WorldWideScience

Sample records for non-nuclear energy research

  1. PUBLIC HEARING TRANSCRIPT: FEDERAL NON-NUCLEAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM

    Science.gov (United States)

    This document presents the proceedings of three days of public hearings on the Federal Non-nuclear Energy Research and Development Program. The document is presented in three sections: (1) Future Energy Patterns and Levels of Coal Use, (2) Solar Energy and Conservation, and (3) O...

  2. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  3. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  4. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  5. Non-power application of nuclear energy: Bangladesh perspective

    International Nuclear Information System (INIS)

    Naiyyum Choudhury

    2002-01-01

    Radiation technology offers a very wide scope for utilisation and commercial exploitation in various fields. All over the world, this non-power nuclear energy is being favourably considered for different applications like radiation processing of polymeric materials, non-destructive testing, nuclear and nuclear-related analytical techniques, radiation sterilization of medical products and human tissue allografts, preservation of food by controlling the physiological processes for extending shelf-life and eradication of microbial and insect pests, nuclear technology in agriculture and treatment of sewage sludge. Bangladesh Atomic Energy Commission has taken radiation processing programmes in a big way right from its inception. This paper describes the studies carried out by various research groups in Bangladesh Atomic Energy Commission in the planning and development of non-power nuclear technology for peaceful uses in the fields of food, agriculture, medicine, industry and environment. Both food preservation and medical sterilization of medical products are now being commercially carried out in the Gammatech facility as a joint venture company of BAEC and a private entrepreneur. Bangladesh is soon going to establish a full-fledged Tissue Bank to cater the needs of various tissue allografts for surgical replacement. Recently Government of Bangladesh has allocated US$ 1.00 million for strengthening of the Tissue Banking Laboratory. Application of nuclear techniques in agriculture is also quite intensive. BAEC has made quite a good research contribution on vulcanization of natural rubber latex, wood plastic composites, surface coating curing, polymer modification etc. Bangladesh has also made a very good progress in the fields of non-destructive testing, tracer technology, nuclear analytical techniques and nucleonic control. The impact of non-power nuclear energy in selected areas will no doubt be significant in coming years. (Author)

  6. Parameters for calculation of nuclear reactions of relevance to non-energy nuclear applications (Reference Input Parameter Library: Phase III). Summary report of the first research coordination meeting

    International Nuclear Information System (INIS)

    Capote Noy, R.

    2004-08-01

    A summary is given of the First Research Coordination Meeting on Parameters for Calculation of Nuclear Reactions of Relevance to Non-Energy Nuclear Applications (Reference Input Parameter Library: Phase III), including a critical review of the RIPL-2 file. The new library should serve as input for theoretical calculations of nuclear reaction data at incident energies up to 200 MeV, as needed for energy and non-energy modern applications of nuclear data. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with actions and deadlines. Participants' contributions to the RCM are also attached. (author)

  7. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  8. Extending nuclear energy to non-electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Houghton, Z. [NuScale Power, LLC, Corvallis, Oregon (United States); Bromm, R. [Fluor Corp., Greenville, SC (United States); Desportes, C. [Aquatech International, Canonsburg, PA (United States); McKellar, M.; Boardman, R. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-07-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these nontraditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers. (author)

  9. Nuclear energy I, Non-energetic applications; Energia Nuclear I, Aplicaciones no energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Navarrete T, M; Cabrera M, L; Arandia, P A; Arriola S, H [Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    1986-07-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( {approx} 20 MeV/reaction), heavy nucleus fusion ({approx} 200 MeV/reaction) and nucleons annihilation ( {approx} 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  13. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  16. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  17. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  18. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  19. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  20. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  2. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  3. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  4. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  5. Sustainablility of nuclear and non-nuclear energy supply options in Europe

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2007-01-01

    In the course of the current discussion on promoting the economical competitiveness of sustainable energy systems, especially renewable and non-CO 2 -intensive ones, interest in nuclear energy has re-awakened in Europe (''nuclear renaissance''). This paper starts with presenting the concept of energy sustainability and its main elements. Next, an overview of the main results of sustainability assessments for different energy supply options (nuclear, fossil, renewables) covering full energy chains is given. Nuclear energy's typical strong and weak points are identified from a sustainability point of view. On the basis of these results, it is argued that more emphasis on nuclear energy's (very good) total cost performance, i.e. incl. externalities, rather than on its (very good) contribution to combating climate change would stronger benefit its ''renaissance''. Finally, the development of an overall EU-wide framework is proposed in order to assess the sustainability performance of alternative energy supply options, incl. nuclear, across their lifecycle and thus support decision making on developing sustainable energy mixes. (orig.)

  6. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  7. The nuclear energy of the future: the researches and the objectives

    International Nuclear Information System (INIS)

    2005-01-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  8. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  9. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  10. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  11. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  12. Report of the international forum on nuclear energy, nuclear non-proliferation and nuclear security. Measures to ensure nuclear non-proliferation and nuclear security for the back end of nuclear fuel cycle and regional cooperation in Asia

    International Nuclear Information System (INIS)

    Tazaki, Makiko; Yamamura, Tsukasa; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2013-03-01

    The Japan Atomic Energy Agency (JAEA) held 'International Forum on Nuclear Energy, Nuclear Non-proliferation and Nuclear Security - Measures to ensure nuclear non-proliferation and nuclear security for the back end of nuclear fuel cycle and regional cooperation in Asia-' on 12 and 13 December 2012, co-hosted by the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo. In the forum, keynote speakers from Japan, International Atomic Energy Agency (IAEA), the U.S., France and Republic of Korea (ROK), respectively explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. In two panel discussions, entitled 'Measures to ensure nuclear non-proliferation and nuclear security of nuclear fuel cycle back end' and 'Measures to ensure nuclear non-proliferation and nuclear security for nuclear energy use in the Asian region and a multilateral cooperative framework', active discussions were made among panelists from Japan, IAEA, the U.S., France, ROK, Russia and Kazakhstan. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording and content of this report except presentation materials. (author)

  13. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  14. Review of international forum on peaceful use of nuclear energy and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shimizu, Ryo; Suzuki, Mitsutoshi; Sakurai, Satoshi; Tamai, Hiroshi; Yamamura, Tsukasa; Kuno, Yusuke

    2012-02-01

    International forum on peaceful use of nuclear energy and nuclear non-proliferation was held at Gakushi-kaikan, Tokyo on February 2-3, 2011 in cooperation with The Japan Institute of International Affairs (JIIA) and The University of Tokyo Global COE. In our International Forum, we would like to encourage active discussion of international challenges to and solutions for compatibility between peaceful use of nuclear energy and nuclear non-proliferation, and international cooperation for emerging nuclear energy states. It was successfully carried out with as many as 310 participants and a lot of discussions. This report includes abstracts of keynote speeches, summary of panel discussions and materials of the presentations in the forum. (author)

  15. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  16. Report of “the 2013 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Ensuring nuclear non-proliferation and nuclear security of nuclear fuel cycle options in consideration of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station”

    International Nuclear Information System (INIS)

    Yamamura, Tsukasa; Suda, Kazunori; Tomikawa, Hirofumi; Suzuki, Mitsutoshi; Kuno, Yusuke; Mochiji, Toshiro

    2014-03-01

    The Japan Atomic Energy Agency (JAEA) held “International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Ensuring Nuclear Non-Proliferation and Nuclear Security of Nuclear Fuel Cycle Options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station –” on 3 and 4 December 2013, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, as co-hosts. In the Forum, officials from Japan, the United States, France and International Atomic Energy Agency (IAEA) explained their efforts regarding peaceful use of nuclear energy and nuclear non-proliferation. Discussion was made in two panels, entitled “Nuclear non-proliferation and nuclear security measures of nuclear fuel cycle options in consideration of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station” and “Roles of safeguards and technical measures for ensuring nuclear non-proliferation for nuclear fuel cycle options”. In the first panel based on the implications of the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station on the domestic and global nuclear energy use and increased interest in the back end of nuclear fuel cycle, discussion was made on nuclear non-proliferation and nuclear security challenges on both fuel cycle options from the policy and institutional viewpoints whereas in the second panel the roles of safeguards and proliferation resistant nuclear technology including plutonium burning technology in ensuring nuclear non-proliferation and nuclear security in the back end of nuclear fuel cycle were discussed. Officials and experts from Japan, IAEA, the United States, France and Republic of Korea participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the presentations in the forum. The editors take full responsibility for the wording

  17. Nuclear energy and non proliferation. The role of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Cooley, J.; Rauf, T.

    2008-01-01

    This article discusses the role of the International Atomic Energy Agency (IAEA) in the prevention of the spread of nuclear weapons. The IAEA verifies States compliance with their non-proliferation commitments through the application of safeguards on their civilian nuclear programmes to ensure that they are being used solely for peaceful purposes. The IAEA safeguards have evolved in the course of five decades and have become an integral part of the international non-proliferation regime and the global security system. To continue to serve the international community, they need to continue to move with the times, especially in light of the renewed interest in nuclear energy. (Author)

  18. German Federal spendings on nuclear energy in 1989

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The portfolio of the BMFT (Federal Ministry of Research and Technology) covers under the competence of the Federal Government all activities in the field of nuclear science and engineering for peaceful uses of nuclear energy, reactor safety research, and research on non-nuclear energy sources and technology. The draft budget for 1989 shows a total expenditure of DM 7.65 billions in the section 30, portfolio of the BMFT. This is about 1.2% more than in the draft budget of 1988. Broken down into programmes, DM 1.853 billions are earmarked for energy research and technology (1988: DM 1.854 billions), of these DM 398.5 millions for the promotion of non-nuclear energy research and technology. (orig./UA) [de

  19. Current Status of Non-Electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Shin, Young Joon; Lee, Jun; Lee, Tae Hoon

    2009-05-01

    IAEA Technical Meeting(I3-TM-37394) on 'Non-Electric Applications of Nuclear Energy' has been successfully held from March 3 to 6 in 2009 at KAERI/INTEC. The 24 experts from 12 countries participated in this meeting and provided 17 presentations and their opinions and comments in desalination, hydrogen production, and heat application sessions. All of the participants from 12 countries agreed that nuclear power should be the potential carbon-free energy source to replace crude oil and reduce greenhouse gas emissions in the fields of non-electric applications such as desalination, hydrogen production, district heating, and industrial processes applications

  20. Japanese Strategy for Nuclear Energy Research and Development For the Future

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Yoshinori [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1988-04-15

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  1. Japanese Strategy for Nuclear Energy Research and Development For the Future

    International Nuclear Information System (INIS)

    Ihara, Yoshinori

    1988-01-01

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  2. Report of 'the 2014 international forum on peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the new strategic energy plan'

    International Nuclear Information System (INIS)

    Yamaga, Chikanobu; Tomikawa, Hirofumi; Kobayashi, Naoki; Naoi, Yosuke; Oda, Tetsuzo; Mochiji, Toshiro

    2015-10-01

    The Japan Atomic Energy Agency (JAEA) held 'International Forum on Peaceful Use of Nuclear Energy, Nuclear Non-proliferation and Nuclear Security – Future direction toward promoting non-proliferation and the ideal method of developing human resources using Centers of Excellence (COEs) following the New Strategic Energy Plan -' on 3 December 2014, with the Japan Institute of International Affairs (JIIA) and School of Engineering, The University of Tokyo, and International Nuclear Research Center, Tokyo Institute of Technology as co-hosts. In the Forum, officials and experts from Japan, the United States explained their efforts regarding peaceful use of nuclear energy, nuclear non-proliferation and nuclear security. Discussion was made in two panels, entitled 'Effective and efficient measures to ensure nuclear non-proliferation based on domestic and foreign issues and the direction and role of technology development' and 'Roles of nuclear security COEs and future expectations'. In Panel Discussion 1, as the nuclear non-proliferation regime is facing various problems and challenges under current international circumstances, how to implement effective and efficient safeguards was discussed. In Panel Discussion 2, panelists discussed the following three points: 1. Current status of Nuclear Security Training and Support Centers and COEs, and Good Practice; 2. What these centers can do to enhance nuclear security (New role for COEs); 3. Regional cooperation in the Nuclear Security Training and Support Center (NSSC) and COEs in states, which the IAEA recommends establishing, and international cooperation and partnerships with international initiatives (New Role). Officials and experts from Japan, IAEA, the United States, France, Republic of Korea, and Indonesia participated in the panel and made contributions to active discussion. This report includes abstracts of keynote speeches, summaries of two panel discussions and materials of the

  3. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  4. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  5. Nuclear non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    DOE's nuclear non-proliferation responsibilities are defined by the provisions of the Atomic Energy Act of 1954, as amended, and of the Nuclear Non-Proliferation Act of 1978 (NNPA). The Department's major responsibilities in this area are to: (1) provide technical assistance to the Department of State in negotiating agreements for civil cooperation in the peaceful uses of nuclear energy with other countries and international organizations; (2) join with other agencies to reach executive branch judgments with respect to the issuance of export licenses by the Nuclear Regulatory Commission; (3) be responsible for processing subsequent arrangements with other agencies as required by the Nuclear Non-Proliferation Act; (4) control the distribution of special nuclear materials, components, equipment, and nuclear technology exports; (5) participate in bilateral and multilateral cooperation with foreign governments and organizations to promote the peaceful uses of nuclear energy; and (6) act as a primary technical resource with respect to US participation in the International Atomic Energy Agency

  6. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  7. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  8. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  9. The application of contrast explanation to energy policy research: UK nuclear energy policy 2002–2012

    International Nuclear Information System (INIS)

    Heffron, Raphael J.

    2013-01-01

    This paper advances the application of the methodology, contrast explanation, to energy policy research. Research in energy policy is complex and often involves inter-disciplinary work, which traditional economic methodologies fail to capture. Consequently, the more encompassing methodology of contrast explanation is assessed and its use in other social science disciplines explored in brief. It is then applied to an energy policy research topic—in this case, nuclear energy policy research in the UK. Contrast explanation facilitates research into policy and decision-making processes in energy studies and offers an alternative to the traditional economic methods used in energy research. Further, contrast explanation is extended by the addition of contested and uncontested hypotheses analyses. This research focuses on the methods employed to deliver the new nuclear programme of the UK government. In order to achieve a sustainable nuclear energy policy three issues are of major importance: (1) law, policy and development; (2) public administration; and (3) project management. Further, the research identifies that policy in the area remains to be resolved, in particular at an institutional and legal level. However, contrary to the literature, in some areas, the research identifies a change of course as the UK concentrates on delivering a long-term policy for the nuclear energy sector and the overall energy sector. - Highlights: ► Energy policy research is interdisciplinary and needs additional methodological approaches. ► New method of contrast explanation advanced for energy policy research. ► This methodology is based on dialectical learning which examines conflict between sources of data. ► Research example used here is of UK nuclear energy policy. ► Major issues in UK nuclear energy policy are planning law, public administration, and project management

  10. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  11. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  12. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  13. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  14. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  15. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  16. The nuclear energy of the future: the researches and the objectives; L'energie nucleaire du futur: quelles recherches pour quels objectifs?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Today energy problems are global problems. That is why the new generation of energy production by nuclear power must be realized basely on serious forecasts at a world scale. The nuclear energy presents many trumps for an energetic answer, at long-dated, concerning the environment and the resources. This will be for two main conditions: the ability to answer the public opinion anxiety and the development of new systems more high- performance in terms of safety and economy in the framework of the sustainable development and the non proliferation policy. These subjects are at the earth of the CEA missions. This document proposes a detailed presentation of the nuclear origins, the fuel and its cycle, the radioactive wastes and their management,the dismantling and the decommissioning of the nuclear installations, the challenges of the nuclear safety, the energy in the world, the nuclear economy, the nuclear in the world, the researches of the future, the third generation reactors, the research on radioactive wastes, the fuel cycle of the nuclear systems of the future, the uranium resources, the generation four forum, the gas coolant reactors, the thorium, hybrid systems and the thermonuclear fusion. (A.L.B.)

  17. A lead for transvaluation of global nuclear energy research and funded projects in Japan

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Kajikawa, Yuya; Fujita, Katsuhide; Iwata, Shuichi

    2013-01-01

    Highlights: • Chernobyl accident had limited influence on basic research in nuclear energy. • Budget allocation to R and D and number of published papers have recently decreased. • Citation network analysis revealed reactor safety and fusion as current research trend. • Nuclear energy research policy will change after Fukushima disaster. - Abstract: The decision-making process that precedes the introduction of a new energy system should strive for a balance among human security, environmental safeguards, energy security, proliferation risk, economic risks, etc. For nuclear energy, the Fukushima Daiichi nuclear disaster (Fukushima disaster) has brought forth a strong need for transvaluation of the present technology. Here, we analyzed bibliographic records of publications in nuclear science and technology to illustrate an overview and trends in nuclear energy technology and related fields by using citation network analysis. We also analyzed funding data and keywords assigned for each project by co-occurrence network analysis. This research integrates citation network analysis and bibliometric keyword analysis to compare the global trends in nuclear energy research and characteristics of research conducted at universities and institutes in Japan. We show that the Chernobyl accident had only a limited influence on basic research. The results of papers are dispersed in diverse areas of nuclear energy technology research, and the results of KAKEN projects in Japan are highly influenced by national energy policy with a focus on nuclear fuel cycle for energy security, although KAKEN allows much freedom in the selection of research projects to academic community

  18. Research and development for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Bernard, P.

    2002-01-01

    In the framework of the energy demand increase facing the environment protection, the three main objectives of the research and development for the nuclear energy are developed in this document: to support the today nuclear industry, to answer the public anxiety concerning the sanitary and environmental impact of nuclear activities, to design, evaluate and develop new reactors. (A.L.B.)

  19. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  20. Non-radioactive waste management in a Nuclear Energy Research Institution

    International Nuclear Information System (INIS)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F.

    2013-01-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  1. Establishment of Japan Atomic Energy Agency and strategy for nuclear non-proliferation studies

    International Nuclear Information System (INIS)

    Senzaki, Masao; Kurasaki, Takaaki; Inoue, Naoko

    2005-01-01

    Japan Atomic Energy Agency (JAEA) was established on October 1, 2005, after the merger of Japan Atomic Energy Research Institute and Japan Nuclear Cycle Development Institute. JAEA is the only governmental nuclear research and development institute in Japan. It will engage in research activities ranging from basic research to practical applications in the nuclear field and will operate research laboratories, reactors, a reprocessing plant and a fuel fabrication plant. At the same time, the Nuclear Nonproliferation Science and Technology Center (NPSTC) was also established inside of JAEA to conduct the studies on the strategy for nuclear nonproliferation studies. Five roles that JAEA should play for nuclear nonproliferation were identified and four offices were established in the center to carry out those five roles effectively. To conduct the research and development for nuclear nonproliferation efficiently, the center aims to be a 'Research Hub' based on Partnership' with other organizations. (author)

  2. Activities of the study group of peaceful uses of nuclear energy and non-proliferation policy. FY Heisei 11

    International Nuclear Information System (INIS)

    Kurosawa, Mitsuru; Oi, Noboru

    2000-01-01

    The Study Group on the Peaceful Uses of Nuclear Energy and Non-Proliferation Policy (Chairman: Prof. Kurosawa) was established in FY1999 with the funding from the Science and Technology Agency. The aim of the Study Group is to clearly understand nuclear proliferation issues and to lead international opinion. Nuclear non-proliferation is a matter of rather scanty interest compared to nuclear safety while both of them are important in promoting peaceful uses of nuclear energy in Japan. In FY2000, the Study Group held International Symposium 'Peaceful Uses of Nuclear Energy and Non-Proliferation: A Challenge of 21st Century' and in conjunction with this Symposium, dispatched 'The Statement on the Peaceful Uses of Nuclear Energy and Non-Proliferation, Action Plan towards 21st Century'. The Statement consists of five propositions: 1) Strengthening the global nuclear non-proliferation regime and making it universally applicable, 2) Negative legacy of cold war: rapid solution of problems, 3) Civil (non-military) plutonium, 4) Development of technology to strengthen the nuclear non-proliferation regime internationally, and 5) Strengthening Japanese initiative on nuclear non-proliferation policy. In this report, these activities will be explained in detail. (author)

  3. Academic Design Of Canada's Energy Systems And Nuclear Science Research Centre

    International Nuclear Information System (INIS)

    Bereznai, G.; Perera, S.

    2010-01-01

    The University of Ontario Institute of Technology (UOIT) is at the forefront of alternative energy and nuclear research that focuses on the energy challenges that are faced by the province of Ontario, the industrial heartland of Canada. While the university was established as recently as 2002 and opened its doors to its first students in 2003, it has already developed a comprehensive set of undergraduate and graduate programs, and a reputation for research intensiveness. UOIT offers dedicated programs in nuclear engineering and energy systems engineering to ensure a continued supply of trained employees in these fields. The ability to provide talented and skilled personnel to the energy sector has emerged as a critical requirement of ensuring Ontario's energy future, and to meet this need UOIT requires additional teaching and research space in order to offer its energy related programs. The Governments of Canada and of the Province of Ontario recognized UOIT's achievements and contributions to post-secondary education in the field of clean energy in general and nuclear power in particular, and as part of the economic stimuli funded by both levels of government, approved $45 M CAD for the construction of a 10,000 m 2 'Energy Systems and Nuclear Science Research Centre' at UOIT. The building is scheduled to be ready for occupancy in the summer of 2011. The paper presents the key considerations that lead to the design of the building, and gives details of the education and research programs that were the key in determining the design and layout of the research centre. (authors)

  4. Non-empirical energy density functional for the nuclear structure

    International Nuclear Information System (INIS)

    Rot ival, V.

    2008-09-01

    The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy nuclear structure calculations both for stable experimentally known nuclei whose properties are accurately reproduced and systems that are only theoretically predicted. We highlight in the present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and model-independent method that characterizes the existence and properties of halos in medium- to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the energy functional on the formation of such systems. These results are found to be limited by the predictive power of currently-used EDFs that rely on fitting to known experimental data. In the second part of this dissertation, we initiate the construction of non-empirical EDFs that make use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum interactions generated through the application of renormalization group techniques. These soft-core vacuum potentials are used as a step-stone of a long-term strategy which connects modern many-body techniques and EDF methods. We provide guidelines for designing several non-empirical models that include in-medium many-body effects at various levels of approximation, and can be handled in state-of-the art nuclear structure codes. In the present work, the first step is initiated through the adjustment of an operator representation of low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm. The first results highlight the possibility to grasp most of the relevant physics for low-energy nuclear structure using this numerically convenient Gaussian vertex. (author)

  5. Nuclear energy and non-proliferation in Latin America: the constitution of Tlatelolco system

    International Nuclear Information System (INIS)

    Armanet, P.

    1982-01-01

    The nuclear energy as alternative energy resource and its military use are analysed. Then the main characteristics of the Tratelolco treaty and non-proliferation in Latin America are discussed. Finally the importance of the nuclear-weapons-free zone in Latin America is shown. (A.B.T.) [pt

  6. Experimental nuclear physics research challenges at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, E.; Morales G, L. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Murillo O, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-02-15

    Experimental research with low energy beams of ions (a few MeV) in nuclear physics has gone through a phase transition along its evolution in fifty years because of the increasing complexity (and cost) of the equipment required to conduct meaningful investigations. Many of the small cyclotrons and Van de Graaff (single ended and tandem) accelerators have been used for the last three decades mostly in applications related to the characterization and modification of materials. Specific experimental investigations in nuclear physics with low energy accelerators are proposed in this work. Specifically we discuss the topic of nuclear radii measurements of radioactive species produced via (d,n) reactions. Some emphasis is given to the instrumentation required. (Author)

  7. JAEA's actions and contributions to the strengthening of nuclear non-proliferation

    Science.gov (United States)

    Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro

    2012-06-01

    Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.

  8. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  9. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  10. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  11. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  12. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  13. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  14. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  15. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  16. Challenges faced by nuclear research centres in Indonesia

    International Nuclear Information System (INIS)

    Subki, I.R.; Soentono, S.

    2001-01-01

    Nuclear research centres in Indonesia are mainly owned and operated by the National Nuclear Energy Agency, covering basically various research and development facilities for non-energy and energy related activities. The research and development activities cover a broad spectrum of basic, applied, and developmental research involving nuclear science and technology in supporting various fields ranging from basic human needs, e.g. food and health; natural resources and nuclear and environmental safety; as well as industry. Recent economic crisis, triggered by monetary turmoil, has dictated the IAEA to face new challenges and to give more efforts on the application of the so called 'instant technology' i.e. the technology which has been developed and is ready for implementation, especially on food and health, to be better utilized to overcome various problems in the society. Various short and medium term programmes on the application of isotopes, radiation, and nuclear techniques for non-energy related activities have emerged in accord with these efforts. In this regard, besides the intensification of the instant technology implementation on food and health, the nuclear research and development on food plant mutation, fertilizers, radio-vaccines, production of meat and milk, production processes of various radiopharmaceuticals, and radioisotopes as well as radiation processing related to agro-industry have to be intensified using the available laboratories processing facilities. The possibility of the construction of irradiators for post harvesting processes in some provinces is being studied, while the designing and manufacturing of various prototypes of devices, equipment, and instruments for nuclear techniques in health and industry are continued. Considering the wide applications of accelerators for non-energy and energy related research and development, construction of accelerator-based laboratories is being studied. In energy related research the feasibility of

  17. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    Science.gov (United States)

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  18. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  19. A Study on Introduction of Nuclear Power Plants in India and the Nuclear Non- Proliferation Conditions

    International Nuclear Information System (INIS)

    Yang, Seung Hyo; Lim, Dong Hyuk

    2011-01-01

    Nuclear Suppliers Group (NSG) which was formed to build nuclear export control has been accepting the nuclear cooperation for the member nation of the international nuclear non-proliferation regime. Korea exported nuclear power plants to United Arab Emirates in 2009 and research and training reactor to Jordan in 2010 based on the forcible non-proliferation regime as a member nation of NSG, so it is strengthening its position in the atomic energy industry. In addition, Korea concluded an agreement with India which is planning the construction of 25.based or more nuclear power plants for the next 20 years in last July, 25, so it will enter the atomic energy market in India. But India has been accepted the exceptionally civilian nuclear cooperation as a de facto Nuclear Weapon State (NWS) and non-member state of NPT, so concerns about nuclear proliferation has been raised. This study aims to introduce the allowance of exceptions background in India, to analyze its effect on the non-proliferation regime and to find nuclear non-proliferation conditions

  20. Nuclear Non-Proliferation Policy Act of 1977. Hearings before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session on S. 897 and S. 1432

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    On April 7, 1977, President Carter announced his nuclear power policy. The policy statement set forth seven specific objectives for the future use of nuclear energy in this country and the rest of the world. The two proposed instruments for implementing this policy are the revised fiscal year 1978 ERDA authorization draft bill and S. 1432, the Nuclear Non-Proliferation Act of 1977. These legislative proposals are linked in that S. 1432 is designed to establish a non-proliferation framework with specific objectives established for the ERDA nuclear energy programs. The ERDA authorization bill is the budgetary vehicle to implement those objectives. The Committee on Energy and Natural Resources obtained joint referral of certain portions of the Nuclear Non-Proliferation Act to insure that non-proliferation policy is implemented in a manner consistent with the policy of having sufficient energy for this country and foreign countries in the future. The Subcommittee on Energy Research and Development must examine the costs and the consequences of various initiatives before they are implemented. F or example, the proposal to guarantee uranium enrichment services for foreign nations poses specific requirements on ERDA to expand considerably our enrichment capacity by the year 2000. Without reprocessing, it is expected that spent fuel rods from abroad will be returned to this country for storage with attendant costs and siting decisions. Also, international fuel-cycle evaluation programs must be carefully examined to insure that all options, including regional fuel cycle centers with international controls and inspection, are considered in seeking international approaches to the non-proliferation objectives. At the June 10 hearing, the subcommittee received testimony on S. 1432, the bill prepared by the administration. The hearings on September 13 and 14 focused on S. 897. Statements by many witnesses are included

  1. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  2. Proceedings of the fifth seminar on software development in nuclear energy research

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Maekawa, Hiroshi; Fujiki, Kazuo; Harada, Hiroo

    1989-02-01

    These proceedings are the compilations of papers presented to the Fifth Seminar on Software Development in Nuclear Energy Research held at Tokai Research Establishment, Japan Atomic Energy Research Institute (JAERI), October 17 - 18, 1988. The seminar was organized in cooperation with Japanese Committee on Reactor Physics (JCRP) and Japanese Nuclear Code Committee (JNCC). The topics of seminar include the invited papers on the subjects: - Net work for Atomic Energy Research - (1) Present and future of Networks, (2) Applications of Networks, (3) Panel Discussion : Usage of Networks in Atomic Energy Research, - Frontier of Simulation Softwares for the Environment Safety - (4) Numerical Simulation of Grobal Scale Dispersion on the Chernobyl Accident, and (5) Oceanic Diffusion and Safety Evaluation of High Level Waste Disposal in Geological Media. (author)

  3. Nuclear energy research and development in France

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    Having described the general organization and main participants in charge of nuclear energy development in France, headed by the C.E.A. since the start of this activity at the end of World War II, the author gives a glimpse of the programmes shared out between four main headings: fundamental research, reactors, fuel cycle and nuclear safety. Two tables sum up the financial means of the C.E.A. in 1981 on the one hand and the personnel strengths on the other. A graph also shows the operational framework of the C.E.A. and its main subsidiaries and participations [fr

  4. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  5. Asia nuclear-test-ban network for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Kokaji, Lisa; Ichimasa, Sukeyuki

    2010-01-01

    In Global Center of Excellence Program of The University of Tokyo, Non- Proliferation Study Committee by the members of nuclear industries, electricity utilities, nuclear energy institutes and universities has initiated on October 2008 from the viewpoints of investigating a package of measures for nuclear non-proliferation and bringing up young people who will support the near-future nuclear energy system. One of the non-proliferation issues in the Committee is the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Objective of this treaty is to cease all nuclear weapon test explosions and all other nuclear explosion. This purpose should be contributed effectively to the political stability of the Asian region by continuous efforts to eliminate the nuclear weapons. In the Committee, by extracting several issues related to the CTBT, conception of 'Asia nuclear-test-ban network for nuclear non-proliferation' has been discussed with the aim of the nuclear-weapon security in Asian region, where environmental nuclear-test monitoring data is mainly treated and utilized. In this paper, the conception of the 'network' is presented in detail. (author)

  6. Prospects for non-electric applications of nuclear energy in Korea

    International Nuclear Information System (INIS)

    Kim Si-Hwan; Chang Moon-Hee

    1997-01-01

    Nuclear power technology and related infrastructures are already well established in Korea. Intensive efforts for technology advancements and new technology development are continuously being pursued through various R and D activities. Along with these efforts, the expansion of peaceful utilization of nuclear energy technology for non-electric applications has also been sought and related R and D program is currently underway particularly for nuclear seawater desalination. The program is mainly focused on the development of an integral advanced reactor of 330 MWt for supplying the energy for seawater desalination as well as for power generation. Approximately 40,000 m 3 /d water production facility will be coupled with the reactor to compose an integrated nuclear desalination system. In order to incorporate advanced technologies such an intrinsic and passive safety features into the reactor as a way for enhancing the safety and performance, various R and D activities are concurrently in progress along with the conceptual development of the reactor. Five years are planned for the completion of system development and the construction of a demonstration plant will follow. (author). 4 figs, 2 tabs

  7. A study on the planning for the research and development of nuclear energy

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Won, B. C.; Bang, J. K.; Jung, Y. H.; Kim, M. R.; Cho, C. Y.; Lee, H. S.; Kim, J. U.; Yeo, J. W.; Hong, Y. P.; Kim, I. C.; Rha, K. H.; Yoon, Y. S.; Park, J. H.; Ko, Y. S.; Kim, S. S.; Kang, W. J.; Lee, Y. H.; Shim, H. W.

