Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Tarafdar, Sujata [Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032 (India); Das, Shantanu, E-mail: mou15july@gmail.com [Reactor Control Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)
2011-09-15
Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.
Non-Newtonian fluid flow in 2D fracture networks
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
Dynamic characteristics of Non Newtonian fluid Squeeze film damper
Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.
2016-09-01
The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.
Boundary layer for non-newtonian fluids on curved surfaces
International Nuclear Information System (INIS)
Stenger, N.
1981-04-01
By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt
Flocking particles in a non-Newtonian shear thickening fluid
Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan
2018-06-01
We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.
Non-Newtonian fluid structure interaction in flexible biomimetic microchannels
Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.
Verification of vertically rotating flume using non-newtonian fluids
Huizinga, R.J.
1996-01-01
Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.
Attractors of equations of non-Newtonian fluid dynamics
International Nuclear Information System (INIS)
Zvyagin, V G; Kondrat'ev, S K
2014-01-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles
Open mathematical problems regarding non-Newtonian fluids
International Nuclear Information System (INIS)
Wilson, Helen J
2012-01-01
We present three open problems in the mathematical modelling of the flow of non-Newtonian fluids. The first problem is rather long standing: a discontinuity in the dependence of the rise velocity of a gas bubble on its volume. This is very well characterized experimentally but not, so far, fully reproduced either numerically or analytically. The other two are both instabilities. The first is observed experimentally but never predicted analytically or numerically. In the second instability, numerical studies reproduce the experimental observations but there is as yet no analytical or semi-analytical prediction of the linear instability which must be present. (invited article)
Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics
National Research Council Canada - National Science Library
Balmforth, NeiI
2004-01-01
Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...
Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids
Directory of Open Access Journals (Sweden)
Javier Andrés Martínez
2011-09-01
Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.
Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels
Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon
2015-08-01
Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
On approximation of non-Newtonian fluid flow by the finite element method
Svácek, Petr
2008-08-01
In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.
Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
International Nuclear Information System (INIS)
Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao
2010-01-01
The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)
Free surface flow of a suspension of rigid particles in a non-Newtonian fluid
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2012-01-01
A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Non-Newtonian fluid flow in annular pipes and entropy generation ...
Indian Academy of Sciences (India)
analytical solution for the flow of third-grade non-Newtonian fluid in a pipe .... where c1,c2,d1,d2,t0,1,2...7,h1,h2,k1,2... ,12,m1 and m2 are defined as ..... Yurusoy M 2004 Flow of a third grade fluid between concentric circular cylinders. Math.
Characterization of the transition of regimes in a non-newtonian fluids in ducts
International Nuclear Information System (INIS)
Santana, C.C.; Ataide, C.H.; Massarani, G.
1983-01-01
By using own experimental data and also those obtained from the literature, the velocities at which transition from laminar to turbulent flows occurs are analysed in time-independent non-newtonian fluids, through the relationship between generalized Reynolds numbers and the rheological fluid parameters. (Author) [pt
Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method
DEFF Research Database (Denmark)
Skocek, Jan; Svec, Oldrich; Spangenberg, Jon
2011-01-01
is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...
Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids
Ahuja, Vishal Raju
2018-01-01
This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion
Gass-Assisted Displacement of Non-Newtonian Fluids
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard
2003-01-01
in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...... (GAIM). This is a process, where a mould is filled partly with a polymer melt followed by the injection of inert gas into the core of the polymer melt. The numerical analysis of the fluid flow concerning the experimental observations data in these publications is all based on Newtonian or general...... equation of Boger fluids is the Oldroyd-B model. This model has, with success, been able to describe the complex flow behaviours of Boger fluid. Though, refinements in the flow analysis can be obtained using more complex constitutive models. To keep the flow analysis as simple as possible the Oldroyd...
The turbulent mixing of non-Newtonian fluids
Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.
2013-07-01
The turbulence caused by the Rayleigh-Taylor instability represents a complicated phenomenon. It is usually related to the major hydrodynamic activities, the tangling of the media contact boundary, merging, separation and intermixing of originally smoothed initial structures. An important role in the theory of the Rayleigh-Taylor instability is played by the discontinuity of density on a contact interface between two homogeneous (in terms of density) fluids. A numerical modeling of the intermixing of two fluids with different rheology whose densities differ twice as a result of the Rayleigh-Taylor instability has been carried out. The coefficients of turbulent intermixing in a multimode statement of the problem for the Bingham, dilatant and pseudo-plastic fluids have been obtained.
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * general ized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * generalized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
Fundamentals of convection in non-Newtonian fluids
International Nuclear Information System (INIS)
Chen, J.L.S.; Ekmann, J.M.; Peterson, G.P.
1987-01-01
There are five papers in this book. They are: Pressure Drop and Heat Transfer in Viscoelastic Duct Flow - A New Look, A Heat Transfer Correlation for Viscoelastic Pipe Flows under Constant Wall Heat Flux, Three-Dimensional Solidification and Flow of Polymers in Curved Square Ducts, Natural Convecon Heat Transfer Between a Power-Law Fluid and a Permeable Isothermal Vertical Wall, and On Nonisothermal Flows of Bingham Plastics
Saffman-Taylor Instability for a non-Newtonian fluid
Daripa, Prabir
2013-11-01
Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).
External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation
Rituraj, Fnu; Vacca, Andrea
2018-06-01
External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.
Directory of Open Access Journals (Sweden)
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells
Directory of Open Access Journals (Sweden)
Dan Sui
2018-04-01
Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.
Directory of Open Access Journals (Sweden)
J. Javorova
2016-06-01
Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.
CFD-PBM Coupled Simulation of an Airlift Reactor with Non-Newtonian Fluid
Directory of Open Access Journals (Sweden)
Han Mei
2017-09-01
Full Text Available Hydrodynamics of an AirLift Reactor (ALR with tap water and non-Newtonian fluid was studied experimentally and by numerical simulations. The Population Balance Model (PBM with multiple breakup and coalescence mechanisms was used to describe bubble size characteristics in the ALR. The interphase forces for closing the two-fluid model were formulated by considering the effect of Bubble Size Distribution (BSD. The BSD in the ALR obtained from the coupled Computational Fluid Dynamics (CFD-PBM model was validated against results from digital imaging measurements. The simulated velocity fields of both the gas and liquid phases were compared to measured fields obtained with Particle Image Velocimetry (PIV. The simulated results show different velocity field profile features at the top of the ALR between tap water and non-Newtonian fluid, which are in agreement with experiments. In addition, good agreement between simulations and experiments was obtained in terms of overall gas holdup and bubble Sauter mean diameter.
Non-Newtonian fluid flow in an axisymmetric channel with porous wall
Directory of Open Access Journals (Sweden)
M. Hosseini
2013-12-01
Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
Acoustic waveform of continuous bubbling in a non-Newtonian fluid.
Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei
2009-12-01
We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates
International Nuclear Information System (INIS)
Imal, M.; Pinarbasi, A.
2004-01-01
In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Physically based model for extracting dual permeability parameters using non-Newtonian fluids
Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.
2017-12-01
Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.
Development of a new continuous process for mixing of complex non-Newtonian fluids
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated
International Nuclear Information System (INIS)
Abd-El Khalek, M.M.
1998-01-01
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates
Energy Technology Data Exchange (ETDEWEB)
Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)
1997-12-31
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.
Simulation of forced convection in non-Newtonian fluid through sandstones
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet
Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh
2018-03-01
This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
On a numerical strategy to compute gravity currents of non-Newtonian fluids
International Nuclear Information System (INIS)
Vola, D.; Babik, F.; Latche, J.-C.
2004-01-01
This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework
Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes
1991-10-01
ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
Hidema, R.; Yamada, N.; Furukawa, H.
2012-04-01
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.
2015-10-20
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.; Sheikh, Nadeem A.; Iliev, Oleg
2015-01-01
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions
Directory of Open Access Journals (Sweden)
Guillem Masoliver i Marcos
2017-01-01
Full Text Available The construction process of a viscometer, developed in collaboration with a final project student, is here presented. It is intended to be used by first year's students to know the viscosity as a fluid property, for both Newtonian and non-Newtonian flows. Viscosity determination is crucial for the fluids behaviour knowledge related to their reologic and physical properties. These have great implications in engineering aspects such as friction or lubrication. With the present experimental model device three different fluids are analyzed (water, kétchup and a mixture with cornstarch and water. Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.
Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)
Holubova, R.
2018-03-01
The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.
Directory of Open Access Journals (Sweden)
Roberto Mei
2018-01-01
Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.
MHD free convection flow of a non-Newtonian power-law fluid over ...
African Journals Online (AJOL)
... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Entropy generation in non-Newtonian fluid flow in a slider bearing
Indian Academy of Sciences (India)
In the present study, entropy production in ﬂow ﬁelds due to slider bearings is formulated. The rate of entropy generation is computed for different ﬂuid properties and geometric conﬁgurations of the slider bearing. In order to account for the non-Newtonian effect, a special type of third-grade ﬂuid is considered. It is found that ...
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde
2017-01-01
In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...
Czech Academy of Sciences Publication Activity Database
Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Šárka
2016-01-01
Roč. 68, č. 1 (2016), s. 193-243 ISSN 0025-5645 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : non-Newtonian fluids * fluid-structure interaction * shear-thinning fluids Subject RIV: BA - General Mathematics Impact factor: 0.592, year: 2016 http://projecteuclid.org/euclid.jmsj/1453731541
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Spreading dynamics of power-law fluid droplets
International Nuclear Information System (INIS)
Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay
2009-01-01
This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.
Directory of Open Access Journals (Sweden)
Luís Felipe Gomes Marinho
Full Text Available Abstract The economics of a mining operation is directly influenced by blasting outcomes, where blasting aims to comminute the rock mass in order to attain smaller grain sizes to be loaded and hauled at a minimum cost for its first processing stage. In order to promote adequate rock breakage, the stemming structure needs to provide proper confinement for the borehole charged with explosives, reflecting the energy released during the detonation in form of shock waves and gases to act throughout the in situ rock mass, enlarging its failures and fractures, and also creating new ones. To build up a stemming column, literature recommends the usage of dry granular materials instead of elements with plastic behavior. However, a study was performed using Gypsum plaster as stemming; a kind of material that exhibits solid-like behavior when it is dry. Following this theory, this test verified improvements regarding confinement effectiveness and energy propagation throughout the rock mass when a non-Newtonian mixture (NNM was applied as stemming; a material that shows a solid-like behavior when is under shear stress. When the stemming arrangement was composed of NNM, it was able to reduce energy and gas losses to the atmosphere, because of the liquid's property of filling voids into the borehole. The NNM yielded high results due to its better confinement effectiveness, a reduction of air overpressure, and an increase of the strain propagation and ground vibration throughout the rock.
International Nuclear Information System (INIS)
Lamsaadi, M.; Naimi, M.; Hasnaoui, M.
2006-01-01
A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2012-01-01
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
El-Amin, Mohamed
2012-06-02
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Directory of Open Access Journals (Sweden)
Li Shaobai
2017-01-01
Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.
Directory of Open Access Journals (Sweden)
Omotayo Omosebi
2015-12-01
This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.
Directory of Open Access Journals (Sweden)
M.J. Uddin
2016-09-01
Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.
Flow of a non-Newtonian fluid through channels with permeable wall
Energy Technology Data Exchange (ETDEWEB)
Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos
2000-07-01
In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
Directory of Open Access Journals (Sweden)
M. Rahimi-Gorji
2015-06-01
Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.
Directory of Open Access Journals (Sweden)
M. H. Yazdi
2014-01-01
Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.
Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet
Directory of Open Access Journals (Sweden)
M.M. Rashidi
2017-03-01
Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.
Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification
Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.
2017-12-01
We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.
Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.
Shape optimization for non-Newtonian fluids in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2014-01-01
Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time - dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25
Shape sensitivity analysis of time-dependent flows of incompressible non-Newtonian fluids
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2011-01-01
Roč. 40, č. 4 (2011), s. 1077-1097 ISSN 0324-8569 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * shape gradient * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.300, year: 2010
Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham
Directory of Open Access Journals (Sweden)
Rahmani Lakhdar
2016-01-01
Full Text Available A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P. The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.
Shape optimization for non-Newtonian fluids in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2014-01-01
Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time-dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25
Naseer, F.
2017-12-01
Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
International Nuclear Information System (INIS)
Moh, Jeong Hah; Cho, Y. I.
2014-01-01
This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.
2018-06-01
In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.
Directory of Open Access Journals (Sweden)
M.A. Bosse
2001-03-01
Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.
Walker, Andrew M; Johnston, Clifton R; Rival, David E
2012-11-01
Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the
Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal
2018-05-01
This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.
