berbanding lurus dengan meningkatnya virus kuning pada cabai. Hasil penelitian ini menunjukkan bahwa penanaman tanaman pembatas (barrier cukup efektif mengurangi penyebaran B. tabaci (Gennadius pada ke dalam petak tanaman cabai. Populasi B. tabaci (Gennadius pada petak tanaman cabai yang dikelilingi tanaman jagung lebih rendah jika dibanding dengan petak tanaman cabai yang tidak dikelililing tanaman jagung, sehingga secara tidak langsung penyebaran virus kuning pada cabai dapat diminimalisir.

  2. Compositional assessments of key maize populations: B73 hybrids of the Nested Association Mapping founder lines and diverse landrace inbred lines.

    Science.gov (United States)

    Venkatesh, Tyamagondlu V; Harrigan, George G; Perez, Tim; Flint-Garcia, Sherry

    2015-06-03

    The present study provides an assessment of the compositional diversity in maize B73 hybrids derived both from the Nested Association Mapping (NAM) founder lines and from a diverse collection of landrace accessions from North and South America. The NAM founders represent a key population of publicly available lines that are used extensively in the maize community to investigate the genetic basis of complex traits. Landraces are also of interest to the maize community as they offer the potential to discover new alleles that could be incorporated into modern maize lines. The compositional analysis of B73 hybrids from the 25 NAM founders and 24 inbred lines derived from landraces included measurements of proximates (protein, fat, ash, and starch), fibers, minerals, amino acids, fatty acids, tocopherols (α-, γ-, and δ-), β-carotene, phytic acid, and raffinose. Grain was harvested from a replicated trial in New York, USA. For each data set (NAM and landrace) canonical discriminant analysis allowed separation of distinct breeding groups (tropical, temperate, flint, mixed/intermediate) within each data set. Overall, results highlighted extensive variation in all composition components assessed for both sets of hybrids. The variation observed for some components within the landraces may therefore be of value for increasing their levels in modern maize lines. The study described here provided significant information on contributions of conventional breeding to crop compositional variation, as well as valuable information on key genetic resources for the maize community in the development of new improved lines.

  3. Diallel analyze of yield and progress of the severity of leaf diseases in maize hybrids in two population density

    Directory of Open Access Journals (Sweden)

    Marcos Ventura Faria

    2015-02-01

    Full Text Available Seven commercial maize hybrids (AS1575, 2B688, Penta, GNZ2004, AG8021, Sprint e P30F53 were intercrossed in a complete diallel, excluded reciprocal, obtaining 21 crosses. The 28 treatments were evaluated in two environments characterized by different densities (62,500 and 90,000 plants ha-1, with the aim of selecting the most promising parents for generating base population to obtain lines. Two experiments were carried out in Guarapuava-PR, at randomized block design with three replications. We estimated the general (GCA and specific (SCA combining abilities for yield and disease severity assessed by the area under the common rust (Puccinia sorghi progress curve (AURPC and the area under the leaf spot (Cercospora zeae-maydis progress curve (AULPC. The effects of GCA and SCA were significant for grain yield and diseases severity in both densities, revealing the importance of both additive and non-additive effects. There GCA x densities interaction was significant only for grain yield. Crossings P30F53 x AG8021 and P30F53 x Penta had negative estimates of SCA for AURPC and AULPC on the environments average. Hybrids GNZ 2004 and P30F53 stood out showing positive GCA for grain yield and negative for AURPC and AULPC in both densities and therefore are recommended for generating base populations for obtaining lines adapted for both densities, conventional and denser plantings, given the current trends in management of maize.

  4. Genetic relationships among Italian and Mexican maize-rhizosphere Burkholderia cepacia complex (BCC) populations belonging to Burkholderia cenocepacia IIIB and BCC6 group

    Science.gov (United States)

    2011-01-01

    Background A close association between maize roots and Burkholderia cepacia complex (BCC) bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT) the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico), in order to provide new insights into their population structure, evolution and ecology. Results The 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs), respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types) analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94%) were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA). The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread. Conclusions Taken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within each local microbial

  5. Genetic relationships among Italian and Mexican maize-rhizosphere Burkholderia cepacia complex (BCC populations belonging to Burkholderia cenocepacia IIIB and BCC6 group

    Directory of Open Access Journals (Sweden)

    Bevivino Annamaria

    2011-10-01

    Full Text Available Abstract Background A close association between maize roots and Burkholderia cepacia complex (BCC bacteria has been observed in different locations globally. In this study we investigated by MultiLocus Restriction Typing (MLRT the genetic diversity and relationships among Burkholderia cenocepacia IIIB and BCC6 populations associated with roots of maize plants cultivated in geographically distant countries (Italy and Mexico, in order to provide new insights into their population structure, evolution and ecology. Results The 31 B. cenocepacia IIIB and 65 BCC6 isolates gave rise to 29 and 39 different restriction types (RTs, respectively. Two pairs of isolates of B. cenocepacia IIIB and BCC6, recovered from both Italian and Mexican maize rhizospheres, were found to share the same RT. The eBURST (Based Upon Related Sequence Types analysis of MLRT data grouped all the B. cenocepacia IIIB isolates into four clonal complexes, with the RT-4-complex including the 42% of them, while the majority of the BCC6 isolates (94% were grouped into the RT-104-complex. These two main clonal complexes included RTs shared by both Italian and Mexican maize rhizospheres and a clear relationship between grouping and maize variety was also found. Grouping established by eBURST correlated well with the assessment using unweighted-pair group method with arithmetic mean (UPGMA. The standardized index of association values obtained in both B. cenocepacia IIIB and BCC6 suggests an epidemic population structure in which occasional clones emerge and spread. Conclusions Taken together our data demonstrate a wide dispersal of certain B. cenocepacia IIIB and BCC6 isolates in Mexican and Italian maize rhizospheres. Despite the clear relationship found between the geographic origin of isolates and grouping, identical RTs and closely related isolates were observed in geographically distant regions. Ecological factors and selective pressure may preferably promote some genotypes within

  6. Incorporating different proportions of exotic maize germplasm into two adapted populations

    Directory of Open Access Journals (Sweden)

    Manoel Xavier dos Santos

    2000-06-01

    Full Text Available Maize breeders frequently wish to use exotic germplasm in their breeding programs without losing specific characteristics of their adapted material. The objective of this study was to determine the optimal proportions of exotic germplasm to incorporate into adapted populations (F2 = 50% exotic, BC1 = 25% exotic, BC2 = 12.5% exotic and BC3 = 6.25% exotic to form the initial foundation population and to determine the heterosis between adapted x exotics. We used six exotic populations of different origins and two adapted populations representing a Brazilian heterotic pattern. In 1993-94 and 1994-95, the parents, F1, F2, BC1, BC2, BC3 and four checks were evaluated in six environments in central Brazil using an 8 x 9 simple rectangular lattice design. Higher mean values for yield were obtained as the proportion of exotic germplasm decreased. Some backcrosses produced more than the adapted populations BR 105 (7.59 ton/ha and BR 106 (8.43 ton/ha. The best results were obtained when incorporating 6.25 or 12.5% of exotic genes. This trend was true for root lodging, stalk lodging and ear diseases but not for plant and ear height. The midparent heterosis for yield varied from -16.1 to 40.3%. Midparent heterosis with positive and negative values were also found for the other traits. The results indicate the potential of exotic germplasm for developing good hybrids. After choosing the best exotic source, some recurrent selection might be appropriate in order to adapt and improve the exotic populations.Os melhoristas de milho que utilizam germoplasmas exóticos nos programas de melhoramento têm a preocupação de não perder as características desejáveis dos materiais adaptados. Buscando atender esta demanda, o presente trabalho teve por objetivo determinar a proporção ideal de germoplasma exótico que deve ser incorporado em populações melhoradas (F2 = 50% exótico; RC1 = 25% exótico; RC2 = 12,5% exótico; RC3 = 6,25% exótico, para formar as popula

  7. Nine cycle of mass section to increased oil content in the two synthetics populations of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Rošulj Milorad

    2001-01-01

    Full Text Available The objectives of this study were to estimate changes in oil content and grain yield in the maize populations DS7u and YuSSSu. As estimations were performed at CO and C9 for both populations, it was possible to observe changes occurring following long-term mass selection for high oil content. The synthetic population DS7u was developed by recombination of 29 inbreeds of Yugoslav, Canadian and US origin. The synthetic population YuSSSu is an Iowa Stiff Stalk Synthetic - BSS(RC5. The following statistical and genetic parameters were analyzed: means, frequency distribution, components of genetic variance and heritability. Progenies were derived according to the North Carolina Design II. Results were indicated that nine cycles of selection led to statistically significant increase in oil content and statistically significant decrease for grain yield in both populations. Estimates of additive and dominance variances for grain oil content were highly significant in CO and C9 of the population DS7u. Dominance variance showed significance in the initial cycle of the population YuSSSu, but it disappeared in the course of nine cycles of mass selection. Additive and dominance variances for grain yield were highly significant in both initial populations. Loss of significance did not result from selection, while the proportion of dominance vs. additive variance became greater. High narrow-sense heritability was detected for grain yield and oil content in the initial cycles of both populations. Mass selection resulted in increased heritability for oil content in the DS7u population. .

  8. Different testers influence genetic correlational response in narrow-based maize population NSA15

    Directory of Open Access Journals (Sweden)

    Stanisavljević Dušan

    2015-01-01

    Full Text Available The goal of this study was to determine correlations between grain yield and other morphological and agronomical traits in two groups of maize half-sib (HS progenies. Progenies were obtained by crossing every S1 family with two unrelated inbred lines as testers, NS732 and NS27. Field trials with incomplete block design, with replicates within set were conducted in 2008 and 2009 at four locations. The following traits were observed: grain yield, ear length, kernel row number, kernel number per row, 1000-kernel weight, plant height, ear height, number of leaves above ear and grain moisture. Significant moderate strong negative correlation between grain yield and ear length was determined in HS1 progeny. High significant correlations occurred among plant and ear height in both HS and between plant height and number of leaves. Observed differences in levels of correlation imply significant influence of tester in each group on HS progeny.

  9. RACIAL COMPLEXES OF MAIZE POPULATIONS EVALUATED IN SAN MARTÍN HUAMELULPAN, OAXACA

    Directory of Open Access Journals (Sweden)

    José Luis Chávez-Servia

    2011-01-01

    Full Text Available The milpa system produces and maintains the major proportion of maize diversity of Mexico and particularly in the Mixtec-Oaxaca region such event occurs since pre-Columbian age. In order to evaluate the phenotypic variation of the Mixtec maize, 100 samples were collected in 14 municipalities of the Tlaxiaco district, Oaxaca. The collection was morphologically characterized under a simple lattice design with two replications during summer-fall 2008. Morphological description was made by 18 variables as well as grain yield. The analysis of variance showed significant differences among the samples for all evaluated variables, except for the number of secondary branches on tassel and rachis diameter of the pith. According to principal component analysis, the morphological variation presented a pattern of altitudinal variation following the accession origin. Cob and plant height, length and number of branches on tassel, days to tasseling and to silking, cob length and number of rows on cob, explained the major proportion of the morphological variability. All samples were classified into nine phenotypic groups by cluster analysis; they were called as Mixteco race, Chalqueño race, and seven racial complexes that joined combinations of the Chalqueño, Conico, Mixteco and Pepitilla races. There was a high morphological variation among evaluated samples and the Mixteco and Chalqueño races were differentiated, but also seven groups that phenotypically correspond to racial complexes. In the evaluation were observed samples with cob characteristics closely to the description of the Bolita, Serrano Mixe and Ancho races.

  10. Genetic Analysis in Maize Foundation Parents with Mapping Population and Testcross Population: Ye478 Carried More Favorable Alleles and Using QTL Information Could Improve Foundation Parents

    Science.gov (United States)

    Liu, Yinghong; Hou, Xianbin; Xiao, Qianlin; Yi, Qiang; Bian, Shaowei; Hu, Yufeng; Liu, Hanmei; Zhang, Junjie; Hao, Xiaoqin; Cheng, Weidong; Li, Yu; Huang, Yubi

    2016-01-01

    The development of maize foundation parents is an important part of genetics and breeding research, and applying new genetic information to produce foundation parents has been challenging. In this study, we focused on quantitative trait loci (QTLs) and general combining ability (GCA) of Ye478, a widely used foundation parent in China. We developed three sets of populations for QTL mapping and to analyze the GCA for some agronomic traits. The assessment of 15 traits resulted in the detection of 251 QTLs in six tested environments, with 119 QTLs identified through a joint analysis across all environments. Further, analyses revealed that most favorable alleles for plant type-related traits were from Ye478, and more than half of the favorable alleles for yield-related traits were from R08, another foundation parent used in southwestern China, suggesting that different types of foundation parents carried different favorable alleles. We observed that the GCA for most traits (e.g., plant height and 100-kernel weight) was maintained in the inbred lines descended from the foundation parents. Additionally, the continuous improvement in the GCA of the descendants of the foundation parents was consistent with the main trend in maize breeding programs. We identified three significant genomic regions that were highly conserved in three Ye478 descendants, including the stable QTL for plant height. The GCA for the traits in the F7 generation revealed that the QTLs for the given traits per se were affected by additive effects in the same way in different populations. PMID:27721817

  11. Genetic analysis in maize foundation parents with mapping population and testcross population: Ye478 carried more favorable alleles and using QTL information could improve foundation parents

    Directory of Open Access Journals (Sweden)

    Yinghong Liu

    2016-09-01

    Full Text Available The development of maize foundation parents is an important part of genetics and breeding research, and applying new genetic information to produce foundation parents has been challenging. In this study, we focused on quantitative trait loci (QTLs and general combining ability (GCA of Ye478, a widely used foundation parent in China. We developed three sets of populations for QTL mapping and to analyze the GCA for some agronomic traits. The assessment of 15 traits resulted in the detection of 251 QTLs in six tested environments, with 119 QTLs identified through a joint analysis across all environments. Further analyses revealed that most favorable alleles for plant type-related traits were from Ye478, and more than half of the favorable alleles for yield-related traits were from R08, another foundation parent used in southwestern China, suggesting that different types of foundation parents carried different favorable alleles. We observed that the GCA for most traits (e.g., plant height and 100-kernel weight was maintained in the inbred lines descended from the foundation parents. Additionally, the continuous improvement in the GCA of the descendants of the foundation parents was consistent with the main trend in maize breeding programs. We identified three significant genomic regions that were highly conserved in three Ye478 descendants, including the stable QTL for plant height. The GCA for the traits in the F7 generation revealed that the QTLs for the given traits per se were affected by additive effects in the same way in different populations.

  12. Influence of plant population and nitrogen-fertilizer at various levels on growth and growth efficiency of maize.

    Science.gov (United States)

    Tajul, M I; Alam, M M; Hossain, S M M; Naher, K; Rafii, M Y; Latif, M A

    2013-01-01

    Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800,000 plants ha⁻¹ corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha⁻¹) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha⁻¹ receiving 220 kg N ha⁻¹, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha⁻¹). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha⁻¹ with 80,000 plants ha⁻¹ had larger foliage, greater SPAD value, and higher amount of grains cob⁻¹ that contributed to the maximum yield (5.03 t ha⁻¹) and the maximum harvest index (HI) compared to the plants in other treatments.

  13. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  14. Changes in plant morphology in response to recurrent selection in the Iowa Stiff Stalk synthetic maize population

    Science.gov (United States)

    The maize plant phenotype has changed a great deal through the era of hybrid maize production. Some of the observed changes, such as upright leaf angle, silking-anthsis interval, and tassel branch number, have well understood contributions to improved grain yield in modern hybrids. However, less is ...

  15. A population of deletion mutants and an integrated mapping and Exome-seq pipeline for gene discovery in maize

    Science.gov (United States)

    To better understand maize endosperm filling and maturation, we developed a novel functional genomics platform that combined Bulked Segregant RNA and Exome sequencing (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. Using gamma-irradiation of B73 maize to...

  16. About the interplay of sensitive and resistant biotypes in weed populations - simulation exercises for Echinochloa crus-galli in maize crops

    Directory of Open Access Journals (Sweden)

    von Redwitz, Christoph

    2016-02-01

    Full Text Available Weed species easily establish in crops with a similar life cycle. Especially mono-cropping provides best conditions for such weeds. In maize this is true for Echinochloa crus-galli, which is a C4 plant and one of the worst weeds worldwide. In Germany E. crus-galli is one of the few typical weed species in maize. When recurrent herbicide treatments are applied, development of herbicide resistance is likely. Since maize is typically only treated once with herbicides, later germinating weeds can escape and produce seeds. These escaping weeds are not selected for herbicide resistance. Hence, they still have a more sensitive gene pool. E. crus-galli emerges with the highest density in spring and continues to germinate over the whole vegetative period of maize. In that way the early germinating biotypes are selected for herbicide resistance while the later germinating biotypes are not. To avoid the reproduction of E. crus-galli effort is made to suppress these later germinating weeds. Using undersown cover crops is one way to do that. We hypothesize that suppressing the later germinating biotypes enhances the development of herbicide resistance. We simulated the development of herbicide resistance in populations of E. crus-galli, composed of sensitive and resistant biotypes, in a continuous maize cropping system. We used the model PROSPER for our simulations. We assumed three levels of suppression of the later germinating weeds (0%, 30%, and 100%. The results show a faster development of herbicide resistance, when the later germinating individuals are suppressed. Nevertheless, the suppressive effect of undersown crops is able to lower the weed density even with high resistance level in the population.

  17. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Directory of Open Access Journals (Sweden)

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  18. Influence of maize/lablab intercropping on lepidopterous stem borer infestation in maize.

    Science.gov (United States)

    Maluleke, Mary H; Addo-Bediako, Abraham; Ayisi, Kingsley K

    2005-04-01

    Lepidopterous stem borers seriously affect production of maize, Zea mays L., in sub-Saharan Africa. Intercropping maize with legumes such as lablab, Lablab purpurens (L.), is one of the effective systems to control stem borers. Sole culture maize and maize/lablab intercrop system of different lablab densities were planted at two locations to investigate the effects of intercrop system on incidence and severity of stem borers with particular reference to Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae). Stem borer infestation was found to be more severe in sole culture maize than maize in maize/lablab intercrop. There was a significantly negative relationship between lablab densities and maize grain yields, suggesting a possible competition for resources between the two crops. It was concluded that density of lablab and date of planting of lablab in maize/lablab intercropping have significant affects on stem borer populations and maize grain yields.

  19. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize

    National Research Council Canada - National Science Library

    Meng, Yujie; Li, Junhui; Liu, Jianju; Hu, Haixiao; Li, Wei; Liu, Wenxin; Chen, Shaojiang

    2016-01-01

    Doubled haploid (DH) lines produced via in vivo haploid induction have become indispensable in maize research and practical breeding, so it is important to understand traits characteristics in DH and its corresponding...

  20. Genetic dissection of maize seedling root system architecture traits using an ultra-high density bin-map and a recombinant inbred line population

    Institute of Scientific and Technical Information of China (English)

    Weibin Song; Baobao Wang; Andrew L Hauck; Xiaomei Dong; Jieping Li; Jinsheng Lai

    2016-01-01

    Maize (Zea mays) root system architecture (RSA) mediates the key functions of plant anchorage and acquisition of nutrients and water. In this study, a set of 204 recombinant inbred lines (RILs) was derived from the widely adapted Chinese hybrid ZD958(Zheng58 ? Chang7-2), genotyped by sequencing (GBS) and evaluated as seedlings for 24 RSA related traits divided into primary, seminal and total root classes. Significant differences between the means of the parental phenotypes were detected for 18 traits, and extensive transgressive segregation in the RIL population was observed for all traits. Moderate to strong relationships among the traits were discovered. A total of 62 quantitative trait loci (QTL) were identified that individually explained from 1.6% to 11.6% (total root dry weight/total seedling shoot dry weight) of the phenotypic variation. Eighteen, 24 and 20 QTL were identified for primary, seminal and total root classes of traits, respectively. We found hotspots of 5, 3, 4 and 12 QTL in maize chromosome bins 2.06, 3.02-03, 9.02-04, and 9.05-06, respectively, implicating the presence of root gene clusters or pleiotropic effects. These results characterized the phenotypic variation and genetic architecture of seedling RSA in a population derived from a successful maize hybrid.

  1. Population ecology of rodents of maize fields and grassland in central Ethiopia

    DEFF Research Database (Denmark)

    Bekel'e, Afework; Leirs, Herwig

    1997-01-01

    dembeensis, Mastomys erythroleucus, Tatera robusta, Rattus rattus, Mus mahomet and Crocidura olivieri. A. dembeensis and M. erythroleucus were the dominant species. Densities were generally low throughout the study period, but at the end of the breeding season in the second year of the study, the numbers...... of A.dembeensis reached high values in the grassland. Breeding was seasonal and related to rainfall periods: extended rainy seasons resulting in longer periods with breeding females and higher litter sizes and, consequently, population size increases. These observations suggest that rodent population...... dynamics in the study area are linked to rainfall patterns and this information can be used to develop forecasting models....

  2. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents.

    Science.gov (United States)

    Larièpe, A; Moreau, L; Laborde, J; Bauland, C; Mezmouk, S; Décousset, L; Mary-Huard, T; Fiévet, J B; Gallais, A; Dubreuil, P; Charcosset, A

    2017-02-01

    General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data. Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.

  3. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.)

    Indian Academy of Sciences (India)

    Yuling Li; Yanzhao Wang; Mengguan Wei; Xuehui Li; Jiafeng Fu

    2009-04-01

    Protein is one of the three main storage chemical components in maize grains, and is negatively correlated with starch concentration (SC). Our objective was to analyse the influence of genetic backgrounds on QTL detection for protein concentration (PC) and to reveal the molecular genetic associations between PC and both SC and grain weight (GWP). Two hundred and eighty-four (Pop1) and 265 (Pop2) F2:3 families were developed from two crosses between one high-oil maize inbred GY220 and two normal maize inbreds 8984 and 8622 respectively, and were genotyped with 185 and 173 pairs of SSR markers. PC, SC and GWP were evaluated under two environments. Composite interval mapping (CIM) and multiple interval mapping (MIM) methods were used to detect single-trait QTL for PC, and multiple-trait QTL for PC with both SC and GWP. No common QTL were shared between the two populations for their four and one PC QTL. Common QTL with opposite signs of effects for PC and SC/GWP were detected on three marker intervals at bins 6.07–6.08, 8.03 and 8.03–8.04. Multiple-traits QTL mapping showed that tightly-linked QTL, pleiotropic QTL and QTL having effects with opposite directions for PC and SC/GWP were all observed in Pop1, while all QTL reflected opposite effects in Pop2.

  4. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States.

    Science.gov (United States)

    Niu, Ying; Qureshi, Jawwad A; Ni, Xinzhi; Head, Graham P; Price, Paula A; Meagher, Robert L; Kerns, David; Levy, Ronnie; Yang, Xiangbing; Huang, Fangneng

    2016-07-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target pest of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established using single-pair mating of field individuals collected from seven locations in four states of the southern U.S.: Texas, Louisiana, Georgia, and Florida. The objective of the investigation was to detect resistance alleles in field populations to Cry2Ab2, a common Bt protein produced in transgenic maize and cotton. For each F2 family, 128 F2 neonates were screened on leaf tissue of Cry2Ab2 maize plants in the laboratory. A conservative estimate of the frequency of major Cry2Ab2 resistance alleles in S. frugiperda from the four states was 0.0023 with a 95% credibility interval of 0.0003-0.0064. In addition, six families were considered to likely possess minor resistance alleles at a frequency of 0.0082 with a 95% credibility interval of 0.0033-0.0152. One F2 family from Georgia (GA-15) was confirmed to possess a major resistance allele to the Cry2Ab2 protein. Larvae from this family survived well on whole maize plants expressing Cry2Ab2 protein and demonstrated a significant level (>15-fold) of resistance when fed with the same protein incorporated in a meridic diet. The detection of the major resistance allele along with the relatively abundant minor resistance alleles revealed in this study may have important implications for resistance management.

  5. Joint-multiple family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population.

    Science.gov (United States)

    Ogut, F; Bian, Y; Bradbury, P J; Holland, J B

    2015-06-01

    Quantitative trait locus (QTL) mapping has been used to dissect the genetic architecture of complex traits and predict phenotypes for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint analysis of multiple biparental families offers an alternative approach to QTL mapping with a wider scope of inference. Joint-multiple population analysis should have higher power to detect QTL shared among multiple families, but may have lower power to detect rare QTL. We compared prediction ability of single-family and joint-family QTL analysis methods with fivefold cross-validation for 6 diverse traits using the maize nested association mapping population, which comprises 25 biparental recombinant inbred families. Joint-family QTL analysis had higher mean prediction abilities than single-family QTL analysis for all traits at most significance thresholds, and was always better at more stringent significance thresholds. Most robust QTL (detected in >50% of data samples) were restricted to one family and were often not detected at high frequency by joint-family analysis, implying substantial genetic heterogeneity among families for complex traits in maize. The superior predictive ability of joint-family QTL models despite important genetic differences among families suggests that joint-family models capture sufficient smaller effect QTL that are shared across families to compensate for missing some rare large-effect QTL.

  6. 12个玉米群体的 SSR 遗传多样性分析%Analyzing on SSR Genetic Diversity of 12 Maize Populations

    Institute of Scientific and Technical Information of China (English)

    孙峰成; 冯勇; 赵瑞霞; 苏二虎; 张来厚; 刘志雄; 石海波

    2013-01-01

    为明确玉米群体的遗传变异性,利用SSR分子标记技术,采用12株叶片混合、每个群体5个混合样本提取DNA的最优取样方法,对12个玉米群体及6个对照自交系进行遗传多样性分析,试验筛选出86对SSR适宜引物,共扩增出391条多态性带,每个位点上的等位基因数为2~11条,平均5.67条,以GD值0.67为基准,划分为6个类群。蒙A群、蒙B群、中综5号、黄早4为第一类,蒙C群、蒙群1、掖478为第二类,蒙群2、蒙群4、C群1、C群2、Mo17为第三类,蒙群3、C群3、中综7号、B73为第四类,丹340和齐319各单独为一类,该结果与产量SCA效应分析划分结果基本一致。%The widely genetic diversity in maize population is the important basis for maize breeding .To clear the genetic basis and genetic diversity is very important for germplasm enhancement and improvement of maize .In this research,SSR molecular marker technology and the best sampling method ,which DNA was extracted from five samples in each maize population and mixture of leaves of 12 plants, was adopted .The genetic diversity from 12 maize populations and 6 control inbred lines were analysed .86 pairs SSR primers were filtered in this experiment , 391 polymorphic bands were gained .The number of alleles ranged from 2 to 11,the average is 5.76.The studied 12 maize populations and 6 control inbred lines could be partitioned into 6 class groups on the basis of 0 .67 for the GD value.Meng A,Meng B,Zhongzong 5 and Huangzao 4 are belonged to one group ,Meng C,Mengqun 1 and Ye 478 are belonged to the second group ,Mengqun 2,Mengqun 4,C Qun 1,C Qun 2 and Mo17 are belonged to the third group,Mengqun 3,C Qun 3,Zhongzong 7 and B73 are belonged to the fourth group ,Dan 340 and Qi 319 are belonged to the fifth and sixth group ,respectively .The partition is similar with the partition based on the yield SCA effect .

  7. Assessing the ecological risks from the persistence and spread of feral populations of insect-resistant transgenic maize.

    Science.gov (United States)

    Raybould, Alan; Higgins, Laura S; Horak, Michael J; Layton, Raymond J; Storer, Nicholas P; De La Fuente, Juan Manuel; Herman, Rod A

    2012-06-01

    One source of potential harm from the cultivation of transgenic crops is their dispersal, persistence and spread in non-agricultural land. Ecological damage may result from such spread if the abundance of valued species is reduced. The ability of a plant to spread in non-agricultural habitats is called its invasiveness potential. The risks posed by the invasiveness potential of transgenic crops are assessed by comparing in agronomic field trials the phenotypes of the crops with the phenotypes of genetically similar non-transgenic crops known to have low invasiveness potential. If the transgenic and non-transgenic crops are similar in traits believed to control invasiveness potential, it may be concluded that the transgenic crop has low invasiveness potential and poses negligible ecological risk via persistence and spread in non-agricultural habitats. If the phenotype of the transgenic crop is outside the range of the non-transgenic comparators for the traits controlling invasiveness potential, or if the comparative approach is regarded as inadequate for reasons of risk perception or risk communication, experiments that simulate the dispersal of the crop into non-agricultural habitats may be necessary. We describe such an experiment for several commercial insect-resistant transgenic maize events in conditions similar to those found in maize-growing regions of Mexico. As expected from comparative risk assessments, the transgenic maize was found to behave similarly to non-transgenic maize and to be non-invasive. The value of this experiment in assessing and communicating the negligible ecological risk posed by the low invasiveness potential of insect-resistant transgenic maize in Mexico is discussed.

  8. Population genetics of traditionally managed maize : farming practice as a determinant of genetic structure and identity of maize landraces in Mexico

    NARCIS (Netherlands)

    Heerwaarden, van J.

    2007-01-01

    A large amount of crop genetic diversity is being maintained in farmers' fields worldwide. The population genetics of traditionally managed landraces is therefore of interest to the conservation of genetic resources. The growing trend towards agricultural modernization and the prospect of introducin

  9. Population genetics of traditionally managed maize : farming practice as a determinant of genetic structure and identity of maize landraces in Mexico

    NARCIS (Netherlands)

    Heerwaarden, van J.

    2007-01-01

    A large amount of crop genetic diversity is being maintained in farmers' fields worldwide. The population genetics of traditionally managed landraces is therefore of interest to the conservation of genetic resources. The growing trend towards agricultural modernization and the prospect of introducin

  10. Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa

    Directory of Open Access Journals (Sweden)

    Rekiya O. Abdulmalik

    2017-05-01

    Full Text Available Marker-assisted recurrent selection (MARS is a breeding method used to accumulate favorable alleles that for example confer tolerance to drought in inbred lines from several genomic regions within a single population. A bi-parental cross formed from two parents that combine resistance to Striga hermonthica with drought tolerance, which was improved through MARS, was used to assess changes in the frequency of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses of randomly selected S1 lines derived from the original (C0 and advanced selection cycles of this bi-parental population, were evaluated under drought stress (DS and well-watered (WW conditions at Ikenne and under artificial Striga infestation at Abuja and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S1 lines each derived from the four cycles (C0, C1, C2, C3 were genotyped with 233 SNP markers using KASP assay. The results showed that the frequency of favorable alleles increased with MARS in the bi-parental population with none of the markers showing fixation. The gain in grain yield was not significant under DS condition due to the combined effect of DS and armyworm infestation in 2015. Because the parents used for developing the bi-parental cross combined tolerance to drought with resistance to Striga, improvement in grain yield under DS did not result in undesirable changes in resistance to the parasite in the bi-parental maize population improved through MARS. MARS increased the mean number of combinations of favorable alleles in S1 lines from 114 in C0 to 124 in C3. The level of heterozygosity decreased by 15%, while homozygosity increased by 13% due to the loss of some genotypes in the population. This study demonstrated the effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to drought without disrupting the level of resistance to Striga in a bi-parental population targeted as a source of improved

  11. Mapping of QTL for resistance to the Mediterranean corn borer attack using the intermated B73 x Mo17 (IBM) population of maize.

    Science.gov (United States)

    Ordas, Bernardo; Malvar, Rosa A; Santiago, Rogelio; Sandoya, German; Romay, Maria C; Butron, Ana

    2009-11-01

    The Mediterranean corn borer or pink stem borer (MCB, Sesamia nonagrioides Lefebvre) causes important yield losses as a consequence of stalk tunneling and direct kernel damage. B73 and Mo17 are the source of the most commercial valuable maize inbred lines in temperate zones, while the intermated B73 x Mo17 (IBM) population is an invaluable source for QTL identification. However, no or few experiments have been carried out to detect QTL for corn borer resistance in the B73 x Mo17 population. The objective of this work was to locate QTL for resistance to stem tunneling and kernel damage by MCB in the IBM population. We detected a QTL for kernel damage at bin 8.05, although the effect was small and two QTL for stalk tunneling at bins 1.06 and 9.04 in which the additive effects were 4 cm, approximately. The two QTL detected for MCB resistance were close to other QTL consistently found for European corn borer (ECB, Ostrinia nubilalis Hübner) resistance, indicating mechanisms of resistance common to both pests or gene clusters controlling resistance to different plagues. The precise mapping achieved with the IBM population will facilitate the QTL pyramiding and the positional cloning of the detected QTL.

  12. Changes of the microbial population structure in an overloaded fed-batch biogas reactor digesting maize silage.

    Science.gov (United States)

    Kampmann, Kristina; Ratering, Stefan; Geißler-Plaum, Rita; Schmidt, Michael; Zerr, Walter; Schnell, Sylvia

    2014-12-01

    Two parallel, stable operating biogas reactors were fed with increasing amounts of maize silage to monitor microbial community changes caused by overloading. Changes of microorganisms diversity revealed by SSCP (single strand conformation polymorphism) indicating an acidification before and during the pH-value decrease. The earliest indicator was the appearance of a Methanosarcina thermophila-related species. Diversity of dominant fermenting bacteria within Bacteroidetes, Firmicutes and other Bacteria decreased upon overloading. Some species became dominant directly before and during acidification and thus could be suitable as possible indicator organisms for detection of futurity acidification. Those bacteria were related to Prolixibacter bellariivorans and Streptococcus infantarius subsp. infantarius. An early detection of community shifts will allow better feeding management for optimal biogas production.

  13. Cytogenetic analyses using C-banding and DAPI/CMA3 staining of four populations of the maize weevil Sitophiluszeamais Motschulsky, 1855 (Coleoptera, Curculionidae).

    Science.gov (United States)

    da Silva, Alexandra A; Braga, Lucas S; Guedes, Raul Narciso C; Tavares, Mara G

    2015-01-01

    Cytogenetic data avalaible for the maize weevil Sitophiluszeamais Motschulsky, 1855 (Coleoptera: Curculionidae), one of the most destructive pests of stored cereal grains, are controversial. Earlier studies focused on single populations and emphasized chromosome number and sex determination system. In this paper, the karyotypes of four populations of Sitophiluszeamais were characterized by conventional staining, C-banding and sequential staining with the fluorochromes chromomycin-A3/4-6-diamidino-2-phenylindole (CMA3/DAPI). The analyses of metaphases obtained from the cerebral ganglia of last instar larvae and the testes of adults showed that the species had 2n = 22 chromosomes, with 10 autosomal pairs and a sex chromosome pair (XX in females and Xyp in males). Chromosome number, however, ranged from 2n = 22 to 26 due to the presence of 0-4 supernumerary chromosomes in individuals from the populations of Viçosa, Unai and Porto Alegre. With the exception of the Y chromosome, which was dot-like, all other chromosomes of this species were metacentric, including the supernumeraries. The heterochromatin was present in the centromeric regions of all autosomes and in the centromere of the X chromosome. The B chromosomes were partially or totally heterochromatic, and the Y chromosome was euchromatic. The heterochromatic regions were labeled with C-banding and DAPI, which showed that they were rich in AT base pairs.

  14. Cytogenetic analyses using C-banding and DAPI/CMA3 staining of four populations of the maize weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera, Curculionidae

    Directory of Open Access Journals (Sweden)

    Alexandra A. da Silva

    2015-03-01

    Full Text Available Cytogenetic data avalaible for the maize weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae, one of the most destructive pests of stored cereal grains, are controversial. Earlier studies focused on single populations and emphasized chromosome number and sex determination system. In this paper, the karyotypes of four populations of S. zeamais were characterized by conventional staining, C-banding and sequential staining with the fluorochromes chromomycin-A3/4-6-diamidino-2-phenylindole (CMA3/DAPI. The analyses of metaphases obtained from the cerebral ganglia of last instar larvae and the testes of adults showed that the species had 2n = 22 chromosomes, with 10 autosomal pairs and a sex chromosome pair (XX in females and Xyp in males. Chromosome number, however, ranged from 2n = 22 to 26 due to the presence of 0–4 supernumerary chromosomes in individuals from the populations of Viçosa, Unai and Porto Alegre. With the exception of the Y chromosome, which was dot-like, all other chromosomes of this species were metacentric, including the supernumeraries. The heterochromatin was present in the centromeric regions of all autosomes and in the centromere of the X chromosome. The B chromosomes were partially or totally heterochromatic, and the Y chromosome was euchromatic. The heterochromatic regions were labeled with C-banding and DAPI, which showed that they were rich in AT base pairs.

  15. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations.

    Directory of Open Access Journals (Sweden)

    Chunhui Li

    Full Text Available Plant architecture is a key factor for high productivity maize because ideal plant architecture with an erect leaf angle and optimum leaf orientation value allow for more efficient light capture during photosynthesis and better wind circulation under dense planting conditions. To extend our understanding of the genetic mechanisms involved in leaf-related traits, three connected recombination inbred line (RIL populations including 538 RILs were genotyped by genotyping-by-sequencing (GBS method and phenotyped for the leaf angle and related traits in six environments. We conducted single population quantitative trait locus (QTL mapping and joint linkage analysis based on high-density recombination bin maps constructed from GBS genotype data. A total of 45 QTLs with phenotypic effects ranging from 1.2% to 29.2% were detected for four leaf architecture traits by using joint linkage mapping across the three populations. All the QTLs identified for each trait could explain approximately 60% of the phenotypic variance. Four QTLs were located on small genomic regions where candidate genes were found. Genomic predictions from a genomic best linear unbiased prediction (GBLUP model explained 45±9% to 68±8% of the variation in the remaining RILs for the four traits. These results extend our understanding of the genetics of leaf traits and can be used in genomic prediction to accelerate plant architecture improvement.

  16. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.

    Science.gov (United States)

    Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua

    2016-02-01

    Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

  17. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci analysis in a Flint × Flint maize recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Wenzel Gerhard

    2007-01-01

    Full Text Available Abstract Background Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. Results 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1 three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3, 5361 (5361 and 5361 bm3, and F2 (F2, F2 bm1, F2 bm2, and F2 bm3, 2 the contrasting extreme lines of FD (Flint × Dent, AS08 × AS 06, DD1 (Dent × Dent, AS11 × AS09, and DD2 (Dent × Dent, AS29 × AS30 mapping populations, and 3 two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint × Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p Conclusion 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members, trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was generally found to be oligogenic rather than monogenic inherited due to only 26% ESTs detected a single eQTL in the present study. One eQTL hotspot was co-localized with cell wall digestibility related QTL cluster on bins 3.05, implying that in this case the gene(s underlying QTL and eQTL are identical. As the field of genetical genomics develops, it is expected to significantly improve our knowledge about complex traits, such as cell

  18. Romanian maize

    DEFF Research Database (Denmark)

    Sauer, Johannes; Balint, Borbala

    This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture su...... concavity on the shadow cost frontier leads to relative differences in the efficiency es-timates of up to 240%.......This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture...... such distortions we formulate a stochastic shadow-cost frontier model to investigate the systematic input-specific allocative inef-ficiency. We further adjust the underlying cost frontier by incorporating shadow price corrections and subsequently reveal evidence on farm specific technical inefficiency. Different...

  19. The Use of Targeted Marker Subsets to Account for Population Structure and Relatedness in Genome-Wide Association Studies of Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Angela H. Chen

    2016-08-01

    Full Text Available A typical plant genome-wide association study (GWAS uses a mixed linear model (MLM that includes a trait as the response variable, a marker as an explanatory variable, and fixed and random effect covariates accounting for population structure and relatedness. Although effective in controlling for false positive signals, this model typically fails to detect signals that are correlated with population structure or are located in high linkage disequilibrium (LD genomic regions. This result likely arises from each tested marker being used to estimate population structure and relatedness. Previous work has demonstrated that it is possible to increase the power of the MLM by estimating relatedness (i.e., kinship with markers that are not located on the chromosome where the tested marker resides. To quantify the amount of additional significant signals one can expect using this so-called K_chr model, we reanalyzed Mendelian, polygenic, and complex traits in two maize (Zea mays L. diversity panels that have been previously assessed using the traditional MLM. We demonstrated that the K_chr model could find more significant associations, especially in high LD regions. This finding is underscored by our identification of novel genomic signals proximal to the tocochromanol biosynthetic pathway gene ZmVTE1 that are associated with a ratio of tocotrienols. We conclude that the K_chr model can detect more intricate sources of allelic variation underlying agronomically important traits, and should therefore become more widely used for GWAS. To facilitate the implementation of the K_chr model, we provide code written in the R programming language.

  20. 玉米RIL群体的主要株型性状调查研究%Studies on Main Plant Type Characters of RIL Population in Maize

    Institute of Scientific and Technical Information of China (English)

    张红梅; 刘小红; 罗绮; 谭振波; 李润植

    2009-01-01

    本研究调查了玉米自交系Mo17、黄早4及由这两个材料构建的F_9代重组自交系(Recombinant inbred line,RIL)群体的株高和穗位高两个株型性状,对这两个性状在群体中的表现用SPSS11.5软件作了描述性统计和相关分析,并构建了频数分布图.结果显示这两个性状在亲本间表现出显著差异;在群体中呈现连续变异,与正态分布曲线拟合较好.该结果为控制这两个性状的数量性状位点(Quantitative trait locus, QTL)的作图研究提供了田间表型数据.%Plant height and ear height of maize (Zea mays L.) inbred lines 'Mol7', 'Huangzao 4' and the F9 recombinant inbred line (RIL) population derived from the cross between 'Mol7' and 'Huangzao 4' were investigated in this study. According to the data of the RIL population, descriptive statistics, correlation analysis and frequency distribution graphs for the two plant type characters were performed with SPSS 11.5 software. The results showed that the two traits were significantly different between the two parental lines, and continuous variations were found in the RIL population. The results provided the phenotypic data in QTL mapping controlling the two plant type characters.

  1. Parameters in the estimation of the most suitable F2 population size in conventional maize (Zea mays L. breeding programs

    Directory of Open Access Journals (Sweden)

    Delić Nenad

    2010-01-01

    Full Text Available The objective of the present study was to observe differences among four sizes of the F2 populations (100, 200, 300 and 500 plants on the basis of test-crosses for grain yield according to the average values of the populations, genetic and phenotypic variances, genotypic and phenotypic coefficients of variations and broad-sense heritability. The values of genetic variance did not significantly differ over population sizes according to all possible comparisons, including the comparison of values obtained for the phenotypic variance. Furthermore, the values of broadsense heritability (67.8%-69% did not significantly vary over different F2 population sizes. Genetic variability of the observed progenies, as a principal prerequisite of successful selection, was at the satisfactory level in all population sizes.

  2. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  3. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize

    Institute of Scientific and Technical Information of China (English)

    TANG JiHua; MA XiQing; TENG WenTao; YAN JianBing; WU WeiRen; DAI JingRui; LI JianSheng

    2007-01-01

    A set of recombinant inbred lines (RIL) derived from Yuyu22, an elite hybrid widespread in China, was used to construct an immortalized F2 (IF2) population comprising 441 different crosses. Genetic linkage maps were constructed containing 10 linkages groups with 263 simple sequence repeat (SSR) molecular markers. Twelve and ten quantitative trait loci (QTL) were detected for plant height in the IF2 and RIL populations respectively, using the composite interval mapping method, and six same QTL were identified in the two populations. In addition, ten unique heterotic loci (HL) located on seven different chromosomes were revealed for plant height using the mid-parent heterosis as the input data. These HL explained 1.26%-8.41% of the genotypic variance in plant height heterosis and most expressed overdominant effects. Only three QTL and HL were located in the same chromosomal region, it implied that plant height and its heterosis might be controlled by two types of genetic mechanisms.