    1997-01-01

    This study has performed aiming to provide the government with the basic input to establish 'the comprehensive promotion plan for utilization, research and development of nuclear energy' and 'the mid- and long-term nuclear research and development program', thus the government set it up as a national plan after endorsement of Atomic Energy Commission. Next, the feasibility study of the proton accelerators construction which is expected to use for nuclear research and development and industry. And a systematic and integrated research and development management system for the large-scale projects has been studied considering the inherent uncertainty and high risk of research and development. (author). 24 tabs., 6 figs

  8. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  9. Value of non-electric applications of nuclear energy beyond market potential

    International Nuclear Information System (INIS)

    Khamis, I.

    2014-01-01

    Providing process steam at different temperatures, Nuclear Power Plants (NPPs) could be coupled to various types of non-electric applications such as seawater desalination, hydrogen production, district heating or cooling, as well as any energy-demanding process heat industrial application. This will not only make nuclear power a more feasible option helping to accelerate its penetration into the the heat and transportation markets, but also helping to improve their overall thermal efficiencies. Typical thermal efficiencies of NPPs are about 33%. All existing reactor types can be coupled to non-electric application based on cogeneration i.e. the production of electricity and process heat. (authors)

  10. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  11. Test-qualification experience with non-destructive material analysis system performed at Paks Nuclear Power Plant and its usage in non-nuclear fields

    International Nuclear Information System (INIS)

    Somogyi, Gy.; Szabo, D.

    2003-01-01

    The need for qualification of non-destructive material analysis has been recognised in controlling nuclear energy production process. This test-qualification has been performed as first of its kind after the task has been assigned by the National Nuclear Energy Agency. The input documents for the test were. Technical Specification, Analysis Technology, Technical Justification. Test-qualification has been performed with real form control bodies developed by the Rez Nuclear Research Institute, in which the planned defects has been produced by spark-chipping. The qualification procedure has been summarized in a Qualification Folder and given to the national agency to issue a qualification certificate. The procedure might be interesting mostly for companies delivering nuclear power plant assemblies. Similar needs are formulated in standards relative to the qualification of non-nuclear material testing methods (MSZ EN 17025 and EU). (Gy.M.)

  12. Use of nuclear energy and land warming

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jose Alberto Maia; Sordi, Gian Maria Agostino Angelo; Frazao, Selma Violato; Zago, Franco Raphael do Carmo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], E-mail: blosspriester@gmail.com, E-mail: gmsordi@ipen.br, E-mail: selma.violato@terra.com.br, E-mail: fzago@ipen.br

    2007-07-01

    The world is facing an energy requirement that hardly will be covered by renewable sources actually researched. Though there is almost unanimity in the scientific community about the fact that nuclear energy is still a better option to replace oil and coal, environmental restrictions go on vigorous. And consequently, this non-consensus on nuclear energy benefits, greenhouse effect and weakening of ozone layer go on causing the land warming. In Brazil, nuclear plants are competitive and are capable to produce energy in a safe way, thus contributing to the stabilization of the national electric system and to the expansion of installed capacity and as alternative source of energy and applications for peaceful purposes, preserving the environment and planet inhabitants. (author)

  13. Strategic areas for non-electric application of nuclear energy in Indonesia

    International Nuclear Information System (INIS)

    Sasmojo, S.; Subki, I.R.; Lasman, A.N.

    1997-01-01

    An attempt is made to identify strategic areas, whereby non-electric application of nuclear energy may be justified. Subject to further evaluation, particularly on the economic aspects, non-electric application of nuclear energy in Indonesia may have justifiable strategic role in the long term sustainability of the development of the country. The key arguments are: (a) within not too far distant future, domestic resources constraints of oil and natural gas will strongly be felt, especially if the current trend in the rate of production of the two commodities has to be maintained to satisfy the growing demand for energy and to secure foreign exchange earning; (b) nuclear option, in concurrent with coal and biomass options, can provide the need for heat supply required to undertake strategic schemes for (i) improving oil production capacity; (ii) prolong the availability of oil and natural gas by displacing their uses as heat sources in industry, whenever appropriate; (iii) coal conversion to synthetic natural gas (SNG), or synthesis gas, to substitute or at least supplement the use of natural gas as industrial chemical feedstock; and (iv) sea water desalination by evaporation, to overcome shortage of fresh drinking and industrial water supply, as well as to secure its reliability and availability. In terms of carbon emission to the atmosphere, the nuclear option offers an interesting choice. In view of those, serious consideration for further technical assessment, and thorough evaluation on the economic viability and social acceptability for the option is recommended. (author). 7 refs, 5 figs, 2 tabs

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  15. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    Energy Technology Data Exchange (ETDEWEB)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S; Ridikas, Danas

    2009-09-15

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  16. State-of-the-art research: Reflections on a concerted Nordic-Baltic nuclear energy effort

    International Nuclear Information System (INIS)

    Husdal, Lars; Tveit, Jesper; Vaagen, Jan S.; Ridikas, Danas

    2009-09-01

    Quite a few hold the view that nuclear energy will have its renaissance in the not too distant future. Technology is, however, a necessary, but not sufficient condition. The needed prerequisites represent a complex issue. With increasing energy demand and depletion of non-renewable energy resources, nuclear will have to prove its role in an increasing energy mix, globally, regionally and often also nationally. Based on its history, experience with coordinated interplay in electricity production from a variety of energy sources, and science engagements, we argue for a future Nordic/Baltic SHOWCASE: A nuclear weapons free and proliferation safe nuclear energy supplier in the region, with a concerted role in competence building and in international ventures, and with focus on operation, safety, economy and societal aspects. (Author)

  17. Energy research and energy technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Research and development in the field of energy technologies was and still is a rational necessity of our time. However, the current point of main effort has shifted from security of supply to environmental compatibility and safety of the technological processes used. Nuclear fusion is not expected to provide an extension of currently available energy resources until the middle of the next century. Its technological translation will be measured by the same conditions and issues of political acceptance that are relevant to nuclear technology today. Approaches in the major research establishments to studies of regenerative energy systems as elements of modern energy management have led to research and development programs on solar and hydrogen technologies as well as energy storage. The percentage these systems might achieve in a secured energy supply of European national economies is controversial yet today. In the future, the Arbeitsgemeinschaft Grossforschungseinrichtungen (AGF) (Cooperative of Major Research Establishments) will predominantly focus on nuclear safety research and on areas of nuclear waste disposal, which will continue to be a national task even after a reorganization of cooperation in Europe. In addition, they will above all assume tasks of nuclear plant safety research within international cooperation programs based on government agreements, in order to maintain access for the Federal Republic of Germany to an advancing development of nuclear technology in a concurrent partnership with other countries. (orig./HSCH) [de

  18. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  19. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  20. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  1. Recent research on nuclear reaction using high-energy proton and neutron

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Tokushi [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1997-11-01

    The presently available high-energy neutron beam facilities are introduced. Then some interesting research on nuclear reaction using high-energy protons are reported such as the intermediate mass fragments emission and neutron spectrum measurements on various targets. As the important research using high-energy neutron, the (p,n) reactions on Mn, Fe, and Ni, the elastic scattering of neutrons, and the shielding experiments are discussed. (author)

  2. University Research Collaborations on Nuclear Technology: A Legal Framework

    International Nuclear Information System (INIS)

    Nagakoshi, Y.

    2016-01-01

    Full text: International nuclear research collaborations are becoming increasingly important as the need for environmentally sound and safe energy technology grows. Despite having its risk, the benefits of using nuclear energy cannot be overlooked considering the energy crisis the world is facing. In order to maximize the safety of existing technology and promoting safe ways of taking advantage of nuclear energy, collaborative efforts of all who are involved in nuclear technology is necessary, regardless of national borders or affiliation. Non-conventional use of nuclear energy shall also be sought after in order to reduce greenhouse gas emission and to overcome the energy crisis the world is facing. It is therefore important that international collaborations among research institutes are promoted. Collaboration amongst universities poses a series of legal questions on how to form the framework, how to protect individual and communal inventions and how to share the fruits of the invention. This paper proposes a possible framework of collaboration and elaborates on possible legal issues and solutions. (author

  3. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  4. A comparative study of European nuclear energy programs

    Energy Technology Data Exchange (ETDEWEB)

    Presas i Puig, Albert [ed.

    2011-07-01

    The report includes the following contributions: Comparative study of European Nuclear Energy Programs. From international cooperation to the failure of a national program: the Austrian case. The ''go-and-stop'' of the Italian civil nuclear programs, among improvisations, ambitions and conspiracy. Nuclear energy in Spain - a research agenda for economic historians. The Portuguese nuclear program: a peripheral experience under dictatorship (1945-1973). The nuclear energy programs in Switzerland. The rise and decline of an independent nuclear power industry in Sweden, 1945-1970. The German fast breeder program, a historical review. Fast reactors as future visions - the case of Sweden. Transnational flows of nuclear knowledge between the U.S. and the U.K. and continental Europe in the 1950/60s. The Carter administration and its non-proliferation policies: the road to INFCE.

  5. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  6. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  7. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  8. Nuclear non-proliferation: the U.S. obligation to accept spent fuel from foreign research reactors

    International Nuclear Information System (INIS)

    Shapar, Howard K.; Egan, Joseph R.

    1995-01-01

    The U.S. Department of Energy (DOE) had a 35-year program for the sale and receipt (for reprocessing) of high-enriched research reactor fuel for foreign research reactors, executed pursuant to bilateral agreements with nuclear trading partners. In 1988, DOE abruptly let this program lapse, citing environmental obstacles. DOE promised to renew the program upon completion of an environmental review which was to take approximately six months. After three and a half years, an environmental assessment was finally produced.Over a year and half elapsed since publication of the assessment before DOE finally took action to renew the program. The paper sets forth the nuclear non-proliferation and related foreign policy considerations which support renewal of the program. It also summarized the contractual and other commitments made to foreign research reactors and foreign governments and aspects of U.S. environmental law as they apply to continuation of the program. (author)

  9. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  10. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  11. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  12. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  13. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  14. National energy and nuclear power system plans of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    1977-01-01

    Continuous and secure procurement of energy is of vital importance for our national economy. This has been demonstrated drastically during and after the energy crisis in 1973. Therefore, the aim of energy policy in the Federal Republic of Germany is to make energy available: (1) in always sufficient quantities; (2) with a maximum degree of security of supply; (3) in a way to protect the environment to a maximum extent; (4) at the cheapest possible cost to the economy. The other aim of our energy policy is to diversify the basis of primary energy sources in order to reduce our dependence on imported oil as fast as this is possible under reasonable economic conditions. For these reasons our efforts are concentrated on the development of nuclear and new non-nuclear energy sources as well as on the development of technologies on energy conservation. The concept of the Federal Republic of Germany for the development of new energy sources is outlined in the FRG program of energy research and technology. It combines the continuation of the 4. nuclear program of FRG (1973-1976) and the skeleton program of non-nuclear energy research (1974-1977). In continuation of existing activites the main object of the new program will be again the development of nuclear energy concentrating on advanced reactor systems, nuclear fuel cycle and safety and radiation protection research. In addition large efforts are made in the area of coal technology, the development of new primary and secondary energy sources and methods for energy conservation. Until 1985 in the FRG the percentage of nuclear energy will be increased from 2% of today to 15% in 1985, i.e. approximately 45.000 MWe. The development of nuclear power systems will be performed by industry and nuclear research centers. At present there are about 25.000 people working in this area

  15. National Nuclear Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This annual report covers the research and commercial activities of the National Nuclear Research Institute of the Ghana Atomic Energy Commission for the year 2014. Also listed are the scientific and technical publications issued by staff.

  16. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  17. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  18. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    Energy Technology Data Exchange (ETDEWEB)

    Brunel, Guy; Denis, Dominique; Boulet, Alain [Commissariat a l' energie Atomique et aux Energies Alternatives - CEA-Cadarache, DEN/CEACAD/UCAP, 13108 Saint Paul lez Durance Cedex (France)

    2013-07-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m{sup 2} allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the

  19. An Information Building on Radioactivity and Nuclear Energy for the French CEA Cadarache Research Center - 13492

    International Nuclear Information System (INIS)

    Brunel, Guy; Denis, Dominique; Boulet, Alain

    2013-01-01

    The CEA Cadarache research center is one of the 10 research centers of the French Alternative Energies and Atomic Energy Commission (CEA). Distributed throughout various research platforms, it focuses on nuclear fission, nuclear fusion, new energy technologies (hydrogen, solar, biomass) and fundamental research in the field of vegetal biology. It is the most important technological research and development centers for energy in Europe. Considering the sensitive nature of nuclear activities, the questions surrounding the issue of radioactive waste, the nuclear energy and the social, economic and environmental concerns for present and future generations, the French Government asked nuclear actors to open communication and to give all the information asked by the Local Information Commission (CLI) and the public [1]. In this context, the CEA Cadarache has decided to better show and explain its expertise and experience in the area of nuclear energy and nuclear power plant design, and to make it available to stakeholders and to the public. CEA Cadarache receives each year more than 9000 visitors. To complete technical visits of the research facilities and laboratories, a scientific cultural center has been built in 2011 to inform the public on CEA Cadarache research activities and to facilitate the acceptance of nuclear energy in a way suited to the level of knowledge of the visitors. A modern interactive exhibition of 150 m 2 allows visitors to find out more about energy, CEA Cadarache research programs, radioactive waste management and radiological impact on the research center activities. It also offers an auditorium for group discussions and for school groups to discover science through enjoyment. This communication center has received several thousand visitors since its opening on October 2011; the initial results of this experience are now available. It's possible to explain the design of this exhibition, to give some statistics on the number of the visitors

  20. Research on nuclear energy within the European Commission Research Framework Programme

    International Nuclear Information System (INIS)

    Forsstroem, H.

    2000-01-01

    The strategic goal of the 5 th EURATOM RTD Framework Programme (FP5) is to help exploit the full potential of nuclear energy in a sustainable manner, by making current technologies even safer and more economical and by exploring promising new concepts. The programme covers nuclear fusion, nuclear fission and radiation protection. Part of the programme on nuclear fission and radiation protection is being implemented through ''indirect actions'', i.e. research co-sponsored (up to 50% of total costs) and co-ordinated by DG RESEARCH of the European Commission (EC) but carried out by external public and private organisations as multi-partner projects. The budget available for these indirect actions during FP5 (1998-2002) is 191 MEuro. The programme covers four different areas: safety of existing reactors, including plant life management, severe accident management and development of evolutionary systems; safety of the fuel cycle, including radioactive waste management and disposal, partitioning and transmutation and decommissioning of nuclear installation; safety of future systems, including new or revisited reactor or fuel cycle concepts; radiation protection and radiological sciences, including both basic radiobiology and radiophysics and issues connected to the application of radiation protection. After the first calls for proposals of FP5, which were evaluated in 1999 about 140 research projects have been selected for funding and is now in the process of starting. In parallel the research projects that were supported in the 4th Framework Programme (1994 - 1998) are coming to an end, and being reported, at the same time as the first thoughts on the 6 t h FP are discussed.An important new component for the future research in Europe is the concept of a European Research Area (ERA). The purpose of ERA is to create better overall framework conditions for research in Europe. Some of the concepts being discussed in this context are networking of centres of excellence, a

  1. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  2. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  3. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  4. Proceedings of the fourth international symposium on advanced nuclear energy research

    International Nuclear Information System (INIS)

    1992-12-01

    The papers presented and discussed in the 4th International Symposium on Advanced Nuclear Energy Research, of which subject was focussed on the Roles and Direction of Material Science in Nuclear Technology are contained. The sessions organized for the aural session of the symposium were (1) Processing Science for New Materials, (2) New Tools for Advanced Materials Research, (3) Challenge of Materials Database and (4) Frontier of Materials Technology in New Power Systems, from which 18 invited and 77 contributed papers were selected for the publication. The volume includes also summaries of the panel discussions titled as (1) Computer Simulation for Materials Innovation and (2) What is Expected for Materials Science in Future Nuclear Energy Developments ?, with which a complete recording of the discussions for the latter subject was attempted by the Editorial Working Group of the Program Committee. The 65 of the presented papers are indexed individually. (J.P.N.)

  5. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  6. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  7. Research study on public relations and public participation in the nuclear energy field

    International Nuclear Information System (INIS)

    Gunji, Ikuko; Tabata, Rimiko; Otoshi, Sachio; Kuwagaki, Reiko; Ishibashi, Yoichiro

    2006-01-01

    The purpose of this research is to clarify the effect of public relations activities in the nuclear energy field and public participation toward the improvement of the risk literacy of nuclear energy. According to the survey results of the actual public relations activities taken by nuclear energy industry, the opportunity for interactive communications between the public and the industry is insufficient. Consequently, we propose building up more opportunities for participation and collaboration of citizens and industries in order to improve interactive communications reflecting public opinions and points of view. (author)

  8. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  9. Research on the state-of-the-art of probabilistic safety assessment for non-reactor nuclear facilities (1)

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Abe, Hitoshi; Yamane, Yuichi; Tashiro, Sinsuke; Muramatsu, Ken

    2007-02-01

    Japan Atomic Energy Agency (JAEA) entrusted with research on the state-of-the-art of probabilistic safety assessment (PSA) for non-reactor nuclear facilities (NRNF) to the Atomic Energy Society of Japan (AESJ). The objectives of this research is to obtain the basic useful information related for establishing the quantitative performance requirement and for risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NRNF. A special committee of 'research on the analysis methods for accident consequence in NFRF' was organized in the AESJ. The research activities of the committee were mainly focused on the analysis method for upper bounding consequences of accidents such as events of criticality, explosion, fire and solvent boiling postulated in NRNF resulting in release of radio active material to the environment. (author)

  10. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  11. The international framework for safeguarding peaceful nuclear energy programs

    International Nuclear Information System (INIS)

    Mazer, B.M.

    1980-01-01

    International law, in response to the need for safeguard assurances, has provided a framework which can be utilized by supplier and recipient states. Multilateral treaties have created the International Atomic Energy Agency which can serve a vital role in the establishment and supervision of safeguard agreements for nuclear energy programs. The Non-Proliferation Treaty has created definite obligations on nuclear-weapon and non-nuclear weapon states to alleviate some possibilities of proliferation and has rejuvenated the function of the IAEA in providing safeguards, especially to non-nuclear-weapon states which are parties to the Non-Proliferation treaty. States which are not parties to the Non-Proliferation Treaty may receive nuclear energy co-operation subject to IAEA safeguards. States like Canada, have insisted through the bilateral nuclear energy co-operation agreements that either individual or joint agreement be reached with the IAEA for the application of safeguards. Trilateral treaties among Canada, the recipient state and the IAEA have been employed and can provide the necessary assurances against the diversion of peaceful nuclear energy programs to military or non-peaceful uses. The advent of the Nuclear Suppliers Group and its guidlines has definitely advanced the cause of ensuring peaceful uses of nuclear energy. The ultimate objective should be the creation of an international structure incorporating the application of the most comprehensive safeguards which will be applied universally to all nuclear energy programs

  12. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  13. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  14. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  15. International research and development projects in nuclear energy: Experience and future prospects

    International Nuclear Information System (INIS)

    Strohl, P.

    1983-01-01

    From the very beginning nuclear energy appeared as a fruitful field for international co-operation and particularly for international projects and joint ventures. By pooling scientific, technical and financial resources, the participating countries sought to promote the development of technology and the transition of nuclear energy to the industrial stage. Governments and therefore intergovernmental organizations were the driving force behind the establishment of joint projects in various R and D sectors, often in association with industry and private research institutes. The situation changed considerably from the end of the 1960s onwards. Despite some remarkable technical achievements, international co-operation did not develop to the extent predicted at the outset. Industry took over in the exploitation of proven technologies, and industrial co-operation agreements have become an important feature in some key areas of nuclear energy. This trend raises questions as to the future of joint R and D projects organized through intergovernmental co-operation. Although such projects are still very useful, they tend to be concentrated in those few sectors which continue to be of direct interest to the Governments; for instance, fundamental research, radioactive waste management and nuclear safety. The position of nuclear energy has changed, and the benefits to be drawn from this form of international co-operation must be critically re-assessed accordingly. While advantage to be gained from international projects for countries which are the most advanced in the development of nuclear energy is not the same as it was at the beginning, the transfer of experience and knowledge to less advanced countries is still the main concern of projects dealing with safety and regulatory matters. The experience thus gained provides a very useful insight into the legal and institutional framework of joint projects

  16. Paul Scherrer Institut annual report 1996. Annex IV: PSI nuclear energy and safety research

    International Nuclear Information System (INIS)

    Birchley, J.; Roesel, R.; Wellner, A.

    1997-01-01

    The department 'Nuclear Energy and Safety Research' (F4) at PSI carries the responsibility of performing the essential nuclear energy research in Switzerland. This research is part of the remit of PSI and follows government directive; about one-fifth of the Institute's Federal budget is allocated to this task. Currently about 190 persons are working in this field. Approximately 45% of the salary and investment costs (5.5 million CHF in the budget period 1996/97) are externally funded. This funding is provided primarily by the Swiss Utilities, the NAGRA and the safety authority HSK. The activities in nuclear research concentrate on three main domains: safety and safety related problems of operating plants, safety features of future reactor and fuel cycle concepts and waste management; another 4% of staff are addressing broader aspects of energy. At the end of 1996, a policy evaluation with the laboratory heads took place in order to redefine the direction of F4 activities. (author) figs., tabs., refs

  17. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  18. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  20. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  1. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  2. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  3. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  4. US Department of Energy Nuclear Research and Development Program

    International Nuclear Information System (INIS)

    Griffith, J.D.

    1989-01-01

    The presentation includes a discussion of nuclear power in the United States with respect to public opinion, energy consumption, economics, technology, and safety. The focus of the presentation is the advanced light water reactor strategy, liquid metal cooled reactor program, the modular high temperature gas cooled reactor program, and DOE research and test reactor facilities utilization. The discussion includes programmatic status and planning

  5. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    International Nuclear Information System (INIS)

    Williams, T.; Kallfelz, J.M.; Mathews, D.

    1995-01-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute's official charter and commands about one fifth of the Institute's federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI's activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs

  6. Nuclear energy of hope and dream

    International Nuclear Information System (INIS)

    2009-02-01

    This book describes nuclear energy as hopeful and helpful energy for our life. It includes a lot of introductions of carbon energy, green energy, an atomic reactor for generation of electricity and research, a nuclear fuel cycle, radiation in life, radiation measurement, a radioisotope, the principle of utilization of radiation, utilization for clinical medicine, nuclear energy and economy, international cooperation of nuclear energy and control of nuclear energy.

  7. Research for energy efficiency; Forschung fuer Energieeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The Federal Ministry of Economy enhanced its funding for research in the field of non-nuclear energy in the programme ''Forschung fuer Energieeffizienz'' (Research for Energy Efficiency). The programme focuses on established areas like modern power plant technologies (''Moderne Kraftwerkstechnologien''), fuel cells and hydrogen (''Brennstoffzelle, Wasserstoff''), and energy-optimized building construction (''Energieoptimiertes Bauen''). New subjects are energy-efficient towns and cities (''Energieeffiziente Stadt''), power grids for future power supply (''Netze fuer die Stromversorgung der Zukunft''), power storage (''Stromspeicher''), and electromobility (''Elektromobilitaet''). The brochure presents research and demonstration projects that illustrate the situation in 2010 when the programme was initiated. (orig.)

  8. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  9. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  10. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  11. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  12. On FDP energy and nuclear power policies

    International Nuclear Information System (INIS)

    Hirche, W.

    2002-01-01

    A liberal energy policy as proclaimed by the FDP, the Free Democratic Party, is based on the principle of sustainability and, in equal measure, serves to ensure economic viability, continuity of supply, and environmental as well as societal compatibility. The possibilities open for national action are determined by the framework conditions of globalization and liberalization, and by the contribution of Germany to the implementation of the sustainability goals. Liberal policies take into account the protection of the environment and of the climate. Levies imposed to protect the environment and the climate must serve specific purposes; the present eco-tax has no controlling function whatsoever. Political measures must not seek to impose government conditions, but rather strengthen public awareness of sustainable action. Liberal research policy focuses on the four areas of fossil energy sources, nuclear fission and nuclear fusion, renewable energy sources, and new technologies. A balanced energy mix as seen by the FDP constitutes the basic of sufficient, safe, non-polluting, and low-cost energy supply. Nuclear power is, and will continue to be, a component of this energy mix. (orig.) [de

  13. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  14. Paul Scherrer Institut annual report 1994. Annex IV: PSI nuclear energy and safety research progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T; Kallfelz, J M; Mathews, D [eds.; Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    Nuclear energy research in Switzerland is concentrated at PSI. It is explicitly mentioned in the Institute`s official charter and commands about one fifth of the Institute`s federal resources. Presently, PSI invests approx. 200 py/a in nuclear energy research, one third of this being externally funded; the share of external funding in investment costs totals approx. 50%. This funding is provided by the Swiss utilities and the NAGRA, the Safety Authority (HSK) and the former National Fund for Energy Research (NEFF). PSI`s activities in nuclear research concentrate on three main areas: safety of operating plants, safety features of future reactor concepts and waste management. 7% of personnel are invested in addressing global aspects of energy. (author) figs., tabs., refs.