Directory of Open Access Journals (Sweden)
Moussa Tembely
2017-10-01
Full Text Available Most of the pore-scale imaging and simulations of non-Newtonian fluid are based on the simplifying geometry of network modeling and overlook the fluid rheology and heat transfer. In the present paper, we developed a non-isothermal and non-Newtonian numerical model of the flow properties at pore-scale by simulation of the 3D micro-CT images using a Finite Volume Method (FVM. The numerical model is based on the resolution of the momentum and energy conservation equations. Owing to an adaptive mesh generation technique and appropriate boundary conditions, rock permeability and mobility are accurately computed. A temperature and concentration-dependent power-law viscosity model in line with the experimental measurement of the fluid rheology is adopted. The model is first applied at isothermal condition to 2 benchmark samples, namely Fontainebleau sandstone and Grosmont carbonate, and is found to be in good agreement with the Lattice Boltzmann method (LBM. Finally, at non-isothermal conditions, an effective mobility is introduced that enables to perform a numerical sensitivity study to fluid rheology, heat transfer, and operating conditions. While the mobility seems to evolve linearly with polymer concentration in agreement with a derived theoretical model, the effect of the temperature seems negligible by comparison. However, a sharp contrast is found between carbonate and sandstone under the effect of a constant temperature gradient. Besides concerning the flow index and consistency factor, a master curve is derived when normalizing the mobility for both the carbonate and the sandstone.
Directory of Open Access Journals (Sweden)
Jamshid M. Nouri
2008-03-01
Full Text Available Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution and 48,000 (water and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV. The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2018-06-01
Full Text Available In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM. The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve and Adomian Decomposition Method are also applied and good agreement is found. Keywords: Unsteady flow, Viscous fluid, Thermal radiation, Porous plate, Arrhenius kinetics, HAM and numerical method
Rahmani, L.; Seghier, O.; Benmoussa, A.; Draoui, B.
2018-06-01
The most of operations of chemical, biochemical or petrochemical industries are carried out in tanks or in reactors which are mechanically-controlled. The optimum mode of operation of these devices requires a finalized knowledge of the thermo-hydrodynamic behavior induced by the agitator. In the present work, the characterization of the incompressible hydrodynamic and thermal fields of a non-Newtonian fluid (Bingham) in a flat, non-baffled cylindrical vessel fitted with anchor agitator was undertaken by numerical simulation, using the CFD code Fluent (6.3.26) based on the finite volume discretization method of the energy equation and the Navier-Stokes equations which are formulated in (U.V.P) variables. We have summarized this simulated system by comparing of the consumed power and the Nusselt number for this type of mobile (Anchor agitator).
Negative wake behind bubbles in non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole
1979-01-01
Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...
Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali
2017-11-01
Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.
Structural Optimization of Non-Newtonian Rectifiers
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...
DEFF Research Database (Denmark)
Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri
2016-01-01
In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry inthe tape casting process is investigated with the purpose of understanding the particle distribution patterns along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow...... the substratevelocity (casting speed) leads to a more uniform distribution of the particles inside the ceramic slurry, in which case the shear induced particle migration is dominating over the gravity induced one....
The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate
Directory of Open Access Journals (Sweden)
S. Asghar
2004-01-01
Full Text Available An analytic solution of the flow of a third-grade fluid on a porous plate is constructed. The porous plate is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate is also examined. It is also shown that in case of third-grade fluid, a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. Several limiting situations with their implications are given and discussed.
DEFF Research Database (Denmark)
Svec, Oldrich; Skoček, Jan
2013-01-01
The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...
Non Newtonian gravity creeping flow
International Nuclear Information System (INIS)
Gratton, J.; Mahajan, S.M.; Minotti, F.
1988-11-01
We derive the governing equations for creeping gravity currents of non Newtonian liquids having a power law rheology, using a lubrication approximation. We consider unidirectional and axisymmetric currents. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. However, many solutions are closely analogous to those for Newtonian rheology; in particular the spreading relations can also be expressed as power laws of time, with exponents that depend on the rheological index. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found. We also derive solutions of the waiting-time type, as well as the ones describing steady flows from a constant source to a sink. General travelling wave solutions are given, and analytic formulae for a simple case are derived. A phase plane formalism, that allows the systematic derivation of self similar solutions, is introduced. The application of the Boltzmann transform is briefly discussed. Present results are closely analogous to those for Newtonian liquids; all the solutions obtained here have their counterparts in Newtonian flows. This happens because the power law rheology, like the Newtonian constitutive relation, involves a single dimensional parameter. Thus one finds similarity solutions whenever the analogous Newtonian problem is self similar. Although the spreading relations are rheology-dependent, in most cases the dependence is rather weak. The present results may be of interest for geophysics since the lithosphere deforms according to an average power law rheology. (author). 17 refs
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
2011-01-01
We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....
Energy Technology Data Exchange (ETDEWEB)
Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)
2006-07-01
There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2013-01-01
Many of the biological fluids analyzed in Lab-on-a-Chip systems contain elastic components, which gives the fluids elastic character. Such fluids are said to be non-Newtonian or, more precisely, viscoelastic. They can give rise to exotic effects on the macroscale, which are never seen for fluids...... with components relying on viscoelastic effects, but the non-intuitive nature of these fluids complicates the design process. This thesis combines the method of topology optimization with differential constitutive equations, which govern the flow of viscoelastic fluids. The optimization method iteratively...... finite element package. The code is capable of calculating the viscoelastic flow in a benchmark geometry, and we hope that it will help newcomers as well as experienced researchers in the field of differential constitutive equations. v...
On Numerical Methods in Non-Newtonian Flows
International Nuclear Information System (INIS)
Fileas, G.
1982-12-01
The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)
Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
Directory of Open Access Journals (Sweden)
Lin Yang
2015-03-01
Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.
Experimental investigation of non-Newtonian droplet collisions : the role of extensional viscosity
Finotello, Giulia; De, Shauvik; Vrouwenvelder, Jeroen C.R.; Padding, J.T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.
2018-01-01
We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the collision process.
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.
1995-01-01
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra
Lie group analysis of flow and heat transfer of non-Newtonian
Indian Academy of Sciences (India)
law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the ...
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
Non-Newtonian ink transfer in gravure-offset printing
International Nuclear Information System (INIS)
Ghadiri, Fatemeh; Ahmed, Dewan Hasan; Sung, Hyung Jin; Shirani, Ebrahim
2011-01-01
The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions than Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between a flat plate and a groove when the plate is moved upward with a constant velocity while the groove is held fixed. Numerical simulations were carried out with the Carreau model to explore the behavior of this non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) method was implemented to capture the interface during the ink transfer process. The effects of varying the contact angle of the ink on the flat plate and groove walls and geometrical parameters such as the groove angle and the groove depth on the breakup time of the liquid filament that forms between the plate and the groove and the ink transfer ratio were determined. Our results indicate that increasing the groove contact angle and decreasing the flat plate contact angle enhance the ink transfer ratio and the breakup time. However, increasing the groove depth and the groove angle decreases the transfer ratio and the breakup time. By optimizing these parameters, it is possible to achieve an ink transfer from the groove to the flat plate of approximately 92%. Moreover, the initial width and the vertical velocity of the neck of the ink filament have significant influences on the ink transfer ratio and the breakup time.
Viumdal, Håkon; Mylvaganam, Saba
2017-01-01
In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595
Energy Technology Data Exchange (ETDEWEB)
Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Directory of Open Access Journals (Sweden)
Keivan Shayesteh
2015-02-01
Full Text Available In tubular reactors, there are different parameters which can affect the degree of conversion. The type of fluid motion and velocity profile of substances in the reactor are of most central measures. Different rheological models can be employed to study the behavior of fluids; power law model is one of the most commonly used models. In this study, the rheological behaviour of polymerization reaction of methyl methacrylate was examined. Due to the similarity function of tubular and batch reactors, the number of test tubes are used to prepare the solution. After preparation of the reactor solution, the n value of power law model was estimated within the span of 0.3492 to 0.9889 by curve fitting. Employing these rheological data, a reactor has been designed. Moreover, the effects of parameters such as reaction temperature, initiator wt%, the concentration of monomer and reactor’s radius on the degree of conversion have been studied. The obtained results in the research indicate a direct proportionality of conversion with the reaction temperature, initiator wt% and the concentration of monomer and also an inverse proportionality of conversion with reactor’s radius. Finally, the amount of conversion was obtained equal to 56.47% and according to its laboratory proportion which was 55.88% we have reached the conclusion that the modeling duly undertaken is applicable and valid.
Similarity solution of axisymmetric non-Newtonian wall jets with swirl
Czech Academy of Sciences Publication Activity Database
Kolář, Václav
2011-01-01
Roč. 12, č. 6 (2011), s. 3413-3420 ISSN 1468-1218 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : similarity solution * wall jets * non-Newtonian fluids * power-law fluids * swirl Subject RIV: BK - Fluid Dynamics Impact factor: 2.043, year: 2011
Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin
2017-09-01
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).
Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues
Ahmed, Aftab; Siddique, Javed
2017-11-01
We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.
A Lagrangian finite element method for the simulation of flow of non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole; Bisgaard, C
1983-01-01
A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...
Break-up of a non-Newtonian jet injected downwards in a ...
Indian Academy of Sciences (India)
atomization and spray coating, crop spraying, ink jet printing, printing of polymer transis- tors, and ... particular ones used in printing and coating, the liquids encountered are non-Newtonian. For breakup of ...... In-Press. Sussman M and Pukett E G 2000 A coupled level set and volume-of-fluid method for computing 3D and.
Impinging jet spray formation using non-Newtonian liquids
Rodrigues, Neil S.
Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size
Point-of-care Devices: Non-Newtonian Whole Blood Behavior and Capillary Flow on Reagent-coated Walls
Directory of Open Access Journals (Sweden)
Jean BERTHIER
2016-08-01
Full Text Available Most point-of-care (POC and patient self-testing (PST devices are based on the analysis of whole blood taken from a finger prick. Whole blood contains a bountiful of information about the donor’s health. We analyze here two particularities of microsystems for blood analysis: the blood non-Newtonian behavior, and the capillary flow in reagent-coated channels. Capillarity is the most commonly used method to move fluids in portable systems. It is shown first that the capillary flow of blood does not follow the Lucas-Washburn-Rideal law when the capillary flow velocity is small, due to its non-Newtonian rheology and to the formation of rouleaux of RBCs. In a second step, the capillary flow of blood on reagent-coated surfaces is investigated; first experimentally by observing the spreading of a droplet of blood on different reagent-coated substrates; second theoretically and numerically using the general law for spontaneous capillary flows and the Evolver numerical program.
Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.
Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia
2018-01-01
The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N = 4.1 or 8.2 s -1 inducing transitional ( Re = 499 or 1307) or turbulent ( Re = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.
Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.
Directory of Open Access Journals (Sweden)
Grissel Trujillo-de Santiago
Full Text Available BACKGROUND: Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. METHODOLOGY AND FINDINGS: We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. CONCLUSION AND RELEVANCE: Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.
Non-Newtonian Aspects of Artificial Intelligence
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
A two-phase theory for non-Newtonian suspensions
Varsakelis, Christos
In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.
International Nuclear Information System (INIS)
Makinde, O.D.
2005-10-01
In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)
Change in the flow curves of non-Newtonian oils due to a magnetic field
International Nuclear Information System (INIS)
Veliev, F.G.
1979-01-01
The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
Non-newtonian heat transfer on a plate heat exchanger with generalized configurations
Energy Technology Data Exchange (ETDEWEB)
Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)
2007-01-15
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-04-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S. M.; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-01-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain. PMID:28249082
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.
Directory of Open Access Journals (Sweden)
I.L. Animasaun
2017-12-01
Full Text Available Geometrically, the upper pointed surface of an aircraft and bonnet of a car are examples of upper horizontal surfaces of a paraboloid of revolution (uhspr. The motion of these objects strongly depends on the boundary layer that is formed within the immediate space on it. However, each of these surfaces is neither a horizontal/vertical nor cone/wedge and neither a cone nor a wedge. This article presents the motion of 2-dimensional Blasius flow of Carreau fluid on the surface of such object. The case in which the reaction between the Carreau fluid and catalyst at the surface produces significant temperature differences which consequently set up buoyancy-driven flows within the boundary layer is investigated. Single first-order Arrhenius kinetics is adopted to model the reaction on the surface of the catalyst situated on uhspr which initiates the free convection. Suitable similarity variables are applied to non-dimensionalized, parameterized and reduce the governing partial differential equations to a coupled ordinary differential equations (BVP. The BVP is solved numerically using the shooting technique. Temperature distribution in the flow of viscoelastic Carreau fluid is greater than that of a Newtonian fluid. Local heat transfer rate decreases faster when the Carreau fluid is characterized as shear-thinning. Maximum concentration is guaranteed at a small value of power-law index n and large value of thickness parameter. Keywords: Viscoelastic-Carreau fluid, Catalitic surface, Paraboloid of revolution, Numerical method, Uhspr, Boundary layer analysis
On preconditioning incompressible non-Newtonian flow problems
He, X.; Neytcheva, M.; Vuik, C.
2013-01-01
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
International Nuclear Information System (INIS)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
1998-01-01
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy close-quote s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. copyright 1998 The American Physical Society
Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel
Energy Technology Data Exchange (ETDEWEB)
Mohsenian, S.; Ramiar, A.; Ranjbar, A. A. [Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)
2017-01-15
In the present study the flow of non-Newtonian nanofluid through a converging microchannel is investigated numerically. TiO{sub 2} nanoparticles with 10 nm diameter are dispersed in an aqueous solution of 0.5 %.wt Carboxymethyl cellulose (CMC) to produce the nanofluid. Both nanofluid and the base fluid show pseudoplastic behavior. The equations have been solved with finite volume approach using collocated grid. It has been found that by increasing the volume fraction and Reynolds number and the convergence angle, the Nusselt number increases. Also, it has been observed that by increasing convergence angle and decreasing aspect ratio of the channel, the velocity of the channel increases.
Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow
DEFF Research Database (Denmark)
Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter
2015-01-01
The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...
A Lagrangian PFEM approach for non-Newtonian viscoplastic materials
Larese, A.
2017-01-01
This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...
Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction
Directory of Open Access Journals (Sweden)
Enrico Chiarello
2015-11-01
Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.
Sharifi, Alireza; Niazmand, Hamid
2015-10-01
Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D
2016-04-01
The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.
Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel
International Nuclear Information System (INIS)
Xiang, Hao; Chen, Bin
2015-01-01
The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)
Dielectric fluid directional spreading under the action of corona discharge
Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai
2018-01-01
Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.
Controllability of Non-Newtonian Fluids Under Homogeneous Flows
National Research Council Canada - National Science Library
Wilson, Lynda M
2007-01-01
.... The constitutive models are as follows: the Phan-Thien-Tanner model; the Johnson-Segalman model; and the Doi model. The effect of extensional flow on these models and the effect of shear flow on the Doi model have not been explored previous to this work...
A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes
Directory of Open Access Journals (Sweden)
Dhruv Mehta
2018-01-01
Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel
International Nuclear Information System (INIS)
Abu-Ramadan, E.; Khayat, R.E.
2002-01-01
The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)
Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture
Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.
2017-12-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Directory of Open Access Journals (Sweden)
K. Mehala
2016-12-01
Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.
Aerosol entrainment from a sparged non-Newtonian slurry.
Fritz, Brad G
2006-08-01
Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
Computational simulation of a non-newtonian model of the blood separation process.
De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos
2005-12-01
The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.
Directory of Open Access Journals (Sweden)
Xiankang Xin
2017-10-01
Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.
Energy Technology Data Exchange (ETDEWEB)
Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br
2010-07-01
This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)
Three-dimensional blade coating of complex fluid
Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie
2015-11-01
The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy
2014-02-01
The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby
2013-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...
Non Newtonian Behavior of Blood in Presence of Arterial Occlusion
Dr.Arun Kumar Maiti
2016-01-01
The objective of the present numerical model is to investigate the effect of shape of stenosis on blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been shown graphically
Determination of the Köthe-Toeplitz Duals over the Non-Newtonian Complex Field
Directory of Open Access Journals (Sweden)
Uğur Kadak
2014-01-01
Full Text Available The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983, Grossman and Katz (1978, and Grossman (1979. Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness.
Numerical methods for multi-scale modeling of non-Newtonian flows
Symeonidis, Vasileios
This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic
Directory of Open Access Journals (Sweden)
Sivakumar Venkatachalam
2011-09-01
Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s
Non-newtonian deformation of co-based metallic glass at low stresses
Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav
2000-01-01
The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, D.A.; Onishi, Y.
2001-01-01
In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi (and others) 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste
The effect of the expansion ratio on a turbulent non-Newtonian recirculating flow
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.S. [Departamento de Engenharia Quimica Instituto Superior de Engenharia do Porto (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto (Portugal)
2002-04-01
Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. (orig.)
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.
2000-01-01
Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation
Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries
Energy Technology Data Exchange (ETDEWEB)
Bamberger, Judith A.; Enderlin, Carl W.
2013-11-15
Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.
Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars
International Nuclear Information System (INIS)
Wen Dehua; Li Baoan; Chen Liewen
2009-01-01
Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.
Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data
Directory of Open Access Journals (Sweden)
Terry F. Scott
2017-05-01
Full Text Available The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students’ understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed after several years of research into the common preconceptions held by students and using these preconceptions as distractors in the questions. Their sole purpose is to deflect non-Newtonian candidates away from the correct answer. Alternatively, one can argue that the responses could also be treated as polling these preconceptions. In this paper we shift the emphasis of the analysis away from the correlation structure of the correct answers and look at the latent traits underlying the incorrect responses. Our analysis models the data employing exploratory factor analysis, which uses regularities in the data to suggest the existence of underlying structures in the cognitive processing of the students. This analysis allows us to determine whether the data support the claim that there are alternate non-Newtonian worldviews on which students’ incorrect responses are based. The existence of such worldviews, and their coherence, could explain the resilience of non-Newtonian preconceptions and would have significant implications to the design of instruction methods. We find that there are indeed coherent alternate conceptions of the world which can be categorized using the results of the research that led to the construction of the Force Concept Inventory.
Directory of Open Access Journals (Sweden)
J.I. Orisaleye
2018-04-01
Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law
Nesvizhevsky, V V; Protasov, K V
2005-01-01
An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.
Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils
Energy Technology Data Exchange (ETDEWEB)
Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M
1968-08-01
Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.
Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines
Energy Technology Data Exchange (ETDEWEB)
Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-03-01
correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.
The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries
Nikfarjam, F.; Cheny, Y.; Botella, O.
2018-05-01
The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar
2017-04-01
Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.
Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase
Directory of Open Access Journals (Sweden)
Naseva Olivera S.
2002-01-01
Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.
Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz
2015-06-01
This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.
Validation of computational non-Newtonian fluid model for membrane bioreactor
DEFF Research Database (Denmark)
Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian
2015-01-01
Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool for optimiz......Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to its high effluent quality. One of the main problems with such systems is a relative large energy consumption, which has led to research in this specific area. A powerful tool...
Entropy generation in a pipe due to non-Newtonian fluid flow ...
Indian Academy of Sciences (India)
pipes. They indicated that although the power-law model adequately agreed with the shear stress and shear rate ... In this case, it was shown that the power-law model was not capable of predicting the nor- mal stress effects that .... The dimensional volumetric entropy generation is defined as (Bejan 1995):. Sgen = k. ¯θ2. 0.
Non-Newtonian fluid flow in annular pipes and entropy generation ...
Indian Academy of Sciences (India)
Author Affiliations. M Yürüsoy1 B S Yilbaş2 M Pakdemirli2. Technical Education Faculty, Afyon Kocatepe University, Afyon, Turkey; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia ...
Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR
DEFF Research Database (Denmark)
Bentzen, Thomas Ruby; Ratkovic, Nicolas Rios; Rasmussen, Michael R.
2011-01-01
Fouling is the main bottleneck of the widespread of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid crossflow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of e.g. impellers. Val...
Combinatorial Optimization for Energy Saving in Nickel Industry Non-Newtonian Fluid Pumping System
International Nuclear Information System (INIS)
Hernández Ramírez, Gabriel; Legra Lobaina, Aristides; Columbié Navarro, Angel; Marcos Aníbal León Segovia
2017-01-01
In the present work a study of the influence of the rheological parameters of the lateritic hydromixtures with the energetic ones of the pumping systems that guarantee the productivity of nickel company 'Commander Pedro Sotto Alba' is carried out. From an experimental study and through an estimator, the rheological parameters are modeled as a function of the factors: temperature, solids content, chemical and granulometric composition. From an appropriate discretization of the model of the lateritic hydrometer pumping system and the application of a Discrete Combination Optimization Double Sequencing procedure, the operating parameters of this system were obtained, in order to guarantee a flow rate of 1600 m3 / h and one Adequate solids concentration. It is concluded that the use of a mathematical model that relates the rheological parameters of the lateritic pulp and the energy parameters of the pumping system, guarantee the metallurgical and energy efficiency in the acid leaching process with an average increase in production between 1000-1500 T Ni + Co / y and an energy saving of 30 MWh /year. (author)
Entropy generation in a pipe due to non-Newtonian fluid flow ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Author Affiliations. M Pakdemirli1 B S Yilbas2. Department of Mechanical Engineering, Celal Bayar University, Manisa, Turkey; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, P.O. Box 1913, Dhahran 31261, Saudi Arabia ...
Physics of Non-Newtonian Fluids and Interdisciplinary Relations (Biology and Criminology)
Holubova, R.
2018-01-01
The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science…
Numerical Modeling of the Side Flow in Tape Casting of a Non-Newtonian Fluid
DEFF Research Database (Denmark)
Jabbari, Masoud; Hattel, Jesper Henri
2013-01-01
in the tape casting process is modeled numerically with ANSYS FLUENT in combination with an Ostwald-de Waele power law constitutive equation. Based on rheometer experiments, the constants in the Ostwald-de Waele power law are identified for the considered LSM material and applied in the numerical modeling......One of the most common ways used to produce multilayer ceramics (MLC) is tape casting. In this process, the dried tape thickness is of great interest to control the desired products and applications. One of the parameters that influences the final tape thickness is the side flow factor (a) which...... is mostly measured at the end of the process by a volumetric comparison of the tape which flowed outside the casting width to the tape within the casting width. This phenomenon has not been predicted theoretically yet in the literature. In this study, the flow of (La0.85Sr0.15)0.9MnO3 (LSM) slurry...
Possible evidence for non-Newtonian gravity in the Greenland ice gap
International Nuclear Information System (INIS)
Ander, M.E.
1988-01-01
An Airy-type geophysical experiment was conducted down a 2 km deep hole in the Greenland ice cap in order to test for possible violations of Newton's inverse square law by making gravity measurements over a range of 213 m to 1460 m. A significant departure from Newtonian gravity was observed. This result can be explained by the existence of an attractive non-Newtonian component of gravity with a strength of about 3.4% that of Newtonian gravity at a scale of 1460 m. Unfortunately, we cannot completely, unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that lateral density variations in the bedrock beneath the ice can cause such apparent departures. If such variations existed, they would have to be rather unusual but certainly no impossible. 8 refs
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Microrheological observations of the onset of non-Newtonian behavior in suspensions
Energy Technology Data Exchange (ETDEWEB)
Mondy, L A; Graham, A L; Gottlieb, M
1988-01-01
As the column fraction of solids increases above about 0.30, suspensions of non-Brownian, uniform spheres in Newtonian liquids begin to exhibit shear-thinning, normal stresses, and other non- Newtonian behavior. Here, we report on observations obtained from falling-ball and capillary rheometry at these high volume fractions. Specifically, we find that measured viscosity values are dependent on the size-scale of the viscometer (cylinder diameter, D, and falling- ball diameter, d) relative to the diameter of the suspended spheres d/sub s/. We report the dependence of the measured viscosity on the ratios d/d/sub s/, D/d, and D/d/sub s/, as well as critical values of these ratios above which the apparent viscosity is constant. 5 refs., 3 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Hemeidia A. M.
2006-11-01
Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des
Front‐tracking simulations of bubbles rising in non‐Newtonian fluids
Battistella, Alessandro; Van Schijndel, J.G.; Baltussen, Maike W.
2017-01-01
In the wide and complex field of multiphase flows, bubbly flows with non-Newtonian liquids are encountered in several important applications, such as in polymer solutions or fermentation broths. Despite the widespread application of non-Newtonian liquids, most of the models and closures used in industry are valid for Newtonian fluids only, if not even restricted to air-water systems. However, it is well known that the non-Newtonian rheology significantly influences the liquid and bubble behav...
Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel
Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration
2015-11-01
Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.
Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow
Alam, Meheboob; Saha, Saikat
2014-11-01
The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.
Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses
International Nuclear Information System (INIS)
Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.
1998-01-01
The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent
Bose, Sayan; Banerjee, Moloy
2015-01-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.
Physics of Life: A Model for Non-Newtonian Properties of Living Systems
Zak, Michail
2010-01-01
This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if
Energy Technology Data Exchange (ETDEWEB)
Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.
2009-05-11
The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.
International Nuclear Information System (INIS)
Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.
2009-01-01
The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review's executive summary, ''Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.'' To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 (micro)m in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
A review on rising bubble dynamics in viscosity-stratified fluids
Indian Academy of Sciences (India)
Kirti Chandra Sahu
Multiphase flow; non-Newtonian; immiscible fluids; bubbles; numerical simulations. 1. Introduction. The fluid dynamics of a gas bubble rising due to buoyancy in a surrounding .... Figure 2. Behaviour of a single bubble rising in quiescent liquid.
SPREADING OF A FLUID JET ON THE CORRUGATED SURFACE OF THE STRUCTURED PACKING OF WET SCRUBBERS
Directory of Open Access Journals (Sweden)
Gorodilov A.A.
2014-08-01
Full Text Available The new packing for wet scrubbers for cooling exhaust gases of furnaces is presented. Spreading features of the fluid jet on the corrugated surface of the proposed packing have been studied. Flow rate of the liquid flowing through slits to the opposite side of the packing element was determined. Several regimes of a fluid flow on the surface of the proposed structured packing were determined. An optimal range of rational flow rates for more intense cooling of exhaust gases is proposed. It was discovered that the range of optimum flow rates may be extended if the surface of the packing element is pre-wetted. The way of increasing the rate of effective interfacial surface area for gas-liquid contact per unit volume of the packing of the scrubber is presented.
Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-01-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional deriva...
International Nuclear Information System (INIS)
Narayan, A.P.; Rainwater, J.C.; Hanley, H.J.M.
1995-01-01
A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder
Lie group analysis of flow and heat transfer of non-Newtonian ...