  4. Reshaping of the maize transcriptome by domestication.

    Science.gov (United States)

    Swanson-Wagner, Ruth; Briskine, Roman; Schaefer, Robert; Hufford, Matthew B; Ross-Ibarra, Jeffrey; Myers, Chad L; Tiffin, Peter; Springer, Nathan M

    2012-07-17

    Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses.

  5. Estimates for Genetic Variance Components in Reciprocal Recurrent Selection in Populations Derived from Maize Single-Cross Hybrids

    Directory of Open Access Journals (Sweden)

    Matheus Costa dos Reis

    2014-01-01

    Full Text Available This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0 and in the third cycle (C3 of reciprocal recurrent selection (RRS which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22 and interpopulation (P12 and P21 from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a 10×10 triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations (στ2 and the covariance between these and their intrapopulation additive effects (CovAτ found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs.

  6. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population.

    Science.gov (United States)

    Shi, Chun; Uzarowska, Anna; Ouzunova, Milena; Landbeck, Matthias; Wenzel, Gerhard; Lübberstedt, Thomas

    2007-01-18

    Cell-wall digestibility is the major target for improving the feeding value of forage maize. An understanding of the molecular basis for cell-wall digestibility is crucial towards breeding of highly digestible maize. 865 candidate ESTs for cell-wall digestibility were selected according to the analysis of expression profiles in 1) three sets of brown-midrib isogenic lines in the genetic background of inbreds 1332 (1332 and 1332 bm3), 5361 (5361 and 5361 bm3), and F2 (F2, F2 bm1, F2 bm2, and F2 bm3), 2) the contrasting extreme lines of FD (Flint x Dent, AS08 x AS 06), DD1 (Dent x Dent, AS11 x AS09), and DD2 (Dent x Dent, AS29 x AS30) mapping populations, and 3) two contrasting isogenic inbreds, AS20 and AS21. Out of those, 439 ESTs were assembled on our "Forage Quality Array", a small microarray specific for cell wall digestibility related experiments. Transcript profiles of 40 lines of a Flint x Flint population were monitored using the Forage Quality Array, which were contrasting for cell wall digestibility. Using t-tests (p quality groups. Using interval mapping, eQTL (LOD > or = 2.4) were detected for 20% (89 of 439) of the spotted ESTs. On average, these eQTL explained 39% of the transcription variation of the corresponding ESTs. Only 26% (23 of 89) ESTs detected a single eQTL. eQTL hotspots, containing greater than 5% of the total number of eQTL, were located in chromosomal bins 1.07, 1.12, 3.05, 8.03, and 9.04, respectively. Bin 3.05 was co-localized with a cell-wall digestibility related QTL cluster. 102 candidate genes for cell-wall digestibility were validated by genetical genomics approach. Although the cDNA array highlights gene types (the tested gene and any close family members), trans-acting factors or metabolic bottlenecks seem to play the major role in controlling heritable variation of gene expression related to cell-wall digestibility, since no in silico mapped ESTs were in the same location as their own eQTL. Transcriptional variation was

  7. [Extrinsic and intrinsic factors associated with mycotoxigenic fungi populations of maize grains (Zea mays L.) stored in silobags in Argentina].

    Science.gov (United States)

    Castellari, Claudia C; Cendoya, María G; Marcos Valle, Facundo J; Barrera, Viviana; Pacin, Ana M

    2015-01-01

    In order to determine the behavior of mycotoxin-producing fungal populations linked with silobags stored corn grains with a moisture content greater at the recommended as safe, 270 samples taken in three times (beginning, 90 days, final) over a five month period of storage were evaluated. The fungal biota was quantified and identified and the contamination with fumonisin and aflatoxin was determined. Extrinsic factors (environment), intrinsic factors (grains) and technological factors (location of the grains in the profile of silobag) were taken into account to evaluate the presence and quantity of total and mycotoxigenic fungal populations. The pH of grains and O2 levels were significantly reduced after five months, while CO2 concentration increased in the same period. The total counts of mycobiota were significantly higher in grains located in the top layer of silobag. Mycotoxigenic species of Fusarium, Aspergillus, Penicillium and Eurotium were identified. The frequency of isolation of Fusarium verticillioides decreased at the end of storage and Aspergillus flavus was isolated only at the beginning of storage. The counts of the Penicillium spp. and Eurotium spp. were increased at the end of storage. Fumonisin contamination was found in all the samples (100%) with maximum levels of 5.707mg/kg whereas aflatoxin contaminated only 40% with maximum levels of 0.0008mg/kg. The environmental and substrate conditions generated during the storage limited the development of mycotoxigenic fungi and mycotoxin production. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established usin...

  9. Effects of Transgenic Bt Maize on Populations and Diversity of Soil Bacteria.%转Bt基因玉米种植对土壤细菌数量及多样性的影响

    Institute of Scientific and Technical Information of China (English)

    刘玲; 杨殿林; 王生荣; 赵建宁; 李刚; 娜布其; 娜日苏

    2011-01-01

    利用三室根箱装置获得玉米生长室土壤(S I)、根际土(SⅡ)、非根际土(SⅢ)3个不同根区土壤,采用传统平板计数培养与变性梯度凝胶电泳(DGGE)技术相结合的方法,研究了转基因玉米Btll及其非转基因亲本在播种后40、50、60 d各根区土壤细菌数量及多样性的变化.结果表明,转Bt基因玉米播种后50、60 d S I根区土壤可培养细菌数量显著低于非转基因亲本,播种后40、50 d SⅡ根区土壤可培养细菌数量较亲本玉米显著增加,而在其他时期和根区与亲本玉米之间均无显著差异.DGGE图谱显示,3个采样时期各根区DGGE图谱条带数、土壤细菌多样性指数和均匀度指数均无显著差异(P>0.05).%In this study, the three-compartment rhizobox method was used to collect soil samples from three different root zones of a maize plant, i.e.growth room ( S Ⅰ ), rhizosphere ( S Ⅱ ) and non-rhizosphere ( S Ⅲ ) and the traditional plate count method and DGGE were applied to investigate changes in population and diversity of soil bacteria at D4O, D50 and D60 after sowing of transgenic Bt maize and its parental maize.Results show that cultivation of transgenic Bt maize significantly reduced the population of soil cultivable bacteria in Zone S Ⅰ at D50 and D60, but increased the population in Zone S Ⅱ at D40 and D50, and showed no significant impact in the other zone.DGGE fingerprints indicated no significant difference between soil samples taken at different dates in DGGE bands, diversity index and homogeneous degree index of the bacteria(P >0.05).

  10. Western corn rootworm and Bt maize: challenges of pest resistance in the field.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Keweshan, Ryan S; Dunbar, Mike W

    2012-01-01

    Crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) manage many key insect pests while reducing the use of conventional insecticides. One of the primary pests targeted by Bt maize in the United States is the western corn rootworm, Diabrotica virgifera virgifera LeConte. Beginning in 2009, populations of western corn rootworm were identified in Iowa, USA that imposed severe root injury to Cry3Bb1 maize. Subsequent laboratory bioassays revealed that these populations were resistant to Cry3Bb1 maize, with survival on Cry3Bb1 maize that was three times higher than populations not associated with such injury. Here we report the results of research that began in 2010 when western corn rootworm were sampled from 14 fields in Iowa, half of which had root injury to Cry3Bb1 maize of greater than 1 node. Of these samples, sufficient eggs were collected to conduct bioassays on seven populations. Laboratory bioassays revealed that these 2010 populations had survival on Cry3Bb1 maize that was 11 times higher and significantly greater than that of control populations, which were brought into the laboratory prior to the commercialization of Bt maize for control of corn rootworm. Additionally, the developmental delays observed for control populations on Cry3Bb1 maize were greatly diminished for 2010 populations. All 2010 populations evaluated in bioassays came from fields with a history of continuous maize production and between 3 and 7 y of Cry3Bb1 maize cultivation. Resistance to Cry34/35Ab1 maize was not detected and there was no correlation between survival on Cry3Bb1 maize and Cry34/35Ab1 maize, suggesting a lack of cross resistance between these Bt toxins. Effectively dealing with the challenge of field-evolved resistance to Bt maize by western corn rootworm will require better adherence to the principles of integrated pest management.

  11. Exploring cost-effective maize integrated weed management ...

    African Journals Online (AJOL)

    ACSS

    management (IWM) approach in maize in eastern Uganda. ... Returns on investment (ROI) were highest under pre-Atz+1hh and 2hh ... followed by one hand-hoe weeding (28 days after planting) is the most .... Mean effects of different IWM approaches on growth and yield of maize at Ikulwe S .... Efficiency of plant population.

  12. Genetic analysis of teosinte for kernel composition traits in maize

    Science.gov (United States)

    Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared to maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic ...

  13. Evaluating the effect of plant population densities and nitrogen application on the leaf area index of maize in a reclaimed wetland in Kenya

    Directory of Open Access Journals (Sweden)

    Njuguna Catherine Waithira

    2016-12-01

    Full Text Available Maize is the main staple food in Kenya with over 90% of Kenyans relying on it. While the annual national consumption is increasing, the production of this crop has been on the decline in the last two decades. Maize production in Kenya fell by 33.4% in 2013 with Nyeri among the counties said to be grappling with the production of this crop. Land pressure is one of the major causes of decreased availability of food as well as soil depletion and encroachment upon fragile ecosystems such as wetlands. Nitrogen is a key nutrient in the production of maize, and its deficiency is a major factor limiting its production. This study investigated the effect of N application at 120 kg N/ha and maize density on the Leaf Area Index in reclaimed wetland soils in an experimental set-up comprising a randomized complete block design with three replications. The research was carried out in Nyeri County, Kenya. Leaf Area Index (LAI was determined using the given SunScan formula. Measurements were done continuously until crop physiological maturity. Results indicated that the leaf area index increased with nitrogen application and reduced with spacing for most treatments. There were no significant differences between the two methods (Copy Method and SunScan. Leaf Area Index (LAI was high in treatments containing nitrogen and high plant density. It was concluded that high plant density gives high LAI. 50 cm * 12.5 cm (-N and 50 cm * 12.5 cm (+N are the recommended plant densities for the site.

  14. Bt maize and integrated pest management--a European perspective.

    Science.gov (United States)

    Meissle, Michael; Romeis, Jörg; Bigler, Franz

    2011-09-01

    The European corn borer (Ostrinia nubilalis), the Mediterranean corn borer (Sesamia nonagrioides) and the western corn rootworm (Diabrotica virgifera virgifera) are the main arthropod pests in European maize production. Practised pest control includes chemical control, biological control and cultural control such as ploughing and crop rotation. A pest control option that is available since 1996 is maize varieties that are genetically engineered (GE) to produce insecticidal compounds. GE maize varieties available today express one or several genes from Bacillus thuringiensis (Bt) that target corn borers or corn rootworms. Incentives to growing Bt maize are simplified farm operations, high pest control efficiency, improved grain quality and ecological benefits. Limitations include the risk of resistance evolution in target pest populations, risk of secondary pest outbreaks and increased administration to comply with licence agreements. Growers willing to plant Bt maize in the European Union (EU) often face the problem that authorisation is denied. Only one Bt maize transformation event (MON810) is currently authorised for commercial cultivation, and some national authorities have banned cultivation. Spain is the only EU member state where Bt maize adoption levels are currently delivering farm income gains near full potential levels. In an integrated pest management (IPM) context, Bt maize can be regarded as a preventive (host plant resistance) or a responsive pest control measure. In any case, Bt maize is a highly specific tool that efficiently controls the main pests and allows combination with other preventive or responsive measures to solve other agricultural problems including those with secondary pests.

  15. Identifying quantitative trait loci and determining closely related stalk traits for rind penetrometer resistance in a high-oil maize population.

    Science.gov (United States)

    Hu, Haixiao; Meng, Yujie; Wang, Hongwu; Liu, Hai; Chen, Shaojiang

    2012-05-01

    Stalk lodging in maize causes annual yield losses between 5 and 20% worldwide. Many studies have indicated that maize stalk strength significantly negatively correlates with lodging observed in the field. Rind penetrometer resistance (RPR) measurements can be used to effectively evaluate maize stalk strength, but little is known about the genetic basis of this parameter. The objective of this study was to explore a genetic model and detect quantitative trait loci (QTL) of RPR and determine relationships between RPR and other stalk traits, especially cell wall chemical components. RPR is quantitative trait in nature, and both additive and non-additive effects may be important to consider for the improvement of RPR. Nine additive-effect QTLs covering nine chromosomes, except chromosome 5, and one pair of epistatic QTLs were detected for RPR. CeSA11 involved in cellulose synthesis and colorless2 involved in lignin synthesis were identified as possible candidate genes for RPR. Internode diameter (InD), fresh weight of internode (FreW), dry weight of internode (DryW), fresh weight and dry weight as well as cell wall components per unit volume significantly positively correlated with RPR. The internode water content (InW) significantly negatively correlated with RPR. Notably, these traits significantly correlated with RPR, and the QTLs of these traits co-localized with those of RPR. The corresponding results obtained from correlation analysis and QTL mapping suggested the presence of pleitropism or linkage between genes and indicated that these different approaches may be used for cross authentication of relationships between different traits.

  16. Maize Genetic Resources

    Science.gov (United States)

    This chapter describes the resources held at the Maize Genetics Cooperation • Stock Center in detail and also provides some information about the North Central Regional Plant Introduction Station (NCRPIS) in Ames, IA, Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT) in Mexico, and the N...

  17. Economic efficiency of the maize grain

    Directory of Open Access Journals (Sweden)

    Ana Mariana Dincu

    2014-11-01

    Full Text Available In this work, was calculated and the level of profitability for several levels of production for grain maize cultivation. We chose corn because it is one of the most important forage crops, we could say even the largest, occupying third place among cultivated plants worldwide. Along with wheat and barley, the food is the biggest part of the population in the world, directly or converted to animal products. Maize can be used in animal feed in various forms. The most used is corn grain, which is characterized by a very high nutritional value, this product is properly regarded as a feed concentrate. Culture of maize have been designed two levels of production: 4000 kg / ha and 6000 kg / ha.

  18. MaizeGDB, the community database for maize genetics and genomics

    OpenAIRE

    2004-01-01

    The Maize Genetics and Genomics Database (MaizeGDB) is a central repository for maize sequence, stock, phenotype, genotypic and karyotypic variation, and chromosomal mapping data. In addition, MaizeGDB provides contact information for over 2400 maize cooperative researchers, facilitating interactions between members of the rapidly expanding maize community. MaizeGDB represents the synthesis of all data available previously from ZmDB and from MaizeDB—databases that have been superseded by Maiz...

  19. Density Effect of Ear-kernel Characters in Two Maize Heterotic Populations%2个玉米优势群体穗粒性状的密度效应分析

    Institute of Scientific and Technical Information of China (English)

    李玉玲; 周宇光; 魏蒙关; 李俊周; 陈欢庆; 张中伟; 杨国虎; 崔庆新; 杨美丽; 王启磊

    2009-01-01

    对Reid和非Reid 2个玉米优势群体在2种密度条件下6个穗粒性状的分析结果表明,各穗粒性状都是由多基因控制的复杂数量性状;高密度使除非Reid群体穗粗外的其余性状变劣,使非Reid群体的百粒重外的其余各性状的变异系数增大,高密度更有利于对性状实施表型选择,穗粒重和穗长更适宜作为穗粒性状耐密性的选择指标;Reid群体的耐密性优于非Reid群体;穗粒重同时由多个穗粒性状所决定,在利用Reid群体进行自交系选育过程中,更应注重协调各穗粒性状间的关系.%Six ear-kernel characters of two heterotic maize populations were analyzed under two planting densities. The results showed that ear-kernel characters were all complex quantitative traits in heredity. High planting density deteriorated all the characters, except ear diameter, and increased the variations of all characters, except 100-grain weight for the non-Reid population. High planting density was favorable for phenotypic selection of ear-kernel characters. Ear-kernel weight and ear length were the suitable selection criterion in planting density stress. Compared to non-Reid population, Reid population was less influenced by planting density. Ear-kernel weight was determined commonly by all ear-kernel characters. Great attention should be paid on coordinating the relations among different ear-kernel characters during the inbred line development from Reid population.

  20. Genetic characterization of a core set of a tropical maize race Tuxpeno for further use in maize improvement.

    Directory of Open Access Journals (Sweden)

    Weiwei Wen

    Full Text Available The tropical maize race Tuxpeño is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP markers. This panel included 321 core accessions of Tuxpeño race from the International Maize and Wheat Improvement Center (CIMMYT germplasm bank collection, 94 CIMMYT maize lines (CMLs and 54 U.S. Germplasm Enhancement of Maize (GEM lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants. Clustering analyses (CA based on Modified Rogers Distance (MRD clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the Tuxpeño core set. Various breeding strategies for using the Tuxpeño core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the Tuxpeño core, a minicore subset of 64 Tuxpeño accessions (20% of its usual size representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the Tuxpeño landrace for maize improvement through the core and/or minicore subset available to the maize community.

  1. Maize microarray annotation database

    Directory of Open Access Journals (Sweden)

    Berger Dave K

    2011-10-01

    Full Text Available Abstract Background Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a reporter - gene model match, (b number of reporters per gene model, (c potential for cross hybridization, (d sense/antisense orientation of reporters, (e position of reporter on B73 genome sequence (for eQTL studies, and (f functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. Description Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i "annotation by sense gene model" (23,668 reporters, (ii "annotation by antisense gene model" (4,330; (iii "annotation by gDNA" without a WGS transcript hit (1,549; (iv "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390; (v "ambiguous annotation" (2,608; and (vi "inconclusive annotation" (6,489. Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank. The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to

  2. INTEGRATED WEED CONTROL IN MAIZE.

    Science.gov (United States)

    Latré, J; Dewitte, K; Derycke, V; De Roo, B; Haesaert, G

    2015-01-01

    Integrated pest management has been implemented as a general practice by EU legislation. As weed control actually is the most important crop protection measure in maize for Western Europe, the new legislation will have its impact. The question is of course which systems can be successfully implemented in practice with respect to labour efficiency and economical parameters. During 3 successive growing seasons (2007, 2008, 2009) weed control in maize was evaluated, the main focus was put on different techniques of integrated weed control and was compared with chemical weed control. Additionally, during 4 successive growing seasons (2011, 2012, 2013 and 2014) two objects based on integrated weed control and two objects based on mechanical weed control were compared to about twenty different objects of conventional chemical weed control. One of the objects based on mechanical weed control consisted of treatment with the flex-tine harrow before and after emergence in combination with chemical weed control at a reduced rate in 3-4 leave stage. The second one consisted of broadcast mechanical treatments before and after emergence followed by a final in-row application of herbicides and an inter-row cultivation at 6-7(8) leave stage. All trials were conducted on the Experimental farm of Bottelare HoGent-UGent on a sandy loam soil. Maize was growing in 1/3 crop rotation. The effect on weed growth as well as the economic impact of the different applications was evaluated. Combining chemical and mechanical weed control is a possible option in conventional farming but the disadvantages must be taken into account. A better planned weed control based on the real present weed-population in combination with a carefully thought-out choice of herbicides should also be considered as an IPM--approach.

  3. Quantitative variation for grain quality in Brazilian maize populations Variação quantitativa para qualidade de grãos em populações brasileiras de milho

    Directory of Open Access Journals (Sweden)

    Andréa Mittelmann

    2011-02-01

    Full Text Available Development of maize (Zea mays L. cultivars with high grain protein and oil concentrations and an appropriate amino acid composition, without losses in grain yield, represents a challenge in breeding programs. The objective of this work was to study the nutritional quality of ten Brazilian maize populations evaluated in three environments. A randomized block design with six replications was used. Ear yield and the concentrations of protein, oil, serine, glutamic acid, alanine, leucine, tyrosine and phenylalanine were evaluated. Individual and combined analyses of variance were performed. Populations diverged for most of the traits. Environmental effects influenced variation for most of the traits, unlike genotype-environment interaction, allowing the selection on the average of environments. Positive association exists among protein and most of the amino acids, when considered on a dry matter basis and there is no association between nutritional quality and yield; therefore, the development of cultivars that are superior for both traits is expected to be feasible.O desenvolvimento de variedades de milho (Zea mays L. com maiores teores de proteína e óleo nos grãos e um balanço adequado de aminoácidos, sem prejuízo do rendimento de grãos, representa um desafio para o melhoramento. Estudou-se a qualidade nutricional em dez populações brasileiras de milho. As populações foram avaliadas em três ambientes. Os experimentos foram realizados em delineamento de blocos casualizados com seis repetições. Foram avaliados o rendimento de espigas e as concentrações de proteína, óleo, serina, ácido glutâmico, alanina, leucina, tirosina e fenilalanina. Análises de variância por experimento e conjunta foram realizadas. Há variação entre populações para a maioria dos caracteres estudados. Há efeito de ambiente para a maioria dos caracteres, mas não da interação genótipo-ambiente, permitindo a seleção para a média dos ambientes

  4. Breeding of speciality maize for industrial purposes

    OpenAIRE

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  5. Alocação de linhagens de milho derivadas das populações BR-105 e BR-106 em grupos heteróticos Allocation of maize lines from BR-105 and BR-106 populations to heterotic groups

    Directory of Open Access Journals (Sweden)

    Rogério de Melo Costa Pinto

    2001-09-01

    Full Text Available Os grupos heteróticos são importantes no melhoramento de milho, pois permitem o uso mais eficiente do germoplasma. Assim, o objetivo deste trabalho foi alocar linhagens de milho em grupos heteróticos a partir de estimativas da capacidade específica de combinação. Oito linhagens S3 da população BR-105 e dez da BR-106, foram cruzadas ao nível interpopulacional seguindo um sistema dialélico. Oitenta híbridos simples foram obtidos e avaliados em látices em três ambientes. Foram avaliados os caracteres produção de grãos (PG, altura da planta (AP e altura da espiga (AE. As estimativas das capacidades geral (CGC e específica (CEC de combinação foram obtidas segundo o método 4, modelo I de Griffing. A partir das estimativas de CEC, as linhagens foram alocadas aos respectivos grupos heteróticos utilizando-se o método UPGMA (média aritmética não ponderada para a construção do dendrograma e a dispersão gráfica pelo método das coordenadas principais. Para PG, as linhagens foram alocadas em quatro grupos heteróticos, sendo dois grupos em cada população. Para AP e AE, o uso das estimativas de CEC não foi eficiente para alocar as linhagens em grupos heteróticos. As análises de agrupamento e de coordenadas principais foram eficientes na alocação das linhagens em grupos heteróticos para PG. Então, como a produção de grãos é a principal característica para o melhoramento de milho, com a alocação das linhagens em quatro grupos heteróticos, os cruzamentos serão direcionados e o processo de melhoramento se tornará mais eficiente, evitando a obtenção e a avaliação de cruzamentos (híbridos desnecessários.The heterotic groups are important in maize breeding programs because they allow the most efficient use of the germoplasm. The objective of this research was to allocate maize lines to heterotic groups from estimates of specific combining ability (SCA. Eight and ten S3 lines derived from populations BR-105 and BR

  6. Quality protein maize: QPM

    Directory of Open Access Journals (Sweden)

    Ignjatović-Micić Dragana

    2008-01-01

    Full Text Available Quality protein maize (QPM contains the opaque-2 gene along with numerous modifiers for kernel hardness. Therefore, QPM is maize with high nutritive value of endosperm protein, with substantially higher content of two essential amino acids - lysine and tryptophan, and with good agronomical performances. Although QPM was developed primarily for utilization in the regions where, because of poverty, maize is the main staple food, it has many advantages for production and consumption in other parts of the world, too. QPM can be used for production of conventional and new animal feed, as well as for human nurture. As the rate of animal weight gain is doubled with QPM and portion viability is better, a part of normal maize production could be available for other purposes, such as, for example, ethanol production. Thus, breeding QPM is set as a challenge to produce high quality protein maize with high yield and other important agronomical traits, especially with today's food and feed demands and significance of energy crisis.

  7. From many, one: genetic control of prolificacy during maize domestication.

    Directory of Open Access Journals (Sweden)

    David M Wills

    2013-06-01

    Full Text Available A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant, we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1 was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1 gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.

  8. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  9. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths.

    Science.gov (United States)

    Holst, Irene; Moreno, J Enrique; Piperno, Dolores R

    2007-11-06

    We examined pollen grains and starch granules from a large number of modern populations of teosinte (wild Zea spp.), maize (Zea mays L.), and closely related grasses in the genus Tripsacum to assess their strengths and weaknesses in studying the origins and early dispersals of maize in its Mesoamerican cradle of origin. We report new diagnostic criteria and question the accuracy of others used previously by investigators to identify ancient maize where its wild ancestor, teosinte, is native. Pollen grains from teosinte overlap in size with those of maize to a much greater degree than previously reported, making the differentiation of wild and domesticated maize in palynological studies difficult. There is presently no valid method for separating maize and teosinte pollen on a morphological basis. Starch grain analysis, a recently developed tool of archaeobotany, appears to be of significant utility in distinguishing the seeds of teosinte from maize. We propose that the differences in starch grain morphology and size between wild and domesticated maize defined in this study may be associated with domestication genes in Zea that have been documented in the starch biosynthesis pathway. As previously reported, phytoliths effectively discriminate the female reproductive structures of Tripsacum, teosinte, and maize. Multiproxy microfossil studies of archaeological and paleoecological contexts appear to be effective tools for investigating the earliest stages of maize domestication and dispersals.

  10. New Genes in Traditional Seed Systems: Diffusion, Detectability and Persistence of Transgenes in a Maize Metapopulation

    NARCIS (Netherlands)

    Heerwaarden, van J.; Vecchyo, Del D.O.; Alvarez-Buylla, E.R.; Bellon, M.R.

    2012-01-01

    Gene flow of transgenes into non-target populations is an important biosafety concern. The case of genetically modified (GM) maize in Mexico has been of particular interest because of the country’s status as center of origin and landrace diversity. In contrast to maize in the U.S. and Europe, Mexica

  11. Zinc Absorption from Biofortified Maize Meets the Requirements of Young Rural Zambian Children12

    Science.gov (United States)

    Chomba, Elwyn; Westcott, Claire M; Westcott, Jamie E; Mpabalwani, Evans M; Krebs, Nancy F; Patinkin, Zachary W; Palacios, Natalia; Hambidge, K Michael

    2015-01-01

    Background: The zinc content of maize, a major global food staple, is generally insufficient alone to meet the requirements of young children. Objectives: The primary objective of this study was to determine whether substitution of biofortified maize (34 μg zinc/g grain) for control maize (21 μg zinc/g) was adequate to meet zinc physiologic requirements in young children for whom maize was the major food staple. A secondary objective was to compare total daily zinc absorption when maize flour was fortified with zinc oxide to a total concentration of 60 μg zinc/g. Methods: Participants included 60 rural Zambian children with a mean age of 29 mo who were randomly assigned to receive 1 of 3 maize types (control, biofortified, or fortified) all of which were readily consumed (>100 g on 1 d). Total daily zinc intake (from maize and low-zinc relish) was determined from duplicate diet collections. Multiplication by fractional absorption of zinc, measured by a dual isotope ratio technique, determined the total daily zinc absorption on the day the test meals were given. Results: The mean ± SD total daily zinc intake (milligrams per day) from the biofortified maize (5.0 ± 2.2) was higher (P < 0.0001) than for the control maize (2.3 ± 0.9). Intake of zinc from the fortified maize (6.3 ± 2.6) did not differ from the biofortified maize. Fractional absorption of zinc from control maize (0.28 ± 0.10) did not differ from the biofortified maize (0.22 ± 0.06). Total daily absorption of zinc (milligrams per day) from the biofortified maize (1.1 ± 0.5) was higher (P = 0.0001) than for the control maize (0.6 ± 0.2), but did not differ from the fortified maize (1.2 ± 0.4). Conclusions: These results indicate that feeding biofortified maize can meet zinc requirements and provide an effective dietary alternative to regular maize for this vulnerable population. This trial was registered at clinicaltrials.gov as NCT02208635. PMID:25733467

  12. Mutagenic effectiveness and efficiency of sodium azide versus ethyl methanesulfonate in maize: induction of somatic mutations at the yg/sub 2/ locus by treatment of seeds differing in metabolic state and cell population

    Energy Technology Data Exchange (ETDEWEB)

    Conger, B.V.; Carabia, J.V.

    1977-01-01

    This study was conducted to compare the effectiveness and efficiency of sodium azide (NaN/sub 3/) and ethyl methanesulfonate (EMS) for inducing somatic mutations at the yg/sub 2/ locus in maize seeds of two different metabolic states and cell populations. Dormant or presoaked (72 h at 20/sup 0/C) seeds heterozygous for yg/sub 2/ locus were treated with different concentrations of either EMS or NaN/sub 3/. The cell populations with respect to the percentage of cells in G/sub 1/, S, G/sub 2/, and M were also determined for seeds of the two metabolic states. Dormant seeds possessed a higher percentage of cells in G/sub 1/ and the presoaked seeds a higher percentage of cells in S, G/sub 2/, and M. The frequency of yg/sub 2/ sectors in leaves 4 and 5 increased with increasing concentration of both mutagens in both dormant and presoaked seeds. Both mutagens were more effective and efficient in the presoaked seeds. NaN/sub 3/ was more effective than EMS in terms of number of sectors induced per unit of dose. However, EMS was more efficient as determined by sectors induced per unit of seedling injury and clearly had the ability to induce much higher sector frequencies (more than 10 times greater) than NaN/sub 3/. The low ability of NaN/sub 3/ (compared to EMS) to induce mutant sectors may be related to the cells not being treated at the optimum time during the cell cycle, but it is more likely due to its low effectiveness for inducing chromosome aberrations.

  13. Effects of combined thiamethoxam and diatomaceous earth on mortality and progeny production of four Pakistani populations of Rhyzopertha dominica (Coleoptera: Bostrychidae) on wheat, rice and maize

    Science.gov (United States)

    Bioassays were conducted to evaluate the effects of combining thiamethoxam at 0.25, 0.5 and 0.75 mg/kg with the diatomaceous earth (DE) formulation, SilicoSec, at the rate of 100 mg/kg against four diverse populations of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) th...

  14. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  15. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize.

    Science.gov (United States)

    Gassmann, Aaron J; Petzold-Maxwell, Jennifer L; Clifton, Eric H; Dunbar, Mike W; Hoffmann, Amanda M; Ingber, David A; Keweshan, Ryan S

    2014-04-01

    The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.

  16. Genetic Architecture of Domestication-Related Traits in Maize.

    Science.gov (United States)

    Xue, Shang; Bradbury, Peter J; Casstevens, Terry; Holland, James B

    2016-09-01

    Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genetic basis of this could be sequence variation at the same key genes controlling maize-teosinte differentiation (due to lack of fixation or arising as new mutations after domestication), distinct loci with large effects, or polygenic background variation. Previous studies permit annotation of maize genome regions associated with the major differences between maize and teosinte or that exhibit population genetic signals of selection during either domestication or postdomestication improvement. Genome-wide association studies and genetic variance partitioning analyses were performed in two diverse maize inbred line panels to compare the phenotypic effects and variances of sequence polymorphisms in regions involved in domestication and improvement to the rest of the genome. Additive polygenic models explained most of the genotypic variation for domestication-related traits; no large-effect loci were detected for any trait. Most trait variance was associated with background genomic regions lacking previous evidence for involvement in domestication. Improvement sweep regions were associated with more trait variation than expected based on the proportion of the genome they represent. Selection during domestication eliminated large-effect genetic variants that would revert maize toward a teosinte type. Small-effect polygenic variants (enriched in the improvement sweep regions of the genome) are responsible for most of the standing variation for domestication-related traits in maize.

  17. Pollination between maize and teosinte: an important determinant of gene flow in Mexico.

    Science.gov (United States)

    Baltazar, Baltazar M; de Jesús Sánchez-Gonzalez, José; de la Cruz-Larios, Lino; Schoper, John B

    2005-02-01

    Gene flow between maize [Zea mays (L.)] and its wild relatives does occur, but at very low frequencies. Experiments were undertaken in Tapachula, Nayarit, Mexico to investigate gene flow between a hybrid maize, landraces of maize and teosinte (Z. mays ssp. mexicana, races Chalco and Central Plateau). Hybridization, flowering synchrony, pollen size and longevity, silk elongation rates, silk and trichome lengths and tassel diameter and morphology were measured. Hybrid and open-pollinated maize ears produced a mean of 8 and 11 seeds per ear, respectively, when hand-pollinated with teosinte pollen, which is approximately 1-2% of the ovules normally produced on a hybrid maize ear. Teosinte ears produced a mean of 0.2-0.3 seeds per ear when pollinated with maize pollen, which is more than one-fold fewer seeds than produced on a maize ear pollinated with teosinte pollen. The pollination rate on a per plant basis was similar in the context of a maize plant with 400-500 seeds and a teosinte plant with 30-40 inflorescences and 9-12 fruitcases per inflorescence. A number of other factors also influenced gene-flow direction: (1) between 90% and 95% of the fruitcases produced on teosinte that was fertilized by maize pollen were sterile; (2) teosinte collections were made in an area where incompatibility systems that limit fertilization are present; (3) silk longevity was much shorter for teosinte than for maize (approx. 4 days vs. approx. 11 days); (4) teosinte produced more pollen on a per plant basis than the landraces and commercial hybrid maize; (5) teosinte frequently produced lateral branches with silks close to a terminal tassel producing pollen. Collectively these factors tend to favor crossing in the direction of teosinte to maize. Our results support the hypothesis that gene flow and the subsequent introgression of maize genes into teosinte populations most probably results from crosses where teosinte first pollinates maize. The resultant hybrids then backcross with

  18. 中南穿梭育种对南斯拉夫玉米群体改良的互补性研究%The Mutual Complement Studies for Yugoslavia Maize Population Improvement Through the Shuttle Breeding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    1985-1997年对南斯拉夫玉米群体SYN1/9 C0进行半同胞轮回选择。1998年通过把在唐山C1~C6和在贝尔格莱德进行C3~C6共计10个轮回群体与4个标准自交系进行半双列杂交研究,连续2年试验,结果一致。研究结果表明对群体产量和测交组合产量以及产量杂种优势、配合力和田间部分性状一般配合力均存在显著差异,南斯拉夫和唐山两地改良效果极具互补性。实验表明,中南穿梭育种在提高南斯拉夫群体自身产量、测交组合产量的同时,能更为有效地提升群体杂种优势,使产量特殊配合力、一般配合力同时提高。%Yugoslavia maize population improvement was carried out by the method of HSRS and the way of shuttle beeding during 1985 to 1997。The 10 circles including 6 circles achieved in TangShang and 3 circles done in Belgrade were crossed with 4 inbred lined in half dialled-cross。40 hybrids together with 10 circles and 4 inbred lines were planted and studied for 2 years in TangShan。Signifficant difference and Strong complement were discovered,such as population yield and average yield of top-tested crosses。planting traits GCA and heterosis。The studied results also showed that shuttle breeding could improve not only population but also heterosis,especially SCA and GCA of yield were acquired。with the same steps。

  19. Genetic Gains in Yield and Yield Related Traits under Drought Stress and Favorable Environments in a Maize Population Improved Using Marker Assisted Recurrent Selection

    Directory of Open Access Journals (Sweden)

    Folusho Bankole

    2017-05-01

    Full Text Available The objective of marker assisted recurrent selection (MARS is to increase the frequency of favorable marker alleles in a population before inbred line extraction. This approach was used to improve drought tolerance and grain yield (GY in a biparental cross of two elite drought tolerant lines. The testcrosses of randomly selected 50 S1 lines from each of the three selection cycles (C0, C1, C2 of the MARS population, parental testcrosses and the cross between the two parents (F1 were evaluated under drought stress (DS and well watered (WW well as under rainfed conditions to determine genetic gains in GY and other agronomic traits. Also, the S1 lines derived from each selection types were genotyped with single nucleotide polymorphism (SNP markers. Testcrosses derived from C2 produced significantly higher grain field under DS than those derived from C0 with a relative genetic gain of 7% per cycle. Also, the testcrosses of S1 lines from C2 showed an average genetic gain of 1% per cycle under WW condition and 3% per cycle under rainfed condition. Molecular analysis revealed that the frequency of favorable marker alleles increased from 0.510 at C0 to 0.515 at C2, while the effective number of alleles (Ne per locus decreased from C0 (1.93 to C2 (1.87. Our results underscore the effectiveness of MARS for improvement of GY under DS condition.

  20. The Maize megagametophyte

    OpenAIRE

    Evans, M M S; U. Grossniklaus

    2008-01-01

    The life cycle of plants alternates between a diploid and a haploid generation. In flowering plants the haploid gametophytes are sexually dimorphic and produce the gametes, which fuse to produce the diploid sporophyte of the next generation. The megagametophyte of maize follows the Polygonum-type pattern of development:one of the four meiotic products, the functional megaspore, undergoes three free nuclear divisions to produce a polarized, eight-nucleate syncytium. Cellularization produces se...

  1. Physiological responses of maize and cowpea to intercropping

    Directory of Open Access Journals (Sweden)

    LIMA FILHO JOSÉ MOACIR PINHEIRO

    2000-01-01

    Full Text Available The effect of intercropping on plant water status, gas exchange and productivity of maize (Zea mays L. cv. Centralmex, and cowpea (Vigna unguiculata L. (Walp cv. Pitiuba were evaluated under semi-arid conditions at the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA at Petrolina, PE, Brazil. The treatments were: maize and cowpea as sole crops, at a population of 40,000 plants ha-1, and intercropped at a population of 20,000 plants ha-1. The results obtained in this paper appear to be related to the degree of competition experienced by the components, mainly for water and light. Maize intercropped had higher values of leaf water potential, stomatal conductance, transpiration and photosynthesis than as sole crop. Intercropped cowpea had higher values of leaf water potential but lower stomatal conductance, transpiration and photosynthesis than sole cowpea. Maize productivity increased 18% in relation to sole crop whereas a 5% decrease was observed with cowpea. Despite these facts the Land Equivalent Ratio obtained was 1.13 indicating intercropping advantage over the sole system. The higher partial Land Equivalent Ratio observed for maize suggests that this specie was the main component influencing the final productivity of the intercropping system studied.

  2. Heterosis in crosses among white grain maize populations with high quality protein Heterose em cruzamentos entre populações de milho de grãos brancos com alta qualidade protéica

    Directory of Open Access Journals (Sweden)

    Márcio Costa Rodrigues

    2006-01-01

    Full Text Available The objective of this work was to investigate heterosis and its components in 16 white grain maize populations presenting high quality protein. These populations were divided according to grain type in order to establish different heterosis groups. The crosses were carried out according to a partial diallel cross design among flint and dent populations. Seven agronomic traits were evaluated in three environments while four leaf diseases and incidence of corn stunt were evaluated in one. Least square procedure was applied to the normal equation X'Xbeta = X'Y, to estimate the model effects and their respective sum of squares. Among the heterosis components, in diallel analysis, significance for average heterosis in grain yield, number of days to female flowering and to all evaluated diseases was detected. Specific heterosis was significant for days to female flowering and resistance to Puccinia polysora. Results concerned to grain yield trait indicate that populations with superior performance in dent group, no matter what flint population group is used in crosses, tend to generate superior intervarietal hybrids. In decreasing order of preference, the dent type populations CMS 476, ZQP/B 103 and ZQP/B 101 and the flint type CMS 461, CMS 460, ZQP/B 104 and ZQP/B 102 are recommended to form composites.O objetivo deste trabalho foi investigar a heterose e seus componentes em 16 populações de milho de grãos brancos, de alta qualidade protéica. Estas populações foram divididas de acordo com o tipo de grão, para estabelecer grupos heteróticos diferentes. Os cruzamentos foram realizados entre populações dentadas e duras, seguindo o esquema dialélico parcial. Sete caracteres agronômicos foram avaliados em três locais, e quatro doenças foliares e a incidência de enfezamento, em um. O procedimento de quadrados mínimos foi aplicado à equação normal X'Xbeta = X'Y, para estimar os efeitos do modelo e suas respectivas somas de quadrados

  3. New inoculants on maize silage fermentation

    Directory of Open Access Journals (Sweden)

    Fábia Giovana do Val de Assis

    2014-08-01

    Full Text Available The objective of this study was to evaluate the effect of bacterial inoculants at two inoculation rates on chemical and biological characteristics of maize silage. The treatments consisted of two inoculating rates (5 and 6 log cfu g-1 of forage for each strain of lactic acid bacteria (LAB identified as Lactobacillus buchneri, L. hilgardii, or L. plantarum. The maize was ensiled in experimental PVC silos. Samples were taken for the determination of the contents of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, water-soluble carbohydrates (WSC, organic acids and alcohols, for the evaluation of the populations of lactic acid bacteria, yeasts, filamentous fungi, and for the determination of pH values during ensilage and after 30 or 90 days of fermentation. The doses of inoculants did not promote significant differences on the evaluated characteristics. There was effect of inoculants on acetic acid, 1.2-propanediol, LAB population, filamentous fungi, and pH value. No significant influence of the treatments with inoculants was observed in the variables DM, WSC, CP, lactic acid concentrations, or ethanol. The maximum temperature, i.e., the time to achieve the maximum temperature (TMT and aerobic stability (AS, was not influencied by treatments. However, a decrease in maximum temperature, an increase in TMT, and improvement in the AS were observed after 90 days of fermentation. These results proved the advantage of microbial inoculation. The treatments influenced LAB populations and filamentous fungi, but no effect was observed on the yeast population. The best inoculation dose is 6 cfu g-1 of forage because it provides higher reduction of filamentous fungi in maize silage, thereby decreasing the aerobic deterioration by these microorganisms.

  4. Maize variety and method of production

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  5. Fumonisin production and other traits of Fusarium moniliforme strains from maize in northeast Mexico.

    Science.gov (United States)

    Desjardins, A E; Plattner, R D; Nelson, P E

    1994-01-01

    Strains of Fusarium moniliforme from maize seed collected in four fields in northeast Mexico were tested for fumonisin production in culture, for sexual compatibility, and for vegetative compatibility by using non-nitrate-utilizing mutants. The test results indicate that a diverse population of fumonisin-producing strains of F. moniliforme (Gibberella fujikuroi) mating population A predominates and that a potential exists for production of fumonisins in Mexican maize. PMID:8017951

  6. Estimation of resistance allele frequency to maize incorporated Bacillus thuringiensis Cry2Ab2 protein in field populations of the fall army Spodoptera frugiperda (Lepidoptera: Noctuidae) from south region of the United State

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South Americas. In the falls of 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were es...

  7. Maize Genetic Resources Collections – Utilizing a Treasure Trove

    Science.gov (United States)

    The maize genetic resource collection managed by the USDA-ARS's National Plant Germplasm System is heavily utilized by researchers and educators. A collection of landraces, inbred lines from public and private sector sources, synthetics and key populations, it serves both as a living snapshot of th...

  8. Predicting weed problems in maize cropping by species distribution modelling

    Directory of Open Access Journals (Sweden)

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  9. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    Science.gov (United States)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  10. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Science.gov (United States)

    Huang, Fangneng; Qureshi, Jawwad A; Meagher, Robert L; Reisig, Dominic D; Head, Graham P; Andow, David A; Ni, Xinzi; Kerns, David; Buntin, G David; Niu, Ying; Yang, Fei; Dangal, Vikash

    2014-01-01

    Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  11. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize.

    Directory of Open Access Journals (Sweden)

    Fangneng Huang

    Full Text Available Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith, to Cry1F maize (TC 3507 in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293 Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012-2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.

  12. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    Science.gov (United States)

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy.

  13. Mapping the Diversity of Maize Races in Mexico

    Science.gov (United States)

    Perales, Hugo; Golicher, Duncan

    2014-01-01

    Traditional landraces of maize are cultivated throughout more than one-half of Mexico's cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources. PMID:25486121

  14. Mapping the diversity of maize races in Mexico.

    Directory of Open Access Journals (Sweden)

    Hugo Perales

    Full Text Available Traditional landraces of maize are cultivated throughout more than one-half of Mexico's cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources.