  15. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 3 report, Institutional challenges: Volume IV

    International Nuclear Information System (INIS)

    1986-10-01

    The Institutional Challenges Subpanel of the Energy Research Advisory Board's Civilian Nuclear Power Panel was charged with the task of addressing the institutional issues that affect the future of nuclear power in the United States. Barriers created by non-technical issues are generally considered to be primary obstacles to revitalizing the nuclear fission option as part of a robust supply for future electrical generation. The Subpanel examined the following categories of institutional issues: (1) Administration Policy and Leadership, (2) Licensing Reform, (3) Standardized Designs, (4) Shared Financial Risk, (5) State and Economic Regulation, (6) Waste Disposal, and (7) Public Perception. The Subpanel concluded that the Administration and Congress have the opportunity and responsibility to provide leadership in resolving these difficulties. The main report provides information on the background and current situation for each institutional issue and concludes with the set of recommendations for action

  16. Current status of research and development at Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    2015-01-01

    This paper introduces the current state and future prospects of Japan Atomic Energy Agency, with a focus on the main achievements of the research and development as of November FY2014. The items of research and development are as follows; (1) research and development related to measures for the accident of Fukushima Daiichi Nuclear Power Station, (2) technological assistance for ensuring safety in the research and development and utilization of nuclear power, (3) research science related to the research and development and utilization of nuclear power, (4) practical application of FBR cycle, (5) technological development related to back-end measures, (6) research and development of technological system to retrieve nuclear fusion energy, and (7) common projects (computational science / engineering / research, technological development and policy assistance on nuclear non-proliferation and nuclear security, and various activities such as dissemination of the fruits of research and development, human resource development, and technological cooperation). (A.O.)

  17. Research on the state-of-the-art of probabilistic safety assessment for non-reactor nuclear facilities (2)

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Abe, Hitoshi; Yamane, Yuichi; Tashiro, Sinsuke; Muramatsu, Ken

    2007-03-01

    Japan Atomic Energy Agency (JAEA) entrusted with a research on the state-of-the-art of probabilistic safety assessment (PSA) of non-reactor nuclear facilities (NRNF) such as fuel reprocessing and fuel fabrication facilities to the Atomic Energy Society of Japan (AESJ). The objectives of this research is to obtain the basic useful information related for establishing the quantitative performance requirement and for risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NRNF. A special committee of 'Research on the analysis methods for accident consequence in NFRF' was organized by the AESJ. The research activities of the committee were mainly focused on the analysis method for upper bounding consequences of accidents such as events of criticality, explosion, fire and solvent boiling postulated in NRNF resulting in release of radio active material to the environment. This report summarizes the results of research conducted by the committee in FY 2005. (author)

  18. Non-nuclear energies; Les energies autres que le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H. [Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS/UJF/INPG, 53 av. des Martyrs, 38026 Grenoble Cedex and Sauvons le Climat (http://www.sauvonsleclimat.org), Grenoble (France)

    2007-07-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  19. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report. [Summaries of research activities at Carnegie-Mellon University

    Energy Technology Data Exchange (ETDEWEB)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed.

  20. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  1. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  2. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  3. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  4. Energy in developing countries and the role of nuclear energy

    International Nuclear Information System (INIS)

    Goldemberg, Jose

    1986-01-01

    The role of nuclear energy in developing countries is discussed with respect to energy consumption, energy needs and energy future. The application of Article IV of the Non-Proliferation Treaty (NPT) is examined for the developing countries. It is suggested that a revision of the NPT is needed to encourage effective nuclear disarmament. (UK)

  5. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  6. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  7. Nuclear energy in Latin America: needs and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M B.A.

    1979-02-01

    When all forms of primary energy are taken into account, the current energetic situation of Latin America is characterized by a consumption per capita of about 50% of the world average. Assuming that the population will level off at around 1400 million in about a century with a consumption per capita similar to the present one in Western Europe, the total constant asymptotic energy requirement will be 53,000 TWht/year, or about 80% of the current total of the world. This is a conservative assumption, but even so there are only two known sources capable of covering this need, nuclear energy in its advanced forms (fission with breeding and, eventually, fusion) and direct solar energy. The first of these is examined here in that context. Several of the countries of the subcontinent (Argentina, Brazil, Colombia, Chile, Mexico, and Venezuela) have working nuclear centers with at least one small research reactor and Peru has one in installation. Argentina, Brazil, and Mexico have reached the stage in which nuclear power stations are being installed and future ones programmed, and the first of these countries has already one in operation since 1974. Four other countries (Bolivia, Ecuador, Jamaica, and Uruguay) have announced the decision to install integrated nuclear research centers and are at present at different stages of the implementation process. Cuba has a subcritical research facility and has signed an agreement with the USSR to install nuclear stations. In most of the rest, nuclear activities are limited to regular or sporadic utilization of radioisotopes in medical applications, or are non-existent. The three more common commercial power reactor types (PWR, BWR, and CANDU) are represented in the current nuclear programs.

  8. Overview of literature on nuclear energy

    International Nuclear Information System (INIS)

    Koch, P.; Schmid, M.; Marti, M.

    2009-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) attempts to deliver an objective review of various topics connected with nuclear energy. These include the risks posed by the use of nuclear energy, its relevance to the environment, social acceptance, ethical aspects and effects on health. Ten controversial topics are discussed concerning the use of nuclear energy and its acceptance or non-acceptance. The study concentrates on safety, accident and risk analysis, environmental relevance with respect to climate protection and nuclear wastes. Comparisons are made with other forms of energy generation. The methods used to compile the overview are discussed

  9. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  10. Report of the summative evaluation by the advisory committee on research and development of nuclear energy technology

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an advisory Committee on Research and Development of Nuclear Energy Technology in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research and Development of Nuclear Energy Technology evaluated the adequacy of the plans of safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from July 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on August 10, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research and Development on Nuclear Energy Technology. (author)

  11. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  12. CG-DAR-1: Guide to the declassified areas of nuclear energy research

    International Nuclear Information System (INIS)

    Lytle, J.E.

    1984-08-01

    This guide, which is based on classification of information by the Atomic Energy Act of 1954, as amended, and on subsequent declassification actions by the Department of Energy (DOE) and its predecessors, is intended to identify those areas of nuclear research and development that have been removed from the Restricted Data (RD) category and declassified

  13. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  14. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  15. Holland's reactor centre makes the shift to energy research

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The change of name in 1976 of Reactor Centrum Nederland (RCN) to Energieonderzoek Centrum Nederland (ECN) reflects its expansion to activities in non-nuclear fields. A brief summary is given of these activities, including those in co-operation with other organisations. Amongst the fields of interest in non-nuclear fields are joint projects on risk analysis, future energy strategies, wind power, and environmental research. Work on fusion reactor technology is expanding. (UK)

  16. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  17. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  18. Key Issues on Nuclear Energy Non-proliferation in East Asia

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Whang, Joo Ho; Lee, Un Chul

    2005-01-01

    Energy demand in East Asia casts a significant challenge to sustainable economy development and socio-political stability in the region which has experienced tensions throughout the history. The energy demand in this region has been dramatically increased since the start of reform in PRC. DPRK is another challenge. The current electricity consumption in DPRK is around 10% of that in ROK. If the economy of PRC continuously grows to the level of neighboring states and if the living standard of DPRK reaches that of ROK, the energy and electricity demand in the region will certainly be out of control unless the proper measures are taken into actions from today. The only feasible energy option is the nuclear one. PRC already proclaimed its ambitious plan to deploy more than 30 reactors in the near future. In addition, a couple of the South Eastern Asian states expressed their willingness to introduce nuclear power plants in the future. The increase in the use of nuclear energy is expected to bring up the nuclear renaissance in the region. However, without the proper mechanisms to supply fresh fuels and to manage spent nuclear fuels with full compliance of nuclear energy nonproliferation, the new development will inevitably cause the instability in the region. So far many interesting proposals on nuclear cooperation in East Asia were announced. Unfortunately, none of them works out properly yet, partly because the old proposals were too political. To restart the engine of the nuclear cooperation and nonproliferation in the region, it is necessary to find out what would be the common interests of the region not so much related to politics. In this paper, some key technical issues are addressed for future regional joint studies

  19. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  20. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Soe, In Seok; Lee, Ui Jin; Park, Jae Chang; Kim, Ik Hyeon; Won, Jong Yeol; Nam, Jae Yeol

    1993-12-01

    The nuclear training center provides various training courses in such areas of nuclear energy as nuclear power technology, radioisotope applications technology, non-destructive technology, nuclear safety, etc. The center also provides in-house staff training courses in project management, computer applications, and other research areas. The objective of the project is to develop new specialized training courses not only nuclear energy areas but also in management, so that localization of nuclear project can be accomplished as early as possible. The scope and contents of the project envision the following aims; 1. to develop specialized nuclear training programs; 2. to develop project management training courses for KAERI staff; 3. to collect and analyze foreign training programs and materials; 4. to develop foreign-assisted training courses; and 5. to develop international training courses for developing country trainese

  1. Guides about nuclear energy in South Korea

    International Nuclear Information System (INIS)

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  2. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  3. On Markov processes in the hadron-nuclear and nuclear-nuclear collisions at superhigh energies

    International Nuclear Information System (INIS)

    Lebedeva, A.A.; Rus'kin, V.I.

    2001-01-01

    In the article the possibility of the Markov processes use as simulation method for mean characteristics of hadron-nuclear and nucleus-nuclear collisions at superhigh energies is discussed. The simple (hadron-nuclear collisions) and non-simple (nucleus-nuclear collisions) non-uniform Markov process of output constant spectrum and absorption in a nucleon's nucleus-target with rapidity y are considered. The expression allowing to simulate the different collision modes were obtained

  4. Course modules on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Bril, L.-V.; Janssens-Maenhout, G.

    2004-01-01

    Full text: One of major current concern in the nuclear field is the conservation of developed knowledge and expertise. The relevance of this subject is steadily increasing for several reasons: retirement of the generation of first industrial development of nuclear energy, only one new reactor under construction in Europe while several in Eastern and Asian countries, the public's concern on safety, radioactive waste and safeguards aspects, and some lack of interest common to many activities in engineering and physics. Moreover nuclear safeguards is nowadays characterised with an enlarged scope and no longer strictly limited to the accountancy of nuclear material; today it encompasses non proliferation of nuclear material, and deals with the control of dual use equipment and technologies, illicit trafficking and External Security. Some higher education networks, such as the European Nuclear Engineering Network (ENEN), have been established to make better use of dwindling teaching capacity, scientific equipment and research infrastructure, through co-operation amongst universities and research centres. The European Safeguards Research and Development Association (ESARDA) initiated the set-up of course modules under an e-learning medium, to preserve knowledge in nuclear safeguards. These course modules should be considered as basic pedagogical documentation, which will be accessible via the Internet. Monitoring or controlling of the accesses will be ensured. The modules are structured with an increasing level of detail, in function of the audience. On one hand the course modules should be attractive to University students in nuclear, chemical or mechanical engineering, in radiochemistry, statistics, law, political science etc. at universities or specialised institutes. On the other hand the course modules aim to give professionals, working on specific safeguards or non-proliferation issues an overview and detailed technical information on the wide variety of nuclear

  5. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  6. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  7. On-Going Nuclear Physics and Technology Research Programmes in Europe

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2007-01-01

    Innovative nuclear technology applications have emerged in recent years and triggered an unprecedented interest of different communities of scientists worldwide, concerned by the multidisciplinary scientific, technical and engineering aspects of such applications. ADS (Accelerator Driven Systems, for the transmutation of highly radiotoxic nuclear waste), EA (Energy Amplifiers, for the production of energy), Spallation Neutron Sources (for multiple applications such as in Bio-Sciences, Medicine, Material Science), Radioactive Ion Beams (of relevance for fundamental Nuclear Physics and Astrophysics, for applications in Medicine, amongst many others) are examples of applications that address a set of common multidisciplinary, leading edge and cross-cutting issues and research topics. Other applications being considered for High-Energy Physics purposes consist on facilities aiming at producing intense neutrino beams.The sustainability of nuclear energy as an economically competitive, environmentally friend and proliferation resistant technology to meet mankind's growing energy demand has imposed in recent years the consideration of new (Generation IV) or non-conventional types of nuclear reactors, operating with non-standard coolants, higher-energy neutron spectra, higher temperatures, amongst other issues. The safety and operational aspects of these nuclear energy systems share with the nuclear technology applications previously referred (ADS, EA, SNS, etc.) a set of common scientific and technical issues.In this paper, the scientific, technical and engineering topics and issues of relevance for the implementation and deployment of some of the systems previously described are briefly presented. A set of selected major on-going R and D programmes and experiments involving international collaborations of scientists and consortia of institutions are succinctly described

  8. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  9. Legal issues associated with preparing for a nuclear energy programme

    International Nuclear Information System (INIS)

    Pelzer, N.

    2009-01-01

    Developing and implementing a national programme for the civilian use of nuclear energy means embarking on the use of a Janus-faced form of energy. We all know that nuclear energy implies both extraordinary benefits and extraordinary risks. This fact requires a legal framework appropriate to cope with both elements of nuclear power. Legislators and State authorities have to establish a sound balance between risks and benefits. That is not at all an easy task. While excluding or limiting risks requires severe legal control mechanisms, the benefits can only fully be enjoyed if the legal framework ensures freedom of research and of economic and industrial development including the guarantee of property ownership and of investments. Combining both opposite poles seems like trying to square the circle. In case of a conflict between promotion and protection, there is no doubt that the protection against nuclear risks has to prevail. Therefore this aspect of nuclear law will be mainly dealt with in this presentation. Establishing a legal framework to tame the hazards of nuclear energy is a much more challenging task for law-makers than providing a legal basis for promoting the use of nuclear energy. With regard to the promotion of nuclear energy, States enjoy a broad range of discretion and may use a great number of legal and non-legal instruments to support the development of a nuclear programme. From a legal point of view, promoting nuclear energy does not require a specific regime. However, it does require a specific regime to control the risks of nuclear energy. States preparing for a nuclear energy programme have to be aware that the use of nuclear energy is not an exclusively national matter. In particular the risk associated with nuclear energy extends beyond national borders. Using the benefits also needs international cooperation in many fields including, e.g., research or fuel supply. Today a network of multilateral and bilateral international treaties exists

  10. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  11. On the non-proliferation framework of Japan's peaceful nuclear utilization program

    International Nuclear Information System (INIS)

    Kano, Takashi

    1996-01-01

    The Conference of the States Party to the Treaty on the Non-proliferation of Nuclear Weapons (hereinafter referred to as the NPT) convened in New York, from April 17 to May 12, 1995 and decided that the NPT shall continue in force indefinitely, after reviewing the operation and affirming some aspects of the NPT, while emphasizing the ''Decision on Strengthening the Review Process'' for the NPT and the ''Decision on Principles and Objectives for Nuclear Non-proliferation and Disarmament,'' also adopted by the Conference. In parallel, Japan made its basic non-proliferation policy clear in the ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' which was decided by the Atomic Energy Commission (chaired by Mikio Oomi, then Minister of the Science and Technology Agency of Japan) in June 1994. The Long-Term Program discusses various problems facing post-Cold-War international society and describes Japan's policy for establishing international confidence concerning non-proliferation. This paper summarizes Japan's non-proliferation policy as articulated in the Long-Term Program, and describes some results of an analysis comparing the Long-Term Program with the resolutions on the international non-proliferation frameworks adopted by the NPT conference

  12. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  13. Resent studies in nuclear energy at INRNE - BAS

    International Nuclear Information System (INIS)

    Tonev, D.

    2013-01-01

    Institute for Nuclear Research and Nuclear Energy performs research of its own and actively participates in European projects for the development and validation of the new generation software for reactor simulation and safety analysis. Current results and planned activities aim to improve the performance and safety of the Kozloduy NPP. The scientific and technical support of the nuclear industry and the education of young specialists contribute to the sustainable development of nuclear power in Bulgaria. In this paper the main research activities of the Institute for Nuclear Research and Nuclear Energy in nuclear energy like: Core physics; Reactor dynamics and safety; NPP safety analysis; Spent fuel analysis; Nuclear fuel performance; Reactor dosimetry are presented

  14. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    International Nuclear Information System (INIS)

    Aumeier, Steven E.

    2010-01-01

    certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD and D areas, or 'platforms': (1) feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); (2) heat/energy management (e.g. advanced heat exchangers, process design); (3) energy storage (e.g. H2 production, liquid fuels synthesis); (4) byproduct management (e.g. CO2 recycle approaches); (5) systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  15. Research of heat releasing element of an active zone of gaseous nuclear reactor with pumped through nuclear fuel - uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Belyakova, E.; Kunakov, S.; Koltyshev, S.

    1996-01-01

    The purpose of the offered project is learning physics and substantiation of possibility of creation gaseous nuclear reactor with pumped through nuclear fuel-hexafluoride of uranium (Uf6).Main problems of this work are'. Determination of physic-chemical, spectral and optical properties of non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. Research of gas dynamics of laminar, non-mixing two-layer current of gases of hexafluoride of uranium and helium at availability and absence of internal energy release in hexafluoride of uranium with the purpose to determinate a possibility of isolation of hexafluoride of uranium from walls by inert helium. Creation and research of gaseous heat releasing element with pumped through fuel Uf6 in an active zone of research nuclear WWR-K reactor. Objects of a research: Non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. With use of specially created ampoules will come true in-reactor probe and spectral diagnostics of plasma. Calculations of kinetics with the account of main elementary processes proceeding in it, will be carried out. Two-layer non-mixed streams of hexafluoride of uranium and helium at availability and absence of internal energy release. Conditions of obtaining and characteristics of such streams will be investigated. Gaseous heat releasing element with pumped through fuel - Uf6 in an active zone of nuclear WWR-K reactor

  16. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  17. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  18. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  19. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  20. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  1. Early years of nuclear energy research in Canada

    International Nuclear Information System (INIS)

    Laurence, G.C.

    1980-01-01

    The first experimental attempts in Canada to obtain energy from uranium fission were carried out by the author in the Ottawa laboratories of the National Research Council from 1940 to 42. This program grew into a joint British-Canadian laboratory in Montreal. Work done at this laboratory, which moved to Chalk River in 1946, led to the construction of ZEEP (the first nuclear reactor to operate outside of the United States) NRX, and ultimately to the development of the CANDU power reactors. People involved in the work and events along the way are covered in detail. (LL)

  2. Nuclear energy for the 21. century; Energie nucleaire pour le 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  3. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  4. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  5. Nuclear energy in the world future

    International Nuclear Information System (INIS)

    Haefele, W.; Jaek, W.

    1983-01-01

    Starting from the actual position in the electricity market nuclear energy will grow up to the stabilizing factor in this field. The market penetration of breeding and fusion systems, therefore, will be the next important milestones of nuclear energy development. On the other hand nuclear energy as well as the electric grid itself are good examples for the reconstruction of the non-electric energy market which is dominated by resource and environmental problems. To overcome these problems the installation of a refining step for fossil energy resources and a new transport system besides the electric grid are the next steps toward a crisis-proof energy supply system. (orig.) [de

  6. Canada's nuclear non-proliferation policy

    International Nuclear Information System (INIS)

    1985-01-01

    Canada's non-proliferation and safeguards policy has two objectives: 1) to promote the emergence of a more effective and comprehensive international non-proliferation regime; and 2) to assure the Canadian people and the international community that Canadian nuclear exports will not be used for any nuclear explosive purpose. By emphasizing the key role of the NPT, by promoting reliance upon and improvements in the IAEA safeguards system, by treating nuclear weapon and non-nuclear weapon states alike regarding Canadian nuclear exports, by working for new approaches covering the sensitive phases (e.g. reprocessing) of the nuclear fuel cycle, Canada's policy promotes attainment of the first objective. The latter objective is served through the network of bilateral nuclear agreements that Canada has put into place with its nuclear partners. Those agreements provide assurance that Canada's nuclear exports are used solely for legitimate, peaceful, nuclear energy production purposes. At the same time, Canada, having formulated its non-proliferation and safeguards policy during the period 1945 to 1980, has recognized that it has gone as far as it can on its own in this field and that from this point on any further changes should be made on the basis of international agreement. The Canadian objective in post-INFCE forums such as the Committee on Assurances of Supply is to exert Canada's best efforts to persuade the international community to devise a more effective and comprehensive international non-proliferation regime into which Canada and other suppliers might subsume their national requirements

  7. Nuclear Materials Diversion Safety and the Long-term Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2002-01-01

    Primarily due to irresponsible cold war politics of nuclear weapon countries nuclear proliferation situation is little short of getting out of control. In addition to five nominal nuclear weapon countries there are at present at least three more nuclear weapon countries and several countries with nuclear weapon potential. Non-proliferation treaty (NPT), signed in 1970, has been recognized by most non-nuclear weapon countries as unjust and ineffective. After the initial, deliberate, nuclear weapon developments of five nominal nuclear weapon countries, subsequent paths to nuclear weapons have been preceded by nominal peaceful use of nuclear energy. Uranium enrichment installations as well as reprocessing installations in non-nuclear weapon countries are the weakest spots of fuel cycle for diversion of nuclear materials either by governments or by illicit groups. An energy scenario, which would, by the end of century, replace the large part of fossil fuels use through extension of present nuclear practices, would mean very large increase in a number of such installations, with corresponding increase of the probability of diversion of nuclear materials. Such future is not acceptable from the point of view of proliferation safety. Recent events make it clear, that it cannot be accepted from the requirements of nuclear terrorism safety either. Nuclear community should put it clearly to their respective governments that the time has come to put general interest before the supposed national interest, by placing all enrichment and reprocessing installations under full international control. Such internationalization has a chance to be accepted by non-nuclear weapon countries, only in case should it apply to nuclear weapon countries as well, without exception. Recent terrorist acts, however horrible they were, are child,s play compared with possible acts of nuclear terrorism. Nuclear energy can be made proliferation safe and diversion of nuclear materials safe, and provide

  8. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  9. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  10. Nuclear Non-Proliferation Policy Act of 1977. Hearings before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, Ninety-Fifth Congress, First Session, June 10, September 13, 14, 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Senator Frank Church presented the opening statement on the June 10, 1977 hearing concerning the Nuclear Non-Proliferation Policy Act of 1977, S.1432. S.1432 is designed to establish a nonproliferation framework with specific objectives established for the ERDA nuclear energy programs. The ERDA authorization bill is the budgetary vehicle to implement these objectives. The Committee on Energy and Natural Resources obtained joint referral of certain portions of the Nuclear Non-Proliferation Act to insure that nonproliferation policy is implemented in a manner consistent with the policy of having sufficent energy for this country and foreign countries in the future. Additionally, the Subcommittee on Energy Research and Development must examine the cost and the consequences of various initiatives before they are implemented. For example, the proposal to guarantee uranium enrichment services for foreign nations poses specific requirements on ERDA to expand considerably our enrichment capacity by the year 2000. Without reprocessing, it is expected that spent fuel rods from abroad will be returned to this country for storage with attendant costs and siting decisions. Also, international fuel cycle evaluation programs must be carefully examined to insure that all options, including regional fuel cycle centers with international controls and inspection, are considered in seeking international approaches to the nonproliferation objectives. It is these and related questions to which the subcommittee seeks answers. The hearings on September 13 and 14 focused on S.897, a bill to strengthen U.S. policies on nonproliferation and to reorganize certain export functions of the Federal government to promote more efficient administration of such functions. Statements were presented by experts in government, private firms, and industrial sectors

  11. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  12. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  13. Nuclear energy. Unmasking the mystery

    International Nuclear Information System (INIS)

    1988-08-01

    The Standing Committee on Energy, Mines and Resources of the House of Commons of Canada undertook a study of the economics of nuclear power in Canada. This is its report on the evidence it heard. It found that maintaining the nuclear power option is vital to Canada's interests. The Committee recommended that: the schedule for establishing a commercial high-level radioactive waste repository be advanced; the basic insurance coverage on nuclear facilities be raised; the federal government increase its financial support of Atomic Energy of Canada Ltd. (AECL); AECL expand its research and development activities, including non-nuclear R and D; AECL be allowed to hold a minority interest in any component of AECL that is privatized; any new entity created by privatization from AECL be required to remain under Canadian control; the Atomic Energy Control Act be altered to allow the Atomic Energy Control Board (AECB) to recover costs through licensing fees and user charges, while the AECB's parliamentary appropriation is increased to offset remaining costs of operations; membership on the AECB be increased from one to five full-time members, retaining the present four part-time members; the AECB hold its hearings in public; the name of the AECB be changed so it is more readily distinguishable from AECL; the AECB establish an office of public information; and that federal and provincial governments cooperate more closely to identify opportunities where more efficient use of electricity could be achieved and to promote those measures that can attain the greatest economic efficiency

  14. The Nuclear Non-Proliferation Policy of the Obama Administration

    International Nuclear Information System (INIS)

    Baek, Jin Hyun; Hwang, Ji Hwan

    2009-12-01

    The objective of this study is to analyze and foresee trends of international nuclear non-proliferation regimes focused on the nuclear non-proliferation policy of the Obama administration, and suggest national policy directions which promote utilization and development of nuclear energy in Korea. For the effective and efficient implementation of the national nuclear use and development program in current international nuclear environment, many efforts should be made: to actively and positively participate in the international nuclear non-proliferation regime; to strengthen nuclear diplomacy in a more systematic manner; and to strengthen the international nuclear cooperation

  15. NEA activities in 1991. 20. Annual report of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1992-01-01

    This annual report gives informations on OECD Nuclear Energy Agency activities in 1991. This report is divided into ten chapters: 1 Trends in nuclear power. 2 Nuclear development and the fuel cycle. 3 Nuclear safety and regulation. 4 Radiation protection. 5 Radioactive waste management and disposal. 6 Nuclear science: Reactor physics, nuclear data, NEA data bank. 7 Joint projects and coordinated research programs. 8 Legal affairs. 9 informations programs. 10 relations with non-member countries

  16. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  17. Nuclear energy in the Philippines

    International Nuclear Information System (INIS)

    1977-03-01

    This bibliography was prepared by the Scientific Library, Nuclear Training Department of the Philippine Atomic Energy Commission for scientists and researchers interested in nuclear energy in the Philippines. This sixth supplement consists of eighty-six (86) entries, mostly research reports of the scientists of the Philippine Atomic Energy Commission. The entries are arranged alphabetically by titles under their respective subject headings together with their bibliographic data consisting of author, title of publication, volume, data and pages. A brief annotation or a summary of the article follows. An author index is provided to facilitate prompt retrieval of the particular research information

  18. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  19. The international nuclear non-proliferation system

    International Nuclear Information System (INIS)

    Simpson, J.; McGrew, T.

    1985-01-01

    This volume focuses upon the issues raised at this Conference, and attempts to address the international diplomatic, political and trading, rather than technical, questions which surround nuclear non-proliferation policies. It does so by bringing together chapters contributed by participants in non-proliferation diplomacy, those with experience in shaping International Atomic Energy Agency and national policies and academic observers of non-proliferation activities and the international nuclear industry. An analysis is provided of past non-proliferation policies and activities and current issues, and an attempt is made to offer ideas for new initiatives which may sustain the non-proliferation system in the future

  20. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  1. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  2. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  3. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  4. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  5. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  6. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  7. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  8. The nuclear energy policy challenges

    International Nuclear Information System (INIS)

    Hanne, H.

    2009-01-01

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  9. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  10. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  11. Nuclear energy - myth and reality

    International Nuclear Information System (INIS)

    Sinclair, Michael C.

