WorldWideScience

Sample records for non-newtonian viscous oscillating

  1. Negative wake behind bubbles in non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole

    1979-01-01

    Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...

  2. Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates

    International Nuclear Information System (INIS)

    Imal, M.; Pinarbasi, A.

    2004-01-01

    In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)

  3. A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow

    NARCIS (Netherlands)

    Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.

    1995-01-01

    A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra

  4. Dynamic characteristics of Non Newtonian fluid Squeeze film damper

    Science.gov (United States)

    Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.

    2016-09-01

    The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.

  5. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  6. Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.

    Science.gov (United States)

    Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia

    2018-01-01

    The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N  = 4.1 or 8.2 s -1 inducing transitional ( Re  = 499 or 1307) or turbulent ( Re  = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.

  7. Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Etemad, S Gh; Thibault, J; Hashemabadi, S H

    2003-10-01

    This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.

  8. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  9. Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid

    Science.gov (United States)

    Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová

    2017-09-01

    This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.

  10. Tidal interaction of black holes and Newtonian viscous bodies

    International Nuclear Information System (INIS)

    Poisson, Eric

    2009-01-01

    The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k 2 τ of 'Love quantities' that incorporate the details of the body's internal structure; k 2 is the tidal Love number, and τ is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k 2 τ is of order GM/c 3 for a black hole of mass M; it does not vanish, in spite of the fact that k 2 is known to vanish individually for a nonrotating black hole.

  11. Flocking particles in a non-Newtonian shear thickening fluid

    Science.gov (United States)

    Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan

    2018-06-01

    We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.

  12. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  13. Low-cost viscometer based on energy dissipation in viscous liquids

    Science.gov (United States)

    Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.

    2001-04-01

    We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.

  14. Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Javier Andrés Martínez

    2011-09-01

    Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.

  15. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

    Directory of Open Access Journals (Sweden)

    Dan Sui

    2018-04-01

    Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

  16. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  17. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.

    Science.gov (United States)

    Iwamatsu, Masao

    2017-07-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.

  18. Optimal contant time injection policy for enhanced oil recovery and characterization of optimal viscous profiles

    Science.gov (United States)

    Daripa, Prabir

    2011-11-01

    We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.

  19. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  20. Onset of Absolute Instability Induced by Viscous Dissipation in the Poiseuille-Darcy-Benard Convection of a Newtonian Fluid

    International Nuclear Information System (INIS)

    Brandão, P V; Alves, L S de B; Barletta, A

    2014-01-01

    The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number

  1. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Science.gov (United States)

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  2. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating.

    Directory of Open Access Journals (Sweden)

    Abid Hussanan

    Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.

  3. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    International Nuclear Information System (INIS)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    1998-01-01

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy close-quote s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. copyright 1998 The American Physical Society

  4. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  5. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  6. Non Newtonian gravity creeping flow

    International Nuclear Information System (INIS)

    Gratton, J.; Mahajan, S.M.; Minotti, F.

    1988-11-01

    We derive the governing equations for creeping gravity currents of non Newtonian liquids having a power law rheology, using a lubrication approximation. We consider unidirectional and axisymmetric currents. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. However, many solutions are closely analogous to those for Newtonian rheology; in particular the spreading relations can also be expressed as power laws of time, with exponents that depend on the rheological index. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found. We also derive solutions of the waiting-time type, as well as the ones describing steady flows from a constant source to a sink. General travelling wave solutions are given, and analytic formulae for a simple case are derived. A phase plane formalism, that allows the systematic derivation of self similar solutions, is introduced. The application of the Boltzmann transform is briefly discussed. Present results are closely analogous to those for Newtonian liquids; all the solutions obtained here have their counterparts in Newtonian flows. This happens because the power law rheology, like the Newtonian constitutive relation, involves a single dimensional parameter. Thus one finds similarity solutions whenever the analogous Newtonian problem is self similar. Although the spreading relations are rheology-dependent, in most cases the dependence is rather weak. The present results may be of interest for geophysics since the lithosphere deforms according to an average power law rheology. (author). 17 refs

  7. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  8. Viscous shear in the Kerr metric

    International Nuclear Information System (INIS)

    Anderson, M.R.; Lemos, J.P.S.

    1988-01-01

    Models of viscous flows on to black holes commonly assume a zero-torque boundary condition at the radius of the last stable Keplerian orbit. It is here shown that this condition is wrong. The viscous torque is generally non-zero at both the last stable orbit and the horizon itself. The existence of a non-zero viscous torque at the horizon does not require the transfer of energy or angular momentum across any spacelike distance, and so does not violate causality. Further, in comparison with the viscous torque in the distant, Newtonian regime, the viscous torque on the horizon is often reversed, so that angular momentum is viscously advected inwards rather than outwards. This phenomenon is first suggested by an analysis of the quasi-stationary case, and then demonstrated explicitly for a series of cold, dynamical flows which fall freely from the last stable orbit in the Schwarzschild and Kerr metrics. In the steady flows constructed here, the net torque on the hole is always directed in the usual sense; any reversal in the viscous torque is offset by an increase in the convected flux of angular momentum. (author)

  9. Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.

  10. Experimental study of oscillating plates in viscous fluids: Qualitative and quantitative analysis of the flow physics and hydrodynamic forces

    Science.gov (United States)

    Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo

    2018-01-01

    In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.

  11. Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Tarafdar, Sujata [Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032 (India); Das, Shantanu, E-mail: mou15july@gmail.com [Reactor Control Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2011-09-15

    Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.

  12. Combined Effect of Piezoviscous Dependency and Non-Newtonian Couple Stress on Squeeze-Film Porous Annular Plate

    Science.gov (United States)

    Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.

  13. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A

    2016-05-18

    According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the

  14. The thinning of viscous liquid threads.

    Science.gov (United States)

    Castrejon-Pita, J. Rafael; Castrejon-Pita, Alfonso A.; Hutchings, Ian M.

    2012-11-01

    The thinning neck of dripping droplets is studied experimentally for viscous Newtonian fluids. High speed imaging is used to measure the minimum neck diameter in terms of the time τ to breakup. Mixtures of water and glycerol with viscosities ranging from 20 to 363 mPa s are used to model the Newtonian behavior. The results show the transition from potential to inertial-viscous regimes occurs at the predicted values of ~Oh2. Before this transition the neck contraction rate follows the inviscid scaling law ~τ 2 / 3 . After the transition, the neck thinning tends towards the linear viscous scaling law ~ τ . Project supported by the EPSRC-UK (EP/G029458/1) and Cambridge-KACST.

  15. Structural Optimization of Non-Newtonian Rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...

  16. Post-Newtonian parameter γ in generalized non-local gravity

    Science.gov (United States)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  17. Experimental investigation of non-Newtonian droplet collisions : the role of extensional viscosity

    NARCIS (Netherlands)

    Finotello, Giulia; De, Shauvik; Vrouwenvelder, Jeroen C.R.; Padding, J.T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.

    2018-01-01

    We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the collision process.

  18. Development of a new continuous process for mixing of complex non-Newtonian fluids

    Science.gov (United States)

    Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration

    2017-11-01

    Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.

  19. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    Science.gov (United States)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow

  20. A Symmetry Particle Method towards Implicit Non‐Newtonian Fluids

    Directory of Open Access Journals (Sweden)

    Yalan Zhang

    2017-02-01

    Full Text Available In this paper, a symmetry particle method, the smoothed particle hydrodynamics (SPH method, is extended to deal with non‐Newtonian fluids. First, the viscous liquid is modeled by a non‐Newtonian fluid flow and the variable viscosity under shear stress is determined by the Carreau‐Yasuda model. Then a pressure correction method is proposed, by correcting density error with individual stiffness parameters for each particle, to ensure the incompressibility of fluid. Finally, an implicit method is used to improve efficiency and stability. It is found that the nonNewtonian behavior can be well displayed in all cases, and the proposed SPH algorithm is stable and efficient.

  1. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  2. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  3. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  4. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    Science.gov (United States)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  5. Numerical Investigation of Thermal Radiation and Viscous Effects on Entropy Generation in Forced Convection Blood Flow over an Axisymmetric Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-05-01

    Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.

  6. Non-Newtonian ink transfer in gravure-offset printing

    International Nuclear Information System (INIS)

    Ghadiri, Fatemeh; Ahmed, Dewan Hasan; Sung, Hyung Jin; Shirani, Ebrahim

    2011-01-01

    The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions than Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between a flat plate and a groove when the plate is moved upward with a constant velocity while the groove is held fixed. Numerical simulations were carried out with the Carreau model to explore the behavior of this non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) method was implemented to capture the interface during the ink transfer process. The effects of varying the contact angle of the ink on the flat plate and groove walls and geometrical parameters such as the groove angle and the groove depth on the breakup time of the liquid filament that forms between the plate and the groove and the ink transfer ratio were determined. Our results indicate that increasing the groove contact angle and decreasing the flat plate contact angle enhance the ink transfer ratio and the breakup time. However, increasing the groove depth and the groove angle decreases the transfer ratio and the breakup time. By optimizing these parameters, it is possible to achieve an ink transfer from the groove to the flat plate of approximately 92%. Moreover, the initial width and the vertical velocity of the neck of the ink filament have significant influences on the ink transfer ratio and the breakup time.

  7. Verification of vertically rotating flume using non-newtonian fluids

    Science.gov (United States)

    Huizinga, R.J.

    1996-01-01

    Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.

  8. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    Stenger, N.

    1981-04-01

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt

  9. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    Science.gov (United States)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  10. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    Science.gov (United States)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  11. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  12. On preconditioning incompressible non-Newtonian flow problems

    NARCIS (Netherlands)

    He, X.; Neytcheva, M.; Vuik, C.

    2013-01-01

    This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space

  13. Stronger constraints on non-Newtonian gravity from the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Mostepanenko, V M; Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E; Krause, D E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States)

    2008-04-25

    We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precise dynamic determination of the Casimir pressure between the two parallel plates by means of a micromechanical torsional oscillator. The possibility of setting limits on the predictions of chameleon field theories using the results of gravitational experiments and Casimir force measurements is discussed.

  14. The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries

    Science.gov (United States)

    Nikfarjam, F.; Cheny, Y.; Botella, O.

    2018-05-01

    The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).

  15. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  16. On approximation of non-Newtonian fluid flow by the finite element method

    Science.gov (United States)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.

  17. Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao

    2010-01-01

    The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)

  18. Structural Optimization of non-Newtonian Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    2011-01-01

    We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....

  19. Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.

    Directory of Open Access Journals (Sweden)

    Grissel Trujillo-de Santiago

    Full Text Available BACKGROUND: Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. METHODOLOGY AND FINDINGS: We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. CONCLUSION AND RELEVANCE: Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.

  20. Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data

    Directory of Open Access Journals (Sweden)

    Terry F. Scott

    2017-05-01

    Full Text Available The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students’ understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed after several years of research into the common preconceptions held by students and using these preconceptions as distractors in the questions. Their sole purpose is to deflect non-Newtonian candidates away from the correct answer. Alternatively, one can argue that the responses could also be treated as polling these preconceptions. In this paper we shift the emphasis of the analysis away from the correlation structure of the correct answers and look at the latent traits underlying the incorrect responses. Our analysis models the data employing exploratory factor analysis, which uses regularities in the data to suggest the existence of underlying structures in the cognitive processing of the students. This analysis allows us to determine whether the data support the claim that there are alternate non-Newtonian worldviews on which students’ incorrect responses are based. The existence of such worldviews, and their coherence, could explain the resilience of non-Newtonian preconceptions and would have significant implications to the design of instruction methods. We find that there are indeed coherent alternate conceptions of the world which can be categorized using the results of the research that led to the construction of the Force Concept Inventory.

  1. Possible evidence for non-Newtonian gravity in the Greenland ice gap

    International Nuclear Information System (INIS)

    Ander, M.E.

    1988-01-01

    An Airy-type geophysical experiment was conducted down a 2 km deep hole in the Greenland ice cap in order to test for possible violations of Newton's inverse square law by making gravity measurements over a range of 213 m to 1460 m. A significant departure from Newtonian gravity was observed. This result can be explained by the existence of an attractive non-Newtonian component of gravity with a strength of about 3.4% that of Newtonian gravity at a scale of 1460 m. Unfortunately, we cannot completely, unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that lateral density variations in the bedrock beneath the ice can cause such apparent departures. If such variations existed, they would have to be rather unusual but certainly no impossible. 8 refs

  2. The effect of the expansion ratio on a turbulent non-Newtonian recirculating flow

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Departamento de Engenharia Quimica Instituto Superior de Engenharia do Porto (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto (Portugal)

    2002-04-01

    Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. (orig.)

  3. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  4. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  5. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  6. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations

    Energy Technology Data Exchange (ETDEWEB)

    Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)

    2007-01-15

    For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  8. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.

    Science.gov (United States)

    Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz

    2015-06-01

    This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Slug Flow Compared Against Experimental Data of Void Fraction

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby

    2013-01-01

    Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...

  10. Determination of the Köthe-Toeplitz Duals over the Non-Newtonian Complex Field

    Directory of Open Access Journals (Sweden)

    Uğur Kadak

    2014-01-01

    Full Text Available The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983, Grossman and Katz (1978, and Grossman (1979. Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness.

  11. Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics

    National Research Council Canada - National Science Library

    Balmforth, NeiI

    2004-01-01

    Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...

  12. Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction

    Directory of Open Access Journals (Sweden)

    Enrico Chiarello

    2015-11-01

    Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.

  13. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  14. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  15. Parametric analysis and design of a screw extruder for slightly non-Newtonian (pseudoplastic materials

    Directory of Open Access Journals (Sweden)

    J.I. Orisaleye

    2018-04-01

    Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law

  16. Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection

    Science.gov (United States)

    Tavabi, E.; Koutchmy, S.

    2014-07-01

    Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.

  17. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs

    Science.gov (United States)

    Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin

    2017-09-01

    In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).

  18. Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.

    Science.gov (United States)

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.

  19. Structural Optimization of non-Newtonian Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2013-01-01

    Many of the biological fluids analyzed in Lab-on-a-Chip systems contain elastic components, which gives the fluids elastic character. Such fluids are said to be non-Newtonian or, more precisely, viscoelastic. They can give rise to exotic effects on the macroscale, which are never seen for fluids...... with components relying on viscoelastic effects, but the non-intuitive nature of these fluids complicates the design process. This thesis combines the method of topology optimization with differential constitutive equations, which govern the flow of viscoelastic fluids. The optimization method iteratively...... finite element package. The code is capable of calculating the viscoelastic flow in a benchmark geometry, and we hope that it will help newcomers as well as experienced researchers in the field of differential constitutive equations. v...

  20. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.

    2015-10-20

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  1. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.; Sheikh, Nadeem A.; Iliev, Oleg

    2015-01-01

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  2. Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas-Liquid (Newtonian and Non-Newtonian) Flow Compared Against Experimental Data of Void Fraction and Pressure Drop

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.

    2012-01-01

    Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (i.e. oil-gas industry). In spite of the common occurrence of these TPFs, their understanding is limited compared to single-phase flows. Different studies on TPF have focus on developing empirical correlations...... based in large sets of experiment data for void fraction and pressure drop which have proven to be accurate for specific condition that their where developed for, which limit their applicability. On the other hand, scarce studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical...... processes. The main reason for it is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours on the system. The focus of this study is the analysis of the TPF for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction and total...

  3. Microrheological observations of the onset of non-Newtonian behavior in suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, L A; Graham, A L; Gottlieb, M

    1988-01-01

    As the column fraction of solids increases above about 0.30, suspensions of non-Brownian, uniform spheres in Newtonian liquids begin to exhibit shear-thinning, normal stresses, and other non- Newtonian behavior. Here, we report on observations obtained from falling-ball and capillary rheometry at these high volume fractions. Specifically, we find that measured viscosity values are dependent on the size-scale of the viscometer (cylinder diameter, D, and falling- ball diameter, d) relative to the diameter of the suspended spheres d/sub s/. We report the dependence of the measured viscosity on the ratios d/d/sub s/, D/d, and D/d/sub s/, as well as critical values of these ratios above which the apparent viscosity is constant. 5 refs., 3 figs., 1 tab.

  4. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    Science.gov (United States)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  5. A Lagrangian PFEM approach for non-Newtonian viscoplastic materials

    OpenAIRE

    Larese, A.

    2017-01-01

    This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...

  6. Lie group analysis of flow and heat transfer of non-Newtonian

    Indian Academy of Sciences (India)

    law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the ...

  7. Flow characteristics of Newtonian and non-Newtonian fluids in a vessel stirred by a 60° pitched blade impeller

    Directory of Open Access Journals (Sweden)

    Jamshid M. Nouri

    2008-03-01

    Full Text Available Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution and 48,000 (water and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV. The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.

  8. Non-Gaussian initial conditions in ΛCDM: Newtonian, relativistic, and primordial contributions

    International Nuclear Information System (INIS)

    Bruni, Marco; Hidalgo, Juan Carlos; Meures, Nikolai; Wands, David

    2014-01-01

    The goal of the present paper is to set initial conditions for structure formation at nonlinear order, consistent with general relativity, while also allowing for primordial non-Gaussianity. We use the nonlinear continuity and Raychaudhuri equations, which together with the nonlinear energy constraint, determine the evolution of the matter density fluctuation in general relativity. We solve this equations at first and second order in a perturbative expansion, recovering and extending previous results derived in the matter-dominated limit and in the Newtonian regime. We present a second-order solution for the comoving density contrast in a ΛCDM universe, identifying nonlinear contributions coming from the Newtonian growing mode, primordial non-Gaussianity and intrinsic non-Gaussianity, due to the essential nonlinearity of the relativistic constraint equations. We discuss the application of these results to initial conditions in N-body simulations, showing that relativistic corrections mimic a non-zero nonlinear parameter f NL

  9. Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?

    Science.gov (United States)

    Javid Mahmoudzadeh Akherat, S. M.; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary

    2017-01-01

    Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain. PMID:28249082

  10. Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?

    Science.gov (United States)

    Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary

    2017-04-01

    Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.

  11. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  12. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations

    Science.gov (United States)

    Huang, Xiangdi; Li, Jing

    2018-03-01

    For the three-dimensional full compressible Navier-Stokes system describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid, we establish the global existence and uniqueness of classical solutions with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish. Moreover, for the initial data, which may be discontinuous and contain vacuum states, we also obtain the global existence of weak solutions. These results generalize previous ones on classical and weak solutions for initial density being strictly away from a vacuum, and are the first for global classical and weak solutions which may have large oscillations and can contain vacuum states.

  13. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    International Nuclear Information System (INIS)

    Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.

    2000-01-01

    Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation

  14. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    Science.gov (United States)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  15. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  16. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2018-06-01

    Full Text Available In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM. The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve and Adomian Decomposition Method are also applied and good agreement is found. Keywords: Unsteady flow, Viscous fluid, Thermal radiation, Porous plate, Arrhenius kinetics, HAM and numerical method

  17. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  18. Similarity solution of axisymmetric non-Newtonian wall jets with swirl

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2011-01-01

    Roč. 12, č. 6 (2011), s. 3413-3420 ISSN 1468-1218 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : similarity solution * wall jets * non-Newtonian fluids * power-law fluids * swirl Subject RIV: BK - Fluid Dynamics Impact factor: 2.043, year: 2011

  19. Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...

    African Journals Online (AJOL)

    This paper presents a new numerical approach for solving unsteady two dimensional boundary layer flow past an infinite vertical porous surface with the flow generated by Newtonian heating and impulsive motion in the presence of viscous dissipation and temperature dependent viscosity. The viscosity of the fluid under ...

  20. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  1. Open mathematical problems regarding non-Newtonian fluids

    International Nuclear Information System (INIS)

    Wilson, Helen J

    2012-01-01

    We present three open problems in the mathematical modelling of the flow of non-Newtonian fluids. The first problem is rather long standing: a discontinuity in the dependence of the rise velocity of a gas bubble on its volume. This is very well characterized experimentally but not, so far, fully reproduced either numerically or analytically. The other two are both instabilities. The first is observed experimentally but never predicted analytically or numerically. In the second instability, numerical studies reproduce the experimental observations but there is as yet no analytical or semi-analytical prediction of the linear instability which must be present. (invited article)

  2. A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes

    Directory of Open Access Journals (Sweden)

    Dhruv Mehta

    2018-01-01

    Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological

  3. Newtonian potential and geodesic completeness in infinite derivative gravity

    Science.gov (United States)

    Edholm, James; Conroy, Aindriú

    2017-08-01

    Recent study has shown that a nonsingular oscillating potential—a feature of infinite derivative gravity theories—matches current experimental data better than the standard General Relativity potential. In this work, we show that this nonsingular oscillating potential can be given by a wider class of theories which allows the defocusing of null rays and therefore geodesic completeness. We consolidate the conditions whereby null geodesic congruences may be made past complete, via the Raychaudhuri equation, with the requirement of a nonsingular Newtonian potential in an infinite derivative gravity theory. In doing so, we examine a class of Newtonian potentials characterized by an additional degree of freedom in the scalar propagator, which returns the familiar potential of General Relativity at large distances.