  15. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  16. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize

    Science.gov (United States)

    In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73'×'Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database (iPlant, http:...

  17. Evaluación de poblaciones nativas de maíz en ambientes con heladas en Valles Altos de Puebla Evaluation of maize native population in environments with frosts in High Valleys, Puebla

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-de la Luz

    2011-10-01

    Full Text Available En México la superficie sembrada con maíz es de ocho millones de hectáreas, de las cuales 1.2% es siniestrada por heladas. En el estado de Puebla este porcentaje es 0.8% y en Valles Altos 1.7%. El objetivo de este estudio, fue evaluar el efecto de las heladas en rendimiento de grano y seleccionar poblaciones nativas con mayor rendimiento en ambientes con presencia de heladas. Para ello se evaluaron 61 poblaciones nativas y tres variedades mejoradas, mediante un diseño experimental látice simple 8*8 con dos repeticiones. Los experimentos se establecieron en tres localidades del estado de Puebla. Las fechas de siembra fueron el 30 de marzo en Emiliano Zapata, Cuyoaco, el 7 de abril en Santa Inés Borbolla, Chalchicomula de Sesma y el 4 de mayo en Santa Cruz Coyotepec, San Juan Atenco; estas localidades se caracterizan por ser de temporal y con presencia de heladas en 2007. El análisis de varianza combinado indicó que las heladas afectaron el rendimiento de grano de las poblaciones nativas y mejoradas; pero hubo variedades como la CPue-131, CPue-448 y CPue-134 que mostraron mayor rendimiento promedio y mayor estabilidad ambiental que las mejoradas. La prueba de medias para localidades en el análisis combinado, indicó que Emiliano Zapata fue el ambiente menos afectado por heladas con 3 510 kg ha-1.In Mexico, the maize planted area is eight million hectares, out of which 1.2% is stricken by frost. In Puebla State, this percentage is 0.8% and 1.7% in High Valleys. The aim of this study was to evaluate the effect of frost on grain yield and to select native populations with higher performance in presence of frost. 61 native populations and three improved varieties were evaluated, through a simple lattice design 8*8 with two repetitions. The experiments were established at three locations in Puebla State. Planting dates were March 30th in Emiliano Zapata, Cuyoaco; April 7th in Santa Inés Borbolla, Chalchicomula de Sesma and May 4th in Santa

  18. Nitrate leaching from Silage Maize

    OpenAIRE

    Hansen, Elly Møller; Eriksen, Jørgen

    2009-01-01

    During the last 20 years the area with maize in Denmark has increased dramatically and reached 163,000 ha in 2008. Silage maize is easy to grow, is a suitable fodder for cows and goes well with grass-clover in the diet. This means that silage maize is often found in crop rotations with grass-clover on sandy soils in western Denmark. The ploughing in of grass-clover fields poses a serious risk of increased nitrate leaching on a coarse sandy soil, even when carried out in spring. With increased...

  19. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... as an increasingly important problem in Africa (Markham et al., 1994). Cheap and ... Removal of parent weevils and placement on a fresh seed medium ..... stored maize. An M.Sc. Thesis presented to the School of Graduate.

  20. Field-evolved resistance to Bt maize by western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Aaron J Gassmann

    Full Text Available BACKGROUND: Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae. METHODOLOGY/PRINCIPAL FINDINGS: We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. CONCLUSIONS/SIGNIFICANCE: This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.

  1. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  2. Movement law of maize population in seed room of seed metering device based on discrete element method%基于离散元的排种器排种室内玉米种群运动规律

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘飞; 赵满全; 刘月琴; 李凤丽; 陈晨; 张勇

    2016-01-01

    domain of vibration signal is conducted with the MATLAB software. Then the time domain and frequency domain results are taken as input parameters of seed metering device model in discrete element software, and the movement law of maize populations under the condition of vibration is simulated in the field work of no-till planter. Seed suction performance bench test verification is performed with the JPS-12 computer vision test bench and LKD-P type suction electromagnetic vibration table, and the analysis on seed metering performance of air-suction seed metering device is conducted under different operation speed and vibration amplitude. Field vibration signal analysis results show that when the field operation speed of planter increases from 2 to 7 km/h, the frequency of the main vibration power of seed metering device is basically kept at 5, 6 and 7 Hz; the vibration amplitude of the seed metering device shows a linear increase from 2.4 to 7.9 mm. Discrete element method simulation results show that the fitting curve between the maximum speed of corn population in seed room and the forward speed of planter has a fitting determination coefficient (R2) of 0.9671. The fitting straight line between the average speed of corn population and the speed of planter has a fitting determination coefficient (R2) of 0.9325. Bench test results show that the operation speed for good seed metering performance of the air-suction seed metering device is 3-5 km/h, and the good vibration amplitude is 6 mm; the maximum speed range of the population is 0.1203-0.2243 m/s, the population average speed range is 0.0807-0.1413 m/s, the maximum speed range of the population in seed suction area is 0.127-0.26 m/s, and the air-suction seed metering device has a good performance. The results can provide theoretical basis for improving the seed suction performance of air-suction seed metering device of no-tillage planter.%高寒干旱地区免耕地表播种作业时,排种器振动与种群运动

  3. BROWSES ENSILED WITH MAIZE FODDER

    African Journals Online (AJOL)

    Leucaenalmoae., respectively. Gliricidia/maize silages exhibited the best fermentation and nutrient patterns. .... proteolysis or deamination of protein in the silages. The DM losses ..... of legume shrubs and trees as fodders for livestockin the ...

  4. Procedimento para escolha de populações de milho promissoras para extração de linhagens Procedure to select superior maize populations for inbred line extraction

    Directory of Open Access Journals (Sweden)

    MAX WENDEL PAULA LIMA

    2000-01-01

    Full Text Available O sucesso de um programa de melhoramento de milho visando à obtenção de híbridos está intimamente ligado à identificação da população mais promissora para a extração de linhagens. O presente trabalho objetivou identificar procedimentos para a escolha dessas populações. Para isso, foram obtidas populações segregantes S0, S1 e 196 famílias S0:1 de cada um dos quatro materiais comerciais avaliados: híbridos simples (C 333B e Z 8392, duplo (AG 1051 e variedade (BR-105. Os experimentos foram conduzidos na safra agrícola 98/99 em duas localidades na região sul do Estado de Minas Gerais: Lavras e Ijaci. Na avaliação das 196 famílias S0:1 de cada população foi empregado o delineamento látice simples 14 x 14. Adicionalmente foi instalado um experimento em blocos casualizados, com 4 repetições, para avaliação simultânea das gerações F1, S0 e S1 A partir dos dados de produtividade de espigas despalhadas (kg por parcela das gerações F1, S0 e S1, foram obtidas as estimativas da contribuição dos locos em homozigose (m + a e em heterozigose (d. Foram também foram estimados os parâmetros genéticos e fenotípicos com os experimentos das famílias S0:1. Constatou-se que houve boa associação (r = 0,81 entre a estimativa de (m + a e a média das famílias S0:1 e que população com maior potencial para a extração de linhagens, maior (m + a, foi a AG 1051. A correlação entre as estimativas de (d e h² foi baixa, indicando que a estimativa da contribuição dos locos em heterozigose não foi bom indicador da variabilidade potencial da população.The identification of the population with greatest potential for inbred line extraction is directly linked to the success of a maize hybrid breeding program. This study was carried out to identify procedures for selecting these populations. Segregant S0, S1 populations and 196 S0:1 families were obtained from each of four commercial cultivars assessed: single hybrids (C 333B and

  5. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field.

    Science.gov (United States)

    Gassmann, Aaron J

    2012-07-01

    Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.

  6. Sequencing the maize genome.

    Science.gov (United States)

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  7. Effects of plant population and nitrogen fertilizer on yield and efficiency of maize-bean intercropping Efeito de população de plantas e adubação nitrogenada na produção e eficiência do consórcio milho-feijão

    Directory of Open Access Journals (Sweden)

    Luiz Balbino Morgado

    2003-11-01

    Full Text Available Nitrogen supply and plant population are basic parameters for cereal-legume intercropping. In order to study plant population and nitrogen fertilizer effects on yield and yield efficiency of maize-bean intercropping, a field experiment was established. Three bean plant populations and three nitrogen levels were used. Maize dry matter accumulation decreased with increases in bean plant population. Competitive effect of intercrop beans on maize yields was high at higher plant populations, being decreased by nitrogen fertilizer; application of 50 kg ha-1 N was very efficient in increasing maize cob yield. Intercropping significantly decreased harvest index of beans in all plant population and nitrogen fertilizer situations. The efficiency of intercropping, compared to sole cropping, was evidenced by the values obtained for Land Equivalent Ratio (LER for biomass, cob and pod yields that increased with increases in bean plant populations and nitrogen fertilizer levels.A disponibilidade de nitrogênio e a população de plantas são parâmetros básicos para o consórcio de gramíneas e leguminosas. Os efeitos de diferentes populações de plantas de feijão e níveis de nitrogênio na produção e eficiência do consórcio milho-feijão foram estudados em um experimento de campo. Foram usadas três populações de plantas de feijão e três níveis de nitrogênio. O acúmulo de matéria seca do milho durante o ciclo vegetativo decresceu à proporção que a população de feijão aumentou. O efeito competitivo do feijão na produção do milho consorciado, que se mostrou maior nas maiores populações de plantas, foi atenuado pela aplicação da adubação nitrogenada; a aplicação de 50 kg ha-1 de N foi muito eficiente no aumento da produção de espiga do milho. O consórcio diminuiu significativamente o índice de colheita do feijão em todas as populações de plantas e em todos os níveis de nitrogênio aplicados. A eficiência do cons

  8. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%

    OpenAIRE

    de Lourdes Corrêa Figueiredo, Maria; Cruz, Ivan; da Silva, Rafael Braga; Foster, John Edward

    2015-01-01

    International audience; AbstractSpodoptera frugiperda is a major pest causing maize yield loss in Brazil. There is therefore a need for control methods, notably for organic farming because classical pesticides are not allowed. A potential solution for organic maize is to apply the biological control agent Trichogramma pretiosum to reduce S. frugiperda populations. Here, we tested the application of one, two, or three releases of T. pretiosum. We measured plant damage ratings, egg masses paras...

  9. Studies With Triazoles to Alleviate Drought Stress in GreenHouse-Grown Maize (Zea mays) Seedlings

    OpenAIRE

    Batlang, Utlwang

    2006-01-01

    In semi-arid environments, dry-land farming often exposes crops to drought stress. Although some plant species are well adapted to drought, most crops are not. Drought can reduce plant populations and limit growth and development in ways that have serious yield consequences. Planting at the beginning of the wet season, when rainfalls are often sporadic and unreliable, can expose young maize seedlings to severe drought. Through the use of plant growth regulators (PGR), maize seedlings can per...

  10. Sources of resistance to pink stem borer and european corn borer in maize

    OpenAIRE

    Malvar Pintos, Rosa Ana; Cartea González, María Elena; Revilla Temiño, Pedro; Ordás Pérez, Amando; Álvarez Rodríguez, Ángel; Mansilla, J.P.

    1993-01-01

    The European corn borer (Ostrinia nubilalis Hbn) is an important insect pest of maize (Zea mays L.) in Europe. However, the larvae of pink stem borer (Sesamia nonagrioides Lef.) produce important damage to the stems, especially in Southern Europe. The first step in an insect-resistance breeding program is to identify sources of resistance. The objective of this work was to study the resistance/tolerance of several populations of maize to attack by corn borers in general, and of Sesamia nonagr...

  11. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: .... Imazapyr-resistant maize technology adoption for witch weed control. 175. Areas” (IAs) and ..... Iowa State University Press, Ames,. IA, USA. 164p.

  12. TEOR DE PROTEÍNA NO GRÃO EM POPULAÇÕES DE MILHO DE ALTA QUALIDADE PROTÉICA E SEUS CRUZAMENTOS KERNEL PROTEIN CONTENT IN QUALITY PROTEIN MAIZE POPULATIONS AND THEIR CROSSES

    Directory of Open Access Journals (Sweden)

    Keyla de Oliveira Ribeiro

    2007-09-01

    quality protein maize (QPM and their crosses for total grain protein. The heterosis and its components were quantified as useful parameters for breeding these populations. The analyses were carried out on 96 hybrids, derived from eight populations of dent grains (group 1 and thirteen of flint grains (group 2, including their parents in a partial diallel intergroup design. Kjeldahl's method was used to analyse total protein content. Variance analysis results were significant for all effects, revealing heterogeneity among and within the groups, as well as the presence of heterosis. The total protein content means of group 1 and group 2 were 9.67 g/100g and 10.51 g/100g, respectively, and the mean of hybrid combinations was 11.86 g/100g. The general mean involving all parents and crosses was 11.61 g/100g. The average heterosis was 17.58%, revealing the superiority of the hybrids over the parents. As far as general combining ability and yield mean are concerned, the best parents were CMS 454, CMS 474 and ZQP 103 (group 1 and CMS 453, BR 473, CMS 463, CMS 458 and ZQP 102 (group 2. These populations are recommended for QPM composites with high protein content.

    KEY-WORDS: Zea mays; protein; nutrition quality; QPM; diallel.

  13. PHYSIC QUALITY OF THE GRAIN IN HIGH QUALITY PROTEIN MAIZE POPULATIONS AND THEIR CROSSES QUALIDADE FÍSICA DO GRÃO EM POPULAÇÕES DE MILHO DE ALTA QUALIDADE PROTÉICA E SEUS CRUZAMENTOS

    Directory of Open Access Journals (Sweden)

    Jaison Pereira de Oliveira

    2007-12-01

    Full Text Available

    This study evaluated open pollinated populations of high quality protein maize (QPM and their crosses for weight of grains, grain density, and coloration, determining the heterosis and its components as subsidy for the improvement of these populations. The analyses were carried out on 96 hybrids, derived from eight populations of dent grains and thirteen of flint grains, including their parents in a partial diallel intergroup design. A chromatic scale used for classification of egg yolks was adapted to determine grain colorations. The coefficients of variation for the three variables were small, being 3.41% for the density, 6.23% for weight of 100 grains, and 7.03% for grain coloration. Except for specific heterosis of the real density, all effects analyzed were significant. The real density means of dent and flint groups were 1.27g mL-1 and 1.16g mL-1, with average heterosis of 3.53%. The parents CMS 474 (29.92 g and CMS 471 (34.28 g outstood for grain weight with larger means and heterosis of 3.61%. For grain coloration, the mean of flint group was 11.77 points and of the dent group 10.53 points, with average heterosis of 3.84%. Parents ZQP 101 and ZQP 103 are recommended for the formation of a composite of dent grains, and the genotypes CMS 458, CMS 472, CMS 453 and BR 473 as parental populations in the formation of a composite of flint grains.

    KEY-WORDS: Zea mays; grain density; grain weight; grain coloration.

    O presente trabalho objetivou avaliar populações de polinização aberta de milho de alta qualidade protéica e seus cruzamentos, quanto ao peso, densidade real e coloração dos grãos, determinando-se a heterose e seus componentes, como subsídio para o melhoramento destas populações. As análises foram executadas em 96 híbridos e seus genitores, provenientes de

  14. Fast-Flowering Mini-Maize: Seed to Seed in 60 Days

    Science.gov (United States)

    McCaw, Morgan E.; Wallace, Jason G.; Albert, Patrice S.; Buckler, Edward S.; Birchler, James A.

    2016-01-01

    Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer’s Early ACR (full color), Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ∼24× whole-genome resequencing data for Mini-Maize A. PMID:27440866

  15. Risks and benefits of genetically modified maize donations to southern Africa: views from Malawi.

    Science.gov (United States)

    Muula, Adamson S; Mfutso-Bengo, Joseph M

    2003-02-01

    In 2001 and 2002, many countries in the Southern African Development Community (SADC) have suffered from severe food shortages resulting in an estimated 14 million people facing starvation due to inadequate quantities of the staple maize. The international community's response has been the donation of foodstuffs, including genetically modified maize. Reactions of the recipient countries of Zambia, Zimbabwe, and Malawi have been different. Zambia appealed to the donors not to send genetically modified maize, whereas Malawi accepted the maize donations. Malawi is currently facing many public health challenges because 10% of its 10-million population is HIV-positive, maternal mortality rate has almost doubled between 1992 and 2000, and there are also an estimated 1 million orphans due to HIV/AIDS. In the European Union, genetically modified maize falls under "Novel Foods" and its marketing and distribution are strictly regulated by law. This has never been the case in the southern African countries. In this article, we discuss the ethical challenges associated with genetically modified maize donations to southern Africa. Although genetically modified food offers a way to avoid many adverse effects of food shortages, we believe that some of the ethical questions of genetically modified food donations should be solved first, under the leadership of the donor countries and partnership of the developing countries. There are fears that consummation of genetically modified maize could have adverse health effects. These fears must be addressed if the confidence of developing countries in the donor community is to be maintained.

  16. Zearalenone contamination in farm maize silage

    OpenAIRE

    L. Cavallarin; Antoniazzi, S.; E. Tabacco; G. Borreani

    2010-01-01

    Whole-plant maize silage, stored in horizontal silos, is the main diet source of lactating dairy cows in Italy. Mycotoxin contamination of maize grain has widely been described (Hussein and Brasel, 2001), while limited information is available on mycotoxins in maize silage (Oldenburg, 1991).

  17. Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers.

    Science.gov (United States)

    Barros-Rios, Jaime; Santiago, Rogelio; Jung, Hans-Joachim G; Malvar, Rosa A

    2015-03-04

    There is strong evidence to suggest that cross-linking of cell-wall polymers through ester-linked diferulates has a key role in plant resistance to pests; however, direct experimentation to provide conclusive proof is lacking. This study presents an evaluation of the damage caused by two corn borer species on six maize populations particularly selected for divergent diferulate concentrations in pith stem tissues. Maize populations selected for high total diferulate concentration had 31% higher diferulates than those selected for low diferulates. Stem tunneling by corn borer species was 29% greater in the population with the lowest diferulates than in the population with the highest diferulates (31.7 versus 22.6 cm), whereas total diferulate concentration was negatively correlated with stem tunneling by corn borers. Moreover, orthogonal contrasts between groups of populations evaluated showed that larvae fed in laboratory bioassays on pith stem tissues from maize populations with higher diferulates had 30-40% lower weight than larvae fed on the same tissues from maize populations with lower diferulates. This is the first report that shows a direct relationship between diferulate deposition in maize cell walls and corn borer resistance. Current findings will help to develop adapted maize varieties with an acceptable level of resistance against borers and be useful in special kinds of agriculture, such as organic farming.

  18. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Science.gov (United States)

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  19. Maize Diversity, Market Access, and Poverty Reduction in the Western Highlands of Guatemala

    Directory of Open Access Journals (Sweden)

    Jon Hellin

    2017-05-01

    Full Text Available The western highlands of Guatemala lie within the area where maize was first domesticated, and maize remains central to farmers' livelihood security. Over 50% of the population in the region are in poverty, and over 48% suffer from chronic malnutrition. Development efforts have focused on improved land management, crop diversification, and improved access to markets, especially for high-value vegetable crops such as snow peas. As a result of successful initiatives worldwide, more attention is being directed at the extent to which farmers can benefit from market opportunities for indigenous crops by receiving a price premium for providing the environmental service of conserving agricultural biodiversity. Such an approach bridges the gap between poverty alleviation and in situ conservation. We explored this potential development pathway through both qualitative and quantitative research. Focus groups were conducted in 5 communities in the maize-growing highlands of Guatemala, followed by a survey of 989 farm households in 59 locations. Our results show that most farmers in the western highlands of Guatemala are severely maize deficient; on average, farm households produce enough maize for only 6.9 months of consumption a year and are forced to purchase maize to meet basic consumption needs. The results are in sharp contrast to research conducted in highland communities in neighboring Mexico, where many farmers are able to sell their maize in relatively lucrative specialty maize markets. In the context of renewed interest in reducing poverty in Central America, our research suggests that rather than focus on market development for local maize varieties, development efforts should target other types of interventions.

  20. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    Directory of Open Access Journals (Sweden)

    Judith A Odhiambo

    Full Text Available Weed competition is a significant problem in maize (Zea mays, L. production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L. during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT, no-till (NT and conventional (CT applied to three cropping systems: continuous maize/bean intercropping (TYPICAL, maize/bean intercropping with relayed mucuna after bean harvest (RELAY and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP. Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1 in MT and $149.60 ha(-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations.

  1. Modeling the Morphometric Evolution of the Maize Shoot Apical Meristem.

    Science.gov (United States)

    Leiboff, Samuel; DeAllie, Christopher K; Scanlon, Michael J

    2016-01-01

    The maize (Zea mays subsp. mays L.) shoot apical meristem (SAM) is a self-replenishing pool of stem cells that produces all above-ground plant tissues. Improvements in image acquisition and processing techniques have allowed high-throughput, quantitative genetic analyses of SAM morphology. As with other large-scale phenotyping efforts, meaningful descriptions of genetic architecture depend on the collection of relevant measures. In this study, we tested two quantitative image processing methods to describe SAM morphology within the genus Zea, represented by 33 wild relatives of maize and 841 lines from a domesticated maize by wild teosinte progenitor (MxT) backcross population, along with previously reported data from several hundred diverse maize inbred lines. Approximating the MxT SAM as a paraboloid derived eight parabolic estimators of SAM morphology that identified highly overlapping quantitative trait loci (QTL) on eight chromosomes, which implicated previously identified SAM morphology candidate genes along with new QTL for SAM morphological variation. Using a Fourier-transform related method of comprehensive shape analysis, we detected cryptic SAM shape variation that identified QTL on six chromosomes. We found that Fourier transform shape descriptors and parabolic estimation measures are highly correlated and identified similar QTL. Analysis of shoot apex contours from 73 anciently diverged plant taxa further suggested that parabolic shape may be a universal feature of plant SAMs, regardless of evolutionary clade. Future high-throughput examinations of SAM morphology may benefit from the ease of acquisition and phenotypic fidelity of modeling the SAM as a paraboloid.

  2. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.

    Science.gov (United States)

    Löffler, Martin; Kessel, Bettina; Ouzunova, Milena; Miedaner, Thomas

    2010-03-01

    Infection of maize ears with Fusarium graminearum (FG) and Fusarium verticillioides (FV) reduces yield and quality by mycotoxin contamination. Breeding and growing varieties resistant to both Fusarium spp. is the best alternative to minimize problems. The objectives of our study were to draw conclusions on breeding for ear rot resistance by estimating variance components, heritabilities and correlations between resistances to FV and FG severity and to investigate different inoculation methods. In 2007 and 2008, three maturity groups (early, mid-late, late) each comprising about 150 inbred lines were tested in Germany, France, Italy, and Hungary according to their maturity group. They were silk channel inoculated by FG (early) and FV (all groups). In the late maturity group, additionally kernel inoculation was applied in a separate trial. The percentage of mycelium coverage on the ear was rated at harvest (0-100%). Significant (P Inoculation was superior to natural infection because of higher disease severities and heritabilities. In early maturing flints and dents, FG caused significantly (P inoculation in Southern Europe (mid-late, late) resulted in similar means between 10.3 and 14.0%. Selection is complicated by significant (P maize material within the existing germplasms is promising by multi-environmental inoculation trials.

  3. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification.

  4. Numerical taxonomy of maize landraces: comparison between experimental designs

    OpenAIRE

    1989-01-01

    [EN] Seventy three maize (Zea mays L.) landraces from Northwestern Spain were grown according to two different experimental design.The first one (design A) was a randomized complete blocks design with two replications per trial at two locations for two years. The second design (desing B) is simpler than the first one: the populations were grown at one location without replications for three years. Numerical taxonomy of these landraces was made according to results of the field trials u...

  5. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  6. Analysis of Maize versus Ethanol Production in Nebraska, United States and International Agricultural Droughts: Lessons for Global Food Security

    Science.gov (United States)

    Boken, V.; Tenkorang, F.

    2012-04-01

    Nebraska is one of the eight main corn (maize) belt states of the United States. Maize is the major crop of Nebraska with an average annual production of about 38 million tons (about 12% of U.S. production), which contributes billions of dollars to the state's economy. The yield of maize has increased significantly over the past century - from 1.6 t/ha in 1900 to 10.4 t/ha in 2010. While the majority of maize (about 40%) is currently used for animal feed and ethanol production, only about six percent is exported. It is estimated that about one billion people accounting for about 15% population of the world live in chronic hunger because of low agricultural productivity and drought. Most of these people depend on the U.S. for grains including maize. If a greater quantity of maize is diverted to ethanol production, considerably less quantity of maize would be available for export to developing countries where it could be used for human consumption and to mitigate hunger and improve food security. This paper presents analysis of maize production in Nebraska for the past three decades and examines how its commercialization for ethanol production has affected its exports in the face of drought at an international level.

  7. Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

    Science.gov (United States)

    The fall armyworm, Spodoptera frugiperda, is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I ® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of ...

  8. 'New' seed in 'old' China: impact of CIMMYT Collaborative Programme on maize breeding in Southwestern China.

    NARCIS (Netherlands)

    Song, Y.

    1998-01-01

    China is the most populated country with the most limited amount of arable land per head of the population in the world. Development and distribution of modern varieties of the three staples, rice, wheat and maize, to insure national food security, have been the core tasks and first priority of its

  9. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  10. Genetic and physiological analysis of iron biofortification in maize kernels.

    Directory of Open Access Journals (Sweden)

    Mercy G Lung'aho

    Full Text Available BACKGROUND: Maize is a major cereal crop widely consumed in developing countries, which have a high prevalence of iron (Fe deficiency anemia. The major cause of Fe deficiency in these countries is inadequate intake of bioavailable Fe, where poverty is a major factor. Therefore, biofortification of maize by increasing Fe concentration and or bioavailability has great potential to alleviate this deficiency. Maize is also a model system for genomic research and thus allows the opportunity for gene discovery. Here we describe an integrated genetic and physiological analysis of Fe nutrition in maize kernels, to identify loci that influence grain Fe concentration and bioavailability. METHODOLOGY: Quantitative trait locus (QTL analysis was used to dissect grain Fe concentration (FeGC and Fe bioavailability (FeGB from the Intermated B73 × Mo17 (IBM recombinant inbred (RI population. FeGC was determined by ion coupled argon plasma emission spectroscopy (ICP. FeGB was determined by an in vitro digestion/Caco-2 cell line bioassay. CONCLUSIONS: Three modest QTL for FeGC were detected, in spite of high heritability. This suggests that FeGC is controlled by many small QTL, which may make it a challenging trait to improve by marker assisted breeding. Ten QTL for FeGB were identified and explained 54% of the variance observed in samples from a single year/location. Three of the largest FeGB QTL were isolated in sister derived lines and their effect was observed in three subsequent seasons in New York. Single season evaluations were also made at six other sites around North America, suggesting the enhancement of FeGB was not specific to our farm site. FeGB was not correlated with FeGC or phytic acid, suggesting that novel regulators of Fe nutrition are responsible for the differences observed. Our results indicate that iron biofortification of maize grain is achievable using specialized phenotyping tools and conventional plant breeding techniques.

  11. Maize starch biphasic pasting curves

    CSIR Research Space (South Africa)

    Nelles, EM

    2000-05-01

    Full Text Available (150–500 rev/min). The second pasting peak is attributed to the formation of complexes between amylose and low levels of lipid present in maize starch. When lipid was partially removed by extraction with methanol-chloroform (1: 3 v/v), the second...

  12. ZEA MAIZE: A MODERN CRAZE

    Directory of Open Access Journals (Sweden)

    Dhamija Isha

    2013-06-01

    Full Text Available Zea stands for ‘sustaining life’ and Mays stands for ‘life giver’. Zea mays is one of the oldest and most dynamic crop species, which has gained popularity in modern world too, due to its applications in diverse dishes. Corn is produced in every continent of the world with the exception of Antarctica. It is an annual monoecious sunny plant, surviving perfectly in nutrient rich, well-drained soil. Each and every part of the corn, from husk to corn silk is beneficial for the society. There are more than 3,500 different uses for corn products. Corn does much more than feed people and livestock. The plant contains alkaloids, flavonoids, saponins, maizenic acid, vitamins B1, K and minerals like potassium, phosphorous and zinc. Traditionally, Maize is used as an analgesic, anti-diarrheal, anti-prostatitic, anti-lithiasis, anti-tumor, anti-hypertensive, anti-diabetic, anti-hyperlipidemic, anti-inflammatory and anti-oxidant. In this review article, we have narrated miscellaneous uses of corn varieties and described the pharmacological activities, phytoconstituents, nutritional value and traditional uses of maize. The maize has assorted uses like culinary, medicinal and industrial. Corn dishes like corn-meal, corn-flakes, popcorn, “makki ki roti” and corn soup highlight its dominance all over the world. Therefore, maize has become a craze among modern youth.

  13. Combing Ability Analysis ofamong Early Generation Maize Inbred ...

    African Journals Online (AJOL)

    dagne.cimdom

    Combining ability estimates are important genetic attributes ina maize breeding ... Twenty-nine early generation maize inbred lines were crossed to two ...... agronomic traits in quality protein maize under stress and non stress environments.

  14. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events

    Science.gov (United States)

    Santos-Amaya, Oscar F.; Rodrigues, João V. C.; Souza, Thadeu C.; Tavares, Clébson S.; Campos, Silverio O.; Guedes, Raul N.C.; Pereira, Eliseu J.G.

    2015-01-01

    Transgenic crop “pyramids” producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the “pyramid” resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field. PMID:26675246

  15. Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events.

    Science.gov (United States)

    Santos-Amaya, Oscar F; Rodrigues, João V C; Souza, Thadeu C; Tavares, Clébson S; Campos, Silverio O; Guedes, Raul N C; Pereira, Eliseu J G

    2015-12-17

    Transgenic crop "pyramids" producing two or more Bacillus thuringiensis (Bt) toxins active against the same pest are used to delay evolution of resistance in insect pest populations. Laboratory and greenhouse experiments were performed with fall armyworm, Spodoptera frugiperda, to characterize resistance to Bt maize producing Cry1A.105 and Cry2Ab and test some assumptions of the "pyramid" resistance management strategy. Selection of a field-derived strain of S. frugiperda already resistant to Cry1F maize with Cry1A.105 + Cry2Ab maize for ten generations produced resistance that allowed the larvae to colonize and complete the life cycle on these Bt maize plants. Greenhouse experiments revealed that the resistance was completely recessive (Dx = 0), incomplete, autosomal, and without maternal effects or cross-resistance to the Vip3Aa20 toxin produced in other Bt maize events. This profile of resistance supports some of the assumptions of the pyramid strategy for resistance management. However, laboratory experiments with purified Bt toxin and plant leaf tissue showed that resistance to Cry1A.105 + Cry2Ab2 maize further increased resistance to Cry1Fa, which indicates that populations of fall armyworm have high potential for developing resistance to some currently available pyramided maize used against this pest, especially where resistance to Cry1Fa was reported in the field.

  16. Technical considerations for maize flour and corn meal fortification in public health: consultation rationale and summary.

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves; Pachón, Helena; Mclean, Mireille Seneclauze; Arabi, Mandana

    2014-04-01

    Fortification is the purposeful addition of vitamins and minerals to foods during their industrial processing, as a way to improve the nutrition and health of populations who consume these foods. Twelve countries have mandatory maize (Zea mays subsp. Mays) flour or meal fortification. The World Health Organization (WHO) is updating evidence-informed guidelines for the fortification of staple foods in public health, including the fortification of maize flour and corn meal with iron and other micronutrients. Although there is limited experience with fortification of maize, mass fortification of maize flour with at least iron has been practiced for many years in several countries in the Americas and Africa: Brazil, Costa Rica, El Salvador, Kenya, Mexico, Nigeria, Rwanda, South Africa, Tanzania, Uganda, the United States, and Venezuela. The WHO, in collaboration with the Sackler Institute for Nutrition Science and the Flour Fortification Initiative (FFI), convened a consultation on technical considerations for fortification of maize flour and corn meal in public health in New York, New York on April 8-9, 2013 to provide input into the guideline-development process and to discuss technical considerations of the fortification processes for maize flour and corn meal.

  17. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  18. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage...

  19. Effect of winter maize-based intercropping systems on maize yield, associated weeds and economic efficiency

    OpenAIRE

    2014-01-01

    A field experiment was conducted during winter seasons of 2003-04 and 2004-05 at Kanpur, India to study the effect of winter maize (Zea mays L.) based intercropping systems on maize yield, associated weeds and economics under irrigated condition of central Uttar Pradesh. Thirteen maize-based cropping systems such as maize sole, potato (Solanum tuberosum L.) sole, mustard [Brassica juncea (L.) Czernj. & Cosson] sole, toria (Brassica campestris var. toria) sole, pea (Pisum sativum L.) sole, lin...

  20. High IgE sensitization to maize and rice pollen in the highlands of Madagascar

    Science.gov (United States)

    Ramavovololona; Sénéchal, Hélène; Andrianarisoa, Ange; Rakotoarimanana, Vololona; Godfrin, Dominique; Peltre, Gabriel; Poncet, Pascal; Sutra, Jean-Pierre

    2014-01-01

    Introduction Maize and rice are two crops constituting the main food supply in many under-developed and developing countries. Despite the large area devoted to the culture, the sensitization to the pollen from these plants is reported to be low and often considered as an occupational allergy. Methods Sixty five Malagasy pollen allergic patients were clinically and immunochemically investigated with regard to maize and rice pollen allergens. Pollen extracts were electrophoretically separated in 1 and 2 dimensions and IgE and IgG reactivities detected upon immunoblotting. Results When exploring the sensitization profile of Malagasy allergic patients to maize and rice pollen, it appears that a high proportion of these patients consulting during grass pollinating season were sensitized to both pollen as revealed by skin prick testing (62 vs. 59%) and IgE immunoblotting (85 vs. 40%). Several clinically relevant allergens were recognized by patients’ serum IgE in maize and rice pollen extracts. Conclusion The high levels of maize and rice pollen sensitization should be related, in this tropical region, to a specific environmental exposure including i) a proximity of the population to the allergenic sources and ii) a putative exacerbating effect of a highly polluted urban atmosphere on pollen allergenicity. Cross-reactivities between wild and cultivated grasses and also between rice and maize pollen are involved as well as some specific maize sensitizations. The presence of dense urban and peri-urban agriculture, in various African regions and worldwide, could be a high environmental risk factor for people sensitive to maize pollen. PMID:25870739

  1. Independent Molecular Basis of Convergent Highland Adaptation in Maize

    Science.gov (United States)

    Takuno, Shohei; Ralph, Peter; Swarts, Kelly; Elshire, Rob J.; Glaubitz, Jeffrey C.; Buckler, Edward S.; Hufford, Matthew B.; Ross-Ibarra, Jeffrey

    2015-01-01

    Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role in highland adaptation in Mexican maize. PMID:26078279

  2. MaizeGDB: Global support for maize research through open access information [abstract

    Science.gov (United States)

    MaizeGDB is the open-access global repository for maize genetic and genomic information – from single genes that determine nutritional quality to whole genome-scale data for complex traits including yield and drought tolerance. The data and tools at MaizeGDB enable researchers from Ethiopia to Ghan...

  3. Long-term Effects of Early Life Maize Yield on Maize Productivity and Efficiency in Rural Malawi

    OpenAIRE

    2017-01-01

    The paper assesses the effects of maize yields just prior to birth (in utero), in the first and the second years of life on adult life productivity and efficiency of maize farmers born between 1984 and 1995 in rural Malawi. To ensure that early life maize yields are not confounded by omitted local chacteristics, they are transformed into relative maize yields by using a cumulative gamma distribution. I find that maize yield just prior to birth significantly increases maize output in a farmer'...

  4. Genetically engineered plants, endangered species, and risk: a temporal and spatial exposure assessment for Karner blue butterfly larvae and Bt maize pollen.

    Science.gov (United States)

    Peterson, Robert K D; Meyer, Steven J; Wolf, Amy T; Wolt, Jeffrey D; Davis, Paula M

    2006-06-01

    Genetically engineered maize (Zea mays) containing insecticidal endotoxin proteins from Bacillus thuringiensis (Bt) delta-endotoxin proteins has been adopted widely in the Midwestern United States. The proteins are toxic to several lepidopteran species and because a variety of maize tissues, including pollen, may express the endotoxins, the probability of exposure to nontarget species, including endangered species, needs to be understood. The objective of this study was to assess the potential temporal and spatial exposure of endangered Karner blue butterfly larvae (Lycaeides melissa samuelis) to Bt maize pollen in Wisconsin using probabilistic exposure techniques and geographic information systems analysis. Based on degree-day modeling of butterfly phenology and maize pollen shed, there is some potential for temporal exposure of larvae to maize pollen. However, in the majority of years and locations, maize pollen shed most likely will occur after the majority of larval feeding on wild lupine (Lupinus perennis). The spatial analysis indicates that some Karner blue butterfly populations occur in close proximity to maize fields, but in the vast majority of cases the butterfly's host plant and maize fields are separated by more than 500 m. A small number of potential or existing Karner blue butterfly sites are located near maize fields, including sites in two of the four counties where temporal overlap is most likely. The exposure assessment indicates that these two counties should receive the highest priority to determine if Karner blue butterfly larvae are actually at risk and then, if needed, to reduce or prevent exposure.

  5. "Achieving Mexico’s Maize Potential"

    OpenAIRE

    Antonio Turrent Fernández; Timothy A. Wise; Elise Garvey

    2012-01-01

    Rising agricultural prices, combined with growing import dependence, have driven Mexico’s food import bill over $20 billion per year and increased its agricultural trade deficit. Mexico imports one-third of its maize, overwhelmingly from the United States, but three million producers grow most of the country’s white maize, which is used primarily for tortillas and many other pluricultural products for human consumption. Yield gaps are large among the country’s small to medium-scale maize farm...

  6. Presence of deoxynivalenol in maize of Vojvodina

    OpenAIRE

    Jajić Igor M.; Abramović Biljana F.; Jurić Verica B.; Krstović Saša Z.

    2007-01-01

    By applying previously established optimal conditions for the determination of deoxynivalenol (DON) by liquid chromatography with DAD detector, in this work, its content was determined in maize samples collected during the past 3 years (2004-2006) from different locations in Vojvodina. Analyzing 103 maize samples in total, the presence of deoxynivalenol was established in 42.7% of the samples. Only 3 samples of maize contained DON in concentrations that exceeded the maximum permitted level (1...

  7. THE EFFECTS OF DRYING AND SHELLING ON ASPERGILLUS FLAWS INFECTION AND AFLATOXIN PRODUCTION OF MAIZE

    Directory of Open Access Journals (Sweden)

    O.S. DHARMAPUTRA

    1997-01-01

    - O.S. Dharmaputra Population of A. flavus on maize var. Arjuna was higher than that of var. CPI-2. The population on maize stored at the initial m.c. of 17% was higher than that of 14%, The population on maize shelled by mechanical sheller was higher than that shelled by nail-down wood, but there was no significant difference. The population increased at 1 and 2 months of storage and then decreased at 3 months of storage. Total aflatoxin Bi content of maize var. CPI-2 was higher than that of var. Arjuna. The content of maize dried up to 17% m.c. and then shelled but not re-dried was the lowest compared with the other methods of drying. The content of maize shelled by nail-down wood was not significantly different than shelled by mechanical sheller. The content increased with the increase of storage duration.

  8. Desfolha, população de plantas e precocidade do milho afetam a incidência e a severidade de podridões de colmo Defoliation, plant population, and earliness of maize affect the incidence and severity of stalk rots

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Bassay Blum

    2003-10-01

    Full Text Available As relações entre fonte e dreno interferem sobre a ocorrência de podridões de colmo na cultura do milho (Zea mays. O estudo foi conduzido em Lages, SC, para avaliar o efeito da desfolha, população de plantas e híbridos sobre as podridões do colmo do milho. O delineamento experimental foi de blocos ao acaso com parcelas sub-subdivididas e três repetições. Os híbridos P32R21 (superprecoce, Premium (precoce e C333B (tardio foram testados sem desfolha e com 50% de desfolha no estágio de espigamento nas populações de 25.000, 50.000, 75.000 e 100.000 plantas ha-1. Avaliaram-se a incidência e a severidade das podridões do colmo causadas por Colletotrichum graminicola, Diplodia maydis e Fusarium moniliforme. O híbrido P32R21 foi o mais afetado pelos fungos causadores de podridões. Nos híbridos P32R21 e Premium, as plantas desfolhadas foram mais severamente infectadas pelos patógenos do que as intactas. O aumento da população de plantas aumentou a intensidade (incidência ou severidade de podridões de colmo nas plantas intactas e diminuiu a ocorrência nas desfolhadas.The relationship between source and sink interferes on maize (Zea mays stalk rot occurrence. This study was conducted in Lages, SC, Brazil, to evaluate the effect of defoliation, plant population, and hybrids on the intensity (incidence or severity of maize stalk rots. The experiment was set in a randomized complete block design (three replications with a split-split-plot arrangement. The hybrids P32R21 (very early, Premium (early and C333B (late were tested without defoliation and with 50% defoliation on ear formation stage at plant populations of 25,000, 50,000, 75,000, and 100,000 plants ha-1. The incidence and severity of Colletotrichum graminicola, Diplodia maydis and Fusarium moniliforme stalk rots were evaluated. The hybrid P32R21 was the most affected by stalk rots. Defoliation enhanced rots on P32R21 and Premium. Enhancements in plant population increased

  9. Maize genome sequencing by methylation filtration.

    Science.gov (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  10. The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems.

    Science.gov (United States)

    Zhang, Yikai; Chen, Fanjun; Li, Long; Chen, Yanhua; Liu, Bingran; Zhou, Yuling; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2012-11-01

    Interspecific root/rhizosphere interactions affect phosphorus (P) uptake and the productivity of maize/faba bean and maize/wheat intercropping systems. The aim of these experiments was to determine whether manipulation of maize root growth could improve the productivity of the two intercropping systems. Two near isogenic maize hybrids (the larger-rooted T149 and smaller-rooted T222) were intercropped with faba bean and wheat, under conditions of high- and low-P availability. The larger-rooted T149 showed greater competitive ability than the smaller-rooted T222 in both maize/faba bean and maize/wheat intercropping systems. The higher competitive ability of T149 improved the productivity of the maize/faba bean intercropping system in P-sufficient conditions. In maize/wheat intercropping systems, root growth, shoot biomass, and P uptake of maize were inhibited by wheat, regardless of the P-supply. Compared with T222, the larger-rooted T149 suffered less in the intercropping systems. The total biomass of the maize/wheat intercropping system was higher for wheat/T149 than for wheat/T222 under low-P conditions. These data suggested that genetic improvement of maize root size could enhance maize growth and its ability to compete for P resources in maize/faba bean and maize/wheat intercropping systems. In addition, depending on the P availability, larger maize roots could increase the productivity of intercropping systems.

  11. The iojap gene in maize

    Energy Technology Data Exchange (ETDEWEB)

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  12. Inheritance of Ear Tip-Barrenness Trait in Maize

    Institute of Scientific and Technical Information of China (English)

    MENG Zhao-dong; ZHANG Fa-jun; DING Zhao-hua; SUN Qi; WANG Li-ming; GUO Qing-fa; WANG Hong-gang

    2007-01-01

    The aim of this paper is to study the inheritance pattern of ear tip-barrenness trait in maize (Zea mays L.). Ear tipbarrenness trait in maize can be classified into two types, tip-barren and tip-barrenless. Two inbred lines, Ix01-3 (tipbarrenless type), wx04-1 (tip-barren type), and their F1, F2, BC1, BC2 generations were analyzed on their ear tip-barrenness types. Results showed that F1 was tip-barren type; the ratio of tip-barren type versus tip-barrenless type followed a 12.78∶1 ratio in F2 segregation population and a 2.75∶1 ratio in BC1. χ2 test indicated that the trait of ear tip-barrenness type followed an inheritance pattern of 2 duplicate dominant genes. SPSS analysis indicated that the trait of ear tip-barrenness length is of abnormal distribution. Above results mean that: (1) The trait of maize ear tip-barrenness type is controlled by2 duplicate dominant genes; tip-barren type is dominant over tip-barrenless type; (2) the trait of tip-barrenness length is a quantitative character controlled by polygene with major genes expected.