    1997-01-01

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world's political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  12. Overview of nuclear energy: Present and projected use

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  13. Overview of Nuclear Energy: Present and Projected Use

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  14. Overview of Nuclear Energy: Present and Projected Use

    International Nuclear Information System (INIS)

    Stanculescu, Alexander

    2011-01-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  15. Evaluation of nuclear energy in the context of energy security

    International Nuclear Information System (INIS)

    Irie, Kazutomo; Kanda, Keiji

    2002-01-01

    This paper analyzes the view expressed by the Japanese government on the role of nuclear energy for energy security through scrutiny of Japan's policy documents. The analysis revealed that the contribution by nuclear energy to Japan's energy security has been defined in two ways. Nuclear energy improves short-term energy security with its characteristics such as political stability in exporting countries of uranium, easiness of stockpiling of nuclear fuels, stability in power generation cost, and reproduction of plutonium and other fissile material for use by reprocessing of spent fuel. Nuclear energy also contributes to medium- and long-term energy security through its characteristics that fissile material can be reproduced (multiplied in the case of breeder reactor) from spent fuels. Further contribution can be expected by nuclear fusion. Japan's energy security can be strengthened not only by expanding the share of nuclear energy in total energy supply, but also by improving nuclear energy's characteristics which are related to energy security. Policy measures to be considered for such improvement will include (a) policy dialogue with exporting countries of uranium, (b) government assistance to development of uranium mines, (c) nuclear fuel stockpiling, (d) reprocessing and recycling of spent fuels, (e) development of fast breeder reactor, and (f) research of nuclear fusion. (author)

  16. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. The IAEA organized a Symposium on Nuclear Desalination of Seawater hosted by Korean Atomic Energy Research Institute in Taejon, South Korea in 1997. IAEA cooperated with World Council of Nuclear Workers (WONUC) and the Moroccan Association of Nuclear Engineers (AIGAM) on an International Conference on Nuclear Desalination held at Marrakesh in 2002. In view of the widened scope of the Agency's programme, it was proposed to hold the next International Conference in 2007 on Non-electric Applications of Nuclear Power. The objective of the conference was to share the experiences of Member States already engaged in the development programme in this area with those having interest and considering research studies. This conference, held April 16-19, 2007 at JAEA, Oarai, Japan, covered various aspects of non-electric applications of nuclear power utilizing combined heat and power (CHP). The major focus was on desalination, hydrogen production or other fuel production as a complement to CO 2 -free energy sources and many newer industrial applications. This publication contains the text of all the contributory papers, summary of the sessions and the panel discussion at the conference. The proceeding will be useful to the scientists and engineers interested in research and development of the non-electric applications of nuclear power worldwide

  17. Plutonium: key issue in nuclear disarmament and non-proliferation of nuclear weapons

    International Nuclear Information System (INIS)

    Yoshisaki, M.B.

    1993-01-01

    The technical report is a 1993 update on weapons-grade plutonium, a key issue in nuclear disarmament. Its vital significance would again be discussed during the fifth and the last Review Conference on the Non-Proliferation Treaty (NPT) for Nuclear Weapons which would end in 1995. Member States shall decide whether an indefinite or conditional extension of NPT is necessary for world peace and international security. Two Non-NPT States, Russia and U.S.A. are in the forefront working for the reduction of nuclear weapons through nuclear disarmament. Their major effort is focused on the implementation of the Strategic Arms Reduction Treaty I and II or START I and II for world peace. The eventual implementation of START I and II would lead to the dismantling of plutonium from nuclear warheads proposed to be eliminated by both countries. This report gives three technical options to be derived from nuclear disarmament issues for the non-proliferation of nuclear weapons: (a) indefinite storage - there is no guarantee that these will not be used in the future (b) disposal as wastes - possible only in principle, because of lack of experience in mixing plutonium with high level wastes, and (c) source of energy - best option in managing stored weapons materials, because it satisfies non-proliferation objectives. It means fuel for energy in Light Water Reactors (LWR) or Fast Breeder Reactors (FBR). (author). 8 refs

  18. The European space of research: what fundamental role for the development of nuclear energy

    International Nuclear Information System (INIS)

    Kaluzny, Y.; Chaix, P.

    2010-01-01

    The SET (Strategic Energy Technology) plan draws the priority axis for the development of no-carbon energies on the whole and of nuclear energy in particular. The double aim of SET for 2020 is to maintain the competitiveness of fission reactors and to find a valid solution for the management of radioactive wastes. The SET plan also includes a system (SETIS) for assessing the progress made and an organization (ESFRI) whose role is to earmark the projects that are most relevant for research infrastructure projects. The SNETPR (Sustainable Nuclear Energy Technology Platform) gathers the actors of a given sector with the objective to develop the public-private collaboration around strategic topics. The purpose of the European sustainable Nuclear Industrial Initiative (ESNII) is to assure a sustainable nuclear energy by the management of radioactive wastes and by a better use of natural resources. ESNII has led to the selection of fast reactor with a closed cycle. ESNII includes the design of a sodium prototype (ASTRID), of a gas cooled demonstrator (ALLEGRO) and of lead cooled pilot plant (MYRRHA). The achievement of all these projects is very dependent on the financial perspectives of the E.U. (A.C.)

  19. The Japan white book about nuclear energy

    International Nuclear Information System (INIS)

    1997-01-01

    We find here a partial translation of the white book on nuclear energy published by Japan. In this document are the following themes: the safety of nuclear energy, research and development (JAERI), international cooperation, financing distribution, administrative chart of principal authorities and state agencies, budget for 1996 of nuclear energy and situation of the Japanese nuclear park. (N.C.)

  20. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  1. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  2. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    International Nuclear Information System (INIS)

    1997-01-01

    The current US nuclear energy policy is primarily formulated as part of the nation's overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations

  3. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  4. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  5. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  6. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  7. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  8. Nuclear energy - some aspects; Energia nuclear - alguns aspectos

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, Fausto de Paula Menezes

    2005-05-15

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy.

  9. U.S. Department of Energy Office of Nuclear Technology Research and Eevelopment ((NTRD) comprehensive summary of QA assessments for FY17

    Energy Technology Data Exchange (ETDEWEB)

    Trost, Alan L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-09-14

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.

  10. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  11. Energy research 2003 - Overview

    International Nuclear Information System (INIS)

    2004-01-01

    This publication issued by the Swiss Federal Office of Energy (SFOE) presents an overview of advances made in energy research in Switzerland in 2003. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energies, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, combustion, fuel cells and in the process engineering areas. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, small-scale hydro, geothermal energy and wind energy are presented. Work being done on nuclear safety and disposal regulations as well as controlled thermonuclear fusion are discussed

  12. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D. (eds.)

    2016-07-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  13. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D.

    2016-01-01

    This is the third bi-annual report of the Nuclear Waste Management section of the Institute of Energy and Climate Research (IEK-6) at Forschungszentrum Juelich since 2009 - almost a tradition. Our institute has seen two more years with exciting scientific work, but also major changes regarding nuclear energy in Germany and beyond. After the reactor accident in Fukushima (Japan) in 2011, it was decided in Germany to phase out electricity production by nuclear energy by 2022. It seems clear, that the decommissioning of the nuclear power plants will take several decades. The German nuclear waste repository Konrad for radioactive waste with negligible heat generation (all low level and some of the intermediate level radioactive waste) will start operation in the next decade. The new site selection act from 2013 re-defines the selection procedure for the German high level nuclear waste repository. Independently of the decision to stop electricity production by nuclear energy, Germany has to manage and ultimately dispose of its nuclear waste in a safe way. Our basic and applied research for the safe management of nuclear waste is focused on radiochemistry and materials chemistry aspects - it is focused on the behaviour of radionuclides and radioactive waste materials within the back-end of the nuclear fuel cycle. Itis organized in four areas: (1) research supporting the scientific basis of the safety case of a deep geological repository for high level nuclear waste, (2) fundamental structure research of radionuclide containing (waste) materials (3) R and D for waste management concepts for special nuclear wastes and (4) international safeguards. A number of excellent scientific results have been published in more than 80 papers in international peer-reviewed scientific journals in 2013 - 2014. Here, I would like to mention four selected scientific highlights - more can be found in this report: (1) The retention of radionuclides within a nuclear waste repository system by

  14. Nuclear energy - myth and reality

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael C. [Illinois Dept. of Nuclear Safety, IL (United States). Emergency Planning Section

    1997-12-31

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world`s political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  15. Outlook on non-proliferation activities in the world and cooperation in peaceful uses of nuclear energy among Turkish speaking countries

    International Nuclear Information System (INIS)

    Birsen, N.

    2002-01-01

    Nuclear technology is being widely used in protecting the environment, manufacturing industry, medicine, agriculture, food industry and electricity production. In the world, 438 nuclear power plants are in operation, and 31 are under construction. Nuclear share of total electricity generation have reached to 17 percent. However, 2053 nuclear tests from 1945 to 1999 and 2 atom bombs to Hiroshima and Nagasaki in 1945 have initiated nonproliferation activities aiming to halt the spread of nuclear weapons and to create a climate where cooperation in the peaceful uses of nuclear energy can be fostered. In addition to international efforts for non-proliferation of nuclear weapons, great efforts were made for disarmament and banning the nuclear tests which damage the environment. Following the first Geneva Conference in 1955 for expanding peaceful uses of nuclear energy, Turkey was one of the first countries to start activities in the nuclear field. Turkish Atomic Energy Authority (TAEK) was established in 1956 and Turkey became a member of the International Atomic Energy Agency established in 1957 by the United Nations for spreading the use of nuclear energy to contribute peace, health and prosperity throughout the world in same year. Turkey is a candidate state to join to European Union and has already signed Custom Union Agreement, also part of the Eurasian Region. So, there are significant developments in cultural, social, technical, economical and trade relations owning to our common historical and cultural values with the countries in the region and Central Asia. TAEK was established to support, co-ordinate and perform the activities in peaceful uses of nuclear energy and act as a regulatory body and establish cooperation with countries and international organizations. In the late 1990's TAEK, besides the cooperation with various countries, has involved to cooperating with nuclear institutes of Azerbaijan, Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan for

  16. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  17. An easy explanation book on glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan; Seo, Gyeong Won

    2011-03-01

    This book mentions about 260 words of nuclear energy, which include general term of nuclear energy, nuclear reactor, nuclear fuel and technique for concentration, using of nuclear energy, radiation and measurement, radwaste disposal, development plan on nuclear energy and international bodies. This book is useful for students studying nuclear energy and radiation and those who are interested in nuclear field to research in easy access.

  18. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  19. Activities and cooperation opportunities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the 'peaceful uses of nuclear energy'. In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  20. Activities and cooperation opportunities at Cekmece nuclear research and training center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Full text: Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the p eaceful uses of nuclear energy . In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  1. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  2. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  3. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  4. Nuclear energy and international organizations

    International Nuclear Information System (INIS)

    Lindemann, B.

    1975-01-01

    The historical perspectives of the international organizations' role concerning the development and spreading of the peaceful uses of nuclear energy, taking into account the national interests within and towards these organizations, are portrayed. The difference in political status between the so-called nuclear and non-nuclear States, lodged in Articles I and II of the Non-Proliferation Treaty is an important factor. The effects so far of these differences in status on the interest of nuclear States to participate in organizations and on factors which might possibly lead to conflict between these two groups are presented. The author skirts the cooperation between organizations (international bureaucracies, group-formation of states). (HP/LN) [de

  5. The role of nuclear research centres in the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Afgan, N.; Anastasijevic, P.; Kolar, D.; Strohal, P.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centres. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centres should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centres should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Secondly, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Thirdly, to follow the development of nuclear energy technology for fast breeder reactor concepts. (author)

  6. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  7. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  8. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  9. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  10. NEA activities in 1993. 22. Annual Report of the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1994-01-01

    The titles and themes of the ten chapters of this report on NEA activities are: trends in nuclear energy; nuclear development and the fuel cycle (potential contribution of nuclear energy, policy alternatives, maintaining the nuclear option, prospective); reactor safety and regulation (safety research, regulatory approach, safety assessment, accident phenomenology and management, human factors, international standards); radiation protection (revision of the standards, assessment of the protection, international emergency exercises); radioactive waste management (long term safety assessment, in situ evaluation, other radioactive wastes); nuclear science (role, nuclear data, use of supercomputers, actinide transmutation, NEA Data Bank); joint projects (Three Mile Island vessel investigation, Halden reactor project...); legal affairs (liability aspects...); information programme; relations with non-member countries. 28 figs

  11. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  12. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  13. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  14. Overview of literature on nuclear energy; Literaturuebersicht Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Koch, P.; Schmid, M. [B.S.S. Volkswirtschaftliche Beratung AG, Basel (Switzerland); Marti, M. [Risicare GmbH, Zuerich (Switzerland)

    2009-07-15

    This final report for the Swiss Federal Office of Energy (SFOE) attempts to deliver an objective review of various topics connected with nuclear energy. These include the risks posed by the use of nuclear energy, its relevance to the environment, social acceptance, ethical aspects and effects on health. Ten controversial topics are discussed concerning the use of nuclear energy and its acceptance or non-acceptance. The study concentrates on safety, accident and risk analysis, environmental relevance with respect to climate protection and nuclear wastes. Comparisons are made with other forms of energy generation. The methods used to compile the overview are discussed

  15. The first Studsvik AB - JAEA meeting for cooperation in nuclear energy research and development

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Yanagihara, Satoshi; Karlsson, Mikael; Stenmark, Anders

    2009-01-01

    Based on the implemental agreement between the Studsvik AB and the Japan Atomic Energy Agency (JAEA) for cooperation in nuclear energy research and development, the first annual meeting was held at Oarai Research and Development Center, Japan Atomic Energy Agency. In this meeting, information exchange on two cooperation areas, 'Radioactive waste treatment technology including recycling of materials' and 'Technical developments for the neutron irradiation experiments in materials testing reactors', was carried out, and future plan in cooperation was discussed. This report describes contents of information exchange and discussions in two cooperation areas. (author)

  16. A mini-encyclopedia of nuclear energy

    International Nuclear Information System (INIS)

    Istenic, Radko; Stritar, Andrej

    2002-01-01

    Atlas of Nuclear Technology is a central publication for the public information activities of the Nuclear Society of Slovenia. We started inviting schoolchildren, students and general public to lectures about radioactivity and nuclear technology already in 1993. Since that time we published many information-nation materials in Slovenian language for our visitors and updated the technical content of the Information-nation Centre several times. After a few years we realized how important it would be that every visitor would leave the Information Centre with some lasting interesting and easily understandable information in a single booklet. Therefore we updated and compiled all the available information panels from the Information Centre, separate leaflets and view-graphs from the lectures and added some essential text that is easily understood also by non-technical persons. From the very beginning we decided that there would be a lot of illustrations and that the text would be in Slovenian and English language in parallel. What finally emerged was a booklet of 60 pages, which we call 'Atlas of Nuclear Technology'. Contents include chapters on physics, TRIGA research reactor, Slovenian energy production, greenhouse effect, nuclear energy in the world, Krsko nuclear power plant, radioactive waste and nuclear accidents. Some 10 000 booklets were printed and are being distributed to the visitors. We refer to the Atlas during the lectures that are typically attended by 50 - 60 8-graders (up to 8000 per year) accompanied by several teachers. The response is very favorable. We get a lot of positive feedback and samples of posters that the schoolchildren have prepared as their homework using the Atlas as the main source of information. Also our yearly poll shows a steady good acceptance of nuclear energy among the youngsters. (author)

  17. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    International Nuclear Information System (INIS)

    Simpson, M.F.; Kim, K.-R.

    2010-01-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  18. Proceedings of the Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry

    International Nuclear Information System (INIS)

    Mulyadi Rachmad; Muhammad Fathoni; Topo Suprihadi, PY.; Dumais, Johannes Robert; Eri Hiswara; Alatas, Zubaidah; Dahlan, Kgs.; Muhammad Isnaini

    2003-03-01

    The Seminar on Environmental and Radiation Safety Aspect at Non-nuclear Industry held on March 2003 in Jakarta. The purpose of this Seminar be able to information exchange among research workers in National Nuclear Energy Agency. The Seminar discussed about Science and Technology of Radiation Safety and Environment. There are 17 papers which have separated index. (PPIN)

  19. Sweden and the making of nuclear non-proliferation: from indecision to assertiveness

    International Nuclear Information System (INIS)

    Dassen, L. van

    1998-03-01

    Swedish research on nuclear weapons started at a modest scale in 1945 but was soon expanded. By the early 1950s the research programme started to face some of the problems that were going to accompany it for the rest of its life: different priorities and cost-estimates were made by the sectors that wanted to develop nuclear energy and those working on the bomb. Moreover, an introduction of nuclear weapons would lead to a major redistribution of resources to the disadvantage of the navy and army. The public and political debates intensified during the 1950s and culminated in 1960. At first, pro-nuclear voices had been strongest but were soon challenged by interest groups, unions and peace movements. 1960, a committee within the government had established a compromise: Nuclear weapons research for production of weapons would be terminated, while research on the consequences of nuclear weapons would continue. It was a cosmetic decision that could cover for a continued research on weapons design. Nevertheless, there are some general qualities from the debates that indicate why the outcome was that Sweden signed the NPT in 1968. First, the number of interested persons, groups movements and party politicians engaged in the issue increased every time the issue came up. Secondly, the segments of society that supported the nuclear option remained roughly the same. No strong movements rallied to the defence of this position. On the other hand, the anti-nuclear wing received more and more followers. Third, there was a marked tendency by virtually all actors (except the military) to include every sign of progress in international disarmament and non-proliferation efforts as arguments against Swedish proliferation. Since 1968, the non-proliferation choice has ben manifested through Sweden''s adherence to the NPT and this has been accompanied by a strong commitment to other non-proliferation initiatives

  20. Sweden and the making of nuclear non-proliferation: from indecision to assertiveness

    Energy Technology Data Exchange (ETDEWEB)

    Dassen, L. van [Uppsala Univ. (Sweden). Dept. of Peace and Conflict Research

    1998-03-01

    Swedish research on nuclear weapons started at a modest scale in 1945 but was soon expanded. By the early 1950s the research programme started to face some of the problems that were going to accompany it for the rest of its life: different priorities and cost-estimates were made by the sectors that wanted to develop nuclear energy and those working on the bomb. Moreover, an introduction of nuclear weapons would lead to a major redistribution of resources to the disadvantage of the navy and army. The public and political debates intensified during the 1950s and culminated in 1960. At first, pro-nuclear voices had been strongest but were soon challenged by interest groups, unions and peace movements. 1960, a committee within the government had established a compromise: Nuclear weapons research for production of weapons would be terminated, while research on the consequences of nuclear weapons would continue. It was a cosmetic decision that could cover for a continued research on weapons design. Nevertheless, there are some general qualities from the debates that indicate why the outcome was that Sweden signed the NPT in 1968. First, the number of interested persons, groups movements and party politicians engaged in the issue increased every time the issue came up. Secondly, the segments of society that supported the nuclear option remained roughly the same. No strong movements rallied to the defence of this position. On the other hand, the anti-nuclear wing received more and more followers. Third, there was a marked tendency by virtually all actors (except the military) to include every sign of progress in international disarmament and non-proliferation efforts as arguments against Swedish proliferation. Since 1968, the non-proliferation choice has ben manifested through Sweden``s adherence to the NPT and this has been accompanied by a strong commitment to other non-proliferation initiatives. Refs.

  1. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  2. Nuclear energy: from scientist mobilisation to the rise of counter-expertise

    International Nuclear Information System (INIS)

    Topcu, Sezin

    2006-01-01

    The management of nuclear energy in France was restricted until the mid 1970's to a small circle of government experts. Within the scientific community criticism against nuclear power mostly targeted nuclear weapons while the sphere of civil nuclear energy remained unchallenged. The launch of the French nuclear programme in 1974 led to the first protest against civil nuclear power and its management within the scientific community. The mobilisation of thousands of researchers against the programme, initially through a petition, the so-called 'Appeal of the 400', then through the creation of an association, the 'Group of Scientists for Information on Nuclear Energy (GSIEN)', beside reflecting a rupture in the relations with science, progress and decision-making processes in the nuclear field, also expressed in the following decades the appropriation of critical knowledge on nuclear risks by the actors of non-governmental organisations. The criticism raised by scientists in 1975 therefore underlies two major shifts between the 1950's to 1990's in collective action vis-a-vis nuclear risk: from the mobilisation of 'distinguished scientists' against the atom bomb in the 1950's and 1960's (Joliot, Russell, Einstein, Rostand) to the politicisation of nuclear power by 'critical scientists' in the post-May 1968 period (GSIEN) and finally, after the Chernobyl accident, to the rise of associations of counter-expertise on nuclear energy (creation of expert NGOs such as the Commission for Independent Research and Information on Radioactivity-CRIIRAD and the Association for the Control of Radioactivity in the West-ACRO). This paper examines the crucial role that the community of physicists has played in transforming the relations between scientists, science, expertise and society

  3. Non-proliferation and the control of atomic energy

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1977-01-01

    The non-proliferation problem has never ceased to haunt and to influence those responsible for the development of atomic energy. During and after the Second World War, Anglo-American co-operation was reflected in restrictions on the exchange of enrichment and reprocessing know-how. Between 1945 and 1955, the Anglo-Saxon powers continued with the policy of secrecy and uranium monopoly decided on in 1943 at the Quebec summit conference. Starting in 1955, the failure of this policy led - at the suggestion of the United States of America - to a freer flow of information and to the creation of the International Atomic Energy Agency with its safeguards, which permitted widespread application of the policy of technical assistance subject to controls and widespread commerce in research and power reactors - mainly fuelled with enriched uranium and manufactured in the USA. There followed periods characterized by general legal blocks, with two unilateral renunciation treaties - the Partial Test Ban Treaty of 1963, covering non-underground tests, and the Treaty on the Non-Proliferation of Nuclear Weapons, of 1968, covering nuclear explosive devices and the entire fuel cycle. The Indian atomic explosion and the acceleration of nuclear programmes owing to the oil crisis prompted - in 1974 - efforts by supplier countries to limit the transfer of sensitive technology and the possession of plants capable of producing substances which could be used in the production of nuclear weapons; the USA has even proposed the curtailment of plutonium extraction and of breeder construction, although these are considered by many countries to be essential to the independence of their energy development programmes. This policy of reserving the sensitive stages of the fuel cycles to a few advanced countries and the questioning of existing nuclear agreements have created, in the relations between supplier and recipient countries, a regrettable intensification of the distrust which must be dispelled

  4. Nuclear energy education and training in France

    International Nuclear Information System (INIS)

    2010-01-01

    In its continuing use of nuclear power, France faces numerous challenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems. All of these efforts must recognize and conform to international requirements. These activities mean that all participants in the French nuclear industry must continually update their approaches and skills, with respect to both domestic and worldwide nuclear power development. This requirement calls for the hiring and training of thousands of scientists and engineers each year in France and its partner or customer countries. Over the next ten years, domestic and international nuclear power activities in France will call for the recruitment of about 13,000 engineers with Master of Science or Ph.D. degrees, and 10,000 science technicians and operators with Bachelor of Science degrees. The chief employers will be EDF, AREVA, GDF-Suez, national agencies such as the Agence nationale pour la gestion des dechets radioactifs (ANDRA), sub-contractors, and R and D agencies such as the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), and the technical safety organization, Institut de Radioprotection et de Surete Nucleaire (IRSN). France has made a commitment to support countries that are ready to create the human, institutional, and technical conditions required to establish a civilian nuclear energy programme that meets all the requirements of safety, security, non-proliferation and environmental protection for present and future generations. These efforts are conducted through the France International Nuclear Agency (AFNI). In response to the need for competence-building in nuclear energy production, France now offers training opportunities in both French and English education programmes. Partnerships created by French nuclear energy participants and by AFNI can provide dedicated programmes

  5. The sustainable nuclear energy technology platform. A vision report

    International Nuclear Information System (INIS)

    2007-01-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain Europe's leadership in

  6. The control of non-proliferation of nuclear weapons and nuclear development - present uncertainties

    International Nuclear Information System (INIS)

    Machado de Faria, N.G.; Amaral Barros, E.

    1983-01-01

    This report gives the views of Brazilian lawyers on the non-proliferation of nuclear weapons. It deals with the present situation and future prospects concerning the uses of nuclear energy. In particular, it proposes the preparation of a protocol prohibiting the use of nuclear weapons. (NEA) [fr

  7. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  8. Program for Energy Research and Technologies 1977--1980. Annual report 1977 on efficient uses of energy fossil sources of primary energy new sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The main objectives within the policy of the Federal Government Program for Energy Research and Technologies 1977--1980 can be summarized as follows: guaranteeing the continuity of energy supply in the medium to long term in the Federal Republic at economically favourable costs considering the requirements necessary for the protection of the environment and population. The financial support is effected under the general headings of Development of Energy Resources, Energy Conservation and Efficient Use of Energy. An additional aspect of the support policy is the development of technologies which are of importance for other countries, specifically for the developing countries. Support of a project is effected through a research and development grant from the Federal Government and this can range from less than 50% to 100%. For this the Government receives an irrevocable, free of charge and non-exclusive right to make use of research and development results. In special cases full repayment is agreed subject to commercial success. Based on agreements signed by the Federal Minister of Research and Technology and the Federal Minister of Economic Affairs on the one hand and the Juelich Nuclear Research Establishment (KFA) on the other, the Project Management for Energy Research (PLE) in KFA Juelich is acting on behalf of these Ministries. The Project Management's activities in non-nuclear energy research in general (for the Federal Ministry of Research and Technology) and development and innovation in coal mining and preparation (for the Federal Ministry of Economic Affairs) have the following general objectives: to improve the efficiency of Government support; to ensure that projects are efficiently handled; and to reduce the workload of the Ministries. The individual projects are listed and described briefly.

  9. Special feature article-very urgent nuclear energy personnel training

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tsujikura, Yonezo; Kawahara, Akira

    2007-01-01

    Securing human resources is important for the sustainable development of research, development and utilization of nuclear energy. However, concerns have been raised over the maintenance of human resources due to the decline of public and private investment in research and development of nuclear energy in recent years. To that end, it is essential for the workplace in the field of nuclear energy to be engaging. This special feature article introduced the Government's fund program supporting universities and vocational colleges to develop human resources in the area of nuclear energy. Electric utilities, nuclear industries, nuclear safety regulators and related academia presented respective present status and issues of nuclear energy personnel training with some expectations to the program to secure human resources with professional qualifications. (T. Tanaka)

  10. Nuclear arbitration: Interpreting non-proliferation agreements

    International Nuclear Information System (INIS)

    Tzeng, Peter

    2015-01-01

    At the core of the nuclear non-proliferation regime lie international agreements. These agreements include, inter alia, the Nuclear Non-proliferation Treaty, nuclear co-operation agreements and nuclear export control agreements.1 States, however, do not always comply with their obligations under these agreements. In response, commentators have proposed various enforcement mechanisms to promote compliance. The inconvenient truth, however, is that states are generally unwilling to consent to enforcement mechanisms concerning issues as critical to national security as nuclear non-proliferation.3 This article suggests an alternative solution to the non-compliance problem: interpretation mechanisms. Although an interpretation mechanism does not have the teeth of an enforcement mechanism, it can induce compliance by providing an authoritative interpretation of a legal obligation. Interpretation mechanisms would help solve the non-compliance problem because, as this article shows, in many cases of alleged non-compliance with a non-proliferation agreement, the fundamental problem has been the lack of an authoritative interpretation of the agreement, not the lack of an enforcement mechanism. Specifically, this article proposes arbitration as the proper interpretation mechanism for non-proliferation agreements. It advocates the establishment of a 'Nuclear Arbitration Centre' as an independent branch of the International Atomic Energy Agency (IAEA), and recommends the gradual introduction of arbitration clauses into the texts of non-proliferation agreements. Section I begins with a discussion of international agreements in general and the importance of interpretation and enforcement mechanisms. Section II then discusses nuclear non-proliferation agreements and their lack of interpretation and enforcement mechanisms. Section III examines seven case studies of alleged non-compliance with non-proliferation agreements in order to show that the main problem in many cases

  11. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  12. Energy, world should not chose nuclear energy to fight against climatic change. Nuclear and climatic change

    International Nuclear Information System (INIS)

    Besson, S.

    2007-06-01

    This document proposes an abstract of the conclusions of an expert group, the Oxford Research Group, which criticizes the today boost in favor of the electricity from nuclear energy. They explain that the nuclear energy should not be a solution for the fight against the climatic change. (A.L.B.)

  13. The Role of Nuclear Energy in Establishing Sustainable Energy Paths

    International Nuclear Information System (INIS)

    Bruggink, J.J.C.; Van der Zwaan, B.C.C.