  4. Non-Newtonian fluid flow in annular pipes and entropy generation ...

    Indian Academy of Sciences (India)

    analytical solution for the flow of third-grade non-Newtonian fluid in a pipe .... where c1,c2,d1,d2,t0,1,2...7,h1,h2,k1,2... ,12,m1 and m2 are defined as ..... Yurusoy M 2004 Flow of a third grade fluid between concentric circular cylinders. Math.

  5. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  6. Non-newtonian deformation of co-based metallic glass at low stresses

    NARCIS (Netherlands)

    Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav

    2000-01-01

    The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)

  7. Analysis of flow and LDL concentration polarization in siphon of internal carotid artery: Non-Newtonian effects.

    Science.gov (United States)

    Sharifi, Alireza; Niazmand, Hamid

    2015-10-01

    Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    Science.gov (United States)

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. On the thermal stability for a model reactive flow with viscous dissipation

    International Nuclear Information System (INIS)

    Okoya, S.S.

    2006-12-01

    We study the thermal stability of a reactive flow of a third-grade fluid with viscous heating and chemical reaction between two horizontal flat plates, where the top is moving with a uniform speed and the bottom plate is fixed in the presence of an imposed pressure gradient. This study is a natural continuation of earlier work on rectilinear shear flows. The governing equations are non-dimensionalized and the resulting system of equations are not coupled. An approximate explicit solution is found for the flow velocity using homotopy - perturbation technique and the range of validity is determined. After the velocity is known, the heat transport may be analyzed. It is found that the temperature solution depends on the non-Newtonian material parameter of the fluid, Λ, viscous heating parameter, Γ, and an exponent, m. Attention is focused upon the disappearance of criticality of the solution set {β, δ, θ max } for various values of Λ, Γ and m, and the numerical computations are presented graphically to show salient features of the solution set. (author)

  10. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  11. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  12. Solitons as Newtonian particles

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1982-07-01

    The effect of external electromagnetic fields on non relativistic solitons is studied. Although the solitons are distorted by external fields, they still exhibit a Newtonian behavior. Some explicit examples of such a phenomenon are given, presenting solutions which exhibit Newtonian behavior for simple external fields. Furthermore, general results like charge and flux quantization are shown. (Author) [pt

  13. Newtonian and pseudo-Newtonian Hill problem

    International Nuclear Information System (INIS)

    Steklain, A.F.; Letelier, P.S.

    2006-01-01

    A pseudo-Newtonian Hill problem based on the Paczynski-Wiita pseudo-Newtonian potential that reproduces general relativistic effects is presented and compared with the usual Newtonian Hill problem. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study bounded and unbounded orbits. In particular we consider the systems composed by Sun, Earth and Moon and composed by the Milky Way, the M2 cluster and a star. We find that some pseudo-Newtonian systems-including the M2 system-are more stable than their Newtonian equivalent

  14. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel

    International Nuclear Information System (INIS)

    Xiang, Hao; Chen, Bin

    2015-01-01

    The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ  = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)

  15. Break-up of a non-Newtonian jet injected downwards in a ...

    Indian Academy of Sciences (India)

    atomization and spray coating, crop spraying, ink jet printing, printing of polymer transis- tors, and ... particular ones used in printing and coating, the liquids encountered are non-Newtonian. For breakup of ...... In-Press. Sussman M and Pukett E G 2000 A coupled level set and volume-of-fluid method for computing 3D and.

  16. Numerical Analyses of the Non-Newtonian Flow Performance and Thermal Effect on a Bearing Coated with a High Tin Content

    Directory of Open Access Journals (Sweden)

    K. Mehala

    2016-12-01

    Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.

  17. CFD-PBM Coupled Simulation of an Airlift Reactor with Non-Newtonian Fluid

    Directory of Open Access Journals (Sweden)

    Han Mei

    2017-09-01

    Full Text Available Hydrodynamics of an AirLift Reactor (ALR with tap water and non-Newtonian fluid was studied experimentally and by numerical simulations. The Population Balance Model (PBM with multiple breakup and coalescence mechanisms was used to describe bubble size characteristics in the ALR. The interphase forces for closing the two-fluid model were formulated by considering the effect of Bubble Size Distribution (BSD. The BSD in the ALR obtained from the coupled Computational Fluid Dynamics (CFD-PBM model was validated against results from digital imaging measurements. The simulated velocity fields of both the gas and liquid phases were compared to measured fields obtained with Particle Image Velocimetry (PIV. The simulated results show different velocity field profile features at the top of the ALR between tap water and non-Newtonian fluid, which are in agreement with experiments. In addition, good agreement between simulations and experiments was obtained in terms of overall gas holdup and bubble Sauter mean diameter.

  18. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    Science.gov (United States)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  19. Front‐tracking simulations of bubbles rising in non‐Newtonian fluids

    OpenAIRE

    Battistella, Alessandro; Van Schijndel, J.G.; Baltussen, Maike W.

    2017-01-01

    In the wide and complex field of multiphase flows, bubbly flows with non-Newtonian liquids are encountered in several important applications, such as in polymer solutions or fermentation broths. Despite the widespread application of non-Newtonian liquids, most of the models and closures used in industry are valid for Newtonian fluids only, if not even restricted to air-water systems. However, it is well known that the non-Newtonian rheology significantly influences the liquid and bubble behav...

  20. Displacement of one Newtonian fluid by another: density effects in axial annular flow

    DEFF Research Database (Denmark)

    Szabo, Peter; Hassager, Ole

    1997-01-01

    The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers......, the efficiency of the displacement is analysed for various flow situations....

  1. Physics of Life: A Model for Non-Newtonian Properties of Living Systems

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if

  2. Unsteady non-Newtonian hydrodynamics in granular gases.

    Science.gov (United States)

    Astillero, Antonio; Santos, Andrés

    2012-02-01

    The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society

  3. Entropy generation in non-Newtonian fluid flow in a slider bearing

    Indian Academy of Sciences (India)

    In the present study, entropy production in flow fields due to slider bearings is formulated. The rate of entropy generation is computed for different fluid properties and geometric configurations of the slider bearing. In order to account for the non-Newtonian effect, a special type of third-grade fluid is considered. It is found that ...

  4. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2018-03-01

    Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms

  5. The effect of diffusion in a new viscous continuum traffic model

    International Nuclear Information System (INIS)

    Yu Lei; Li Tong; Shi Zhongke

    2010-01-01

    In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.

  6. The effect of diffusion in a new viscous continuum traffic model

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lei, E-mail: yuleijk@126.co [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China); Li Tong [Department of Mathematics, University of Iowa, Iowa City, IA (United States); Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China)

    2010-05-10

    In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.

  7. How to recover Newtonian mechanics from non-relative quantum mechanics in limit ℎ→0

    International Nuclear Information System (INIS)

    Mei Shizhong

    2001-01-01

    It is assumed that when ℎ→0, correct non-relative quantum mechanics should be equivalent to Newtonian mechanics. Starting from this point, the authors slightly revised the widely accepted non-relative quantum mechanics such that the mechanics after modification is strictly equivalent to that before the modification when ℎ≠0, and equivalent to Newtonian mechanics in the limit ℎ→0. The significance lies in the possibility that if authors further postulate that corrected relative quantum mechanics is equivalent to Einstein's theory of relativity in the case ℎ→0, then authors may obtain different predictions from what produced by the former that will help to verify or improve it

  8. Was Newton right? A search for non-Newtonian behavior of weak-field gravity

    Directory of Open Access Journals (Sweden)

    Boynton Paul

    2014-06-01

    Full Text Available Empirical tests of Einstein’s metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton’s theory by assuring that the linearized equations of GTR matched the Newtonian formalism under “classical” conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.

  9. Characterization of the transition of regimes in a non-newtonian fluids in ducts

    International Nuclear Information System (INIS)

    Santana, C.C.; Ataide, C.H.; Massarani, G.

    1983-01-01

    By using own experimental data and also those obtained from the literature, the velocities at which transition from laminar to turbulent flows occurs are analysed in time-independent non-newtonian fluids, through the relationship between generalized Reynolds numbers and the rheological fluid parameters. (Author) [pt

  10. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  11. Laboratory Investigation of Rheology and Infiltration Process of Non-Newtonian Fluids through Porous Media in a Non-Isothermal Flow Regime for Effective Remediation of Contaminants

    Science.gov (United States)

    Naseer, F.

    2017-12-01

    Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension

  12. Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces

    Czech Academy of Sciences Publication Activity Database

    Wróblewska, Aneta

    2010-01-01

    Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * generalized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568

  13. Fully-developed heat transfer in annuli with viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, P.M. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia; Pinho, F.T. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia

    2006-09-15

    For Newtonian concentric annular flows analytical solutions are obtained under imposed asymmetric constant wall heat fluxes as well as under imposed asymmetric constant wall temperatures, taking into account viscous dissipation and for fluid dynamic and thermally fully-developed conditions. Results for the special case of the heat flux ratio for identical wall temperatures and the critical Brinkman numbers marking changes of sign in wall heat fluxes are also derived. Equations are presented for the Nusselt numbers at the inner and outer walls, bulk temperature and normalised temperature distribution as a function of all relevant non-dimensional numbers. Given the complexity of the derived equations, simpler exact expressions are presented for the Nusselt numbers for ease of use, with their coefficients given in tables as a function of the radius ratio. (author)

  14. Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink

    International Nuclear Information System (INIS)

    Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo

    2017-01-01

    Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and

  15. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  16. Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase

    Directory of Open Access Journals (Sweden)

    Naseva Olivera S.

    2002-01-01

    Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.

  17. Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces

    Czech Academy of Sciences Publication Activity Database

    Wróblewska, Aneta

    2010-01-01

    Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * general ized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568

  18. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  19. Motion and twisting of magnetic particles ingested by alveolar macrophages in non-smokers and smokers: Implementation of viscoelasticity

    International Nuclear Information System (INIS)

    Moeller, Winfried; Felten, Kathrin; Kohlhaeufl, Martin; Haeussinger, Karl; Kreyling, Wolfgang G.

    2007-01-01

    Ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (9 non-smokers, 8 smokers), and the retained particles were magnetized and detected by a SQUID. Stochastic particle transport due to cytoskeletal reorganizations within macrophages (relaxation) and directed particle motion in a weak magnetic twisting field were investigated with respect to viscous and elastic properties of the cytoskeleton. Relaxation and cytoskeletal stiffness were not influenced by cigarette smoking. Relaxation and particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. Viscous and elastic data obtained from relaxation correlated with particle twisting, indicating that the proposed simple model is a reasonable approximation of cytoskeletal mechanical properties

  20. Oscillating flow of a Burgers' fluid in a pipe

    International Nuclear Information System (INIS)

    Khan, M.; Asghar, S.; Hayat, T.

    2005-12-01

    An analysis is made to see the influences of Hall current on the flow of a Burgers' fluid. The velocity field corresponding to flow in a pipe is determined. The closed form analytical solutions for several Newtonian and non-Newtonian fluid models can be obtained from the present analysis as the limiting cases. The purpose of this work is twofold. Firstly, to investigate the oscillating flow in a pipe using Burgers? fluid model. Secondly, to see the effects of Hall current on the velocity field. The flow in a pipe is induced due to imposition of an oscillating pressure gradient. An exact analytical solution to the governing problem is given using the Fourier transform technique. The obtained expression for the velocity field shows that there are pronounced effects of Hall and rheological parameters. The considered fluid model is a viscoelastic model and has been used to characterize food products such as cheese, soil, asphalt and asphalt mixes etc. (author)

  1. Deformation and transport of micro-fibers and helices in viscous flows

    Science.gov (United States)

    Lindner, Anke

    Fluid-structure interactions between flexible objects and viscous flows are, to a large extent, governed by the shape of the flexible object. Using microfabrication methods, we obtain complex ``particles'' in fiber and helix form with perfect control not only over the material properties, but also the particle geometry. We then perform an experimental study on the deformation and transport of these particles in microfluidic flows. Fibers are shown to drift laterally in confined flows due to the transport anisotropy of the elongated object. When these fibers interact with lateral walls, complex dynamics are observed, such as fiber oscillation. Fiber flexibility modifies these dynamics. Flexible microhelices are easily stretched by a viscous flow and we characterize the overall shape as a function of the frictional properties. The deformation of these helices is well-described by non-linear finite extensibility. Due to the non-uniform distribution of the pitch of a helix subject to viscous drag, linear and nonlinear behavior is identified along the contour length of a single helix. When a polymer solution is used for the viscous flow, an interesting multiscale problem arises and the typical polymer size needs to be compared not only to the global size of the helix, but also to the dimensions of the ribbon.

  2. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  3. Gravitational radiation from nearly Newtonian systems

    International Nuclear Information System (INIS)

    Kirk, E.M.

    1989-09-01

    A method of examining gravitational radiation from nearly Newtonian systems is presented. Using the Cartan formulation of Newtonian gravity, a one parameter family of space-times which have a strict Newtonian limit is constructed. An expression for the initial null data in terms of the Newtonian potential is obtained in the Newtonian limit. Using this, the problem is formulated as a series in the Newtonian parameter. The series expansions for the sources of the Bianchi identities are obtained to third order in both the vacuum and non-vacuum cases. A simple technique is presented for determining whether a particular source term gives rise to asymptotically flat null data. The far field quadrupole formula is derived in a leading approximation and a method for obtaining error bounds is discussed. Additionally, a method for solving Einstein's equations is shown. This involves expressing the Ricci identities as a matrix, Riccati equation and a system of linear matrix equations. A comparison of the formalisms of Bondi and Newman Penrose is presented and explicit correspondences between the supersurface constrain equations and the Ricci identities are shown. (author)

  4. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...

  5. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2012-01-01

    A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...

  6. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  7. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...

  8. Numerical methods for multi-scale modeling of non-Newtonian flows

    Science.gov (United States)

    Symeonidis, Vasileios

    This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic

  9. The evolution of impact basins - Viscous relaxation of topographic relief. [for lunar surface modeling

    Science.gov (United States)

    Solomon, S. C.; Comer, R. P.; Head, J. W.

    1982-01-01

    A topographic profile of the young large lunar basin, Orientale, is presented in order to examine the effects of viscous relaxation on basin topography. Analytical models for viscous flow are considered, showing a wavelength-dependence of time constants for viscous decay on the decrease in viscosity with depth and on the extent of the isostatic compensation of the initial topography. Lunar rheological models which are developed include a half-space model for uniform Newtonian viscosity, density, and gravitational acceleration, a layer over inviscid half space model with material inviscid over geological time scales, and a layer with isostatic compensation where a uniformly viscous layer overlies an inviscid half space of higher density. Greater roughness is concluded, and has been observed, on the moon's dark side due to continued lower temperatures since the time of heavy bombardment.

  10. Newtonian versus black-hole scattering

    International Nuclear Information System (INIS)

    Siopsis, G.

    1999-01-01

    We discuss non-relativistic scattering by a Newtonian potential. We show that the gray-body factors associated with scattering by a black hole exhibit the same functional dependence as scattering amplitudes in the Newtonian limit, which should be the weak-field limit of any quantum theory of gravity. This behavior arises independently of the presence of supersymmetry. The connection to two-dimensional conformal field theory is also discussed. copyright 1999 The American Physical Society

  11. Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method

    DEFF Research Database (Denmark)

    Skocek, Jan; Svec, Oldrich; Spangenberg, Jon

    2011-01-01

    is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...

  12. Multivariable Real-Time Control of Viscosity Curve for a Continuous Production Process of a Non-Newtonian Fluid

    Directory of Open Access Journals (Sweden)

    Roberto Mei

    2018-01-01

    Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.

  13. Pseudo-Newtonian planar circular restricted 3-body problem

    International Nuclear Information System (INIS)

    Dubeibe, F.L.; Lora-Clavijo, F.D.; González, Guillermo A.

    2017-01-01

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  14. Pseudo-Newtonian planar circular restricted 3-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Dubeibe, F.L., E-mail: fldubeibem@unal.edu.co [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: fadulora@uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: guillermo.gonzalez@saber.uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2017-02-12

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  15. Viscous Dissipation Effects on the Motion of Casson Fluid over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis

    Directory of Open Access Journals (Sweden)

    T. M. Ajayi

    2017-01-01

    Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.

  16. Particle migration using local variation of the viscosity (LVOV) model in flow of a non-Newtonian fluid for ceramic tape casting

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri

    2016-01-01

    In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry inthe tape casting process is investigated with the purpose of understanding the particle distribution patterns along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow...... the substratevelocity (casting speed) leads to a more uniform distribution of the particles inside the ceramic slurry, in which case the shear induced particle migration is dominating over the gravity induced one....

  17. Handbook of mathematical analysis in mechanics of viscous fluids

    CERN Document Server

    Novotný, Antonín

    2018-01-01

    Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.

  18. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    Science.gov (United States)

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  19. Non-Newtonian fluid flow in an axisymmetric channel with porous wall

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2013-12-01

    Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.

  20. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.

    Science.gov (United States)

    Nesvizhevsky, V V; Protasov, K V

    2005-01-01

    An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.

  1. Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel

    Science.gov (United States)

    Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration

    2015-11-01

    Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  2. Nonlinear shear wave in a non Newtonian visco-elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

    2012-06-15

    An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.

  3. Quantitative modelling of HDPE spurt experiments using wall slip and generalised Newtonian flow

    NARCIS (Netherlands)

    Doelder, den C.F.J.; Koopmans, R.J.; Molenaar, J.

    1998-01-01

    A quantitative model to describe capillary rheometer experiments is presented. The model can generate ‘two-branched' discontinuous flow curves and the associated pressure oscillations. Polymer compressibility in the barrel, incompressible axisymmetric generalised Newtonian flow in the die, and a

  4. Non-Newtonian Aspects of Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  5. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  6. Energy and Transmissibility in Nonlinear Viscous Base Isolators

    Science.gov (United States)

    Markou, Athanasios A.; Manolis, George D.

    2016-09-01

    High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.

  7. Determination of the diffusion coefficient of salts in non-Newtonian liquids by the Taylor dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br

    2010-07-01

    This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)

  8. The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate

    Directory of Open Access Journals (Sweden)

    S. Asghar

    2004-01-01

    Full Text Available An analytic solution of the flow of a third-grade fluid on a porous plate is constructed. The porous plate is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate is also examined. It is also shown that in case of third-grade fluid, a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. Several limiting situations with their implications are given and discussed.

  9. Point-of-care Devices: Non-Newtonian Whole Blood Behavior and Capillary Flow on Reagent-coated Walls

    Directory of Open Access Journals (Sweden)

    Jean BERTHIER

    2016-08-01

    Full Text Available Most point-of-care (POC and patient self-testing (PST devices are based on the analysis of whole blood taken from a finger prick. Whole blood contains a bountiful of information about the donor’s health. We analyze here two particularities of microsystems for blood analysis: the blood non-Newtonian behavior, and the capillary flow in reagent-coated channels. Capillarity is the most commonly used method to move fluids in portable systems. It is shown first that the capillary flow of blood does not follow the Lucas-Washburn-Rideal law when the capillary flow velocity is small, due to its non-Newtonian rheology and to the formation of rouleaux of RBCs. In a second step, the capillary flow of blood on reagent-coated surfaces is investigated; first experimentally by observing the spreading of a droplet of blood on different reagent-coated substrates; second theoretically and numerically using the general law for spontaneous capillary flows and the Evolver numerical program.