  13. Use of tropical maize for bioethanol production

    Science.gov (United States)

    Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lo...

  14. Towards the improvement of maize in Nigeria

    NARCIS (Netherlands)

    Eijnatten, van C.L.M.

    1965-01-01

    Approximately 600,000 tons of maize were produced annually in Nigeria. Maize was the main grain crop in southern Nigeria and its production in the middle belt was rapidly increasing. Most of the crop was eaten as dry grain, a little before maturity. A preference was recorded for floury varieties of

  15. ZP maize hybrids as silage raw material

    Directory of Open Access Journals (Sweden)

    Terzić Dušanka

    2012-01-01

    Full Text Available Due to its yields, biomass quality and biomass suitability for ensiling, diversity of use in feedstuff, maize is one of the most important forage plants. In comparison with other forage plants, the production of silage maize results in the greatest accumulation of solar energy per area unit. The positive correlation between a high density of net energy and the concentration of net energy as well as between digestibility of organic matter and the concentration of net energy is achieved in the produced biomass of maize plant. The yield of silage maize in dependence on the genetic potential of yield and agroecological conditions of the production ranges from 12 to 25 tonnes of the total dry matter per hectare at physiological maturity for ensiling with the dry matter content of 35-42%. This study presents results obtained in the long-term scientific and research programme on the improvement of ZP maize hybrids utilisation carried out in the Department of Technological Research at the Maize Research Institute Zemun Polje. The overall presentation of biomass quality parameters of six ZP maize hybrids (ZP 158, ZP 173/8, ZP 377, ZP 440, ZP 555 and ZP 679 of different genetic backgrounds intended for silage production is given in this study. Besides, interrelationships among these factors as well as their effects on maize biomass digestibility were established.

  16. Number of recombinations and genetic properties of a maize population undergoing recurrent selection Número de recombinações e as propriedades genéticas de uma população de milho sob seleção recorrente

    Directory of Open Access Journals (Sweden)

    Francisco Pinheiro Lima Neto

    2009-02-01

    Full Text Available In maize recurrent selection programs, selected genotypes were recombined once to generate genetic variability for the next selection cycle. Selection generates negative gametic phase disequilibrium which reduces genetic variances, and this disequilibrium is not significantly reduced with only one generation of recombination. The objective of this research was to assess the effects of one additional generation of recombination on phenotypic and genotypic parameters in a maize population undergoing recurrent selection. Selected progenies of the EPB-4 population were subjected to one and two generations of recombination, and from each generation half- and full-sib progenies were developed and evaluated at three environments for grain yield, plant and ear heights, prolificacy, and ear placement. There were no significant changes between each progeny type with one and two generations of recombination for the means, ranges, phenotypic distribution of the traits, genetic variances, heritability coefficients, and genetic correlations for the traits assessed. The results suggest that an additional generation of recombination will not increase the effectiveness of maize recurrent selection programs.Nos programas de seleção recorrente, os genótipos selecionados são recombinados uma vez para gerar variabilidade genética para o próximo ciclo de seleção. A seleção gera desequilíbrio negativo na fase gamética, reduzindo as variâncias genéticas, e este desequilíbrio não é significantemente reduzido com apenas uma geração de recombinação. O objetivo desta pesquisa foi avaliar os efeitos de uma geração adicional de recombinação sobre parâmetros fenotípicos e genéticos em uma população de milho submetida à seleção recorrente. Progênies selecionadas da população EPB-4 foram recombinadas por uma e duas gerações, e de cada geração foram obtidas progênies de meios-irmãos e de irmãos germanos, as quais foram avaliadas em tr

  17. Exploring maize-legume intercropping systems in Southwest Mexico

    NARCIS (Netherlands)

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  18. Maize flour contaminated with toxigenic fungi and mycotoxins in Kenya.

    Science.gov (United States)

    Muriuki, Gacheri K.; Siboe, George M.

    1995-02-01

    The majority of the Kenyan human population may be exposed to regular doses of a wide spectrum of highly toxic, carcinogenic, immunosuppressive, mutagenic, and hepatotoxic mycotoxins through the consumption of maizemeal. Maizemeal is consumed in Kenya at the rate of about 0.4kg/person/day, therefore, even the lowest amount of toxins consumed can cause significant effects as some are cumulative. Maize is also a major component in livestock and poultry feed, and the therefore regular indirect human exposure through the consumption of animal products that contain mycotoxin residues could be common. Due to these suspected risks, it is imperative to establish whether consumers in Kenya are actually exposed to dangerous mycotoxins in maize products hence this survey. Forty samples of flour packed in 90kg bags, 58 samples of "Ugali" brand (milled and packed by the Milling Corporation of Kenya Ltd), and 74 samples of "Jogoo" brand ( Unga Maize Millers) were collected from the Nairobi area. The samples were analysed for resident mycoflora, and some mycotoxins associated with key fungal species. Important fungal species isolated from the flour included Aspergillus flavus, A. sulphureus, Fusarium moniliforme, Penicillium stoloniferum, and P. cyclopium. All the three brands of flour were contaminated with Aflatoxins B1 and B2 (0.4-20 ug/kg), Ochratoxin A(50-1,500 ug/kg), and Zearalenone (2,500 - 5,000 ug/kg). Ochratoxin A was the most prevalent mycotoxin. These data provide a warning that the mycotoxin contamination problem in maizemeal is critical and consumers' health is at risk. Therefore, rigorous countrywide monitoring of mycotoxins in this staple food should be pursued. If possible, maize products should be subjected to stiff microbial quality control from the farm gate to the market shelf.

  19. Volatiles Emitted from Maize Ears Simultaneously Infected with Two Fusarium Species Mirror the Most Competitive Fungal Pathogen

    Science.gov (United States)

    Sherif, Mohammed; Becker, Eva-Maria; Herrfurth, Cornelia; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2016-01-01

    Along with barley and rice, maize provides staple food for more than half of the world population. Maize ears are regularly infected with fungal pathogens of the Fusarium genus, which, besides reducing yield, also taint grains with toxic metabolites. In an earlier work, we have shown that maize ears infection with single Fusarium strains was detectable through volatile sensing. In nature, infection most commonly occurs with more than a single fungal strain; hence we tested how the interactions of two strains would modulate volatile emission from infected ears. For this purpose, ears of a hybrid and a dwarf maize variety were simultaneously infected with different strains of Fusarium graminearum and F. verticillioides and, the resulting volatile profiles were compared to the ones of ears infected with single strains. Disease severity, fungal biomass, and the concentration of the oxylipin 9-hydroxy octadecadienoic acid, a signaling molecule involved in plant defense, were monitored and correlated to volatile profiles. Our results demonstrate that in simultaneous infections of hybrid and dwarf maize, the most competitive fungal strains had the largest influence on the volatile profile of infected ears. In both concurrent and single inoculations, volatile profiles reflected disease severity. Additionally, the data further indicate that dwarf maize and hybrid maize might emit common (i.e., sesquiterpenoids) and specific markers upon fungal infection. Overall this suggests that volatile profiles might be a good proxy for disease severity regardless of the fungal competition taking place in maize ears. With the appropriate sensitivity and reliability, volatile sensing thus appears as a promising tool for detecting fungal infection of maize ears under field conditions. PMID:27729923

  20. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica and their gut bacteria.

    Directory of Open Access Journals (Sweden)

    Harmen P Hendriksma

    Full Text Available Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1. Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis. Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.

  1. Volatiles emitted from maize ears simultaneously infected with two Fusarium species mirror the most competitive fungal pathogen

    Directory of Open Access Journals (Sweden)

    Mohammed Sherif

    2016-09-01

    Full Text Available Along with barley and rice, maize provides staple food for more than half of the world population. Maize ears are regularly infected with fungal pathogens of the Fusarium genus, which, besides reducing yield, also taint grains with toxic metabolites. In an earlier work, we have shown that maize ears infection with single Fusarium strains was detectable through volatile sensing. In nature, infection most commonly occurs with more than a single fungal strain; hence we tested how the interactions of two strains would modulate volatile emission from infected ears. For this purpose, ears of a hybrid and a dwarf maize variety were simultaneously infected with different strains of F. graminearums and F. verticillioides and, the resulting volatile profiles were compared to the ones of ears infected with single strains. Disease severity, fungal biomass and the concentration of an oxylipin 9-hydroxy octadecadienoic acid, a signaling molecule involved in plant defense, were monitored and correlated to volatile profiles. Our results demonstrate that in simultaneous infections of hybrid and dwarf maize, the most competitive fungal strains had the largest influence on the volatile profile of infected ears. In both concurrent and single inoculations, volatile profiles reflected disease severity. Additionally, the data further indicate that dwarf maize and hybrid maize might emit common (i.e. sesquiterpenoids and specific markers upon fungal infection. Overall this suggests that volatile profiles might be a good proxy for disease severity regardless of the fungal competition taking place in maize ears. With the appropriate sensitivity and reliability, volatile sensing thus appears as a promising tool for detecting fungal infection of maize ears under field conditions.

  2. ADVANCES IN TRANSGENIC MAIZE FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M.Rajendar Reddy

    2015-12-01

    Full Text Available Maize (Zea mays is a major food and animal feed worldwide and occupies a relevant place in the world economy and trade as an industrial grain crop. Currently more than 70% of maize production is used for food and feed; therefore, knowledge of genes involved in grain structure and chemical is important for improving the nutritional and food-making properties of maize. It is a good source of carbohydrates, fats, proteins, vitamins and minerals but deficient in two essential amino acids, Viz., lysine and tryptophan. To overcome this problem and to improve the above quality characters the maize breeders have followed different strategies like opaque 2, QPM and development of transgenic maize with improved quality characters. Finally we can conclude that the conventional breeding techniques and now plant biotechnology are helping meet the growing demand for food production, nutrition security while preserving our environment for future generations

  3. High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time

    Science.gov (United States)

    Jamann, Tiffany M.; Sood, Shilpa; Wisser, Randall J.; Holland, James B.

    2017-01-01

    Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequencing is a cost-effective strategy to obtain sequence information for loci of interest across many individuals, providing a less expensive approach to evaluating sequence variation at the population scale. Here we evaluate amplicon-based enrichment coupled with semiconductor sequencing on a validation set consisting of three maize inbred lines, two hybrids and 19 landrace accessions. We report the use of a multiplexed panel of 319 PCR assays that target 20 candidate loci associated with photoperiod sensitivity in maize while requiring 25 ng or less of starting DNA per sample. Enriched regions had an average on-target sequence read depth of 105 with 98% of the sequence data mapping to the maize ‘B73’ reference and 80% of the reads mapping to the target interval. Sequence reads were aligned to B73 and 1,486 and 1,244 variants were called using SAMtools and GATK, respectively. Of the variants called by both SAMtools and GATK, 30% were not previously reported in maize. Due to the high sequence read depth, heterozygote genotypes could be called with at least 92.5% accuracy in hybrid materials using GATK. The genetic data are congruent with previous reports of high total genetic diversity and substantial population differentiation among maize landraces. In conclusion, semiconductor sequencing of highly multiplexed PCR reactions is a cost-effective strategy for resequencing targeted genomic loci in diverse maize materials. PMID:28045987

  4. S Synerg with istic ac thiam ction o ethoxa of Azos am on maize ...

    African Journals Online (AJOL)

    sunny

    ize (Zea may h high econo ... eed to the high author. E-mail .... thiamethoxam, a synthetic insecticide with effect of plant ... to evaluate the physiological quality of maize seedlings in ... optical density (OD450 nm) of 0.5, corresponding to population of 6.67 ..... Physiologic performance of oats seeds treated with thiamethoxam.

  5. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    Science.gov (United States)

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  6. Field Studies on the Relationship between Fusarium verticillioides and Maize (Zea mays L.: Effect of Biocontrol Agents on Fungal Infection and Toxin Content of Grains at Harvest

    Directory of Open Access Journals (Sweden)

    Paola Pereira

    2011-01-01

    Full Text Available Maize (Zea mays L. is a staple food for the majority of the world's population. Fusarium verticillioides (Sacc. Nirenberg (Teleomorph: Gibberella moniliformis Wineland; synonym: F. moniliformis is both a saprophyte and a parasite of maize and can also be found as an endophyte. The presence of this fungus in maize constitutes an imminent risk due to its ability to produce fumonisins, mycotoxins with proven carcinogenic effects. The present work investigated biocontrol activity of Bacillus amyloliquefaciens and Microbacterium oleovorans against F. verticillioides infection and fumonisin B1 production in field-grown maize during four consecutive growing seasons. Treatment with B. amyloliquefaciens consistently reduced F. verticillioides inoculum and fumonisin content of harvested grains. F. verticillioides count and fumonisin levels correlated negatively with rainfall regimes; however, none of these parameters showed significant correlation with yields. Treatment with these biocontrol agents may improve phytosanitary quality of the grains and reduce toxicological risk in the maize agroecosystem.

  7. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication.

    Science.gov (United States)

    Ramos-Madrigal, Jazmín; Smith, Bruce D; Moreno-Mayar, J Víctor; Gopalakrishnan, Shyam; Ross-Ibarra, Jeffrey; Gilbert, M Thomas P; Wales, Nathan

    2016-12-05

    The complex evolutionary history of maize (Zea mays L. ssp. mays) has been clarified with genomic-level data from modern landraces and wild teosinte grasses [1, 2], augmenting archaeological findings that suggest domestication occurred between 10,000 and 6,250 years ago in southern Mexico [3, 4]. Maize rapidly evolved under human selection, leading to conspicuous phenotypic transformations, as well as adaptations to varied environments [5]. Still, many questions about the domestication process remain unanswered because modern specimens do not represent the full range of past diversity due to abandonment of unproductive lineages, genetic drift, on-going natural selection, and recent breeding activity. To more fully understand the history and spread of maize, we characterized the draft genome of a 5,310-year-old archaeological cob excavated in the Tehuacan Valley of Mexico. We compare this ancient sample against a reference panel of modern landraces and teosinte grasses using D statistics, model-based clustering algorithms, and multidimensional scaling analyses, demonstrating the specimen derives from the same source population that gave rise to modern maize. We find that 5,310 years ago, maize in the Tehuacan Valley was on the whole genetically closer to modern maize than to its wild counterpart. However, many genes associated with key domestication traits existed in the ancestral state, sharply contrasting with the ubiquity of derived alleles in living landraces. These findings suggest much of the evolution during domestication may have been gradual and encourage further paleogenomic research to address provocative questions about the world's most produced cereal.

  8. A Public Platform for the Verification of the Phenotypic Effect of Candidate Genes for Resistance to Aflatoxin Accumulation and Aspergillus flavus Infection in Maize

    Directory of Open Access Journals (Sweden)

    Xueyan Shan

    2011-06-01

    Full Text Available A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel and SNP genotyping in the population(s for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  9. Future climate impacts on maize farming and food security in Malawi

    Science.gov (United States)

    Stevens, Tilele; Madani, Kaveh

    2016-11-01

    Agriculture is the mainstay of Malawi’s economy and maize is the most important crop for food security. As a Least Developed Country (LDC), adverse effects of climate change (CC) on agriculture in Malawi are expected to be significant. We examined the impacts of CC on maize production and food security in Malawi’s dominant cereal producing region, Lilongwe District. We used five Global Circulation Models (GCMs) to make future (2011 to 2100) rainfall and temperature projections and simulated maize yields under these projections. Our future rainfall projections did not reveal a strong increasing or decreasing trend, but temperatures are expected to increase. Our crop modelling results, for the short-term future, suggest that maize farming might benefit from CC. However, faster crop growth could worsen Malawi’s soil fertility problem. Increasing temperature could drive lower maize yields in the medium to long-term future. Consequently, up to 12% of the population in Lilongwe District might be vulnerable to food insecurity by the end of the century. Measures to increase soil fertility and moisture must be developed to build resilience into Malawi’s agriculture sector.

  10. Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize.

    Science.gov (United States)

    Karn, Avinash; Gillman, Jason D; Flint-Garcia, Sherry A

    2017-02-10

    Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared to maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic lines (teosinte NILs) was previously developed to broaden the resources for genetic diversity of maize, and to discover novel alleles for agronomic and domestication traits. The 961 teosinte NILs were developed by backcrossing ten geographically diverse parviglumis accessions into the B73 (reference genome inbred) background. The NILs were grown in two replications in 2009 and 2010 in Columbia, Missouri and Aurora, New York, respectively, and Near Infrared Reflectance (NIR) spectroscopy and Nuclear Magnetic Resonance (NMR) calibrations were developed and used to rapidly predict total kernel starch, protein and oil content on a dry matter basis in bulk whole grains of teosinte NILs. Our joint-linkage quantitative trait locus (QTL) mapping analysis identified two starch, three protein and six oil QTLs, which collectively explained 18%, 23% and 45% of the total variation, respectively. A range of strong additive allelic effects for kernel starch, protein and oil content were identified relative to the B73 allele. Our results support our hypothesis that teosinte harbors stronger alleles for kernel composition traits than maize, and that teosinte can be exploited for the improvement of kernel composition traits in modern maize germplasm.

  11. Efficacy of Microwave-Heating during Alkaline Processing of Fumonisin-Contaminated Maize

    Science.gov (United States)

    MENDEZ-ALBORES, Abraham; CARDENAS-RODRIGUEZ, Denisse Anelem; VAZQUEZ-DURAN, Alma

    2014-01-01

    Abstract Background Fumonisins (a family of foodborne carcinogenic mycotoxins) cause health hazards to humans and animals in developing countries, and has also economic implications. Therefore, the efficacy of a novel environmental friendly nixtamalization procedure to make tortillas (the main staple food for the Mexican population) was investigated. Methods Maize contaminated with 2136.67 ng/g total fumonisins was processed into tortillas, starting with maize grits mixed with water and calcium hydroxide that was cooked in a microwave field at 2.45 GHz during 3.75 min, and steeped 3.5 h at room temperature. The steeped maize grits (nixtamal) was stone-ground into masa (maize dough), which was then used to make tortillas. Total fumonisin content was determined using monoclonal antibody columns. Results Masa contained 1998.33 ng/g total fumonisins, which represents 6.5% toxin reduction. Nevertheless, fumonisin concentration was reduced significantly in tortillas (up to 985.33 ng/g) due to the cooking process, corresponding to a cumulative toxin degradation of 54%. Tortillas were below the maximum tolerated level, considering the European Union regulatory limit for fumonisins in maize (1000 ng/g). The physicochemical and technological properties of tortillas were also considered within the acceptable margins of quality. Conclusion Microwave nixtamalization was not a feasible method to reduce fumonisin content in masa to acceptable levels; however, an effective extra-reduction occurred when masa was baking into tortillas. PMID:26060737

  12. Efficacy of Microwave-Heating during Alkaline Processing of Fumonisin-Contaminated Maize.

    Directory of Open Access Journals (Sweden)

    Abraham Mendez-Albores

    2014-02-01

    Full Text Available Fumonisins (a family of foodborne carcinogenic mycotoxins cause health hazards to humans and animals in developing countries, and has also economic implications. Therefore, the efficacy of a novel environmental friendly nixtamalization procedure to make tortillas (the main staple food for the Mexican population was investigated.Maize contaminated with 2136.67 ng/g total fumonisins was processed into tortillas, starting with maize grits mixed with water and calcium hydroxide that was cooked in a microwave field at 2.45 GHz during 3.75 min, and steeped 3.5 h at room temperature. The steeped maize grits (nixtamal was stone-ground into masa (maize dough, which was then used to make tortillas. Total fumonisin content was determined using monoclonal antibody columns.Masa contained 1998.33 ng/g total fumonisins, which represents 6.5% toxin reduction. Nevertheless, fumonisin concentration was reduced significantly in tortillas (up to 985.33 ng/g due to the cooking process, corresponding to a cumulative toxin degradation of 54%. Tortillas were below the maximum tolerated level, considering the European Union regulatory limit for fumonisins in maize (1000 ng/g. The physicochemical and technological properties of tortillas were also considered within the acceptable margins of quality.Microwave nixtamalization was not a feasible method to reduce fumonisin content in masa to acceptable levels; however, an effective extra-reduction occurred when masa was baking into tortillas.

  13. Efficacy of Microwave-Heating during Alkaline Processing of Fumonisin-Contaminated Maize.

    Science.gov (United States)

    Mendez-Albores, Abraham; Cardenas-Rodriguez, Denisse Anelem; Vazquez-Duran, Alma

    2014-02-01

    Fumonisins (a family of foodborne carcinogenic mycotoxins) cause health hazards to humans and animals in developing countries, and has also economic implications. Therefore, the efficacy of a novel environmental friendly nixtamalization procedure to make tortillas (the main staple food for the Mexican population) was investigated. Maize contaminated with 2136.67 ng/g total fumonisins was processed into tortillas, starting with maize grits mixed with water and calcium hydroxide that was cooked in a microwave field at 2.45 GHz during 3.75 min, and steeped 3.5 h at room temperature. The steeped maize grits (nixtamal) was stone-ground into masa (maize dough), which was then used to make tortillas. Total fumonisin content was determined using monoclonal antibody columns. Masa contained 1998.33 ng/g total fumonisins, which represents 6.5% toxin reduction. Nevertheless, fumonisin concentration was reduced significantly in tortillas (up to 985.33 ng/g) due to the cooking process, corresponding to a cumulative toxin degradation of 54%. Tortillas were below the maximum tolerated level, considering the European Union regulatory limit for fumonisins in maize (1000 ng/g). The physicochemical and technological properties of tortillas were also considered within the acceptable margins of quality. Microwave nixtamalization was not a feasible method to reduce fumonisin content in masa to acceptable levels; however, an effective extra-reduction occurred when masa was baking into tortillas.

  14. Impact of rhizobial inoculation and nitrogen utilization in plant growth promotion of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    RAMESH K. SINGH

    2013-05-01

    Full Text Available Singh RK, Malik N, Singh S. 2013. Impact of rhizobial inoculation and nitrogen utilization in plant growth promotion of maize (Zea mays L.. Nusantara Bioscience 5: 8-14. During the course of growing population demands there has been an increasing interest in exploring the possibility of extending the beneficial interaction between cereals and plant growth promoting rhizobacteria (PGPR. Endophytes are a group of microorganism that resides mostly in the intercellular space of various parts of plants including cereals. Assessment of plant growth promoting properties of the five-rhizobial strains belonging to α subclass i.e. Rhizobium leguminosarum bv. phaseoli RRE6 and R. undicola RRE36 and those belonging to β subclass i.e. Burkholderia cepacia (RRE3, RRE5, RRE25 was done by growing maize plants inoculated with these strains. Inoculated maize plants showed a significant increase in plant height, root length, shoot and root dry weight over uninoculated control. R. leguminosarum bv. phaseoli RRE6 and B. cepacia RRE5 among the α and β-subclass representatives respectively, gave the best inoculation response. Effect of nitrate supplementation upon maize-RRE6 and RRE5 association was also studied and a significant increase in all the growth parameters and colonization ability was recorded when nitrate was present as a supplement over uninoculated control and maize-RRE6 and RRE5 in absence of external nitrate.

  15. Selection of tropical lactic acid bacteria for enhancing the quality of maize silage.

    Science.gov (United States)

    Santos, A O; Ávila, C L S; Schwan, R F

    2013-01-01

    The objective of this study was to select lactic acid bacteria (LAB) strains isolated from silage and assess their effect on the quality of maize silage. The LAB strains were inoculated into aqueous extract obtained from maize to evaluate their production of metabolites and pH reduction. The ability to inhibit the pathogenic and silage-spoilage microorganisms' growth was evaluated. Nine LAB strains that showed the best results were assessed in polyvinyl chloride experimental silos. The inoculation of the LAB strains influenced the concentration of lactic and acetic acids and the diversity of Listeria. The inoculation of silages with Lactobacillus buchneri (UFLA SLM11 and UFLA SLM103 strains) resulted in silages with greater LAB populations and improvements after aerobic exposure. The UFLA SLM11 and SLM103 strains identified as L. buchneri showed to be promising in the treatment of maize silage.

  16. Short communication: QTL mapping for ear tip-barrenness in maize

    Energy Technology Data Exchange (ETDEWEB)

    Ding, J.; Ma, J.; Chen, J.; Ai, T.; Li, Z.; Tian, Z.; Wu, S.; Chen, W.; Wu, J.

    2016-11-01

    Barren tip on corn ear is an important agronomic trait in maize, which is highly associated with grain yield. Understanding the genetic basis of tip-barrenness may help to reduce the ear tip-barrenness in breeding programs. In this study, ear tip-barrenness was evaluated in two environments in a F2:3 population, and it showed significant genotypic variation for ear tip-barrenness in both environments. Using mixed-model composite interval mapping method, three additive effects quantitative trait loci (QTL) for ear tip-barrenness were mapped on chromosomes 2, 3 and 6, respectively. They explained 16.6% of the phenotypic variation, and no significant QTL × Environment interactions and digenic interactions were detected. The results indicated that additive effect was the main genetic basis for ear tip-barrenness in maize. This is the first report of QTL mapped for ear tip-barrenness in maize. (Author)

  17. QTL mapping of resistance to sheath blight in maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    YANG Hua; YANG Junpin; RONG Tingzhao; TAN Jun; QIU Zhenggao

    2005-01-01

    The genetic linkage map has been constructed with 125 SSR markers based on BC1:2 population consisting of 322 lines derived from the combination of (CML270×478) ×CML270 in maize (Zea mays L.), covering 1939.0 cM of maize genome. The average mapping distance was about 15.5 cM. Three major QTLs of the relative resistant index of resistance to maize sheath blight (Rhizoctonia solani) had been located on chromosomes 1, 7 by composite interval mapping (CIM). 7 QTLs of the plant height have been located on chromosomes 3, 4, 5, 6. Five QTLs of ear height have been located on chromosomes 3, 4, 6. The resistance to the sheath blight is shown to be not relative to plant height and ear height genetically. Inbred line CML270 was used for molecular assisted selection and cloning the genes.

  18. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico.

    Science.gov (United States)

    Storer, Nicholas P; Kubiszak, Mary E; Ed King, J; Thompson, Gary D; Santos, Antonio Cesar

    2012-07-01

    In 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US. The majority of the collections from Puerto Rico continue to show high levels of Cry1F resistance whereas populations collected from the southern US mainland continue to show full susceptibility to Cry1F and TC1507 maize. It does not appear that resistant populations have spread to any measurable extent from Puerto Rico to mainland US, nor that local selection pressure from Cry1F-expressing maize or cotton production in the southern US has caused a measurable change in population susceptibility. Lessons learned from Puerto Rico are being applied in other parts of the Americas where TC1507 maize is grown and additional steps being taken to protect the long-term durability of Cry1F in maize in areas where similar selection pressure may be expected. Tactics include using locally-adapted germplasm that contain native Spodoptera resistance, a robust education program to teach end-users about the potential for resistance to develop appropriate crop stewardship, resistance monitoring, and the use of insecticides under high S. frugiperda pressure. Perhaps most importantly, pyramided trait products that produce two or more different Bt proteins are being introduced to further delay resistance development to Cry1F.

  19. "New" seed in "old" China : impact of CIMMYT Collaborative Programme on maize breeding in South-Western China

    NARCIS (Netherlands)

    Song, Y.

    1998-01-01

    China is the most populated country with the most limited amount of arable land per head of the population in the world. Development and distribution of modern varieties of the three staples, rice, wheat and maize, to insure national food security, have been the core tasks and first priorit

  20. "New" seed in "old" China : impact of CIMMYT Collaborative Programme on maize breeding in South-Western China

    NARCIS (Netherlands)

    Song, Y.

    1998-01-01

    China is the most populated country with the most limited amount of arable land per head of the population in the world. Development and distribution of modern varieties of the three staples, rice, wheat and maize, to insure national food security, have been the core tasks and first

  1. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch.

    Science.gov (United States)

    Wang, Wei; Zhou, Hongxian; Yang, Hong; Zhao, Siming; Liu, Youming; Liu, Ru

    2017-01-01

    The objective of this study was to evaluate the effects of salts on the gelatinization and retrogradation of maize and waxy maize starch. Experimental results showed that the salting-out or structure-making ions, such as F(-) and SO4(2-), decreased the swelling power, solubility and transparency of both starches, but increased the gelatinization temperature, enthalpy, and syneresis, due to the tendency of these ions to protect the hydrogen bond links among starch molecules. On the other hand, the salting-in or structure-breaking ions, such as I(-) and SCN(-), exhibited the opposite effects. Microscopic observations confirmed such effects of salts on both starches. Furthermore, the effects of salts were more significant on waxy maize and on normal maize starch. Generally, salts could significantly influence on the gelatinization and retrogradation of maize and waxy maize starch, following the order of the Hofmeister series.

  2. Nutrient absorbtion of weeds in maize.

    Science.gov (United States)

    Lehoczky, E; Kismányoky, A; Nagy, P; Németh, T

    2008-01-01

    Our study was carried out in Hungary at Keszthely, in 2007. The effect of different cultivation methods: no-till drill, disk tillage, conventional tillage (ploughing) and five increasing N doses were studied on the weediness. The bi-factorial trial was arranged in split plot design with four replications. Crop rotation: winter wheat-winter wheat-maize-maize. The seeding of maize was 23rd of April in 2007. The weed survey was made with Balázs-Ujvárosi coenological method on the 17th of May. In the experiment were found 21 weed species. We collected all plants of every weed species by plots. The sample area was 1 m2. Furthermore five maize plants per plot were sampled on the 22nd of May. Maize was at 3-4 leaves stage. For reason of competition studies no herbicides were applied on sampling sites. The aerial parts of weeds and maize plants were collected, and the fresh and dry matter weight was measured. We analyzed in detail, the occurrence of weed species, and the biomass production of weeds in comparison with maize. The effect of different cultivation methods markedly demonstrated the weed cover, the number of perennial and annual weeds and the number of occurring weed species.

  3. Cytotoxicity of Ustilago maydis isolated from maize

    Directory of Open Access Journals (Sweden)

    Magdalena Twarużek

    2013-03-01

    Full Text Available The main pathogen of maize are fungi of the genus Fusarium. Besides phytopathogenic Fusarium, Ustilago maydis is another fungal genus affecting maize yields, causing lesions, known as smut. The objective of the study was evaluation of the cytotoxicity of Ustilago maydis isolated from maize. Nine Ustilago maydis strains were selected to a detailed evaluation of their cytotoxicity using a 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test. Ustilago maydis strains showed medium and high cytotoxicity compared to control. High levels of cytotoxicity of Ustilago maydis may be indicative of their toxigenic potential.

  4. Hardness methods for testing maize kernels.

    Science.gov (United States)

    Fox, Glen; Manley, Marena

    2009-07-08

    Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect

  5. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Achhami, Buddhi Bahadur; Santa Bahadur BK; Bhandari, GhanaShyam

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and...

  6. Heterosis of maize photosynthetic performance

    Institute of Scientific and Technical Information of China (English)

    LI Xia; DING Zaisong; LI Lianlu; WANG Meiyun; ZHAO Ming

    2007-01-01

    Four maize inbred lines with different photosyn-thetic rates and their two hybrids were used as test materials,and the diurnal variations of their photosynthesis parameters in the silking stage were measured to study the heterosis of photosynthetic performance.Results showed that net photo-synthetic rate (In),transpiration rate (Tr) and stomatal conductance (Gs) all presented an obvious single-peaked curve in a day,with the peak values occurring at 10:00-12:00,12:00,10:00-12:00 a.m.,respectively,while water use efficiency (WUE) had a"V"type variant trend,with the lowest value appearing at 12:00.The diurnal variation of Pn and Tr was correlated markedly with Gs,suggesting that Gs played an important role in regulating the diurnal variation of Pn and Tr,and Pn,Tr and Gs had a higher heterosis in the afternoon than in the morning,while the WUE was in reverse,indicating that maize hybrid had higher resistance to the high temperature and dehydration in the afternoon,which provided a new path to select varieties with a high net photosynthetic rate.

  7. Dry matter production and partitioning of maize hybrids and dwarf unes at four plant populations Produção e distribuição de matéria seca de híbridos e linhagens anãs de milho em quatro populações

    Directory of Open Access Journals (Sweden)

    Luis Sangoi

    1997-03-01

    Full Text Available This experiment was conducted in Ames, Iowa, USA, to compare dry matter accumulation patterns of maize genotypes contrasting in height and leafiness, and to test whether reduction in plant height an leaf number through the use of dwarfing genes or earliness can improve grain dry matter allocation. Five plant genotypes were tested: a full season hybrid adapted to central lowa (NK 4525, a short season hybrid adapted to northern Minnesota (C1070, and three dwarf lines (156-A, 302-E and I17- A. The dwarves contained, respectively, the homozygous, independent, recessive dwarfing genes d3, d1 and br2. Each genotype was sown at four plant populations: 25, 50, 75 and 100.000 plants. ha-1. Hybrids had the greatest rates of decrease in total biomass and grain dry matter per plant when population was increased, though they also had larger absolute values of these variables at any given density. Hybrids produced more grain dry matter per unit of leaf area, and a higher harvest index, regardless the plant population used. Reduction in plant height or leaf number did not improve maize efficiency in producing and partitioning dry matter to the grain.Este experimento foi conduzido em Ames, Iowa, Estados Unidos, tendo como objetivos comparar os padrões de produção e distribuição de matéria seca de genótipos de milho contrastantes quanto a estatura e número de folhas, e verificar se a redução nestas características, mediante a utilização de genes para nanismo ou cultivares precoces, pode aumentar a eficiência da planta em alocar matéria seca para a produção de grãos. Cinco genótipos foram testados: um híbrido de ciclo normal adaptado à região central de lowa (NK 4525, um híbrido de ciclo precoce adaptado à região norte do estado de Minnesota (C 1070, e três linhagens anãs (156-A, 302-E and 117-A, contendo os genes recessivos de nanismo d3, d1 and br2, respectivamente Cada genótipo foi semeado em quatro populações, equivalentes a 25

  8. Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-Saharan Africa

    Science.gov (United States)

    Genotyping breeding materials is now relatively inexpensive but phenotyping costs have remained the same. One method to increase gene mapping power is to use genome-wide genetic markers to combine existing phenotype data for multiple populations into a unified analysis. We combined data from 15 bipa...

  9. Evaluation of maize yield in an on-farm maize-soybean and maize-Lablab crop rotation systems in the Northern Guinea Savanna of Nigeria.

    Science.gov (United States)

    Okogun, J A; Sanginga, N; Abaidoo, R C

    2007-11-01

    An attempt was made to solving the problem of shortfall of fertilizer to maize production in the Northern Guinea Savanna (NGS) of Nigeria by harnessing the potentials of legume/cereal crop rotation in on-farm trials. The yield of maize that succeeded two soybean varieties and Lablab in a two-cycle of soybean/maize and Lablab/maize crop rotation in NGS Nigeria was assessed in researcher-managed and farmer-managed plots. Though maize that followed the soybean received between 5 kg N ha(-1) from improved soybean variety (TGx 1448-2E) and 17 kg N ha(-1) from farmer soybean variety (Samsoy-2) as N balance, this did not significantly (p = 0.05) affect the maize yields. The soybean shed 90-100% of its leaves at physiological maturity which resulted in about 110 kg N ha(-1) N uptake. This source of N might be one of the factors responsible for the increase in maize yield that followed soybean (20 to 24%) compared with continuous maize yield plot. Maize yield in previous Lablab plot was significantly (p = 0.05) higher than in all other treatments. Maize yield in farmer-managed plot ranged between 0.13 and 4.53 t ha(-1), maize yield in researcher-managed plot was over 200% higher than maize yield in farmer-managed plot because of poor crop management on the part of the farmer.

  10. Successfully introduce maize DNA fragments into rice

    Institute of Scientific and Technical Information of China (English)

    WANGKaizhi

    1994-01-01

    The maize DNA fragments was successfully incorporated into rice by Associate Prof WAN Wenju's research team at Hunan Agricultural College, Changsha, China. The new gene transferring rice is named Genetic Engineered Rice (GER) line.

  11. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    Science.gov (United States)

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and

  12. SCREENING OF MAIZE GENOTYPES AGAINST STEM BORER CHILO PARTELLUS L. IN KHARIF SEASON

    Directory of Open Access Journals (Sweden)

    Rajasekhar Lella

    2013-12-01

    Full Text Available Maize (Zea mays L. being the highest yielding cereal crop in the world is of significant importance for countries like India, where rapidly increasing population already out stripped the available food supplies. Maize crop possesses great genetic diversity. Maize Plant is attacked by 140 species of insects causing varying degree of damage causing an annual loss of over 1 billion in the Semi Arid Tropics (ICRISAT, 1992. Out of these, only 10 species cause serious damage from sowing till storage, of which the stemborer Chilo partellus (Swinhoe is the major one (Hiremath et al., 1988. The larvae of C.partellus after hatching feed on soft surface of the leaves and then enter the stem through whorl of feeding on the pith of the stem. The growth of the plants becomes shunted and resulting in dead hearts when attacked by C.partellus at their initial stages. The larvae transferred from other plants enter the stem through lower nodes by making the holes. Stem borers pupate inside the stem. They make holes before pupation for the emergence of adults. Since host plant resistance is the back bone of Insect Pest Management; hence the present investigation was initiated. Present studies were designed to identify maize genotype resistance against stem borer in order to minimize pesticide use, improve natural balance, and enhance the activity of bio control agents, and to increase crop production. The investigations were carried out on the screening of Maize genotypes against Maize stem borer Chilo partellus in kharif season were conducted on the agricultural farm of the institute of Agricultural Sciences, Banaras Hindu University, Varanasi during kharif season of 2010-2011 to screen the relative resistance /susceptibility of 19 genotypes of maize to the insect pest, maize stem borer (Chilo partellus. In order to screen the relative susceptibility of different maize genotypes to maize stem borer the following genotypes were screened under field conditions. The

  13. Assessing white maize resistance to fumonisin contamination

    OpenAIRE

    Cao Caamaño, Ana; Butrón Gómez, Ana María; Ramos, Antonio J.; Marín, Sonia; Souto, Carlos; Santiago Carabelos, Rogelio

    2014-01-01

    Genetic improvement is an emerging method to reduce the levels of fumonisin (FB) contamination in maize, but breeding advances depend on the development of suitable methods to accurately assess the performance of different cultivars. Our study focused on characterizing a local isolate of Fusarium verticillioides; comparing artificial inoculation techniques with this isolate (injection into kernels and down the silk channel); and assessing white maize resistance under artificial vs. natural in...

  14. Maize leaf development under climate change scenarios

    Directory of Open Access Journals (Sweden)

    Nereu Augusto Streck

    2010-11-01

    Full Text Available The objective of this work was to simulate maize leaf development in climate change scenarios at Santa Maria, RS, Brazil, considering symmetric and asymmetric increases in air temperature. The model of Wang & Engel for leaf appearance rate (LAR, with genotype-specific coefficients for the maize variety BRS Missões, was used to simulate tip and expanded leaf accumulated number from emergence to flag leaf appearance and expansion, for nine emergence dates from August 15 to April 15. LAR model was run for each emergence date in 100-year climate scenarios: current climate, and +1, +2, +3, +4 and +5°C increase in mean air temperature, with symmetric and asymmetric increase in daily minimum and maximum air temperature. Maize crop failure due to frost decreased in elevated temperature scenarios, in the very early and very late emergence dates, indicating a lengthening in the maize growing season in warmer climates. The leaf development period in maize was shorter in elevated temperature scenarios, with greater shortening in asymmetric temperature increases, indicating that warmer nights accelerate vegetative development in maize.

  15. Climate Change and Maize Yield in Iowa.

    Science.gov (United States)

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  16. Pathogenicity of P. terrestris on Maize Seedlings

    Directory of Open Access Journals (Sweden)

    Jelena Lević

    2012-01-01

    Full Text Available Pathogenicity of P. terrestris was determined by the Knop’s medium slants method intest tubes. Isolates originated from the roots of maize (Zea mays L., barley (Hordeum vulgareL., Johnson grass (Sorghum halepense Pers., sorghum (Sorghum bicolour (L. Moench., garlic(Allium sativum L., onion (Allium cepa L., barnyard millet (Echinochloa crus-galli (L. P.Beauv.and green foxtail (Setaria viridis (L. P.B.. A fragment of a fungal colony, cultivated on PDA,was placed on the bottom of Knop’s medium slant in each test tube and then steriliseda maize seed was placed 2 cm away from the inoculum. After 21-day inoculation of seeds,the intensity of the development of symptoms on maize seedlings was estimated. The reddishor dark pigment on the root, mesocotyl and/or coleoptyl of seedlings was an indicatorfor the infection by the fungus under in vitro conditions. Based on the pathogenicity test,the isolates were classified into the following three groups: slightly (3 isolates, moderately(6 isolates and very pathogenic (6 isolates to maize seedlings. The obtained results showthat P. terrestris, originating from different hosts, can be a maize pathogen. These resultscan explain the high frequency and high incidence of this fungus on maize roots in Serbia.

  17. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA.

    Science.gov (United States)

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S; Gonzalez-Andujar, Jose L

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  18. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  19. Relative fitness of transgenic vs. non-transgenic maize x teosinte hybrids: a field evaluation.

    Science.gov (United States)

    Guadagnuolo, R; Clegg, J; Ellstrand, N C

    2006-10-01

    Concern has been often expressed regarding the impact and persistence of transgenes that enter wild populations via gene flow. The impact of a transgene and its persistence are largely determined by the relative fitness of transgenic hybrids and hybrid derivatives compared to non-transgenic plants. Nevertheless, few studies have addressed this question experimentally in the field. Despite the economic importance of maize, and the fact that it naturally hybridizes with the teosinte taxon Zea mays ssp. mexicana, sometimes known as "chalco teosinte," the question has received little experimental attention in this system. Using a glyphosate-tolerant maize cultivar and chalco teosinte as parental lines, we carried out a field experiment testing (1) the relative fitness of maize x teosinte hybrids, compared to their parental taxa, as well as (2) the relative fitness of transgenic hybrids compared to non-transgenic hybrids created from the same parental stock. In order to evaluate the influence of the transgenic construct in different genetic backgrounds, our study included transgenic and non-transgenic pure maize progeny from the cultivar as well. We measured both vegetative and reproductive parameters. Our results demonstrated that hybrids have greater vigor and produced more seeds than the wild parent. However, in the absence of selective pressure from glyphosate herbicide, we did not observe any direct positive or negative impact of the transgene on the fitness or vigor of either the hybrids or pure maize progeny. We discuss our results in terms of the potential for spontaneous transgene flow and introgression from transgenic maize into sympatric teosinte.

  20. Weed Diversity Affects Soybean and Maize Yield in a Long Term Experiment in Michigan, USA

    Science.gov (United States)

    Ferrero, Rosana; Lima, Mauricio; Davis, Adam S.; Gonzalez-Andujar, Jose L.