    2001-10-01

    This study juxtaposes the major facts and arguments about nuclear energy and its potential role in establishing sustainable energy paths. The notion of sustainability has a strong normative character and can be interpreted in a variety of ways. Therefore, also the sustainability of energy supply technologies possesses a normative nature. This paper analyses what the major dimensions are that ought to be addressed when nuclear energy technology is compared, in sustainability terms, with its fossil-fuelled and renewable counterparts. It is assessed to what extent energy supply portfolios including nuclear energy are more, or less, sustainable in comparison to those that exclude this technology. It is indicated what this inventory of collected facts and opinions means for both policy and research regarding nuclear energy in the case of the Netherlands. 32 refs

  14. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  15. Nuclear energy: beliefs, values, and acceptability

    Energy Technology Data Exchange (ETDEWEB)

    van der Pligt, J; Eiser, J R

    1985-06-01

    The last decade has seen a dramatic increase in public concern about nuclear energy. As a consequence, it has become recognized that the future of nuclear energy will not only depend on technical and economic factors, but that public acceptability of this technology will play a crucial role in the long-term future of nuclear energy. Research has shown a considerable divergence in public and expert assessment of the risks associated with nuclear energy. Qualitative aspects of risks play a dominant role in the public's perception of risks, and it seems necessary for experts to recognize this in order to improve relations with the general public. It is also clear, however, that differences in the perception of risks do not embrace all the relevant aspects of the public's assessment of nuclear energy. Public reaction is also related to more general beliefs and values, and the issue of nuclear energy is embedded in a much wider moral and political domain. 8 references.

  16. Accelerator physics and nuclear energy education in INRNE-BAS

    International Nuclear Information System (INIS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2015-01-01

    Presently Bulgaria has no research nuclear facility, neither a research reactor, nor an accelerator. With the new cyclotron laboratory in Sofia the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences will restart the experimental research program not only in the fi eld of nuclear physics, but also in many interdisciplinary fields related to nuclear physics. The cornerstone of the cyclotron laboratory is a cyclotron TR24, which provides a proton beam with a variable energy between 15 and 24 MeV and current of up to 0.4 mA. The TR24 accelerator allows for the production of a large variety of radioisotopes for medical applications and development of radiopharmaceuticals. The new cyclotron facility will be used for research in radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including especially nuclear energy. Keywords: Cyclotron, PET/CT, radiopharmacy

  17. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  18. International cooperation and nuclear development. On the approval of the Argentina - Australia co-operation agreement for the peaceful uses of the nuclear energy

    International Nuclear Information System (INIS)

    Gasol Varela, Claudia

    2005-01-01

    Argentina, with its National Atomic Energy Commission, has been maintaining during more than half a century an important activity for the development of nuclear energy and its peaceful applications. As a consequence of this tradition, it has strengthened its experience with the contribution to the international co-operation, as in the case of the Argentina-Australia co-operation agreement for the peaceful uses of nuclear energy, signed on August 8th, 2001 and ratified by the Argentine Law No. 26.014. Both countries are parties of several international treaties and conventions: physical protection of nuclear materials, nuclear non-proliferation, nuclear accidents, fuel and wastes management, and others. These legal instruments are complemented by agreements for the applications of safeguards with the International Atomic Energy Agency. On the basis of these regulations the parties agreed to establish co-operation conditions in accordance with the pledge of non-proliferation. Furthermore the agreement states that the Governments have the power to designate the governmental organizations or individuals, as well as the legal entities, which will carry out the co-operation. The co-operation covers basic and applied research, development, design, construction and operation of nuclear reactors and other installations of the nuclear fuel cycle, its related technology as well as nuclear medicine, radioisotopes, etc [es

  19. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  20. Modeling for climate change in the aspect of nuclear energy priority: Nuclear power energy-based convergence social-humanity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Systemix Global Co. Ltd., Seoul, (Korea, Republic of)

    2015-05-15

    Following the industry expansion, the energy consumptions have increased steeply, which have produced the global warming in our lives by carbon production energies. This climate change has provoked significant natural disasters which have damaged to social as well economic matters. Considering the non-carbon production which is the major factor of global warming, nuclear energy is a newly spotlighted source as the green energy source. The climate change factor is affected by the carbon productions made by humans. Then, the nuclear energy increasing rate with the climate change factor affects to the temperature change which is expressed by annual anomaly. Fig. 6 is the protocol for climate change investigation incorporated with the nuclear industry where the climate factor like the temperature is an important index to find out the priority of nuclear energy. The increased environmental pollutions can give the expanding of nuclear energy due to the carbon gas of fossil fuels. This study showed the effectiveness of the nuclear energy by the simulations. The seasonal climate disaster like the very cold winter and very hot summer can increase the necessity of nuclear energy development which could appeal to the general public persons as well as the politicians. So, it is important for the nuclear energy manager to make people understand the importance of the nuclear energy comparing to the oil or coal fuels. The regeneration energy has been considered as the alternative source.

  1. Interviews and discussions on nuclear energy

    International Nuclear Information System (INIS)

    Matthoefer, H.

    1976-01-01

    Mr. Hans Matthoefer, Federal Minister for Research and Technology, has commented on the problems occurring in connection with the peaceful utilization of nuclear energy in several interviews during the past months. The present pocketbook contains a summary of these talks and interviews classified into the following main subjects: dialogue with citizens on nuclear energy, energy sources and energy saving, environment and energy, energy and economic development. The answers given by Federal Minister Matthoefer make the aims of the research and technology policy of the Federal Republic clear: Promotion of the efficiency of economy in order to be able to participate in the international competition, but not at the expense of the environment and of the population. (orig./HP) [de

  2. Communication on the risk of nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1990-01-01

    The contribution takes it that the assumption, acceptance problems of nuclear energy are based on information deficit, is groundless in the end. It is true that there is a big knowledge gap between the nuclear energy experts and the broad public, empirical investigations, however, point out that increased knowledge would by no means go along with increased nuclear energy acceptance in the population. Also, the interpretation pattern 'Science and technology hostility' is not good enough to explain the nuclear energy controversy, because nuclear energy opponents oppose nuclear energy in an increasingly professional manner, and as an alternative they do not propagate renunciation of technology but another kind of energy technology. The degree of intensity and the long duration of the nuclear energy controversy in the Federal Republic of Germany in international comparison is defined by 1. little willingness in the 'interest block' in state, industry and nuclear research in favour of speeding up nuclear energy expansion, to yield to the requirements of the anti-nuclear-energy movement, and 2. factual possibilities of the ecological movement, also without parliamentary majority, to hinder the nuclear energy program and, consequently, to influence political decisions. In addition, social peripheral conditions play a role. (orig./HSCH) [de

  3. Prospects for nuclear energy under a Reagan administration

    International Nuclear Information System (INIS)

    Doub, W.O.

    1981-01-01

    The press is told that media treatment of nuclear energy has been superficial and often irresponsible. The press is responsible for much of the public's apprehension, and should work in cooperation with the industry to present objective facts of nuclear energy economics and safety. The Reagan administration intends to reverse the impact of the Carter policies on the nuclear option by supporting commercial reprocessing and shifting the focus from conservation and renewable energy sources back to nuclear energy. New management structure and responsibilities will address the US decline as a world leader in nuclear energy and realign the country with its traditional trading partners. This will reverse the erosion of the Non-Proliferation Treaty and the authority of the International Energy Agency. Current economic problems could delay utility plant expansion without some steps toward deregulation

  4. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  5. Perspectives for nuclear energy; Perspectives pour l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J -M; Abderrahim, H A; Dekeyser, J; Meskens, G

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes.

  6. Frontier of plasma physics. 'Research network on non-equilibrium and extreme state plasmas'

    International Nuclear Information System (INIS)

    Itoh, Sanae-I.; Fujisawa, Akihide; Kodama, Ryosuke; Sato, Motoyasu; Tanaka, Kazuo A.; Hatakeyama, Rikizo; Itoh, Kimitaka

    2011-01-01

    Plasma physics and fusion science have been applied to a wide variety of plasmas such as nuclear fusion plasmas, high-energy-density plasmas, processing plasmas and nanobio- plasmas. They are pioneering science and technology frontiers such as new energy sources and new functional materials. A large project 'research network on non-equilibrium and extreme state plasmas' is being proposed to reassess individual plasma researches from a common view of the non-equilibrium extreme plasma and to promote collaboration among plasma researchers all over the country. In the present review, recent collaborative works related to this project are being introduced. (T.I.)

  7. The role of nuclear research centers for the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Perovic, B.; Frlec, B.; Kundic, V.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centers. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centers should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centers should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Second, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Third, to follow the development of nuclear energy technology for the fast breeder reactor concepts. This paper describes some experience in introducing a new programme to the national nuclear energy centers in Yugoslavia. Recently, Yugoslavia has started building its first nuclear power station. Further introduction of nuclear power stations in the national electric energy system is also planned. This implies the need to reconsider the current nuclear energy programme in the nuclear energy centers. It has been decided to evaluate past experience and further needs for research activities regarding the nuclear power programme. Yugoslavia has three main nuclear energy centers whose activities are devoted to the development of national manpower in the field of nuclear sciences. Besides these three organizations, there are several others whose activities are concentrated on specific tasks in nuclear technology. In the

  8. The nuclear energy in France

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1983-01-01

    An overview of the nuclear energy in France is done. The great centers and the great research lines of the French nuclear program, as well as its present status and prospects for the future are presented. (EG) [pt

  9. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  10. The Non-Proliferation Treaty and the peaceful use of nuclear energy

    International Nuclear Information System (INIS)

    Wilmshurst, M.J.

    1983-01-01

    The author discusses the reasons of criticism and even rejection of the Non-Proliferation Treaty of 1968, dealing in particular with the alledged discriminating nature of the Treaty and with the statement that the Treaty is not apt to prevent proliferation on a vertical plane. He further discusses the motives behind the efforts of potential nuclear weapons states to get nuclear weapons. The system of worldwide and bilateral safeguards and controls covering the transfer of nuclear technologies is explained. In conclusion the author suggests to pay more attention to article IV, sub-section (2) of the Non-Proliferation Treaty as this might offer a suitable approach to restricting the dissemination of nuclear explosives. (HP) [de

  11. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  12. Nuclear energy: technology, safety, ecology, economy, management. The I All-Russian scientific-practical conference of young nuclear scientists of Siberia. Collection of scientific papers

    International Nuclear Information System (INIS)

    2010-01-01

    Collection of research papers I All-Russian scientific-practical conference of young nuclear scientists in Siberia, held 19-25 September 2010 in Tomsk, is presented. The edition contains material on a wide range of research scientists-economists, professors, graduate students and young scientists, and school children of Tomsk, Seversk, and several other Russian cities on the technology, security, ecology, economics, management in the nuclear power industry. Discussion of the presented research was conducted on sections: 1. Technological support for the nuclear fuel cycle, 2. Nuclear non-proliferation and environmental safety of the nuclear fuel cycle, 3. Energy: Present and Future 4. It all starts with an idea [ru

  13. Global Warming; Can Nuclear Energy Help?

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    Kyoto conference is setting the targets and limits for CO 2 emission. In the same time energy consumption is increasing, especially in developing world. If developing countries attain even a moderate fraction of energy consumption of developed countries, this will lead into large increase of total CO 2 emission, unless there is a strong increase of energy production by CO 2 non-emitting sources. Of two major candidates, solar and nuclear energy, the second is technically and economically much closer to ability to accomplish the task. The requirements for a large scale use of nuclear energy and the role of IAEA are discussed. (author)

  14. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  15. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  16. The sustainable nuclear energy technology platform. A vision report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear fission energy can deliver safe, sustainable, competitive and practically carbon-free energy to Europe's citizens and industries. Within the framework of the Strategic Energy Technology Plan (SET Plan), the European Commission's stakeholders in this field have formulated a collective vision of the contributions this energy could make towards Europe's transition to a low-carbon energy mix by 2050, with the aim of integrating and expanding R and D capabilities in order to further this objective. The groundwork has been prepared by the stakeholders listed in Annex II, within the framework of two EURATOM FP6 (Sixth Framework Programme) Coordination Actions, namely SNF-TP (Sustainable Nuclear Fission Technology Platform) and PATEROS (Partitioning and Transmutation European Road-map for Sustainable Nuclear Energy), with contributions from Europe's technical safety organisations. This vision report prepares the launch of the European Technology Platform on Sustainable Nuclear Energy (SNE-TP). It proposes a vision for the short-, medium- and long-term development of nuclear fission energy technologies, with the aim of achieving a sustainable production of nuclear energy, a significant progress in economic performance, and a continuous improvement of safety levels as well as resistance to proliferation. In particular, this document proposes road-maps for the development and deployment of potentially sustainable nuclear technologies, as well as actions to harmonize Europe's training and education, whilst renewing its research infrastructures. Public acceptance is also an important issue for the development of nuclear energy. Therefore, research in the fields of nuclear installation safety, protection of workers and populations against radiation, management of all types of waste, and governance methodologies with public participation will be promoted. The proposed road-maps provide the backbone for a strategic research agenda (SRA) to maintain

  17. Safety culture in the nuclear versus non-nuclear organization

    International Nuclear Information System (INIS)

    Haber, S.B.; Shurberg, D.A.

    1996-01-01

    The importance of safety culture in the safe and reliable operation of nuclear organizations is not a new concept. The greatest barriers to this area of research are twofold: (1) the definition and criteria of safety culture for a nuclear organization and (2) the measurement of those attributes in an objective and systematic fashion. This paper will discuss a proposed resolution of those barriers as demonstrated by the collection of data across nuclear and non-nuclear facilities over a two year period

  18. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  19. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  20. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  1. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  2. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    International Nuclear Information System (INIS)

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-01-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R and D). This report records the proceedings and outcomes of the workshop.

  3. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  4. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  5. Status of the DOE's foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Chacey, K.; Saris, E.C.

    1997-01-01

    In May 1996, the U.S. Department of Energy (DOE), in consultation with the U.S. Department of State (DOS), adopted a policy to accept and manage in the United States ∼20 tonnes of spent nuclear fuel from research reactors in up to 41 countries. This spent fuel is being accepted under the nuclear weapons non-proliferation policy concerning foreign research reactor spent nuclear fuel. Only spent fuel containing uranium enriched in the United States is covered under this policy. Implementing this policy is a top priority of the DOE. The purpose of this paper is to provide the current status of the foreign research reactor acceptance program, including achievements to date and future challenges

  6. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  7. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs

  8. Handbook of nuclear countries 1992/1993

    International Nuclear Information System (INIS)

    Fisher, B.

    1992-01-01

    This second edition covers seventy countries, each country record presenting the available information in the following paragraphs: A The peaceful uses of nuclear energy Energy resources and national policy, research centres, research reactors, research projects, nuclear power plants, other peaceful uses of nuclear energy, the nuclear fuel cycle, heavy-water plants, the nuclear industry. B Military uses of nuclear energy national policy, nuclear raw materials, tests, research and production facilities, amounts and types of nuclear weapons, the deployment of and protection against nuclear weapons, non-explosive uses of nuclear energy, waste management. C International trade and co-operation. The Statute of the International Atomic Energy Agency is given in the appendix. (orig./HP) [de

  9. Nuclear energy: A female technology

    International Nuclear Information System (INIS)

    Tennenbaum, J.

    1994-01-01

    Amongst the important scientific and technological revolutions of history there is none in which women have played such a substantial and many-sided role as in the development of nuclear energy. The birth of nuclear energy is not only due to Marie Curie and Lise Meitner but also to a large number of courageous 'nuclear women' who decided against all sorts of prejudices and resistances in favour of a life in research. Therefore the revolution of the atom has also become the greatest breakthrough of women in natural sciences. This double revolution is the subject of this book. Here the history of nuclear energy itself is dealt with documented with the original work and personal memories of different persons - mainly women - who have been substantially involved in this development. (orig./HP) [de

  10. Feasibility study for the Nuclear Research Centre of the Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1985-01-01

    The feasibility study was carried out in order to evaluate the possibility of building a Nuclear Research Centre in Uruguay, which would support a wide range of nuclear related technological activities. A market research was carried out, of the products to be manufactured at the Nuclear Centre, regarding the size of production. A detailed list of the main products considered is enclosed. The siting study was performed through the analysis of the incidental factors, such as environment, technical scope and socio-ecomonic factors. An engineering study for the main installations was done. The investment and financial sources were also studied

  11. Nuclear Energy, a way for tomorrow spacecrafts

    International Nuclear Information System (INIS)

    2002-01-01

    To better explore the solar system, the NASA will uses new propulsion modes, in particular the nuclear energy. These articles present the research programs in the domain and the particularities of the nuclear energy in the projects. (A.L.B.)

  12. The key role of nuclear energy to strengthen economic safety for France and the European Union

    International Nuclear Information System (INIS)

    Jouette, Isabelle; Le Ngoc, Boris; Chenu, Anne; Nieuviaert, Jean-Jacques

    2015-01-01

    This publication first discusses how to improve the external safety (energy independence) for France. It outlines that nuclear energy is a safety factor for the economy, that France needs to reduce its dependence on fossil energies through an electrification of uses, that imports of fossil energies can be reduced by developing nuclear research. In a second part, it discusses how to improve internal supply safety for France and for the EU. It evokes the crisis situation faced by the European electricity market, outlines the need to invest in existing nuclear production capacities, the need to stabilize the electric system, and to take better advantage of non-carbon energies (possible future technological advances of the energy sector are evoked)

  13. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  14. Nuclear energy: a master card

    International Nuclear Information System (INIS)

    Garaud, M.F.

    1996-01-01

    Here are exposed the elements of the French doctrine of nuclear deterrence. The historical points, from the American deterrence to the actual situation are detailed. The political aspects, with the non proliferation, the ecologists pressure and the anti nuclear pacifism are evoked to precise the uncertainty of the actual French deterrence. 9 analysis are on the deterrence subject, then the civil aspect of nuclear energy is discussed, with the advantages and the disadvantages of the nuclear power plants and the reprocessing in two analysis; a special mention is noted for the reactor safety in Eastern Europe, in the last article. (N.C.)

  15. The role of nuclear energy in mitigating greenhouse warming

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    A behavioral, top-down, forced-equilibrium market model of long-term (∼ 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately

  16. India's nuclear energy programme: prospects and challenges

    International Nuclear Information System (INIS)

    Gupta, Arvind

    2011-01-01

    India has announced ambitious plans to expand its nuclear energy programme nearly 15 fold in the next 20 years, from the current 4,500 MWe to about 62,000 MWe by 2032. By 2020, India's Department of Atomic Energy (DAE) plans to install 20,000 MWe of nuclear power generation capacity (the fifth largest in the world). The department has plans beyond 2030 too. According to these plans India will have the capacity to produce 275 GWe (Giga Watt of electricity) of nuclear power by the year 2052. The DAE's projections are summarised. This is a truly ambitious plan. Without sufficient quantities of energy, India cannot hope to become a global power. Its dream of registering eight to nine per cent economic growth per annum will remain just that, a dream. Even with such ambitious plans on the nuclear energy front, the share of nuclear power in the overall energy mix will remain small. Currently nuclear energy constitutes only about three per cent of the total energy consumed in India. If the current projections are realised, the share of nuclear energy in the total energy output will still be about 20 per cent. India takes pride in its nuclear programme. Over the years, successive governments have fully supported the DAE's plans. This support is likely to continue in the future. In fact, following the Indo-US civil nuclear deal and the Nuclear Suppliers Group (NSG) waiver in 2008, the mood in India has turned upbeat. India is now getting integrated into the global nuclear regime even though it has not signed the Nuclear Non Proliferation Treaty (NNPT). The NSG waiver has, however, allowed India to enter into civil nuclear cooperation with several countries

  17. Energy controversy: the role of nuclear power

    International Nuclear Information System (INIS)

    Schmidt, F.H.; Bodansky, D.

    1975-02-01

    The objective of the paper presented is to show that nuclear fission power is the best, and maybe the only, alternative source of energy. It is written for a wide range of readers, including non-scientists and scientists who are not particularly informed on the issues involved. The first question considered concerns man's need for energy; it is concluded that conservation measures alone cannot suffice. Next, the earth's energy sources are examined, and the extent of each is estimated in the simple context of the length of time it could last at present use rates. Only nuclear fission, nuclear fusion, and solar energy can provide for future time scales commensurate with man's historic past, while avoiding the possibility of catastrophic social upheaval. Fusion and solar energy are rejected on technological grounds because the world energy problem is so pressing that one cannot gamble on hopes for future technological breakthroughs. Thus, only nuclear fission meets the twin criteria of technological feasibility and adequate resource base. Each of the controversial issues surrounding nuclear fission energy is examined in some detail. The conclusion is reached that none is serious, and that nuclear fission offers by far the best energy source from environmental, economic, longevity, and overall safety standpoints

  18. Geographical aspects of exploitation of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Kurucova, S.

    2007-05-01

    The topic of exploitation of nuclear energy is becoming increasingly actual in the present time in connection with frequently discussed question of 'renaissance of nuclear energetics'. The work is aimed at research of geographical aspects of exploitation of nuclear energy for military and civil purposes on the territory of Europe. The base of work represents the analysis of theoretical aspects of research of energy, mainly of nuclear energy. The work examines the historical development of exploitation of nuclear energy since its discovery, through development of military nuclear industry in Europe, big attention is paid to spreading of nuclear energetics on the territory of Europe from its beginnings up to the present time. The main part of the work represents the analysis of the present situation of exploitation of nuclear energy for civil purposes in Europe. The attention is paid to so-called nuclear fuel cycle as complex chain of several reciprocally interconnected operations of nuclear fuel treatment. The monitoring of spatial relations among individual countries within their nuclear fuel cycles is emphasised. The analysis of historical development and of the present state of nuclear energetics finished up in the outline of the perspectives of its further development in Europe. The analysis of the tendencies of evolution of world energetic economy mentions on the trend of growth of energy consumption in the world and Europe, as well as on the important position of nuclear energy in the structure of energy sources. Summary in English language is included. (author)

  19. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, the International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.

  20. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  1. Economical scale of nuclear energy application

    International Nuclear Information System (INIS)

    2001-01-01

    The nuclear energy industry is supported by two wheels of radiation and energy applications. When comparing both, they have some different sides, such as numbers of employees and researchers, numbers and scales of works, effect on society, affecting effects and regions of industrial actions, problems on safety, viewpoint on nuclear proliferation protection and safety guarantee, energy security, relationship to environmental problem, efforts on wastes disposal, and so on. Here described on economical scale of radiation application in fields of industry, agriculture, and medicine and medical treatment, and on economical scale of energy application in nuclear power generation and its instruments and apparatus. (G.K.)

  2. Energy research 2002 - Overview; Energie-Forschung 2002 / Recherche energetique 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy presents an overview of advances made in energy research in Switzerland in 2002. In the report, the heads of various programmes present projects and summarise the results of research in four main areas: Efficient use of energy, renewable energy sources, nuclear energy and energy policy fundamentals. Energy-efficiency is illustrated by examples from the areas of building, traffic, electricity, ambient heat and combined heat and power, fuel cells and combustion. In the renewable energy area, projects concerning energy storage, photovoltaics, solar chemistry and hydrogen, biomass, geothermal energy, wind energy and small-scale hydro are presented. Nuclear safety and controlled thermonuclear fusion are discussed.

  3. International meeting 'Selected topics on nuclear methods for non-nuclear applications'. Proceedings

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2007-01-01

    The volume includes the presentations given on the International Meeting 'Selected Topics on Nuclear Methods for Non-nuclear Applications'. The meeting was organized by the Project CECOA. The Project 'CEnter for COoerative Activities' (CECOA) of the Institute for Nuclear Research and Nuclear Energy (INRNE) of Bulgarian Academy of Sciences is part of the Program 'Creating of Infrastructure' of Bulgarian Ministry of Science and Education. The CECOA-project unifies the groups of INRNE doing research in the field of nuclear methods. Four Laboratories of INRNE are members of CECOA-project: Moessbauer Spectroscopy and Low Radioactivity Measurements, High-Resolution Gamma-Spectroscopy, Neutron Methods in Condensed Matter, Neutron Optics and Structure Analysis. Taking into account the leading role of education on nuclear physics the Project includes program devoted to the training on nuclear physics. The presented volume contains 23 contributed papers. The contributions are separated in 6 sections. The section 'Nano technology' includes 5 papers. The activity in this field within the Project reveals the collaboration with other Institutes of Bulgarian Academy of Sciences as well as large international contacts. The section 'Radioecology and Radioactive Waste' is two fold. Part of the contributions of the section manifests the connection of the CECOA with small enterprises. The contacts are on the level of common projects concerning the investigations, remediation and release of radioactively contaminated terrain, soils, water, buildings and materials around the former uranium processing industry. Another part of the section is devoted to the application of nuclear methods to the treatment of radioactive waste produced by nuclear power stations. The section 'Neutron Physics' reveals the activity within the Project connected with the study of new materials using polarized neutrons and neutron diffraction methods. The section 'Nuclear Physics' is an introduction to some

  4. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  5. Editorial : Introduction to Energy Strategy Reviews theme issue “Nuclear energy today & strategies for tomorrow”

    NARCIS (Netherlands)

    Rogner, H.H.; Weijermars, R.

    2013-01-01

    Finding the optimum energy supply system is one of the aims of energy strategy research and nuclear energy is a much debated real option. Proponents of nuclear energy argue that there are no technologies without risks and that nuclear power is needed for meeting growing energy demand in the emerging

  6. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  7. A new start for European nuclear energy: the forum and the sustainable nuclear energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [E.ON Kernkraft GmbH, Hanover (Germany)

    2009-06-15

    cons about the use of nuclear energy and emphasis that every stakeholder is welcome for a constructive dialog. And the results so far are very remarkable and promising, e.g. - Support for and contributions to the Nuclear Safety Directive; - Recommendations on information, communications, participation and decision making; - First draft of a SWOT (4) report under preparation; and - Comparative analysis of seven energy scenarios. With regard to competition among vendors in the highly technological nuclear sector, where investments for new build contribute about 70% of the total generation costs, improvement in competitiveness is needed. Like all Technology Platforms under the 7. Framework Program, the Sustainable Nuclear Energy Technology Platform (SNETP) is a Europe-wide forum and is gathering stakeholders from the nuclear community (5). Its overall goal is to enhance the sustainability of nuclear fission by supporting technological development. It is worth pointing out, that nuclear is addressed as 'sustainable' energy. The SNETP was launched in 2007 and ensures actions for ensuring sustainability of nuclear power in the field of: - Ensure long term safe operation of current Generation II reactors, - Built and ensure safety and competitiveness of evolutionary Gen III reactors, - Develop Gen IV fast breeders with closed fuel cycle, - Enlarge the nuclear fission portfolio beyond electricity production: H2, synthetic fuels, H{sub 2}O desalination, paper, cement industry, and - Developing Research Infrastructures. EON Kernkraft supports this initiative gives feedback of current Generation-II fleet operations and topics for the deployment of new technologies. We are active in the SNETP in several organisation bodies, and are also in direct cooperation with research organisations, e.g. CEA. We will launch projects within our bilateral cooperation in the platform to provide added value for the community. We also support vendors in the development of new types of

  8. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  9. Perspectives for nuclear energy; Perspectives pour l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes.