  10. Transport coefficients in second-order non-conformal viscous hydrodynamics

    International Nuclear Information System (INIS)

    Ryblewski, Radoslaw

    2015-01-01

    Based on the exact solution of Boltzmann kinetic equation in the relaxation-time approximation, the precision of the two most recent formulations of relativistic second-order non-conformal viscous hydrodynamics (14-moment approximation and causal Chapman-Enskog method), standard Israel-Stewart theory, and anisotropic hydrodynamics framework, in the simple case of one-dimensional Bjorken expansion, is tested. It is demonstrated that the failure of Israel-Stewart theory in reproducing exact solutions of the Boltzmann kinetic equation occurs due to neglecting and/or choosing wrong forms of some of the second-order transport coefficients. In particular, the importance of shear-bulk couplings in the evolution equations for dissipative quantities is shown. One finds that, in the case of the bulk viscous pressure correction, such coupling terms are as important as the corresponding first-order Navier-Stokes term and must be included in order to obtain, at least qualitative, overall agreement with the kinetic theory. (paper)

  11. Newtonian and post-Newtonian approximations are asymptotic to general relativity

    International Nuclear Information System (INIS)

    Futamase, T.; Schutz, B.F.

    1983-01-01

    A precise definition of the Newtonian and post-Newtonian hierarchy of approximations to general relativity is given by studying a C/sup infinity/ sequence of solutions to Einstein's equations that is defined by initial data having the Newtonian scaling property: v/sup i/approx.epsilon, rhoapprox.epsilon 2 , papprox.epsilon 4 , where epsilon is the parameter along the sequence. We map one solution in the sequence to another by identifying them at constant spatial position x/sup i/ and Newtonian dynamical time tau = epsilont. This mapping defines a congruence parametrized by epsilon, and the various post-Newtonian approximations emerge as derivatives of the relativistic solutions along this congruence. We thereby show for the first time that the approximations are genuine asymptotic approximations to general relativity. The proof is given in detail up to first post-Newtonian order, but is easily extended. The results will be applied in the following paper to radiation reaction in binary star systems, to give a proof of the validity of the ''quadrupole formula'' free from any divergences

  12. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Science.gov (United States)

    Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.

    2018-03-01

    The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.

  13. Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids

    International Nuclear Information System (INIS)

    Lamsaadi, M.; Naimi, M.; Hasnaoui, M.

    2006-01-01

    A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations

  14. Direct verification of the lubrication force on a sphere travelling through a viscous film upon approach to a solid wall

    KAUST Repository

    Marston, Jeremy

    2010-05-21

    Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘viscous forces, is below a critical level Stc so that the spheres do not rebound and escape from the liquid layer. This provides us with the scope to verify the force acting on the sphere, derived from lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.

  15. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  16. Turbulent Flow of Saudi Non-Newtonian Crude Oils in a Pipeline Écoulement turbulent de bruts non-newtoniens séoudiens dans une canalisation

    Directory of Open Access Journals (Sweden)

    Hemeidia A. M.

    2006-11-01

    Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des

  17. SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  18. Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Mohsenian, S.; Ramiar, A.; Ranjbar, A. A. [Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)

    2017-01-15

    In the present study the flow of non-Newtonian nanofluid through a converging microchannel is investigated numerically. TiO{sub 2} nanoparticles with 10 nm diameter are dispersed in an aqueous solution of 0.5 %.wt Carboxymethyl cellulose (CMC) to produce the nanofluid. Both nanofluid and the base fluid show pseudoplastic behavior. The equations have been solved with finite volume approach using collocated grid. It has been found that by increasing the volume fraction and Reynolds number and the convergence angle, the Nusselt number increases. Also, it has been observed that by increasing convergence angle and decreasing aspect ratio of the channel, the velocity of the channel increases.

  19. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  20. Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies

    Directory of Open Access Journals (Sweden)

    Xiankang Xin

    2017-10-01

    Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.

  1. Change in the flow curves of non-Newtonian oils due to a magnetic field

    International Nuclear Information System (INIS)

    Veliev, F.G.

    1979-01-01

    The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting

  2. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  3. Temporal instability of viscous liquid microjets with spatially varying surface tension

    International Nuclear Information System (INIS)

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  4. A two-phase theory for non-Newtonian suspensions

    Science.gov (United States)

    Varsakelis, Christos

    In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.

  5. Simulation of forced convection in non-Newtonian fluid through sandstones

    Science.gov (United States)

    Gokhale, M. Y.; Fernandes, Ignatius

    2017-11-01

    Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.

  6. Coherent states for oscillators of non-conventional statistics

    International Nuclear Information System (INIS)

    Dao Vong Duc; Nguyen Ba An

    1998-12-01

    In this work we consider systematically the concept of coherent states for oscillators of non-conventional statistics - parabose oscillator, infinite statistics oscillator and generalised q-deformed oscillator. The expressions for the quadrature variances and particle number distribution are derived and displayed graphically. The obtained results show drastic changes when going from one statistics to another. (author)

  7. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  8. Newtonian cosmology with a quantum bounce

    Energy Technology Data Exchange (ETDEWEB)

    Bargueno, P.; Bravo Medina, S.; Nowakowski, M. [Universidad de los Andes, Departamento de Fisica, Bogota (Colombia); Batic, D. [University of West Indies, Department of Mathematics, Kingston 6 (Jamaica)

    2016-10-15

    It has been known for some time that the cosmological Friedmann equation deduced from general relativity can also be obtained within the Newtonian framework under certain assumptions. We use this result together with quantum corrections to the Newtonian potentials to derive a set a of quantum corrected Friedmann equations. We examine the behavior of the solutions of these modified cosmological equations paying special attention to the sign of the quantum corrections. We find different quantum effects crucially depending on this sign. One such a solution displays a qualitative resemblance to other quantum models like Loop quantum gravity or non-commutative geometry. (orig.)

  9. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    Science.gov (United States)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  10. Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    M. Das

    2015-12-01

    Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.

  11. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Acoustic waveform of continuous bubbling in a non-Newtonian fluid.

    Science.gov (United States)

    Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei

    2009-12-01

    We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.

  13. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  14. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  15. Oscillator as a hidden non-Abelian monopole

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Sisakyan, A.N.; Ter-Antonyan, V.M.

    1996-01-01

    A non-Abelian SU(2) model is constructed for a five-dimensional bound system 'charge-dyon' on the basis of the Hurwitz-transformed eight-dimensional isotropic quantum oscillator. The principle of dyon-oscillator duality is formulated; the energy spectrum and wave functions of the system 'charge-dyon' are calculated. 20 refs

  16. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  17. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations

    Science.gov (United States)

    Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy

    2014-02-01

    The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.

  18. On a numerical strategy to compute gravity currents of non-Newtonian fluids

    International Nuclear Information System (INIS)

    Vola, D.; Babik, F.; Latche, J.-C.

    2004-01-01

    This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework

  19. Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions

    Directory of Open Access Journals (Sweden)

    Guillem Masoliver i Marcos

    2017-01-01

    Full Text Available The  construction  process  of  a  viscometer,  developed  in  collaboration  with  a  final  project  student,  is  here  presented.  It  is  intended  to  be  used  by   first  year's  students  to  know  the  viscosity  as  a  fluid  property, for  both  Newtonian  and  non-Newtonian  flows.  Viscosity  determination  is  crucial  for  the  fluids  behaviour knowledge  related  to  their  reologic  and  physical  properties.  These  have  great  implications  in  engineering aspects  such  as  friction  or  lubrication.  With  the  present  experimental  model  device  three  different fluids are  analyzed  (water,  kétchup  and  a  mixture  with  cornstarch  and  water.  Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.

  20. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    OpenAIRE

    Pandey, Vikash; Holm, Sverre

    2016-01-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional deriva...

  1. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  2. Aerosol entrainment from a sparged non-Newtonian slurry.

    Science.gov (United States)

    Fritz, Brad G

    2006-08-01

    Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model.

  3. Newtonian cosmology Newton would understand

    International Nuclear Information System (INIS)

    Lemons, D.S.

    1988-01-01

    Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology

  4. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    Science.gov (United States)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  5. Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries

    International Nuclear Information System (INIS)

    Chee, Yi Shen; Ting, Tiew Wei; Hung, Yew Mun

    2015-01-01

    The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10 −4 , providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied

  6. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  7. Orbital motions as gradiometers for post-Newtonian tidal effects

    Directory of Open Access Journals (Sweden)

    Lorenzo eIorio

    2014-08-01

    Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.

  8. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  9. Was Newtonian cosmology really inconsistent?

    Science.gov (United States)

    Vickers, Peter

    This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.

  10. Second post-Newtonian Lagrangian dynamics of spinning compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)

    2016-09-15

    The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)

  11. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao

    2016-01-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ 2 )—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ 2 ),O(c s 2φ  δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c s are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ 2 ) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1

  12. On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

    Czech Academy of Sciences Publication Activity Database

    Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Šárka

    2016-01-01

    Roč. 68, č. 1 (2016), s. 193-243 ISSN 0025-5645 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : non-Newtonian fluids * fluid-structure interaction * shear-thinning fluids Subject RIV: BA - General Mathematics Impact factor: 0.592, year: 2016 http://projecteuclid.org/euclid.jmsj/1453731541

  13. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  14. Viscous, Resistive Magnetorotational Modes

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2008-01-01

    We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...

  15. Viscous Fingering in Deformable Systems

    Science.gov (United States)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  16. Post-Newtonian Jeans Analysis

    International Nuclear Information System (INIS)

    Nazari, Elham; Kazemi, Ali; Roshan, Mahmood; Abbassi, Shahram

    2017-01-01

    The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when the temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.

  17. Post-Newtonian Jeans Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Elham; Kazemi, Ali; Roshan, Mahmood; Abbassi, Shahram, E-mail: mroshan@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2017-04-20

    The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when the temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.

  18. Calculation of viscous effects on transonic flow for oscillating airfoils and comparisons with experiment

    Science.gov (United States)

    Howlett, James T.; Bland, Samuel R.

    1987-01-01

    A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.

  19. Fractional Flow Theory Applicable to Non-Newtonian Behavior in EOR Processes

    NARCIS (Netherlands)

    Rossen, W.R.; Venkatraman, A.; Johns, R.T.; Kibodeaux, K.R.; Lai, H.; Moradi Tehrani, N.

    2011-01-01

    The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with

  20. Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes

    Science.gov (United States)

    Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.

    2018-04-01

    We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.

  1. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  2. Effect of hydrostatic pressure in the ground state on the perturbed elastic deformable bodies in first post-Newtonian approximation

    International Nuclear Information System (INIS)

    Song Guoxuan

    2009-01-01

    Based on the dynamical equations for a nonrotating elastic deformable astronomical body in the first post-Newtonian approximation of Einstein's theory of gravity, we re-examined the boundary(junction) conditions and have proven that a term, which is missing in the customary boundary(junction) conditions, is found. This term is induced by the existence of initial equilibrium hydrostatic pressure. A physical explanation of this term is given in the Newtonian approximation as well. By using the correcting boundary conditions the relation of the free spherically symmetrical radial oscillation frequency of a nonrotating homogeneously and isotropically elastic sphere with constant density is derived.

  3. On a criterion of incipient motion and entrainment into suspension of a particle from cuttings bed in shear flow of non-Newtonian fluid

    Science.gov (United States)

    Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland

    2017-10-01

    Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.

  4. Effect of rheological parameters on curing rate during NBR injection molding

    Science.gov (United States)

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  5. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  6. The fluid dynamics of the chocolate fountain

    Science.gov (United States)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  7. The fluid dynamics of the chocolate fountain

    International Nuclear Information System (INIS)

    Townsend, Adam K; Wilson, Helen J

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)

  8. Non-Bloch decay of Rabi oscillations in liquid state NMR

    Science.gov (United States)

    Chakrabarti, Arnab; Bhattacharyya, Rangeet

    2018-03-01

    Rabi oscillations are known to exhibit non-Bloch behaviour in anisotropic media. In this letter, we report an experimental observation of non-Bloch decay of Rabi oscillations in isotropic liquid state NMR. To avoid the dephasing due to the radio-frequency inhomogeneities, we develop a modified version of the rotary echo protocol and use it to determine the decay rates of Rabi oscillations. We find that the measured decay rates are proportional to the square of the Rabi frequencies and the proportionality constant is of the order of tens of picoseconds. Further, we show that this non-Bloch nature of the decay rates becomes less prominent with increasing temperature. The implications of the presence of non-Bloch decay rates in liquid state NMR in the context of ensemble quantum computing are also discussed.

  9. Newtonian heating effects in three-dimensional flow of viscoelastic fluid

    International Nuclear Information System (INIS)

    Qayyum, A.; Hayat, T.; Alhuthali, M. S.; Malaikah, H. M.

    2014-01-01

    A mathematical model is constructed to investigate the three-dimensional flow of a non-Newtonian fluid. An incompressible viscoelastic fluid is used in mathematical formulation. The conjugate convective process (in which heat the transfer rate from the bounding surface with a finite capacity is proportional to the local surface temperature) in three-dimensional flow of a differential type of non-Newtonian fluid is analyzed for the first time. Series solutions for the nonlinear differential system are computed. Plots are presented for the description of emerging parameters entering into the problem. It is observed that the conjugate heating phenomenon causes an appreciable increase in the temperature at the stretching wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)

    Science.gov (United States)

    Holubova, R.

    2018-03-01

    The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.

  11. Viscous forces and bulk viscoelasticity near jamming

    NARCIS (Netherlands)

    Baumgarten, K.; Tighe, B.P.

    2017-01-01

    When weakly jammed packings of soft, viscous, non-Brownian spheres are probed mechanically, they respond with a complex admixture of elastic and viscous effects. While many of these effects are understood for specific, approximate models of the particles' interactions, there are a number of proposed

  12. Two parameters Lie group analysis and numerical solution of unsteady free convective flow of non-Newtonian fluid

    Directory of Open Access Journals (Sweden)

    M.J. Uddin

    2016-09-01

    Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.

  13. Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel

    International Nuclear Information System (INIS)

    Abu-Ramadan, E.; Khayat, R.E.

    2002-01-01

    The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)

  14. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  15. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Luc Blanchet

    2014-02-01

    Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.

  16. Perturbed Newtonian description of the Lemaître model with non-negligible pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Kazuhiro [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan); Marra, Valerio [Departamento de Física, Universidade Federal do Espírito Santo, Av. F. Ferrari, 514, 29075-910, Vitória, ES (Brazil); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333 Munich (Germany); Sasaki, Misao, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: valerio.marra@me.com, E-mail: Viatcheslav.Mukhanov@physik.lmu.de, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan)

    2016-03-01

    We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.

  17. Non-singular spiked harmonic oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Guardiola, R.

    1990-01-01

    A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)

  18. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  19. Active learning of constitutive relation from mesoscopic dynamics for macroscopic modeling of non-Newtonian flows

    Science.gov (United States)

    Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em

    2018-06-01

    We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.

  20. A comparison of viscous-plastic sea ice solvers with and without replacement pressure

    Science.gov (United States)

    Kimmritz, Madlen; Losch, Martin; Danilov, Sergey

    2017-07-01

    Recent developments of the explicit elastic-viscous-plastic (EVP) solvers call for a new comparison with implicit solvers for the equations of viscous-plastic sea ice dynamics. In Arctic sea ice simulations, the modified and the adaptive EVP solvers, and the implicit Jacobian-free Newton-Krylov (JFNK) solver are compared against each other. The adaptive EVP method shows convergence rates that are generally similar or even better than those of the modified EVP method, but the convergence of the EVP methods is found to depend dramatically on the use of the replacement pressure (RP). Apparently, using the RP can affect the pseudo-elastic waves in the EVP methods by introducing extra non-physical oscillations so that, in the extreme case, convergence to the VP solution can be lost altogether. The JFNK solver also suffers from higher failure rates with RP implying that with RP the momentum equations are stiffer and more difficult to solve. For practical purposes, both EVP methods can be used efficiently with an unexpectedly low number of sub-cycling steps without compromising the solutions. The differences between the RP solutions and the NoRP solutions (when the RP is not being used) can be reduced with lower thresholds of viscous regularization at the cost of increasing stiffness of the equations, and hence the computational costs of solving them.

  1. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  2. Numerical study of unsteady viscous flow past oscillating airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yan; Yuan Xin [Tsinghua Univ., Dept. of Thermal Engineering, Beijing (China)

    2001-07-01

    Accurate simulation of the dynamic stall of an oscillating airfoil is of major importance to wing and wind turbine blade design. However, dynamic stall is complicated and influenced by many factors, such as geometry shape of the airfoil, reduced frequency, etc. The difficulties of simulation are both mathematical (numerical method) and physical (turbulence model). The present paper has introduced a new numerical method (new LU-type scheme and fourth-order higher resolution MUSCL TVD scheme) and q-{omega} turbulence modelling to calculate the unsteady flowfields of an oscillating NACA0015 airfoil. The test targets include attached flow, light-stall and deep-stall of the airfoil. The calculated results for attached flow and light-stall are in good agreement with those of experiments. The calculated results for deep-stall also show improvement, especially during the downstroke of the oscillation. However, there is still a significant difference between the results of calculation and experiment in the hysteresis curves of the drag coefficient. One reason is that the q-{omega} turbulence model still has limitations. Another is that the drag coefficient is difficult to measure and the experiments are not reliable. (Author)

  3. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    Science.gov (United States)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  4. Data on mixing of viscous fluids by helical screw impellers in cylindrical vessels

    Directory of Open Access Journals (Sweden)

    Houari Ameur

    2016-09-01

    Full Text Available In this article, the data assembled regarding the mixing of Newtonian and shear thinning fluids by screw impellers in a cylindrical tank is disclosed. The data summarizing some information on the efficiency of such impellers are obtained via 3D calculations of velocities and viscous dissipation in the whole vessel volume. The data presented herein may be useful for those who want to outline the mixing characteristics in terms of fluid circulation and power consumption for this kind of impellers, therefore, avoiding a great effort for achieving a high number of experiments. Keyword: Mixing, Helical screw agitator, Power consumption, Fluid circulation, Cylindrical tanks

  5. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1977-07-01

    Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c

  6. On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet

    Science.gov (United States)

    Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh

    2018-03-01

    This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.

  7. Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface

    KAUST Repository

    Mansoor, Mohammad M.

    2016-05-05

    We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press

  8. Cavitation structures formed during the collision of a sphere with an ultra-viscous wetted surface

    KAUST Repository

    Mansoor, Mohammad M.; Marston, J. O.; Uddin, J.; Christopher, G.; Zhang, Z.; Thoroddsen, Sigurdur T

    2016-01-01

    We investigate the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having a kinematic viscosity of up to (Formula presented.) cSt. We show the existence of shear-stress-induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films using a synchronized dual-view high-speed imaging system. For the experimental parameters employed, liquids having viscoelastic properties of (Formula presented.) are shown to enable sphere rebound without any prior contact with the solid wall. Cavitation by depressurization (i.e. during rebound) in such non-contact cases is observed to onset after a noticeable delay from when the minimum gap distance is reached. Also, the cavities created originate from remnant bubbles, being the remains of the primary bubble entrapment formed by the lubrication pressure of the air during film entry. Cases where physical contact occurs (contact cases) in 10 000 cSt (Formula presented.) cSt films produce cavities attached to the base wall, which extend into an hourglass shape. In contrast, strikingly different structures occur in the most viscous liquids due to the disproportionality in radial expansion and longitudinal extension along the cavity length. Horizontal shear rates calculated using particle image velocimetry (PIV) measurements show the apparent fluid viscosity to vary substantially as the sphere approaches and rebounds away from the base wall. A theoretical model based on the lubrication assumption is solved for the squeeze flow in the regime identified for shear-induced cavity events, to investigate the criterion for cavity inception in further detail. © 2016 Cambridge University Press

  9. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    Science.gov (United States)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  10. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    Science.gov (United States)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  11. Detecting phase synchronization between coupled non-phase-coherent oscillators

    International Nuclear Information System (INIS)

    Follmann, Rosangela; Macau, Elbert E.N.; Rosa, Epaminondas

    2009-01-01

    We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series.

  12. Non Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    Indian Academy of Sciences (India)

    tribpo

    Abstract. It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational. (such as GONG) studies. In this study ...

  13. Quasi-local mass in the covariant Newtonian spacetime

    International Nuclear Information System (INIS)

    Wu, Y-H; Wang, C-H

    2008-01-01

    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, the Newtonian theory of gravity gives a well-known and a unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian spacetime, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate the Komar integral, the Brown-York quasi-local energy and the Dougan-Mason quasi-local mass in the covariant Newtonian spacetime. It turns out that the Komar integral naturally gives the Newtonian quasi-local mass expression; however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions

  14. Gass-Assisted Displacement of Non-Newtonian Fluids

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    2003-01-01

    in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...... (GAIM). This is a process, where a mould is filled partly with a polymer melt followed by the injection of inert gas into the core of the polymer melt. The numerical analysis of the fluid flow concerning the experimental observations data in these publications is all based on Newtonian or general...... equation of Boger fluids is the Oldroyd-B model. This model has, with success, been able to describe the complex flow behaviours of Boger fluid. Though, refinements in the flow analysis can be obtained using more complex constitutive models. To keep the flow analysis as simple as possible the Oldroyd...