    2017-01-01

    Managing production environments in ways that promote weed community diversity may enhance both crop production and the development of a more sustainable agriculture. This study analyzed data of productivity of maize (corn) and soybean in plots in the Main Cropping System Experiment (MCSE) at the W. K. Kellogg Biological Station Long-Term Ecological Research (KBS-LTER) in Michigan, USA, from 1996 to 2011. We used models derived from population ecology to explore how weed diversity, temperature, and precipitation interact with crop yields. Using three types of models that considered internal and external (climate and weeds) factors, with additive or non-linear variants, we found that changes in weed diversity were associated with changes in rates of crop yield increase over time for both maize and soybeans. The intrinsic capacity for soybean yield increase in response to the environment was greater under more diverse weed communities. Soybean production risks were greatest in the least weed diverse systems, in which each weed species lost was associated with progressively greater crop yield losses. Managing for weed community diversity, while suppressing dominant, highly competitive weeds, may be a helpful strategy for supporting long term increases in soybean productivity. In maize, there was a negative and non-additive response of yields to the interaction between weed diversity and minimum air temperatures. When cold temperatures constrained potential maize productivity through limited resources, negative interactions with weed diversity became more pronounced. We suggest that: (1) maize was less competitive in cold years allowing higher weed diversity and the dominance of some weed species; or (2) that cold years resulted in increased weed richness and prevalence of competitive weeds, thus reducing crop yields. Therefore, we propose to control dominant weed species especially in the years of low yield and extreme minimum temperatures to improve maize yields

  1. Concentration and dissipation of chlorantraniliprole and thiamethoxam residues in maize straw, maize, and soil.

    Science.gov (United States)

    He, Min; Song, Dan; Jia, Hong C; Zheng, Yongquan

    2016-09-01

    To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole + 20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha(-1)). The residual concentrations were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0-10.8 and 9.5-21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4-9.8 and 4.3-11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha(-1) and 108 g a.i. ha(-1), respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg(-1) in maize, between 0.01 and 0.31 mg kg(-1) in maize straw, and between 0.03 and 1.91 mg kg(-1) in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01-0.03 mg kg(-1), respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg(-1) after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha(-1) was recommended, as it can be considered safe to human beings and animals.

  2. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize.

    Science.gov (United States)

    Matumba, Limbikani; Van Poucke, Christof; Njumbe Ediage, Emmanuel; Jacobs, Bart; De Saeger, Sarah

    2015-01-01

    Maize is one of the major staple foods of Sub-Saharan Africa and is consumed as whole or dehulled grain. In this region, where the environmental conditions favour fungal growth and mycotoxin production, the majority of the population are subsistence consumers who, unfortunately, have little or no access to mycotoxin testing of their food. In an attempt to develop feasible reduction strategies in dietary mycotoxin exposure of the population, a three-factorial design experiment was conducted to examine and compare the efficacy of hand sorting, flotation, dehulling and combinations thereof in removing naturally occurring aflatoxins, fumonisins, nivalenol, deoxynivalenol and alternariol in shelled white maize. Regression analysis was used to determine the significant (p mycotoxins from the maize. Results from this experiment indicated that hand sorting had the greatest effect on mycotoxin removal, while flotation yielded the least effect. In particular hand sorting left mycotoxin exposure among subsistence consumers.

  3. The Genetics of Leaf Flecking in Maize and Its Relationship to Plant Defense and Disease Resistance.

    Science.gov (United States)

    Olukolu, Bode A; Bian, Yang; De Vries, Brian; Tracy, William F; Wisser, Randall J; Holland, James B; Balint-Kurti, Peter J

    2016-11-01

    Physiological leaf spotting, or flecking, is a mild-lesion phenotype observed on the leaves of several commonly used maize (Zea mays) inbred lines and has been anecdotally linked to enhanced broad-spectrum disease resistance. Flecking was assessed in the maize nested association mapping (NAM) population, comprising 4,998 recombinant inbred lines from 25 biparental families, and in an association population, comprising 279 diverse maize inbreds. Joint family linkage analysis was conducted with 7,386 markers in the NAM population. Genome-wide association tests were performed with 26.5 million single-nucleotide polymorphisms (SNPs) in the NAM population and with 246,497 SNPs in the association population, resulting in the identification of 18 and three loci associated with variation in flecking, respectively. Many of the candidate genes colocalizing with associated SNPs are similar to genes that function in plant defense response via cell wall modification, salicylic acid- and jasmonic acid-dependent pathways, redox homeostasis, stress response, and vesicle trafficking/remodeling. Significant positive correlations were found between increased flecking, stronger defense response, increased disease resistance, and increased pest resistance. A nonlinear relationship with total kernel weight also was observed whereby lines with relatively high levels of flecking had, on average, lower total kernel weight. We present evidence suggesting that mild flecking could be used as a selection criterion for breeding programs trying to incorporate broad-spectrum disease resistance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. 利用ISSR技术分析禾谷镰孢菌群体遗传多样性的研究%Study on Genetic Diversity of Fusarium graminearum Populations Causing Maize Stalk Rot by ISSR Analysis

    Institute of Scientific and Technical Information of China (English)

    何婧; 郭庆元; 王晓鸣; 宋利宁; 张维娜; 武小菲

    2011-01-01

    采用ISSR标记对采自我国11个省的玉米茎腐病相关禾谷镰孢的遗传多样性进行分析.利用筛选出的14个ISSR引物对供试的115株禾谷镰孢菌株进行扩增,共获得63条扩增清晰、重复性高的条带.其中多态性条带为60条,占95.2%.扩增条带分子量为150~2 000 bp,平均每个引物扩增出4.5条带.遗传多样性分析表明,在地理种群水平上,基因多样性指数在0~0.291 9之间,平均为0.159 1;Shannon‘s多样性指数在0~0.425 2之间,平均为0.236 0,表明不同地理种群间存在一定的遗传变异.多样性指数、等位基因数的增大与各种群内样本数量增加有关.遗传相似性分析证明,山东省种群与河南省种群间的遗传相似性最高,内蒙古种群与河北省种群间遗传相似性最低.在相似性系数为0.682时.可将115个菌株区分为2个聚类组,各组下又可分为3个亚组,分组结果与菌株的地理来源有一定相关性,表明禾谷镰孢的遗传分化与生态地理有关.%The genetic diversity of F. graminearum population collected from eleven provinces was determined using technique of inter-simple sequence repeat (ISSR). A total of 63 reproducible ISSR fragments were scored among 115 individuals, of which 60 (95.2%) were polymorphic. The size of the amplified fragments ranged from 150 bp to 2 000 bp and average number of bands per primer was 4.5. At geographic population level, Nei's gene diversity and Shannon's information index were 0.159 1 and 0.236 0, respectively, that meant there was genetic variation between geographic population of F. graminearum. By analysis of genetic similarity coefficient the F.graminearum populations of Shandong and Henan were closest and populations of Inner Mongolia and Hebei were the farthest. Based on genetic distances all isolates were clustered into two groups at the similarity of 0.682 and three subgroups in each group. The grouping results indicated that genetic variation of F

  5. AFLATOXIN LEVELS IN LOCALLy GROWN MAIZE FROM MAKUENI ...

    African Journals Online (AJOL)

    2008-07-07

    Jul 7, 2008 ... Makueni District and to correlate aflatoxin levels to maize drying and storage practices. Also, ... Conclusion: High levels of aflatoxin in homegrown and purchased maize suggested that aflatoxin ..... Agriculture and Food Safety.

  6. Quality Protein Maize Response to Nitrogen Rate and Plant Density ...

    African Journals Online (AJOL)

    Quality Protein Maize Response to Nitrogen Rate and Plant Density in the Guinea Savanna Zone of Ghana. ... protein maize (Zea mays L.) hybrid to plant density and nitrogen (N) fertilizer. ... Optimal N rate was not affected by plant density.

  7. Effect of organic mulch materials on maize performance and weed ...

    African Journals Online (AJOL)

    Effect of organic mulch materials on maize performance and weed growth in the derived ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... of organic mulch materials (Plant and Animal) on the performance of maize and ...

  8. Genetic architecture of domestication-related traits in maize

    Science.gov (United States)

    Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genet...

  9. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity.

    Science.gov (United States)

    Mishra, Aradhana; Chauhan, Puneet Singh; Chaudhry, Vasvi; Tripathi, Manisha; Nautiyal, Chandra Shekhar

    2011-10-01

    Plant growth promoting Pantoea agglomerans NBRISRM (NBRISRM) was able to produce 60.4 μg/ml indole acetic acid and solubilize 77.5 μg/ml tri-calcium phosphate under in vitro conditions. Addition of 2% NaCl (w/v) in the media induced the IAA production and phosphate solubilization by 11% and 7%, respectively. For evaluating the plant growth promotory effect of NBRISRM inoculation a micro plot trial was conducted using maize and chickpea as host plants. The results revealed significant increase in all growth parameters tested in NBRISRM inoculated maize and chickpea plants, which were further confirmed by higher macronutrients (N, P and K) accumulation as compared to un-inoculated controls. Throughout the growing season of maize and chickpea, rhizosphere population of NBRISRM were in the range 10(7)-10(8) CFU/g soil and competing with 10(7)-10(9) CFU/g soil with heterogeneous bacterial population. Functional richness, diversity, and evenness were found significantly higher in maize rhizosphere as compared to chickpea, whereas NBRISRM inoculation were not able to change it, in both crops as compared to their un-inoculated control. To the best of our knowledge this is first report where we demonstrated the effect of P. agglomerans strain for improving maize and chickpea growth without altering the functional diversity.

  10. Processing maize flour and corn meal food products

    OpenAIRE

    2013-01-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathwa...

  11. Strategic Marketing Problems in the Uganda Maize Seed Industry

    OpenAIRE

    Larson,Donald W.; Mbowa, Swaibu

    2004-01-01

    Strategic marketing issues and challenges face maize seed marketing firms as farmers increasingly adopt hybrid varieties in a modernizing third world country such as Uganda. The maize seed industry of Uganda has changed dramatically from a government owned, controlled, and operated industry to a competitive market oriented industry with substantial private firm investment and participation. The new maize seed industry is young, dynamic, growing and very competitive. The small maize seed marke...

  12. Study Progress on Tissue Culture of Maize Mature Embryo

    Science.gov (United States)

    Wang, Hongzhen; Cheng, Jun; Cheng, Yanping; Zhou, Xioafu

    It has been paid more and more attention on maize tissue culture as it is a basic work in maize genetic transformation, especially huge breakthrough has been made in maize tissue culture utilizing mature embryos as explants in the recent years. This paper reviewed the study progress on maize tissue culture and plant regeneration utilizing mature embryos as explants from callus induction, subculture, plant regeneration and browning reduction and so on.

  13. Maize production as affected by sowing date, plant density and row spacing in the Bolivian Amazon

    Directory of Open Access Journals (Sweden)

    Paolo Casini

    2012-12-01

    Full Text Available The traditional cropping system widespread in the Department of Pando (Bolivian Amazon is the slash and burn methodology. The main crops sowed soon after the slash are maize, rice, cassava and common beans. Two separate field experiments (carried out in 2008-2009 were carried out to determine the agronomic responses of maize to sowing date, plant population and row width. For the first experiment a split-plot design was used. Maize cultivar (Bayo Blando and Perla Pandino was considered as main plots and the date of sowing as subplots. For the second experiment a split-split-plot design was used. Row spacing (0.5, 0.7 and 0.9 m was considered as main plot, maize cultivar (Cubano Amrarillo and Perla Pandino as subplots, and plant density (5.0, 7.5 and 10 plant m-2 as sub-subplots. A significant reduction of grain yield was observed as the date of sowing (DS delayied. Yield reduction of the second DS compared to the first, was 85 and 45% for Perla Pandino and Bayo Blando. The importance of plant density as a function of the correct row spacing is clearly shown. With the row spacing in use in the considered area (0.9 m and with the narrowest (0.5 m, the best yields were obtained with 10 plants m-2 (5.5 t ha-1. The following conclusions can be drawn from the present study: 1. A delay in the sowing date for maize by 15-20 days (compared to sowing ??immediately after the cutting of the virgin forest or the secondary forest strongly reduces grain production. The cultivar Perla Pandino was the most susceptible with a reduction of 85%. Late sowing of maize (mais de socorro, is suitable only if intercropped with other crops in order to protect the soil from erosion. Traditionally, rice and cassava are intercropped with maize, even if common beans or a legume cover crop would be more advisable. 2. The density of maize may be increased up until 10 m-2 in order to achieve the most productive results by using row spacings of 0.5 e 0.9 m, respectively

  14. Mixed cropping of groundnuts and maize in East Java

    NARCIS (Netherlands)

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant arrang

  15. Quantitative disease resistance: dissection and adoption in maize

    Science.gov (United States)

    Maize is the world’s most widely cultivated crop, providing food, feed, and biofuel. Maize production is constantly threatened by the presence of devastating pathogens worldwide. Characterization of the genetic components underlying disease resistance is a major research area in maize which is highl...

  16. Mixed cropping of groundnuts and maize in East Java.

    NARCIS (Netherlands)

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant arrang

  17. Fertilizer use efficiency by maize (Zea mays) and egusi- melon ...

    African Journals Online (AJOL)

    DBOY

    fertilizers by maize and egusi-melon in various ratios of mixtures in an ultisol in Nigeria. The experiment ... Fertilizer use efficiency (FUE) was generally higher in .... two equal splits at 3 and 8 weeks after planting (WAP) coinciding .... Effects of cropping ratios of maize and Egusi-melon on yield and yield components of maize.

  18. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels (consist

  19. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels

  20. Biochar mitigation of allelopathy induced yield loss in continuous maize

    Science.gov (United States)

    Continuous maize yields are limited by the release of phytotoxic compounds as the previous year’s maize residue decomposes. We tested the hypothesis that soil biochar applications could help mitigate maize autotoxicity and the associated yield depression. Eighteen small field plots (23.7 m2) were es...

  1. Genome-wide association analysis of forage quality in maize mature stalk.

    Science.gov (United States)

    Wang, Hongwu; Li, Kun; Hu, Xiaojiao; Liu, Zhifang; Wu, Yujin; Huang, Changling

    2016-10-21

    Plant digestibility of silage maize (Zea mays L.) has a large influence on nutrition intake for animal feeding. Improving forage quality will enhance the utilization efficiency and feeding value of forage maize. Dissecting the genetic basis of forage quality will improve our understanding of the complex nature of cell wall biosynthesis and degradation, which is also helpful for breeding good quality silage maize. Acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) of stalk were evaluated in a diverse maize population, which is comprised of 368 inbred lines and planted across seven environments. Using a mixed model accounting for population structure and polygenic background effects, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) significantly associated with forage quality. Scanning 559,285 SNPs across the whole genome, 73, 41 and 82 SNPs were found to be associated with ADF, NDF, and IVDMD, respectively. Each significant SNP explained 4.2 %-6.2 % of the phenotypic variation. Underlying these associated loci, 56 genes were proposed as candidate genes for forage quality. Of all the candidate genes proposed by GWAS, we only found a C3H gene (ZmC3H2) that is directly involved in cell wall component biosynthesis. The candidate genes found in this study are mainly involved in signal transduction, stress resistance, and transcriptional regulation of cell wall biosynthetic gene expression. Adding high digestibility maize into the association panel would be helpful for increasing genetic variability and identifying more genes associated with forage quality traits. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of the fiber content and digestibility. These findings provide us new insights into cell wall formation and deposition.

  2. Adaptation of Methanogenic Inocula to Anaerobic Digestion of Maize Silage

    Directory of Open Access Journals (Sweden)

    Martyna Wojcieszak

    2017-09-01

    Full Text Available A well-balanced microbial consortium is crucial for efficient biogas production. In turn, one of a major factor that influence on the structure of anaerobic digestion (AD consortium is a source of microorganisms which are used as an inoculum. This study evaluated the influence of inoculum sources (with various origin on adaptation of a biogas community and the efficiency of the biomethanization of maize silage. As initial inocula for AD of maize silage the samples from: (i an agricultural biogas plant (ABP which utilizes maize silage as a main substrate, (ii cattle slurry (CS, which contain elevated levels of lignocelluloses materials, and (iii raw sewage sludge (RSS with low content of plant origin materials were used. The adaptation of methanogenic consortia was monitored during a series of passages, and the functionality of the adapted consortia was verified through start-up operation of AD in two-stage reactors. During the first stages of the adaptation phase, methanogenic consortia occurred very slowly, and only after several passages did the microbial community adapts to allow production of biogas with high methane content. The ABP consortium revealed highest biogas production in the adaptation and in the start-up process. The biodiversity dynamics monitored during adaptation and start-up process showed that community profile changed in a similar direction in three studied consortia. Native communities were very distinct to each other, while at the end of the Phase II of the start-up process microbial diversity profile was similar in all consortia. All adopted bacterial communities were dominated by representatives of Porphyromonadaceae, Rikenellaceae, Ruminococcaceae, and Synergistaceae. A shift from low acetate-preferring acetoclastic Methanosaetaceae (ABP and RSS and/or hydrogenotrophic Archaea, e.g., Methanomicrobiaceae (CS prevailing in the inoculum samples to larger populations of high acetate-preferring acetoclastic

  3. CYCLOXYDIM-TOLERANT MAIZE – BREEDERS STANDPOINT

    Directory of Open Access Journals (Sweden)

    G. Bekavac

    2008-09-01

    Full Text Available Cycloxydim-Tolerant Maize (CTM was developed by researches at the University of Minnesota. CTM plants were regenerated from tissue culture selected for callus growth in the presence of cycloxydim, and the resulting plants were shown to contain a nuclear mutation, expressed as a single, partially dominant gene (known as Acc1 that conferred tolerance to the herbicide. Cycloxydim is a systemic herbicide for post emergence application in dicot crops to selectively control grass weeds. Corn, like most grasses is susceptible to cycloxydim due to inhibited acetyl-coenzyimeA carboxylaze enzyme activity. There are two key benefits of this technology: first, cycloxydim applications in CTM hybrids can be delayed until the weed spectrum and population density exceed agro-economic threshold; second, cycloxydim can be applied at either stage of plant development with no effect on basic agronomic traits, compared to non treated plants. Nevertheless, this type of tolerance requires 2 genes to be fully effective, i.e. gene must be present in both inbred parents to provide complete tolerance in the resulting hybrid. Such type of tolerance doubles the chances for yield drag and doubles the number of inbred conversions needed. This also limits germplasm integration and increases time lag in developing hybrids. Despite these difficulties, many seed companies introduce tolerance to cycloxydim into their commercial inbreds, and many of them have already commercialized CTM hybrids. Finally, it came as a logical question what is more important – hybrid performance or new trait? Critical to the success of this technology has been yield performance of CTM hybrids. At the same time, performance and herbicide tolerance do not exclude each other and can surely co-exist. To be accepted, this coexistence must secure high profitability to corn producers. However, CTM hybrids will not replace conventional ones on a large scale, but could be used as a specific tool, or could

  4. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    density [in Denmark, maize is mainly grown for ensilage to feed livestock], and sandy soil [facilitates maize growing in cold areas due to higher soil temperature than loamy soils]). Our results indicate that there has been a geographical expansion of maize in Denmark from 1999 to 2008, with a strong link...

  5. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain.

    Science.gov (United States)

    Bakan, B; Melcion, D; Richard-Molard, D; Cahagnier, B

    2002-02-13

    Fungi of the genus Fusarium are common fungal contaminants of maize and are also known to produce mycotoxins. Maize that has been genetically modified to express a Bt endotoxin has been used to study the effect of insect resistance on fungal infection of maize grains by Fusarium species and their related mycotoxins. Maize grain from Bt hybrids and near-isogenic traditional hybrids was collected in France and Spain from the 1999 crop, which was grown under natural conditions. According to the ergosterol level, the fungal biomass formed on Bt maize grain was 4-18 times lower than that on isogenic maize. Fumonisin B(1) grain concentrations ranged from 0.05 to 0.3 ppm for Bt maize and from 0.4 to 9 ppm for isogenic maize. Moderate to low concentrations of trichothecenes and zearalenone were measured on transgenic as well as on non-transgenic maize. Nevertheless, significant differences were obtained in certain regions. The protection of maize plants against insect damage (European corn borer and pink stem borer) through the use of Bt technology seems to be a way to reduce the contamination of maize by Fusarium species and the resultant fumonisins in maize grain grown in France and Spain.

  6. Household dietary exposure to aflatoxins from maize and maize products in Kenya.

    Science.gov (United States)

    Kilonzo, Robert M; Imungi, Jasper K; Muiru, William M; Lamuka, Peter O; Njage, Patrick M Kamau

    2014-01-01

    Aflatoxicosis has repeatedly affected Kenyans, particularly in the eastern region, due to consumption of contaminated maize. However, save for the cases of acute toxicity, the levels of sub-lethal exposure have not been adequately assessed. It is believed that this type of exposure does exist even during the seasons when acute toxicity does not occur. This study, therefore, was designed to assess the exposure of households to aflatoxins through consumption of maize and maize products. Twenty samples each of maize kernels, muthokoi and maize meal were randomly sampled from households in Kibwezi District of Makueni County in Eastern Kenya and analysed for aflatoxin contamination. The samples were quantitatively analysed for aflatoxin contamination using HPLC. The uncertainty and variability in dietary exposure was quantitatively modelled in Ms Excel using Monte Carlo simulation in @Risk software. Aflatoxins were found in 45% of maize kernels at between 18 and 480 μg kg⁻¹, 20% of muthokoi at between 12 and 123 μg kg⁻¹, and 35% of maize meal at between 6 and 30 μg kg⁻¹. The mean dietary exposure to aflatoxin in maize kernels was 292 ± 1567 ng kg⁻¹ body weight day⁻¹, while the mean dietary exposure to aflatoxin in maize meal and muthokoi were 59 ± 62 and 27 ± 154 ng kg⁻¹ body weight day⁻¹ respectively. The results showed that the amount and frequency of consumption of the three foods is the more important contributing factor than the mean aflatoxin concentration levels, to the risk of dietary exposure to aflatoxins.

  7. Effect of endosperm mutants on maize seed germination

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2004-01-01

    Full Text Available The expression of genetic potential of yielding and quality of a certain genotype depends among other factors on seed quality. Seed is very important not only for the reproduction of the particular plant species, but also, for the contemporary plant production. Each part of maize seed (pericarp endosperm and germ has a specific function in the complex process of germination and emergence. The following three genotypes of different endosperm types were observed: ZPSC 42A (standard grain quality dent hybrid ZPSC 504 su (sweet maize hybrid with a sugary gene and ZPSyn.II sh2 (synthetic population with a shranken2 gene. Seed viability of the stated genotypes was determined by the accepted ISTA methods: standard method accelerating age and cold test. Obtained results point out to differences in the germination capacity of the observed genotypes. The greatest reduction of the germination capacity and the emergence rate was expressed by the application of the accelerating ageing method. Appeared differences are probably a result of the endosperm texture (type, grain weight, sugar content and pericarp thickens and composition.

  8. Inbreeding depression of 28 maize elite open pollinated varieties

    Directory of Open Access Journals (Sweden)

    Cleso Antônio Patto Pacheco

    2002-01-01

    Full Text Available The study of inbreeding depression is important for breeding strategies such as use of inbred progenies or extraction of inbreed lines. A diallel of 28 maize open-pollinated varieties was evaluated in 10 environments in the early 1990s. At the same time, S1 populations for each of the 28 varieties were evaluated in the same 10 experiments (environments. Yield reductions of the populations from S0 to S1 (mean of the 10 environments, varied from 34.6% (CMS-01 to 59.2% (CMS-30, with an average of 49.1%. Inbreeding depression was greater in populations with a wider genetic base, which had never been exposed to inbreeding (CMS-30, BR-107, PH4, Cunha, Saracura, Nitrodent, and Nitroflint. Inbred lines with greater yield means should be obtained from the BR-105, BR-111, CMS-01, CMS-03, BR-106, CMS-14c, and CMS-28 populations. The use of parameter estimates generated by analysis of inbreeding depression, allow to make inferences about frequencies of deleterious alleles in the population. The frequencies of favorable alleles in the parents can be obtained by diallel analysis. The association of these two types of information, can provide a better interpretation of the genetic parameters and also can improve the process of selection of parents for either an intra- or an inter-populational breeding program.

  9. Genetic relationship between yield and yield components of maize

    Directory of Open Access Journals (Sweden)

    Nastasić Aleksandra

    2010-01-01

    Full Text Available One of the objectives of this paper was to determine relationship between grain yield and yield components, in S1 and HS progenies of one early synthetic maize population. Grain yield was in high significant, medium strong and strong association with all studied yield components, in both populations. The strongest correlation was recorded between grain yield and 1000-kernel weight (S1 progenies rg = 0.684; HS progenies rg = 0.633. Between other studied traits, the highest values of genotypic coefficient of correlations were found between 1000-kernel weight and kernel depth in S1 population, and 1000-kernel weight and ear length in HS population. Also, objective of this research was founding the direct and indirect effects of yield components on grain yield. Desirable, high significant influence on grain yield, in path coefficient analysis, was found for 1000-kernel weight and kernel row number, and in S1 and HS progenies, and for ear length in population of S1 progenies. Kernel depth has undesirable direct effect on grain yield, in both populations.

  10. A review on threat of gray leaf spot disease of maize in Asia

    Directory of Open Access Journals (Sweden)

    Narayan Bahadur Dhami

    2015-12-01

    Full Text Available Biotic and biotic constraints are yield limiting factors in maize producing regions. Among these gray leaf spot is a yield limiting foliar disease of maize in high land regions of Asia. This review is done from related different national and international journals, thesis, books, research papers etc. The objectives of this review are to become familiar with genetics and inheritance, epidemiology, symptoms and disease management strategies etc. High relative humidity, temperature, minimum tillage and maize monoculture are important factors responsible for disease development. The sibling species of Cercospora zeae-maydis (Tehon and Daniels, 1925 Group I and Group II and Cercospora sorghai var. maydis (Chupp, 1954 are associated with this disease. Pathogens colonize in maize debris. Conidia are the source of inoculums for disease spread. Severe blighting of leaves reduces sugars, stalk lodging and causes premature death of plants resulting in yield losses of up to 100%. Disease management through cultural practices is provisional. The use of fungicides for emergencies is effective however; their prohibitive cost and detrimental effects on the environment are negative consequences. The inheritance of tolerance is quantitative with small additive effects. The introgression of resistant genes among the crosses of resistant germplasm enhances the resistance. The crosses of resistant and susceptible germplasm possess greater stability than the crosses of susceptible and resistant germplasm. The development of gray leaf spot tolerant populations through tolerance breeding principle is an economical and sustainable approach to manage the disease.

  11. Marker assisted selection of low phytic acid trait in maize (Zea mays L.).

    Science.gov (United States)

    Sureshkumar, S; Tamilkumar, P; Senthil, N; Nagarajan, P; Thangavelu, A U; Raveendran, M; Vellaikumar, S; Ganesan, K N; Balagopal, R; Vijayalakshmi, G; Shobana, V

    2014-02-01

    Maize is the third important major food crop. Breeding for low phytate maize genotypes is an effective strategy for decreasing the content of kernel phytic acid (a chelator of cations such as Ca(2+) and Fe(3+) ) and thereby increasing the bioavailability of nutritive minerals in human diet and animal feed. Previous studies have established that a mutant plant with a lpa2-2 allele accumulates less phytic acid in seeds. Therefore, the marker assisted backcross breeding (MABB), which involves introgression of lpa2-2 recessive allele (which confer low phytate trait) from a lpa2-2 mutant line into a well-adapted line using backcrosses and selection of lines possessing lpa2-2 allele in each backcross population using molecular markers, is an effective strategy for developing low phytate maize. So far, no studies have developed any lpa2-2 allele specific molecular markers for this purpose. Here, using backcross and selfed progenies, obtained by crossing low phytate mutant line 'EC 659418' (i.e. donor of lpa2-2 allele) into agronomically superior line 'UMI395', we have validated that a SSR marker 'umc2230', located 0.4 cM downstream of lpa2-2, cosegregate, in a Mendelian fashion, with low phytic acid trait. Therefore umc2230 can be dependably used in MABB for the development of low phytate maize.

  12. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319.

    Science.gov (United States)

    Song, Feng-Jing; Xiao, Ming-Gang; Duan, Can-Xing; Li, Hong-Jie; Zhu, Zhen-Dong; Liu, Bao-Tao; Sun, Su-Li; Wu, Xiao-Fei; Wang, Xiao-Ming

    2015-08-01

    Stalk rots are destructive diseases in maize around the world, and are most often caused by the pathogen Pythium, Fusarium and other fungi. The most efficient management for controlling stalk rots is to breed resistant cultivars. Pythium stalk rot can cause serious yield loss on maize, and to find the resistance genes from the existing germplasm is the basis to develop Pythium-resistance hybrid lines. In this study, we investigated the genetic resistance to Pythium stalk rot in inbred line Qi319 using F2 and F2:3 population, and found that the resistance to Pythium inflatum in Qi319 was conferred by two independently inherited dominant genes, RpiQI319-1 and RpiQI319-2. Linkage analysis uncovered that the RpiQI319-1 co-segregated with markers bnlg1203, and bnlg2057 on chromosome 1, and that the RpiQI319-2 locus co-segregated with markers umc2069 and bnlg1716 on chromosome 10. The RpiQI319-1 locus was further mapped into a ~500-kb interval flanked by markers SSRZ33 and SSRZ47. These results will facilitate marker-assisted selection of Pythium stalk rot-resistant cultivars in maize breeding. To our knowledge, this is the first report on the resistance to P. inflatum in the inbred line Qi319, and is also the first description of two independently inherited dominant genes conferring the resistance of Pythium stalk rot in maize.

  13. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments

    Institute of Scientific and Technical Information of China (English)

    Domagojimi; Hrvoje Lepedu; Vlatka Jurkovi; Jasenka Antunovi; Vera Cesar

    2014-01-01

    Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.

  14. Germplasm Enhancement of Maize: A look into haploid induction and chromosomal doubling of haploids from temperate-adapted tropical sources

    Science.gov (United States)

    Doubled haploid technology is used to develop completely homozygous inbred lines, where each of the chromatids making up a chromosome pair are identical. Two inbred lines, PHB47 and PHZ51, were used to make backcrosses to 18 maize landraces, generating 36 populations. The landraces were chosen bas...

  15. Multitrophic Interaction in the Rhizosphere of Maize: Root Feeding of Western Corn Rootworm Larvae Alters the Microbial Community Composition

    Science.gov (United States)

    Dematheis, Flavia; Zimmerling, Ute; Flocco, Cecilia; Kurtz, Benedikt; Vidal, Stefan; Kropf, Siegfried; Smalla, Kornelia

    2012-01-01

    Background Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. Methodology/Principal Findings In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. Conclusion/Significance The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding. PMID:22629377

  16. Getting domestication straight: ramosa1 in maize.

    Science.gov (United States)

    Dempewolf, Hannes

    2010-04-01

    Knowledge of the identities and characteristics of genes that govern the dramatic phenotypic differences between cultivated plants and their wild ancestors has greatly enhanced our understanding of the domestication process. In this issue of Molecular Ecology, Sigmon & Vollbrecht report the discovery of a new maize domestication gene, ramosa1, which encodes a putative transcription factor in the ramosa developmental pathway. Ramosa1 appears to be instrumental in determining the straightness of kernel rows on the maize cob. The key domestication alleles at ramosa1 are prevalent in landraces of maize. These results reinforce findings from previous studies of crop evolution by highlighting the importance of standing genetic variation and changes in transcriptional regulators in domestication. The evolutionary genetics of domestication also provides a framework for predicting the evolutionary response of organisms to strong human-induced selection pressures over limited time intervals.

  17. MORPHOLOGICAL AND THERMAL PROPERTIES OF MAIZE STARCH

    Directory of Open Access Journals (Sweden)

    Elena Corina Popescu

    2010-01-01

    Full Text Available Maize, rice, wheat and potato are the main sources of starches which differ significantly in composition, morphology,thermal, rheological and retrogradation properties. Starch has unique thermal properties and functionality that havepermitted its wide use in food products and industrial applications.The structure of the starch granule results from the physical arrangement of amylose and amylopectin. Amylose contentof starches from different maize types ranged between 15.3% and 25.1%. Amylopectin is considered responsible for thecrystalline structure of starch granules.The morphological and physicochemical characteristics of maize starch are related to the enzymes involved in itsbiosynthesis.The surface of the starch granule plays a fundamental rôle as the first barrier to processes such as granule hydration,enzyme attack, and chemical reaction with modifying agents. Major parameters describing the solid surface are:specific surface area, total pore volume, mean pore radius (diameter and pore volume distribution in relation to poreradius (diameter.

  18. Rapid screening for aluminum tolerance in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Carlos Daniel Giaveno

    2000-12-01

    Full Text Available A significant decrease in maize grain yield due to aluminum toxicity is considered to be one of the most important agricultural problems for tropical regions. Genetic improvement is a useful approach to increase maize yield in acid soils, but this requires a rapid and reliable method to discriminate between genotypes. In our work we investigated the feasibility of using hematoxylin staining (HS to detect Al-tolerant plants at the seedling stage. The original population along with two populations obtained after one cycle of divergent selection were evaluated by net root growth (NRG and HS after 7 days in nutrient solution. Results showed a negative correlation between NRG and HS in all populations, in which sensitive plants, characterized by low NRG, exhibited more intense staining than tolerant plants. These results indicate that HS is a useful procedure for selecting Al-tolerant maize seedlings.A importante diminuição nos rendimentos de milho causados pela toxidez produzida pelo alumínio é considerada um dos mais importantes problemas nas regiões tropicais. O melhoramento genético é uma metodologia útil para aumentar os rendimentos do milho em solos ácidos, requerendo um método rápido e seguro que permita diferenciar os diferentes genótipos. O objetivo deste trabalho foi avaliar a possibilidade de utilizar a técnica da coloração com hematoxilina (HS na detecção de plântulas tolerantes ao alumínio. Duas populações obtidas de um ciclo de seleção divergente e a original, foram avaliadas depois de sete dias em solução nutritiva utilizando os parâmetros NRG (crescimento líquido da raiz principal e HS. Os resultados apresentaram uma correlação negativa entre NRG e HS em todas as populações devido ao fato de que as plântulas suscetíveis, caracterizadas por um baixo NRG, apresentaram uma coloração mais intensa do que as tolerantes. Nossos resultados permitem concluir que a técnica de coloração com hematoxilina

  19. Digital gene expression signatures for maize development.

    Science.gov (United States)

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  20. Studies on Soil fertility, Cow urine and Panchagavya levels on Growth and Yield of Maize

    OpenAIRE

    Devakumar, N.; Subha, S; Rao, G.G.E.; ImranKhan, J.

    2014-01-01

    The present study revealed that higher grain and stover yield, plant height and number of leaves in maize with panchagavya, cow urine but it was comparable to recommended fertilizer treatments at higher level (200% and 300%). It can be concluded that presence of rich plant growth substances, both major and micro nutrients, beneficial microbial population in organic liquid manures help to bring rapid changes in phenotypic characteristics of plants and also improves the growth and ultimately im...

  1. Immunochemical identification of gelsolin in maize pollen

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gelsolin is a representative of a type of actin-binding proteins (ABPs) universally found in eukaryotes. It plays role in nucleation, capping and severing of actin filaments in vitro. In our experiment, gelsolin was purified from pig plasma and the polyclonal antibodies against it were prepared. The crude extracts of maize pollen were immunodetected by Western-blotting with polyclonal antibody and monoclonal antibody respectively. The immunodetection results show that gelsolin exists in maize pollen and its molecular weight is about 91 ku, similar to that of gelsolin found in animal tissues.

  2. Agronomic performance of male-sterile and fertile maize genotypes at two plant populations Performace agronômica de genótipos macho-estéreis e férteis de milho em duas densidades de semeadura

    Directory of Open Access Journals (Sweden)

    Luís Sangoi

    1996-12-01

    Full Text Available This experiment was conducted in 1994 at Ames, Iowa, US to test whether cytoplasmic male-sterility can be used to decrease barrenness and to increase grain yield of maize at two plant populations. Four genotypes were tested: a hybrid (NK 6330 and an inbred, wifh sterile and fertile counterparts. Each genotype owas evaluated at plant populations equivalent to 25,000 and 75,000 pl. ha-1. Hybrids produced higher grain yield than inbreds at both plant populations. Gram yield was higher at 75,000 than at 25,000 pl. ha-1. No difference in gram yield, number of ears per plant, number of grains per ear, tassel length, and tassel number of branches was found between sterile and fertile counterparts of the inbred and hybrid, regardiess of plant population. Fertile genotypes bore heavier tassels at anthesis than their sterile counterparts. Adequate precipitation distribution and high fertility level in the soil probably decreased competition between tassel and ears, mitigating potential yield benefits of suppressing genetically pollen production.Este experimento foi conduzido em Ames, Iowa, US durante o ano agrícola de 1994, tendo como objetivo avaliar se a macho-esterelidade genético-citoplasmática pode ser utilizada para aumentar o rendimento de grãos de milho em diferentes populações de planta. Quatro genótipos foram utilizados: um híbrido (NK 6330 e uma linhagem, ambos em suas versões fértil e macho-estéril. Cada genótipo foi avaliado em duas densidades de semeadura, equivalentes a 25.000 e 75.000 pl.ha-1. Os híbridos produziram maiores rendimentos de grão do que as linhagens nas duas populações utilizadas. O rendimento de grãos por área foi maior em 75.000 do que em 25.000 pl.ha-1. Nenhuma diferença significativa em termos de rendimento de grãos, número de espigas por planta, número de grãos por espiga, comprimento e número de ramos do pendão, foi observada entre genótipos férteis e macho-estéreis, independentemente da

  3. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico.

    Science.gov (United States)

    Ruíz-Huerta, Esther Aurora; de la Garza Varela, Alonso; Gómez-Bernal, Juan Miguel; Castillo, Francisco; Avalos-Borja, Miguel; SenGupta, Bhaskar; Martínez-Villegas, Nadia

    2017-10-05

    Mobility of Arsenic (As) from metallurgical wastes in Matehuala, Mexico has been accounted for ultra-high concentration of As in water (4.8-158mg/L) that is used for recreational purposes as well as cultivation of maize. In this study, we (i) measured As concentrations in soils irrigated with this water, (ii) investigated the geochemical controls of available As, and (iii) measured bioaccumulation of As in maize. Water, soil, and maize plant samples were collected from 3 different plots to determine As in environmental matrices as well as water soluble As in soils. Soil mineralogy was determined by X-ray diffraction analysis. Bioaccumulation of As in maize plants was estimated from the bioconcentration and translocation factors. We recorded As built-up in agricultural soils to the extent of 172mg/kg, and noted that this As is highly soluble in water (30% on average). Maize crops presented high bioaccumulation, up to 2.5 times of bioconcentration and 45% of translocation. Furthermore, we found that water extractable As was higher in soils rich in calcite, while it was lower in soils containing high levels of gypsum, but As bioconcentration showed opposite trend. Results from this study show that irrigation with As rich water represents a significant risk to the population consuming contaminated crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress.

    Science.gov (United States)

    Yan, Jian; Lipka, Alexander E; Schmelz, Eric A; Buckler, Edward S; Jander, Georg

    2015-02-01

    Plants produce a wide variety of defensive metabolites to protect themselves against herbivores and pathogens. Non-protein amino acids, which are present in many plant species, can have a defensive function through their mis-incorporation during protein synthesis and/or inhibition of biosynthetic pathways in primary metabolism. 5-Hydroxynorvaline was identified in a targeted search for previously unknown non-protein amino acids in the leaves of maize (Zea mays) inbred line B73. Accumulation of this compound increases during herbivory by aphids (Rhopalosiphum maidis, corn leaf aphid) and caterpillars (Spodoptera exigua, beet armyworm), as well as in response to treatment with the plant signalling molecules methyl jasmonate, salicylic acid and abscisic acid. In contrast, ethylene signalling reduced 5-hydroxynorvaline abundance. Drought stress induced 5-hydroxynorvaline accumulation to a higher level than insect feeding or treatment with defence signalling molecules. In field-grown plants, the 5-hydroxynorvaline concentration was highest in above-ground vegetative tissue, but it was also detectable in roots and dry seeds. When 5-hydroxynorvaline was added to aphid artificial diet at concentrations similar to those found in maize leaves and stems, R. maidis reproduction was reduced, indicating that this maize metabolite may have a defensive function. Among 27 tested maize inbred lines there was a greater than 10-fold range in the accumulation of foliar 5-hydroxynorvaline. Genetic mapping populations derived from a subset of these inbred lines were used to map quantitative trait loci for 5-hydroxynorvaline accumulation to maize chromosomes 5 and 7.

  5. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  6. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  7. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.

    Directory of Open Access Journals (Sweden)

    Matthew B Hufford

    Full Text Available BACKGROUND: The species Zea mays includes both domesticated maize (ssp. mays and its closest wild relatives known as the teosintes. While genetic and archaeological studies have provided a well-established history of Z. mays evolution, there is currently minimal description of its current and past distribution. Here, we implemented species distribution modeling using paleoclimatic models of the last interglacial (LI; ∼135,000 BP and the last glacial maximum (LGM; ∼21,000 BP to hindcast the distribution of Zea mays subspecies over time and to revisit current knowledge of its phylogeography and evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: Using a large occurrence data set and the distribution modeling MaxEnt algorithm, we obtained robust present and past species distributions of the two widely distributed teosinte subspecies (ssps. parviglumis and mexicana revealing almost perfect complementarity, stable through time, of their occupied distributions. We also investigated the present distributions of primitive maize landraces, which overlapped but were broader than those of the teosintes. Our data reinforced the idea that little historical gene flow has occurred between teosinte subspecies, but maize has served as a genetic bridge between them. We observed an expansion of teosinte habitat from the LI, consistent with population genetic data. Finally, we identified locations potentially serving as refugia for the teosintes throughout epochs of climate change and sites that should be targeted in future collections. CONCLUSION/SIGNIFICANCE: The restricted and highly contrasting ecological niches of the wild teosintes differ substantially from domesticated maize. Variables determining the distributions of these taxa can inform future considerations of local adaptation and the impacts of climate change. Our assessment of the changing distributions of Zea mays taxa over time offers a unique glimpse into the history of maize, highlighting a

  8. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  9. Karyotype variability in tropical maize sister inbred lines and hybrids compared with KYS standard line.

    Science.gov (United States)

    Mondin, Mateus; Santos-Serejo, Janay A; Bertäo, Mônica R; Laborda, Prianda; Pizzaia, Daniel; Aguiar-Perecin, Margarida L R

    2014-01-01

    Maize karyotype variability has been extensively investigated. The identification of maize somatic and pachytene chromosomes has improved with the development of fluorescence in situ hybridization (FISH) using tandemly repeated DNA sequences as probes. We identified the somatic chromosomes of sister inbred lines that were derived from a tropical flint maize population (Jac Duro [JD]), and hybrids between them, using FISH probes for the 180-bp knob repeat, centromeric satellite (CentC), centromeric satellite 4 (Cent4), subtelomeric clone 4-12-1, 5S ribosomal DNA and nucleolus organizing region DNA sequences. The observations were integrated with data based on C-banded mitotic metaphases and conventional analysis of pachytene chromosomes. Heterochromatic knobs visible at pachynema were coincident with C-bands and 180-bp FISH signals on somatic chromosomes, and most of them were large. Variation in the presence of some knobs was observed among lines. Small 180-bp knob signals were invariant on the short arms of chromosomes 1, 6, and 9. The subtelomeric 4-12-1 signal was also invariant and useful for identifying some chromosomes. The centromere location of chromosomes 2 and 4 differed from previous reports on standard maize lines. Somatic chromosomes of a JD line and the commonly used KYS line were compared by FISH in a hybrid of these lines. The pairing behavior of chromosomes 2 and 4 at pachytene stage in this hybrid was investigated using FISH with chromosome-specific probes. The homologues were fully synapsed, including the 5S rDNA and CentC sites on chromosome 2, and Cent4 and subtelomeric 4-12-1 sites on chromosome 4. This suggests that homologous chromosomes could pair through differential degrees of chromatin packaging in homologous arms differing in size. The results contribute to current knowledge of maize global diversity and also raise questions concerning the meiotic pairing of homologous chromosomes possibly differing in their amounts of repetitive DNA.