Indian Academy of Sciences (India)
2017-01-09
Jan 9, 2017 ... of its industrial and engineering applications. In view of all these ... fluids). Applying nanotechnology to heat transfer, the new concept of ..... The set of nonlinear ordinary differential equations of. (28) and (32) subject to the ...
International Nuclear Information System (INIS)
Memon, R.A.; Solangi, M.A.
2013-01-01
The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)
Vala, A. K.; Desai, R.; Upadhyay, R. V.; Mehta, R. V.
2008-12-01
Interaction of facultative marine fungus Aspergillus niger with a Mn-Zn ferrite magnetic fluid (MF) has been studied. The fungus exhibited a luxuriant growth in the presence of magnetic fluid at test concentrations. Though the biomass accumulation was found to be almost similar, mycelial spread was found to be rapid in the presence of MF if compared to the control one. The MF also exhibited a positive effect on the biomass accumulation during prolonged incubation. These preliminary observations provide a baseline information for possible exploitation of the magnetic fluid-facultative marine fungal interaction for bioremediation purposes. Figs 5, Refs 13.
Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K
2015-05-15
The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization. Copyright © 2015 Elsevier B.V. All rights reserved.
Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities
International Nuclear Information System (INIS)
Citro, Vincenzo; Giannetti, Flavio; Pralits, Jan O
2015-01-01
We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem. (paper)
Kleinstreuer, Clement
2018-01-01
Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.
Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L
2015-06-25
Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reduced viscosity interpreted for fluid/gas mixtures
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.
2017-10-01
This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing
Energy Technology Data Exchange (ETDEWEB)
Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.
2009-07-01
One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR
Sojka, Paul E.; Rodrigues, Neil S.
2015-11-01
The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03
Thermal convection of viscoelastic shear-thinning fluids
International Nuclear Information System (INIS)
Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U
2016-01-01
The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)
Wetting and spreading of human blood: Recent advances and applications
Smith , F.R. ,; Brutin , David
2018-01-01
International audience; Investigation of the physical phenomena involved in blood interactions with real surfaces present new exciting challenges. The fluid mechanical properties of such a fluid is singular due its non-Newtonian and complex behaviour, depending on the surrounding ambient conditions and the donor/victim's blood biological properties. The fundamental research on the topic remains fairly recent; although it finds applications in fields such as forensic science, with bloodstain p...
James, Rachael H.; Green, Darryl R. H.; Stock, Michael J.; Alker, Belinda J.; Banerjee, Neil R.; Cole, Catherine; German, Christopher R.; Huvenne, Veerle A. I.; Powell, Alexandra M.; Connelly, Douglas P.
2014-08-01
The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532-536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98-220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8-8.1 × 10-3) than they are in E2 fluids (1.5-2.4 × 10-3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02-3.42) are not especially low, and F concentrations (34.6-54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed
Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids
Chen, Xingyuan
2014-01-01
In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...
Rupture of spinal dermoid tumors with spread of fatty droplets in the cerebrospinal fluid pathways
Energy Technology Data Exchange (ETDEWEB)
Calabro, F. [Neuroradiology Section, T. M. A., Genoa (Italy); Capellini, C. [Neuroradiology Section, Ospedale Sant' Andrea, La Spezia (Italy); Jinkins, J.R. [Neuroimaging Research Department of Radiology, Nebraska Medical Center, Omaha, NE (United States)
2000-08-01
Cranial and spinal MRI was carried out at 0.5 or 1.5 T in five patients with spinal dermoid tumours. Free fatty material was appreciated within the normally communicating cerebrospinal fluid pathways in all five cases and in one case fat droplets were also observed within a dilated central canal of the spinal cord. While dissemination of lipid within the subarachnoid space and ventricles is easily understandable, the presence of lipid droplets within the central canal is more difficult to explain, since the central canal is only potential in the adult. When a dermoid tumor is suspected, we recommend MRI of the entire central nervous system, to detect possible leakage of fat from rupture of a cystic portion of the tumour. (orig.)
Rupture of spinal dermoid tumors with spread of fatty droplets in the cerebrospinal fluid pathways
International Nuclear Information System (INIS)
Calabro, F.; Capellini, C.; Jinkins, J.R.
2000-01-01
Cranial and spinal MRI was carried out at 0.5 or 1.5 T in five patients with spinal dermoid tumours. Free fatty material was appreciated within the normally communicating cerebrospinal fluid pathways in all five cases and in one case fat droplets were also observed within a dilated central canal of the spinal cord. While dissemination of lipid within the subarachnoid space and ventricles is easily understandable, the presence of lipid droplets within the central canal is more difficult to explain, since the central canal is only potential in the adult. When a dermoid tumor is suspected, we recommend MRI of the entire central nervous system, to detect possible leakage of fat from rupture of a cystic portion of the tumour. (orig.)
Mathematical modeling for laminar flow of power law fluid in porous media
Energy Technology Data Exchange (ETDEWEB)
Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao
2010-07-01
In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)
Faber, T. E.
1995-08-01
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field
International Nuclear Information System (INIS)
Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.
1984-01-01
An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)
International Nuclear Information System (INIS)
Hady, F. M.; Ibrahim, F. S.; Abdel-Gaied, S. M.; Eid, M. R.
2011-01-01
The effect of yield stress on the free convective heat transfer of dilute liquid suspensions of nanofluids flowing on a vertical plate saturated in porous medium under laminar conditions is investigated considering the nanofluid obeys the mathematical model of power-law. The model used for non-Newtonian nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing boundary- layer equations are cast into dimensionless system which is solved numerically using a deferred correction technique and Newton iteration. This solution depends on yield stress parameter Ω, a power-law index n, Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion number Nb, and a thermophoresis number Nt. Analyses of the results found that the reduced Nusselt and Sherwood numbers are decreasing functions of the higher yield stress parameter for each dimensionless numbers, n and Le, except the reduced Sherwood number is an increasing function of higher Nb for different values of yield stress parameter
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Study of blood flow in several benchmark micro-channels using a two-fluid approach
Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad
2015-01-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated ...
Spreafico, Filippo; Bongarzone, Italia; Pizzamiglio, Sara; Magni, Ruben; Taverna, Elena; De Bortoli, Maida; Ciniselli, Chiara M; Barzanò, Elena; Biassoni, Veronica; Luchini, Alessandra; Liotta, Lance A; Zhou, Weidong; Signore, Michele; Verderio, Paolo; Massimino, Maura
2017-07-11
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Energy Technology Data Exchange (ETDEWEB)
Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)
2002-07-01
Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)
The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids
Hu, Bin; Kieweg, Sarah L.
2012-01-01
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391
Numerical study of shear thickening fluid with discrete particles embedded in a base fluid
Directory of Open Access Journals (Sweden)
W Zhu
2016-09-01
Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.
Johan, Wiklund; Reinhardt, Kotze; Beat, Birkhofer; Stefano, Ricci; Valentino, Meacci; Mats, Stading; Rainer, Haldenwang; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology; Sika Services AG; Information Engineering Department - University of Florence; Information Engineering Department - University of Florence; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology
2015-01-01
In this work we have presented the world's first commercially available embedded in-line fluids characterization system, "Flow-Viz". It has been specifically designed for the non-invasive, in-line, continuous, real-time velocity profile and rheological assessment of opaque, non-Newtonian industrial fluids. The Flow-Viz system has been successfully installed in pilot plants of international companies and used also for academic research. The technology has been applied to a wide range of fluids...
Almazmumy, Mariam; Ebaid, Abdelhalim
2017-08-01
In this article, the flow and heat transfer of a non-Newtonian nanofluid between two coaxial cylinders through a porous medium has been investigated. The velocity, temperature, and nanoparticles concentration of the present mathematical model are governed by a system of nonlinear ordinary differential equations. The objective of this article is to obtain new exact solutions for the temperature and the nanoparticles concentration and, therefore, compare them with the previous approximate results in the literature. Moreover, the velocity equation has been numerically solved. The effects of the pressure gradient, thermophoresis, third-grade, Brownian motion, and porosity parameters on the included phenomena have been discussed through several tables and plots. It is found that the velocity profile is increased by increasing the pressure gradient parameter, thermophoresis parameter (slightly), third-grade parameter, and Brownian motion parameter (slightly); however, it decreases with an increase in the porosity parameter and viscosity power index. In addition, the temperature and the nanoparticles concentration reduce with the strengthen of the Brownian motion parameter, while they increase by increasing the thermophoresis parameter. Furthermore, the numerical solution and the physical interpretation in the literature for the same problem have been validated with the current exact analysis, where many remarkable differences and errors have been concluded. Therefore, the suggested analysis may be recommended with high trust for similar problems.
El-Amin, Mohamed; Sun, Shuyu
2011-01-01
and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration
Transport Coefficients of Fluids
Eu, Byung Chan
2006-01-01
Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.
2012-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (i.e. oil-gas industry). In spite of the common occurrence of these TPFs, their understanding is limited compared to single-phase flows. Different studies on TPF have focus on developing empirical correlations...... based in large sets of experiment data for void fraction and pressure drop which have proven to be accurate for specific condition that their where developed for, which limit their applicability. On the other hand, scarce studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical...... processes. The main reason for it is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours on the system. The focus of this study is the analysis of the TPF for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction and total...
Laminar flow of a shear-thickening fluid in a 90∘ pipe bend
Marn, Jure; Ternik, Primož
2006-05-01
The non-Newtonian fluid flow in a sharp 90∘ curved pipe is studied numerically to obtain the pressure loss coefficient prompted by disagreement between the existing empirical correlations and results obtained by computer codes. This disagreement results from presumption of fully developed flow throughout the curvature (correlations) while the actual flow is partially developed for the Newtonian and sharp 90∘ curved bend non-Newtonian flows, and fully developed for slightly bent 90∘ curvature non-Newtonian flow. The Quadratic model is employed to accommodate the shear-thickening behavior of an electrostatic ash and water mixture. Numerical results are obtained for different values of Reynolds number. Finally, results for local pressure loss coefficient are compared with values obtained for the Power law rheological model.
A. Mahammedi; H. Ameur; A. Ariss
2017-01-01
The laminar flow of non-Newtonian fluids through a Kenics static mixer is investigated by using the CFD (Computational Fluid Dynamics) tool. The working fluids have a shear thinning behavior modeled by the Ostwald De Waele law. We focus on the effect of Reynolds number, fluid properties, twist angle and blade pitch on the flow characteristics and energy cost. The pressure drop information obtained from the simulations was compared to several experimental correlations and data available in the...
Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus
Misra, J. C.; Maiti, S.
2011-01-01
Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bo...
Microgravity Fluids for Biology, Workshop
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
Roques-Carmes, Thibault; Mathieu, Vincent; Gigante, Alexandra
2010-04-01
The dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces has been investigated. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare) surfactant concentration on the number and the nature of the spreading regimes is systematically investigated. More than 25 spreading experiments have been performed in order to obtain clear trends. The results confirm the existence of several spreading regimes for the duration of an experiment (200 s). For each regime, the radius can be expressed by a power law of the form R=Kt(n). Both n and K are necessary to identify the regime. The experimental data are compared with the analytical predictions of the combined theory of spreading. One of the main results of this study is that the nature of the regimes is strongly affected by the drop volume, the viscosity and the surfactant concentration. This behavior is not predicted by the theory. For drop volume less than or equal to 15 microL, a succession of two different regimes which depend on the viscosity and surfactant concentration are observed in the following order: a molecular-kinetic regime followed by a hydrodynamic regime (for high viscosity in the presence of surfactant) or a hydrodynamic regime and lastly a final asymptotic regime corresponding to a long relaxation time to equilibrium (for high viscosity in absence of surfactant and for low viscosity regardless of the presence of surfactant). The spreading follows quantitatively the predictions of the theory. Our results demonstrate that the theory is still valid for low viscosity liquids and in the presence of surfactant. The contact angle for which the crossover between molecular-kinetic regime and hydrodynamic regime occurs is thoroughly estimated since the theories do not allow the exact calculation of this value. Here for the first time, an empirical power law exponent (n=0.08+/-0.05) is proposed for
Simulation of melt spreading in consideration of phase transitions
Energy Technology Data Exchange (ETDEWEB)
Spengler, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)
2002-07-01
The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)
Post-Tanner spreading of nematic droplets
International Nuclear Information System (INIS)
Mechkov, S; Oshanin, G; Cazabat, A M
2009-01-01
The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.
Experimental and computational fluid dynamics studies of mixing of complex oral health products
Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team
2017-11-01
Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).
Influence of fluid structure upon the shape of RTD curve at a sugar crystallizer
International Nuclear Information System (INIS)
Griffith, J.; Borroto, J.I.; Leclerc, J.P.
2004-01-01
The influence of fluid structure over the shape of the RTD curve at a pilot sugar crystallizer has been tested by the radiotracer method. For Newtonian pure molasses B sugar fluid the pattern flux was close to a perfect mixing cells with backmixing model with a back flow-rate ratio lower than one. In the case of molasses B transformed to a non-Newtonian fluid the pattern flux approaches the same model but with extreme values of the back flow-rate ration (higher than one). A direct relationship was founded between the back flow rate ratio and the flow index of the tested fluids, showing that a special attention has to be pay during data processing of the RTD curves for non-Newtonian fluids. (author)
Study of blood flow in several benchmark micro-channels using a two-fluid approach.