  15. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  16. The Post-Newtonian Approximation for Relativistic Compact Binaries

    Directory of Open Access Journals (Sweden)

    Futamase Toshifumi

    2007-03-01

    Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.

  17. Experimental development of a Nusselt correlation for forced reciprocating oscillated vertical annular glycerol flow through a porous domain

    Science.gov (United States)

    Sayar, Ersin

    2017-07-01

    The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.

  18. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  19. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  20. Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    1991-01-01

    The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)

  1. Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  2. Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  3. Radiation and mass transfer effects on an unsteady MHD free convection flow past a heated vertical plate in a porous medium with viscous dissipation

    Directory of Open Access Journals (Sweden)

    Prasad Ramachandra V.

    2007-01-01

    Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.

  4. Experimental study of highly viscous impinging jets

    Energy Technology Data Exchange (ETDEWEB)

    Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    1998-12-01

    The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.

  5. Experimental study of highly viscous impinging jets

    International Nuclear Information System (INIS)

    Gomon, M.

    1998-12-01

    The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established

  6. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  7. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  8. Numerical investigation of interaction between rising bubbles in a viscous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ik Roh [Korea Institute of Marine Science and Technology Promotion, Seoul (Korea, Republic of); Shin Seung Won [Hongik University, Seoul (Korea, Republic of)

    2016-07-15

    The rising behavior of bubbles undergoing bubble-bubble interaction in a viscous liquid is studied using a two-dimensional direct numerical simulation. Level contour reconstruction method (LCRM), one of the connectivity-free front tracking methods, is applied to describe a moving interface accurately under highly deformable conditions. This work focuses on the effects of bubble size on the interaction of two bubbles rising side-by-side in a stagnant liquid. Several characteristics of bubble-bubble interaction are analyzed quantitatively as supported by energy analysis. The results showed clear differences between small and large bubbles with respect to their interaction behavior in terms of lateral movement, vortex intensity, suppression of surface deformation, and viscous dissipation rate. Distributions of vorticity and viscous dissipation rate near the bubble interfaces also differed depending on the size of the bubbles. Strong vortices from large bubbles triggered oscillation in bubble-bubble interaction and played a dominant role in the interaction process as the size of bubbles increases.

  9. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2015-01-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested. - Highlights: • Source of discrepancies on universal gravitational constant G measurements. • Collective motion of dislocations results in breakdown of Hook's law. • Self-organized criticality produce non-predictive shifts of equilibrium point. • New dissipation mechanism different from loss angle and viscous models is necessary. • Mitigation measures proposed may bring coherence to the measurements of G

  10. Transition to chaos in the damped and forced non-lnear oscillator

    International Nuclear Information System (INIS)

    Montenegro Joo, J.; Universidad Nacional Mayor de San Marcos, Lima

    2009-01-01

    A Virtual Lab to study the Transition to Chaos in second order non-linear differential equations has been developed and successfully applied to the search for chaotic behavior in the damped and forced non-linear oscillator. This simulation and visualization software evaluates the equation under investigation at up to one million time-steps, generating in real-time and on the screen, plots like amplitude of oscillation, phase diagram, amplitude oscillation peaks and an animation of an oscillator governed by the problem equation. In this way the investigator not only gets important behavior graphs but he or she also gets a physical visualization of the system under investigation. Visualizing an animation of the system under study is an enormous help because it is not always easy to interpret behavior graphs. (author).

  11. Unsteady free convection flow of a micropolar fluid with Newtonian heating: Closed form solution

    Directory of Open Access Journals (Sweden)

    Hussanan Abid

    2017-01-01

    Full Text Available This article investigates the unsteady free convection flow of a micropolar fluid over a vertical plate oscillating in its own plane with Newtonian heating condition. The problem is modelled in terms of partial differential equations with some physical conditions. Closed form solutions in terms of exponential and complementary error functions of Gauss are obtained by using the Laplace transform technique. They satisfy the governing equations and impose boundary and initial conditions. The present solution in the absence of microrotation reduces to well-known solutions of Newtonian fluid. Graphs are plotted to study the effects of various physical parameters on velocity and microrotation. Numerical results for skin friction and wall couple stress is computed in tables. Apart from the engineering point of view, the present article has strong advantage over the published literature as the exact solutions obtained here can be used as a benchmark for comparison with numerical/ approximate solutions and experimental data.

  12. Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Şefaatdin Yüksel

    2005-01-01

    Full Text Available Eigencharacteristics of a longitudinally vibrating elastic rod with locally and non-locally reacting damping are analyzed. The rod is considered as a continuous system and complex eigenfrequencies are determined as solution of a characteristic equation. The variation of the damping ratios with respect to damper locations and damping coefficients for the first four eigenfrequencies are obtained. It is shown that at any mode of locally or non-locally damped elastic rod, the variation of damping ratio with damper location is linearly proportional to absolute value of the mode shape of undamped system. It is seen that the increasing damping coefficient does not always increase the damping ratio and there are optimal values for the damping ratio. Optimal values for external damping coefficients of viscous dampers and locations of the dampers are presented.

  13. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    Science.gov (United States)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the

  14. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1978-01-01

    We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr

  15. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers.

    Science.gov (United States)

    Alford, Mark G; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai

    2018-01-26

    Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

  16. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers

    Science.gov (United States)

    Alford, Mark G.; Bovard, Luke; Hanauske, Matthias; Rezzolla, Luciano; Schwenzer, Kai

    2018-01-01

    Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

  17. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1983-02-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory

  18. Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.

  19. Computational model for speed of efflux in liquids | Ikata | Journal of ...

    African Journals Online (AJOL)

    We have looked at the efflux of a viscous liquid from an orifice. Assuming the steady flow of a Newtonian fluid, a model for the energy loss due to viscous shearing stress is derived, and a first-order non-linear ordinary differential equation of second degree is obtained for the speed of efflux. Numerically, the equation is ...

  20. Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow

    Science.gov (United States)

    Cagney, Neil; Balabani, Stavroula

    2017-11-01

    Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.

  1. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  2. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)

    2016-06-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  3. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    International Nuclear Information System (INIS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-01-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  4. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  5. Cosmology with modified Newtonian dynamics (MOND)

    NARCIS (Netherlands)

    Sanders, R. H.

    1998-01-01

    It is well known that the application of Newtonian dynamics to an expanding spherical region leads to the correct relativistic expression (the Friedmann equation) for the evolution of the cosmic scalefactor. Here, the cosmological implications of Milgrom's modified Newtonian dynamics (MOND) are

  6. Asymmetric bubble collapse and jetting in generalized Newtonian fluids

    Science.gov (United States)

    Shukla, Ratnesh K.; Freund, Jonathan B.

    2017-11-01

    The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.

  7. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  8. On the Newtonian limit of emergent NC gravity and long-distance corrections

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    We show how Newtonian gravity emerges on 4-dimensional non-commutative spacetime branes in Yang-Mills matrix models. Large matter clusters such as galaxies are embedded in large-scale harmonic deformations of the space-time brane, which screen gravity for long distances. On shorter scales, the local matter distribution reproduces Newtonian gravity via local deformations of the brane and its metric. The harmonic 'gravity bag' acts as a halo with effective positive energy density. This leads in particular to a significant enhancement of the orbital velocities around galaxies at large distances compared with the Newtonian case, before dropping to zero as the geometry merges with a Milne-like cosmology. Besides these 'harmonic' solutions, there is another class of solutions which is more similar to Einstein gravity. Thus the IKKT model provides an accessible candidate for a quantum theory of gravity.

  9. A semiempirical approach to a viscously damped oscillating sphere

    International Nuclear Information System (INIS)

    Alexander, P; Indelicato, E

    2005-01-01

    A simple model of damped harmonic motion is usually presented in undergraduate physics textbooks and straightforwardly applied for a variety of well-known experiments in student laboratories. Results for the decaying vertical oscillation of a sphere attached to the lower end of a spring in containers with different liquids are analysed here under this standard framework. Some important mismatches between observation and theory are found, which are attributed to oversimplifications in the formulation of the drag force. A more elaborate expression for the latter within a semiempirical approach is then introduced and a more appropriate description of the measurements is shown to be attained. Two coefficients account for experimental corrections, which under certain conditions permit in addition the calculation of specific fluid quantities associated with the oscillating sphere. Rough relations between viscosity and damping factor under appropriate limits are derived. The laboratory experience may also be used to introduce the concept of a semiempirical model and exhibit its utility in physics

  10. Comparing scalar-tensor gravity and f(R)-gravity in the Newtonian limit

    International Nuclear Information System (INIS)

    Capozziello, S.; Stabile, A.; Troisi, A.

    2010-01-01

    Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak field) of fourth order gravity models. According to some authors, the Newtonian limit of f(R)-gravity is equivalent to the one of Brans-Dicke gravity with ω BD =0, so that the PPN parameters of these models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth order gravity models are dynamically equivalent to the O'Hanlon Lagrangian. This is a special case of scalar-tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit, this implies a non-standard behavior that cannot be compared with the usual PPN limit of General Relativity. The result turns out to be completely different from the one of Brans-Dicke theory and in particular suggests that it is misleading to consider the PPN parameters of this theory with ω BD =0 in order to characterize the homologous quantities of f(R)-gravity. Finally the solutions at Newtonian level, obtained in the Jordan frame for an f(R)-gravity, reinterpreted as a scalar-tensor theory, are linked to those in the Einstein frame.

  11. Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube

    International Nuclear Information System (INIS)

    Moh, Jeong Hah; Cho, Y. I.

    2014-01-01

    This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady

  12. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives

    International Nuclear Information System (INIS)

    Shah, Nehad Ali; Khan, Ilyas

    2016-01-01

    This paper presents a Caputo-Fabrizio fractional derivatives approach to the thermal analysis of a second grade fluid over an infinite oscillating vertical flat plate. Together with an oscillating boundary motion, the heat transfer is caused by the buoyancy force induced by temperature differences between the plate and the fluid. Closed form solutions of the fluid velocity and temperature are obtained by means of the Laplace transform. The solutions of ordinary second grade and Newtonian fluids corresponding to time derivatives of integer and fractional orders are obtained as particular cases of the present solutions. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter α, the material parameter α 2 , and the Prandtl and Grashof numbers on the velocity field. A comparison for time derivative of integer order versus fractional order is shown graphically for both Newtonian and second grade fluids. It is found that fractional fluids (second grade and Newtonian) have highest velocities. This shows that the fractional parameter enhances the fluid flow. (orig.)

  13. Shape optimization for non-Newtonian fluids in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2014-01-01

    Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time - dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25

  14. Shape optimization for non-Newtonian fluids in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2014-01-01

    Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time-dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25

  15. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  16. Drop Impact of Viscous Suspensions on Solid Surfaces

    Science.gov (United States)

    Bolleddula, Daniel; Aliseda, Alberto

    2009-11-01

    Droplet impact is a well studied subject with over a century of progress. Most studies are motivated by applications such as inkjet printing, agriculture spraying, or printed circuit boards. Pharmaceutically relevant fluids provide an experimental set that has received little attention. Medicinal tablets are coated by the impaction of micron sized droplets of aqueous suspensions and subsequently dried for various purposes such as brand recognition, mask unpleasant taste, or functionality. We will present a systematic study of micron sized drop impact of Newtonian and Non-Newtonian fluids used in pharmaceutical coating processes. In our experiments we extend the range of Ohnesorge numbers, O(1), of previous studies on surfaces of varying wettability and roughness.

  17. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    Science.gov (United States)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  18. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Directory of Open Access Journals (Sweden)

    Blanchet Luc

    2006-06-01

    Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

  19. Saffman-Taylor Instability for a non-Newtonian fluid

    Science.gov (United States)

    Daripa, Prabir

    2013-11-01

    Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).

  20. Relativistic generalization of the Newtonian force

    International Nuclear Information System (INIS)

    Qadir, A.; Quamar, J.

    1982-06-01

    Whereas there is no denying the essential contribution of geometrodynamics, it must be admitted that our physical intuition is still firmly based in the Newtonian concept of force. Here we extend some earlier work re-introducing the Newtonian force concept into relativity theory. Some fundamentally new insights into the relativistic effects due to charge and rotation are presented. (author)

  1. On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics

    CERN Document Server

    Castro, C

    2004-01-01

    We investigate the consequences of the Mach's principle of inertia within the context of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large numbers coincidences and may provide with a physical reason behind the observed anomalous Pioneer acceleration and a solution to the riddle of the cosmological constant problem ( Nottale ). The cosmological implications of Non-Archimedean Geometry by assigning an upper impassible scale in Nature and the cosmological variations of the fundamental constants are also discussed. We study the corrections to Newtonian dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a test particle in a modified Schwarzschild geometry (due to the the effects of the maximal acceleration) that leads in the weak-field approximation to essential modifications of the Newtonian dynamics and to violations of the equivalence principle. Finally we follow another avenue and find modified Newtonian dynamics induced by the Yang's Noncommut...

  2. Computational simulation of a non-newtonian model of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos

    2005-12-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.

  3. Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid

    OpenAIRE

    Jan Novaes Recica; Luiz Antonio Alcântara Pereira; Miguel Hiroo Hirata

    2008-01-01

    The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determin...

  4. Friedmann model with viscous cosmology in modified f(R,T) gravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Singh, C.P.; Kumar, Pankaj [Delhi Technological University, Department of Applied Mathematics, Delhi (India)

    2014-10-15

    In this paper, we introduce the bulk viscosity in the formalism of modified gravity theory in which the gravitational action contains a general function f(R,T), where R and T denote the curvature scalar and the trace of the energy.momentum tensor, respectively, within the framework of a flat Friedmann-Robertson-Walker model. As an equation of state for a prefect fluid, we take p = (γ - 1)ρ, where 0 ≤ γ ≤ 2 and a viscous term as a bulk viscosity due to the isotropic model, of the form ξ = ξ{sub 0} + ξ{sub 1}H, where ξ{sub 0} and ξ{sub 1} are constants, and H is the Hubble parameter. The exact non-singular solutions to the corresponding field equations are obtained with non-viscous and viscous fluids, respectively, by assuming a simplest particular model of the form of f(R,T) = R + 2f(T), where f(T) = αT (α is a constant). A big-rip singularity is also observed for γ < 0 at a finite value of cosmic time under certain constraints. We study all possible scenarios with the possible positive and negative ranges of α to analyze the expansion history of the universe. It is observed that the universe accelerates or exhibits a transition from a decelerated phase to an accelerated phase under certain constraints of ξ{sub 0} and ξ{sub 1}. We compare the viscous models with the non-viscous one through the graph plotted between the scale factor and cosmic time and find that the bulk viscosity plays a major role in the expansion of the universe. A similar graph is plotted for the deceleration parameter with non-viscous and viscous fluids and we find a transition from decelerated to accelerated phase with some form of bulk viscosity. (orig.)

  5. The Effect of Heat Transfer and Polymer Concentration on Non-Newtonian Fluid from Pore-Scale Simulation of Rock X-ray Micro-CT

    Directory of Open Access Journals (Sweden)

    Moussa Tembely

    2017-10-01

    Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.

  6. Electro-spray of high viscous liquids for producing mono-sized spherical alginate beads

    Institute of Scientific and Technical Information of China (English)

    Hamid Moghadam; Mohsen Samimi; Abdolreza Samimi; Mohamad Khorram

    2008-01-01

    Alginate beads, often used for controlled release of enzymes and drugs, are usually produced by spraying sodium alginate liquid into a gelling agent using mechanical vibration nozzle or air jet. In this work an alternative method of electro-spray was employed to form droplets with desired size from a highly viscous sodium alginate solution using constant DC voltage. The droplets were then cured in a calcium chloride solution. The main objective was to produce mono-sized beads from such a highly viscous and non-Newtonian liquid (1000-5000 mPa s). The effects of nozzle diameter, flow rate and concentration of liquid on the size of the beads were investigated. Among the parameters studied, voltage had a pronounced effect on the size of beads as compared to flow rate zzle diameter and concentration of alginate liquid. The size of beads was reduced to a minimum value with increasing the voltage in the range of 0-10 kV. At the early stages of voltage increase (I.e. Up to about 4 kV), the rate of size reduction was relatively low, while the dripping mode dominated. However, in the middle part of the range of applied voltage, where the rate of size reduction was high (I.e. About 4-7 kV), an unstable transition occurred between dripping and jetting. At the end part of the range (I.e. 7-10 kV) jet mode of spray was observed. Increasing the height of fall of the droplets was found to improve the sphericity of the beads, because of the increased time of flight for the droplets. This was especially identifiable at higher concentrations of the alginate liquid (I.e. 3 w/v%)

  7. Zeta functions for the spectrum of the non-commutative harmonic oscillators

    CERN Document Server

    Ichinose, T

    2004-01-01

    This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at $s=1$, and further that it has a zero at all non-positive even integers, i.e. at $s=0$ and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.

  8. Does general relativity theory possess the classical newtonian limit

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1980-01-01

    A detailed comparison of newtonian approximation of the Einstein theory and the Newton theory of gravity is made. A difference of principle between these two theories is clarified at the stage of obtaining integrals of motion. Exact eqautions of motion and Einstein equations shows the existence only zero integrals of motion as well as in the newtonian approximation. A conclusion is that GRT has no classical newtonian limit, since the integrals of motion in the Newton theory of gravity and in the newtonian approximation of the Einstein theory do not coincide [ru

  9. Observation of Droplet Size Oscillations in a Two Phase Fluid under Shear Flow

    Science.gov (United States)

    Courbin, Laurent; Panizza, Pascal

    2004-11-01

    It is well known that complex fluids exhibit strong couplings between their microstructure and the flow field. Such couplings may lead to unusual non linear rheological behavior. Because energy is constantly brought to the system, richer dynamic behavior such as non linear oscillatory or chaotic response is expected. We report on the observation of droplet size oscillations at fixed shear rate. At low shear rates, we observe two steady states for which the droplet size results from a balance between capillary and viscous stress. For intermediate shear rates, the droplet size becomes a periodic function of time. We propose a phenomenological model to account for the observed phenomenon and compare numerical results to experimental data.

  10. Fundamental characteristics of heat conduction enhancement in oscillating viscous flow-dream pipe

    International Nuclear Information System (INIS)

    Katsuta, M.; Nagata, K.; Maruyama, Y.; Tsujimori, A.

    1991-01-01

    This paper reports that to confirm the heat conduction augmentation technique via sinusoidal oscillation experimentally and to establish a fundamental data base of this device, systematic measurements using almost identically scaled with Kurzweg's apparatus for demonstration were conducted. In this heat exchanger, the fluid occupied a capillary tube or its bundle that connected two reservoirs at different temperature; a special constructed oscillation driving unit generated a pulsed motion of working fluid. Operation took place at various tube diameters, oscillated frequency and stroke using pure water and ethanol as working liquid. As a result, a new factor so-called heat transport coefficient which indicates the heat transfer rate multiplying temperature gradient between hot and cold reservoir was introduced. This factor increased with increasing oscillated frequency and stroke, however, beyond a critical frequency, this trend disappeared. Using modified Reynolds number and stroke ratio, a new empirical formula which correlated the data regardless of the difference of working liquid was proposed. A discussion of tube bundle was also made using this correlation. Finally, an attempt was performed to correlate the data using effective thermal diffusivity predicted by simple lumped capacitance analysis and characteristic period

  11. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction

    Science.gov (United States)

    Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.

    2018-06-01

    In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.

  12. Qualitative analysis of cosmological models in Brans-Dicke theory, solutions from non-minimal coupling and viscous universe

    International Nuclear Information System (INIS)

    Romero Filho, C.A.

    1988-01-01

    Using dynamical system theory we investigate homogeneous and isotropic models in Brans-Dicke theory for perfect fluids with general equation of state and arbitrary ω. Phase diagrams are drawn on the Poincare sphere which permits a qualitative analysis of the models. Based on this analysis we construct a method for generating classes of solutions in Brans-Dicke theory. The same technique is used for studying models arising from non-minimal coupling of electromagnetism with gravity. In addition, viscous fluids are considered and non-singular solutions with bulk viscosity are found. (author)

  13. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  14. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings.

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2017-06-01

    We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.

  15. Electronic oscillations in a hot plasma due the non-Maxwellian velocity distributions

    International Nuclear Information System (INIS)

    Dias, L.A.V.; Nakamura, Y.