  10. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  11. Nuclear's role in 21. century Pacific rim energy use

    International Nuclear Information System (INIS)

    Singer, Clifford; Taylor, J'Tia

    2007-01-01

    Extrapolations contrast the future of nuclear energy use in Japan and the Republic of Korea (ROK) to that of the Association of Southeast Asian Nations (ASEAN). Japan can expect a gradual rise in the nuclear fraction of a nearly constant total energy use rate as the use of fossil fuels declines. ROK nuclear energy rises gradually with total energy use. ASEAN's total nuclear energy use rate can rapidly approach that of the ROK if Indonesia and Vietnam make their current nuclear energy targets by 2020, but experience elsewhere suggests that nuclear energy growth may be slower than planned. Extrapolations are based on econometric calibration to a utility optimization model of the impact of growth of population, gross domestic product, total energy use, and cumulative fossil carbon use. Fractions of total energy use from fluid fossil fuels, coal, water-driven electrical power production, nuclear energy, and wind and solar electric energy sources are fit to market fractions data. Where historical data is insufficient for extrapolation, plans for non-fossil energy are used as a guide. Extrapolations suggest much more U.S. nuclear energy and spent nuclear fuel generation than for the ROK and ASEAN until beyond the first half of the twenty-first century. (authors)

  12. Review on Overseas Contracts of a Nuclear Research Institute in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Lee, Eui Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since its establishment, Korea Atomic Energy Research Institute (KAERI) has made various contracts in research, design, engineering and consultation with a lot of foreign counterparts all over the world, including international organizations. As one of the global nuclear energy research leaders, KAERI can make a large scale contract because it has already procured a turnkey EPC (Engineering, Procurement, Construction) contract for a research and training reactor in the spring of 2010 by forming a consortium with a construction and engineering company. A contract in nuclear business industries is to be made under the limited control of regulatory authorities because the contractors must ensure nuclear safety and follow the international nuclear non-proliferation guidelines to secure the peaceful use of nuclear energy at an international level. The export and import of strategic technologies, products or materials (including nuclear materials) must be directly controlled by the authorities in accordance with the applicable law. In 2009, KAERI organized a new team to manage the overseas contracts and to make the limited control reflected in the contract documentation. In large scale project contracts, more attention shall be given to the contracts to prevent claims and also to the consideration of the regulatory requirements. In this context, the nature of the past KAERI contracts was reviewed. The conditions of several recent KAERI contracts were also individually reviewed based on the FIDIC (Federation Internationale des Ingenieurs-Conseils) model service agreement, which is generally accepted by service contractors. Ways to increase the quality of future contracts and to improve the standard model agreement which is used to prepare the draft contract were also considered

  13. Review on Overseas Contracts of a Nuclear Research Institute in Korea

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Lee, Eui Jin

    2010-01-01

    Since its establishment, Korea Atomic Energy Research Institute (KAERI) has made various contracts in research, design, engineering and consultation with a lot of foreign counterparts all over the world, including international organizations. As one of the global nuclear energy research leaders, KAERI can make a large scale contract because it has already procured a turnkey EPC (Engineering, Procurement, Construction) contract for a research and training reactor in the spring of 2010 by forming a consortium with a construction and engineering company. A contract in nuclear business industries is to be made under the limited control of regulatory authorities because the contractors must ensure nuclear safety and follow the international nuclear non-proliferation guidelines to secure the peaceful use of nuclear energy at an international level. The export and import of strategic technologies, products or materials (including nuclear materials) must be directly controlled by the authorities in accordance with the applicable law. In 2009, KAERI organized a new team to manage the overseas contracts and to make the limited control reflected in the contract documentation. In large scale project contracts, more attention shall be given to the contracts to prevent claims and also to the consideration of the regulatory requirements. In this context, the nature of the past KAERI contracts was reviewed. The conditions of several recent KAERI contracts were also individually reviewed based on the FIDIC (Federation Internationale des Ingenieurs-Conseils) model service agreement, which is generally accepted by service contractors. Ways to increase the quality of future contracts and to improve the standard model agreement which is used to prepare the draft contract were also considered

  14. Federal Nuclear Energy Program: a synopsis

    International Nuclear Information System (INIS)

    1983-01-01

    This document provides an overview of the new nuclear policy objectives and initiatives and summarizes the Department of Energy programmatic strategy to realize the full nuclear potential. Analyses have been made within the context of prevailing and potential economic conditions, alternative energy options and prior nuclear performance and growth patterns. The Department's organizational structure, which was realigned in June 1982 to conform with the activities mandated by the Administration's policy, is also discussed. The individual program elements for nuclear research and development are described as they contribute to a fully integrated fuel cycle and power generation system. Federal and commercial responsibilities for developmental activity are delinated, and relationship of the programs to broad national energy objectives is specified

  15. Nuclear Energy Today - Second edition

    International Nuclear Information System (INIS)

    Alonso, Agustin; Nakoski, John; Lamarre, Greg; Vasquez-Maignan, Ximena; Dale, Beverly; Keppler, Jan; Taylor, Martin; Paillere, Henri; Cameron, Ron; Dujardin, Thierry; Gannon-Picot, Cynthia; Grandrieux, Delphine; Dery, Helene; Anglade-Constantin, Sylvia; Vuillaume, Fabienne

    2012-01-01

    Meeting the growing demand for energy, and electricity in particular, while addressing the need to curb greenhouse gas emissions and to ensure security of energy supply, is one of the most difficult challenges facing the world's economies. No single technology can respond to this challenge, and the solution which policy-makers are seeking lies in the diversification of energy sources. Although nuclear energy currently provides over 20% of electricity in the OECD area and does not emit any carbon dioxide during production, it continues to be seen by many as a controversial technology. Public concern remains over its safety and the management of radioactive waste, and financing such a capital-intensive technology is a complex issue. The role that nuclear power will play in the future depends on the answers to these questions, several of which are provided in this up-to-date review of the status of nuclear energy, as well as on the outcome of research and development on the nuclear fuel cycle and reactor technologies

  16. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  17. The Nuclear Progress And The Non-Proliferation Policies

    Energy Technology Data Exchange (ETDEWEB)

    Popa-Simil, Liviu [Los Alamos, NM 87544 (United States)

    2009-06-15

    The 2008 fall crisis showed the limits of globalization under the actual rules and de-regulations promoted by few developed countries. It also showed the weakness of the planetary economy induced by strong economic connections that makes the propagation of crises faster than the spread of welfare. The increase in severe weather and natural disasters showed how fast the civilization can be spoiled while the competition for oil resources made the interstate tensions grow. For almost all states, the development of the nuclear power becomes a prime option, even oil producers started to show interest in nuclear technology and also, policies that in particular are clearly oriented towards national development policies. The fact that anybody mastering nuclear technologies and uses for power production is capable in a reasonable time to produce weapons is a well-known fact. Therefore, in order to reduce the proliferation risk it is necessary to contain the nuclear science development. An alternative is to shift the weight in promoting renewable energies, as potential future energy alternative. Considering rigorously the future climate change effects, it becomes obvious that any delay in nuclear development will turn very costly for any nation ignoring all these facts and, the complexity of the real nonproliferation is growing. This new trend raises serious challenges in front of all states regarding the non-proliferation and, in order to keep control and stimulate a sound nuclear development, some of the actual non-proliferation concepts and policies have to be reformulated and enhanced. This has to be done in parallel with a more intensive implication of the international organisms in the real development of the nuclear power at national level. The large diversity of nuclear applications with huge collateral implication in every national economy makes the role of the international organisms orders of magnitude more important. The new challenges posed in front of the

  18. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  19. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  20. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  1. Nuclear energy - option for the future. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of this conference was to analyse the future national and international problems arising with energy supplies with regard to the large mass flows and CO 2 flows involved in the use of nuclear energy. The following topics are dealt with: - nuclear energy, world-wide energy management and developments in Europe and Asia - disposal and ultimate waste disposal, plutonium management, an assessment of the Chernobyl accident 10 years on - new reactor developments in the energy mix - the costs arising with nuclear energy in the energy mix. In view of the demand made by climate researchers, to reduce CO 2 , and the additional construction work planned in the eastern and Asian areas, it will remain necessary for the Federal Republic of Germany,too, to maintain the know-how and technology for nuclear energy generation. (orig./DG)

  2. Monte Carlo simulation of nuclear energy study (II). Annual report on Nuclear Code Evaluation Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    In the report, research results discussed in 1999 fiscal year at Nuclear Code Evaluation Committee of Nuclear Code Research Committee were summarized. Present status of Monte Carlo simulation on nuclear energy study was described. Especially, besides of criticality, shielding and core analyses, present status of applications to risk and radiation damage analyses, high energy transport and nuclear theory calculations of Monte Carlo Method was described. The 18 papers are indexed individually. (J.P.N.)

  3. Methods of promotion of nuclear research and development in the Federal Republic of Germany and international cooperation

    International Nuclear Information System (INIS)

    Lehr, G.

    1987-01-01

    The promotion of nuclear research and development in the Federal Republic of Germany is part of the overall R and D policy and is geared to the long-term energy policy goals. Nuclear energy development has been successfully promoted for more than thirty years, the non-nuclear energy technologies for almost 15 years. As a result of this support for new technologies, energy production has become more efficient and cost-effective and with regard to fossil energy sources also markedly less detrimental to the environment. Nuclear energy research policy is an integral part of energy research policy as a whole, which particularly aims to increasingly promote renewable energy sources, above all photovoltaic and wind energy, the utilization of biomass and geothermal energy as well as the development of various energy storage methods. In addition to some mining projects which aim to reduce coal production costs, promotion in the field of fossil energy sources concentrates above all on power plant engineering and combustion techniques - i.e. environment-oriented technologies. In view of future supply patterns, projects on coal conversion are continued; with present supply and price structures for mineral oil and natural gas, however, commercialization of coal conversion cannot be expected to be launched on a large scale. (J.P.N.)

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  5. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  6. Nuclear energy between science and public

    International Nuclear Information System (INIS)

    Bobnar, B.

    1992-01-01

    The objective of the presented research was to establish the presence and the structure of nuclear energy as a theme in Slovenian mass media and at the same time to answer the question what chances an active Slovenian reader had in the year 1991 to either strengthen or change his opinion on nuclear power. Measurement and analysis of chosen relevant variables in 252 contributions in six Slovenian mass media publications in the year 1991 showed that the most frequent nuclear theme was decommissioning and closing down of a nuclear power plant. Other themes followed in the order of the frequency of appearance: nuclear energy as an economic issue, waste disposal, NPP Krsko operation, influence on health, information about events, seismic questions. The scientific theme - nuclear energy, was intensely represented in chosen Slovenian mass media publications in 1991. Common to all nuclear themes is that they were being presented from the political point of view. (author) [sl

  7. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  8. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  9. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  10. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  11. U.S. Department of Energy operational experience with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Massey, Charles D.; Mustin, Tracy P.

    1998-01-01

    On May 13, 1996, the U.S. Department of Energy issued a Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The goal of the long-term policy is to recover enriched uranium exported from the United States, while giving foreign research reactor operators sufficient time to develop their own long-term solutions for storage and disposal of spent fuel. The spent fuel accepted by the U.S. DOE under the policy must be out of the research reactors by May 12, 2006 and returned to the United States by May 12, 2009. (author)

  12. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  13. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  14. The safety R and D for GEN-IV reactors in the European nuclear energy technology platform strategic research agenda

    International Nuclear Information System (INIS)

    Bruna, G.

    2009-01-01

    In the fall 2007 EC launched the Sustainable Nuclear Energy Technology Platform (SNE-TP). The SNE-TP governing board set-up three working groups (WG): 1) Strategic Research Agenda (SRA) WG, in charge of drafting road-maps to support research, development and demonstration for current and future NPPs; 2) Deployment Strategy (DS) WG, in charge of defining the research road-map implementation and 3) Education, Training and Knowledge management (ETKM) WG, which was aimed at issuing proposal to reinforce European education and attract young in the nuclear field. The SRA WG was mandated to prepare the SRA vision document based on the preliminary road-map sketched in the document published by the Commission earlier in 2007. The SRA WG was originally organized in 5 sub-groups covering specific topics (1) GEN II and III, III+, including Advanced LWR, 2) Advanced Fuel Cycle for waste minimization and resource optimization; 3) GEN IV Fast Systems (SFR, LFR, GFR, ADS); 4) GEN IV (V) HTR and non-electricity-production applications; 5) New Nuclear Large Research Infrastructures) and 5 other sub-groups dealing with more generic cross-cutting research activities applicable to many specific topics, namely: 1) Structural material research; 2) modeling, simulation and methods, including physical data and tools and means for qualification and validation; 3) Reactor Safety, including severe accidents and human factor; 4) Advanced Driver and Minor Actinide Fuels: science and properties; 5) Pre-normative Research, Codes and Standards.The present paper is mainly aimed at summarizing the content of the SRA Safety sub-chapter focusing on GEN-IV aspects

  15. Nuclear energy: fusion and fission - From the atomic nucleus to energy

    International Nuclear Information System (INIS)

    2002-09-01

    Matter is made up of atoms. In 1912, the English physicist Ernest Rutherford (who had shown that the atom had a nucleus), and the Danish physicist Niels Bohr developed a model in which the atom was made up of a positively charged nucleus surrounded by a cloud of electrons. In 1913, Rutherford discovered the proton, and in 1932, the English physicist Chadwick discovered the neutron. In 1938, Hahn and Strassmann discovered spontaneous fission and the French physicist Frederic Joliot-Curie, assisted by Lew Kowarski and Hans Von Halban, showed in 1939 that splitting uranium nuclei caused an intense release of heat. The discovery of the chain reaction would enable the exploitation of nuclear energy. 'It was the Second World War leaders who, by encouraging research for military purposes, contributed to the development of nuclear energy'. During the Second World War, from 1939 to 1945, studies of fission continued in the United States, with the participation of emigre physicists. The Manhattan project was launched, the aim of which was to provide the country with a nuclear weapon (used at Hiroshima and Nagasaki in 1945). After the war ended, research into energy production by the nuclear fission reaction continued for civil purposes. CEA (the French Atomic Energy Commission) was set up in France in 1945 under the impetus of General de Gaulle. This public research body is responsible for giving France mastery of the atom in the research, health, energy, industrial, safety and defense sectors. (authors)

  16. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  17. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  18. Assessment of nuclear energy sustainability index using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Aly, Naguib; Nagy, Mohammad; Agamy, Saeed

    2010-01-01

    Nuclear energy is increasingly perceived as an attractive mature energy generation technology that can deliver an answer to the worldwide increasing energy demand while respecting environmental concerns as well as contributing to a reduced dependence on fossil fuel. Advancing nuclear energy deployment demands an assessment of nuclear energy with respect to all sustainability dimensions. In this paper, the nuclear energy, whose sustainability will be assessed, is governed by the dynamics of three subsystems: environmental, economic, and sociopolitical. The overall sustainability is then a non-linear function of the individual sustainabilities. Each subsystem is evaluated by means of many components (pressure, status, and response). The combination of each group of indicators by means of fuzzy logic provides a measurement of sustainability for each subsystem.

  19. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  20. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  1. Future nuclear energy policy based on the Broad Outline of Nuclear Energy Policy

    International Nuclear Information System (INIS)

    Saito, Shinzo

    2006-01-01

    The Broad Outline of Nuclear Energy Policy for about ten years was determined by the Cabinet meeting of Japan. Nuclear power plant safety and regulation, nuclear waste management, nuclear power production and nuclear power research and development were discussed. It determined that 3 nuclear power plants, which are building, should be built, and about 10 plants will be built to product 30 to 40 % of Japan electricity generation after 2030. FBR will be operated until 2050. The nuclear fuel cycle system will be used continuously. The nuclear power plant safety and nuclear waste management are so important for the nuclear industry that these subjects were discussed in detail. In order to understand and use the quantum beam technology, the advanced institutions and equipments and network among scientists, industry and people should be planed and practically used. (S.Y.)

  2. U.S. - India nuclear cooperation and non-proliferation

    International Nuclear Information System (INIS)

    Yash Thomas, Mannully

    2008-01-01

    The agreement for cooperation between the Government of the United States of America and the government of India concerning peaceful uses of nuclear energy (referred as 123 agreement) acknowledges a shift in international strategies and relations in both countries. As to India, it marks the end of nuclear isolation resulting from constraint, embargoes and controls and instead opens the path for nuclear commerce. With respect to the United States it entails a major geo strategic ally in the evolving South Asia region and promises large commercial benefits to the US nuclear sector. This is called 'nuclear deal' and constitutes one of the major political, economic and strategic relationship developing between the two countries since 2001. It will lead to the separation of military and civilian nuclear installations in India, the latter to be placed under the safeguards system of the International Atomic Energy Agency (IAEA). It thus, de facto accepts India in the club of nuclear weapon states within the meaning of the Treaty on the non-proliferation of nuclear weapons (NPT) although it is not party to this treaty, refuses adhering to it, officially possesses nuclear weapons and is not subject to a comprehensive system of safeguards. This article will examine the developments which led to the 123 agreement and its subsequent implementation in a wider context of international relations and non proliferation. First, the articles gives a brief introduction into the Indian nuclear programme, the legislative framework and the factors which necessitated nuclear cooperation between India and the United States. Secondly, it will address the implementation of the nuclear deal and subsequent developments. Finally, it will analyse the non proliferation issues related to the implementation of the agreement. (N.C.)

  3. French presidential election: nuclear energy in candidates' program

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Generally right candidates consider nuclear energy as a chance for France because it is an industrial asset for the country, it releases no greenhouse gases and has given France its large energy independence. They are ready to reconsider the limitation imposed on the share of nuclear energy in the future energy mix and they want to reinforce research for next generations of reactors. The far-right candidate wishes to use nuclear energy massively to produce hydrogen in order to reduce by half the consumption of fossil energies in 20 years. Generally left candidates back the law on the energy transition that was passed during last legislature and that limits the nuclear power share to 50% while developing green energies. The far-left candidates wish a progressive and complete abandon of nuclear energy. All candidates wish a greater share of renewable energies in the future energy mix. (A.C.)

  4. Nuclear energy and challenges for India

    International Nuclear Information System (INIS)

    Kamalapur, Gopalkrishna Dhruvaraj

    2017-01-01

    The challenge for the nuclear community is to assure that nuclear power remains a viable option in meeting the energy requirements of the next century. It could be a major provider of electricity for base load as well as for urban transport in megacities. It can play a role in non-electric applications in district heating, process industries, maritime transport. (author)

  5. A study on the research and development planning of nuclear energy

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Won, B. C.; Kim, J. W.; Cho, C. Y.; Cheon, S. H.; Kim, J. U.; Kim, I. C.; Hong, Y. P.; Kang, W. J.; Lee, H. S.; Yoon, Y. S.; Park, J. H.; Kim, S. S.; Park, C. S.; Yang, M. S.; Lee, Y. H.

    1998-01-01

    This study was performed aiming to provide the basic input to establish 'the mild and long-term nuclear R and D program (1997 - 2006)' for government. This program is announced by the government as an official plan after endorsement of Atomic Energy Commission (AEC). Second, the historical formation and transition of both nuclear R and D policy and nuclear R and D development system after the introduction of nuclear energy in Korea were analyzed. Third, the current status of several nuclear-related R and D projects and R and D management, which have been conducted at KAERI were analyzed and a better direction for effective and efficient R and D activities was suggested. Finally, on the basis of above analysis, this study made an effort to extract the appropriate lessons for future directions for carrying out nuclear R and D projects. (author). 19 refs., 40 tabs., 10 figs

  6. A study on the research and development planning of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Won, B. C.; Kim, J. W.; Cho, C. Y.; Cheon, S. H.; Kim, J. U.; Kim, I. C.; Hong, Y. P.; Kang, W. J.; Lee, H. S.; Yoon, Y. S.; Park, J. H.; Kim, S. S.; Park, C. S.; Yang, M. S.; Lee, Y. H

    1998-01-01

    This study was performed aiming to provide the basic input to establish `the mild and long-term nuclear R and D program (1997 - 2006)` for government. This program is announced by the government as an official plan after endorsement of Atomic Energy Commission (AEC). Second, the historical formation and transition of both nuclear R and D policy and nuclear R and D development system after the introduction of nuclear energy in Korea were analyzed. Third, the current status of several nuclear-related R and D projects and R and D management, which have been conducted at KAERI were analyzed and a better direction for effective and efficient R and D activities was suggested. Finally, on the basis of above analysis, this study made an effort to extract the appropriate lessons for future directions for carrying out nuclear R and D projects. (author). 19 refs., 40 tabs., 10 figs

  7. Quality assurance of nuclear energy

    International Nuclear Information System (INIS)

    1994-12-01

    It consists of 14 chapters, which are outline of quality assurance of nuclear energy, standard of quality assurance, business quality assurance, design quality assurance, purchase quality assurance, production quality assurance, a test warranty operation warranty, maintenance warranty, manufacture of nuclear power fuel warranty, computer software warranty, research and development warranty and quality audit.

  8. Guides about nuclear energy in South Korea; Reperes sur l'energie nucleaire en Coree du Sud

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  9. The US department of energy's research and development plans for the use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Henderson, A.D.; Pickard, P.S.; Park, C.V.; Kotek, J.F.

    2004-01-01

    The potential of hydrogen as a transportation fuel and for stationary power applications has generated significant interest in the United States. President George W. Bush has set the transition to a 'hydrogen economy' as one of the Administration's highest priorities. A key element of an environmentally-conscious transition to hydrogen is the development of hydrogen production technologies that do not emit greenhouse gases or other air pollutants. The Administration is investing in the development of several technologies, including hydrogen production through the use of renewable fuels, fossil fuels with carbon sequestration, and nuclear energy. The US Department of Energy's Office of Nuclear Energy, Science and Technology initiated the Nuclear Hydrogen Initiative to develop hydrogen production cycles that use nuclear energy. The Nuclear Hydrogen Initiative has completed a Nuclear Hydrogen R and D Plan to identify candidate technologies, assess their viability, and define the R and D required to enable the demonstration of nuclear hydrogen production by 2016. This paper gives a brief overview of the Nuclear Hydrogen Initiative, describes the purposes of the Nuclear Hydrogen R and D Plan, explains the methodology followed to prepared the plan, presents the results, and discusses the path forward for the US programme to develop technologies which use nuclear energy to produce hydrogen. (author)

  10. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  11. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  12. The project 'nuclear long-distance energy'

    International Nuclear Information System (INIS)

    Harth, R.

    1976-01-01

    The Kernforschungsanlage Juelich is intensively involved in research work with the aim of developing new technological skills for the future supply of energy and to lead the way in industry. In the forefront are a rational utilisation of primary energy and a better adjustment of the energy available, to fulfil requirements. In addition, the supply from nuclear power plants was analysed and a new energy supply system was achieved. It offers the possibility of giving nuclear-produced power to a large proportion of consumers fulfilling their heat and electricity needs, in which the accessible degrees of utilisation lie between 49% and 67%. The project 'nuclear long distance energy' is the theme of a report included in the Congress on Rational Utilisation of Energy, held from 20th to 23rd. september 1976 in Berlin. (orig.) [de

  13. Non-nuclear, low-carbon, or both? The case of Taiwan

    International Nuclear Information System (INIS)

    Chen, Yen-Heng Henry

    2013-01-01

    The Fukushima nuclear accident in Japan has renewed debates on the safety of nuclear power, possibly hurting the role of nuclear power in efforts to limit CO 2 emissions. I develop a dynamic economy-wide model of Taiwan with a detailed set of technology options in the power sector to examine the implications of adopting different carbon and nuclear power policies on CO 2 emissions and the economy. Without a carbon mitigation policy, limiting nuclear power has a small economic cost for Taiwan, but CO 2 emissions may increase by around 4.5% by 2050 when nuclear is replaced by fossil-based generation. With a low-carbon target of a 50% reduction from year 2000 levels by 2050, the costs of cutting CO 2 emissions are greatly reduced if both carbon sequestration and nuclear expansion were viable. This study finds that converting Taiwan's industrial structure into a less energy-intensive one is crucial to carry out the non-nuclear and low-carbon environment. - Highlights: • This study provides an analysis for Taiwan under a low-carbon policy with or without the nuclear option. • A new approach that improves the modeling of non-dispatchable generation is presented. • Emission reduction costs are greatly reduced if both carbon sequestration and nuclear expansion were viable. • A less energy-intensive industrial structure is crucial in pursuing a non-nuclear and low carbon environment

  14. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  15. Potential strategic consequences of the nuclear energy revival

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.

    2010-01-01

    Many people have projected their hopes and fears onto nuclear power. Nuclear energy has both benefits and risks, and disagreement persists about whether this energy source is, on balance, more of an asset than a liability. This debate involves a complicated set of factors that are difficult to assess, let alone fully resolve because of the differing interests in various countries' use and pursuit of nuclear power. Renewed interest throughout the globe in harnessing this energy source has stoked this perennial debate and raised concern about security threats from states and non-state actors while holding out the promise of more electricity for more people. While the motivations for nuclear energy vary among states, the two primary public goods this energy source offers are countering human-induced climate change and providing for greater energy security. Although views on how to achieve energy security differ, the essential aspect for nuclear energy is that for several countries, especially those with scarce indigenous energy sources from fossil fuels, investing in nuclear power plants diversifies electricity production portfolios and helps reduce dependence on foreign sources of energy. The focus here is on assessing the potential security consequences of increased use of nuclear power in the existing nuclear power states and most importantly in many more states that have in recent years expressed interest in this power source. The risks of nuclear power include possible reactor accidents, release of radioactive waste to the environment, attacks on or sabotage of nuclear facilities, and misuse of peaceful nuclear technologies to make nuclear weapons. While safety of nuclear plants and disposal of radioactive waste are important issues, this paper analyzes the latter two issues. In addition, it addresses two under-examined risks: military attacks on nuclear facilities and the effects on security alliances and conventional arms buildups as more countries seek to

  16. Potential strategic consequences of the nuclear energy revival

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ch.D.

    2010-07-01

    Many people have projected their hopes and fears onto nuclear power. Nuclear energy has both benefits and risks, and disagreement persists about whether this energy source is, on balance, more of an asset than a liability. This debate involves a complicated set of factors that are difficult to assess, let alone fully resolve because of the differing interests in various countries' use and pursuit of nuclear power. Renewed interest throughout the globe in harnessing this energy source has stoked this perennial debate and raised concern about security threats from states and non-state actors while holding out the promise of more electricity for more people. While the motivations for nuclear energy vary among states, the two primary public goods this energy source offers are countering human-induced climate change and providing for greater energy security. Although views on how to achieve energy security differ, the essential aspect for nuclear energy is that for several countries, especially those with scarce indigenous energy sources from fossil fuels, investing in nuclear power plants diversifies electricity production portfolios and helps reduce dependence on foreign sources of energy. The focus here is on assessing the potential security consequences of increased use of nuclear power in the existing nuclear power states and most importantly in many more states that have in recent years expressed interest in this power source. The risks of nuclear power include possible reactor accidents, release of radioactive waste to the environment, attacks on or sabotage of nuclear facilities, and misuse of peaceful nuclear technologies to make nuclear weapons. While safety of nuclear plants and disposal of radioactive waste are important issues, this paper analyzes the latter two issues. In addition, it addresses two under-examined risks: military attacks on nuclear facilities and the effects on security alliances and conventional arms buildups as more countries seek to

  17. Non-conventional energy and propulsion methods

    International Nuclear Information System (INIS)

    Valone, T.

    1991-01-01

    From the disaster of the Space Shuttle, Challenger, to the Kuwaiti oil well fires, we are reminded constantly of our dependence on dangerous, combustible fuels for energy and propulsion. Over the past ten years, there has been a considerable production of new and exciting inventions which defy conventional analysis. The term non-conventional was coined in 1980 by a Canadian engineer to designate a separate technical discipline for this type of endeavor. Since then, several conferences have been devoted solely to these inventions. Integrity Research Corp., an affiliate of the Institute, has made an effort to investigate each viable product, develop business plans for several to facilitate development and marketing, and in some cases, assign an engineering student intern to building a working prototype. Each inventor discussed in this presentation has produced a unique device for free energy generation or highly efficient force production. Included in this paper is also a short summary for non-specialists explaining the physics of free energy generation along with a working definition. The main topics of discussion include: space power, inertial propulsion, kinetobaric force, magnetic motors, thermal fluctuations, over-unity hat pumps, ambient temperature superconductivity and nuclear battery

  18. Nuclear energy and the responsibilities of the Atomic Energy Board

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1980-01-01

    The paper discusses nuclear energy and the responsibilities of the previous Atomic Energy Board, (now the Atomic Energy Corporation) of South Africa in this respect. The paper starts by giving a brief introduction to the Atomic Energy Board, its organization and its functions. Research is undertaken in various fields such as the exploitation of nuclear fuels, radiobiology, radioisotopes, etc. Certain activities of the Board was also more directly related to Koeberg. The paper covers four of these areas, namely the early studies of the feasibility of introducing nuclear power in South Africa; the services involving the Board's special expertise in certain areas which Escom makes use of; the regulatory function and the preparation for handling and disposal of radioactive waste

  19. Nuclear fission energy: the international scene and the outlook for Italy

    International Nuclear Information System (INIS)

    Monti, S.