Wu, Wei-Tao; Yang, Fang; Antaki, James F; Aubry, Nadine; Massoudi, Mehrdad
2015-10-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs.
The fluid dynamics of the chocolate fountain
International Nuclear Information System (INIS)
Townsend, Adam K; Wilson, Helen J
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)
The fluid dynamics of the chocolate fountain
Townsend, Adam K.; Wilson, Helen J.
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.
Newtonian heating effects in three-dimensional flow of viscoelastic fluid
International Nuclear Information System (INIS)
Qayyum, A.; Hayat, T.; Alhuthali, M. S.; Malaikah, H. M.
2014-01-01
A mathematical model is constructed to investigate the three-dimensional flow of a non-Newtonian fluid. An incompressible viscoelastic fluid is used in mathematical formulation. The conjugate convective process (in which heat the transfer rate from the bounding surface with a finite capacity is proportional to the local surface temperature) in three-dimensional flow of a differential type of non-Newtonian fluid is analyzed for the first time. Series solutions for the nonlinear differential system are computed. Plots are presented for the description of emerging parameters entering into the problem. It is observed that the conjugate heating phenomenon causes an appreciable increase in the temperature at the stretching wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source
International Nuclear Information System (INIS)
Goyal, Mamta; Banshiwal, Anna
2014-01-01
MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)
Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids
Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea
2014-05-01
Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
Energy Technology Data Exchange (ETDEWEB)
Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2009-09-15
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Pulsatile flow of viscous and viscoelastic fluids in constricted tubes
International Nuclear Information System (INIS)
Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.
2009-01-01
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration
Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study
Directory of Open Access Journals (Sweden)
Sankar DS
2009-01-01
Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.
The interaction of two spheres in a simple-shear flow of complex fluids
Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).
Fluid flow for chemical and process engineers
Holland, F
1995-01-01
This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2017-12-01
Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.
DEFF Research Database (Denmark)
Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper Henri
2014-01-01
The aim of the present study is to evaluate the different interface capturing methods as well as to find the best approach for flow modeling of the ceramic slurry in the tape casting process. The conventional volume of fluid (VOF) method with three different interpolation methods for interface...... method for the free surface capturing during the flow of a ceramic slurry described by a constitutive power law equation in the tape casting process. First the developed model is tested against well-documented and relevant solutions from literature involving free surface tracking and subsequently...
El-Amin, Mohamed
2010-11-27
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.
El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy
2010-01-01
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Mamatha Upadhya, S.; Mahesha; Raju, C. S. K.
2018-04-01
A theoretical analysis is carried out to investigate the magnetohydrodynamic unsteady flow of Eyring-Powell and Carreau non-Newtonian fluids in a suspension of dust and nickel nanoparticles by considering variable thermal conductivity and thermal radiation. Dispersion of nickel nanoparticles in dusty fluids finds applications in heat exchanger systems, rechargeable batteries, chemical catalysts, metallurgy, conducting paints, magnetic recording media, drug delivery, nanofibers, textiles, etc. The initially arising set of physical governing partial differential equations is transformed to ordinary differential equations (ODEs) with the aid of similarity transformations. Consequentially, the nonlinear ODEs are solved numerically through the Runge-Kutta Fehlberg scheme (RKFS). The computational results for non-dimensional temperature and velocity profiles are presented through graphs. Furthermore, the numerical values of friction factor and heat transfer rate are tabulated numerically for the unsteady and steady cases of the Eyring and Carreau fluid cases and of the dusty non-Newtonian (φ=0) and the dusty non-Newtonian nanofluid (φ≠ 0) cases of the unsteady flow. We also validated the present results with previous published studies and found them to be highly satisfactory. The formulated model reveals that the rate of heat transfer is higher in the mixture of the nickel + Eyring-Powell case compared to the nickel + Carreau case. From this we can highlight that, depending on the industrial appliances, we can use heating or cooling processes for Eyring and Carreau fluids, respectively.
A Symmetry Particle Method towards Implicit Non‐Newtonian Fluids
Directory of Open Access Journals (Sweden)
Yalan Zhang
2017-02-01
Full Text Available In this paper, a symmetry particle method, the smoothed particle hydrodynamics (SPH method, is extended to deal with non‐Newtonian fluids. First, the viscous liquid is modeled by a non‐Newtonian fluid flow and the variable viscosity under shear stress is determined by the Carreau‐Yasuda model. Then a pressure correction method is proposed, by correcting density error with individual stiffness parameters for each particle, to ensure the incompressibility of fluid. Finally, an implicit method is used to improve efficiency and stability. It is found that the nonNewtonian behavior can be well displayed in all cases, and the proposed SPH algorithm is stable and efficient.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Vacuum polarization and non-Newtonian gravitation
International Nuclear Information System (INIS)
Long, D.R.
1980-01-01
Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)
Directory of Open Access Journals (Sweden)
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R; Michael Restivo, M
2008-06-26
The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.
Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity
Czech Academy of Sciences Publication Activity Database
Hirn, A.; Lanzendörfer, Martin; Stebel, Jan
2012-01-01
Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012
Energy Technology Data Exchange (ETDEWEB)
Kauder, K.; Deipenwisch, R. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen
1998-12-31
The model of the calculation of the friction losses caused by oil described in this report delivers a starting point for the integration of the design parameter `oil` for oil injected screw-type engines. The use of non newtonian oils with a shear thinning behaviour lead to a decrease of energy consumption over a broad speed range of screw-type compressors. The decrease is mainly caused by the shear indicated lower viscosity in the clearances of the compressor. A difficulty through the use of this oils is the estimation of the conditions in the clearances. The rate of shear in the single clearance is influenced by the relative speed of the boundaries and by the height of the clearance during operation. Up to now only cold heights were used in the model. To improve the quality of the model the clearances of a running screw compressor were measured. The losses which were determined at the screw compressor test plant are the summation of all losses including the losses caused by the power transmission and in the bearings. Experiments at a model rotor test stand make the determination of the friction losses and the losses by the acceleration of the oil in the clearances possible. A better calculation model shall deliver the conditions to describe the influence of the oil on the energy efficiency and to define the optimal oil for every screw compressor. (orig.) [Deutsch] Das beschriebene Modell zur Berechnung der hydraulischen Verluste in der nasslaufenden Schraubenmaschine liefert Ansaetze, um das Oel schon bei der Auslegung der Schraubenkompressoren als Konstruktionselement mit einzubeziehen. Sinnvoll ist die Nutzung eines nicht-newtonschen Oeles immer dann, wenn eine deutliche scherindizierte Viskositaetserniedrigung in dem Schergeschwindigkeitsbereich, der in den Spalten des Schraubenkompressors vorliegt, erreicht werden kann. Beim Einsatz dieser Oele besteht die Schwierigkeit darin, den Schergeschwindigkeitsbereich vorherzubestimmen, der waehrend des Betriebs in dem
Oscillating flow of a Burgers' fluid in a pipe
International Nuclear Information System (INIS)
Khan, M.; Asghar, S.; Hayat, T.
2005-12-01
An analysis is made to see the influences of Hall current on the flow of a Burgers' fluid. The velocity field corresponding to flow in a pipe is determined. The closed form analytical solutions for several Newtonian and non-Newtonian fluid models can be obtained from the present analysis as the limiting cases. The purpose of this work is twofold. Firstly, to investigate the oscillating flow in a pipe using Burgers? fluid model. Secondly, to see the effects of Hall current on the velocity field. The flow in a pipe is induced due to imposition of an oscillating pressure gradient. An exact analytical solution to the governing problem is given using the Fourier transform technique. The obtained expression for the velocity field shows that there are pronounced effects of Hall and rheological parameters. The considered fluid model is a viscoelastic model and has been used to characterize food products such as cheese, soil, asphalt and asphalt mixes etc. (author)
Energy Technology Data Exchange (ETDEWEB)
Madlener, K.
2008-07-01
In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)
Turbulent characteristics of shear-thinning fluids in recirculating flows
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)
2000-03-01
A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)
Asymmetric bubble collapse and jetting in generalized Newtonian fluids
Shukla, Ratnesh K.; Freund, Jonathan B.
2017-11-01
The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.
Study of blood flow in several benchmark micro-channels using a two-fluid approach
Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad
2015-01-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs. PMID:26240438
Roughness influence on human blood drop spreading and splashing
Smith, Fiona; Buntsma, Naomi; Brutin, David
2017-11-01
The impact behaviour of complex fluid droplets is a topic that has been extensively studied but with much debate. The Bloodstain Pattern Analysis (BPA) community is encountering this scientific problem with daily practical cases since they use bloodstains as evidence in crime scene reconstruction. We aim to provide fundamental explanations in the study of blood drip stains by investigating the influence of surface roughness and wettability on the splashing limit of droplets of blood, a non-Newtonian colloidal fluid. Droplets of blood impacting perpendicularly different surfaces at different velocities were recorded. The recordings were analysed as well as the surfaces characteristics in order to find an empirical solution since we found that roughness plays a major role in the threshold of the splashing/non-splashing behaviour of blood compared to the wettability. Moreover it appears that roughness alters the deformation of the drip stains. These observations are key in characterising features of drip stains with the impacting conditions, which would answer some forensic issues.
Statistical mechanics and the physics of fluids
Tosi, Mario
This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...
Finite approximations in fluid mechanics
International Nuclear Information System (INIS)
Hirschel, E.H.
1986-01-01
This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems
Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap
Golinelli, Nicola; Spaggiari, Andrea
2018-07-01
This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.
The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media
Institute of Scientific and Technical Information of China (English)
宋付权; 刘慈群
2002-01-01
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
Slip of Spreading Viscoplastic Droplets.
Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris
2015-11-10
The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.
Spray Formation of Herschel-Bulkley Fluids using Impinging Jets
Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.
2015-11-01
The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.
Moving interface problems and applications in fluid dynamics
Khoo, Boo Cheong; Lin, Ping
2008-01-01
This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.
Analysis of Eyring-Powell Fluid in Helical Screw Rheometer
Directory of Open Access Journals (Sweden)
A. M. Siddiqui
2014-01-01
Full Text Available This paper aims to study the flow of an incompressible, isothermal Eyring-Powell fluid in a helical screw rheometer. The complicated geometry of the helical screw rheometer is simplified by “unwrapping or flattening” the channel, lands, and the outside rotating barrel, assuming the width of the channel is larger as compared to the depth. The developed second order nonlinear differential equations are solved by using Adomian decomposition method. Analytical expressions are obtained for the velocity profiles, shear stresses, shear at wall, force exerted on fluid, volume flow rates, and average velocity. The effect of non-Newtonian parameters, pressure gradients, and flight angle on the velocity profiles is noticed with the help of graphical representation. The observation confirmed the vital role of involved parameters during the extrusion process.
Substitute fluid examinations for liquid manure
Directory of Open Access Journals (Sweden)
Schrader Kevin
2017-01-01
Full Text Available For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.
Substitute fluid examinations for liquid manure
Schrader, Kevin; Riedel, Marco; Eichert, Helmut
For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.
Directory of Open Access Journals (Sweden)
Zeeshan Khan
Full Text Available Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC and low and high density polyethylene (LDPE/HDPE, nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD. Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM. The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM. The effect of important parameters such as magnetic parameter Mi, the dilatant constant α, the Pseodoplastic constant β, the radii ratio δ, the pressure gradient Ω, the speed of fiber optics V, and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero. Keywords: Non-Newtonian fluid, Oldroyd 8-constant fluid, MHD flow, Double-layer fiber coating, OHAM, ADM, Wet-on-wet coating process
On the analytic solution of the steady flow of a fourth grade fluid
International Nuclear Information System (INIS)
Sajid, M.; Hayat, T.; Asghar, S.
2006-01-01
The steady flow of a fourth grade fluid is a problem belonging to non-Newtonian fluid mechanics and deserves to be more widely studied than it has been to date. In the non-linear regime the literature is scarce. We develop a formulation suitable for solution of hydrodynamic equation containing non-linear rheological effects of fourth grade fluids. The homotopy analysis method (HAM) is used to investigate the flow of a fourth grade fluid past a porous plate. Explicit analytic solution is given. The non-linear effects on the velocity distribution is shown and discussed. Comparison of the present analysis is also made with the existing results in the literature
International Nuclear Information System (INIS)
Nagai, Katsuaki; Ushijima, Satoru
2010-01-01
A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.
Nagai, Katsuaki; Ushijima, Satoru
2010-06-01
A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.
Engineering Fracking Fluids with Computer Simulation
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
Energy Technology Data Exchange (ETDEWEB)
Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J, E-mail: james.friend@monash.edu.au [MicroNanophysics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Melbourne Centre for Nanofabrication, Melbourne, VIC 3800 (Australia)
2011-02-15
Forming capillary bridges of low-viscosity ({approx}<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.
International Nuclear Information System (INIS)
Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J
2011-01-01
Forming capillary bridges of low-viscosity (∼<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.