    1977-01-01

    In a completely ionized hot plasma, with a non-Maxwellian electron velocity distribution, it is shown that, depending on the electron temperature, oscillations may occur at the elctron plasma and gyro frequencies. For three different electron velocity distributions, it is shown the oscillations dependency on the temperature. This situation occurs in the ionospheric plasma when artificially heated by HF radio waves. If the distribution is Maxwellian, the oscillation only occur near the electron plasma frequency [pt

  16. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi

    2015-12-01

    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  17. Non-cyclic phases for neutrino oscillations in quantum field theory

    International Nuclear Information System (INIS)

    Blasone, Massimo; Capolupo, Antonio; Celeghini, Enrico; Vitiello, Giuseppe

    2009-01-01

    We show the presence of non-cyclic phases for oscillating neutrinos in the context of quantum field theory. Such phases carry information about the non-perturbative vacuum structure associated with the field mixing. By subtracting the condensate contribution of the flavor vacuum, the previously studied quantum mechanics geometric phase is recovered.

  18. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  19. Empirical resistive-force theory for slender biological filaments in shear-thinning fluids

    Science.gov (United States)

    Riley, Emily E.; Lauga, Eric

    2017-06-01

    Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.

  20. Viscous damping of toroidal angular momentum in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Tech Fusion Research Center, Atlanta, Georgia 30332 (United States)

    2014-09-15

    The Braginskii viscous stress tensor formalism was generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry in order to provide a representation for the viscous damping of toroidal rotation in tokamaks arising from various “neoclassical toroidal viscosity” mechanisms. In the process, it was verified that the parallel viscosity contribution to damping toroidal angular momentum still vanishes even in the presence of toroidal asymmetries, unless there are 3D radial magnetic fields.

  1. On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films

    KAUST Repository

    Mansoor, Mohammad Mujtaba

    2016-06-01

    The free-surface impact of spheres is important to several applications in the military, industry and sports such as the water-entry of torpedoes, dip-coating procedures and slamming of boats. This two-part thesis attempts to explore this field by investigating cavity formation during the impact of spheres with deep liquid pools and cavitation in thin ultra-viscous films. Part I reports results from an experimental study on the formation of stable- streamlined and helical cavity wakes following the free-surface impact of heated Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers 0 ≳ 1.4 × 105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40-55% smaller overall force coefficients than those obtained in the formation of stable cavity wakes. Part II of this thesis investigates the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having kinematic viscosities of up to 0 = 20,000,000 cSt. The existence of shear-stress- induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films is shown using a synchronized dual-view high-speed imaging system. In addition, cavitation by depressurization is noted for a new class of non-contact cases whereby the sphere rebounds without any prior contact with the solid wall. Horizontal

  2. EMHD micro-pumping of a non-conducting shear-thinning fluid under EDL phenomena

    International Nuclear Information System (INIS)

    Gaikwad, Harshad; Borole, Chetan; Basu, Dipankar N.; Mondal, Pranab K.

    2016-01-01

    The Electro-Magneto-Hydrodynamic (EMHD) pumping of a binary fluid system constituted by one non-conducting shear-thinning fluid (top layer) by exploiting the transverse momentum exchange through the interfacial viscous shearing effect from a conducting Newtonian fluid layer (bottom layer) in a microfluidic channel is investigated. An externally applied electric field drives the conducting fluid layer under the influence of an applied magnetic field as well. The study reveals that the volume transport of shear-thinning fluid gets augmented for low magnetic field strength, higher electrical double layer (EDL) effect, low viscosity ratio and moderate potential ratio. It is also established that the volumetric flow rate reduces significantly for the higher magnetic field strength. (author)

  3. Turbulent structures of non-Newtonian solutions containing rigid polymers

    Science.gov (United States)

    Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.

    2017-10-01

    The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall

  4. The role of the rheological properties of non-newtonian fluids in controlling dispersive mixing in a batch electrophoretic cell with Joule heating

    Directory of Open Access Journals (Sweden)

    M.A. Bosse

    2001-03-01

    Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.

  5. Non self-propelled swimmer in a confined viscous fluid

    Science.gov (United States)

    Choudhary, Priyanka; Mandal, Subhayan

    2018-05-01

    As we know that in a low Reynolds number regime, the swimming strategies that are used in high Reynolds number swimming are inefficient because of the dominating viscous forces. Therefore, micro-swimmers have developed different moving strategies that have fruitfully overcome and have exploited drag. Hydrodynamic interactions due to the objects in the vicinity are also one of the ingredients that can make a micro-swimmer motile. To show the importance of such kind of hydrodynamic interactions, here we investigate a 2-D scallop near no-slip boundaries in a viscous fluid using bead spring model together with multi-particle collision dynamics. Here, we show that if we place a scallop near a wall, it gets rotated and the direction of rotation depends upon the orientation of the scallop as expected. Instead of one wall, if we place the scallop between two closely spaced walls, initially it rotates and then slowly starts moving in backward direction due to the hydrodynamic interaction with the walls. Then we show that how the speed of the scallop is affected as we change the width of the channel. Our results can endue important guidance in the construction of robotic micro-swimmers.

  6. Stress analysis of mixing of non-newtonian flows in cylindrical vessel induced by co-rotating stirrers

    International Nuclear Information System (INIS)

    Memon, R.A.; Solangi, M.A.

    2013-01-01

    The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)

  7. Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback

    Science.gov (United States)

    Tiberkevich, Vasil S.; Khymyn, Roman S.; Tang, Hong X.; Slavin, Andrei N.

    2014-01-01

    For auto-oscillators of different nature (e.g. active cells in a human heart under the action of a pacemaker, neurons in brain, spin-torque nano-oscillators, micro and nano-mechanical oscillators, or generating Josephson junctions) a critically important property is their ability to synchronize with each other. The synchronization properties of an auto oscillator are directly related to its sensitivity to external signals. Here we demonstrate that a non-isochronous (having generation frequency dependent on the amplitude) auto-oscillator with delayed feedback can have an extremely high sensitivity to external signals and unusually large width of the phase-locking band near the boundary of the stable auto-oscillation regime. This property could be used for the development of synchronized arrays of non-isochronous auto-oscillators in physics and engineering, and, for instance, might bring a better fundamental understanding of ways to control a heart arrythmia in medicine.

  8. Self-oscillations of aircraft landing gear shock-strut at considerable non-linear friction

    Directory of Open Access Journals (Sweden)

    Б.М. Шифрин

    2004-01-01

    Full Text Available  The report considers self-oscillations at ε >1. The previous works were dedicated to the elastic frictional L.G. shock strut oscillations, the mathematical model of which is a non-linear differential equation with low ε parameter of its right-hand part.

  9. An analytical investigation on unsteady motion of vertically falling spherical particles in non-Newtonian fluid by Collocation Method

    Directory of Open Access Journals (Sweden)

    M. Rahimi-Gorji

    2015-06-01

    Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.

  10. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  11. Dual Solutions in a Boundary Layer Flow of a Power Law Fluid over a Moving Permeable Flat Plate with Thermal Radiation, Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2018-01-01

    Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.

  12. High Reynolds number oscillations of a circular cylinder

    OpenAIRE

    Hirata, Miguel H.; Pereira, Luiz Antonio A.; Recicar, Jan N.; Moura, Washington H. de

    2008-01-01

    This paper concerns the numerical simulation of the flow around an oscillating circular cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant properties. For each time step of the simulation a number of discrete Lamb vortices is placed close to the body surface; the intensity of each of these is determined such as to satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of cylinder are computed using the integral formulation de...

  13. Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids

    KAUST Repository

    Srivastava, Samanvaya

    2015-10-20

    © 2015 American Chemical Society. Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes.

  14. Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids

    KAUST Repository

    Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; Koch, Donald L.; Narayanan, Suresh; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes.

  15. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  16. Fractional magnetohydrodynamics Oldroyd-B fluid over an oscillating plate

    Directory of Open Access Journals (Sweden)

    Jamil Muhammad

    2013-01-01

    Full Text Available This paper presents some new exact solutions corresponding to the oscillating flows of a MHD Oldroyd-B fluid with fractional derivatives. The fractional calculus approach in the governing equations is used. The exact solutions for the oscillating motions of a fractional MHD Oldroyd-B fluid due to sine and cosine oscillations of an infinite plate are established with the help of discrete Laplace transform. The expressions for velocity field and the associated shear stress that have been obtained, presented in series form in terms of Fox H functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary MHD Oldroyd-B, fractional and ordinary MHD Maxwell, fractional and ordinary MHD Second grade and MHD Newtonian fluid as well as those for hydrodynamic fluids are obtained as special cases of general solutions. Finally, the obtained solutions are graphically analyzed through various parameters of interest.

  17. Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid

    Directory of Open Access Journals (Sweden)

    Jan Novaes Recica

    2008-01-01

    Full Text Available The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determined such as to satisfy the no-slip boundary condition.

  18. Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2011-01-01

    Roč. 40, č. 4 (2011), s. 1077-1097 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * shape gradient * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.300, year: 2010

  19. Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations

    Directory of Open Access Journals (Sweden)

    Petr Hasil

    2016-08-01

    Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.

  20. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  1. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    Science.gov (United States)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  2. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  3. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  4. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    International Nuclear Information System (INIS)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.

    2009-01-01

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  5. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    Science.gov (United States)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  6. Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables

    International Nuclear Information System (INIS)

    Papaloizou, J.; Pringle, J.E.

    1978-01-01

    The usual hypothesis, that the short-period coherent oscillations seen in cataclysmic variables are attributable to g modes in a slowly rotating white dwarf, is considered. It is shown that this hypothesis is untenable for three main reasons: (i) the observed periods are too short for reasonable white dwarf models, (ii) the observed variability of the oscillations is too rapid and (iii) the expected rotation of the white dwarf, due to accretion, invalidates the slow rotation assumption on which standard g-mode theory is based. The low-frequency spectrum of a rotating pulsating star is investigated taking the effects of rotation fully into account. In this case there are two sets of low-frequency modes, the g modes, and modes similar to Rossby waves in the Earth's atmosphere and oceans, which are designated r modes. Typical periods for such modes are 1/m times the rotation period of the white dwarfs outer layers (m is the aximuthal wavenumber). It is concluded that non-radial oscillations of rotating white dwarfs can account for the properties of the oscillations seen in dwarf novae. Application of these results to other systems is also discussed. (author)

  7. Homogeneous viscous flow behavior of a Cu–Zr based bulk metallic glass composites

    International Nuclear Information System (INIS)

    Zhang, X.Y.; Yuan, Z.Z.; Feng, X.L.; Cui, L.Z.; Li, D.X.

    2015-01-01

    In this paper, Cu 40 Zr 44 Ag 8 Al 8 bulk metallic glass composites (BMGCs) consisting of various volume fraction of nanocrystals embedded in the amorphous matrix was synthesized by controlled annealing treatment of an as-cast BMGCs. The high temperature compression behaviors of the BMGCs were characterized in the supercooled liquid region. Results show that the flow stresses keep increasing after an initial decrease with extension of the annealing time. With annealing the values of activation volume V act is determined to be increasing from 283.6216 Ǻ 3 to 305.553 Ǻ 3 , suggesting that the jump of atoms is a cooperative process during the high-temperature deformation. Flow behavior of the BMGCs annealed for less than 8 min transform from Newtonian to non-Newtonian dependant on the stain rate and can be successively fitted by the visco-plasticity model. Fitting results indicate that deformation behaviors of these samples are governed by homogeneous flow of the amorphous matrix and indeed determined by the viscosities in the Newtonian flow stage. However, the BMGCs annealed for 8 min exhibit a non-Newtonian flow over the entire compression process and fail to be fitted by the visco-plasticity model. Micrographs of the sample reflect an impinged structure, indicating that high temperature deformation behavior of the BMGCs with high volume fractions of particles is indeed controlled by that of a backbone of particles

  8. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  9. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  10. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2012-01-01

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  11. ΛCDM model with dissipative nonextensive viscous dark matter

    Science.gov (United States)

    Gimenes, H. S.; Viswanathan, G. M.; Silva, R.

    2018-03-01

    Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.

  12. Non-Radial Oscillation Modes of Superfluid Neutron Stars Modeled with CompOSE

    Directory of Open Access Journals (Sweden)

    Prashanth Jaikumar

    2018-03-01

    Full Text Available We compute the principal non-radial oscillation mode frequencies of Neutron Stars described with a Skyrme-like Equation of State (EoS, taking into account the possibility of neutron and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the background of a fully relativistic star, and identify imprints of the superfluid state. Though these modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave Observatories could allow us to observe these oscillations and potentially constrain or refine models of dense matter relevant to the interior of neutron stars.

  13. Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow

    Science.gov (United States)

    Alam, Meheboob; Saha, Saikat

    2014-11-01

    The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.

  14. CFD study of the thermal transfer of a non-Newtonian fluid within a tank mechanically stirred by an anchor-shaped impeller

    Science.gov (United States)

    Rahmani, L.; Seghier, O.; Benmoussa, A.; Draoui, B.

    2018-06-01

    The most of operations of chemical, biochemical or petrochemical industries are carried out in tanks or in reactors which are mechanically-controlled. The optimum mode of operation of these devices requires a finalized knowledge of the thermo-hydrodynamic behavior induced by the agitator. In the present work, the characterization of the incompressible hydrodynamic and thermal fields of a non-Newtonian fluid (Bingham) in a flat, non-baffled cylindrical vessel fitted with anchor agitator was undertaken by numerical simulation, using the CFD code Fluent (6.3.26) based on the finite volume discretization method of the energy equation and the Navier-Stokes equations which are formulated in (U.V.P) variables. We have summarized this simulated system by comparing of the consumed power and the Nusselt number for this type of mobile (Anchor agitator).

  15. Newtonian and non-newtonian limits of gravitational fields

    International Nuclear Information System (INIS)

    Koppel', A.A.

    1975-01-01

    The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c→infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions

  16. Newtonian and non-newtonian limits of gravitational fields

    Energy Technology Data Exchange (ETDEWEB)

    Koppel, A A [Tartuskij Gosudarstvennyj Univ., (USSR)

    1975-09-01

    The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c..-->..infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions.

  17. Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rahman

    2016-11-01

    Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.

  18. Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes.

    Science.gov (United States)

    Voelkle, Manuel C; Oud, Johan H L

    2013-02-01

    When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.

  19. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  20. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-09-01

    Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.

  1. On Viscous Generalized Chapyglin Gases in Non-flat Universes

    Science.gov (United States)

    Ramos, J. I.

    2016-01-01

    The density dependence on cosmic time of viscous cosmological fluids which obey a generalized Chapyglin gas equation of state in four-dimensional space-time within the cosmological Friedmann-Robertson-Walker (FRW) model is obtained analytically for scale factors that depend on the cosmic time in either a power, exponential or mixed exponential-power fashion. It is shown that, depending on the power of the density that appears in the generalized Chapyglin gas equation of state, the scale factor and the viscosity coefficient, the density may decrease in either a monomial or an exponential manner with time and may exhibit either integrable or non-integrable singularities. The parameters that characterize the scale factor and equation of state are determined from available experimental data for the Hubble, deceleration, jerk and state-finder parameters. It is shown that an exponential scale factor is not consistent with currently available experimental data for the deceleration and jerk parameters, and that the poorly constrained observational data for these parameters result in broad ranges for the coefficients that appear in the power-law and quasi-exponential scale factors. It is also shown that, although the power-law and quasi-exponential scale factors may be selected so as to provide results compatible with experimental observations at the present time, their predictions may be dramatically different in the near distant or future times.

  2. The submm wave Josephson flux flow oscillator; Linewidth measurements and simple theory

    DEFF Research Database (Denmark)

    Mygind, Jesper; Koshelets, V. P.; Samuelsen, Mogens Rugholm

    2005-01-01

    The Flux Flow Oscillator (FFO) is a long Josephson junction in which a DC bias current and a DC magnetic field maintain a unidirectional viscous flow of magnetic flux quanta. The theoretical linewidth of the electromagnetic radiation generated at the end boundary is due to internal current...

  3. Radiation and viscous dissipation effect on square porous annulus

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.

  4. Radiation and viscous dissipation effect on square porous annulus

    International Nuclear Information System (INIS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-01-01

    The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T h and inside cold T c temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.

  5. Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations

    Science.gov (United States)

    Nowak, Michael A.; Wagoner, Robert V.

    1991-01-01

    The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.

  6. The magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NARCIS (Netherlands)

    Seong, Y.; Kang, T.G.; Hulsen, M.A.; den Toonder, J.M.J.; Anderson, P.D.

    2016-01-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and non-magnetic sides. A direct numerical scheme is

  7. Oscillation of plantar pressure center in athletes and non-athletes with and without ankle sprains

    Directory of Open Access Journals (Sweden)

    André Kenzo Saito

    2016-08-01

    Full Text Available ABSTRACT OBJECTIVE: To assess whether there is any difference in the oscillation of the plantar pressure center in single-leg stance between athletes and non-athletes with and without ankle sprains. METHODS: 54 volunteers performed four static assessments and one dynamic assessment while standing on one foot on a baropodometer, barefoot, for 10 s in each test. The variables of area (cm2, distance (cm, anteroposterior oscillation (cm, mediolateral oscillation (cm and mean velocity (cm/s were analyzed. The items "other symptoms" and "sports and recreation" of the subjective Foot and Ankle Outcome Score (FAOS questionnaire were applied. For the statistical analysis, repeated-measurement ANOVA (ANOVA-MR, multivariate ANOVA (MANOVA, Tukey's post hoc test and partial eta squared were used. RESULTS: ANOVA-MR revealed differences regarding distance, with major effects for eyes (p 0.05; and "sport and recreation", p > 0.05. CONCLUSION: Athletes present higher mean velocity of oscillation of plantar pressure center and generally do not have differences in oscillation amplitude in the sagittal and coronal planes, in comparison with non-athletes.

  8. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  9. On the non-linear dynamics of potential relaxation oscillations in bounded plasmas

    International Nuclear Information System (INIS)

    Krssak, M.; Skalny, J.D.; Gyergyek, T.; Cercek, M.

    2007-01-01

    Plasma in a 1-dimensional diode is studied theoretically and the computer simulations are used for verification of the theoretical model. When collector in the diode is biased positively, a double-layer is created in the system and consequently, we are able to observe oscillations of the potential, density and other plasma parameters. When external periodic forcing is applied, spectra of these oscillations are changed and effects of synchronisation and periodic pulling can be observed. Both of these effects are of non-linear nature and a good explanation is found using the analogy with Van der Pol oscillators. Following [1] and [2] approximate analytical solutions are found and then compared with computer simulations obtained using a 1-dimensional particle-in-cell code XPDP1. (author)

  10. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Science.gov (United States)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  11. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  12. PROTOTYPING NON-EQUILIBRIUM VISCOUS-TIMESCALE ACCRETION THEORY USING LMC X-3

    Energy Technology Data Exchange (ETDEWEB)

    Cambier, Hal J.; Smith, David M. [Physics Department, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-10

    Explaining variability observed in the accretion flows of black hole X-ray binary systems remains challenging, especially concerning timescales less than, or comparable to, the viscous timescale but much larger than the inner orbital period despite decades of research identifying numerous relevant physical mechanisms. We take a simplified but broad approach to study several mechanisms likely relevant to patterns of variability observed in the persistently high-soft Roche-lobe overflow system LMC X-3. Based on simple estimates and upper bounds, we find that physics beyond varying disk/corona bifurcation at the disk edge, Compton-heated winds, modulation of total supply rate via irradiation of the companion, and the likely extent of the partial hydrogen ionization instability is needed to explain the degree, and especially the pattern, of variability in LMC X-3 largely due to viscous dampening. We then show how evaporation-condensation may resolve or compound the problem given the uncertainties associated with this complex mechanism and our current implementation. We briefly mention our plans to resolve the question, refine and extend our model, and alternatives we have not yet explored.

  13. Nonrotating black hole in a post-Newtonian tidal environment

    International Nuclear Information System (INIS)

    Taylor, Stephanne; Poisson, Eric

    2008-01-01

    We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The black hole's gravity is described accurately to all orders in Gm/c 2 r, where m is the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.

  14. Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times

    Energy Technology Data Exchange (ETDEWEB)

    Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)

    2017-06-01

    Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.

  15. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  16. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  17. Monotonous property of non-oscillations of the damped Duffing's equation

    International Nuclear Information System (INIS)

    Feng Zhaosheng

    2006-01-01

    In this paper, we give a qualitative study to the damped Duffing's equation by means of the qualitative theory of planar systems. Under certain parametric conditions, the monotonous property of the bounded non-oscillations is obtained. Explicit exact solutions are obtained by a direct method and application of this approach to a reaction-diffusion equation is presented

  18. Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes

    Science.gov (United States)

    1991-10-01

    ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.