    2008-01-01

    Because of concerns about the environment, energy security and energy costs, fission nuclear energy is gaining ground again around the world. In Italy, the research community can help relaunch the national nuclear programmes by providing advanced training, recruiting young engineers and researchers for RD activities, and furthering an immediate cooperation of the Italian system in the principal European and international projects on sustainable nuclear energy [it

  20. For a rational energy transition based on nuclear energy

    International Nuclear Information System (INIS)

    Chalmin, Philippe

    2014-06-01

    After having recalled the meaning of the concept of energy transition, and stated that this concept is a fuzzy one, this paper addresses the issue of the future of energy through the concept of Energy returned on Energy invested (EROI). It discusses this approach by outlining that energy is the initial driver of economy, and by showing that only hydroelectricity, coal, nuclear and wind energy have a sufficient return rate, and that shale gas is an energy source for the short and medium term. Then, based on data related to world energy resources and consumption, to electric power production from various sources, to pollution health impacts, to electricity prices for industries and for households, it discusses the sustainability of the energy mix regarding energy reserves, health issues, and economic issues. Some examples (Spain, Germany) illustrate economic problems faced by some renewable energies. Finally, the authors outline that, thanks to its nuclear policy, France is the western country which is the most committed in energy transition. Some proposals are made to support nuclear energy, to reduce the use of fossil energies, to launch an ambitious research policy (on energy storage, on photovoltaic energy, on CO 2 hydrogenation, on hydrogen as a fuel), in favour of energy mixes decided at national levels in Europe

  1. Abusive use of nuclear energy - A definition

    International Nuclear Information System (INIS)

    Ungerer, W.

    1975-01-01

    Abusive use of nuclear energy is mainly defined as its use for explosives where one has to distinguish between the use on a political and on a sub-national level. On a political level the use of nuclear materials for nuclear weapons is considered to be an abuse, whereas the use of nuclear explosives for peaceful uses, e.g. construction of channels and caverns, is only permissible when the nuclear explosions are carried out under suitable international supervision. The supervision is supposed to guarantee that the nuclear material is not used for weapons. On the sub-national level the use of nuclear energy is taken to be abusive if it serves explosive purposes or purposes other than declared as non-explosive. Those who take away nuclear materials for unknown purposes arouse suspicion that they use it for the manufacture of nuclear explosives or that they either use it or intend to use it for blackmail. (orig./LN) [de

  2. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  3. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  4. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  5. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  6. India's nuclear energy programme and future power need

    International Nuclear Information System (INIS)

    Pal, M.K.

    2010-01-01

    Critics of the recently negotiated 123 Nuclear Agreement between India and the United States of America often cite its retrograde effects on India's longstanding policy of non-alignment in foreign relations. The major part of this article will, therefore, is devoted to various aspects of DAE's performance, areas and problems that need more attention, their future plan on stepping up the production of nuclear energy by a big factor beyond their indigenous reach, and the consequent imperative and compulsion of opening the doors to the international market for bulk purchases. India's access to the international market for nuclear energy was barred because of our refusal to sign the nuclear non-proliferation treaty (NPT). Hence, when George Bush, ex-President of U.S.A., offered to sign a bilateral treaty with India, opening the door for nuclear and other strategic co-operation, the offer was welcome by the DAE and the Government of India with open arms. However, obligations under the rules of the International Atomic Energy Agency (IAEA), of which India is a member, still required applying to the Body for their approval so that India could approach the Consortium of nuclear supplier countries for their agreement to do business with India without raising any hindrance arising from NPT and Comprehensive Test Ban Treaty (CTBT)

  7. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  8. INIS: database on peaceful uses on nuclear energy

    International Nuclear Information System (INIS)

    Cianfarani, Michela

    2010-01-01

    The International Atomic Energy Agency (IAEA) has always paid great attention to the distribution of information related to non-military uses of nuclear energy and technology. The organizational structure in charge of the information management within the IAEA is the INIS (International Nuclear Information System) and Nuclear Knowledge Management Section. Since its establishment in 1970, INIS implemented a completely decentralized computer system which each member country can actively contribute to. Due to its decentralized structure and the active participation of the member states, INIS developed through the years the most comprehensive database of non-military uses of nuclear energy and technology. This dissertation is a Thesis in Information retrieval at Department of Library sciences, at 'La Sapienza' University of Rome, Italy. After an historical excursus on INIS database, this work considers different approaches and methods to cataloguing and indexing, through the analysis of INIS Reference Series and the INIS Thesaurus. The last part of the dissertation is dedicated to the software data entry WINFIBRE, which the author used during her collaboration with the Italian Liaison Office at ENEA.

  9. Annual report of the Japan Atomic Energy Research Institute for fiscal 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) promotes some researches such as neutron science research, light quantum/synchrotron radiation science research, radiation application research, science research, advanced basic research, and so on, based on nuclear energy R and D and contributing to general development on scientific technology, along the Long-term program on research, development and application of nuclear energy' established on June, 1994, as a general organization on nuclear energy R and D in Japan. And, as an R and D on advanced energy system bringing breakthrough on nuclear energy technology, JAERI also promotes research on future type energy system, R and D on nuclear fusion, and trial research on high temperature engineering. Furthermore, JAERI progresses research on safety and health physics, as occupying both fields of general nuclear energy science and nuclear energy. In addition, by carrying out not only interdisciplinary cooperation in Japan but also versatile international one, various research assisting business and effective R and D are promoted. Here were described in details in fiscal year 2000, on 6 items on the neutron science research (SR), 13 items on light quantum/radiation light SR, 13 items on radiation application SR, 6 items on matter SR, 3 items on environment SR, 19 items on advanced basic SR, and so on. (G.K.)

  10. Progress report 2005-2007 - Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2008-01-01

    This progress report presents the results of the R and D center of IPEN in accordance with the main programs: Radiopharmacy; Application of Ionizing Radiations; Nuclear Science and Technology; Nuclear Reactors and Fuel Cycle; Environmental Science and Technology; Renewable Energies; Materials and Nanotechnology; Biotechnology; Lasers Technology and Education

  11. Nuclear energy and Ecuadorian agriculture development

    International Nuclear Information System (INIS)

    Molineros Andrade, J.

    1979-09-01

    The Ecuadorian Atomic Energy Commission has elaborated a plan for development of nuclear energy, the construction of a 1-3 MW Nuclear Reactor for Research and production of radioisotopes and of the related laboratories. Agriculture is a very important part of this plan, in the following areas: genetics, irrigation, plant and animal nutrition and metabolisms, and pest and disease control. Ecuadorian agriculture institutions have also been considered in this plan. (Author)

  12. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  13. Japanese government makes the first step of the nuclear energy policy. The 'Nuclear Power Nation Plan' that shows the future of the nuclear energy policy of Japan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2006-01-01

    The Nuclear Energy Subcommittee of the METI Advisory Committee deliberated concrete actions for achieving the basic goals of the framework for nuclear energy policy, namely 1) continuing to meet at least 30 to 40% of electricity supply even after 2030 by nuclear power generation, 2) future promoting the nuclear fuel cycle, and 3) aiming at commercializing practical FBR cycle. In August 2006, the subcommittee recommendations were drawn up as a 'Nuclear Energy National Plan'. This report includes 1) building new nuclear power plants in liberalized electricity market, 2) appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, 3) promoting nuclear fuel cycle and strategically reinforcing of nuclear industries, 4) early commercialization of FBR cycle, 5) assuming ample technical and human resources to support the next generation, 6) supporting for international development of Japan's nuclear industry, 7) positive involvement in creating an international framework to uphold both non-proliferation and the expansion of nuclear power generation, 8) building trust between government and local communities through detailed communication and 9) reinforcement of measures for radioactive waste disposal. (S.Y.)

  14. Multi-component nuclear energy system to meet requirement of self-consistency

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, Vladimir; Shmelev, Anotolii; Korovin, Yorii

    2000-01-01

    Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements - energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching Multicomponent Self-Consistent Nuclear Energy System with unlimited fuel resources, zero radioactivity release and high protection against uncontrolled proliferation of nuclear materials. (author)

  15. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  16. IAEA support of international research and development of materials for sustainable energy applications

    International Nuclear Information System (INIS)

    Zeman, Andrej; Kaiser, Ralf; Simon, Aliz

    2013-01-01

    Full-text:The key mandate of the International Atomic Energy Agency (IAEA) is to promote the peaceful application of nuclear science and technology, verification as well as nuclear safety in the world. This includes a number of activities which aim to support the Member States and stimulate international cooperation in order for sustainable development. During the last 35 years, a well-established mechanism called the Coordinated Research Projects (CRP) has been effectively used to stimulate international research and scientific interaction among the Member States, covering various topics in the nuclear science and technology. Besides direct support of, so called coordinated research, the IAEA is also involved in organizing a number of highly specific international conferences and technical meetings which help to provide a broader platform for the specialist and experts in dedicated areas of nuclear science and technology. In view of support for renewable energy and its application, the IAEA organized series of meetings in 2009 (IEA France), 2010 (UQTR Canada) and 2011 (ANL USA) in order to discuss the scientific and technical issues of particular of national research initiatives related to the hydrogen storage and conversion technologies. All selected outputs of the meetings were published in a technical document publication series which are available to all member states. More recent initiatives are focus on the key nuclear techniques which are extremely valuable in research and development of new innovative materials, methods and technologies, characterization and performance testing of functional materials for innovative energy technologies and their application in sustainable energy sources (nuclear and non-nuclear). It is also important to underline that these programmatic activities are an integral part of the IAEA program on the Road to Rio+20: Applying Nuclear Technology for Sustainable Development. The paper summarizes the IAEA actions relevant to the

  17. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  18. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  19. Measurement of 90Sr concentrations in the environment of Serpong Nuclear Energy Research Establishment

    International Nuclear Information System (INIS)

    Syarbaini; Yatim, S.; Untara

    2000-01-01

    The activity of 90 Sr have been measured in surface soil and river sediment samples collected in 1996 from the environment of the nuclear Energy Research Establishment (PPTN) of Serpong, Indonesia. The objective of research was to evaluate the existence of 90 Sr in the environment as impact of nuclear activities in the PPTN Serpong. Strontium-90 was determined by a radiochemical separating method and counting its daughter(90Y), with a low background beta counter. The results showed that the 90 Sr concentration were obtained in the range of 0.10 to 0.27 Bq kg-1 with average 0.19 Bq kg-1, dry weight. The activity ratio of 90Sr to 137Cs were obtained in the range of 3-6, that closed to the ratio for those radionuclides originate from fallout. From these results, it was concluded that 90 Sr in the environment of the PPTN Serpong was brought mainly by the fallout due to the nuclear weapon test explosion in the atmosphere

  20. Status and prospects of nuclear energy development in Vietnam

    International Nuclear Information System (INIS)

    Tan, Vuong Huu

    2006-01-01

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  1. Status and prospects of nuclear energy development in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2006-04-15

    In Vietnam, nuclear energy has been used in non-power applications for more than 80 years. Health care is a field of the most popular applications of nuclear energy. Every year, hundreds of thousands of people have been diagnosed and treated using nuclear technologies such as radiotherapy, nuclear medicine. In agricultural sector, radiation mutation breeding techniques have been used successfully in creating high quality varieties of rice, soybean, and have made an active contribution in the food security program of the country. The radiation technology has been applied in preservation and pasteurization of some kinds of food, and in production of bio-promoters, hydro gels, etc. The nuclear techniques such as NDT, NCS, and TRACER have been applied in various industries, geology, environment, etc. Recently, the TRACER technique has been used in the management and exploitation of groundwater in Hochiminh City and the Capital of Hanoi. However, effectiveness and scale of non-power applications of nuclear energy is still moderated, does not meet the potential and demand. The studies of nuclear power introduction to Vietnam been carried out for many years and show its necessity and feasibility for the country. Awareness of the advantages of nuclear energy utilization, the Vietnam Government assigned the Ministry of Science and Technology to formulate the long-term strategy for peaceful utilization of nuclear energy in co-operation with other governmental agencies. On 3rd of January 2006, the Prime Minister has approved the long-term strategy for peaceful utilization of nuclear energy. The goal of the strategy is to set up and develop a nuclear technology industry with high contribution to the socio-economic development as well as the enhancement of the science and technology capability of the country. In order to implement the strategy, main solutions have been proposed: Strengthening and perfecting the organizational and management system; Formulation of nuclear legal

  2. Increasing reliability of nuclear energy equipment and at nuclear power plants

    International Nuclear Information System (INIS)

    Ochrana, L.

    1997-01-01

    The Institute of Nuclear Energy at the Technical University in Brno cooperates with nuclear power plants in increasing their reliability. The teaching programme is briefly described. The scientific research programme of the Department of Heat and Nuclear Power Energy Equipment in the field of reliability is based on a complex systematic concept securing a high level of reliability. In 1996 the Department prepared a study dealing with the evaluation of the maintenance system in a nuclear power plant. The proposed techniques make it possible to evaluate the reliability and maintenance characteristics of any individual component in a nuclear power plant, and to monitor, record and evaluate data at any given time intervals. (M.D.)

  3. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  4. How competitive is nuclear energy?

    International Nuclear Information System (INIS)

    Keppler, J.H.

    2010-01-01

    The economic competitiveness of nuclear energy will be crucial for determining its future share in world electricity production. In addition, the widespread liberalization of power markets, in particular in OECD countries, reinforces the role of commercial criteria in technology selection . The recently published IEA/NEA study on Projected Costs of Generating Electricity: 2010 Edition (IEA/NEA, 2010) provides important indications regarding the relative competitiveness of nuclear energy in OECD member countries as well as in four non-OECD countries (Brazil, China, Russia and South Africa). The results highlight the paramount importance of discount rates and, to a lesser extent, carbon and fuel prices when comparing different technologies. Going beyond this general finding, the study also shows that the relative competitiveness of nuclear energy varies widely from one major region to another, and even from country to country. While the study provides a useful snapshot of the costs of generating electricity with different technologies, it does not provide an absolute picture of the competitiveness of nuclear energy. Like any study, Projected Costs of Generating Electricity makes a number of common assumptions about discount rates as well as carbon and fuel prices. In addition, its calculations are based on a methodology that is referred to as the levelised cost of electricity (LCOE), which assumes that all risks are included in the interest or discount rate, which determines the cost of capital. In other words, neither the electricity price risk for nuclear and renewables, nor the carbon and fuel price risk for fossil fuels such as coal and gas, receive specific consideration. The decisions of private investors, however, will depend to a large extent on their individual appreciations of these risks. The competitiveness of nuclear energy thus depends on three different factors which may vary greatly from market to market: interest rates, carbon and fuel prices, and

  5. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  6. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  7. Nuclear Energy System Department annual report. (April 1, 2002 - March 31, 2003)

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Shibata, Keiichi; Kugo, Teruhiko

    2003-09-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2002 (April 1, 2002 - March 31, 2003). The Department has carried out researches and developments (R and Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R and Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R and Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities. The activities of the research committees to which the Department takes a role of secretariat are also summarized. (author)

  8. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  9. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  10. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  11. Nuclear Energy in Central Europe 98, Proceedings

    International Nuclear Information System (INIS)

    Ravnik, M.; Jencic, I.; Zagar, T.

    1998-01-01

    Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 63 articles from Slovenia, sorounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Nuclear Methods, Reactor Physics, Thermal Hydraulics, Structural Analysis, Probabilistic Safety Assessment, Severe Accidents, NPP Operation and Nuclear Waste disposal

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  13. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  14. Time of glory and cultivating : 30 years with nuclear energy

    International Nuclear Information System (INIS)

    Cha, Jong Hui

    1994-09-01

    This autobiography describes the time of studying on nuclear energy. It tells us the story of dedicated life for research on nuclear energy for 30 years. It includes his studying abroad and studying, solar heat age, the first safety test of nuclear reactor, time of glory and trial another beginning, a speech in Malaysia and remembrance of nuclear energy for 50 years.

  15. Time of glory and cultivating : 30 years with nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jong Hui

    1994-09-15

    This autobiography describes the time of studying on nuclear energy. It tells us the story of dedicated life for research on nuclear energy for 30 years. It includes his studying abroad and studying, solar heat age, the first safety test of nuclear reactor, time of glory and trial another beginning, a speech in Malaysia and remembrance of nuclear energy for 50 years.

  16. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  17. The nuclear energy conflict: A scientific solvable problem?

    International Nuclear Information System (INIS)

    Arts, Fieke.

    1993-01-01

    The aim of the study on the title subject is to inventorize opinions and changes of opinions of a group involved scientists and technicians on the subject of nuclear energy and to determine the underlying attitudes that cause the changes of opinion. Quantitative data are compiled from postal surveys and qualitative data from in-depth interviews. In part 1 of this report a general and overall introduction is given on the subject nuclear energy. In part 2 the discussions that have taken place on three nuclear energy subjects (radiation dose standards and risks, the energetic efficiency of a light water reactor, and the costs of nuclear energy are summarized. Examples of conflicting information and opinions are given. In the last chapter of part 2 the theoretical framework and research method for this study are outlined. In part 3 the actual survey is described: in chapter 11 the research method, in chapter 12 the results of the surveys and interviews and the conclusions. In chapter 13 the complete texts of the in-depth interviews with 16 nuclear energy experts are presented. 10 figs., 32 tabs., 1 appendix

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  19. Nuclear energy in Asia and regional co-operation

    International Nuclear Information System (INIS)

    Ishii, M.

    1997-01-01

    There is increasing concern in East Asia about regional cooperation in the field of nuclear power. At the APEC conference in Osaka in 1995, APEC (Asia Pacific Economic Cooperation) established an Energy Research Center. The center has started to perform joint research forecasts on energy supply and demand for the region. Japan proposed the inauguration of a Conference on Nuclear Safety in Asia at the Moscow Nuclear Energy Summit in 1996. The first conference was held in Tokyo that year. This year, the conference will be held in Seoul. Japan's Atomic Energy Commission sponsors the International Conference for Nuclear Cooperation in Asia every year. This year marks the eighth conference. The outstanding feature of this year's conference was that so many countries stressed regional cooperation. South Korea proposed the installation of a regional online radiation monitoring system. The Philippines asserted the need for a cooperative mechanism on the lines of ASIATOM. Why is so much concern now being focused on nuclear power cooperation in East Asia? What kind of regional cooperation is necessary, and what kind is possible? What are the unique features of nuclear power cooperation in East Asia? These are the points addressed in this paper. (author)

  20. The Nuclear Energy Factor In Indian Politics

    Directory of Open Access Journals (Sweden)

    A. A. Boyko

    2017-01-01

    Full Text Available Nuclear energy is a key branch of the world power system. The nuclear energy development is viewed by India as one of the ways to resolve the problem of the energy supply. In 2008 the country gained more opportunities for developing nuclear power sector and solving the national power deficit problem after NSG lifted restrictions on nuclear trade. This resulted in foreign companies emerging on the Indian nuclear market. In 2011 after the major emergency at Fukushima Daiichi Nuclear Power Plant in Japan India faced numerous anti-nuclear protests backed by NGOs, including those with foreign funding, and political parties. The article deals with the question of the political role this anti-nuclear opposition plays in India. According to some researchers the protests are organized by the competitors in order to compromise the business of a Russian company Rosatom in India. However, such demonstrations are spread throughout the country and directed against the competitors of Rosatom as well. The article comes to conclusion that the protests are just a reflection of the political fights in India where nuclear energy is a significant political factor.

  1. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  2. The nuclear non-proliferation international system before the TNP revision conference (1995)

    International Nuclear Information System (INIS)

    Biad, A.

    1996-01-01

    This document described the international cooperation on nuclear non-proliferation. It consists of different agreements which aim at a pacific use of nuclear energy. However it is shown that many difficulties occurred during the non-proliferation treaty. Questions on equilibrium between control and cooperation, on the link between nuclear weapons reduction and countries equipped with the weapon, on the security for non-equipped countries are separately discussed. (TEC)

  3. Consequences arising for research reactor operation from the planned amendment of the German atomic energy act (AtG) and atomic energy policy. Germany soon to be a third-world country in nuclear research?

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    In the opinion of Dr. Wilfried Krull from Geesthacht, the Chairman of the German Research Reactor Trades Union, there is a great danger of the Federal Republic of Germany falling to the level of a third-world country as far as nuclear research is concerned. He says that it is a matter of urgency for binding exceptions from the general restrictions applicable to nuclear power stations to be incorporated into the opt-out amendment to nuclear law tabled by Juergen Trittin, the Minister for Environmental Affairs. He says that prohibition of reprocessing of spent fuel elements constitutes a violation of the surrender treaties concluded with the USA as part of non-proliferation. Furthermore, he states that a ban on reprocessing of spent nuclear fuel from research and training reactors is counterproductive. He says that there would be a particular danger if the limitation of research reactors to a rating of one megawatt, which Trittin has in the first instance planned in an initial draft law, were to be implemented in the form of a regulation. At that point, he claims, Germany would, as far as nuclear medicine (including cancer therapy) and modern technical inspection procedures (non-destructive, of materials) are concerned, become an importing country. (orig.) [de

  4. Progress report 2011-2013 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2014-01-01

    This progress report presents the results of the R&D center of IPEN in accordance with the main programs: Lasers Technology, Applications of Ionizing Radiations, Biotechnology, Renewable Energies, Radiopharmacy, Nuclear Science and Technology, Environmental Science and Technology, Nuclear Reactors and Fuel Cycle, Materials and Nanotechnology, Nuclear Safety, Education, Brazilian Multipurpose Reactor and Scientific and Technical Production

  5. Progress report 2008-2010 - Brazilian Energy and Nuclear Research Institute - IPEN

    International Nuclear Information System (INIS)

    2011-01-01

    This progress report presents the results of the R and D center of IPEN in the areas of: Lasers Technology; Renewable Energies; Nuclear Reactors and Fuel Cycle; Applications of Ionizing Radiations; Nuclear Science and Technology; Materials and Nanotechnology; Environmental Science and Technology; Radiopharmacy; Nuclear Safety; and Education. Also presents the Technical and Scientific Production od the center

  6. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  7. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  8. Proceedings of the International Conference on Access to Civil Nuclear Energy

    International Nuclear Information System (INIS)

    2010-01-01

    Today a growing number of states are considering to civil nuclear power to meet their energy needs, in a context of spiraling fossil fuel prices and the drive to combat climate change. France's position is that the peaceful use of nuclear power should not be confined to a handful of states that already hold the technology. At the same time, though, it is essential - both for the countries under consideration and for the international community as a whole - that any country undertaking a civil nuclear programme is not only willing but also capable of meeting essential requirements regarding safety, security, non-proliferation and protection of the environment for future generations. Similarly, the countries in question are confronted with the challenges of finding financing, obtaining access to the technology and the latest research, and training people to satisfactorily conduct their projects. This is why France has expressed its willingness to assist any country wishing to use nuclear technology for peaceful purposes which fully abide by their non proliferation obligations. The International Conference on Access to Civil Nuclear Energy, to be held in Paris on 8 and 9 March 2010, addresses this goal, namely to promote the peaceful and responsible use of nuclear power. It aims to enable debate on every aspect of developing a nuclear programme and on ways of using bilateral and multilateral cooperation to help countries wishing to embark on such a course to fulfill their international obligations. It will provide for a discussion forum for all of the stakeholders: government policy-makers, executives from the international organisations involved in drawing up and monitoring compliance with the regulatory framework, the managers of industrial companies in the sector and of financial establishments, the heads of research and training bodies, and qualified public figures involved in the debate. The conference programme includes several types of sessions: - Opening and

  9. Estimation of the fiscal year 1985 expenditures in nuclear energy relation

    International Nuclear Information System (INIS)

    1985-01-01

    In Japan, the electric power by nuclear energy accounts for about 20 % of the total power at present. Then, radiation is utilized extensively in such fields as industries, agriculture and medicine. The expenditures (budgets) estimated for the fiscal year 1985 are about 343.8 billion yen plus contract authorization limitation about 146.7 billion yen. In connection with the expenditures estimation (of which a breakdown is given in tables), the research and development plans for nuclear energy relation for fiscal year 1985 are presented: strengthening in nuclear energy safety, promotion of nuclear power generation, establishment of the nuclear fuel cycle, development of advanced power reactors, research on nuclear fusion, promotion of radiation utilizations, strengthening in the research and development infrastructure, promotion of international cooperation, etc. (Mori, K.)

  10. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  11. The Gulf Nuclear Energy Infrastructure Institute (GNEII) Four Years On

    International Nuclear Information System (INIS)

    Finch, Robert J.; Mohagheghi, Amir H.; Solodov, Alexander; Beeley, Philip A.; Boyle, David R.

    2014-01-01

    Introduction: What is GNEII? • Regionally based Institution → human resource capability → Future decision makers → managers & regulators. • Education & Development → Nuclear energy infrastructure → Integrated safeguards, safety, and security (3S) → Nuclear power fundamentals. • Strategic effort → Coordinated partnership → Responsible national nuclear energy program → Regional context. Why GNEII? • Build indigenous human resources → Education, Research, Technical capacity → Integrated 3S Systems Approach - coupled with - Nuclear Energy Infrastructure. • GNEII Addresses a Need → Increased nuclear power demand → Regional Nuclear Infrastructure → GNEII is a sustainable mechanism for developing a responsible nuclear energy program

  12. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  13. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  14. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  15. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  16. European Nuclear Young Generation. Position Paper on Nuclear Energy and the Environment

    International Nuclear Information System (INIS)

    2015-01-01

    predictable and provides base-load electricity with high reliability to the end-user. It is not subject to variations in fuel availability as uranium is largely available from diverse politically stable countries that secure its supply. Nuclear power is therefore a key asset for energy security and independence. Nuclear energy is part of the solution. The European Nuclear Society Young Generation Network believes that nuclear is part of the solution. Current nuclear power plants operate safely with negligible CO 2 emissions and provide energy to millions of people. Existing and future nuclear reactors will help humanity to overcome energy challenges whilst respecting the environment. Research is still on-going for more efficient use of nuclear fuel and the transmutation of high activity long-term waste. These objectives are carried out by the promising implementation of Generation IV of nuclear power plants with commercial prospects by 2030-2040. Research on nuclear fusion such as the ITER project aims to provide an almost inexhaustible source of energy while suppressing the issue of handling long-lived radioactive waste. This is the future of the nuclear industry. Our belief is that fighting climate change cannot discard, on ideological background and judgment, such promising technologies. It is our duty to inform the public in an objective and scientific way of the benefits of nuclear power. COP21 is a unique opportunity to internationally develop a low-carbon society in which nuclear power will have a key role to play. (authors)

  17. Nuclear instrument maintenance and technical training in Nuclear Energy Unit

    International Nuclear Information System (INIS)

    Mohamad Nasir Abdul Wahid

    1987-01-01

    Instrument maintenance service is a necessity in a Nuclear Research Institute, such as the Nuclear Energy Unit (NEU) to ensure the smooth running of our research activities. However, realising that maintenance back-up service for either nuclear or other scientific equipment is a major problem in developing countries such as Malaysia, NEU has set up an Instrumentation and Control Department to assist in rectifying the maintenance problem. Beside supporting in house activities in NEU, the Instrumentation and Control Department (I and C) is also geared into providing services to other organisations in Malaysia. This paper will briefly outline the activities of NEU in nuclear instrument maintenance as well as in technical training. (author)

  18. Analysis and design of nuclear energy information systems

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Sriyana; Arief Tris Yuliyanto; Wiku Lulus Widodo

    2015-01-01

    Management of research reports and activities of the Center for Nuclear Energy System Assessment (PKSEN), either in the form of documents and the results of other activities, are important part of the series of activities PKSEN mission achievement. Management of good documents will facilitate the provision of improved inputs or use the maximum results. But over the past few years, there are still some problem in the management of research reports and activities performed by PKSEN. The purpose of this study is to analyze and design flow layout of the Nuclear Energy Information System to facilitate the implementation of the Nuclear Energy Information System. In addition to be used as a research management system and PKSEN activities, it can also be used as information media for the community. Nuclear Energy Information System package is expected to be ''one gate systems for PKSEN information. The research methodology used are: (i) analysis of organizational systems, (ii) the analysis and design of information systems; (iii) the analysis and design of software systems; (iv) the analysis and design of database systems. The results of this study are: had identified and resources throughout the organization PKSEN activation, had analyzed the application of SIEN using SWOT analysis, had identified several types of devices required, had been compiled hierarchy of SIEN, had determined that the database system used is a centralized database system and had elections MySQL as DBMS. The result is a basic design of the Nuclear Energy Information System) which will used as a research and activities management system of PKSEN and also can be used as a medium of information for the community. (author)

  19. Nuclear non-proliferation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This patent describes the treaty on the non-proliferation of nuclear weapons which is the corner-stone of an international non-proliferation regime which has grown to embrace the overwhelming majority of countries in the world in the period since the Treaty. The other elements of the regime include, first of all, the safeguards system of IAEA-which operates to prevent the diversion of nuclear materials to military or other prohibited activities and must be accepted by all non-nuclear-weapon parties to the Treaty and, secondly, the Antarctic Treaty, the Treaty for the Prohibition of Nuclear Weapons in Latin America (Treaty of Tlatelolco) and the south Pacific Nuclear Free zone Treaty (Treaty of Rarotonga)-which serve to extend the regime geographically. The last two Treaties require safeguards agreements with IAEA. In addition, the Treaty of Tlatelolco contains provisions establishing the agency for the Prohibition of Nuclear Weapons in Latin America and the Caribbean to ensure compliance

  20. Nuclear Non-Proliferation and Export Control in the Republic of Croatia

    International Nuclear Information System (INIS)

    Valcic, I.; Prah, M.; Mikec, N.