Fluorescent visualization of a spreading surfactant
Energy Technology Data Exchange (ETDEWEB)
Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)
2010-07-15
The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.
Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder
Directory of Open Access Journals (Sweden)
Asterios Pantokratoras
2016-11-01
Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.
Kang, X; Wang, H; Wang, Y; Harvey, L M; McNeil, B
2001-10-01
The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m(3) airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (epsilon(g)), liquid re-circulation velocity (U(ld)) and mixing time (t(m)). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on epsilon(g), U(ld) and t(m) were examined and empirical correlations for epsilon(g), U(ld) and t(m) with both superficial velocity U(g) and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems.
International Nuclear Information System (INIS)
Mukhopadhyay, Swati; Arif, M. Golam; Pk M Wazed Ali
2013-01-01
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Energy Technology Data Exchange (ETDEWEB)
Eberle Patrick [Service d`Etude et de Modelisation en Thermohydrolique, CEA/DRN/DTP/SMTH, Grenoble (France)]|[Grenoble-1 Univ., 74 Annecy (France)
1997-12-12
In the frame of severe accidents of nuclear pressurized water reactor, it is important to understand and to model phenomena of corium spreading with solidification. The first part of the study describes experiments with simulating materials as well as simple models of the literature. We deduce a model where the equations of conservation are averaged over the volume. This model gives interesting results for continuous spreading but it is not convenient for discontinuous phenomena. A more precise model is then necessary. In the second part of this study, we present a complete model from which the basic idea is to average the conservation equations over the fluid height, supposing the characteristic fluid thickness is small in comparison with the characteristic spreading length. This model describes the thermalhydraulic aspects of the spreading as well as the mechanical behaviour of the upper crust. The liquid phases are supposed to be stratified and have a Newtonian fluid behaviour. The dynamical crust model takes into account a non-linear behaviour law. This law depends on the deformation tensor whereas the liquid behaviour low, depends on the rate of deformation tensor, so it is necessary to link this two notions by supplementary equations. The operation of averaging the equations gives terms at the interfaces which must be determined by constitutive laws. We deduce laws by fixing the velocity and temperature profile in the fluid height. The previous system of equations is discretized by finite volumes and semi-implicit methods. The discretized models are included in the specific code THEMA. The results of the model show good agreement with available experimental results. (author) 9 refs., 45 figs., 42 tabs.
Energy Technology Data Exchange (ETDEWEB)
Kamis, A.S.; Savage, S.G. [McGill Univ., Dept. of Civil Engineering, Montreal, Quebec (Canada)
1985-07-01
Landslides and rockfalls that initiate on a steep slope eventually come to rest after flowing for some runout distance on a flat. Rockfalls of very large masses have been observed to exhibit unexpectedly long runout distances. This problem becomes more significant as the development of resources in mountain regions becomes more intensive. As early as 1881, Albert Heim observed and described the Elm rockfall of Switzerland (quoted by as HsU). This rockfall produced a debris which moved more than 2 Km along a nearly horizontal valley floor and one of its branches surged up the side of the valley to a height of 100 m. From the deposit of the Elm and the eyewitnesses Heim concluded that the debris behaved as a flowing fluid rather than sliding solids. Davies, among others, suggested that the excessive runout distance is volume dependent and the larger the volume of the debris, the longer the relative travel distance. A summary of the numerous hypotheses which have been proposed to explain this puzzling phenomena were also presented by Davies. However, none of these have been completely satisfactory or generally accepted. A simple model of the flow and spreading of a finite mass of cohesionless granular material down incline has been developed as a part of the present preliminary investigation into the mechanics of rockfalls. (author)
Magnetic particle translation as a surrogate measure for synovial fluid mechanics.
Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D
2017-07-26
The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.
... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...
Impact of induced magnetic field on synovial fluid with peristaltic flow in an asymmetric channel
Afsar Khan, Ambreen; Farooq, Arfa; Vafai, Kambiz
2018-01-01
In this paper, we have worked for the impact of induced magnetic field on peristaltic motion of a non-Newtonian, incompressible, synovial fluid in an asymmetric channel. We have solved the problem for two models, Model-1 which behaves as shear thinning fluid and Model-2 which behaves as shear thickening fluid. The problem is solved by using modified Adomian Decomposition method. It has seen that two models behave quite opposite to each other for some parameters. The impact of various parameters on u, dp/dx, Δp and induced magnetic field bx have been studied graphically. The significant findings of this study is that the size of the trapped bolus and the pressure gradient increases by increasing M for both models.
Directory of Open Access Journals (Sweden)
M.B. Riaz
2016-12-01
Full Text Available The aim of this article was to analyze the rotational flow of an Oldroyd-B fluid with fractional derivatives, induced by an infinite circular cylinder that applies a constant couple to the fluid. Such kind of problem in the settings of fractional derivatives has not been found in the literature. The solutions are based on an important remark regarding the governing equation for the non-trivial shear stress. The solutions that have been obtained satisfy all imposed initial and boundary conditions and can easily be reduced to the similar solutions corresponding to ordinary Oldroyd-B, fractional/ordinary Maxwell, fractional/ordinary second-grade, and Newtonian fluids performing the same motion. The obtained results are expressed in terms of Newtonian and non-Newtonian contributions. Finally, the influence of fractional parameters on the velocity, shear stress and a comparison between generalized and ordinary fluids is graphically underlined.
Spreading of blood drops over dry porous substrate: complete wetting case.
Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M
2015-05-15
The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Assessment of thema code against spreading experiments
International Nuclear Information System (INIS)
Spindler, B.; Veteau, J.M.; Cecco, L. de; Montanelli, P.; Pineau, D.
2000-01-01
In the frame work of severe accident research, the spreading code THEMA, developed at CEA/DRN, aims at predicting the spreading extent of molten core after a vessel melt-through. The code solves fluid balance equations integrated over the fluid depth for oxidic and/or metallic phases under the shallow water assumption, using a finite difference scheme. Solidification is taken into account through crust formation on the substrate and at contact with the surroundings, as well as increase of fluid viscosity with solid fraction in the melt. A separate energy equation is solved for the solid substrate, including possible ablation. The assessment of THEMA code against the spreading experiments performed in the framework of the corium spreading and coolability project of the European Union is presented. These experiments use either simulating materials at medium (RIT), or at high temperature (KATS), or corium (VULCANO, FARO), conducted at different mass flow rates and with large or low solidification interval. THEMA appears to be able to simulate the whole set of the experiments investigated. Comparison between experimental and computed spreading lengths and substrate temperatures are quite satisfactory. The results show a rather large sensitivity at mass flow rate and inlet temperature, indicating that, generally, efforts should be made to improve the accuracy of the measurements of such parameters in the experiments. (orig.)
Khan, Zeeshan; Shah, Rehan Ali; Islam, Saeed; Jan, Bilal; Imran, Muhammad; Tahir, Farisa
2016-10-06
Modern optical fibers require double-layer coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low-high density polyethylene (LDPE/HDPE), nylon and Polysulfone. In this paper, double-layer optical fiber coating is performed using melt polymer satisfying PTT fluid model in a pressure type die using wet-on-wet coating process. The assumption of fully developed flow of Phan-Thien-Tanner (PTT) fluid model, two-layer liquid flows of an immiscible fluid is modeled in an annular die, where the fiber is dragged at a higher speed. The equations characterizing the flow and heat transfer phenomena are solved exactly and the effects of emerging parameters (Deborah and slip parameters, characteristic velocity, radii ratio and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution) are reported in graphs. It is shown that an increase in the non-Newtonian parameters increase the velocity in the absence or presence of slip parameters which coincides with related work. The comparison is done with experimental work by taking λ → 0 (non-Newtonian parameter).
Fluid dynamics following flow shut-off in bottle filling
Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman
2012-11-01
Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.
Directory of Open Access Journals (Sweden)
Asma Khalid
2015-01-01
Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.
Manideep, P.; Raju, R. Srinivasa; Rao, T. Siva Nageswar; Reddy, G. Jithender
2018-05-01
This paper deals, an unsteady magnetohydrodynamic heat transfer natural convection flow of non-Newtonian Casson fluid over an inclined vertical plate embedded in a porous media with the presence of boundary conditions such as oscillating velocity, constant wall temperature. The governing dimensionless boundary layer partial differential equations are reduced to simultaneous algebraic linear equation for velocity, temperature of Casson fluid through finite element method. Those equations are solved by Thomas algorithm after imposing the boundary conditions through MATLAB for analyzing the behavior of Casson fluid velocity and temperature with various physical parameters. Also analyzed the local skin-friction and rate of heat transfer. Compared the present results with earlier reported studies, the results are comprehensively authenticated and robust FEM.
Ara, Asmat; Khan, Najeeb Alam; Naz, Farah; Raja, Muhammad Asif Zahoor; Rubbab, Qammar
2018-01-01
This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs) are converted to nonlinear coupled ordinary differential equations (ODEs) with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE) algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Ramesh, K.
2017-07-01
In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.
Optimizing Hybrid Spreading in Metapopulations.
Zhang, C.; Zhou, S.; Miller, J. C.; Cox, I. J.; Chain, B. M.
2015-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...
Optimizing Hybrid Spreading in Metapopulations
Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.
2014-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...
International Nuclear Information System (INIS)
2004-01-01
Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)
Digital Repository Service at National Institute of Oceanography (India)
Krishna, K.S.
over the global midoceanic ridges have found some explicit relationships between spreading rate, seismic structure, and ridge-axis morphology. Bibliography Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T., 1987...
The VULCANO spreading programme
Energy Technology Data Exchange (ETDEWEB)
Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M. [CEA (Atomic Energy Commission), DRN/DER - Bat. 212, CEA Cadarache, 13108 St. Paul Lez Durance (France)
1999-07-01
Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)
The VULCANO spreading programme
International Nuclear Information System (INIS)
Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M.
1999-01-01
Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)
Newtonian and non-newtonian limits of gravitational fields
International Nuclear Information System (INIS)
Koppel', A.A.
1975-01-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c→infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions
Newtonian and non-newtonian limits of gravitational fields
Energy Technology Data Exchange (ETDEWEB)
Koppel, A A [Tartuskij Gosudarstvennyj Univ., (USSR)
1975-09-01
The nonrelativistic limit of the exact stationary axially-symmetric vacuum solution to Einstein equations, which is called the unified (generalized) Kerr-NUT solution, is investigated. Potentials for nonrelativistic gravitational fields, corresponding to this solution, have been calculated. The character of the c..-->..infinity limit (c is the velocity of light) has been shown to depend on the structure of parameters of the Kerr-NUT solution. An example is given that shows the possibility of the existence of a nonrelativistic limit having an absolutely new, non-Newton (vortex) character. From the mathematically proved possibility of the existence of nonrelativistic vortex fields there follow also some implications of a more fundamental character. The Newton limit is commonly supposed to be the only nonrelativistic limit in the Einstein theory. Now there arises a dilemma: either gravitational fields having a non-Newton limit exist in nature and thus the Newton theory does not embrace all gravitational phenomena of nonrelativistic character or in the Newton solutions to the nonrelativistic gravitational equations a certain element of the Einstein theory is revealed that is alien to the true nonrelativistic theory of gravitation. In the former case, one cannot exclude the possibility that owing to a comprehensive analysis of properties, possible sources, etc. the vortex soltions to Einstein equations may prove important in cosmological and astrophysical applications of the general relativity theory. In the latter case, a detailed analysis of the non-Newton-limit solutions will at least enable one to gain a deeper insight into the structure of Einstein equations and their solutions.
Aerosol entrainment from a sparged non-Newtonian slurry
International Nuclear Information System (INIS)
Fritz, Brad G.
2006-01-01
Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties
Turbulent structures of non-Newtonian solutions containing rigid polymers
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.
Linear theory of equatorial spread F
International Nuclear Information System (INIS)
Hudson, M.K.; Kennel, C.F.
1975-01-01
A fluid dispersion relation for the drift and interchange (Rayleigh-Taylor) modes in a collisional plasma forms the basis for a linear theory of equatorial spread F. The collisional drift mode growth rate will exceed the growth rate of the Rayleigh-Taylor mode at short perpendicular wavelengths and density gradient scale lengths, and the drift mode can grow on top side as well as on bottom side density gradients. However, below the F peak, where spread F predominates, it is concluded that both the drift and the Rayleigh-Taylor modes contribute to the total spread F spectrum, the Rayleigh-Taylor mode dominating at long and the drift mode at short perpendicular wavelengths above the ion Larmor radius
Directory of Open Access Journals (Sweden)
B. Y. Ogunmola
2016-01-01
Full Text Available Regular perturbation technique is applied to analyze the fluid flow and heat transfer in a pipe containing third-grade fluid with temperature-dependent viscosities and heat generation under slip and no slip conditions. The obtained approximate solutions were used to investigate the effects of slip on the heat transfer characteristics of the laminar flow in a pipe under Reynolds’s and Vogel’s temperature-dependent viscosities. Also, the effects of parameters such as variable viscosity, non-Newtonian parameter, viscous dissipation, and pressure gradient at various values were established. The results of this work were compared with the numerical results found in literature and good agreements were established. The results can be used to advance the analysis and study of the behavior of third-grade fluid flow and steady state heat transfer processes such as those found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, and oil recovery applications.