  19. Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory

    Science.gov (United States)

    Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.

    1976-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.

  20. Parameterized Post-Newtonian Expansion of Scalar-Vector-Tensor Theory of Gravity

    International Nuclear Information System (INIS)

    Arianto; Zen, Freddy P.; Gunara, Bobby E.; Hartanto, Andreas

    2010-01-01

    We investigate the weak-field, post-Newtonian expansion to the solution of the field equations in scalar-vector-tensor theory of gravity. In the calculation we restrict ourselves to the first post Newtonian. The parameterized post Newtonian (PPN) parameters are determined by expanding the modified field equations in the metric perturbation. Then, we compare the solution to the PPN formalism in first PN approximation proposed by Will and Nordtvedt and read of the coefficients (the PPN parameters) of post Newtonian potentials of the theory. We find that the values of γ PPN and β PPN are the same as in General Relativity but the coupling functions β 1 , β 2 , and β 3 are the effect of the preferred frame.

  1. Newtonian quantum gravity

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1995-01-01

    We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs

  2. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M.M. Rashidi

    2017-03-01

    Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.

  3. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  4. A measurement of LAGEOS II pericenter shift with a 1% accuracy and its constraints on non-Newtonian gravity

    Science.gov (United States)

    Peron, Roberto; Lucchesi, David

    The pericenter shift of a binary system represents a suitable observable to be used to test for possible deviations from the Newtonian gravitational inverse—square—law in favor of pos-sible new weak interactions between macroscopic objects. These very weak and long-range interactions are usually described by means of a Yukawa—like potential with strength α and range λ. Moreover, these supplementary interactions may be either consistent with Einstein Equivalence Principle or not. In this work, we analyzed 11 years of LAGEOS II normal points using the GEODYN II code with suitable models for both gravitational and non—gravitational perturbations. However, we do not included in the models the general relativity corrections to Newtonian gravity, such as the ones due to the Earth's gravitoelectric and gravitomagnetic fields. From the fit of the satellite pericenter residuals we have been able to obtain a 99% agreement with the predictions of Einstein theory of gravitation. Therefore, the present mea-surement of the LAGEOS II pericenter shift represents a 1% measurement in the field of the Earth of the combination of the Parametrized Post—Newtonian parameters g and b of general relativity. This result may be also used to put limits on the strength α of a possible Yukawa— like interaction with a characteristic range of about 1 Earth radii. We obtained |α| ≈ 4 · 10-11 , that represents a significant improvement with respect to the previous constraints based on Earth—LAGEOS or Lunar—LAGEOS data.

  5. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Newtonian hydrodynamic equations with relativistic pressure and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: fabris@pq.cnpq.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitória (Brazil)

    2016-07-01

    We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.

  7. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  8. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    Science.gov (United States)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  9. Harmonic oscillator states with integer and non-integer orbital angular momentum

    International Nuclear Information System (INIS)

    Land, Martin

    2011-01-01

    We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non

  10. Achieving effective confinement through utilization of non-Newtonian fluid mixture as stemming structure

    Directory of Open Access Journals (Sweden)

    Luís Felipe Gomes Marinho

    Full Text Available Abstract The economics of a mining operation is directly influenced by blasting outcomes, where blasting aims to comminute the rock mass in order to attain smaller grain sizes to be loaded and hauled at a minimum cost for its first processing stage. In order to promote adequate rock breakage, the stemming structure needs to provide proper confinement for the borehole charged with explosives, reflecting the energy released during the detonation in form of shock waves and gases to act throughout the in situ rock mass, enlarging its failures and fractures, and also creating new ones. To build up a stemming column, literature recommends the usage of dry granular materials instead of elements with plastic behavior. However, a study was performed using Gypsum plaster as stemming; a kind of material that exhibits solid-like behavior when it is dry. Following this theory, this test verified improvements regarding confinement effectiveness and energy propagation throughout the rock mass when a non-Newtonian mixture (NNM was applied as stemming; a material that shows a solid-like behavior when is under shear stress. When the stemming arrangement was composed of NNM, it was able to reduce energy and gas losses to the atmosphere, because of the liquid's property of filling voids into the borehole. The NNM yielded high results due to its better confinement effectiveness, a reduction of air overpressure, and an increase of the strain propagation and ground vibration throughout the rock.

  11. The parameterized post-Newtonian limit of bimetric theories of gravity

    International Nuclear Information System (INIS)

    Clifton, Timothy; Banados, Maximo; Skordis, Constantinos

    2010-01-01

    We consider the post-Newtonian limit of a general class of bimetric theories of gravity, in which both metrics are dynamical. The established parameterized post-Newtonian approach is followed as closely as possible, although new potentials are found that do not exist within the standard framework. It is found that these theories can evade solar system tests of post-Newtonian gravity remarkably well. We show that perturbations about Minkowski space in these theories contain both massless and massive degrees of freedom, and that in general there are two different types of massive mode, each with a different mass parameter. If both of these masses are sufficiently large then the predictions of the most general class of theories we consider are indistinguishable from those of general relativity, up to post-Newtonian order in a weak-field, low-velocity expansion. In the limit that the massive modes become massless, we find that these general theories do not exhibit a van Dam-Veltman-Zakharov-like discontinuity in their γ parameter, although there are discontinuities in other post-Newtonian parameters as the massless limit is approached. This smooth behaviour in γ is due to the discontinuities from each of the two different massive modes cancelling each other out. Such cancellations cannot occur in special cases with only one massive mode, such as the Isham-Salam-Strathdee theory.

  12. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  13. MATHEMATICAL MODEL NON-ISOTHERMAL FLOW HIGHLY VISCOUS MEDIA CHANNELS MATRIX EXTRUDER

    Directory of Open Access Journals (Sweden)

    A. S. Sidorenko

    2015-01-01

    Full Text Available We consider a one-dimensional steady flow of highly viscous medium in a cylindrical channel with Dissipation and dependence of the viscosity on the temperature. It is assumed that a relatively small intervals of temperature variation of the dynamic viscosity with a sufficient degree of accuracy can be assumed to be linear. The model was based on the equations of hydrodynamics and the heat transfer fluid. In the task channel wall temperature is assumed constant. An approximate solution of the problem, according to which the distribution of velocity, pressure and temperature is sought in the form of an expansion in powers of the dimensionless transverse coordinates. A special case, when the ratio of the velocity distribution, pressure and temperature is allowed to restrict the number of terms in the expansion as follows: for speed - the first 3 to the pressure - the first two for the temperature - the first 5. The expressions to determine the temperature profile of the medium in the channel and characterization dissipative heating. To simulate the process of heat transfer highly viscous media developed a program for personal electronic computers. The calculation was performed using experimental research data melt flow grain mixture of buckwheat and soybeans for the load speed of 0.08 mm / s. The method of computer simulation carried out checks on the adequacy of the solutions to the real process of heat transfer. Analysis of the results indicates that for small values of the length of the channel influence dissipation function appears mainly at the wall. By increasing the reduced length of this phenomenon applies to all section of the channel. At high temperature profile along the channel length is determined entirely by dissipation. In the case of heat transfer due to frictional heat only, the form of curves of temperature distribution is a consequence of the interaction effects of heating due to viscous shear effects cooling by conduction. The

  14. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

    CERN Document Server

    Malament, David B

    2012-01-01

    In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is

  15. Non-linear oscillations of fluid in a container

    NARCIS (Netherlands)

    Verhagen, J.H.G.; van Wijngaarden, L.

    1965-01-01

    This paper is concerned with forced oscillations of fluid in a rectangular container. From the linearized approximation of the equations governing these oscillations, resonance frequencies are obtained for which the amplitude of the oscillations becomes infinite. Observation shows that under these

  16. Relic gravitons and viscous cosmologies

    International Nuclear Information System (INIS)

    Cataldo, Mauricio; Mella, Patricio

    2006-01-01

    Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons

  17. Flow around an oscillating cylinder: computational issues

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fengjian; Gallardo, José P; Pettersen, Bjørnar [Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Andersson, Helge I, E-mail: fengjian.jiang@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2017-10-15

    We consider different computational issues related to the three-dimensionalities of the flow around an oscillating circular cylinder. The full time-dependent Navier–Stokes equations are directly solved in a moving reference frame by introducing a forcing term. The choice of quantitative validation criteria is discussed and discrepancies of previously published results are addressed. The development of Honji vortices shows that short simulation times may lead to incorrect quasi-stable vortex patterns. The viscous decay of already established Honji vortices is also examined. (paper)

  18. Diverse Geological Applications For Basil: A 2d Finite-deformation Computational Algorithm

    Science.gov (United States)

    Houseman, Gregory A.; Barr, Terence D.; Evans, Lynn

    Geological processes are often characterised by large finite-deformation continuum strains, on the order of 100% or greater. Microstructural processes cause deformation that may be represented by a viscous constitutive mechanism, with viscosity that may depend on temperature, pressure, or strain-rate. We have developed an effective com- putational algorithm for the evaluation of 2D deformation fields produced by Newto- nian or non-Newtonian viscous flow. With the implementation of this algorithm as a computer program, Basil, we have applied it to a range of diverse applications in Earth Sciences. Viscous flow fields in 2D may be defined for the thin-sheet case or, using a velocity-pressure formulation, for the plane-strain case. Flow fields are represented using 2D triangular elements with quadratic interpolation for velocity components and linear for pressure. The main matrix equation is solved by an efficient and compact conjugate gradient algorithm with iteration for non-Newtonian viscosity. Regular grids may be used, or grids based on a random distribution of points. Definition of the prob- lem requires that velocities, tractions, or some combination of the two, are specified on all external boundary nodes. Compliant boundaries may also be defined, based on the idea that traction is opposed to and proportional to boundary displacement rate. In- ternal boundary segments, allowing fault-like displacements within a viscous medium have also been developed, and we find that the computed displacement field around the fault tip is accurately represented for Newtonian and non-Newtonian viscosities, in spite of the stress singularity at the fault tip. Basil has been applied by us and colleagues to problems that include: thin sheet calculations of continental collision, Rayleigh-Taylor instability of the continental mantle lithosphere, deformation fields around fault terminations at the outcrop scale, stress and deformation fields in and around porphyroblasts, and

  19. Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek

    2007-01-01

    We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control

  20. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  1. Synchrony-optimized networks of non-identical Kuramoto oscillators

    International Nuclear Information System (INIS)

    Brede, Markus

    2008-01-01

    In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at

  2. Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents

    Science.gov (United States)

    Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin

    2015-09-01

    We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.

  3. A note on the post-Newtonian limit of quasi-local energy expressions

    International Nuclear Information System (INIS)

    Frauendiener, Jörg; Szabados, László B

    2011-01-01

    An 'effective' quasi-local energy expression, motivated by the (relativistically corrected) Newtonian theory, is introduced in exact general relativity as the volume integral of all the source terms in the field equation for the Newtonian potential in static spacetimes. In particular, we exhibit a new post-Newtonian correction in the source term in the field equation for the Newtonian gravitational potential. In asymptotically flat spacetimes, this expression tends to the Arnowitt-Deser-Misner energy at spatial infinity as a monotonically decreasing set function. We prove its positivity in spherically symmetric spacetimes under certain energy conditions, and that its vanishing characterizes flatness. We argue that any physically acceptable quasi-local energy expression should behave qualitatively like this 'effective' energy expression in this limit. (paper)

  4. Relativistic gravitation theory for the modified Newtonian dynamics paradigm

    International Nuclear Information System (INIS)

    Bekenstein, Jacob D.

    2004-01-01

    The modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting superluminal scalar waves or an a priori vector field. We develop a relativistic MOND inspired theory which resolves these problems. In it gravitation is mediated by metric, a scalar, and a 4-vector field, all three dynamical. For a simple choice of its free function, the theory has a Newtonian limit for nonrelativistic dynamics with significant acceleration, but a MOND limit when accelerations are small. We calculate the β and γ parameterized post-Newtonian coefficients showing them to agree with solar system measurements. The gravitational light deflection by nonrelativistic systems is governed by the same potential responsible for dynamics of particles. To the extent that MOND successfully describes dynamics of a system, the new theory's predictions for lensing by that system's visible matter will agree as well with observations as general relativity's predictions made with a dynamically successful dark halo model. Cosmological models based on the theory are quite similar to those based on general relativity; they predict slow evolution of the scalar field. For a range of initial conditions, this last result makes it easy to rule out superluminal propagation of metric, scalar, and vector waves

  5. Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order

    Science.gov (United States)

    Loutrel, Nicholas; Yunes, Nicolás

    2017-02-01

    While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10-3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10-8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision.

  6. Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order

    International Nuclear Information System (INIS)

    Loutrel, Nicholas; Yunes, Nicolás

    2017-01-01

    While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10 −3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10 −8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision. (paper)

  7. Bianchi I cosmology in the presence of a causally regularized viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Montani, Giovanni [ENEA, FSN-FUSPHY-TSM, R.C. Frascati, Frascati (Italy); Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); Venanzi, Marta [Universita degli Studi di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); University of Southampton, Department of Physics and Astronomy, Southampton (United Kingdom)

    2017-07-15

    We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced. (orig.)

  8. Transport phenomena in Newtonian fluids a concise primer

    CERN Document Server

    Olsson, Per

    2013-01-01

    This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum.  The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid.  Also provided at

  9. Bulk viscous cosmological model with interacting dark fluids

    International Nuclear Information System (INIS)

    Kremer, Gilberto M.; Sobreiro, Octavio A.S.

    2012-01-01

    We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)

  10. Reduced viscosity interpreted for fluid/gas mixtures

    Science.gov (United States)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  11. Development of a Model Foamy Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Vial C.

    2013-08-01

    Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.

  12. Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    OpenAIRE

    Muduli, P. K.; Pogoryelov, Ye.; Bonetti, S.; Consolo, G.; Mancoff, Fred; Åkerman, Johan

    2009-01-01

    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity ($d^{2}f/dI^{2}_{dc}$ being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.

  13. Design of a low cost Zimm-Crothers viscometer: From theory to experiment

    Science.gov (United States)

    Courbin, L.; Cristobal, G.; Winckert, M.; Panizza, P.

    2005-09-01

    To accurately measure low viscosities of liquids, we describe how a Zimm-Crothers viscometer works and how to build it. The viscometer involves the action of a rotating magnetic field on a metallic cylinder floating on the liquid to be studied. The principles of electromagnetism and fluid mechanics involved make the viscometer an excellent tool for undergraduate laboratory courses and for measuring the shear viscosity of low viscous fluids. We discuss the advantages and limitations of this inexpensive and easy to use apparatus compared to other classical techniques. Calibrations with Newtonian fluids are explained and experiments with Non-Newtonian materials are discussed.

  14. Period doubling of azimuthal oscillations on a non-neutral magnetized electron column

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1985-01-01

    The low-frequency azimuthal oscillations on a non-neutral magnetized electron column of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large-amplitude fundamental-mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increased the wave form ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement. (author)

  15. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  16. Parameterised post-Newtonian expansion in screened regions

    Science.gov (United States)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge

    2017-12-01

    The parameterised post-Newtonian (PPN) formalism has enabled stringent tests of static weak-field gravity in a theory-independent manner. Here we incorporate screening mechanisms of modified gravity theories into the framework by introducing an effective gravitational coupling and defining the PPN parameters as functions of position. To determine these functions we develop a general method for efficiently performing the post-Newtonian expansion in screened regimes. For illustration, we derive all the PPN functions for a cubic galileon and a chameleon model. We also analyse the Shapiro time delay effect for these two models and find no deviations from General Relativity insofar as the signal path and the perturbing mass reside in a screened region of space.

  17. Experimental investigation of the brittle-viscous transition in mafic rocks - Interplay between fracturing, reaction, and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2017-12-01

    Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.

  18. Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory

    Science.gov (United States)

    Lee, D. L.; Caves, C. M.

    1974-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.

  19. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    Science.gov (United States)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  20. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The transmission efficiency, frequency and amplitude alteration have been measured by a simple technique of coupled oscillators with a frequency gradient and in a system of non-Newtonian fluid in the form of corn-flour slime. The system of coupled oscillators was found to exhibit preferential energy transfer towards the ...

  1. Modeling of brittle-viscous flow using discrete particles

    Science.gov (United States)

    Thordén Haug, Øystein; Barabasch, Jessica; Virgo, Simon; Souche, Alban; Galland, Olivier; Mair, Karen; Abe, Steffen; Urai, Janos L.

    2017-04-01

    Many geological processes involve both viscous flow and brittle fractures, e.g. boudinage, folding and magmatic intrusions. Numerical modeling of such viscous-brittle materials poses challenges: one has to account for the discrete fracturing, the continuous viscous flow, the coupling between them, and potential pressure dependence of the flow. The Discrete Element Method (DEM) is a numerical technique, widely used for studying fracture of geomaterials. However, the implementation of viscous fluid flow in discrete element models is not trivial. In this study, we model quasi-viscous fluid flow behavior using Esys-Particle software (Abe et al., 2004). We build on the methodology of Abe and Urai (2012) where a combination of elastic repulsion and dashpot interactions between the discrete particles is implemented. Several benchmarks are presented to illustrate the material properties. Here, we present extensive, systematic material tests to characterize the rheology of quasi-viscous DEM particle packing. We present two tests: a simple shear test and a channel flow test, both in 2D and 3D. In the simple shear tests, simulations were performed in a box, where the upper wall is moved with a constant velocity in the x-direction, causing shear deformation of the particle assemblage. Here, the boundary conditions are periodic on the sides, with constant forces on the upper and lower walls. In the channel flow tests, a piston pushes a sample through a channel by Poisseuille flow. For both setups, we present the resulting stress-strain relationships over a range of material parameters, confining stress and strain rate. Results show power-law dependence between stress and strain rate, with a non-linear dependence on confining force. The material is strain softening under some conditions (which). Additionally, volumetric strain can be dilatant or compactant, depending on porosity, confining pressure and strain rate. Constitutive relations are implemented in a way that limits the

  2. Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating

    Science.gov (United States)

    Mehmood, R.; Rana, S.; Nadeem, S.

    2018-03-01

    Hydromagnetic transverse flow of an Oldroyd-B type fluid with suspension of nanoparticles and Newtonian heating effects is conferred in this article. Relaxation and Retardation time effects are taken into consideration. Using suitable transformations physical problem is converted into non-linear ordinary differential equations which are tackled numerically via Runge-Kutta Fehlberg integration scheme. Illustration of embedded constraints on flow characteristics are extracted through graphs. The physical response of velocity, temperature and concentration are investigated computationally. Momentum boundary layer thickness decreases but local heat and mass flux rises for Deborah number and Hartman number. The results provide interesting insights into certain applicable transport phenomena involving hydromagnetic rheological fluids.

  3. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-10-15

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  4. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    International Nuclear Information System (INIS)

    Chou, Chia-Chun

    2016-01-01

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  5. Constraints on spatially oscillating sub-mm forces from the Stanford Optically Levitated Microsphere Experiment data

    Science.gov (United States)

    Antoniou, I.; Perivolaropoulos, L.

    2017-11-01

    A recent analysis by one of the authors [L. Perivolaropoulos, Phys. Rev. D 95, 084050 (2017), 10.1103/PhysRevD.95.084050] has indicated the presence of a 2 σ signal of spatially oscillating new force residuals in the torsion balance data of the Washington experiment. We extend that study and analyze the data of the Stanford Optically Levitated Microsphere Experiment (SOLME) [A. D. Rider et al., Phys. Rev. Lett. 117, 101101 (2016), 10.1103/PhysRevLett.117.101101] (kindly provided by A. D. Rider et al.) searching for sub-mm spatially oscillating new force signals. We find a statistically significant oscillating signal for a force residual of the form F (z )=α cos (2/π λ z +c ) where z is the distance between the macroscopic interacting masses (levitated microsphere and cantilever). The best fit parameter values are α =(1.1 ±0.4 )×10-17N , λ =(35.2 ±0.6 ) μ m . Monte Carlo simulation of the SOLME data under the assumption of zero force residuals has indicated that the statistical significance of this signal is at about 2 σ level. The improvement of the χ2 fit compared to the null hypothesis (zero residual force) corresponds to Δ χ2=13.1 . There are indications that this previously unnoticed signal is indeed in the data but is most probably induced by a systematic effect caused by diffraction of non-Gaussian tails of the laser beam. Thus the amplitude of this detected signal can only be useful as an upper bound to the amplitude of new spatially oscillating forces on sub-mm scales. In the context of gravitational origin of the signal emerging from a fundamental modification of the Newtonian potential of the form Veff(r )=-G M/r (1 +αOcos (2/π λ r +θ ))≡VN(r )+Vosc(r ) , we evaluate the source integral of the oscillating macroscopically induced force. If the origin of the SOLME oscillating signal is systematic, the parameter αO is bounded as αOchameleon oscillating potentials etc.).