    2006-01-01

    In accordance with its internationally accepted obligations, the Republic of Croatia is actively implementing principles of non-proliferation and export control of nuclear materials and/or equipment. The article deals with treaties, conventions, agreements and other international arrangements that are creating certain obligation for Republic of Croatia related to nuclear non-proliferation. The most important are the Treaty on the Non-proliferation of Nuclear Weapons, the Convention on the Physical Protection of Nuclear Material, the Agreement between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards with Protocol, the Protocol Additional to the Agreement Between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards, the Comprehensive Nuclear Test-Ban Treaty, the NSG Guidelines for the Export of Nuclear Material, Equipment and Technology and NSG Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology. In addition the article describes a national regulative framework, the basis for conducting activities in nuclear material control, export control of dual-use items as well as non-proliferation of the weapons of mass destruction. Details are given about the Nuclear Safety Act, the Act on Liability for Nuclear Damage, the Act on Export of Dual-Use Items, the Decree on the List of Dual-Use Items, the Law on Production, Repair and Trade in Arms and Military Equipment and the Decree specifying goods subject to export and import licenses. (author)

  1. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  2. Netherlands Energy Research Foundation Annual Report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This Annual Report includes a brief survey of the nuclear research activities of the Netherlands Energy Research Center (ECN) in Petten during 1987. They cover the following subjects: reactor safety, processing, storage and disposal of radioactive waste, advanced nuclear reactors, radiation protection, nuclear analysis, and contributions to the European thermonuclear-fusion research. (H.W.). 20 figs.; 18 fotos; 1 tab

  3. Basic research for nuclear energy. y Study on the nuclear materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, I H; Lee, H S; Jeong, Y H; Sung, K W; Han, J H; Lee, J T; Lee, H K; Kim, S J; Kang, H S; An, D H; Kim, K R; Park, S D; Han, C H; Jung, M K; Oh, Y J; Kim, K H; Kim, S H; Back, J H; Kim, C H; Lim, K S; Kim, Y Y; Na, J W; Ku, J H; Lee, D H

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs.

  4. Basic research for nuclear energy. y Study on the nuclear materials technology

    International Nuclear Information System (INIS)

    Kuk, I. H.; Lee, H. S.; Jeong, Y. H.; Sung, K. W.; Han, J. H.; Lee, J. T.; Lee, H. K.; Kim, S. J.; Kang, H. S.; An, D. H.; Kim, K. R.; Park, S. D.; Han, C. H.; Jung, M. K.; Oh, Y. J.; Kim, K. H.; Kim, S. H.; Back, J. H.; Kim, C. H.; Lim, K. S.; Kim, Y. Y.; Na, J. W.; Ku, J. H.; Lee, D. H.

    1996-12-01

    A study on the nuclear materials technologies which are necessary to establish the base for alloy development was performed. - The feasibility study on the application of Zircaloy scrap waste for hydrogen storage - The development of metal hydride battery for energy storage system - The establishment of transmission electron microscopy database for nuclear materials - The basic technology for the development of cladding materials for high burnup - The water chemistry technology for secondary system pH control and the photocatalysis technology for decomposition and removal of organics. - Improvement of primary component integrity of PWR by Zinc injection. (author). 175 refs., 58 tabs., 262 figs

  5. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  6. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  7. Assessing the risk of nuclear energy

    International Nuclear Information System (INIS)

    Letourneau, E.G.; McCullough, R.S.; Meyerhof, D.P.; Somers, E.; Waight, P.J.

    1981-01-01

    The current concern with diminishing supplies of non-renewable energy has brought into clearer focus the debate on the future of nuclear energy. Application of the risk assessment process to the biological effects of radiation is considered worthwhile so that the nature and order of the hazards entailed can be appreciated in the total context of the problem. The derivation of regulations and the process of cost-risk-benefit analysis are also discussed. In view of the widespread public concern and, on occasion, apprehension about the development of nuclear energy it has been thought useful to tabulate the elements of this concern so as to gain a fuller understanding of the manner in which the public perceives and weighs risks. (author)

  8. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  9. Strategy for a non-nuclear future

    International Nuclear Information System (INIS)

    Carlson, R.; Freedman, D.; Scott, R.

    1979-01-01

    The need for nuclear power may not be as great as the electric power industry has led the nation to believe, according to the authors. They argue that 64 of the 72 nuclear plants operating in the United States could be shut down immediately if the existing non-nuclear capacity of the electric power industry were fully utilized; and the remaining 8 plants could be phased out within a few years. They cite already-available alternative power sources that could guarantee the additional energy needed for a non-nuclear future. They state that the transition to a nuclear-free electric system could be implemented with little or no increased expense to consumers or taxpayers; that, in fact, elimination of all nuclear plants might actually be cheaper, given the rapid rise in nuclear construction costs as more and more new flaws are discovered or old ones acknowledged. The authors feel that environmental risks of nuclear power plant operation could be eliminated in exchange for a small, temporary increase in air pollution from coal- and oil-fired plants. The increase in sulfur dioxide and particulate pollution could be offset within several years by an accelerated program to install flue-gas scrubbing equipment. Suggestions for meeting a projected shortfall in future capacity are given. The authors also touch lightly on institutional barriers that would have to be overcome before phasing out nuclear power. 4 figures, 4 tables

  10. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  11. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  12. Energy and Nuclear Fuel Cycle in the Asia Pacific

    International Nuclear Information System (INIS)

    Soentono, S.

    1998-01-01

    Asia in the Asia Pacific region will face a scarcity of energy supply and an environmental pollution in the near future. On the other hand, development demands an increasing standard of living for a large number of, and still growing, population. Nuclear energy utilization is to be one of the logical alterative to overcome those problems. From the economical point of view, Asia has been ready to introduce the nuclear energy utilization. Asia should establish the cooperation in all aspects such as in politics, economics and human resources through multilateral agreement between countries to enable the introduction successfully. Although the beginning of the introduction, the selection of the reactor types and the nuclear fuel cycle utilized are limited, but eventually the nuclear fuel cycle chosen should be the one of a better material usage as well as non proliferation proof. The fuel reprocessing and spent fuel storage may become the main technological and political issues. The radioactive waste management technology however should not be a problem for a country starting the nuclear energy utilization, but a sound convincing waste management programme is indispensable to obtained public acceptance. The operating nuclear power countries can play important roles in various aspects such as problem solving in waste management, disseminating nuclear safety experiences, conducting education and training, developing the advanced nuclear fuel cycle for better utilization of nuclear fuels, and enhancing as well as strengthening the non-proliferation. It has to be remembered that cooperation in human resources necessitates the important of maintaining and improving the safety culture, which has been already practiced during the last 4 decades by nuclear community

  13. Nuclear energy prevents ecological disaster

    International Nuclear Information System (INIS)

    Gelman, S.

    1999-01-01

    Full text: The booklet containing 6 pages brings forth 10 arguments and facts called upon to convince the reader that the nuclear energy is the main if not the only means to avoid catastrophic ecological consequences caused by the increasing non-usage of the organic fuel. By the middle of the 2lst century the triple growth of the worldwide energy consumption will inevitably cause a significant increase Of CO 2 , NO 2 , SO 2 emission and reduction of oxygen content in the Earth atmosphere if it is satisfied as before due to the combustion of coal, petrol and gas. Significant changes of the environment are turning out to be a serious threat to the existence of mankind. Such dispiriting fact and some other negative factors inherent in the so-called 'fire' energy oppose to the remarkable advantages already demonstrated by the nuclear energy supposed to become the energy of the 21st century. The text will contain the tables and color pictures to further the perception of the material set forth in the booklet. (author)

  14. Strategic Culture and Energy Security Policy of South Korea: The Case of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, Taehyun

    2012-01-01

    The U. S. - ROK Civil Nuclear Cooperation Agreement highlights the dilemma of contemporary international non-proliferation regime. Non-Proliferation Treaty has represented an awkward balance between the ideal of nuclear energy and the reality of nuclear weapons. It is neither complete nor effective. It is not complete because it does not cover all the issues with respect to nuclear energy, which have become increasingly complex. Nuclear security, for example, is not an issue that it addresses, and it is precisely why President Obama called for the unprecedented Nuclear Security Summit. It is not effective. It has failed in preventing proliferation of nuclear weapons states, India, Israel, Pakistan and North Korea, who remain outside of the regime. An international regime is defined as 'a set of principles, norms, rules, and decision-procedures around which actors' expectations converge. The extents to which actors' expectations converge and forceful measures in the name of international community against any violation are justified will measure its effectiveness. NPT regime is sub-par on that. The world is in dire need of a comprehensive and integrated regime for nuclear energy regime, where proliferation, security, and safety concern are effectively addressed. South Korea, if it truly wants to become a key player in the field, has to be one of its architects. The ability to meet the challenge of revising Civil Nuclear Cooperation Agreement will show if it is a qualified architect

  15. Nuclear energy: the way ahead

    International Nuclear Information System (INIS)

    Fells, I.

    1981-01-01

    A report is given on a conference held at the Ditchley Foundation, Oxfordshire, entitled 'Nuclear energy: safety, future development and alternative strategies'. Among items discussed were; the current situation, the safety and licensing of power reactors, transport and storage of spent fuel, performance considerations, plant size, costs, problems specific to nuclear power in developing countries, and political considerations. The paradox that despite escalating oil prices and increasing anxiety about the political stability of the Arab oil producers, the nuclear power programme of the developed non-communist world is still in the doldrums was examined and it was felt that the biggest task facing the nuclear power industry is one of educating public and politicians in such a way that a balanced critical approach to the risks and benefits of nuclear power replaces uninformed emotional response. (U.K.)

  16. The ECVET toolkit customization for the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von [European Commission, Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport

    2015-04-15

    As part of its support to the introduction of ECVET in the nuclear energy sector, the Institute for Energy and Transport (IET) of the Joint Research Centre (JRC), European Commission (EC), through the ECVET Team of the European Human Resources Observatory for the Nuclear energy sector (EHRO-N), developed in the last six years (2009-2014) a sectorial approach and a road map for ECVET implementation in the nuclear energy sector. In order to observe the road map for the ECVET implementation, the toolkit customization for nuclear energy sector is required. This article describes the outcomes of the toolkit customization, based on ECVET approach, for nuclear qualifications design. The process of the toolkit customization took into account the fact that nuclear qualifications are mostly of higher levels (five and above) of the European Qualifications Framework.

  17. The ECVET toolkit customization for the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von

    2015-01-01

    As part of its support to the introduction of ECVET in the nuclear energy sector, the Institute for Energy and Transport (IET) of the Joint Research Centre (JRC), European Commission (EC), through the ECVET Team of the European Human Resources Observatory for the Nuclear energy sector (EHRO-N), developed in the last six years (2009-2014) a sectorial approach and a road map for ECVET implementation in the nuclear energy sector. In order to observe the road map for the ECVET implementation, the toolkit customization for nuclear energy sector is required. This article describes the outcomes of the toolkit customization, based on ECVET approach, for nuclear qualifications design. The process of the toolkit customization took into account the fact that nuclear qualifications are mostly of higher levels (five and above) of the European Qualifications Framework.

  18. The results of the investigations of Russian Research Center-'Kurchatov Institute' on molten salt applications to problems of nuclear energy systems

    International Nuclear Information System (INIS)

    Novikov, Vladimir M.

    1995-01-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research 'Kurchatov Institute' are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on a way of MS application to different nuclear energy systems

  19. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  20. Nuclear Energy Literature Review

    International Nuclear Information System (INIS)

    Simic, Z.; Wastin, F.

    2016-01-01

    In the light of five years after a major accident at the Fukushima Daiichi nuclear power plant it is interesting to make nuclear energy related literature review. There is a number of accidents related reports from all major international institutions (like the IAEA and OECD NEA) and research organizations have drawn conclusions and lessons to learn from this terrible accident. These reports are the result of expert and scientific analyses carried out during these five years and they present ideal sources for both understanding what has happened and what can be learned in order to avoid and mitigate effects of such events in the future. From a wider perspective it is also interesting to analyze the impact on research and development (R and D) activities. This literature review is performed with hope to gain some useful insights from the analysis of the volume and topics in all research activities related to the Fukushima accident and nuclear energy (NE) altogether. This kind of review should at least provide an overview of trends and provide base for better planning of future activities. This paper analyzes the published NE related research of over more than 50 years with focus on three major nuclear accidents (TMI, Chernobyl and Fukushima). It has been performed using Scopus tools and database, and mainly focuses on statistics related to the subjects, countries, keywords and type of publishing. It also analyses how responsive is nuclear energy related R and D regarding the volume and subjects, and how is that research spread among most active countries. Nuclear power accidents influence increase and change of research. Both accidents, Chernobyl and Fukushima had maximum share in all nuclear power related papers at similar yearly level (9 percent in 1991 and 12 percent in 2015 respectively). TMI peaked at the 2.5 percent share in 1982. Engineering is the most frequent subjects for TMI and cumulative NE related publishing. Medicine and environmental science subjects

  1. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  2. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  3. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  4. Nuclear energy policy and atomic energy law. Issues and developmental aspects

    International Nuclear Information System (INIS)

    Schmidt-Preuss, M.

    1998-01-01

    Nuclear energy policy and the atomic energy law recurrently have been a focal point of interest and an issue of political debate in Germany. However, this time the political debate is gaining a new dimension in the wake of the general elections held in September 1998 and the resulting change of government. The contribution compares aspects of the history of atomic energy research and nuclear technology with the current political situation and assesses the impacts of announced changes in government policy and legislation. (orig./CB) [de

  5. Crisis as opportunity. Implications of the nuclear conflict with Iran for the nuclear non-proliferation regime

    International Nuclear Information System (INIS)

    Meier, Oliver

    2014-01-01

    The conflict over the Iranian nuclear programme represents the greatest challenge for international efforts to prevent nuclear proliferation. For decades Iran has been violating obligations contained in its safeguards agreement with the International Atomic Energy Agency (IAEA) in order to become nuclear weapons capable. But what impact does the conflict over Tehran's nuclear programme have on the nuclear non-proliferation regime? In three areas there is significant overlap between efforts to find a solution with Iran and broader discussions about strengthening non-proliferation norms, rules and procedures: verification of civilian nuclear programmes, limiting the ability to produce weapons-grade fissile materials, and nuclear fuel supply guarantees. The nuclear dispute with Tehran is likely to have specific effects in each of these fields on the non-proliferation regime's norms, rules and procedures. The ninth NPT review conference, which will take place from 27 April to 22 May 2015, offers an opportunity to draw lessons from the nuclear conflict and discuss ideas for further strengthening the regime. Germany is the only non-nuclear-weapon state within the E3+3 group and the strongest proponent of nuclear disarmament. As a supporter of effective multilateralism, Berlin also bears a special responsibility for ensuring that steps to strengthen nuclear verification and control efforts in the talks with Iran also reflect the non-nuclear-weapon states' interest in disarmament and transparency on the part of the nuclear-weapons states.

  6. Crisis as opportunity. Implications of the nuclear conflict with Iran for the nuclear non-proliferation regime

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Oliver

    2014-11-15

    The conflict over the Iranian nuclear programme represents the greatest challenge for international efforts to prevent nuclear proliferation. For decades Iran has been violating obligations contained in its safeguards agreement with the International Atomic Energy Agency (IAEA) in order to become nuclear weapons capable. But what impact does the conflict over Tehran's nuclear programme have on the nuclear non-proliferation regime? In three areas there is significant overlap between efforts to find a solution with Iran and broader discussions about strengthening non-proliferation norms, rules and procedures: verification of civilian nuclear programmes, limiting the ability to produce weapons-grade fissile materials, and nuclear fuel supply guarantees. The nuclear dispute with Tehran is likely to have specific effects in each of these fields on the non-proliferation regime's norms, rules and procedures. The ninth NPT review conference, which will take place from 27 April to 22 May 2015, offers an opportunity to draw lessons from the nuclear conflict and discuss ideas for further strengthening the regime. Germany is the only non-nuclear-weapon state within the E3+3 group and the strongest proponent of nuclear disarmament. As a supporter of effective multilateralism, Berlin also bears a special responsibility for ensuring that steps to strengthen nuclear verification and control efforts in the talks with Iran also reflect the non-nuclear-weapon states' interest in disarmament and transparency on the part of the nuclear-weapons states.

  7. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  8. Statements on Energy from Nuclear Fusion

    International Nuclear Information System (INIS)

    The Energy Committee of the Royal Swedish Academy of Sciences

    2006-07-01

    The Royal Swedish Academy of Sciences (KVA) is an independent non-governmental organization, with expertise in most of the sciences as well as in the economical, social and humanistic fields. The KVA has appointed an Energy Committee that will summarize scientific knowledge on supply and use of energy over the coming fifty years. The Energy Committee has selected a number of subjects to be studied in some depth, one of these being nuclear energy from the fission process. The Energy Committee's key issues concerning nuclear energy: We have identified six key issues which require very careful analysis during the coming years. Safety remains a key issue. It is one of the major activities of OECD's Nuclear Energy Agency. 40 years of multilateral cooperation has led to improvements in the analysis and management of accidents and in the assessment of safety margins in the fuel cycle. In particular, attention is focused on ageing and structural integrity as the lifetime of reactors is extended to up to 60 years. The new Gen III reactors have improved safety features such as double containment, better separation of critical safety systems and improved possibilities to handle steam explosions and core meltdown. The Gen IV reactors will be designed with a goal to further improve safety features. Handling of the nuclear waste: Today, in most light water reactors, the fuel is used once only ('once through') and then sent directly to repositories. After some cooling time, the waste will be buried in underground repositories. Another important aspect is that a final decision for waste disposal is of great importance to the public's acceptance of any new nuclear ventures. The waste handling in future reactors is an important item for research and its solution will also influence how the waste from current reactors is managed. Non-proliferation: With increased use of nuclear energy, more countries may build up facilities for the whole fuel cycle, thus also, at least theoretically

  9. Overview of US nuclear energy initiatives

    International Nuclear Information System (INIS)

    McFarlane, H.

    2006-01-01

    The United States has embraced nuclear as an important component of its energy future. Triggered by successful passage of the Energy Policy Act in November 2005, four federal initiatives are enjoying some measure of initial success. The first energy authorization act in 13 years, the new legislation contains incentives for up to six new nuclear plants comparable to those for other clean energy sources. Once these incentives were codified, US utilities began to express interest in expanding the nuclear fleet. The Department of Energy's (DOE) push for new nuclear plants, called the 2010 Initiative, has been underway since 2002. Prior to last November, the Nuclear Regulatory Commission (NRC) had no official expressions of interest in building new nuclear plants. Since November, the NRC has been notified of interest in building at least 26 new advanced light water reactors, concentrated at existing nuclear sites in the rapidly growing Southeastern United States. In addition, most of the 103 currently operating plants are expected to obtain 20 year life extensions. Utilities, suppliers and the regulator have been increasing their staffs in anticipation of the new plant orders. Undergraduate nuclear engineering enrollment has surged to its highest level in more than 15 years. The Department of Energy is also moving ahead with its licensing application for a geologic repository at Yucca Mountain. Because exiting legislation limits the amount of spent fuel and nuclear waste that could be stored in the mountain, Congress, DOE and the nuclear industry have become interested in alternative management schemes for the repository. The major DOE initiative is the Global Nuclear Energy Partnership (GNEP), which would close the fuel cycle and introduce advanced fast reactors to manage the long-lived actinides. GNEP also has a major international component, with partnerships to provide reliable fuel supply worldwide to any nation with valid nonproliferation credentials. The United

  10. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  11. USP university students social representations and views on nuclear power as energy option

    International Nuclear Information System (INIS)

    Farias, Luciana A.; Favaro, Deborah I.T.

    2011-01-01

    The Nuclear Energy Research Institute (IPEN) is located on the campus of the University of Sao Paulo and has long been publishing nuclear science projects in order to improve public opinion and disseminate nuclear energy issues. However, few studies have investigated the perception of university students concerning nuclear energy. This study questioned whether the location of a nuclear research facility, as well as promotion of scientific projects, can positively influence student opinion when the nuclear research reactor is on campus and used purely for research purposes. This study further investigated the students' understanding of the terms 'nuclear energy' as well as their perception of the social issues involved. Free evocations of words were produced and collected starting from the stimulative inductor 'Nuclear Energy'. In this test, the interviewees are asked to associate five words and answer a questionnaire. A total of 124 students were interviewed for this study: 62 from the Chemistry, Pharmacy, Environmental Chemistry, Chemical Engineering and Nutrition Departments, 29 from the Oceanography Department and 33 from the Economics, Business Administration and Accounting Department. A total of 78% of the interviewed students answered that they had basic or average knowledge of nuclear energy, 46% claimed to have no knowledge of IPEN and the remainder students have answered that IPEN's activities were aimed at research in energy and production of radiopharmaceuticals, which shows little knowledge of the activities of the Institute. However, these students indicated Nuclear Energy as a strong for the diversification of energy sources. It should be noted that this study was undertaken before the nuclear accident caused by the 2011 Japan tsunami and earthquake. (author)

  12. Integrating Nuclear Energy to Oilfield Operations - Two Case Studies

    International Nuclear Information System (INIS)

    Robertson, Eric P.; Nelson, Lee O.; McKellar, Michael G.; Gandrik, Anastasia M.; Patterson, Mike W.

    2011-01-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  13. Between Shadow and Light: The Treaty on the Non-Proliferation of Nuclear Weapons Forty Years On

    International Nuclear Information System (INIS)

    Abdelwahab, Biad

    2010-01-01

    The NPT was negotiated during the Cold War period to prevent the emergence of new nuclear players by distinguishing between 'nuclear-weapon states' (NWS) which had carried out nuclear testing before 1 January 1967, that is the United States, Russia, the United Kingdom, France and China, and 'non-nuclear-weapon states' (NNWS). Under the NPT, the two groups of states commit to comply with a series of commitments formulated around 'three pillars': 1 - Non-proliferation: the NWSs undertake under Article I not to transfer nuclear weapons or control over such weapons and not in any way to assist, encourage or induce any NNWS to acquire them, while the NNWSs are bound under Article II to neither develop or acquire nuclear weapons or 'other nuclear explosive devices' nor to receive any assistance in that connection. 2 - Peaceful use of nuclear energy: Article IV guarantees the 'inalienable right' to 'develop research, production and use of nuclear energy for peaceful purposes without discrimination'. 3 - Nuclear disarmament: each state party to the treaty undertakes under Article VI 'to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race at an early date and to nuclear disarmament'. The treaty entered in force in March 1970 and has since become universal, with 189 states parties in May 2010. At five-year intervals, parties to the treaty convene review conferences in order to review the operation of the treaty, Article VIII(3). The 1975, 1985 and 2000 review conferences culminated in the adoption of a final declaration and the 1995 review conference decided to extend the treaty indefinitely. The preparatory committee (PrepCom) for the 2010 review conference, which met from April 2007 to May 2009, did not adopt any recommendations, in absence of a consensus on essential issues concerning the operation of the treaty. Hence the importance of this 8. review conference of the parties held in New York from 3 to 28 May 2010 in a

  14. Evaluating training and information to teachers on nuclear energy

    International Nuclear Information System (INIS)

    Le Bail, H.

    1994-01-01

    Teachers in Physics Sciences in French secondary level schools have received, during their formation, little information on radioactivity and nuclear energy; nevertheless, they have a serious knowledge of energy topics and are able to receive any nuclear-related information. INSTN (National Institute for Nuclear technology) provides teachers with annual sessions (two weeks) at Saclay research centre for complementary information on nuclear science with practical works. Information materials are also supplied

  15. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  16. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  17. Technology Platform on Sustainable Nuclear Energy - a report on the vision

    International Nuclear Information System (INIS)

    Potocnik, J.

    2008-01-01

    The aim of the report is to prepare the establishment of the Technology Platform on Sustainable Nuclear Energy (SNP-TP). The report puts forth a version of the short-term, medium-term and long-term development of nuclear fission technologies, whose goal it is to achieve sustainable nuclear power generation, significant improvement of its economic indices, and continuous safety improvement, and to prevent it from abuse. The document includes proposals for timescales and milestones of the development and deployment of potentially sustainable nuclear technologies and provisions for a harmonization of educational and training activities in all EU Member States and for innovation of their research infrastructures. For the development of nuclear it is vital that it gains public acceptance. Therefore it is necessary to support research in the safety of nuclear facilities, staff and public protection from ionizing radiation, handling of all kinds of nuclear waste, and inspection methods involving the public. The time plans proposed will form the backbone of the Strategic Research Agenda (SRA), which should help Europe keep its leadership position in nuclear power, both in the research domain and in the industrial domain. The report emphasizes that nuclear will hold a key position among European energy sources, and calls upon European countries to make all efforts to meet the vision for a sustainable nuclear energy in line with European Commission's Strategic Plan for Energy Technologies. (author)

  18. South Africa and nuclear energy - national and international legal aspects

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1987-01-01

    This article gives an exposition of the national and international legal aspects of what appears to be a technological triumph for South Africa. The nuclear policy, facilities, aims and capabilities of the country are described, as well as its nuclear energy program and development. When the Nuclear Energy Act 92 of 1982 was promulgated, a new internal legal dispensation commenced. The main objects of the act, powers and functions of the Atomic Energy Corporation of South Africa Ltd and the Council for Nuclear Safety are stated. South Africa's official viewpoint and attitude regarding the Nuclear Non-Proliferation Treaty, the advantages and obstades to South Africa's signature and ratification of the Treaty are discussed

  19. Can the future, world-wide energy supply be achieved without nuclear energy?

    International Nuclear Information System (INIS)

    Kugeler, K.

    1995-01-01

    In the future the world-wide energy demand is going to increase considerably. The use of nuclear energy will continuously grow if the demand of climate researchers for a reduction of the world-wide CO 2 emission is fulfilled and if the possible contribution of regenerative energy sources is assessed realistically. In the future a world-wide use of nuclear energy will be realised according to even higher safety standards. The modification of the German Atom Law, which determines the limitation of damage caused to the reactor plant for future reactors fulfils this demand. The efforts in the field of nuclear technical development will concentrate on the proof of the required safety properties. (orig.) [de

  20. NO global warming = YES nuclear energy. The International Nuclear Forum and the United Nations Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Cornish, Emma

    2000-01-01

    The nuclear industry sits along side the renewable energy sector in its role as a non carbon emitting technology. But persuading international political leaders of this fact presents a challenge. Generating electricity from nuclear fuel avoids at least 2 billion tonnes of carbon dioxide every year through its 16% share of world wide electricity generation. Nuclear energy is essential to minimising greenhouse gas emissions. This presentation highlights the main issues resulting from the climate change negotiations that are highly relevant to the industry; explains the activities of the International Nuclear Forum and our interaction with the delegates to the process; outlines future activities. The International Nuclear Forum (INF) was formed to provide a collective voice lobbying for nuclear at the climate change negotiations. It's internationally representative of the industry and comprises of: the Uranium Institute; the Nuclear Energy Institute; the Japan Atomic Industry Forum; the Canadian Nuclear Association; the European Nuclear Society, and Foratom. All are accredited non governmental observers to the negotiations of the United Nations Framework Convention on Climate Change