  10. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop

    Directory of Open Access Journals (Sweden)

    Maria Isabel Casas

    2014-09-01

    Full Text Available Agricultural outputs have resulted in food production continuously expanding. Satisfying the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, resulted in crop varieties with higher caloric intake but lacking many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step towards a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  11. Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop.

    Science.gov (United States)

    Casas, María I; Duarte, Silvia; Doseff, Andrea I; Grotewold, Erich

    2014-01-01

    Agricultural outputs have resulted in food production continuously expanding. To satisfy the needs of a fast growing human population, higher yields, more efficient food processing, and food esthetic value, new crop varieties with higher caloric intake have and continue to be developed, but which lack many phytochemicals important for plant protection and adequate human nutrition. The increasing incidence of chronic diseases such as obesity, diabetes and cardiovascular diseases, combined with social disparity worldwide prompted the interest in developing enhanced crops that can simultaneously address the two sides of the current malnutrition sword, increasing yield while providing added nutritional value. Flavones, phytochemicals associated with the beneficial effects of the Mediterranean diet, have potent anti-inflammatory and anti-carcinogenic activities. However, many Mediterranean diet-associated vegetables are inaccessible, or lowly consumed, in many parts of the world. Maize is the most widely grown cereal crop, yet most lines used for hybrid maize production lack flavones. As a first step toward a sustainable strategy to increasing the nutritional value of maize-based diets, we investigated the accumulation and chemical properties of flavones in maize seeds of defined genotypes. We show that the pericarps of the P1-rr genotype accumulate flavones at levels comparable to those present in some flavone-rich vegetables, and are mostly present in their C- and O-glycosylated forms. Some of these glycosides can be readily converted into the corresponding more active health beneficial aglycones during food processing. Our results provide evidence that nutritionally beneficial flavones could be re-introduced into elite lines to increase the dietary benefits of maize.

  12. Image-based thresholds for weeds in maize fields

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Christensen, Svend

    2015-01-01

    Recent development of site-specific weed management strategies suggests patch application of herbicides to avoid their excessive use in crops. The estimation of infestation of weeds and control thresholds are important components for taking spray decisions. If weed pressure is below a certain level...... in some parts of the field and if late germinating weeds do not affect yield, it may not be necessary the spray such places from an economic point of view. Consequently, it makes sense to develop weed control thresholds for patch spraying, based on weed cover early in the growing season. In Danish maize...... field experiments conducted from 2010 to 2012, we estimated competitive ability parameters and control thresholds of naturally established weed populations in the context of decision-making for patch spraying. The most frequent weed was Chenopodium album, accompanied by Capsella bursa-pastoris, Cirsium...

  13. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds.

    Science.gov (United States)

    Andersen, Jeppe R; Zein, Imad; Wenzel, Gerhard; Krützfeldt, Birte; Eder, Joachim; Ouzunova, Milena; Lübberstedt, Thomas

    2007-01-01

    Forage quality of maize is influenced by both the content and structure of lignin in the cell wall. Phenylalanine Ammonia-Lyase (PAL) catalyzes the first step in lignin biosynthesis in plants; the deamination of L-phenylalanine to cinnamic acid. Successive enzymatic steps lead to the formation of three monolignols, constituting the complex structure of lignin. We have cloned and sequenced a PAL genomic sequence from 32 maize inbred lines currently employed in forage maize breeding programs in Europe. Low nucleotide diversity and excessive linkage disequilibrium (LD) was identified at this PAL locus, possibly reflecting selective constrains resulting from PAL being the first enzyme in the monolignol, and other, pathways. While the association analysis was affected by extended LD and population structure, several individual polymorphisms were associated with neutral detergent fiber (not considering population structure) and a single polymorphism was associated with in vitro digestibility of organic matter (considering population structure).

  14. Presence of Zea luxurians (Durieu and Ascherson) Bird in Southern Brazil: Implications for the Conservation of Wild Relatives of Maize

    Science.gov (United States)

    2015-01-01

    Records of the occurrence of wild relatives of maize in South American lowlands are unprecedented, especially in sympatric coexistence with landraces. This fact is relevant, because regions of occurrence of wild relatives of cultivated plants should be a priority for conservation, even if they do not correspond to the center of origin of the species. The aim of this study was to identify and characterize the wild relatives of maize in the Far West of Santa Catarina, southern Brazil. Therefore, phenotypic characterization was performed for five populations, based on 22 morphological traits deemed as fundamental for classifying the species of the genus Zea, and validated through the characterization of chromosomal knobs of two populations. The occurrence and distribution of teosinte populations were described through semi-structured interviews applied to a sample of 305 farmers. A total of 136 teosinte populations were identified; 75% of them occur spontaneously, 17% are cultivated populations, and 8% occur both ways, for the same farm. Populations that were characterized morphologically had trapezoidal fruits mostly, upright tassel branch (4–18), non-prominent main branch and glabrous glumes, with two protruding outer ribs and 8 inner ribs, on average. Cytogenetic analysis identified 10 pairs of homologous chromosomes (2n = 20) with 26 knobs, located in the terminal region of all chromosomes. The similarity of these results with the information reported in the literature indicates that the five populations of wild relatives of maize in this region of Santa Catarina belong to the botanical species Zea luxurians. PMID:26488577

  15. Performance of maize single-crosses developed from populations improved by a modified reciprocal recurrent selection Performance de híbridos simples de milho desenvolvidos de populações melhoradas por seleção recorrente recíproca modificada

    Directory of Open Access Journals (Sweden)

    Cláudio Lopes de Souza Jr.

    2010-04-01

    Full Text Available Maize (Zea mays L. elite inbred lines developed from pedigree programs tend to be genetically related. Therefore, it is necessary to incorporate unrelated inbreds to those programs to allow the continued release of outstanding single-crosses. The objectives of this research were to compare the usefulness of a modified reciprocal recurrent selection procedure (MRRS to improve populations to be used as sources of elite inbreds and outstanding single-crosses to integrate pedigree programs, and to investigate the effects of selection on the relative contribution of general (GCA and specific combining (SCA abilities to the single-crosses variation. Eight and six S3 lines from populations IG-3-C1 and IG-4-C1, respectively, selected from the first cycle of the MRRS program were crossed in a partial-diallel mating design, and the 48 experimental and five commercial single-crosses were evaluated in six environments. Grain yield mean of the experimental single-crosses (9.57 t ha¹ did not differ from the commercial single-crosses (9.86 t ha¹, and ten of the 48 experimental single-crosses could be released as cultivars because they compared favorably to the currently used single-crosses. Thus, one cycle of the MRRS procedure improved efficiently the populations allowing the development of outstanding single-cross, but additional cycles of selection should be carried out since none of the experimental single-crosses outperformed the highest yielding commercial single-cross. The relative contribution of the GCA over SCA may have been affected by the MRRS, since the SCA was more important than GCA for some of the traits assessed.Linhagens elites de milho (Zea mays L. desenvolvidas em programas genealógicos tendem a ser geneticamente relacionadas. Portanto, é necessário incorporar linhagens não relacionadas a estes programas para permitir a liberação contínua de híbridos simples superiores. Comparou-se a utilidade de um procedimento modificado de sele

  16. Biochemical and physical kernel properties of a standard maize hybrid in different TopCross™ Blends

    Directory of Open Access Journals (Sweden)

    Jelena Vancetovic

    Full Text Available ABSTRACT A pilot experiment was undertaken in order to examine high oil populations of maize (Zea mays L. to be used as pollinators in TopCross blends with commercial ZP341 standard hybrid. Five high oil populations (HOPs from the Maize Research Institute (MRI gene bank were chosen for this research, according to their high grain oil content, synchrony between silking of ZP341 and anthesis of the populations and good agronomic performances in 2012. Selfing of ZP341 and HOPs, as well as crosses of ZP341 cmsS sterile × HOPs were carried out in 2013. Oil content, fatty acid composition, protein and tryptophan content, and physical characteristics of the obtained kernels were measured. Four HOPs showed significant positive influence on the oil content in the TopCrosses (TC, 16.85 g kg−1 on average. Oleic acid, which is the principal monounsaturated fatty acid, was significantly lower in all HOPs and all TCs, while selfed ZP341 had almost twice the average value typical for standard maize. However, this decrease in TCs was in a narrow range from 1 % (in TC-3 to 5 % (in TC-4 and the oleic content of TCs was on average higher by 60 % compared to the typical standard maize. Different favorable and unfavorable significant changes were detected in fatty acid compositions, protein and tryptophan contents and physical kernel properties for each potential TC combination. Results indicate differences in gene effects present in different TC combinations and underscore the need to examine each potential TC blend by conducting similar simple experiments.

  17. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage maiz

  18. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  19. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf nu

  20. Synthesis and Functions of Jasmonates in Maize

    Directory of Open Access Journals (Sweden)

    Eli J. Borrego

    2016-11-01

    Full Text Available Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize.

  1. Can Transgenic Maize Affect Soil Microbial Communities?

    NARCIS (Netherlands)

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical gu

  2. Interaction between maize seed and Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus is an opportunistic fungal pathogen that colonizes maize seeds and contaminates them with aflatoxin. The fungus is localized in the endosperm and aleurone. To investigate the plant microbe interaction, we conducted histological and molecular studies to characterize the internal co...

  3. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    Science.gov (United States)

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  4. Genetic diversity and molecular evolution of Chinese waxy maize germplasm.

    Directory of Open Access Journals (Sweden)

    Hongjian Zheng

    Full Text Available Waxy maize (Zea mays L. var. certaina Kulesh, with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima's D and Fu and Li's F* were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection.

  5. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  6. Ontogeny of the Maize Shoot Apical Meristem[W][OA

    Science.gov (United States)

    Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570

  7. Seed production lines of maize: population density and interaction.

    OpenAIRE

    Juan Virgen-Vargas; Rosalba Zepeda-Bautista; Miguel Ángel Ávila-Perches; Alejandro Espinosa-Calderón; José Luis Arellano-Vázquez; Alfredo Josúe Gómez-Vázquez

    2014-01-01

    El objetivo del presente estudio fue determinar los efectos de la localidad y la densidad de población en la producción de semilla de líneas progenitoras de híbridos de maíz de Valles Altos de México. En el período de 2006 a 2008, en Coatlinchán, Texcoco, Estado de México (2250 msnm) se sembraron 16 líneas progenitoras de los híbridos: H-40, H-48, H-50, H-52, H-64E, H-66, H-68E, H-70, H-72E, H-74E, H-76E y H-78E en dos densidades de población 82 500 y 62 500 plantas/ha en un diseño de Bloques...

  8. The 50th Annual Maize Genetics Conference

    Energy Technology Data Exchange (ETDEWEB)

    Cone, Karen

    2014-03-26

    The 50th Annual Maize Genetics Conference was held February 27 - March 2, 2008 at the Marriott Wardman Park Hotel in Washington, D.C. As the golden anniversary of the Conference and coinciding with the release of a draft of the maize genome sequence, this was a special meeting. To publicize this unique occasion, meeting organizers hosted a press conference, which was attended by members of the press representing science and non-science publications, and an evening reception at the Smithsonian National Museum of Natural History, where the draft sequence was announced and awards were presented to Dr. Mary Clutter and Senator Kit Bond to thank them for their outstanding contributions to maize genetics and genomics research. As usual, the Conference provided an invigorating forum for exchange of recent research results in many areas of maize genetics, e.g., cytogenetics, development, molecular genetics, transposable element biology, biochemical genetics, and genomics. Results were shared via both oral and poster presentations. Invited talks were given by four distinguished geneticists: Vicki Chandler, University of Arizona; John Doebley, University of Wisconsin; Susan Wessler, University of Georgia; and Richard Wilson, Washington University. There were 46 short talks and 241 poster presentations. The Conference was attended by over 500 participants. This included a large number of first-time participants in the meeting and an increasingly visible presence by individuals from underrepresented groups. Although we do not have concrete counts, there seem to be more African American, African and Hispanic/Latino attendees coming to the meeting than in years past. In addition, this meeting attracted many participants from outside the U.S. Student participation continues to be hallmark of the spirit of free exchange and cooperation characteristic of the maize genetics community. With the generous support provided by DOE, USDA NSF, and corporate/private donors, organizers were

  9. Types of Maize Virus Diseases and Progress in Virus Identification Techniques in China

    Institute of Scientific and Technical Information of China (English)

    Cui Yu; Zhang Ai-hong; Ren Ai-jun; Miao Hong-qin

    2014-01-01

    There are a total of more than 40 reported maize viral diseases worldwide. Five of them have reportedly occurred in China. They are maize rough dwarf disease, maize dwarf mosaic disease, maize streak dwarf disease, maize crimson leaf disease, maize wallaby ear disease and corn lethal necrosis disease. This paper reviewed their occurrence and distribution as well as virus identification techniques in order to provide a basis for virus identification and diagnosis in corn production.

  10. Comprehending smallholder maize enterprises’ profitability with the current maize marketing system in Zimbabwe: A case of Mazowe district

    Directory of Open Access Journals (Sweden)

    John Basera

    2016-06-01

    Full Text Available Maize enterprise profitability is essential for sustainable maize production in smallholder farming. In Zimbabwe a lot of factors including several policy measures implemented in the past are believed to be influencing current maize profitability trends. Literature to confirm some of the crucial factors is limited especially in the smallholder farming sector. In this study we analyze profitability of smallholder maize farmers in Mazowe District of Zimbabwe. We estimate maize enterprise profitability using gross margin analysis, factors driving profitability using linear regression analysis and the influence of tobacco farming adoption on maize enterprise profitability using propensity score matching. We relied on both primary and secondary data from the study area. Results did not show robust outcomes on maize enterprises profitability. Maize profitability was found to be influenced positively by age of household head and selling produce to private buyers and negatively by fertilizer, chemical, and transport costs. Tobacco farming adoption was found to have a positive influence on maize profitability. Based on the results the study recommends the government through its various programs targeting agricultural development and food security to focus on smallholder maize production and marketing with the aim of improving its profitability.

  11. Global risk assessment of aflatoxins in maize and peanuts: are regulatory standards adequately protective?

    Science.gov (United States)

    Wu, Felicia; Stacy, Shaina L; Kensler, Thomas W

    2013-09-01

    The aflatoxins are a group of fungal metabolites that contaminate a variety of staple crops, including maize and peanuts, and cause an array of acute and chronic human health effects. Aflatoxin B1 in particular is a potent liver carcinogen, and hepatocellular carcinoma (HCC) risk is multiplicatively higher for individuals exposed to both aflatoxin and chronic infection with hepatitis B virus (HBV). In this work, we sought to answer the question: do current aflatoxin regulatory standards around the world adequately protect human health? Depending upon the level of protection desired, the answer to this question varies. Currently, most nations have a maximum tolerable level of total aflatoxins in maize and peanuts ranging from 4 to 20ng/g. If the level of protection desired is that aflatoxin exposures would not increase lifetime HCC risk by more than 1 in 100,000 cases in the population, then most current regulatory standards are not adequately protective even if enforced, especially in low-income countries where large amounts of maize and peanuts are consumed and HBV prevalence is high. At the protection level of 1 in 10,000 lifetime HCC cases in the population, however, almost all aflatoxin regulations worldwide are adequately protective, with the exception of several nations in Africa and Latin America.

  12. Calidad física y fisiológica de semilla en función de la densidad de población en dos híbridos de maíz Physical and physiological seed quality in function of the density of population in two maize hybrids

    Directory of Open Access Journals (Sweden)

    Juan Carlos Raya Pérez

    2012-07-01

    Full Text Available La densidad de población afecta algunos caracteres agronómicos en las variedades, como la calidad física y fisiológica de la semilla. Con el objetivo de evaluar este efecto, se sembraron dos genotipos hembra de dos híbridos comerciales de maíz (Zea mays L.; las densidades evaluadas fueron 52 630, 65 789, 78 789, 92 013 y 105 263 plantas ha-1 en el campo experimental del Instituto Tecnológico de Roque, Guanajuato. Se eligió un experimento factorial con diseño de bloques completos al azar con cuatro repeticiones. Se evaluó altura de planta, de mazorca, días a floración femenina, hojas fotosintéticamente activas, amacollamiento, ataque de Fusarium spp., acame de tallo, plantas ''horras'' y rendimiento de grano; la calidad de la semilla fue evaluada mediante peso volumétrico, análisis de pureza, peso de 1 000 semillas y clases de semilla. La calidad fisiológica, a través de la germinación estándar y el vigor. Los resultados obtenidos muestran que la densidad de población tuvo efectos estadísticamente significativos en las siguientes variables agronómicas: altura de planta y de mazorca, número de hojas fotosintéticamente activas, amacollamiento, porcentaje de plantas ''horras'' y rendimiento de grano; así, al menos una densidad es superior o permite observar diferencias entre ellas; en ninguna variable de este grupo se presentó efectos de interacción entre genotipos y densidades, indicando independencia entre estos factores.Population density affects some agronomic traits in varieties such as physical and physiological quality of the seed. In order to assess this effect, two female genotypes were grown of two commercial hybrids of maize (Zea mays L.; the evaluated densities were 52 630,65 789,78 789,92 013 and 105 263 plants ha-1 in the experimental field of Roque Institute of Technology, Guanajuato. A factorial experiment was chosen, using arandomized complete block design with four replications. We evaluated plant height

  13. Diallelic analysis in assessing the potential of maize hybrids to generate base-populations for obtaining linesAnálise dialélica na avaliação do potencial de híbridos de milho para a geração de populações-base para obtenção de linhagens

    Directory of Open Access Journals (Sweden)

    Débora Falkemback Oliboni

    2013-03-01

    Full Text Available Twelve commercial maize hybrids were intercrossed in a complete diallel. These genotypes and three checks were evaluated in lattice design with three replications in the South-Central region of Parana State, in Laranjeiras do Sul, Guarapuava and Cantagalo. Data of yield of husked ear, plant height and ear height were submitted to joint diallel analysis according to Griffings method 4, i.e. only F1 were evaluated. Significant effect was found for general combining ability (GCA, specific combining ability (SCA and interaction ‘GCA x locations’ for all characters. The interaction ‘SCA x location’ was not significant for both characters. Hybrids P30F53 and AS1575 showed positive and high estimates of GCA for yield of husked ear and high mean of yield, being interesting for the generation of populations with potential for intrapopulation breeding to obtain superior lines. The hybrids P30F44 and 2B688 are potentially indicated to generate populations for interpopulational breeding, since their high in yield of husked ears, positive GCA and SCA estimates, besides favorable estimates for ear height.Doze híbridos comerciais de milho foram intercruzados, conforme um dialelo completo. Esses genótipos e três testemunhas foram avaliados em látice triplo na região Centro-Sul do Paraná, nos municípios de Laranjeiras do Sul, Guarapuava e Cantagalo. Os dados referentes à produção de espigas despalhadas, altura de planta e altura de espiga foram submetidos à análise dialélica conjunta, segundo o método 4 de Griffing, em que foram avaliados apenas os F1. Foi verificado efeito significativo da capacidade geral de combinação (CGC, da capacidade específica de combinação (CEC e da interação ‘CGC x locais’ para todos os caracteres. A interação ‘CEC x locais’ foi não significativa para as características avaliadas. Os híbridos P30F53 e AS1575 apresentaram estimativas positivas e elevadas da CGC para peso de espigas despalhadas e

  14. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna.

    Science.gov (United States)

    Hameeda, B; Harini, G; Rupela, O P; Wani, S P; Reddy, Gopal

    2008-01-01

    Five bacterial strains with phosphate-solubilizing ability and other plant growth promoting traits increased the plant biomass (20-40%) by paper towel method. Glasshouse and field experiments were conducted using two efficient strains Serratia marcescens EB 67 and Pseudomonas sp. CDB 35. Increase in plant biomass (dry weight) was 99% with EB 67 and 94% with CDB 35 under glasshouse conditions. Increase in plant biomass at 48 and 96 days after sowing was 66% and 50% with EB 67 and 51% and 18% with CDB 35 under field conditions. Seed treatment with EB 67 and CDB 35 increased the grain yield of field-grown maize by 85% and 64% compared to the uninoculated control. Population of EB 67 and CDB 35 were traced back from the rhizosphere of maize on buffered rock phosphate (RP) medium and both the strains survived up to 96 days after sowing.

  15. Processing maize flour and corn meal food products.

    Science.gov (United States)

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-04-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn.

  16. Effect of Substituting Yellow Maize for Sorghum on Broiler Performance

    Directory of Open Access Journals (Sweden)

    Mohammed A. Ahmed

    2013-03-01

    Full Text Available An experiment was conducted to study the nutritional value of yellow maize when it substitutes sorghum grain as source of energy at levels 0, 25, 50, 75 and 100% in broiler rations. One hundred and forty unsexed one day old (Ross broiler chicks were randomly assigned to five approximately isocaloric and isonitrogenous diets labeled as follows: Diet (S0 containing sorghum 100% (control, 60% of the diet, diet (S1 75% sorghum 25% maize, diet (S2 50% sorghum 50% maize, diet (S3 25% sorghum 75% maize and diet (S4 maize (100% (without sorghum. Each treatment had four replicates with 7 birds/replicate. The experiment lasted for 6 weeks. Feed intake and body weight gain had been recorded weekly. The results showed significant increase (P 0.05 effect on cold carcass dressing percentage, liver and abdominal fat weights, serum cholesterol, serum calcium and inorganic phosphorus levels. The cost of production decreased by increasing level of maize.

  17. STRATEGY OF MAIZE'S CONCENTRATING TO ADVANTAGE AREAS IN JILIN PROVINCE

    Institute of Scientific and Technical Information of China (English)

    JIANG Hui-ming; GU Li-li

    2003-01-01

    Jilin Province is one of the main grain-producing provinces of China, which has dominant position in maize production, by the view of its advantages in policy, location, breed and market. And after entering WTO,some measures have been taken to enhance maize competitive ability. But there are some difficulties in concentrating production to maize advantaged areas. This paper expounds the basis that Jilin Province becomes the advantage area of maize, analyzes the problems and puts forward the supporting policy. Some strategic measures are proposed,as developing comparable advantages, carrying out the strategy of un-equilibrium development and cultivating advantaged product areas of maize to rapidly improve the international competitive ability and productivity of maize in Jilin Province, cast the agricultural predicament off and promote the agricultural development into a new stage.

  18. Processing maize flour and corn meal food products

    Science.gov (United States)

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-01-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576

  19. [Maize seed identification using hyperspectral imaging and SVDD algorithm].

    Science.gov (United States)

    Zhu, Qi-Bing; Feng, Zhao-Li; Huang, Min; Zhu, Xiao

    2013-02-01

    The sufficiency of feature extraction and the rationality of classifier design are two key issues affecting the accuracy of maize seed recognition. In the present study, the hyperspectral images of maize seeds were acquired using hyperspectral image system, and the image entropy of maize seeds for each wavelength was extracted as classification features. Then, support vector data description (SVDD) algorithm was used to develop the classifier model for each variety of maize seeds. The SVDD models yielded 94.14% average test accuracy for known variety samples and 92.28% average test accuracy for new variety samples, respectively. The simulation results showed that the proposed method implemented accurate identification of maize seeds and solved the problem of misclassification by the traditional classification algorithm for new variety maize seeds.

  20. Evaluation of the European Union Maize Landrace Core Collection for resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae).

    Science.gov (United States)

    Malvar, R A; Butrón, A; Alvarez, A; Ordás, B; Soengas, P; Revilla, L P; Ordás, A

    2004-04-01

    Two corn borer species are the principal maize insect pests in Europe, the European corn borer, Ostrinia nubilalis (Hübner), and the pink stem borer, Sesamia nonagrioides (Lefebvre). Hence, it would be advisable to evaluate the European maize germplasm for corn borer resistance to generate European varieties resistant to corn borer attack. The creation of the European Union Maize Landrace Core Collection (EUMLCC) allowed the screening of most of the variability for European corn borer resistance present among European maize local populations from France, Germany, Greece, Italy, Portugal, and Spain, testing a representative sample. The objective of this study was the evaluation of stem and ear resistance of the EUMLCC to European corn borer and pink stem borer attack. Trials were made at two Spanish locations that represent two very different maize-growing areas. Populations that performed relatively well under corn borer infestation for stem and ear damage were 'PRT0010008' and'GRC0010085', among very early landraces; 'PRT00100120' and 'PRT00100186', among early landraces; 'GRC0010174', among midseason landraces; and 'ESP0070441', among late landraces. Either the selection that could have happen under high insect pressure or the singular origin of determined maize populations would be possible explanations for the higher corn borer resistance of some landraces. Landraces 'PRT0010008', 'FRA0410090', 'PRT00100186', and 'ESP0090214' would be selected to constitute a composite population resistant to corn borers and adapted to short season, whereas populations 'ESP0090033', 'PRT00100530', 'GRC0010174', and 'ITA0370005' would be used to make a resistant composite adapted to longer season.

  1. Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.).

    Science.gov (United States)

    Luan, Junwen; Wang, Fei; Li, Yujie; Zhang, Bin; Zhang, Juren

    2012-08-01

    Maize rough dwarf disease (MRDD) is one of the most serious virus diseases of maize worldwide, and it causes great reduction of maize production. In China, the pathogen was shown to be rice black-streaked virus (RBSDV). Currently, MRDD has spread broadly and leads to significant loss in China. However, there has been little research devoted to this disease. Our aims were to identify the markers and loci underlying resistance to this virus disease. In this study, segregation populations were constructed from two maize elite lines '90110', which is highly resistant to MRDD and 'Ye478', which is highly susceptible to MRDD. The F(2) and BC(1) populations were used for bulk sergeant analysis (BSA) to identify resistance-related markers. One hundred and twenty F(7:9) RILs were used for quantitative trait loci (QTL) mapping through the experiment of multiple environments over 3 years. Natural occurrence and artificial inoculation were both used and combined to determine the phenotype of plants. Five QTL, qMRD2, qMRD6, qMRD7, qMRD8 and qMRD10 were measured in the experiments. The qMRD8 on chromosome 8 was proved to be one major QTL conferring resistance to RBSDV disease in almost all traits and environments, which explained 12.0-28.9 % of the phenotypic variance for disease severity in this present study.

  2. Adoption of Maize Conservation Tillage in Azuero, Panama

    OpenAIRE

    de Herrera, Adys Pereira; Sain, Gustavo

    1999-01-01

    An aggressive research and validation program launched in 1984 in Azuero, Panama, yielded a recommendation advocating zero tillage for maize production. Ten years later, maize farmers in Azuero used three land preparation methods: conventional tillage, zero tillage, and minimum tillage (an adaptation of the zero tillage technology). This study aimed to quantify the adoption of zero and minimum tillage for maize in Azuero; identify factors influencing adoption of the different land preparation...

  3. Effects of intercropping on maize stemborers and their natural enemies

    DEFF Research Database (Denmark)

    Skovgård, Henrik; Päts, Peeter

    1996-01-01

    The effects of maize-cowpea intercropping on three lepidopteran stemborers (Chilo partellus (Swinhoe) C. orichalcociliellus (Strand) and Sesamia calamistis Hampson) and their natural enemies were studied in Kenya. Oviposition was not affected by intercropping, but significantly fewer larvae...... and wandering spiders, were not augmented by intercropping, but an inverse relationship in abundance was found between these two predator groups. It is concluded that maize intercropped with cowpea has only limited potential as a method of controlling the key pests in maize....

  4. AN ECONOMETRIC MODEL OF THE SADC MAIZE SECTOR

    OpenAIRE

    Cutts, Michela; Hassan, Rashid M.

    2003-01-01

    In almost all of the Southern Africa Development Community (SADC) countries maize is cropped on a commercial basis except in Mauritius and Seychelles. Maize meal is the most important food staple in Southern and Eastern Africa. This is one of the main reason many governments in the region implement various policies to protect the maize sector. With adoption of the Uruguay Round Agreement on Agriculture (URAA) in the late 1990s, there has been a wave of market liberalization in the region. Mai...

  5. ACREAGE RESPONSE ANALYSIS OF MAIZE GROWERS IN KHYBER PAKHTUNKHWA, PAKISTAN

    Directory of Open Access Journals (Sweden)

    Bakhtawar Riaz

    2014-07-01

    Full Text Available This study was conducted to analyze the acreage response of maize with respect to price and non-price factors in Khyber Pakhtunkhwa. The time-series data for the period of 35 years (1976-2010 pertaining to, maize area, maize price, rice price, maize yield, average rainfall were collected from various published sources. Nerlovian adjustment lag model and Vector Auto Regression (VAR technique of estimation was employed for analyzing acreage response of maize. The model explained more than 90 percent of variation in the dependent variable. The expected maize price was unlikely found to be negative and statistically insignificant. The regression coefficients for lag rice price and lag maize yield also appeared insignificant. Area under maize in lagged year was found to be an important variable influencing farmer’s decision on acreage allocation. Among the short run and long run elasticities with respect to lag area that is 0.7155 and 2.5149, long run elasticity was more, signaling that acreage adjustment would normally take place in the long run. The coefficient of lag rainfall was found to be negative and significant indicating a negative relation between maize acreage and rainfall. The short run elasticity of maize area with respect to lag rainfall during the study period has been calculated at -0.0894 while the long run elasticity comes to be -0.3142, indicate its inelastic nature and little effect on the decision of farmers regarding allocation of land to maize. Small area adjustment coefficient (0.2845 revealed low rate of farmers’ area adjustment to desired level because of more institutional and technological constraints. Based upon the findings of this study it can be concluded that farmers allocate land to maize crop mainly basing on their previous allocation pattern rather than relative crop prices.

  6. Risk of DDT residue in maize consumed by infants as complementary diet in southwest Ethiopia.

    Science.gov (United States)

    Mekonen, Seblework; Lachat, Carl; Ambelu, Argaw; Steurbaut, Walter; Kolsteren, Patrick; Jacxsens, Liesbeth; Wondafrash, Mekitie; Houbraken, Michael; Spanoghe, Pieter

    2015-04-01

    Infants in Ethiopia are consuming food items such as maize as a complementary diet. However, this may expose infants to toxic contaminants like DDT. Maize samples were collected from the households visited during a consumption survey and from markets in Jimma zone, southwestern Ethiopia. The residues of total DDT and its metabolites were analyzed using the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method combined with dispersive solid phase extraction cleanup (d-SPE). Deterministic and probabilistic methods of analysis were applied to determine the consumer exposure of infants to total DDT. The results from the exposure assessment were compared with the health based guidance value in this case the provisional tolerable daily intake (PTDI). All maize samples (n=127) were contaminated by DDT, with a mean concentration of 1.770 mg/kg, which was far above the maximum residue limit (MRL). The mean and 97.5 percentile (P 97.5) estimated daily intake of total DDT for consumers were respectively 0.011 and 0.309 mg/kg bw/day for deterministic and 0.011 and 0.083 mg/kg bw/day for probabilistic exposure assessment. For total infant population (consumers and non-consumers), the 97.5 percentile estimated daily intake were 0.265 and 0.032 mg/kg bw/day from the deterministic and probabilistic exposure assessments, respectively. Health risk estimation revealed that, the mean and 97.5 percentile for consumers, and 97.5 percentile estimated daily intake of total DDT for total population were above the PTDI. Therefore, in Ethiopia, the use of maize as complementary food for infants may pose a health risk due to DDT residue.

  7. Pleiotropic impact of endosymbiont load and co-occurrence in the maize weevil Sitophilus zeamais.

    Directory of Open Access Journals (Sweden)

    Gislaine A Carvalho

    Full Text Available Individual traits vary among and within populations, and the co-occurrence of different endosymbiont species within a host may take place under varying endosymbiont loads in each individual host. This makes the recognition of the potential impact of such endosymbiont associations in insect species difficult, particularly in insect pest species. The maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae, a key pest species of stored cereal grains, exhibits associations with two endosymbiotic bacteria: the obligatory endosymbiont SZPE ("Sitophilus zeamais Primary Endosymbiont" and the facultative endosymbiont Wolbachia. The impact of the lack of SZPE in maize weevil physiology is the impairment of nutrient acquisition and energy metabolism, while Wolbachia is an important factor in reproductive incompatibility. However, the role of endosymbiont load and co-occurrence in insect behavior, grain consumption, body mass and subsequent reproductive factors has not yet been explored. Here we report on the impacts of co-occurrence and varying endosymbiont loads achieved via thermal treatment and antibiotic provision via ingested water in the maize weevil. SZPE exhibited strong effects on respiration rate, grain consumption and weevil body mass, with observed effects on weevil behavior, particularly flight activity, and potential consequences for the management of this pest species. Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect. SZPE suppression delayed weevil emergence, which reduced the insect population growth rate, and the thermal inactivation of both symbionts prevented insect reproduction. Such findings are likely important for strain divergences reported in the maize weevil and their control, aspects still deserving future attention.

  8. Effects of maize maturity at harvest and dietary proportion of maize silage on intake and performance of growing/finishing bulls

    DEFF Research Database (Denmark)

    Zaralis, K.; Nørgaard, P.; Helander, C.

    2014-01-01

    of treatments, involving two maturity stages of maize at harvest (i.e. dough stage or dent stage) and two maize silage proportions (i.e. 100% maize silage or 50% maize and 50% grass silage). The diets were offered ad libitum as total mixed rations (TMRs) with inclusion of concentrates (i.e. rolled barley; dried...... to the higher ME (Pdough stage compared to dent stage maturity of maize at harvest tended to increase live-weight gain (P=0.06)....

  9. The Effects of Food Processing on the Archaeological Visibility of Maize: An Experimental Study of Carbonization of Lime-treated Maize Kernels

    OpenAIRE

    2013-01-01

    This paper explores the effects of maize processing on the carbonization and preservation of maize kernels in the archaeological record. The shift to processing maize with lime (known as hominy production in the Eastern Woodlands and nixtamalization in Mesoamerica) in ancient times had the effect of making maize more nutritious through increasing the availability of calcium, niacin, dietary fiber, and essential amino acids.  Less understood is how this process of cooking maize in a lime solut...

  10. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding.

    Science.gov (United States)

    Xu, Cheng; Ren, Yonghong; Jian, Yinqiao; Guo, Zifeng; Zhang, Yan; Xie, Chuanxiao; Fu, Junjie; Wang, Hongwu; Wang, Guoying; Xu, Yunbi; Li, Ping; Zou, Cheng

    2017-01-01

    With the decrease of cost in genotyping, single nucleotide polymorphisms (SNPs) have gained wide acceptance because of their abundance, even distribution throughout the maize (Zea mays L.) genome, and suitability for high-throughput analysis. In this study, a maize 55 K SNP array with improved genome coverage for molecular breeding was developed on an Affymetrix® Axiom® platform with 55,229 SNPs evenly distributed across the genome, including 22,278 exonic and 19,425 intronic SNPs. This array contains 451 markers that are associated with 368 known genes and two traits of agronomic importance (drought tolerance and kernel oil biosynthesis), 4067 markers that are not covered by the current reference genome, 734 markers that are differentiated significantly between heterotic groups, and 132 markers that are tags for important transgenic events. To evaluate the performance of 55 K array, we genotyped 593 inbred lines with diverse genetic backgrounds. Compared with the widely-used Illumina® MaizeSNP50 BeadChip, our 55 K array has lower missing and heterozygous rates and more SNPs with lower minor allele frequency (MAF) in tropical maize, facilitating in-depth dissection of rare but possibly valuable variation in tropical germplasm resources. Population structure and genetic diversity analysis revealed that this 55 K array is also quite efficient in resolving heterotic groups and performing fine fingerprinting of germplasm. Therefore, this maize 55 K SNP array is a potentially powerful tool for germplasm evaluation (including germplasm fingerprinting, genetic diversity analysis, and heterotic grouping), marker-assisted breeding, and primary quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) for both tropical and temperate maize.

  11. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Buddhi Bahadur Achhami

    2015-12-01

    Full Text Available Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage percentage by stem borer was up to 18.11%. Length of the feeding tunnel in maize stem was significantly higher in January than July. In case of exit holes made by borer counted more than four holes per plant that were planted in the month of January. All in all, except the tunnel length measurement per plant, we observed similar pattern in other borer damage parameters such as exit whole counts and plant damage percentage within the tested varieties. Stem borer damage was not significantly affect on grain yield.

  12. Chemical composition and quality of sweet sorghum and maize silages

    OpenAIRE

    Zbigniew PODKÓWKA; Lucyna PODKÓWKA

    2011-01-01

    Sweet sorghum (Sorghum saccharatum) silage, maize (Zea mays) silage, and sorghum and maize (1:1) silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88%) in sorghum silage and the highest (37.45%) in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre an...

  13. Propanol in maize silage at Danish dairy farms

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2010-01-01

    The objective of the present study was to investigate the prevalence maize silage containing propanol, the seasonal variation in propanol content of maize silage, and correlations between propanol and other fermentation products in maize silage collected from 20 randomly selected Danish dairy farms...... farms, the maize silage had ≥5 g propanol/kg DM. The present study indicates that dairy cows in Denmark are commonly exposed to propanol and that approximately 20% of the dairy cows will have an intake in the range of 75-100 g propanol/d under common feeding conditions....

  14. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    OpenAIRE

    Zhiming Xie; Ri Song; Hongbo Shao; Fengbin Song; Hongwen Xu; Yan Lu

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values of P n , g s , and C i of maize were significantly enhanced while the values of E of maize were dra...

  15. Asymmetrical local adaptation of maize landraces along an altitudinal gradient.

    Science.gov (United States)

    Mercer, Kristin; Martínez-Vásquez, Ángel; Perales, Hugo R

    2008-08-01

    Crop landraces are managed populations that evolve in response to gene flow and selection. Cross-pollination among fields, seed sharing by farmers, and selection by management and environmental conditions play roles in shaping crop characteristics. We used common gardens to explore the local adaptation of maize (Zea mays ssp. mays) landrace populations from Chiapas, Mexico to altitude. We sowed seeds of 21 populations from three altitudinal ranges in two common gardens and measured two characteristics that estimate fitness: likelihood of producing good quality seed and the total mass of good quality seed per plant. The probability of lowland plants producing good quality seed was invariably high regardless of garden, while highland landraces were especially sensitive to altitude. Their likelihood of producing good seed quadrupled in the highland site. The mass of good quality seed showed a different pattern, with lowland landraces producing 25% less seed mass than the other types at high elevations. Combining these two measures of fitness revealed that the highland landraces were clearly adapted to highland sites, while lowland and midland landraces appear more adapted to the midland site. We discuss this asymmetry in local adaptation in light of climate change and in situ conservation of crop genetic resources.

  16. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  17. Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7.

    Science.gov (United States)

    Krishna, M S R; Sokka Reddy, S; Satyanarayana, Sadam D V

    2017-07-01

    Improvement of quality protein maize (QPM) along with high content of lysine and tryptophan had foremost importance in maize breeding program. The efficient and easiest way of developing QPM hybrids was by backcross breeding in marker aided selection. Hence, the present investigation aimed at conversion of elite maize inbred line BML-7 into QPM line. CML-186 was identified to be a donor variety as it revealed high-quality polymorphism with BML-7 for opaque-2 gene specific marker umc1066. Non-QPM inbred line BML-7 was crossed with QPM donor CML-186 and produced F1 followed by the development of BC1F1 and BC2F1 population. Foreground selection was carried out with umc1066 in F1, and selected plants were used for BC1F1 and BC2F1 populations. Two hundred plants were screened in both BC1F1 and BC2F1 population with umc1066 for foreground selection amino acid modifiers. Foreground selected plants for both opaque-2 and amino acid modifiers were screened for background selection for BML-7 genome. Recurrent parent genome (RPG) was calculated for BC2F1 population plants. Two plants have shown with RPG 90-93% in two generation with back cross population. Two BC2F2 populations resulted from marker recognized BC2F1 individuals subjected toward foreground selection followed by tryptophan estimation. The tryptophan and lysine concentration was improved in all the plants. BC2F2 lines developed from hard endosperm kernels were selfed for BC2F2 lines and finest line was selected to illustrate the QPM version of BML-7, with 0.97% of tryptophan and 4.04% of lysine concentration in protein. Therefore, the QPM version of BML-7 line can be used for the development of single cross hybrid QPM maize version.

  18. Maize Arabinoxylan Gels as Protein Delivery Matrices

    Directory of Open Access Journals (Sweden)

    Ana Luisa Martínez-López

    2009-04-01

    Full Text Available The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v in the presence of insulin or β-lactoglobulin at 0.1% (w/v was investigated. Insulin and β-lacto-globulin did not modify either the gel elasticity (9 Pa or the cross-links content (0.03 and 0.015 mg di- and triferulic acids/mg arabinoxylan, respectively. The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 × 10-7 and 0.79 × 10-7 cm2/s for insulin (5 kDa and β-lactoglobulin (18 kDa, respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  19. Thermotropism by primary roots of maize

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, M.-C.; Poff, K.L. (MSU-DOE Plant Research Laboratory, East Lansing, MI (USA))

    1990-05-01

    Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root is placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.

  20. Grain yield stability of early maize genotypes

    Directory of Open Access Journals (Sweden)

    Chitra Bahadur Kunwar

    2016-12-01

    Full Text Available The objective of this study was to estimate grain yield stability of early maize genotypes. Five early maize genotypes namely Pool-17, Arun1EV, Arun-4, Arun-2 and Farmer’s variety were evaluated using Randomized Complete Block Design along with three replications at four different locations namely Rampur, Rajahar, Pakhribas and Kabre districts of Nepal during summer seasons of three consecutive years from 2010 to 2012 under farmer’s fields. Genotype and genotype × environment (GGE biplot was used to identify superior genotype for grain yield and stability pattern. The genotypes Arun-1 EV and Arun-4 were better adapted for Kabre and Pakhribas where as pool-17 for Rajahar environments. The overall findings showed that Arun-1EV was more stable followed by Arun-2 therefore these two varieties can be recommended to farmers for cultivation in both environments.

  1. Iron bioavailability of maize hemoglobin in a Caco-2 cell culture model.

    Science.gov (United States)

    Bodnar, Anastasia L; Proulx, Amy K; Scott, M Paul; Beavers, Alyssa; Reddy, Manju B

    2013-07-31

    Maize ( Zea mays ) is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable, and its bioavailability is not inhibited by phytate. It was hypothesized that maize hemoglobin is a highly bioavailable iron source and that biofortification of maize with iron can be accomplished by overexpression of maize globin in the endosperm. Maize was transformed with a gene construct encoding a translational fusion of maize globin and green fluorescent protein under transcriptional control of the maize 27 kDa γ-zein promoter. Iron bioavailability of maize hemoglobin produced in Escherichia coli and of stably transformed seeds expressing the maize globin-GFP fusion was determined using an in vitro Caco-2 cell culture model. Maize flour fortified with maize hemoglobin was found to have iron bioavailability that is not significantly different from that of flour fortified with ferrous sulfate or bovine hemoglobin but is significantly higher than unfortified flour. Transformed maize grain expressing maize globin was found to have iron bioavailability similar to that of untransformed seeds. These results suggest that maize globin produced in E. coli may be an effective iron fortificant, but overexpressing maize globin in maize endosperm may require a different strategy to increase bioavailable iron content in maize.

  2. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa.

    Science.gov (United States)

    Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel

    2013-05-01

    Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification.