  6. Numerical study of chaotic oscillations in the electron beam with virtual cathode in the external non-uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hramov, Alexander E., E-mail: aeh@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation); Koronovskii, Alexey A., E-mail: alkor@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation); Kurkin, Semen, E-mail: KurkinSA@nonlin.sgu.r [Faculty of Nonlinear Processes, Saratov State University, 83, Astrakhanskaya, Saratov, 410012 (Russian Federation)

    2010-07-05

    In this Letter the results of theoretical investigations of the chaotic microwave oscillator based on the electron beam with a virtual cathode are presented. Nonlinear non-stationary processes in these electron systems are studied by means of numerical analysis of 2.5D model. It was discovered that the non-uniform external magnetic field value controls the dynamical regime of oscillations in the virtual cathode oscillator. The processes of the chaotization of output microwave radiation are described and interpreted from the point of view of the formation and interaction of electron structures (bunches) in the electron beams. The numerical results have shown that the investigated electron system with virtual cathode could be considered as a promising controlled source of wideband chaotic oscillations in the microwave range.

  7. Post-Newtonian approximation of the maximum four-dimensional Yang-Mills gauge theory

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1982-01-01

    We have calculated the post-Newtonian approximation of the maximum four-dimensional Yang-Mills theory proposed by Hsu. The theory contains torsion; however, torsion is not active at the level of the post-Newtonian approximation of the metric. Depending on the nature of the approximation, we obtain the general-relativistic values for the classical Robertson parameters (γ = β = 1), but deviations for the Nordtvedt effect and violations of post-Newtonian conservation laws. We conclude that in its present form the theory is not a viable theory of gravitation

  8. Fulltext PDF

    Indian Academy of Sciences (India)

    ); (12) 21 (GA). Newton (12) 35 (GA). Newton's Principia (12) 59 (RF). Newtonian mechanics (7) 14 (GA). No-cloning theorem (8) 41 (GA). Non Euclidean geometry (7) 14 (GA). Non-linear oscillations (7) 61 (GA). Nontrivial zeros (11) 40 (GA).

  9. Oscillation of tissue oxygen index in non-exercising muscle during exercise.

    Science.gov (United States)

    Yano, T; Afroundeh, R; Shirakawa, K; Lian, C-S; Shibata, K; Xiao, Z; Yunoki, T

    2015-09-01

    The purpose of the present study was to examine how oscillation of tissue oxygen index (TOI) in non-exercising exercise is affected during high-intensity and low-intensity exercises. Three exercises were performed with exercise intensities of 30% and 70% peak oxygen uptake (Vo(2)peak) for 12 min and with exercise intensity of 70% Vo(2)peak for 30 s. TOI in non-exercising muscle (biceps brachii) during the exercises for 12 min was determined by nearinfrared spectroscopy. TOI in the non-exercising muscle during the exercises was analyzed by fast Fourier transform (FFT) to obtain power spectra density (PSD). The frequency at which maximal PSD appeared (Fmax) during the exercise with 70% Vo(2)peak for 12 min (0.00477 ± 0.00172 Hz) was significantly lower than that during the exercise with 30% Vo2peak for 12 min (0.00781 ± 0.00338 Hz). There were significant differences in blood pH and blood lactate between the exercise with 70% Vo(2)peak and the exercise with 30% Vo(2)peak. It is concluded that TOI in nonexercising muscle oscillates during low-intensity exercise as well as during high-intensity exercise and that the difference in Fmax between the two exercises is associated with the difference in increase in blood lactate derived from the exercise.

  10. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    Science.gov (United States)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow

  11. Newtonian gravity and the Bargmann algebra

    NARCIS (Netherlands)

    Andringa, Roel; Bergshoeff, Eric; Panda, Sudhakar; de Roo, Mees

    2011-01-01

    We show how the Newton-Cartan formulation of Newtonian gravity can be obtained from gauging the Bargmann algebra, i.e. the centrally extended Galilean algebra. In this gauging procedure several curvature constraints are imposed. These convert the spatial (time) translational symmetries of the

  12. Nonlinear convective flow of Powell-Erying magneto nanofluid with Newtonian heating

    Directory of Open Access Journals (Sweden)

    Sajid Qayyum

    Full Text Available Objective of present article is to describe magnetohydrodynamic (MHD non-linear convective flow of Powell-Erying nanofluid over a stretching surface. Characteristics of Newtonian heat and mass conditions in this attempt is given attention. Heat and mass transfer analysis is examined in the frame of thermal radiation and chemical reaction. Brownian motion and thermophoresis concept is introduced due to presence of nanoparticles. Nonlinear equations of momentum, energy and concentration are transformed into dimensionless expression by invoking suitable variables. The series solutions are obtained through homotopy analysis method (HAM. Impact of embedded variables on the velocity, temperature and nanoparticles concentration is graphically presented. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and analyzed. It is concluded that velocity field enhances for fluid variable while reverse situation is noticed regarding Hartman number. Temperature and heat transfer rate behave quite reverse for Prandtl number. It is also noted that the concentration and local Sherwood number have opposite behavior in the frame of Brownian motion. Keywords: Powell-Erying nanofluid, Magnetohydrodynamic (MHD, Nonlinear convection, Thermal radiation, Chemical reaction, Newtonian heat and mass conditions

  13. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    Science.gov (United States)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  14. Two-dimensional simulation of intermediate-sized bubbles in low viscous liquids using counter diffusion lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Kang, Hanok; Kim, Keung Koo [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2016-08-15

    Highlights: • We directly simulate intermediate-sized bubbles in low viscous liquids. • The path instability and shape oscillation can be successfully simulated. • The motion of a pair bubble and bubble swarm is presented. • Bubbles with high-Reynolds-number can be simulated with under-resolved grids. • The counter diffusion multiphase method is feasible for the direct simulation of bubbly flows. - Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to simulate intermediate-sized bubbles in low viscous liquids. Bubbles at high Reynolds numbers ranging from hundreds to thousands are simulated successfully, which cannot be done for the existing LBM versions. The characteristics of the path instability of two rising bubbles are studied for a wide range of Eotvos and Morton numbers. Finally, the study presented how bubble swarms move within the flow and how the flow surrounding the bubbles is affected by the bubble motions.

  15. Testing of viscous anti-HIV microbicides using Lactobacillus.

    Science.gov (United States)

    Moncla, B J; Pryke, K; Rohan, L C; Yang, H

    2012-02-01

    The development of topical microbicides for intravaginal use to prevent HIV infection requires that the drugs and formulated products be nontoxic to the endogenous vaginal Lactobacillus. In 30min exposure tests we found dapivirine, tenofovir and UC781 (reverse transcriptase inhibitor anti-HIV drugs) as pure drugs or formulated as film or gel products were not deleterious to Lactobacillus species; however, PSC-RANTES (a synthetic CCR5 antagonist) killed 2 strains of Lactobacillus jensenii. To demonstrate the toxicity of formulated products a new assay was developed for use with viscous and non-viscous samples that we have termed the Lactobacillus toxicity test. We found that the vortex mixing of vaginal Lactobacillus species can lead to reductions in bacterial viability. Lactobacillus can survive briefly, about 2s, but viability declines with increased vortex mixing. The addition of heat inactivated serum or bovine serum albumin, but not glycerol, prevented the decrease in bacterial viability. Bacillus atrophaeus spores also demonstrated loss of viability upon extended mixing. We observed that many of the excipients used in film formulation and the films themselves also afford protection from the killing during vortex mixing. This method is of relevance for toxicity for cidal activities of viscous products. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    International Nuclear Information System (INIS)

    Ndayiragije, F; Van Assche, W

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)

  17. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    Science.gov (United States)

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  18. Post-Newtonian celestial dynamics in cosmology: Field equations

    Science.gov (United States)

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2013-02-01

    Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are

  19. Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two

    International Nuclear Information System (INIS)

    Ji, J.C.; Zhang, N.

    2009-01-01

    Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.

  20. Oscillation of Nonlinear Delay Differential Equation with Non-Monotone Arguments

    Directory of Open Access Journals (Sweden)

    Özkan Öcalan

    2017-07-01

    Full Text Available Consider the first-order nonlinear retarded differential equation $$ x^{\\prime }(t+p(tf\\left( x\\left( \\tau (t\\right \\right =0, t\\geq t_{0} $$ where $p(t$ and $\\tau (t$ are function of positive real numbers such that $%\\tau (t\\leq t$ for$\\ t\\geq t_{0},\\ $and$\\ \\lim_{t\\rightarrow \\infty }\\tau(t=\\infty $. Under the assumption that the retarded argument is non-monotone, new oscillation results are given. An example illustrating the result is also given.

  1. Influence of bed material entrainment and non-Newtonian rheology on turbulent geophysical flows dynamics. Numerical study

    Science.gov (United States)

    Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.

    2017-10-01

    This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.

  2. Comparison between a generalized Newtonian model and a network-type multiscale model for hemodynamic behavior in the aortic arch: Validation with 4D MRI data for a case study.

    Science.gov (United States)

    Menut, Marine; Boussel, Loïc; Escriva, Xavier; Bou-Saïd, Benyebka; Walter-Le Berre, Hélène; Marchesse, Yann; Millon, Antoine; Della Schiava, Nellie; Lermusiaux, Patrick; Tichy, John

    2018-05-17

    Blood is a complex fluid in which the presence of the various constituents leads to significant changes in its rheological properties. Thus, an appropriate non-Newtonian model is advisable; and we choose a Modified version of the rheological model of Phan-Thien and Tanner (MPTT). The different parameters of this model, derived from the rheology of polymers, allow characterization of the non-Newtonian nature of blood, taking into account the behavior of red blood cells in plasma. Using the MPTT model that we implemented in the open access software OpenFOAM, numerical simulations have been performed on blood flow in the thoracic aorta for a healthy patient. We started from a patient-specific model which was constructed from medical images. Exiting flow boundary conditions have been developped, based on a 3-element Windkessel model to approximate physiological conditions. The parameters of the Windkessel model were calibrated with in vivo measurements of flow rate and pressure. The influence of the selected viscosity of red blood cells on the flow and wall shear stress (WSS) was investigated. Results obtained from this model were compared to those of the Newtonian model, and to those of a generalized Newtonian model, as well as to in vivo dynamic data from 4D MRI during a cardiac cycle. Upon evaluating the results, the MPTT model shows better agreement with the MRI data during the systolic and diastolic phases than the Newtonian or generalized Newtonian model, which confirms our interest in using a complex viscoelastic model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Linear study of Kelvin-Helmholtz instability for a viscous compressible fluid

    International Nuclear Information System (INIS)

    Hallo, L.; Gauthier, S.

    1992-01-01

    The linear phase of the process leading to a developed turbulence is particularly important for the study of flow stability. A Galerkin spectral method adapted to the study of the mixture layer of one fluid is proposed from a sheared initial velocity profile. An algebraic mapping is developed to improve accuracy near high gradient zone. Validation is obtained by analytic methods for non-viscous flow and multi-domain spectral methods for viscous and compressible flow. Rates of growth are presented for subsonic and slightly supersonic flow. An extension of the method is presented for the study of the linear stability of a mixture with variable concentration and transport properties

  4. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  5. Introduction to Physical Intelligence

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    A slight deviation from Newtonian dynamics can lead to new effects associated with the concept of physical intelligence. Non-Newtonian effects such as deviation from classical thermodynamic as well as quantum-like properties have been analyzed. A self-supervised (intelligent) particle that can escape from Brownian motion autonomously is introduced. Such a capability is due to a coupling of the particle governing equation with its own Liouville equation via an appropriate feedback. As a result, the governing equation is self-stabilized, and random oscillations are suppressed, while the Liouville equation takes the form of the Fokker-Planck equation with negative diffusion. Non- Newtonian properties of such a dynamical system as well as thermodynamical implications have been evaluated.

  6. SYMMETRY CLASSIFICATION OF NEWTONIAN INCOMPRESSIBLEFLUID’S EQUATIONS FLOW IN TURBULENT BOUNDARY LAYERS

    Directory of Open Access Journals (Sweden)

    Nadjafikhah M.

    2017-07-01

    Full Text Available Lie group method is applicable to both linear and non-linear partial differential equations, which leads to find new solutions for partial differential equations. Lie symmetry group method is applied to study Newtonian incompressible fluid’s equations flow in turbulent boundary layers. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra such as Levi decomposition, radical subalgebra, solvability and simplicity of symmetries is given.

  7. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    Science.gov (United States)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  8. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  9. Xenon spatial oscillation in nuclear power reactors:an analytical approach through non linear modal analysis

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-01-01

    It was proponed recently to apply an extension of Lyapunov's first method to the non-linear regime, known as non-linear modal analysis (NMA), to the study of space-time problems in nuclear reactor kinetics, nuclear power plant dynamics and nuclear power plant instrumentation and control(1). The present communication shows how to apply NMA to the study of Xenon spatial oscillations in large nuclear reactors. The set of non-linear modal equations derived by J. Lewins(2) for neutron flux, Xenon concentration and Iodine concentration are discussed, and a modified version of these equations is taken as a starting point. Using the methods of singular perturbation theory a slow manifold is constructed in the space of mode amplitudes. This allows the reduction of the original high dimensional dynamics to a low dimensional one. It is shown how the amplitudes of the first mode for neutron flux field, temperature field and concentrations of Xenon and Iodine fields can have a stable steady state value while the corresponding amplitudes of the second mode oscillates in a stable limit cycle. The extrapolated dimensions of the reactor's core are used as bifurcation parameters. Approximate analytical formulae are obtained for the critical values of this parameters( below which the onset of oscillations is produced), for the period and for the amplitudes of the above mentioned oscillations. These results are applied to the discussion of neutron flux and temperature excursions in critical locations of the reactor's core. The results of NMA can be validated from the results obtained applying suitable computer codes, using homogenization theory(3) to link the complex heterogeneous model of the codes with the simplified mathematical model used for NMA

  10. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  11. The Newtonian Moment - Isaac Newton and the Making of Modern Culture

    Science.gov (United States)

    Feingold, Mordechai

    2004-12-01

    Isaac Newton is a legendary figure whose mythical dimension threatens to overshadow the actual man. The story of the apple falling from the tree may or may not be true, but Isaac Newton's revolutionary discoveries and their importance to the Enlightenment era and beyond are undeniable. The Newtonian Moment , a companion volume to a forthcoming exhibition by the New York Public Library, investigates the effect that Newton's theories and discoveries had, not only on the growth of science, but also on the very shape of modern culture and thought. Newton's scientific work at Cambridge was groundbreaking. From his optical experiments with prisms during the 1660s to the publication of both Principia (1687) and Opticks (1704), Newton's achievements were widely disseminated, inciting tremendous interest and excitement. Newtonianism developed into a worldview marked by many tensions: between modernity and the old guard, between the humanities and science, and the public battles between great minds. The Newtonian Moment illuminates the many facets of his colossal accomplishments, as well as the debates over the kind of knowledge that his accomplishments engendered. The book contributes to a greater understanding of the world today by offering a panoramic view of the profound impact of Newtonianism on the science, literature, art, and religion of the Enlightenment. Copiously illustrated with items drawn from the collections of the New York Public Library as well as numerous other libraries and museums, The Newtonian Moment enlightens its audience with a guided and in-depth look at the man, his world, and his enduring legacy.

  12. Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid

    Science.gov (United States)

    Azese, Martin Ndi

    2018-02-01

    This article presents a rigorous calculation involving velocity slip of Newtonian fluid where we analyze and solve the unsteady Navier-Stokes equation with emphasis on its rheological implication. The goal of which is to model a simple yet effective non-invasive way of quantifying and characterizing slippage. Indeed this contrasts with previous techniques that exhibit inherent limitations whereby injecting foreign objects usually alter the flow. This problem is built on the Couette rheological flow system such that μ-Newton force and μ-stress are captured and processed to obtain wall slip. Our model leads to a linear partial differential equation and upon enforcing linear-Navier slip boundary conditions (BC) yields inhomogeneous and unsteady "Robin-type" BC. A dimensional analysis reveals salient dimensionless parameters: Roshko, Strouhal, and Reynolds while highlighting slip-numbers from BC. We also solve the slip-free case to corroborate and validate our results. Several graphs are generated showing slip effects, particularly, studying how slip-numbers, a key input, differentiate themselves to the outputs. We also confirm this in a graphical fashion by presenting the flow profile across channel width, velocity, and stress at both walls. A perturbation scheme is introduced to calculate long-time behavior when the system seats for long. More importantly, in the end, we justify the existence of a reverse mechanism, where an inverse transformation like Fourier transform uses the output data to retrieve slip-numbers and slip law, thus quantifying and characterizing slip. Therefore, we not only substantiate our analysis, but we also justify our claim, measurement and characterization, and theorize realizability of our proposition.

  13. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  14. Actual Romanian research in post-newtonian dynamics

    Science.gov (United States)

    Mioc, V.; Stavinschi, M.

    2007-05-01

    We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.

  15. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  16. Interface Oscillation in the Side-by-Side (SBS) Tape Casting of Functionally Graded Ceramics (FGCs)

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri

    2012-01-01

    temperature of the magnetic regenerator varies along the paths. The main goal of this research is to study the multiple material flow in SBS tape casting and analyze its influence on the interface between the stripes. The materials used for the experimental part are La0.85Sr0.15MnO3 and Ce0.9Gd0.1O2ceramic...... is a common process in producing multilayer ceramics, which now is used for producing side-by-side (SBS) functionally graded ceramics (FGCs). These FGCs are mostly used in the magnetic refrigeration sectors due to the varying composition of the magnetocaloric materials so that the magnetic transition...... slurries. The rheological behavior of the slurries are extracted from experiments and used in the ANSYS FLUENT commercial code to develop a fluid flow model for the non-Newtonian ceramic slurries and evaluate the interface oscillation between the stripes in SBS tape casting. The Numerical results show...

  17. Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production.

    Science.gov (United States)

    Kang, X; Wang, H; Wang, Y; Harvey, L M; McNeil, B

    2001-10-01

    The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m(3) airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (epsilon(g)), liquid re-circulation velocity (U(ld)) and mixing time (t(m)). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on epsilon(g), U(ld) and t(m) were examined and empirical correlations for epsilon(g), U(ld) and t(m) with both superficial velocity U(g) and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems.

  18. Targeted Energy Transfer Phenomena in Vibro-Impact Oscillators

    International Nuclear Information System (INIS)

    Lee, Young S.; McFarland, D. Michael; Bergman, Lawrence A.; Nucera, Francesco; Vakakis, Alexander F.

    2008-01-01

    We study targeted energy transfer (TET) in a coupled oscillator, consisting of a single-degree-of-freedom primary linear oscillator coupled to a vibro-impact nonlinear energy sink (VI NES). For this purpose, we first compute the VI periodic orbits of the underlying hamiltonian VI system, and construct the corresponding frequency-energy plot (FEP). Then, considering inelastic impacts and viscous dissipation, we examine VI damped transitions on the FEP to identify a TET phenomenon by exciting a VI impulsive orbit, which is the most efficient mechanism for TET. Not only can the VI TET involve passive absorption and local dissipation of significant portions of the energy from the primary systems, but it occurs at sufficiently fast time scales. This renders VI NESs suitable for applications, like seismic mitigation, where shock elimination in the early, highly energetic regime of the motion is a critical requirement

  19. Angular spectrum characters of high gain non-critical phase match optical parametric oscillators

    International Nuclear Information System (INIS)

    Liu Jian-Hui; Liu Qiang; Gong Ma-Li

    2011-01-01

    The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO 4 and the KTiOPO 4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Numerical study of entropy generation and melting heat transfer on MHD generalised non-Newtonian fluid (GNF): Application to optimal energy

    Science.gov (United States)

    Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal

    2018-05-01

    This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.

  1. Time in Newtonian physics and special relativity

    International Nuclear Information System (INIS)

    Kichenassamy, S.