Optimizing hybrid spreading in metapopulations.
Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M
2015-04-29
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.
Patterns of gravity induced aggregate migration during casting of fluid concretes
Energy Technology Data Exchange (ETDEWEB)
Spangenberg, J. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Roussel, N., E-mail: Nicolas.roussel@lcpc.fr [Universite Paris Est, Laboratoire Central des Ponts et Chaussees (LCPC) (France); Hattel, J.H. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Sarmiento, E.V.; Zirgulis, G. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Department of Civil Engineering, Technical University of Denmark (DTU) (Denmark)
2012-12-15
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.
Patterns of gravity induced aggregate migration during casting of fluid concretes
International Nuclear Information System (INIS)
Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.
2012-01-01
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.
International Nuclear Information System (INIS)
2005-01-01
The Thirteenth Annual Conference of the Computational Fluid Dynamics Society of Canada, CFD 2005, was held in St. John's, Newfoundland from July 31 to August 3, 2005. The conference covers a variety of disciplines, including hydrodynamics, aerodynamics/aero-acoustics/aero-elasticity, combustion and heat transfer, hydrology, automotive, nuclear and other industrial application areas. Flows considered include non-Newtonian and multiphase flows, subsonic, supersonic and hypersonic flows, cavitating flows, free-surface flows, jet flows, vortex flows, detonation flows, plasma arc flows and porous media flows. A major theme of these flows is turbulence, and there are many papers that consider Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES), although Reynolds Averaged Navier-Stokes methods remain popular. There is a strong interest in high performance computing (HPC) because of the increased throughput it affords. Flow visualization and post processing is also highlighted in many papers
Small and large amplitude movement of the unstable interface between two immiscible fluids
Energy Technology Data Exchange (ETDEWEB)
Aribert, J M; Thirriot, C
1970-01-01
The flow of immiscible fluids in a confined flow channel is accompanied by a deformation of the surface of separation when the stability conditions are not fulfilled. A simplified schematic for the problem is given, and the characteristic surface perturbation is calculated analytically and numerically. The perturbation is characterized by a wavelength, an amplitude, and the shape of the perturbation at a sufficient distance from the front. Two asymptotic cases are fully discussed: the creation of a wave in the surface, and the shape of a fully developed perturbation. Experimental results from 2 Hele-Shaw models are in satisfactory agreement with the theoretical predictions. Further studies will be concerned with variable rate flow, geometrically divergent flow, layered flow with variable viscosity between layers, and non-Newtonian flow.
Centers for Disease Control (CDC) Podcasts
2018-04-05
Dr. Colin Parrish, a Professor of Virology at the College of Veterinary Medicine, Cornell University, discusses the spread of influenza among dogs. Created: 4/5/2018 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 4/5/2018.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.
2012-07-19
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
The start of ebullition in quiescent, yield-stress fluids
Energy Technology Data Exchange (ETDEWEB)
Sherwood, David J., E-mail: djsherwo@bechtel.com [URS Corporation, Hanford Tank Waste Treatment and Immobilization Plant Project, 2435 Stevens Center Place, Richland, WA 99354 (United States); Eduardo Sáez, A. [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States)
2014-04-01
Highlights: • Nuclear waste slurries evolve gases from radiochemical reactions. • Evolved gases form bubbles that rise in the yield-stress slurry. • Bubble buoyancy leads to expansion and ebullition, processes modeled here. - Abstract: Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries to be processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries, expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become susceptible to degassing as the bubble concentration increases over a maximum value that depends on shear strength. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.; Marston, J. O.; Thoroddsen, Sigurdur T
2012-01-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
The Start Of Ebullition In Quiescent, Yield-Stress Fluids
International Nuclear Information System (INIS)
Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo
2012-01-01
Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred
The Start Of Ebullition In Quiescent, Yield-Stress Fluids
Energy Technology Data Exchange (ETDEWEB)
Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo
2012-08-30
Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.
Directory of Open Access Journals (Sweden)
M. Das
2015-12-01
Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.
High-temperature spreading kinetics of metals
Energy Technology Data Exchange (ETDEWEB)
Rauch, N.
2005-05-15
In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)
Combinatorics of spreads and parallelisms
Johnson, Norman
2010-01-01
Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,
Directory of Open Access Journals (Sweden)
Mostapha Marzban
2017-10-01
Full Text Available Measuring of fluid properties such as dynamic viscosity and density has tremendous potential for various applications from physical to biological to chemical sensing. However, it is almost impossible to affect only one of these properties, as dynamic viscosity and density are coupled. Hence, this paper proposes kinematic viscosity as a comprehensive parameter which can be used to study the effect of fluid properties applicable to various fluids from Newtonian fluids, such as water, to non-Newtonian fluids, such as blood. This paper also proposes an ideal microplatform, namely polymeric suspended microfluidics (SPMF3, with flow plane orthogonal to the bending plane of the structure, along with tested results of various fluids covering a wide range of engineering applications. Kinematic viscosity, also called momentum diffusivity, considers changes in both fluid intermolecular forces and molecular inertia that define dynamic viscosity and fluid density, respectively. In this study a 3D suspended polymeric microfluidic system (SPMF3 was employed to detect changes in fluid parameters such as dynamic viscosity and density during fluid processes. Using this innovative design along with theoretical and experimental results, it is shown that, in fluids, the variations of fluid density and dynamic viscosity are not easily comprehensible due to their interconnectivity. Since any change in a fluid will affect both density and dynamic viscosity, measuring both of them is necessary to identify the fluid or process status. Finally, changes in fluid properties were analyzed using simulation and experiments. The experimental results with salt-DI water solution and milk with different fat concentrations as a colloidal fluid show that kinematic viscosity is a comprehensive parameter that can identify the fluids in a unique way using the proposed microplatform.
Spread spectrum image steganography.
Marvel, L M; Boncelet, C R; Retter, C T
1999-01-01
In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.
MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Layek, G. C.
2011-01-01
An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically. (fundamental areas of phenomenology(including applications))
Wang, Weixiong; Graziano, Francesca; Russo, Vittorio; Ulm, Arthur J; De Kee, Daniel; Khismatullin, Damir B
2013-01-01
The endovascular treatment of intracranial aneurysms remains a challenge, especially when the aneurysm is large in size and has irregular, non-spherical geometry. In this paper, we use computational fluid dynamics to simulate blood flow in a vertebro-basilar junction giant aneurysm for the following three cases: (1) an empty aneurysm, (2) an aneurysm filled with platinum coils, and (3) an aneurysm filled with a yield stress fluid material. In the computational model, blood and the coil-filled region are treated as a non-Newtonian fluid and an isotropic porous medium, respectively. The results show that yield stress fluids can be used for aneurysm embolization provided the yield stress value is 20 Pa or higher. Specifically, flow recirculation in the aneurysm and the size of the inflow jet impingement zone on the aneurysm wall are substantially reduced by yield stress fluid treatment. Overall, this study opens up the possibility of using yield stress fluids for effective embolization of large-volume intracranial aneurysms.
Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha
2017-06-01
The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.
XXII Fluid Mechanics Conference (KKMP2016)
International Nuclear Information System (INIS)
2016-01-01
to aerodynamics, atmospheric science, bio-fluids, combustion and reacting flows, computational fluid dynamics, experimental fluid mechanics, flow machinery, general fluid dynamics, hydromechanics, heat and fluid flow, measurement techniques, micro- and nano-flow, multi-phase flow, non-Newtonian fluids, rotating and stratified flows and turbulence. Within the general subjects of this conference, the Professor Janusz W. Eisner's Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisors as coauthors, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers will be delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the Scientific Committee of the Conference; reviewers were from all Polish scientific-academic centres that are involved in fluid mechanics. Accordingly, of the 67 eligible extended abstracts submitted, after a review process by the Scientific Committee, all papers were selected for presentation at XXII Fluid Mechanics Conference. We hope that this publication will be used not only as a guide through the conference's programme but also help in the future to access people and topics in fluid mechanics research. (paper)
Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex
DEFF Research Database (Denmark)
Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang
2012-01-01
Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...
Fluid mechanics aspects of magnetic drug targeting.
Odenbach, Stefan
2015-10-01
Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.
Estimation of wave directional spreading
Digital Repository Service at National Institute of Oceanography (India)
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
One of the useful measures of waves directional spreading at a given location is the directional spreading parameter. This paper presents a new approach to arrive at its characteristic value using the computational technique of Artificial Neural...
Illusory spreading of watercolor.
Devinck, Frédéric; Hardy, Joseph L; Delahunt, Peter B; Spillmann, Lothar; Werner, John S
2006-05-04
The watercolor effect (WCE) is a phenomenon of long-range color assimilation occurring when a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour; the brighter color spreads into the entire enclosed area. Here, we determined the optimal chromatic parameters and the cone signals supporting the WCE. To that end, we quantified the effect of color assimilation using hue cancellation as a function of hue, colorimetric purity, and cone modulation of inducing contours. When the inner and outer contours had chromaticities that were in opposite directions in color space, a stronger WCE was obtained as compared with other color directions. Additionally, equal colorimetric purity between the outer and inner contours was necessary to obtain a large effect compared with conditions in which the contours differed in colorimetric purity. However, there was no further increase in the magnitude of the effect when the colorimetric purity increased beyond a value corresponding to an equal vector length between the inner and outer contours. Finally, L-M-cone-modulated WCE was perceptually stronger than S-cone-modulated WCE for our conditions. This last result demonstrates that both L-M-cone and S-cone pathways are important for watercolor spreading. Our data suggest that the WCE depends critically upon the particular spatiochromatic arrangement in the display, with the relative chromatic contrast between the inducing contours being particularly important.
Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material
International Nuclear Information System (INIS)
Son, Kwon Joong; Fahrenthold, Eric P
2012-01-01
The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid’s hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact. (paper)
The rheology applied to the fluids used in perforation of wells of petroleum
International Nuclear Information System (INIS)
Sierra Restrepo, Carlos Mario
1997-01-01
The properties of flow of the drilling fluids should be controlled, because they play a very important paper when we are drilling a well and a wrong behaviour could occasion serious problems. These properties are in great part consequence of their viscosity or more exactly of their rheology. The drilling fluids are too complex and the relationship between shear stress and shear rate is not considered as a linear relation that passes for the origin, like it is the case of the Newtonian fluids for the one which they are classified like n on Newtonian fluids . Also, they should conquer a certain grade of internal resistance in order to begin to flow. There is not a mathematical equation that describes the rheology of all the non-Newtonian fluids exactly. On the other hand, they have proposed several equations that approach the true relationship shear stress -shear rate. Those that have shown more satisfactory outputs are: The Bingham plastic model, the power-law model, and the power-law modified model
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Wall Shear Stress Estimation of Thoracic Aortic Aneurysm Using Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
J. Febina
2018-01-01
Full Text Available An attempt has been made to evaluate the effects of wall shear stress (WSS on thoracic aortic aneurysm (TAA using Computational Fluid Dynamics (CFD. Aneurysm is an excessive localized swelling of the arterial wall due to many physiological factors and it may rupture causing shock or sudden death. The existing imaging modalities such as MRI and CT assist in the visualization of anomalies in internal organs. However, the expected dynamic behaviour of arterial bulge under stressed condition can only be effectively evaluated through mathematical modelling. In this work, a 3D aneurysm model is reconstructed from the CT scan slices and eventually the model is imported to Star CCM+ (Siemens, USA for intensive CFD analysis. The domain is discretized using polyhedral mesh with prism layers to capture the weakening boundary more accurately. When there is flow reversal in TAA as seen in the velocity vector plot, there is a chance of cell damage causing clots. This is because of the shear created in the system due to the flow pattern. It is observed from the proposed mathematical modelling that the deteriorating WSS is an indicator for possible rupture and its value oscillates over a cardiac cycle as well as over different stress conditions. In this model, the vortex formation pattern and flow reversals are also captured. The non-Newtonian model, including a pulsatile flow instead of a steady average flow, does not overpredict the WSS (15.29 Pa compared to 16 Pa for the Newtonian model. Although in a cycle the flow behaviour is laminar-turbulent-laminar (LTL, utilizing the non-Newtonian model along with LTL model also overpredicted the WSS with a value of 20.1 Pa. The numerical study presented here provides good insight of TAA using a systematic approach to numerical modelling and analysis.
Directory of Open Access Journals (Sweden)
M.M. Bhatti
2017-06-01
Full Text Available Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic peristaltic propulsive flow of a non-Newtonian (Jefferys viscoelastic dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls. Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional with appropriate variables and the resulting system of reduced ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body
Thermal Marangoni convection in two-phase flow of dusty Casson fluid
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.
Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter
2015-09-01
Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature
DEFF Research Database (Denmark)
Ayata, Cenk; Lauritzen, Martin
2015-01-01
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...