  3. Intraguild Competition of Three Noctuid Maize Pests.

    Science.gov (United States)

    Bentivenha, J P F; Baldin, E L L; Hunt, T E; Paula-Moraes, S V; Blankenship, E E

    2016-08-01

    The western bean cutworm Striacosta albicosta (Smith), the fall armyworm Spodoptera frugiperda (J. E. Smith), and the corn earworm Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) are among the major lepidopteran pests of maize in the United States, belonging to the same guild and injuring the reproductive tissues of this crop. Here, intraguild competition of these lepidopterans on non-Bt maize was evaluated through survival analysis of each species under laboratory and field conditions. Competition scenarios were carried out in arenas containing maize silk or ear tissue, using larvae on different stadium of development. Fitness cost competition studies were conducted to examine the influence of intraguild competition and cannibalism and predation rates on larval development. The survival of S. albicosta competing with the other species was significantly lower than in intraspecific competition, even when the larvae were more developed than the competitor. For S. frugiperda, survival remained high in the different competition scenarios, except when competing in a smaller stadium with H. zea Larvae of H. zea had a high rate of cannibalism, higher survival when competing against S. albicosta than S. frugiperda, and reduced survival when the H. zea larvae were at the same development stadium or smaller than the competitors. Based on fitness cost results, the absence of a competitor for the feeding source may confer an advantage to the larval development of S. frugiperda and H. zea Our data suggest that S. frugiperda has a competitive advantage against the other species, while S. albicosta has the disadvantage in the intraguild competition on non-Bt maize.

  4. Effects of Selected Diazotrophs on Maize Growth

    Science.gov (United States)

    Kifle, Medhin H.; Laing, Mark D.

    2016-01-01

    Laboratory, greenhouse, and field experiments were conducted at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in the 2010/2011 and 2011∖2012 seasons to study the effects of eight strains of diazotrophic bacteria on the growth and yield of maize. Maize seeds were treated with Bacillus megaterium (V16), Pseudomonas sp. (StB5, A3, A6, and A61), Burkholderia ambifaria (V9), Enterobacter cloacae (L1) and Pantoea ananatis (LB5), aiming to stimulate plant growth, and maintain or increase yields while reducing the need for N fertilization. All the diazotrophic bacteria increased germination of maize seed, and Pseudomonas sp. (StB5) and B. megaterium (V16) significantly increased shoot length. Pseudomonas sp. (StB5), B. megaterium (V16), E. cloacae (L1), B. ambifaria (V9), and Pseudomonas sp. (A3) very significantly increased root length and seed vigor index. Under greenhouse conditions, plants treated with diazotrophic bacteria developed more leaf chlorophyll and greater dry weight, albeit not significantly (n.s.). In a field trial in 2010/2011, application of the best five diazotrophic bacteria, with or without 33% N-fertilizer, had no significant effect on germination, grain yield, dry weight, plant height and leaf chlorophyll. In the 2011/2012 growing season, at 60 days after planting (DAP), all the diazotrophic bacteria increased plant dry weights to equal that of the fertilized control (33%N-fertilizer) (n.s.). After inoculation with the diazotrophs alone increased plant heights (n.s.), and chlorophyll contents (n.s.). With the addition of 33%N-fertilizer at planting, the diazotrophs still caused increases of chlorophyll content relative to the control with 33%N (n.s.). It may be concluded that the tested diazotrophs alone may be beneficial for use on maize growth. PMID:27713756

  5. EFFECTS OF SELECTED DIAZOTROPHS ON MAIZE GROWTH

    Directory of Open Access Journals (Sweden)

    Medhin Hadish Kifle

    2016-09-01

    Full Text Available Laboratory, greenhouse, and field experiments were conducted at the University of KwaZulu-Natal, Pietermaritzburg, South Africa in the 2010 2011 and 2011 2012 seasons to study the effects of eight strains of diazotrophic bacteria on the growth and yield of maize. Maize seeds were treated with Bacillus megaterium (V16, Pseudomonas sp. (StB5, A3, A6, and A61, Burkholderia ambifaria (V9, Enterobacter cloacae (L1 and Pantoea ananatis (LB5, aiming to stimulate plant growth, and maintain or increase yields while reducing the need for N fertilization. All the diazotrophic bacteria increased germination of maize seed, and Pseudomonas sp. (StB5 and B. megaterium (V16 significantly increased shoot length. Pseudomonas sp. (StB5, B. megaterium (V16, E. cloacae (L1, B. ambifaria (V9 and Pseudomonas sp. (A3 very significantly increased root length and seed vigor index. Under greenhouse conditions, plants treated with diazotrophic bacteria developed more leaf chlorophyll and greater dry weight, albeit not significantly (n.s.. In a field trial in 2010/2011, application of the best five diazotrophic bacteria, with or without 33% N-fertilizer, had no significant effect on germination, grain yield, dry weight, plant height and leaf chlorophyll. In the 2011/2012 growing season, at 60 days after planting (DAP, all the diazotrophic bacteria increased plant dry weights to equal that of the fertilized control (33%N-fertilizer(n.s.. After inoculation with the diazotrophs alone increased plant heights (n.s., and chlorophyll contents (n.s.. With the addition of 33%N-fertilizer at planting, the diazotrophs still caused increases of chlorophyll content relative to the control with 33%N (n.s.. It may be concluded that the tested diazotrophs alone may be beneficial for use on maize growth.

  6. OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize

    Directory of Open Access Journals (Sweden)

    Colmsee Christian

    2012-12-01

    Full Text Available Abstract Background Maize is a major crop plant, grown for human and animal nutrition, as well as a renewable resource for bioenergy. When looking at the problems of limited fossil fuels, the growth of the world’s population or the world’s climate change, it is important to find ways to increase the yield and biomass of maize and to study how it reacts to specific abiotic and biotic stress situations. Within the OPTIMAS systems biology project maize plants were grown under a large set of controlled stress conditions, phenotypically characterised and plant material was harvested to analyse the effect of specific environmental conditions or developmental stages. Transcriptomic, metabolomic, ionomic and proteomic parameters were measured from the same plant material allowing the comparison of results across different omics domains. A data warehouse was developed to store experimental data as well as analysis results of the performed experiments. Description The OPTIMAS Data Warehouse (OPTIMAS-DW is a comprehensive data collection for maize and integrates data from different data domains such as transcriptomics, metabolomics, ionomics, proteomics and phenomics. Within the OPTIMAS project, a 44K oligo chip was designed and annotated to describe the functions of the selected unigenes. Several treatment- and plant growth stage experiments were performed and measured data were filled into data templates and imported into the data warehouse by a Java based import tool. A web interface allows users to browse through all stored experiment data in OPTIMAS-DW including all data domains. Furthermore, the user can filter the data to extract information of particular interest. All data can be exported into different file formats for further data analysis and visualisation. The data analysis integrates data from different data domains and enables the user to find answers to different systems biology questions. Finally, maize specific pathway information is

  7. Regional Climate Change Scenarios for Mexico and Potential Impacts on Rainfed Maize Agriculture.

    Science.gov (United States)

    Conde, C.; Estrada, F.; Martínez, B.; Sánchez, O.; Monterroso, A.; Rosales, G.; Gay, C.

    2010-03-01

    the national surface has some degree of suitability for maize production. However, only 12% of that surface is currently suitable, and 55% presents moderated or marginal conditions for maize cultivation. The most vulnerable regions under climate change scenarios are the more suitable areas, decreasing from 3% (HADGEM1, B2) to 4.3% (ECHAM5, A2) shifting mostly to marginal suitability, which will cover a surface of more than 43%. These results project adverse conditions for maize production in the country, which might endanger food security for the rural population. Adaptation measure are discussed using a study case in the central region of the country, considering changes in planting dates, changes in maize varieties, and changes in crop management, such as increasing fertilizer application.

  8. Diversity of maize shoot apical meristem architecture and its relationship to plant morphology.

    Science.gov (United States)

    Thompson, Addie M; Yu, Jianming; Timmermans, Marja C P; Schnable, Patrick; Crants, James C; Scanlon, Michael J; Muehlbauer, Gary J

    2015-03-05

    The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meristem are constrained during vegetative development. Previous work identified loci controlling meristem architecture in a recombinant inbred line population. The study presented here expanded on this by investigating shoot apical meristem morphology across a diverse set of maize inbred lines. Crosses of these lines to common parents showed varying phenotypic expression in the F1, with some form of heterosis occasionally observed. An investigation of meristematic growth throughout vegetative development in diverse lines linked the timing of reproductive transition to flowering time. Phenotypic correlations of meristem morphology with adult plant traits showed an association between the meristem and flowering time, leaf shape, and yield traits, revealing links between the control and architecture of undifferentiated and differentiated plant organs. Finally, quantitative trait loci mapping was utilized to map the genetic architecture of these meristem traits in two divergent populations. Control of meristem architecture was mainly population-specific, with 15 total unique loci mapped across the two populations with only one locus identified in both populations. Copyright © 2015 Thompson et al.

  9. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico.

    Science.gov (United States)

    Armenta, R; Martínez, A M; Chapman, J W; Magallanes, R; Goulson, D; Caballero, P; Cave, R D; Cisneros, J; Valle, J; Castillejos, V; Penagos, D I; García, L F; Williams, T

    2003-06-01

    The impact of commonly used organophosphate (chlorpyrifos, methamidophos), carbamate (carbaryl), and pyrethroid (cypermethrin) insecticides on insect natural enemies was compared with that of a nucleopolyhedrovirus (Baculoviridae) of Spodoptera frugiperda (J. E. Smith) (Lepidoptera Noctuidae) in maize grown in southern Mexico. Analyses of the SELECTV and Koppert Side Effects (IOBC) databases on the impact of synthetic insecticides on arthropod natural enemies were used to predict approximately 75-90% natural enemy mortality after application, whereas the bioinsecticide was predicted to have no effect. Three field trails were performed in mid- and late-whorl stage maize planted during the growing season in Chiapas State, Mexico. Synthetic insecticides were applied at product label recommended rates using a manual knapsack sprayer fitted with a cone nozzle. The biological pesticide was applied at a rate of 3 x 10(12) occlusion bodies (OBs)/ha using identical equipment. Pesticide impacts on arthropods on maize plants were quantified at intervals between 1 and 22 d postapplication. The biological insecticide based on S. frugiperda nucleopolyhedrovirus had no adverse effect on insect natural enemies or other nontarget insect populations. Applications of the carbamate, pyrethroid, and organophosphate insecticides all resulted in reduced abundance of insect natural enemies, but for a relatively short period (8-15 d). Pesticide applications made to late-whorl stage maize resulted in lesser reductions in natural enemy populations than applications made at the mid-whorl stage, probably because of a greater abundance of physical refuges and reduced spray penetration of late-whorl maize.

  10. Differential resistance reaction of maize genotypes to maize stem borer (Chilo partellus Swinhoe at Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2016-12-01

    Full Text Available Maize stem borer (MSB, Chilo partellus Swinhoe, Lepidoptera: Pyralidae is one of the most important insect pest of maize in Nepal. Host plant resistance is the cost-effective, ecologically sound and stable approach to reduce damage by stem borers. Forty four maize genotypes were screened for resistance to maize stem borer at the research field of National Maize Research Program, Rampur during spring seasons (March to June of two consecutive years 2013 and 2014. The maize genotypes were evaluated in randomized complete block design with three replications and data were collected on foliar damage rating, tunnel length and number of exit holes made by the borer. The foliar damage and tunnel length damage were significant for genotypes for both the years. The exit holes were not significant in 2013 but significant in 2014 ranging from 2-6 scale. The foliar rating ranged from 2 to 5.5 in 2013 and 1.1 to 4.5 in 2014 on a 1-9 rating scale. The highly resistant genotypes (10 cm scale. The least susceptible genotypes (<5 cm were RampurSO3F8, RampurSO3FQ02 and RampurS10F18. The genotypes having least exit holes (2.0 in 2014 were RampurSO3F8, RampurSO3FQ02, RampurS10F18. Thus less damage parameters were observed in R-POP-2, RML-5/RML-8, RampurSO3F8, RampurSO3FQ02 and RampurS10F18 and therefore they can be used as parents or as sources of resistance in breeding program.

  11. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  12. Aflatoxin Control in Maize by Trametes versicolor

    Directory of Open Access Journals (Sweden)

    Marzia Scarpari

    2014-12-01

    Full Text Available Aspergillus flavus is a well-known ubiquitous fungus able to contaminate both in pre- and postharvest period different feed and food commodities. During their growth, these fungi can synthesise aflatoxins, secondary metabolites highly hazardous for animal and human health. The requirement of products with low impact on the environment and on human health, able to control aflatoxin production, has increased. In this work the effect of the basidiomycete Trametes versicolor on the aflatoxin production by A. flavus both in vitro and in maize, was investigated. The goal was to propose an environmental loyal tool for a significant control of aflatoxin production, in order to obtain feedstuffs and feed with a high standard of quality and safety to enhance the wellbeing of dairy cows. The presence of T. versicolor, grown on sugar beet pulp, inhibited the production of aflatoxin B1 in maize by A. flavus. Furthermore, treatment of contaminated maize with culture filtrates of T. versicolor containing ligninolytic enzymes, showed a significant reduction of the content of aflatoxin B1.

  13. Aflatoxin regulations in a network of global maize trade.

    Directory of Open Access Journals (Sweden)

    Felicia Wu

    Full Text Available Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000-2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B(1, B(2, G(1, and G(2 differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards.

  14. Aflatoxin Regulations in a Network of Global Maize Trade

    Science.gov (United States)

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000–2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B1, B2, G1, and G2) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards. PMID:23049773

  15. The response of maize production in Kenya to economic incentives

    Directory of Open Access Journals (Sweden)

    Onono, P.A.,

    2013-06-01

    Full Text Available Agricultural development policy in Kenya has emphasised the use of incentives towards increased production and therefore self-sufficiency in maize which is a basic staple for most households. The channels used to provide incentives to maize farmers over the years include setting higher producer prices; subsidisation of inputs; provision of agricultural credit, research and extension services; construction and maintenance of roads, development of irrigation and water systems; legislative, institutional and macroeconomic reforms. Despite these efforts outputof maize has remained below domestic requirements in most years and the country continues to rely on imports to meet the deficits. Studies have assessed the responsiveness of maize to output price and reported inelastic responses and have recommended policies targeting non-price incentives to complement prices for the required increased production of maize. The studies, however, did not analyse the influence of the non-price incentives on the production of the crop. The findings of those studies are therefore deficient in explaining the relative importance of different non-price incentives and how they complement prices in influencing maize production in Kenya. This study investigated the response of maize production to both price and non-price incentives. The aim of this study was to ascertain the relative importance of non-price factors in influencing production of the crops as well as complementarity between price and non-price incentives. The findings show that maize production responds positively to its output price, development expenditures in agriculture, maize sales to marketing boards, growth in per capita GDP, liberalisation and governance reforms. However, maize production responds negatively to fertiliser price and unfavourable weather conditions. The response of maize output to its price is lower with rising inflation and grain market liberalisation.

  16. Aflatoxin regulations in a network of global maize trade.

    Science.gov (United States)

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000-2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B(1), B(2), G(1), and G(2)) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards.

  17. The mycotoxin distribution in maize milling fractions under experimental conditions.

    Science.gov (United States)

    Burger, H-M; Shephard, G S; Louw, W; Rheeder, J P; Gelderblom, W C A

    2013-07-01

    Mycotoxin contamination of maize and maize-based food and feed products poses a health risk to humans and animals if not adequately controlled and managed. The current study investigates the effect of dry milling on the reduction of fumonisins (FB), deoxynivalenol (DON) and zearalenone (ZEA) in maize. Five composite samples, constructed to represent different mycotoxin contamination levels were degermed yielding degermed maize and the germ. The degermed maize was milled under laboratory conditions and four major milling fractions (SPECIAL, SUPER, semolina (SEM) and milling hominy feed) collected. The whole maize, degermed maize and total hominy feed (germ+milling hominy feed) were reconstructed to ensure homogenous samples for mycotoxin analyses. For comparison, commercial dry milling fractions (whole maize, SPECIAL, SUPER and total hominy feed), collected from three South African industrial mills, were analysed for the same mycotoxins and hence a more accurate assessment of the distribution between the different milling fractions. The distribution of the mycotoxins during the experimental dry milling of the degermed maize differs, with FB mainly concentrated in the SPECIAL, DON in the SEM whereas ZEA was equally distributed between the two milling fractions. Distribution of mycotoxins between the fractions obtained during commercial dry milling generally provided similar results with the total hominy feed containing the highest and the SUPER milling fractions the lowest mycotoxin levels although variations existed. Although milling is an effective way to reduce mycotoxins in maize, kernel characteristics and resultant fungal colonisation may impact on the distribution of specific mycotoxins among the different milling fractions. Differences in industrial dry milling practices and problems encountered in sampling bulk maize remain a large problem in assessing mycotoxin contamination in milling fractions intended for human consumption.

  18. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.

    Science.gov (United States)

    Pal, K K; Tilak, K V; Saxena, A K; Dey, R; Singh, C S

    2001-01-01

    A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lacZ induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lacZ mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lacZ marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance

  19. The Effects of Food Processing on the Archaeological Visibility of Maize: An Experimental Study of Carbonization of Lime-treated Maize Kernels

    Directory of Open Access Journals (Sweden)

    Caroline Dezendorf

    2013-01-01

    Full Text Available This paper explores the effects of maize processing on the carbonization and preservation of maize kernels in the archaeological record. The shift to processing maize with lime (known as hominy production in the Eastern Woodlands and nixtamalization in Mesoamerica in ancient times had the effect of making maize more nutritious through increasing the availability of calcium, niacin, dietary fiber, and essential amino acids.  Less understood is how this process of cooking maize in a lime solution affects the archaeological preservation of maize; if there is a clear difference in the archaeological signature of maize remains that are and are not processed this way, then this process may be identifiable in the archaeological record. To this end, an experiment was constructed analyzing the variation in size between dried and alkali processed maize kernels before and after carbonization. Results indicate that alkali processed maize kernels are less likely to fragment during carbonization.

  20. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds.

    Science.gov (United States)

    Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard; Darnhofer, Birte; Eder, Joachim; Ouzunova, Milena; Lübberstedt, Thomas

    2008-01-03

    Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway. In the present study we have amplified partial genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD) possibly reflecting different levels of selection. Associations with forage quality traits were identified for several individual polymorphisms within the 4CL1, C3H, and F5H genomic fragments when controlling for both overall population structure and relative kinship. A 1-bp indel in 4CL1 was associated with in vitro digestibility of organic matter (IVDOM), a non-synonymous SNP in C3H was associated with IVDOM, and an intron SNP in F5H was associated with neutral detergent fiber. However, the C3H and F5H associations did not remain significant when controlling for multiple testing. While the number of lines included in this study limit the power of the association analysis, our results imply that genetic variation for forage quality traits can be mined in phenylpropanoid pathway genes of elite breeding lines of maize.

  1. EFFICIENCY OF THE CHEMICAL TREATMENT AGAINST THE EUROPEAN CORN BORER IN SEED MAIZE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Emilija Raspudić

    2013-06-01

    Full Text Available The aim of this study was to determine the effectiveness of a chemical treatment against larvae of the European corn borer (Ostrinia nubilalis Hubner. The experiment was set up in 2010 and 2011 in Čepin (eastern Croatia in two treatments: control treatment and insecticide treatment. The trial involved two hybrids of FAO group 400: PR37N01 and PR37F73. Biology of pests was monitored in order to determine population size and larvae development stage as well as the optimal time of insecticide application. After determination of thresholds, maize was treated with chemical formulations of active substance dimethoate. Towards the end of vegetation, length of stem damage, number of larvae in maize stalk and ear as well as grain yield were recorded by dissection of maize stalks. Statistical analysis shows that year, hybrid and chemical treatment significantly influenced the incidence of this pest and justified the use of chemical preparations with mandatory monitoring biology of this pest.

  2. Identification of unconditional and conditional QTL for oil, protein and starch content in maize

    Institute of Scientific and Technical Information of China (English)

    Yuqiu; Guo; Xiaohong; Yang; Subhash; Chander; Jianbing; Yan; Jun; Zhang; Tongming; Song; Jiansheng; Li

    2013-01-01

    Oil, protein and starch are key chemical components of maize kernels. A population of 245 recombinant inbred lines(RILs) derived from a cross between a high-oil inbred line, By804, and a regular inbred line, B73, was used to dissect the genetic interrelationships among oil, starch and protein content at the individual QTL level by unconditional and conditional QTL mapping. Combined phenotypic data over two years with a genetic linkage map constructed using 236 markers, nine, five and eight unconditional QTL were detected for oil, protein and starch content, respectively. Some QTL for oil, protein and starch content were clustered in the same genomic regions and the direction of their effects was consistent with the sign of their correlation. In conditional QTL mapping, 37(29/8) unconditional QTL were not detected or showed reduced effects, four QTL demonstrated similar effects under unconditional and conditional QTL mapping, and 17 additional QTL were identified by conditional QTL mapping. These results imply that there is a strong genetic relationship among oil, protein and starch content in maize kernels. The information generated in the present investigation could be helpful in marker-assisted breeding for maize varieties with desirable kernel quality traits.

  3. Nucleotide Diversity of Maize ZmBT1 Gene and Association with Starch Physicochemical Properties

    Science.gov (United States)

    Xu, Shuhui; Yang, Zefeng; Zhang, Enying; Jiang, Ying; Pan, Liang; Chen, Qing; Xie, Zhengwen; Xu, Chenwu

    2014-01-01

    Cereal Brittle1 protein has been demonstrated to be involved in the ADP-Glc transport into endosperm plastids, and plays vital roles in the biosynthesis of starch. In this study, the genomic sequences of the ZmBT1 gene in 80 elite maize inbred lines were obtained, and the nucleotide polymorphisms and haplotype diversity were detected. A total of 30 variants, including 22 SNPs and 8 indels, were detected from the full sequences of this gene. Among these polymorphic sites, 9 SNPs and 2 indels were found to be located in the coding region. The polymorphisms of CDS sequences classified the maize ZmBT1 gene into 6 haplotypes, which encode 6 different ZmBT1 proteins. Neutrality tests revealed a decrease in population size and/or balancing selection on the maize ZmBT1 locus. To detect the association between sequence variations of this gene and the starch physicochemical properties, 7 pasting and 4 gelatinization traits of starch were measured for the tested inbred lines using rapid visco analyzer (RVA) and differential scanning calorimeter (DSC), respectively. The result of association analysis revealed that an indel in the coding region was significantly associated with the phenotypic variation of starch gelatinization enthalpy. PMID:25084007

  4. Nucleotide diversity of Maize ZmBT1 gene and association with starch physicochemical properties.

    Directory of Open Access Journals (Sweden)

    Shuhui Xu

    Full Text Available Cereal Brittle1 protein has been demonstrated to be involved in the ADP-Glc transport into endosperm plastids, and plays vital roles in the biosynthesis of starch. In this study, the genomic sequences of the ZmBT1 gene in 80 elite maize inbred lines were obtained, and the nucleotide polymorphisms and haplotype diversity were detected. A total of 30 variants, including 22 SNPs and 8 indels, were detected from the full sequences of this gene. Among these polymorphic sites, 9 SNPs and 2 indels were found to be located in the coding region. The polymorphisms of CDS sequences classified the maize ZmBT1 gene into 6 haplotypes, which encode 6 different ZmBT1 proteins. Neutrality tests revealed a decrease in population size and/or balancing selection on the maize ZmBT1 locus. To detect the association between sequence variations of this gene and the starch physicochemical properties, 7 pasting and 4 gelatinization traits of starch were measured for the tested inbred lines using rapid visco analyzer (RVA and differential scanning calorimeter (DSC, respectively. The result of association analysis revealed that an indel in the coding region was significantly associated with the phenotypic variation of starch gelatinization enthalpy.

  5. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives

    Directory of Open Access Journals (Sweden)

    Jake C. Fountain

    2015-06-01

    Full Text Available The colonization of maize (Zea mays L. and peanut (Arachis hypogaea L. by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  6. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize.

    Science.gov (United States)

    Maschietto, Valentina; Colombi, Cinzia; Pirona, Raul; Pea, Giorgio; Strozzi, Francesco; Marocco, Adriano; Rossini, Laura; Lanubile, Alessandra

    2017-01-21

    Fusarium verticillioides is a common maize pathogen causing ear rot (FER) and contamination of the grains with the fumonisin B1 (FB1) mycotoxin. Resistance to FER and FB1 contamination are quantitative traits, affected by environmental conditions, and completely resistant maize genotypes to the pathogen are so far unknown. In order to uncover genomic regions associated to reduced FER and FB1 contamination and identify molecular markers for assisted selection, an F2:3 population of 188 progenies was developed crossing CO441 (resistant) and CO354 (susceptible) genotypes. FER severity and FB1 contamination content were evaluated over 2 years and sowing dates (early and late) in ears artificially inoculated with F. verticillioides by the use of either side-needle or toothpick inoculation techniques. Weather conditions significantly changed in the two phenotyping seasons and FER and FB1 content distribution significantly differed in the F3 progenies according to the year and the sowing time. Significant positive correlations (P maize lines showing reduced disease severity and low mycotoxin contamination determined by F. verticillioides.

  7. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).

    Science.gov (United States)

    Gu, Riliang; Chen, Fanjun; Liu, Bingran; Wang, Xin; Liu, Jianchao; Li, Pengcheng; Pan, Qingchun; Pace, Jordon; Soomro, Ayaz-Ali; Lübberstedt, Thomas; Mi, Guohua; Yuan, Lixing

    2015-09-01

    Understanding the correlations of seven minerals for concentration, content and yield in maize grain, and exploring their genetic basis will help breeders to develop high grain quality maize. Biofortification by enhanced mineral accumulation in grain through genetic improvement is an efficient way to solve global nutrient malnutrition, in which one key step is to detect the underlying quantitative trait loci (QTL). Herein, a maize recombinant inbred population (RIL) was field grown to maturity across four environments (two locations × two years). Phenotypic data for grain mineral concentration, content and yield were determined for copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), magnesium (Mg), potassium (K) and phosphorus (P). Significant effects of genotype, location and year were observed for all investigated traits. The strongest location effects were found for Zn accumulation traits probably due to distinct soil Zn availabilities across locations. Heritability (H (2)) of different traits varied with higher H (2) (72-85 %) for mineral concentration and content, and lower (48-63 %) for mineral yield. Significant positive correlations for grain concentration were revealed between several minerals. QTL analysis revealed 28, 25, and 12 QTL for mineral concentration, content and yield, respectively; and identified 8 stable QTL across at least two environments. All these QTL were assigned into 12 distinct QTL clusters. A cluster at chromosome Bin 6.07/6.08 contained 6 QTL for kernel weight, mineral concentration (Mg) and content (Zn, K, Mg, P). Another cluster at Bin 4.05/4.06 contained a stable QTL for Mn concentration, which were previously identified in other maize and rice RIL populations. These results highlighted the phenotypic and genetic performance of grain mineral accumulation, and revealed two promising chromosomal regions for genetic improvement of grain biofortification in maize.

  8. Tetrasporic Embryo-Sac Formation in Trisomic Sectors of Maize.

    Science.gov (United States)

    Neuffer, M G

    1964-05-15

    Nondisjunction in mitotic divisions occurs spontaneously at a low frequency in somatic and germinal tissue in maize and results in sectors of trisomic cells. When this happens with chromosome 3 and in germinal tissue the embryo sac development is changed from the normal monosporic type to a tetrasporic type which is common in some species but not in maize.

  9. Dispersal behaviour of Trichogramma brassicae in maize fields

    NARCIS (Netherlands)

    Suverkropp, B.P.; Bigler, F.; Lenteren, van J.C.

    2009-01-01

    Glue-sprayed maize plants were used to study dispersal behaviour of the egg parasitoid Trichogramma brassicae Bezdenko (Hymenoptera Trichogrammatidae) in maize fields. To estimate the distance covered during an initial flight, T. brassicae were studied in a field cage with 73 glue-sprayed plants. Mo

  10. Maize Diversification by Capturing Useful Alleles from Exotic Germplasm

    Science.gov (United States)

    Archeological, carbon-14 dating of maize specimens, and microsatellite evidence has provided strong support for domestication of maize 9,000 - 10,000 years ago from Z. mays ssp. parviglumis (Doebley, 1990) in southern Mexico (Matsuoka et. al., 2002). Since then, early and modern plant breeders...

  11. Genetic, evoluntionary and plant breedinginsights from the domestication of maize

    Science.gov (United States)

    The natural history of maize began nine thousand years ago when Mexican farmers started to collect the seeds of the wild grass, teosinte. Invaluable as a food source, maize permeated Mexican culture and religion. Its domestication eventually led to its adoption as a model organism, aided in large pa...

  12. research note disappearance of processed maize grain in the rumen

    African Journals Online (AJOL)

    (Key words: Rumen, maize-grain-form, disappearance, dacrutn hag) .... Particle size distibution of maize gain hammermilled through a 6 ... tion feeding level and sex on body cornpositi()n at two live weights. J. Agric. ... R. & (;RHENHAt-GFl, J.F.D., l9ll. ,Alkali treatment as method of processing whole grain for cattle. J. Agrit' ...

  13. Entering the second century of maize quantitative genetics

    Science.gov (United States)

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  14. Chemical composition and quality of sweet sorghum and maize silages

    Directory of Open Access Journals (Sweden)

    Zbigniew PODKÓWKA

    2011-10-01

    Full Text Available Sweet sorghum (Sorghum saccharatum silage, maize (Zea mays silage, and sorghum and maize (1:1 silage were investigated. The silages were analysed for chemical composition, quality and aerobic stability. Dry matter was the lowest (20.88% in sorghum silage and the highest (37.45% in maize silage. In sorghum silage, the concentration of crude ash and crude fibre was higher, and that of crude protein, crude fat and N-free extractives lower compared to maize silage. Neutral detergent fibre and acid detergent fibre were the highest in sorghum silage and the lowest in maize silage. The silages were dominated by lactic acid, with trace amounts of butyric acid. Maize silage was higher lactic acid and higher total acids than others. All silages were of very good quality according to Flieg-Zimmer scale. Silage pH ranged from 4.20 to 4.31. Sorghum silage was characterized by higher aerobic stability (81h compared to the other silages from maize (74h and sorghum and maize 1:1 (69h.

  15. Yield advantage and water saving in maize/pea intercrop

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Li, W.; Werf, van der W.; Sun, J.; Spiertz, J.H.J.; Li, L.

    2012-01-01

    Intercropping is a well-established strategy for maximization of yield from limited land, but mixed results have been obtained as to its performance in terms of water use efficiency. Here, two maize/pea intercrop layouts were studied in comparison to sole maize and sole pea with and without plastic

  16. Assessing maize foliar water stress levels under field conditions ...

    African Journals Online (AJOL)

    Assessing maize foliar water stress levels under field conditions using in-situ ... is non-destructive to the crops as opposed to other traditional ground-based methods. ... water indices that could monitor the water status at leaf level on maize (Zea ... about AJOL · AJOL's Partners · Contact AJOL · Terms and Conditions of Use.

  17. a technique for identification of intrinsic resistance of maize varieties ...

    African Journals Online (AJOL)

    Mgina

    A new technique used to identify resistant maize varieties to the maize weevil, Sitophilus zeamais. (Motsch.) infestations is ... unreliable in terms of timely availability, high .... Influence of nutrition on performance of different insects ... that host-plant resistance as a pest control ..... age, diet, female density and host resource.

  18. Dissipation and residue of ethephon in maize ifeld

    Institute of Scientific and Technical Information of China (English)

    DONG Jian-nan; MA Yong-qiang; LIU Feng-mao; JIANG Nai-wen; JIAN Qiu

    2015-01-01

    A rapid and reliable method was developed for analysis of ethephon residues in maize, in combination with the investigation of its dissipation in ifeld condition and stabilities during the sample storage. The residue analytical method in maize plant, maize kernel and soil was developed based on the quantiifcation of ethylene produced from the derivatization of ethephon residue by adding the saturated potassium hydroxide solution to the sample. The determination was carried out by using the head space gas chromatography with lfame ionization detector (HS-GC-FID). The limit of quantiifcation (LOQ) of the method for maize plant was 0.05, 0.02 mg kg–1 for maize kernel and 0.05 mg kg–1 for soil, respectively. The fortiifed recoveries of the method were from 84.6–102.6%, with relative standard deviations of 7.9–3.8%. Using the methods, the dissipation of ephethon in maize plant or soil was investigated. The half life of ethephon degradation was from 0.6 to 3.3 d for plant and 0.7 to 5.7 d for soil, respectively. The storage stabilities of ethephon residues were determined in fresh and dry kernels with homogenization and without homogenization process. And the result showed that ethephon residues in maize kernels were stable under –18°C for 6 mon. The results were helpful to monitor the residue dissipation of ethephon in the maize ecosystem for further ecological risk assessment.

  19. A single molecule scaffold for the maize genome

    Science.gov (United States)

    About 85% of the maize genome consists of highly repetitive Sequences that are interspersed by low copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the Construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient ...

  20. Intraplant communication in maize contributes to defense against insects

    Science.gov (United States)

    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Fur...

  1. Interaction of maize chromatin-associated HMG proteins with mononucleosomes

    DEFF Research Database (Denmark)

    Lichota, J.; Grasser, Klaus D.

    2003-01-01

    maize HMGA and five different HMGB proteins with mononucleosomes (containing approx. 165 bp of DNA) purified from micrococcal nuclease-digested maize chromatin. The HMGB proteins interacted with the nucleosomes independent of the presence of the linker histone H1, while the binding of HMGA...

  2. Maize development: Cell wall changes in leaves and sheaths

    Science.gov (United States)

    Developmental changes occur in maize (Zea mays L.) as it transitions from juvenile stages to the mature plant. Changes also occur as newly formed cells mature into adult cells. Maize leaf blades, including the midribs and sheaths, undergo cell wall changes as cells transition to fully mature cell ty...

  3. Constructing a Cytogenetic Map of the Maize Genome

    Science.gov (United States)

    We are developing a pachytene cytogenetic FISH (Fluorescence in situ Hybridization) map of the maize (Zea mays L.) genome using maize marker-selected sorghum BACs (Bacterial Artificial Chromosome) as described by Koumbaris and Bass (2003, Plant J. 35:647). The two main projects are the production of...

  4. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available treatment. FT-IR spectroscopic analysis of maize tassel fibers confirmed that this chemical treatment also shows the way to partial elimination of hemicelluloses and lignin from the structure of the maize tassel fibers. X-ray diffraction results indicated...

  5. Influence of Seed Coating Formulations on Maize Production

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of four coating formulations on maize production were studied. The results showec that all coating formulations had some effects on improving maize seedlings, strengthening the resistance againt diseases and pests and increasing the yields in dtifferent degrees, especially Paxil which increased the com yield by 12.0%, significantly higher than the control.

  6. Status and prospects of maize research in Nepal

    Directory of Open Access Journals (Sweden)

    Govind KC

    2015-12-01

    Full Text Available Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date are not fully adopted. Therefore, problem is either on technology development or on dissemination or on both. Considering the above facts, some of the innovative and modern approaches of plant breeding and crop management technologies to increase the maize yield need to be developed and disseminated. There is a need for location-specific maize production technologies, especially for lowland winter maize, marginal upland maize production system, and resource poor farmers. Research efforts can be targeted to address both yield potential and on-farm yields by reducing the impacts of abiotic and biotic constraints. Therefore, in order to streamline the future direction of maize research in Nepal, an attempt has been made in this article to highlight the present status and future prospects with few key pathways.

  7. Climate change compromises the immune response of maize

    Science.gov (United States)

    Maize is by quantity the most important C4 cereal crop in the US; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2] is a driving force behind the warmer temperatures and drought, whi...

  8. Cost-benefit analysis of replacing maize with rice husk ...

    African Journals Online (AJOL)

    Cost-benefit analysis of replacing maize with rice husk supplemented with grindazyme, nutrsea ... Log in or Register to get access to full text downloads. ... Rice husk was added at the expense of maize in the control diet and each experimental ...

  9. Sporophytic control of pollen tube growth and guidance in maize.

    Science.gov (United States)

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  10. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading...

  11. Breeder survey, tools, and resources to visualize diversity and pedigree relationships at MaizeGDB

    Science.gov (United States)

    In collaboration with maize researchers, the MaizeGDB Team prepared a survey to identify breeder needs for visualizing pedigrees, diversity data, and haplotypes, and distributed it to the maize community on behalf of the Maize Genetics Executive Committee (Summer 2015). We received 48 responses from...

  12. Trichothecene genotypes and chemotypes in Fusarium graminearum complex strains isolated from maize fields of northwest Argentina.

    Science.gov (United States)

    Sampietro, Diego A; Ficoseco, María E Aristimuño; Jimenez, Cristina M; Vattuone, Marta A; Catalán, Cesar A

    2012-02-01

    Members of the Fusarium graminearum species complex (Fg complex) cause Gibberella ear rot in maize from northwest Argentina. The potential of these pathogens to contaminate maize grains with type B trichothecenes is a health risk for both humans and animals. We evaluated the reliability of multiplex PCR assays based on TRI3 and TRI12 genes, and single PCR assays based on TRI7 and TRI13 genes to infer trichothecene chemotypes of 112 strains of Fg complex collected from northwest Argentina, checking trichothecene production by chemical analysis. Single and multiplex PCR assays indicated that strains belonging to F. meridionale (87/112) had a NIV genotype. The remainder strains (25/112), which belonged to F. boothii, had a DON genotype (based on single PCR assays) or 15ADON genotype (based on multiplex PCR assays). No strains tested were incorrectly diagnosed with a DON/NIV genotype. Chemical analysis indicated that the F. meridionale strains were NIV producers only (44/87), major NIV producers with unexpected high DON/NIV ratios (36/87), or unexpected major DON producers with minor NIV production (7/87). Strains with atypical DON/NIV production seem to be new phenotypes under a putative NIV genotype, since PCR assays do not provide evidences of a new trichothecene genotype. DON production and absence of its acetylated forms were shown for strains of F. boothii. The inconsistencies between genetic and chemical data highlight the risk of inferring the trichothecenes potentially contaminating food and feedstuffs based only on PCR assays. This study confirms for the first time that strains of Fg complex from maize of northwest Argentina are DON and NIV producers. In addition, dominance of NIV producers in the Fg complex population isolated from maize is unprecedented in Argentina, and of significant concern to food safety and animal production.

  13. Effects of Nitrogen Application Rates on Rhizosphere Microbial Community Functional Diversity in Maize and Potato Intercropping

    Directory of Open Access Journals (Sweden)

    QIN Xiao-min

    2015-08-01

    Full Text Available Field trials were carried out to investigate the effects of different nitrogen application rates N0(0 kg·hm-2, N1(125 kg·hm-2, N2 (250 kg·hm-2and N3(375 kg·hm-2on the rhizosphere microbial population and metabolic function diversity of maize and potato under intercropping using plate culture method and BIOLOG technique. The results indicated that nitrogen(N1, N2 and N3application increased the amounts of bacteria, actinomyces and total microbes, but decreased the quantities of fungi significantly in rhizosphere soil of maize and potato in intercropping, and the highest increment was with N2 treatment. In comparison with N0, nitrogen fertilizer application could increase significantly the diversities of soil microbial community, the utilization rate of carbon source, richness of soil microbial community. And the AWCD value, Shannon-Wiener index(H, Simpson index(D, Evenness index(Eand Richness index(Sin rhizosphere soil of maize under intercropping were the highest at N3 treatment, while that of potato were the highest at N2 treatment, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources were different. Principal component analysis (PCAand cluster analysis showed that there were differences in carbon substrate utilization patterns and metabolic characteristics of the soil microbes in maize and potato intercropping with different N application rates. It suggested that applying N could regulate the rhizosphere soil microbial communities and promote the functional diversity of crop intercropping.

  14. Diversity in global maize germplasm: Characterization and utilization

    Indian Academy of Sciences (India)

    B M Prasanna

    2012-11-01

    Maize (Zea mays L.) is not only of worldwide importance as a food, feed and as a source of diverse industrially important products, but is also a model genetic organism with immense genetic diversity. Although it was first domesticated in Mexico, maize landraces are widely found across the continents. Several studies in Mexico and other countries highlighted the genetic variability in the maize germplasm. Applications of molecular markers, particularly in the last two decades, have led to new insights into the patterns of genetic diversity in maize globally, including landraces as well as wild relatives (especially teosintes) in Latin America, helping in tracking the migration routes of maize from the centers of origin, and understanding the fate of genetic diversity during maize domestication. The genome sequencing of B73 (a highly popular US Corn Belt inbred) and Palomero (a popcorn landrace in Mexico) in the recent years are important landmarks in maize research, with significant implications to our understanding of the maize genome organization and evolution. Next-generation sequencing and high-throughput genotyping platforms promise to further revolutionize our understanding of genetic diversity and for designing strategies to utilize the genomic information for maize improvement. However, the major limiting factor to exploit the genetic diversity in crops like maize is no longer genotyping, but high-throughput and precision phenotyping. There is an urgent need to establish a global phenotyping network for comprehensive and efficient characterization of maize germplasm for an array of target traits, particularly for biotic and abiotic stress tolerance and nutritional quality. ‘Seeds of Discovery’ (SeeD), a novel initiative by CIMMYT with financial support from the Mexican Government for generating international public goods, has initiated intensive exploration of phenotypic and molecular diversity of maize germplasm conserved in the CIMMYT Gene Bank; this

  15. Diversity in global maize germplasm: characterization and utilization.

    Science.gov (United States)

    Prasanna, B M

    2012-11-01

    Maize (Zea mays L.) is not only of worldwide importance as a food, feed and as a source of diverse industrially important products, but is also a model genetic organism with immense genetic diversity. Although it was first domesticated in Mexico, maize landraces are widely found across the continents. Several studies in Mexico and other countries highlighted the genetic variability in the maize germplasm. Applications of molecular markers, particularly in the last two decades, have led to new insights into the patterns of genetic diversity in maize globally, including landraces as well as wild relatives (especially teosintes) in Latin America, helping in tracking the migration routes of maize from the centers of origin, and understanding the fate of genetic diversity during maize domestication. The genome sequencing of B73 (a highly popular US Corn Belt inbred) and Palomero (a popcorn landrace in Mexico) in the recent years are important landmarks in maize research, with significant implications to our understanding of the maize genome organization and evolution. Next-generation sequencing and high-throughput genotyping platforms promise to further revolutionize our understanding of genetic diversity and for designing strategies to utilize the genomic information for maize improvement. However, the major limiting factor to exploit the genetic diversity in crops like maize is no longer genotyping, but high-throughput and precision phenotyping. There is an urgent need to establish a global phenotyping network for comprehensive and efficient characterization of maize germplasm for an array of target traits, particularly for biotic and abiotic stress tolerance and nutritional quality. 'Seeds of Discovery' (SeeD), a novel initiative by CIMMYT with financial support from the Mexican Government for generating international public goods, has initiated intensive exploration of phenotypic and molecular diversity of maize germplasm conserved in the CIMMYT Gene Bank; this is

  16. A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603

    Institute of Scientific and Technical Information of China (English)

    PAN Yu; ZHANG Li-quan; CHEN Xu-qing; XIE Hua; DENG Lei; LI Xiang-long; ZHANG Xiao-dong; HAN Li-xin; YANG Feng-ping; XUE Jing

    2015-01-01

    Thebsd-pg (bundle sheath defective pale green) mutant is a novel maize mutation, controled by a single recessive gene, which was isolated from offspring of maize plantlets regenerated from tissue calus of the maize inbred line 501. The char-acterization was that the biogenesis and development of the chloroplasts was mainly interfered in bundle sheath cels rather than in mesophyl cels. For mapping thebsd-pg, an F2 population was derived from a cross between the mutant bsd-pg and an inbred line Xianzao 17. Using speciifc locus ampliifed fragment sequencing (SLAF-Seq) technology, a total of 5783 polymorphic SLAFs were analysed with 1771 homozygous aleles between maternal and paternal parents. There were 49 SLAFs, which had a ratio of paternal to maternal aleles of 2:1 in bulked normal lines, and three trait-related candidate regions were obtained on chromosome 1 with a size of 3.945 Mb. For the ifne mapping, new simple sequence repeats (SSRs) markers were designed by utilizing information of the B73 genome and the candidate regions were localized a size of 850934 bp on chromosome 1 between umc1603 and umc1395, including 35 candidate genes. These results provide a foundation for the cloning ofbsd-pg by map-based strategy, which is essential for revealing the functional differentiation and coordination of the two cel types, and helps to elucidate a comprehensive understanding of the C4 photosynthesis pathway and related processes in maize leaves.