    1980-01-01

    The Newtonian point of view is presented as is the relativist one over time: concepts of guide-marks, clocks and setting to time. One of the consequences of Einstein's theory, the dilation of durations, is developed in particular [fr

  2. One-dimensional reduction of viscous jets. II. Applications

    Science.gov (United States)

    Pitrou, Cyril

    2018-04-01

    In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.

  3. Dynamics of amorphous solids and viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    -square displacement as function of time. The 15 publications are related to each other in the following way. P1-P7 is a continuously progressing attempt to explain the AC properties of extremely disordered solids (with P2 as a digression). P8 discusses a simple model for viscous liquids and the glass transition. In P...... with the title "Viscous Liquids and the Glass Transition" reviews and comments P8-P10. In P8 from 1987 a simple model for the glass transition is proposed in which there is only one relevant degree of freedom, the potential energy of a region in the liquid. The model was originally constructed to explain the non......This thesis consists of fifteen publications (P1-P15) published between 1987 and 1996 and a summary. In this abstract an overview of the main results is given by following the summary's three Chapters. The first Chapter with the title "AC Conduction in Disordered Solids" reviews and comments P1-P7...

  4. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  5. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  6. Dynamics of Newtonian annular jets

    International Nuclear Information System (INIS)

    Paul, D.D.

    1978-12-01

    The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion

  7. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  8. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    Science.gov (United States)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  9. Ten themes of viscous liquid dynamics

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2007-01-01

    Ten ‘themes' of viscous liquid physics are discussed with a focus on how they point to a general description of equilibrium viscous liquid dynamics (i.e., fluctuations) at a given temperature. This description is based on standard time-dependent Ginzburg-Landau equations for the density fields...

  10. Parameterized post-Newtonian cosmology

    International Nuclear Information System (INIS)

    Sanghai, Viraj A A; Clifton, Timothy

    2017-01-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)

  11. Parameterized post-Newtonian cosmology

    Science.gov (United States)

    Sanghai, Viraj A. A.; Clifton, Timothy

    2017-03-01

    Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).

  12. Variational formulation for the Newtonian cosmology

    Energy Technology Data Exchange (ETDEWEB)

    De Ritis, R [Naples Univ. (Italy). Ist. di Fisica Teorica; Istituto Nazionale di Fisica Nucleare, Naples (Italy)); Pisello, D [Istituto Nazionale di Fisica Nucleare, Naples (Italy); Platania, G [Naples Univ. (Italy). Ist. di Fisica Sperimentale; C.N.R. Gruppo Nazionale di Astronomia, U.d.R., Napoli (Italy)); Scudellaro, P [Naples Univ. (Italy). Scuola di Perfezionamento in Fisica Teorica e Nucleare

    1979-12-11

    Using the ''generalized Clebsch representation'' for the velocity field of a fluid in the Eulerian description, an action principle for the equation of the Newtonian cosmology has been found. The invariance group of the equation results a generalization of the Heckmann-Schuking group; in this case, the action and the conserved currents are studied.

  13. Effect of rheology on flow displacement during cementing process in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, Andre; Naccache, Monica F.; Fonseca, Marcos I. [Dept. Mechanical Engineering. Pontificia Universidade Catolica (PUR-Rio), Rio de Janeiro, RJ (Brazil)], e-mails: mnaccache@puc-rio.br; Miranda, Cristiane R. de; Martins, Andre L.; Aranha, Pedro E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mails: crisrichard@petrobras.com.br, aleibsohn@petrobras.com.br, pearanha@petrobras.com.br

    2010-07-01

    This paper describes a set of numerical simulations of the displacement flow of three non-Newtonian fluids through annular eccentric wells. The main application of this work is the studying of drilling and completion processes of oil wells where a cement slurry pushes the drilling mud, used in the drilling process to lubricate the drill and to remove the produced drilling cuts. To avoid contamination, a spacer fluid is usually inserted between them. Both drilling mud and cement slurry behave as non-Newtonian fluids, and the spacer fluid can be Newtonian or non-Newtonian. The analysis of flow and interface configuration between these fluids helps to determine contamination, and is an important tool for the process optimization. The numerical solution of the governing conservation equations of mass and momentum is obtained with the Fluent software, using the finite volume technique and the volume of fluid method. The effects of rheological parameters, density ratios and pumped volume of the spacer fluid are investigated. The results obtained show that the displacement is better when a more viscous spacer fluid is used. The results also show that using lower amounts of the spacer fluid can lead to contamination, which is worse in the smaller gap region of the annular space, in the case of non-rectilinear well. It was also observed that the density ratios play a major role in the cementing operation. (author)

  14. Viscous and Joule heating effects on MHD free convection flow with variable plate temperature

    International Nuclear Information System (INIS)

    Hossain, M.A.

    1990-09-01

    A steady two-dimensional laminar boundary layer flow of a viscous incompressible and electrically conducting fluid past a vertical heated plate with variable temperature in the presence of a transverse uniform magnetic field has been investigated by bringing the effect of viscous and Joules heating. The non-dimensional boundary layer equations are solved using the implicit finite difference method along with Newton's approximation for small Prandtl number chosen as typical of coolant liquid metals at operating temperature. (author). 10 refs, 2 figs, 1 tab

  15. Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case

    International Nuclear Information System (INIS)

    Arun, K.G.; Iyer, Bala R; Sathyaprakash, B.S.; Sundararajan, Pranesh A

    2005-01-01

    We revisit the problem of parameter estimation of gravitational-wave chirp signals from inspiralling nonspinning compact binaries in the light of the recent extension of the post-Newtonian (PN) phasing formula to order (v/c) 7 beyond the leading Newtonian order. We study in detail the implications of higher post-Newtonian orders from 1PN up to 3.5PN in steps of 0.5PN (∼v/c), and examine their convergence. In both initial and advanced detectors the estimation of the chirp mass (M) and symmetric mass ratio (η) improve at higher PN orders but oscillate with every half-a-PN order. In initial LIGO, for a 10M · -10M · binary at a signal-to-noise ratio (SNR) of 10, the improvement in the estimation of M (η) at 3.5PN relative to 2PN is ∼19% (52%). We compare parameter estimation in different detectors and assess their relative performance in two different ways: at a fixed SNR, with the aim of understanding how the bandwidth improves parameter estimation, and for a fixed source, to gauge the importance of sensitivity. Errors in parameter estimation at a fixed SNR are smaller for VIRGO than for both initial and advanced LIGO. This is because of the larger bandwidth over which it observes the signals. However, for sources at a fixed distance it is advanced LIGO that achieves the lowest errors owing to its greater sensitivity. Finally, we compute the amplitude corrections due to the 'frequency-sweep' in the Fourier domain representation of the waveform within the stationary phase approximation and discuss its implication on parameter estimation. We find that the amplitude corrections change the errors in M and η by less than 10% for initial LIGO at a signal-to-noise ratio of 10. Our analysis makes explicit the significance of higher PN order modeling of the inspiralling compact binary on parameter estimation

  16. Evaluation of the Reduction of Seismic Response of Adjacent Structures Using Viscous Damper Joint

    Directory of Open Access Journals (Sweden)

    Hamed Karbalay Malek

    2017-09-01

    Full Text Available This study examines the effect of common viscose damper on the behavior of adjacent reinforced concrete structures. For this purpose, three reinforced concrete 3, 5 and 7 floors buildings with a regular plan were selected and were compared in two cases without and with viscous dampers at the seams. They are designed based on discussions of Buildings Regulations 2800 and the 6 and 9 issues of Iranian National Building Regulations. Those buildings face under accelerograms of Bam, Mangil and El Centro, and then they are analyzed with nonlinear modal time history. This Accelerograms before applying to the structures, they are scaled based on the 2800 Regulations. Those buildings were modeled by SAP2000 finite element modeling software. Linear behavior of structural components of the structure and the non-linear behavior viscous damper were modeled. Finally, the seismic response of buildings includes the base shear force, up to a maximum lateral acceleration of seismic classes and classes for both with and without the viscous damper have been extracted and compared. The results showed the reduction in relative lateral displacement, maximum acceleration and base cut applied to structure in the presence of viscous dampers between two structures. This decline is not even in the direction that the viscous damper is viewed as significant.

  17. Highly-viscous microjet induced by an impact

    Science.gov (United States)

    Onuki, Hajime; Tagawa, Yoshiyuki

    2017-11-01

    Ejection of a liquid microjet with high viscosity is essential for various novel technologies such as 3D printers, printed electronics and bio printers. To generate such a microjet, we focus on utilizing an impulsive force. Thanks to a short-time impact, the viscous dissipation in the liquid can be suppressed, resulting in the ejection of viscous microjets. In this study, we investigate ejection mechanism of the viscous jet experimentally and numerically. The jet velocity decreases with increasing the viscosity of a liquid. Remarkably it is found that all the data of jet velocities normalized by initial velocities of the liquid as a function of Reynolds number, the balance between the inertia force and the viscous force, collapse onto a single master curve.

  18. Student Misconceptions about Newtonian Mechanics: Origins and Solutions through Changes to Instruction

    Science.gov (United States)

    Adair, Aaron Michael

    experience of force; students claim to feel a force in the direction of relative motion even when the actual force is in the opposite direction. The interview process also showed how students had both their intuitive sense of physics as well as Newtonian concepts from instruction, and how each model was activated could be influenced by questions from the interviewer. In order to investigate how changes to instructional method and pedagogy may affect students' ability to overcome their non-Newtonian intuitions, an experimental lecturing series was devised that used individual voting machines ("clickers") to increase class participation and dialog in a fashion that was more student-centered. The experimental section also had video recordings of the lectures as well as concept-based video homework solutions. The initial availability of the videos hindered early use, and overall students rarely used these additions. The clicker system also had technical issues due to the volume of students and an interface that was not streamlined. Nonetheless, the results showed the experimental section to have significantly greater learning gains (d > 0.5, p ˜ 0.01), and we determined that this was most likely due to the clicker system.

  19. On the mass of rotating stars in Newtonian gravity and GR

    International Nuclear Information System (INIS)

    Reina, Borja; Vera, Raül

    2016-01-01

    We show how the correction to the calculation of the mass in the original relativistic model of a rotating star by Hartle (1967 Astrophys. J. 150 1005–29), found recently by Reina and Vera (2015 Class. Quantum Grav. 32 155008), appears in the Newtonian limit, and that the correcting term is indeed present, albeit hidden, in the original Newtonian approach by Chandrasekhar (1933 Mon. Not. Roy. Astr. Soc. 93 390–406). (note)

  20. Non-linear flow law of rockglacier creep determined from geomorphological observations: A case study from the Murtèl rockglacier (Engadin, SE Switzerland)

    Science.gov (United States)

    Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle

    2016-04-01

    Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the

  1. Starting solutions for the flow of second grade fluids in a rectangular channel due to an oscillating shear stress

    Science.gov (United States)

    Vieru, Dumitru; Fetecau, Corina; Rana, Mehwish

    2012-05-01

    The unsteady motion of a second grade fluid between two parallel side walls perpendicular to a plate is studied by means of the Fourier sine and cosine transforms. Initially, the fluid is at rest and at time t = 0+, the plate applies an oscillating shear to the fluid. The solutions that have been obtained, presented under integral and series form and written as a sum between steady time-periodic and transient solutions can be easily reduced to the similar solutions for Newtonian fluids performing the same motion. They describe the motion of the fluid some time after its initiation. After that time, when the transient solutions disappear, the motion of the fluid is described by the steady time-periodic solutions that are independent of the initial conditions. In the absence of side walls, more exactly when the distance between walls tends to infinity, all solutions reduce to those corresponding to the motion over an infinite plate. As it was to be expected, the steady time-periodic solutions corresponding to sine and cosine oscillations of the shear stress on the boundary differ by a phase shift. Finally, the influence of side walls on the fluid motion, the required time to reach the steady periodic flow, as well as the distance between walls for which the velocity of the fluid in the middle of the channel is unaffected by their presence are established by numerical calculus and graphical illustrations. As expected, the time needed to reach the steady periodic flows is lower in the presence of side walls. It is lower for Newtonian fluids in comparison with second grade fluids and greater for sine oscillations in comparison to the cosine oscillations of the boundary shear.

  2. Parametrized post-Newtonian approximation and Rastall's gravitational field equations

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1978-01-01

    The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories

  3. Post-Newtonian N-body simulations

    Science.gov (United States)

    Aarseth, Sverre J.

    2007-06-01

    We report on the first fully consistent conventional cluster simulation which includes terms up to the third-order post-Newtonian approximation. Numerical problems for treating extremely energetic binaries orbiting a single massive object are circumvented by employing the special `wheel-spoke' regularization method of Zare which has not been used in large-N simulations before. Idealized models containing N = 1 × 105 particles of mass 1Msolar with a central black hole (BH) of 300Msolar have been studied on GRAPE-type computers. An initial half-mass radius of rh ~= 0.1 pc is sufficiently small to yield examples of relativistic coalescence. This is achieved by significant binary shrinkage within a density cusp environment, followed by the generation of extremely high eccentricities which are induced by Kozai cycles and/or resonant relaxation. More realistic models with white dwarfs and 10 times larger half-mass radii also show evidence of general relativity effects before disruption. An experimentation with the post-Newtonian terms suggests that reducing the time-scales for activating the different orders progressively may be justified for obtaining qualitatively correct solutions without aiming for precise predictions of the final gravitational radiation wave form. The results obtained suggest that the standard loss-cone arguments underestimate the swallowing rate in globular clusters containing a central BH.

  4. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2009-09-09

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.

  5. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    International Nuclear Information System (INIS)

    Leishear, R.

    2009-01-01

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels

  6. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    International Nuclear Information System (INIS)

    Rosa, S.; Pinho, F.T.

    2006-01-01

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section

  7. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt

    2006-04-15

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.

  8. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  9. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  10. Loop calculations for the non-commutative U*(1) gauge field model with oscillator term

    International Nuclear Information System (INIS)

    Blaschke, Daniel N.; Grosse, Harald; Kronberger, Erwin; Schweda, Manfred; Wohlgenannt, Michael

    2010-01-01

    Motivated by the success of the non-commutative scalar Grosse-Wulkenhaar model, a non-commutative U * (1) gauge field theory including an oscillator-like term in the action has been put forward in (Blaschke et al. in Europhys. Lett. 79:61002, 2007). The aim of the current work is to analyze whether that action can lead to a fully renormalizable gauge model on non-commutative Euclidean space. In a first step, explicit one-loop graph computations are hence presented, and their results as well as necessary modifications of the action are successively discussed. (orig.)

  11. Numerical Study of the Magnetic Field Effects on the Heat Transfer and Entropy Generation Aspects of a Power Law Fluid over an Axisymmetric Stretching Plate Structure

    Directory of Open Access Journals (Sweden)

    Payam Hooshmand

    2017-03-01

    Full Text Available Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished. The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the Rosseland approximation for the thermal radiation through a highly absorbing medium are considered. The temperature dependent heat sources, Joule heating, and viscous heating are considered as the source terms in the energy balance. The non-dimensional boundary layer equations are solved numerically in terms of similarity variable. A parameter study on the Nusselt number, viscous components of entropy generation, and thermal components of entropy generation in fluid is performed as a function of thermal radiation parameter (0 to 2, Brinkman number (0 to 10, Prandtl number (0 to 10, Hartmann number (0 to 1, power law index (0 to 1, and heat source coefficient (0 to 0.1.

  12. Static Hyperspectral Fluorescence Imaging of Viscous Materials Based on a Linear Variable Filter Spectrometer

    Directory of Open Access Journals (Sweden)

    Alexander W. Koch

    2013-09-01

    Full Text Available This paper presents a low-cost hyperspectral measurement setup in a new application based on fluorescence detection in the visible (Vis wavelength range. The aim of the setup is to take hyperspectral fluorescence images of viscous materials. Based on these images, fluorescent and non-fluorescent impurities in the viscous materials can be detected. For the illumination of the measurement object, a narrow-band high-power light-emitting diode (LED with a center wavelength of 370 nm was used. The low-cost acquisition unit for the imaging consists of a linear variable filter (LVF and a complementary metal oxide semiconductor (CMOS 2D sensor array. The translucent wavelength range of the LVF is from 400 nm to 700 nm. For the confirmation of the concept, static measurements of fluorescent viscous materials with a non-fluorescent impurity have been performed and analyzed. With the presented setup, measurement surfaces in the micrometer range can be provided. The measureable minimum particle size of the impurities is in the nanometer range. The recording rate for the measurements depends on the exposure time of the used CMOS 2D sensor array and has been found to be in the microsecond range.

  13. Symposium on the Foundations of Newtonian Scholarship

    CERN Document Server

    Nauenberg, Michael; The foundations of Newtonian scholarship

    2000-01-01

    Newtonian scholarship has taken great steps forward in the last half-century.The recent completion of critical editions of Newton's mathematical papers and of his scientific correspondence, as well as the publication of the first volume of his optical papers and of variant readings of the Principia in the original Latin, have made most of Newton's scientific work generally available for study and analysis for the first time. This has provided a better understanding of Newton's Principia and Optics especially regarding their origin and interpretation, much of which has remained obscure for several centuries. Some of the new developments and insights are presented in this book by several of the scholars who have made these primary sources accessible, and by others who are using them to elucidate Newton's work. Most of the papers included were presented at the Symposium on the Foundations of Newtonian Scholarship, held at the Royal Society in London in March 1997.

  14. Mass transfer effects on vertical oscillating plate with heat flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2007-01-01

    Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The so­lutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.

  15. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations

    Directory of Open Access Journals (Sweden)

    Johannes Vosskuhl

    2018-05-01

    Full Text Available Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS, an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.

  16. MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source

    International Nuclear Information System (INIS)

    Goyal, Mamta; Banshiwal, Anna

    2014-01-01

    MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)

  17. Pneumatic Performance of a Non-Axisymmetric Floating Oscillating Water Column Wave Energy Conversion Device in Random Waves

    OpenAIRE

    Bull, Diana

    2014-01-01

    A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...

  18. On post-inflation validity of perturbation theory in Horndeski scalar-tensor models

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí Franquès 1, E08028 Barcelona (Spain); Kudryashova, Nina [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 Muenchen (Germany); Watanabe, Yuki, E-mail: germani@icc.ub.edu, E-mail: nina.kudryashova@campus.lmu.de, E-mail: yuki.watanabe@nat.gunma-ct.ac.jp [Department of Physics, National Institute of Technology, Gunma College, Gunma 371-8530 (Japan)

    2016-08-01

    By using the newtonian gauge, we re-confirm that, as in the minimal case, the re-scaled Mukhanov-Sasaki variable is conserved leading to a constraint equation for the Newtonian potential. However, conversely to the minimal case, in Horndeski theories, the super-horizon Newtonian potential can potentially grow to very large values after inflation exit. If that happens, inflationary predictability is lost during the oscillating period. When this does not happen, the perturbations generated during inflation can be standardly related to the CMB, if the theory chosen is minimal at low energies. As a concrete example, we analytically and numerically discuss the new Higgs inflationary case. There, the Inflaton is the Higgs boson that is non-minimally kinetically coupled to gravity. During the high-energy part of the post-inflationary oscillations, the system is anisotropic and the Newtonian potential is largely amplified. Thanks to the smallness of today's amplitude of curvature perturbations, however, the system stays in the linear regime, so that inflationary predictions are not lost. At low energies, when the system relaxes to the minimal case, the anisotropies disappear and the Newtonian potential converges to a constant value. We show that the constant value to which the Newtonian potential converges is related to the frozen part of curvature perturbations during inflation, precisely like in the minimal case.

  19. Solution of Schrodinger equation for Three Dimensional Harmonics Oscillator plus Rosen-Morse Non-central potential using NU Method and Romanovski Polynomials

    International Nuclear Information System (INIS)

    Cari, C; Suparmi, A

    2013-01-01

    The energy eigenvalues and eigenfunctions of Schrodinger equation for three dimensional harmonic oscillator potential plus Rosen-Morse non-central potential are investigated using NU method and Romanovski polynomial. The bound state energy eigenvalues are given in a closed form and corresponding radial wave functions are expressed in associated Laguerre polynomials while angular eigen functions are given in terms of Romanovski polynomials. The Rosen-Morse potential is considered to be a perturbation factor to the three dimensional harmonic oscillator potential that causes the increase of radial wave function amplitude and decrease of angular momentum length. Keywords: Schrodinger Equation, Three dimensional Harmonic Oscillator potential, Rosen-morse non-central potential, NU method, Romanovski Polynomials

  20. Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

    International Nuclear Information System (INIS)

    Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong

    2013-01-01

    Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)