  17. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  18. Tolerance of Maize(Zea mays L. )to Chlorsulfuron

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Fourteen inbreds of maize were tested for the tolerance to chlorsulfuron with the method of seedling wa- ter culter. Significant difference existed in the tolerance of different type maize when tested with 1 and 2 μg/ kg of chlorsulfuron. The tolerance in different type maize wa dent>flint>sugar>midiem>super sugar pop. The tolerance of different inbred maize was negative correlated with the concentration concentration of chorsulfuron. The tolerance of hybrids might have some relation with their parent lines because in this test the hybrids response to chlorsulfuron showed significant positive correlation with that of tits female parent which suggented some maternal in inheritance and was not controlled by nuclear. It was possible that toler- ance of maize to chlorsulfuron was cytoplasm inheritance.

  19. Effect of Spatial Arrangement on Growth and Yield of Cowpea in a Cowpea-maize Intercrop

    Directory of Open Access Journals (Sweden)

    Ocaya, CP.

    2001-01-01

    Full Text Available Cowpea growth and yield performance when intercropped with maize was studied for 3 consecutive seasons under three spatial arrangements, i. e., maize planted at 90 x 30, 100 x 27, and 120 x 22.5 cm, with 2 rows of cowpea between the maize rows. Growth and yield of cowpea was improved significantly by widening maize intra-row distances as compared to the 90 x 30 cm spacing. Hence, intercropped cowpea needs to be sown where maize rows are wide apart, but the maize rows should not be too wide as this would lower the grain yield of maize.

  20. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis)

    Science.gov (United States)

    In previous work, using near isogenic line (NIL) populations in which segments of the tesosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot resistance. We identified...

  1. Plants for human health: Stable isotope approaches to assess the vitamin A value of biofortified Golden Rice and high beta-carotene maize

    Science.gov (United States)

    Vitamin A deficiency is a major public health problem, especially in populations of the developing world where staple foods, such as rice, wheat, and maize, make up a significant portion of daily caloric intake. Seeds of these crops contain little to no provitamin A carotenoids (e.g., beta-carotene...

  2. Ultrastructural Alteration of Maize Plants Infected with the Maize Rough Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-hui; GUO Xing-qi; YE Bao-hua; GUO Yan-kui

    2002-01-01

    The ultrastruetural alteration of maize plants infected with the maize rough dwarf virus (MRDV) was studied with transmission electron microscopy. The results revealed that aggregates of virus particles, with a diameter of 60nm, were found in the root cell, and always distributed near the vacuole membrane. However, no such particles were checked in leaf cells. Moreover, no virus was observed in choroplasts,mitochondria nuclei, plasmodesmata or intercellular canal of all kinds of infected cells of maize, either.Structures of various organelles changed in the infected leaf and root cells of maize. An inward collapse and localized splitting of the tonoplast were observed, the chloropoast structure was destroyed by MRDV, and the number of destroyed or dysplasia chloroplast in leaf cells with serious symptoms was more than that in leaves without symptoms. The matrix of mitochondria in cells infected by MRDV decreased and some of them expanded and destructed. Nuclei was abnormal and the nuclear membrane was broken, In addition, the infected cells were characterized by a voluminous cytoplasm containing hypertrophied endoplasmic reticulum, with rich ribosome content and lots of starch grain.

  3. Responses by earthworms to reduced tillage in herbicide tolerant maize and Bt maize cropping systems

    DEFF Research Database (Denmark)

    Krogh, P. H.; Griffiths, B.; Demsar, D.

    2007-01-01

    -toxin producing transgenic maize line MON810 was studied for 1 year. At a Danish study site, Foulum (Jutland), one year of Bt corn was followed by 2 years of herbicide tolerant corn. At the French study site the most prominent effects observed were due to the tillage method where RT significantly reduced...

  4. First report of Maize chlorotic mottle virus and maize (corn) lethal necrosis in Kenya

    Science.gov (United States)

    In September 2011, high incidence of a new maize (Zea mays L.) disease was reported at lower elevations (1900 masl) in the Longisa division of Bomet County, Southern Rift Valley of Kenya. Later the disease was noted in Bomet Central division, spreading into the neighboring Chepalungu and Narok South...

  5. Survival of Stenocarpella spp. in maize debris and soil suppressiveness to maize ear rot pathogens

    NARCIS (Netherlands)

    Moretti Ferreira Pinto, Felipe; Novaes Medeiros, H.; Biazzotto Correia Porto, V.; Silva Siqueira, da C.; Cruz Machado, da J.; Köhl, J.; Vasconcelos de Medeiros, Flavio

    2016-01-01

    Stenocarpella species (S. maydis and S. macrospora) overwinter saprophytically in maize stubble but little is known about the factors that contribute to its survival and to the induction of suppressiveness of pathogen colonization. We aimed at determining the role of crop rotation on the survival of

  6. A maize defensin active against maize ear insect and fungal pests

    Science.gov (United States)

    Identification of genes responsible for pest resistance in maize will assist with breeding attempts to reduced crop losses, and hazards due to toxins produced by molds infecting ears. The same genes may be responsible for producing proteins active against both insects and plant pathogens. A gene cod...

  7. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture.

    Science.gov (United States)

    Masanga, Joel Okoyo; Matheka, Jonathan Mutie; Omer, Rasha Adam; Ommeh, Sheila Cecily; Monda, Ethel Oranga; Alakonya, Amos Emitati

    2015-08-01

    We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.

  8. Identification of a strain of maize dwarf mosaic virus, related to sugarcane mosaic virus isolated from maize in Burundi

    Directory of Open Access Journals (Sweden)

    Verhoyen, M.

    1983-01-01

    Full Text Available A strain of maize dwarf mosaic virus related to sugarcane mosaic virus has been isolated from maize in Burundi. The properties (including electron microscopy and serology of the virus are described, and elements for a control strategy are reviewed.

  9. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-09-05

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  10. Inheritance of resistance to anthracnose stalk rot (Colletotrichum graminicola in tropical maize inbred lines

    Directory of Open Access Journals (Sweden)

    Herberte Pereira da Silva

    2012-09-01

    Full Text Available Generation means was used to study the mode of inheritance of resistance to anthracnose stalk rot in tropical maize. Each population was comprised of six generations in two trials under a randomized block design. Inoculations were performed using a suspension of 10*5 conidia mL -1 applied into the stalk. Internal lesion length was directly measured by opening the stalk thirty days after inoculation. Results indicated contrasting modes of inheritance. In one population, dominant gene effects predominated. Besides, additive x dominant and additive x additive interactions were also found. Intermediate values of heritability indicated a complex resistance inheritance probably conditioned by several genes of small effects. An additive-dominant genetic model sufficed to explain the variation in the second population, where additive gene effects predominated. Few genes of major effects control disease resistance in this cross. Heterosis widely differed between populations, which can be attributed to the genetic background of the parental resistant lines.

  11. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding

    Science.gov (United States)

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-01-01

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects. PMID:26308050

  12. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  13. QTL Analysis for Plant Height with Molecular Markers in Maize

    Institute of Scientific and Technical Information of China (English)

    YAN Jian-bing; TANG Hua; HUANG Yi-qin; SHI Yong-gang; ZHENG Yong-lian; LI Jian-sheng

    2003-01-01

    Plant height has become one of important agronomic traits with the increase of planting densityrecently and the rapid developments of molecular markers have provided powerful tools to localize importantagronomic QTL at the genomic level. The purposes of this investigation are to map plant height QTL with mo-lecular markers and to analyze their genetic effects in maize. An F2:3 population from an elite combination(Zong3 × 87-1) was utilized for evaluating plant height in two locations, Wuhan and Xiangfan, with a ran-domized complete block design. The mapping population included 266 F2:3 family lines. A genetic linkagemap, containing 150 SSR and 24 RFLP markers, was constructed, spanning a total of 2 531.6 cm with an av-erage interval of 14.5 cm. Totally 10 QTL affecting plant height were mapped on six different chromosomeswith the composite interval mapping. Seven of 10 QTL were detected in two locations. The contributions tophenotypic variations for the single QTL varied between 5.3 and 17.1%. Additive, partial dominance, domi-nance, and overdominance actions existed among all detected QTL affecting plant heights. A large number ofdigenic interactions for plant height were detected by two-way analyses of variance. 107 and 98 two-locus com-binations were found to be significant at a 0.01 probability level in two locations respectively. 23 of them weresimultaneously detected in both locations. They accounted for phenotypic variations of 4.5 -11%. It was no-ticed that a locus, umc1122, had digenic interactive effects with other four different loci for plant height,which distributed on three chromosomes. A few of plant height QTL was involved in significant digenic inter-actions, but most significant interactions occurred between markers that are not adjacent to mapped QTL.These results demonstrated that epistatic interactions might play an equal importance role as the single-locuseffects in determining plant height of maize.

  14. Lipids in Aspergillus flavus-maize interaction

    Directory of Open Access Journals (Sweden)

    Massimo eReverberi

    2014-02-01

    Full Text Available In sSome filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition of the host that and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also involved produced in by the host during defense reactions, are able to induce sporulation and to modulate regulate the biosynthesis of mycotoxins in numerous several pathogenic fungi, apparently replacing the endogenous ones. In A. flavus, the oxylipins play a crucial role as signals for the regulation regulatingof the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia.To investigate the involvement of the an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion; Aflox1 encodes for a manganese lipoxygenase.A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA. The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.

  15. Microsatellite-assisted backcross selection in maize

    Directory of Open Access Journals (Sweden)

    Luciana Lasry Benchimol

    2005-12-01

    Full Text Available A microsatellite marker (SSR was chosen to simulate a target allele and three criteria (02, 04 and 06 markers per chromosome were tested to evaluate the most efficient parameters for performing marker-assisted backcross (MAB selection. We used 53 polymorphic SSRs to genotype 186 BC1 maize (Zea mays L. plants produced by crossing the inbred maize lines L-08-05 (donor parent and L-14-4B (recurrent parent. The second backcross (BC2 generation was produced with 180 plants and screened with markers which were not recovered from the first backcross (BC1 generation. A total of 480 plants were evaluated in the third backcross (BC3 generation from which 48 plants were selected for parental genotype recovery. Recurrent genotype recovery averages in three backcross generations were compatible with those expected in BC4 or BC5, indicating genetic gain due to the marker-assisted backcrossing. The target marker (polymorphic microsatellite PHI037 was efficiently transferred. Six markers per chromosome showed a high level of precision for parental estimates at different levels of maize genome saturation and donor alleles were not present in the selected recovered pure lines. Phenotypically, the plants chosen based on this criterion (06 markers per chromosome were closer to the recurrent parent than any other selected by other criteria (02 or 04 markers per chromosome. This approach allowed the understanding that six microsatellites per chromosome is a more efficient parameter than 02 and 04 markers per chromosome for deriving a marker-assisted backcross (MAB experiment in three backcross generations.

  16. Microbial community in the rhizosphere of young maize seedlings is susceptible to the impact of introduced pseudomonads as indicated by FAME analysis.

    Science.gov (United States)

    Kozdrój, Jacek

    2008-08-01

    Two species of Pseudomonas (i.e. P. chlororaphis or P. putida) derived from a maize rhizosphere were studied for their impact on the structure of the microbial community in the rhizosphere of young maize seedlings after inoculation. The culturable bacteria and total microbial communities were analyzed based on profiles of whole-cell fatty acid methyl esters (MIDI-FAME). The introduction of Pseudomonas species resulted in the shift from the Gram-positive dominated culturable community in the rhizosphere of uninoculated maize to more Gram-negative populations in the rhizospheres of the inoculated plants. For the total rhizosphere communities, 43, 47 and 42 FAMEs were detected in the uninoculated maize and the samples inoculated with P. chlororaphis or P. putida, respectively. In contrast to the culturable communities, low concentrations of marker FAMEs for Gram-positives (i15:0, a15:0, i16:0) were found in the profiles of the total rhizosphere communities. The maize inoculations resulted in an enrichment of some Gram-negative isolates; however, Gram-positive bacteria, Cytophaga/Flavobacterium and saprophytic fungi were found in the uninoculated rhizosphere.

  17. Development and application of marker-assisted reverse breeding using hybrid maize germplasm

    Institute of Scientific and Technical Information of China (English)

    GUAN Yi-Xin; WANG Bao-hua; FENG Yan; LI Ping

    2015-01-01

    Humankind has been through different periods of agricultural improvement aiming at enhancing our food supply and the performance of food crops. In recent years, whole genome sequencing and deep understanding of genetic and epigenetic mechanisms have facilitated new plant breeding approaches to meet the chalenge of growing population, dwindling re-sources, and changing climate. Here we proposed a simple and fast molecular breeding method, marker-assisted reverse breeding (MARB), which wil revert any maize hybrid into inbred lines with any level of required similarity to its original parent lines. Since al the pericarp DNA of a hybrid is from the maternal parent, whereas one half of the embryo DNA is from the maternal parent and the other half from the paternal parent, so we ifrstly extract DNA from seed embryo and pericarp of a selected elite hybrid separately and then we derived the genotypes of the two parents with high-density single nucleotide polymorphism (SNP) chips. The folowing marker-assisted selection was performed based on an Ilumina low-density SNP chip designed with 192 SNPs polymorphic between the two parental genotypes, which were uniformly distributed on 10 maize chromosomes. This method has the advantages of fast speed, ifxed heterotic mode, and quick recovery of beneifcial parental genotypes compared to traditional pedigree breeding using elite hybrids. Meanwhile, MARB has the advantage of not requiring sophisticated transformation and double haploid (DH) technologies over RNA interference (RNAi)-mediated reverse breeding. In addition, MARB can also be used with feed corn harvested from big farms, which is often similar to F2 populations, and the relevant transgenes in the population can be eliminated by marker-assisted selection. As a result, the whole global commercial maize hybrids can be utilized as germplasm for breeding with MARB technology. Starting with an F2 population derived from an elite hybrid, our experiment indicates that with three

  18. Growing sensitivity of maize to water scarcity under climate change

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B.; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-01

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  19. Vulnerability of Maize Yields to Droughts in Uganda

    Directory of Open Access Journals (Sweden)

    Terence Epule Epule

    2017-03-01

    Full Text Available Climate projections in Sub-Saharan Africa (SSA forecast an increase in the intensity and frequency of droughts with implications for maize production. While studies have examined how maize might be affected at the continental level, there have been few national or sub-national studies of vulnerability. We develop a vulnerability index that combines sensitivity, exposure and adaptive capacity and that integrates agroecological, climatic and socio-economic variables to evaluate the national and spatial pattern of maize yield vulnerability to droughts in Uganda. The results show that maize yields in the north of Uganda are more vulnerable to droughts than in the south and nationally. Adaptive capacity is higher in the south of the country than in the north. Maize yields also record higher levels of sensitivity and exposure in the north of Uganda than in the south. Latitudinally, it is observed that maize yields in Uganda tend to record higher levels of vulnerability, exposure and sensitivity towards higher latitudes, while in contrast, the adaptive capacity of maize yields is higher towards the lower latitudes. In addition to lower precipitation levels in the north of the country, these observations can also be explained by poor soil quality in most of the north and socio-economic proxies, such as, higher poverty and lower literacy rates in the north of Uganda.

  20. Effects of temperature changes on maize production in Mozambique

    Science.gov (United States)

    Harrison, L.; Michaelsen, J.; Funk, C.; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  1. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    Directory of Open Access Journals (Sweden)

    Zhiming Xie

    2015-01-01

    Full Text Available The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn, stomatal conductance (gs, transpiration rate (E, and intercellular CO2 concentration (Ci of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1 of Si supplying. Experimental results showed that the values of Pn, gs, and Ci of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  2. Silicon improves maize photosynthesis in saline-alkaline soils.

    Science.gov (United States)

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  3. Unconventional P-35S sequence identified in genetically modified maize.

    Science.gov (United States)

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan's markets during the period 2009 and 2012.

  4. Effects of maize maturity at harvest and dietary proportion of maize silage on intake and performance of growing/finishing bulls

    DEFF Research Database (Denmark)

    Zaralis, K.; Nørgaard, P.; Helander, C.

    2014-01-01

    Whole-crop maize silage as forage in diets of finishing cattle can promote high intakes and thus, enhances animal performance. In the present study we evaluated the effect of whole-crop maize maturity at harvest and the proportion of maize-silage in diets of finishing bulls, on feed intake...... of treatments, involving two maturity stages of maize at harvest (i.e. dough stage or dent stage) and two maize silage proportions (i.e. 100% maize silage or 50% maize and 50% grass silage). The diets were offered ad libitum as total mixed rations (TMRs) with inclusion of concentrates (i.e. rolled barley; dried...... distillers’ grain plus soluble; cold-pressed rapeseed cake) in a 40% proportion on DM basis. All animals were slaughtered at a target body weight of 630 kg. Bulls fed on diets containing maize silage as sole forage achieved higher live-weight gain (P

  5. Methanogenic pathway and archaeal communities in three different anoxic soils amended with rice straw and maize straw

    Directory of Open Access Journals (Sweden)

    Ralf eConrad

    2012-01-01

    Full Text Available Addition of straw is common practice in rice agriculture, but its effect on the path of microbial CH4 production and the microbial community involved is not well known. Since straw from rice (C3 plant and maize plants (C4 plant exhibit different δ13C values, we compared the effect of these straw types using anoxic rice field soils from Italy and China, and also a soil from Thailand that had previously not been flooded. The temporal patterns of production of CH4 and its major substrates H2 and acetate, were slightly different between rice straw and maize straw. Addition of methyl fluoride, an inhibitor of aceticlastic methanogenesis, resulted in partial inhibition of acetate consumption and CH4 production. The δ13C of the accumulated CH4 and acetate reflected the different δ13C values of rice straw versus maize straw. However, the relative contribution of hydrogenotrophic methanogenesis to total CH4 production exhibited a similar temporal change when scaled to CH4 production irrespectively of whether rice straw or maize straw was applied. The composition of the methanogenic archaeal communities was characterized by terminal restriction fragment length polymorphism (T-RFLP analysis and was quantified by quantitative PCR (qPCR targeting archaeal 16S rRNA genes or methanogenic mcrA genes.. The size of the methanogenic communities generally increased during incubation with straw, but the straw type had little effect. Instead, differences were found between the soils, with Methanosarcinaceae and Methanobacteriales dominating straw decomposition in Italian soil, Methanosarcinaceae, Methanocellales, and Methanobacteriale in China soil, and Methanosarcinaceae and Methanocellales in Thailand soil. The experiments showed that methanogenic degradation in different soils involved different methanogenic population dynamics. However, the path of CH4 production was hardly different between degradation of rice straw versus maize straw and was also similar for

  6. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.).

    Science.gov (United States)

    Yuan, J; Liakat Ali, M; Taylor, J; Liu, J; Sun, G; Liu, W; Masilimany, P; Gulati-Sakhuja, A; Pauls, K P

    2008-02-01

    Gibberella ear rot, caused by the fungal pathogen Fusarium graminearum Schwabe, is a serious disease of maize (Zea mays L.) grown in northern climates. The infected maize grain contains toxins that are very harmful to livestock and humans. A maize gene that encodes a putative 267-amino acid guanylyl cyclase-like protein (ZmGC1) was characterized and shown to be associated with resistance to this disease. The putative ZmGC1 amino acid sequence is 53% identical and 65% similar to AtGC1, an Arabidopsis guanylyl cyclase. The Zmgc1 coding sequence is nearly identical in a Gibberella ear rot-resistant line (CO387) and a susceptible line (CG62) but several nucleotide sequence differences were observed in the UTRs and introns of the two alleles. Using a 463 bp probe derived from the CG62 allele of Zmgc1 and a recombinant inbred (RI) mapping population developed from a CG62 x CO387 cross, six Zmgc1 restriction fragment length polymorphism (RFLP) fragments (ER1_1, ER1_2, ER1_3, ER1_4, ER1_5, and ER5_1) were mapped on maize chromosomes 2, 3, 7, and 8. Markers ER1_1 and ER5_1 on chromosomes 7 and 8, respectively, were significantly associated with Gibberella ear rot resistance, each in three different environments. The amount of Zmgc1 transcript in ear tissues increased more quickly and to a greater extent in the resistant genotype compared to the susceptible genotype after inoculation with F. graminearum. Zmgc1 is the first guanylyl cyclase gene characterized in maize and the first gene found to be associated with Gibberella ear rot resistance in this plant.

  7. Isolation of bacterial endophytes from germinated maize kernels.

    Science.gov (United States)

    Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja

    2007-06-01

    The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro.

  8. Temperatures and the growth and development of maize and rice

    DEFF Research Database (Denmark)

    Sánchez, Berta; Rasmussen, Anton; Porter, John Roy

    2014-01-01

    and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize...... defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models....

  9. Feasibility of Hydrothermal Pretreatment on Maize Silage for Bioethanol Production

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    The potential of maize silage as a feedstock to produce bioethanol was evaluated in the present study. The hydrothermal pretreatment with five different pretreatment severity factors (PSF) was employed to pretreat the maize silage and compared in terms of sugar recovery, toxic test, and ethanol...... the liquors from the five conditions were not toxic to the Baker’s yeast. Pretreatment under 195°C for 7 min had the similar PSF with that of 185°C for 15 min, and both gave the higher ethanol concentration of 19.92 and 19.98 g/L, respectively. The ethanol concentration from untreated maize silage was only 7...

  10. The art and design of genetic screens: maize.

    Science.gov (United States)

    Candela, Héctor; Hake, Sarah

    2008-03-01

    Maize (Zea mays) is an excellent model for basic research. Genetic screens have informed our understanding of developmental processes, meiosis, epigenetics and biochemical pathways--not only in maize but also in other cereal crops. We discuss the forward and reverse genetic screens that are possible in this organism, and emphasize the available tools. Screens exploit the well-studied behaviour of transposon systems, and the distinctive chromosomes allow an integration of cytogenetics into mutagenesis screens and analyses. The imminent completion of the maize genome sequence provides the essential resource to move seamlessly from gene to phenotype and back.

  11. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue.

    Science.gov (United States)

    Krakowsky, M D; Lee, M; Coors, J G

    2005-07-01

    Maize silage is a significant energy source for animal production operations, and the efficiency of the conversion of forage into animal mass is an important consideration when selecting cultivars for use as feed. Fiber and lignin are negatively correlated with digestibility of feed, so the development of forage with reduced levels of these cell-wall components (CWCs) is desirable. While variability for fiber and lignin is present in maize germplasm, traditional selection has focused on the yield of the ear rather than the forage quality of the whole plant, and little information is available concerning the genetics of fiber and lignin. The objectives of this study were to map quantitative trait loci (QTLs) for fiber and lignin in the maize stalk and compare them with QTLs from other populations. Stalk samples were harvested from 191 recombinant inbred lines (RILs) of B73 (an inbred line with low-to-intermediate levels of CWCs) x De811 (an inbred line with high levels of CWCs) at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL). The QTLs were detected on nine chromosomes, mostly clustered in concordance with the high genetic correlations between NDF and ADF. Adjustment of NDF for ADF and ADF for ADL revealed that most of the variability for CWCs in this population is in ADF. Many of the QTLs detected in this study have also been detected in other populations, and several are linked to candidate genes for cellulose or starch biosynthesis. The genetic information obtained in this study should be useful to breeding efforts aimed at improving the quality of maize silage.

  12. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.

    Science.gov (United States)

    Barros-Rios, Jaime; Malvar, Rosa A; Jung, Hans-Joachim G; Bunzel, Mirko; Santiago, Rogelio

    2012-11-01

    Cross-linking of grass cell wall components through diferulates (DFAs) has a marked impact on cell wall properties. However, results of genetic selection for DFA concentration have not been reported for any grass species. We report here the results of direct selection for ester-linked DFA concentration in maize stalk pith tissues and the associated changes in cell wall composition and biodegradability. After two cycles of divergent selection, maize populations selected for higher total DFA (DFAT) content (CHs) had 16% higher DFAT concentrations than populations selected for lower DFAT content (CLs). These significant DFA concentration gains suggest that DFA deposition in maize pith parenchyma cell walls is a highly heritable trait that is genetically regulated and can be modified trough conventional breeding. Maize populations selected for higher DFAT had 13% less glucose and 10% lower total cell wall concentration than CLs, suggesting that increased cross-linking of feruloylated arabinoxylans results in repacking of the matrix and possibly in thinner and firmer cell walls. Divergent selection affected esterified DFAT and monomeric ferulate ether cross link concentrations differently, supporting the hypothesis that the biosynthesis of these cell wall components are separately regulated. As expected, a more higher DFA ester cross-coupled arabinoxylan network had an effect on rumen cell wall degradability (CLs showed 12% higher 24-h total polysaccharide degradability than CHs). Interestingly, 8-8-coupled DFAs, previously associated with cell wall strength, were the best predictors of pith cell wall degradability (negative impact). Thus, further research on the involvement of these specific DFA regioisomers in limiting cell wall biodegradability is encouraged.

  13. Iron and zinc availability in maize lines

    Directory of Open Access Journals (Sweden)

    Valéria Aparecida Vieira Queiroz

    2011-09-01

    Full Text Available The aim of this study was to characterize the Zn and Fe availability by phytic acid/Zn and phytic acid/Fe molar ratios, in 22 tropical maize inbred lines with different genetic backgrounds. The Zn and Fe levels were determined by atomic absorption spectrophotometry and the P through colorimetry method. Three screening methods for phytic acid (Phy analysis were tested and one, based on the 2,2'-bipyridine reaction, was select. There was significant variability in the contents of zinc (17.5 to 42 mg.kg-1, iron (12.2 to 36.7 mg.kg-1, phosphorus (230 to 400 mg.100 g-1, phytic acid (484 to 1056 mg.100 g-1, phytic acid P (140 to 293 mg.100 g-1 and available-P (43.5 to 199.5 mg.100 g-1, and in the available-P/total-P ratio (0.14 to 0.50, Phy/Zn (18.0 to 43.5 and Phy/Fe (16.3 to 45.5 molar ratios. Lines 560977, 560978 and 560982 had greater availability of Zn and lines 560975, 560977, 561010 and 5610111 showed better Fe availability. Lines 560975, 560977 and 560978 also showed better available-P/total-P ratio. Thus, the lines 560975, 560977 and 560978 were considered to have the potential for the development of cultivars of maize with high availability of Fe and/or Zn.

  14. Maize endophytic bacteria as mineral phosphate solubilizers.

    Science.gov (United States)

    de Abreu, C S; Figueiredo, J E F; Oliveira, C A; Dos Santos, V L; Gomes, E A; Ribeiro, V P; Barros, B A; Lana, U G P; Marriel, I E

    2017-02-16

    In the present study, we demonstrated the in vitro activity of endophytic phosphate-solubilizing bacteria (PSB). Fifty-five endophytic PSB that were isolated from sap, leaves, and roots of maize were tested for their ability to solubilize tricalcium phosphate and produce organic acid. Partial sequencing of the 16S rRNA-encoding gene showed that the isolates were from the genus Bacillus and different species of Enterobacteriaceae. The phosphate solubilization index on solid medium and phosphate solubilization in liquid medium varied significantly among the isolates. There was a statistically significant difference (P ≤ 0.05) for both, the values of phosphate-solubilizing activity and pH of the growth medium, among the isolates. Pearson correlation was statistically significant (P ≤ 0.05) between P-solubilization and pH (R = -0.38), and between the gluconic acid production and the lowering of the pH of the liquid medium at 6 (R = 0.28) and 9 days (R = 0.39). Gluconic acid production was prevalent in all the PSB studied, and Bacillus species were most efficient in solubilizing phosphate. This is the first report on the characterization of bacterial endophytes from maize and their use as potential biofertilizers. In addition, this may provide an alternative strategy for improving the phosphorus acquisition efficiency of crop plants in tropical soils.

  15. Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations.

    Science.gov (United States)

    Devos, Yann; Meihls, Lisa N; Kiss, József; Hibbard, Bruce E

    2013-04-01

    Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions

  16. Nine cycles of mass selection for increasing oil content in two maize (Zea mays L. synthetics

    Directory of Open Access Journals (Sweden)

    Rosulj Milorad

    2002-01-01

    Full Text Available The objectives of this study were to estimate changes in oil content, grain yield, percentage of broken plants and changes in yield components in the maize populations DS7u and YuSSSu. As estimations were performed at C0 and C9 for both populations, it was possible to observe changes occurring following long-term mass selection for high oil content. The synthetic population DS7u population was developed by recombination of 29 inbred lines of Yugoslav, Canadian and US origin. The synthetic population YuSSSu population is an Iowa Stiff Stalk Synthetic - BSS(RC5. Progenies were derived according to the North Carolina Design II. Results indicated that nine cycles of selection led to statistically significant increase in oil content and statistically significant decrease for grain yield in both populations. Estimates of additive and dominance variances for grain oil content were highly significant in C0 and C9 of the population DS7u population. Dominance variance showed significance in the initial cycle of the population YuSSSu population, but it was not detected in the course of nine cycles of mass selection. Additive and dominance variances for grain yield were highly significant in both initial populations. Loss of significance did not result from selection, while the proportion of dominance vs. additive variance became greater. High narrow-sense heritability was detected for grain yield, oil content, moisture content, and cob percent in the initial cycles of both populations. Mass selection resulted in increased heritability for oil content and cob percent in the DS7u population and increased heritability for percentage of broken plants in the YuSSSu population. The strongest additive correlation between oil content and other traits was detected for grain moisture (r a = 0.90* in the C9 of the DS7u population.

  17. Inexplicable or simply unexplained? The management of maize seed in Mexico.

    Directory of Open Access Journals (Sweden)

    George A Dyer

    Full Text Available Farmer management of plant germplasm pre-dates crop domestication, but humans' role in crop evolution and diversity remains largely undocumented and often contested. Seemingly inexplicable practices observed throughout agricultural history, such as exchanging or replacing seed, continue to structure crop populations across the developing world. Seed management practices can be construed as events in the life history of crops and management data used to model crop demography, but this requires suitable quantitative data. As a prerequisite to addressing the causes and implications of maize seed management, we describe its patterns of variation across Mexico by drawing from the literature and new analysis. We find that rates of seed replacement, introduction and diffusion differ significantly across regions and altitudinal zones, but interactions among explanatory factors can obscure patterns of variation. The type, source, geographic origin and ownership of seed help explain observed rates. Yet, controlling for the characteristics of germplasm barely reduces interregional differences vastly exceeding variation across elevations. With few exceptions, monotonic altitudinal trends are absent. Causal relationships between management practices and the physical environment could determine farmers' wellbeing and crop conservation in the face of climate change. Scarce and inconsistent data on management nevertheless could prevent an understanding of these relationships. Current conceptions on the management and dynamics of maize diversity are founded on a patchwork of observations in surprisingly few and dissimilar environments. Our estimates of management practices should shed light on differences in maize population dynamics across Mexico. Consistency with previous studies spanning over a decade suggests that common sets of forces are present within large areas, but causal associations remain unknown. The next step in explaining crop diversity should

  18. Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum.

    Science.gov (United States)

    Saleh, A A; Ahmed, H U; Todd, T C; Travers, S E; Zeller, K A; Leslie, J F; Garrett, K A

    2010-01-01

    Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.

  19. Molecular characterization of local maize varieties from the Biosphere Reserve La Sepultura, Mexico.

    Directory of Open Access Journals (Sweden)

    Manuel Antonio Hernández-Ramos

    2016-12-01

    Full Text Available The objective of this research was the molecular and phylogenetic characterization of local maize populations of the La Sepultura Biosphere Reserve (REBISE, Mexico. In nine communities from the REBISE, Mexico, nineteen populations of local maize were sampled during 2012-2013. Two improved commercial varieties (Vs-536 and V-424, a commercial hybrid (H-MX3, a local corn (Coastal recently introduced in the REBISE, two local materials from the state of Tlaxcala, Mexico; both from Chalqueño race and conical Elotes (young corns and a teosinte (Zea mays ssp. Mexicana were included. They totaled twenty six different samples. The characterization was done with the PCR technique and inter-type microsatellite genetic markers. In total 113, fragments were ampli ed and that ranged from 150-2200 bp, of which 85,8% were polymorphic. Sequences “AG”, “AC” and “GAA” showed a greater number of ampli ed bands and higher polymorphism. The primers comprised of UBC834, I9 and UBC868 ampli ed the best. The similarities found within the polymorphic bands may be due to their equality such as varieties, races, species or genetic combination effect, a result of their cross- pollination. The dendrogram obtained showed a relatively low cophenetic correlation (r= 0,721, with a low degree of reliability, however four major groups of varieties are clearly conformed. The rst was named Valles Altos Corns, integrated by the conical Chalqueño and the conical Elotes races; the second is identi ed as having a common ancestor with Teocintle; the third is an improved hybrid by the H-MX3; and the fourth includes the REBISE local maize varieties and other commercial varieties (Vs-536 y Vs-424.

  20. Changes in Cell Ultrastructure in Maize Leaves Infected by Maize Dwarf Mosaic Virus

    Institute of Scientific and Technical Information of China (English)

    GUO Xing-qi; ZHU Xiao-ping; ZHANG Jie-dao; GUO Yan-kui

    2003-01-01

    Ultrastructural alterations in foliar cells were studied in leaves of resistant maize varietyLuyu16 and susceptible maize inbred line Luyuan92 infected by maize dwarf mosaic virus Shandong isolate(MDMV-SD), respectively. The results showed that marked cytopathological alterations were observed both inresistant plants and in susceptible plants, compared with that in healthy plants. However, some ultrastructur-al alterations, which observed in resistant plants, were different from those in susceptible plants. In resistantplants, which infected with the virus, the main organelles, including chloroplasts and mitochondria, wereslightly destroyed, the amount of mitochondria and peroxisome were increased. A few or no plasmodesmatawere observed. There were three kinds of inclusions including pinwheel, bundle and laminated aggregate, andthe virus particles in the cytoplasm. In susceptible plants, which infected with the virus, the chloroplasts wereheavily disrupted, including thylakoid swelling and envelope broking. The virus particles were more than thosein the resistant variety. Four kinds of inclusions including pinwheel, bundle, laminated aggregate and highelecton-dense body appeared in cytoplasm. Plasmodesmata and plasma membrane were abundant, and therewere frequent invaginations of the plasma membrane that led to the formation of vesicles and myelin-likestructures.

  1. Transcriptomic analyses of maize ys1 and ys3 mutants reveal maize iron homeostasis.

    Science.gov (United States)

    Nozoye, Tomoko; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-09-01

    To acquire iron (Fe), graminaceous plants secrete mugineic acid family phytosiderophores (MAs) (Takagi, 1976 [1]) through the MAs efflux transporter TOM1 (Nozoye et al., 2011 [2]) and take up Fe in the form of Fe(III)-MAs complexes through the Fe(III)-MAs transporter YS1 (Curie et al., 2001 [3]). Yellow stripe 1 (ys1) and ys3 are recessive mutants of maize (Zea mays L.) that result in symptoms typical of Fe deficiency, i.e., interveinal chlorosis of the leaves. The ys1 mutant is defective in the YS1 transporter and is therefore unable to take up Fe(III)-MAs complexes. While the ys3 mutant has been shown to be defective in MA release, the causative gene has not been identified. The objective of the present work was to identify the genes responsible for the ys1 and ys3 phenotypes, so as to extend our understanding of Fe homeostasis in maize by qRT-PCR. In agreement with previous reports, the expression level of YS1 was decreased in the ys1 mutant. Moreover, we identified that the expression level of a homolog of TOM1 in maize (ZmTOM1) was significantly decreased in the ys3 mutant. Here described the quality control and analysis that were performed on the dataset. The data is publicly available through the GEO database with accession number GSE44557. The interpretation and description of these data are included in a manuscript (Nozoye et al., 2013 [4]).

  2. the influence of replacing maize with chrysophyllum albidum seed ...

    African Journals Online (AJOL)

    AGROSEARCH UIL

    Production Technology, Moor Plantation, PMB 5029, Ibadan ... including; Coffee pulp (Fagbenro and Arowosoge, 1991a); plantain peel and yam peel (Fagbenro .... Aderolu et al (2011) fed biscuit waste as a replacer of maize to Clarias ...

  3. Economic efficiency of maize production in Yola North Local ...

    African Journals Online (AJOL)

    Economic efficiency of maize production in Yola North Local Government area of Adamawa State, Nigeria. ... DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee ... Data were analyzed using regression model.

  4. Effects of dietary replacement of maize grain with popcorn waste ...

    African Journals Online (AJOL)

    DNkosi

    some cases, oil and salt are added to the maize grain during popping (Borras et ..... is that fat inclusion depressed the attachment of ruminal microorganisms to the .... the Gauteng Department of Agriculture, Conservation and Environment for.

  5. CASSAVA FLOUR AS A DIRECT SUBSTITUTE OF MAIZE

    African Journals Online (AJOL)

    Live-weight, feed intake and mortality were recorded and feed conversion ... Increased proportion of cassava flour in the diet resulted in a decrease in weight gain, feed ... imports maize grain to overcome shortages. ..... Unfermented whole root.

  6. traits and resistance to maize streak virus disease in kenya

    African Journals Online (AJOL)

    Kenya (ISAAA Briefs, No. 16, 1999). This is a distressing loss considering that maize is a staple .... classified as mid-altitude ecologies based on annual rainfall patterns and ..... Southern Africa, Workshop Report, 15-17. September 1999, KARI ...

  7. Forage maize nutritional quality according to organic and inorganic fertilization

    National Research Council Canada - National Science Library

    Alejandro Moreno-Reséndez; Jesús Enrique Cantú Brito; José Luis Reyes-Carrillo; Viridiana Contreras-Villarreal

    2017-01-01

    ... to establish the effect of two fertilization sources – organic and inorganic, upon the nutritional quality of forage maize during the spring - summer cycle with a r andomized block experimental design. T 1 = Acadian soil +Acadian foliage...

  8. (maize) to a crude oil polluted agricultural soil

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... respectively for maize growing on crude oil polluted soils. These results .... organic carbon and total nitrogen contents were analyzed using methods .... applied facilitated the degradation of the contaminant by aiding the ...

  9. Genome-wide genetic changes during modern breeding of maize.

    Science.gov (United States)

    Jiao, Yinping; Zhao, Hainan; Ren, Longhui; Song, Weibin; Zeng, Biao; Guo, Jinjie; Wang, Baobao; Liu, Zhipeng; Chen, Jing; Li, Wei; Zhang, Mei; Xie, Shaojun; Lai, Jinsheng

    2012-06-03

    The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.

  10. Prospects of genetic modified maize crop in Africa

    African Journals Online (AJOL)

    sunny t

    2016-04-13

    Apr 13, 2016 ... address this food insecurity problem. The use of ... the conventional method of breeding is still important to keep maize seeds available in the gene bank. Therefore .... alimentary cellulose, and pre- and probiotics (Kosicka-.

  11. Assessment of factors influencing the biomethane yield of maize silages.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Foucart, Guy; Flammang, Jos; Lemaigre, Sébastien; Sinnaeve, Georges; Dardenne, Pierre; Delfosse, Philippe

    2014-02-01

    A large set of maize silage samples was produced to assess the major traits influencing the biomethane production of this crop. The biomass yield, the volatile solids contents and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare (average=7266m(3)ha(-1)). The most influential factor controlling the biomethane yield was the cropping environment. The biomass yield had more impact than the anaerobic digestibility. Nevertheless, the anaerobic digestibility of maize silages was negatively affected by high VS content in mature maize. Late maturing maize varieties produced high biomass yield with high digestibility resulting in high biomethane yield per hectare. The BMP was predicted with good accuracy using solely the VS content.

  12. Growth, yield and NPK uptake by maize with complementary organic ...

    African Journals Online (AJOL)

    Growth, yield and NPK uptake by maize with complementary organic and inorganic fertilizers. ... African Journal of Food, Agriculture, Nutrition and Development ... The mixture of organic and inorganic fertilizer treatment consisted of half the ...

  13. Identification and role of plasma membrane aquaporin in maize root

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using antiserum against expressed aquaporin fusion protein, GST-RD28, the distribution of aquaporin in the plasma membrane of maize root protoplasts has been examined under confocal laser scanning microscopy by indirect fluorescence staining. Results indicate that there are abundant aquaporins in maize roots, which are distributed in plasma membrane unevenly. Western blotting analysis of total protein solubilized from maize root plasma membrane shows that antiserum against GST-RD28 can cross-react with one protein around 55 ku. Another 28 ku protein can also be detected when the concentration of SDS and DTT in SDS-PAGE sample buffer is increased. The 55 and 28 ku proteins may be dimeric and monomeric of aquaporin respectively. Functional experiments show that aquaporin blocker HgCl2 and aquaporin antiserum can suppress the swelling of maize root protoplasts in hypotonic solution, indicating that aquaporin in plasma membrane of protoplast facilitates rapid transmembrane water flow.

  14. Annual legumes for improving soil fertility in the smallholder maize ...

    African Journals Online (AJOL)

    In addition to providing food, these crops are widely recognised to help maintain soil fertility. ... Most of our knowledge about the soil fertility benefits from annual legumes has ... Smallholder farmers already rotate grain legumes with maize.

  15. Response of maize (Zea mays L.) to combined application of ...

    African Journals Online (AJOL)

    Aghomotsegin

    1Department of Crop Production, Kwara State University, Malete, Kwara State, Nigeria. 2Kwara State Agricultural ... Maize is an important cereal crop in Nigeria, mainly as an ..... Economic benefits from using micronutrients for the farmer and ...

  16. Molecular classification of Maize cytoplasms in a breeding program

    Directory of Open Access Journals (Sweden)

    Colombo. N * , Presello, D.A. , Kandus M. , G.E. Eyherabide and J.C. Salerno

    2012-06-01

    Full Text Available Cytoplasmic male sterility (CMS is maternally inherited in most of higher plants species. Together with nuclear restorer genes (Rf, CMS cytoplasms contribute significantly to the efficient production of hybrid seed. Three main types of male sterile cytoplasms are known in maize: T, S and C, which can be distinguished by crossing with specific restorer lines. Recently, PCR markers have been developed allowing the identification of different cytoplasms quickly and accurately. Our objective was to classify the cytoplasm type of maize inbred lines used in our breeding program and F1s obtained from crosses between CMS lines and elite maize lines using PCR multiplex. A multiplex PCR protocol was optimized for our conditions. We obtained the molecular classification of the analyzed cytoplasms. The optimized protocol is a valuable tool to trace male sterile cytoplasms and determine hybrid seed purity in our maize breeding program.

  17. Exploring cost-effective maize integrated weed management ...

    African Journals Online (AJOL)

    Exploring cost-effective maize integrated weed management approaches under intensive farming systems. ... Log in or Register to get access to full text downloads. ... Kamuliand Iganga districts with one hand-hoe weeding (1hh) as the control.

  18. Functional and structural analysis of maize hsp101 IRES.

    Directory of Open Access Journals (Sweden)

    Augusto Samuel Jiménez-González

    Full Text Available Maize heat shock protein of 101 KDa (HSP101 is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5'UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5'UTR sequence (150 nts, since deletion of 17 nucleotides from the 5' end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5' end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.

  19. Fertilizer Phosphorus Fractions and their Availability to Maize