A numerical model for dynamic crustal-scale fluid flow
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Analysis of Third-Grade Fluid in Helical Screw Rheometer
Directory of Open Access Journals (Sweden)
M. Zeb
2013-01-01
Full Text Available The steady flow of an incompressible, third-grade fluid in helical screw rheometer (HSR is studied by “unwrapping or flattening” the channel, lands, and the outside rotating barrel. The geometry is approximated as a shallow infinite channel, by assuming that the width of the channel is large as compared to the depth. The developed second-order nonlinear coupled differential equations are reduced to single differential equation by using a transformation. Using Adomian decomposition method, analytical expressions are calculated for the the velocity profiles and volume flow rates. The results have been discussed with the help of graphs as well. We observed that the velocity profiles are strongly dependant on non-Newtonian parameter (β~, and with the increase in β~, the velocity profiles increase progressively, which conclude that extrusion process increases with the increase in β~. We also observed that the increase in pressure gradients in x- and z-direction increases the net flow inside the helical screw rheometer, which increases the extrusion process. We noticed that the flow increases as the flight angle increase.
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
Information spreading dynamics in hypernetworks
Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong
2018-04-01
Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.
Heat Transfer in Complex Fluids
Energy Technology Data Exchange (ETDEWEB)
Mehrdad Massoudi
2012-01-01
Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these
Directory of Open Access Journals (Sweden)
K. Ganesh Kumar
Full Text Available A mathematical analysis of two-phase boundary layer flow and heat transfer of a Williamson fluid with fluid particle suspension over a stretching sheet has been carried out in this paper. The region of temperature jump and nonlinear thermal radiation is considered in the energy transfer process. The principal equations of boundary layer flow and temperature transmission are reformed to a set of non-linear ordinary differential equations under suitable similarity transformations. The transfigured equalities are solved numerically with the help of RKF-45 order method. The effect of influencing parameters on velocity and temperature transfer of fluid is examined and deliberated by plotted graphs and tabulated values. Significances of the mass concentration of dust particle parameter play a key role in controlling flow and thermal behavior of non-Newtonian fluids. Further, the temperature and concern boundary layer girth are declines for increasing values of Williamson parameter. Keywords: Two-phase flow, Williamson fluid, Nonlinear thermal radiation, Magnetic field, Temperature jump
International Nuclear Information System (INIS)
Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.
1997-01-01
Previous work has demonstrated the feasibility of injecting suspensions of micron-size zero-valent (FeO) particles into porous media as a method to emplace a permeable reactive zone. Further studies were conducted to evaluate the effects of several shearthinning fluids on enhancing the injectability of micron-size FeO particles into porous media. In contrast to Newtonian fluids, whose viscosities are constant with shear rate, certain non-Newtonian fluids are shearthinning, that is, the viscosity of these fluids decreases with increasing shear rate. The primary benefit of using these fluids for this application is that they increase the viscosity of the aqueous phase without adversely decreasing the hydraulic conductivity. A suspension formulated with a shearthinning fluid will maintain a relatively high viscosity in solution near the FeO particles (where the shear stress is low) relative to locations near the surfaces of the porous media, where the shear stress is high. The increased viscosity decreases the rate of gravitational settling of the dense FeO colloids (7.6 9/cm3) while maintaining a relatively high hydraulic conductivity that permits pumping the colloid suspensions into porous media at greater flowrates and distances. Aqueous solutions of three polymers at different concentrations were investigated. It was determined that, the use of shear thinning fluids greatly increases the injectability of the colloidal FeO suspensions in porous media
Clauser, Johanna; Knieps, Marius S; Büsen, Martin; Ding, Andreas; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta; Cattaneo, Giorgio
2018-02-27
Particle image velocimetry (PIV) is a commonly used method for in vitro investigation of fluid dynamics in biomedical devices, such as flow diverters for intracranial aneurysm treatment. Since it is limited to transparent blood substituting fluids like water-glycerol mixture, the influence of coagulation and platelet aggregation is neglected. We aimed at the development and the application of a modified platelet rich plasma as a new PIV fluid with blood-like rheological and coagulation properties. In standardized intracranial aneurysm silicone models, the effect of this new PIV plasma on the fluid dynamics before and after flow diverter implantation was evaluated and compared with water-glycerol measurements. The flow diverting effect was strongly dependent on the used fluid, with considerably lower velocities achieved using PIV plasma, despite the same starting viscosity of both fluids. Moreover, triggering coagulation of PIV plasma allowed for intra-aneurysmal clot formation. We presented the first in vitro PIV investigation using a non-Newtonian, clottable PIV plasma, demonstrating a mismatch to a standard PIV fluid and allowing for thrombus formation.
Directory of Open Access Journals (Sweden)
Aftab Ahmed
2018-01-01
Full Text Available The aim of the present study is to investigate the combined effects of the thermal radiation, viscous dissipation, suction/injection and internal heat generation/absorption on the boundary layer flow of a non-Newtonian power law fluid over a semi infinite permeable flat plate moving in parallel or reversely to a free stream. The resulting system of partial differential equations (PDEs is first transformed into a system of coupled nonlinear ordinary differential equations (ODEs which are then solved numerically by using the shooting technique. It is found that the dual solutions exist when the flat plate and the free stream move in the opposite directions. Dimensionless boundary layer velocity and temperature distributions are plotted and discussed for various values of the emerging physical parameters. Finally, the tables of the relevant boundary derivatives are presented for some values of the governing physical parameters.
Experimental and computational fluid dynamic studies of mixing for complex oral health products
Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota
2015-11-01
Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.
International Nuclear Information System (INIS)
Hassan, Tarig A.; Rangari, Vijay K.; Jeelani, Shaik
2010-01-01
Shear thickening is a non-Newtonian fluid behavior defined as the increase of viscosity with the increase in the applied shear rate. The shear thickening fluid (STF) is a combination of hard metal oxide particles suspended in a liquid polymer. This mixture of flowable and hard components at a particular composition, results in a material with remarkable properties. In this manuscript the shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles dispersed in liquid polyethylene glycol polymer. The as-prepared STFs have been tested for their rheological and thermal properties. Kevlar and Nylon fabrics were soaked in STF/ethanol solution to make STF/fabric composite. Knife threats and quasistatic penetration tests were performed on the neat fabrics and STF/fabric composite targets for both engineered spike and knife on areal density basis. The results showed that STF impregnated fabrics have better penetration resistance as compared to neat fabrics without affecting the fabric flexibility. This indicates that the addition of STF to the fabric have enhanced the fabric performance and can be used in liquid body armor applications.
Directory of Open Access Journals (Sweden)
Mohsen Mehrabi
2012-01-01
Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.
Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters
Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.
2018-03-01
The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.
Undulatory swimming in viscoelastic fluids under geometric confinement: experiments with C. elegans
Gagnon, David; Shih, Jerry; Arratia, Paulo
2017-11-01
Many natural biological processes, such as bacteria moving through vesicles in the circulatory system and spermatozoa swimming through millimeter-scale fallopian tubes, require low Reynolds number swimmers to move between two fluid-solid interfaces. Furthermore, these biological systems typically involve non-Newtonian fluids (e.g. blood and mucus), which can be shear-thinning, viscoelastic, or both. Using the model biological organism C. elegans, we introduce two far-field no-slip boundary conditions in the beating plane by observing swimming through thin channels in viscosified Newtonian and viscoelastic fluids. Using image processing and particle tracking velocimetry techniques, we measure both the swimming kinematics and the resulting flow fields as a function of decreasing channel width. As this width approaches the characteristic transverse length scale of the nematode's swimming gate, we observe (i) swimming speed decreases with increasing De, (ii) this decrease in speed can be non-monotonic with decreasing channel width at a given De, and (iii) the change in nematode kinematics appears to be associated with a structural change in the flow field around the swimmer quantified using the flow type parameter.
Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren
2018-06-01
An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.
Spreading gossip in social networks
Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Spread effects - methodology; Spredningseffekter - metodegrunnlag
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)
Spreading gossip in social networks.
Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Colonic motility and enema spreading
International Nuclear Information System (INIS)
Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham
1986-01-01
Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)
Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid
2014-09-01
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Effect of rock rheology on fluid leak- off during hydraulic fracturing
Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.
2012-04-01
In this communication, we evaluate the effect of rock rheology on fluid leakoff during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leakoff from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is nondeformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility
Numerical study of drop spreading on a flat surface
Wang, Sheng; Desjardins, Olivier
2017-11-01
In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.
Instability of displacement of Oldroyd-B fluid by air in a Hele-Shaw cell
Daripa, Prabir
2014-03-01
We study the displacement of an Oldroyd-B fluid in a Hele-Shaw cell when driven by air. In particular, we explicitly obtain an analytical expression for the growth rate of instability which depends on the relaxation and retardation (time) constants, denoted by λ, and λ1 respectively, appearing in the Oldroyd-B constitutive relations. When these two constants are zero, we recover the classical Saffman-Taylor result for a Newtonian liquid displaced by air. Our results show that this displacement process is more unstable than the case when a Newtonian fluid is displaced by air. The analytical results are plotted and compared with numerical results on this unstable displacement process available in the literature. The agreement is found to be excellent. In particular, results show that the non-Newtonian case (i.e., Oldroyd-B) is more unstable than the Newtonian case. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the author.
Directory of Open Access Journals (Sweden)
M. Ali Abbas
2016-03-01
Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.
Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.
2016-11-01
A mathematical model has been developed for studying the electro-osmotic flow and heat transfer of bio-fluids in a micro-channel in the presence of Joule heating effects. The flow of bio-fluid is governed by the non-Newtonian power-law fluid model. The effects of thermal radiation and velocity slip condition have been examined in the case of hydrophobic channel. The Poisson-Boltzmann equation governing the electrical double layer field and a body force generated by the applied electric potential field are taken into consideration. The results presented here pertain to the case where the height of the channel is much greater than the thickness of electrical double layer comprising the Stern and diffuse layers. The expressions for flow characteristics such as velocity, temperature, shear stress and Nusselt number have been derived analytically under the purview of the present model. The results estimated on the basis of the data available in the existing scientific literatures are presented graphically. The effects of thermal radiation have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding the heat transfer in micro-channel in the presence of electric potential. The dimensionless Joule heating parameter has a reducing impact on Nusselt number for both pseudo-plastic and dilatant fluids, nevertheless its impact on Nusselt number is more pronounced for dilatant fluid. Furthermore, the effect of viscous dissipation has a significant role in controlling heat transfer and should not be neglected.
International Nuclear Information System (INIS)
Anon.
1991-01-01
Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
International Nuclear Information System (INIS)
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Dual polarized, heat spreading rectenna
Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)
1999-01-01
An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2016-08-15
This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.
Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian
2012-01-01
Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.
Energy Technology Data Exchange (ETDEWEB)
Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com
2010-07-01
As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)
Directory of Open Access Journals (Sweden)
Asmat Ara
2018-01-01
Full Text Available This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs are converted to nonlinear coupled ordinary differential equations (ODEs with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
Anastasiou, A D; Spyrogianni, A S; Koskinas, K C; Giannoglou, G D; Paras, S V
2012-03-01
The scope of this work is to study the pulsatile flow of a blood mimicking fluid in a micro channel that simulates a bifurcated small artery, in which the Fahraeus-Lindqvist effect is insignificant. An aqueous glycerol solution with small amounts of xanthan gum was used for simulating viscoelastic properties of blood and in vivo flow conditions were reproduced. Local flow velocities were measured using micro Particle Image Velocimetry (μ-PIV). From the measured velocity distributions, the wall shear stress (WSS) and its variation during a pulse were estimated. The Reynolds numbers employed are relatively low, i.e. similar to those prevailing during blood flow in small arteries. Experiments both with a Newtonian and a non-Newtonian fluid (having asymptotic viscosity equal to the viscosity of the Newtonian one) proved that the common assumption that blood behaves as a Newtonian fluid is not valid for blood flow in small arteries. It was also shown that the outer wall of the bifurcation, which is exposed to a lower WSS, is more predisposed to atherosclerotic plaque formation. Moreover, this region in small vessels is shorter than the one in large arteries, as the developed secondary flow decays faster. Finally, the WSS values in small arteries were found to be lower than those in large ones. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M
1979-08-30
A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.
International Nuclear Information System (INIS)
Kan, K.K.
1983-01-01
The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)
Spreading of a granular droplet
Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor
2008-03-01
The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
Sandeep, N.; Animasaun, I. L.
2017-06-01
Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
Directory of Open Access Journals (Sweden)
Sandeep N.
2017-06-01
Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.
Directory of Open Access Journals (Sweden)
Mohammad M. Rahman
2016-11-01
Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter Prandtl number and the Eckert number using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-09-01
For the purpose of spreading/promoting circulating fluidized bed boilers in China, survey was conducted on the confirmation of effectiveness of implementation of the model project on spread type circulating fluidized bed boilers and the appropriateness of the sites proposed for implementation. As to the model of spread type 35t/h-CFB boilers, local products are more integrated into it, taking cost reduction of equipment and secure performance/quality into consideration, and the wider-ranging technical guidance/transfer are conducted also in design/production. In China, where environmental regulations are not strict, and there are many restrictions on funds, the size of the initial investment is an important element for selection of type. Further, the market is very big, about 200 units/year. It is highly possible to realize the competitive cost level by the quantity production effect by increasing local production. Two companies, Southeast Electrochemical Co. and Fujian Prime Pharmaceutical Group Co., which were proposed as sites are financially good and are achieving substantial results. Both companies are located in the urban area, and therefore, environmental measures should urgently be taken, and PR activities for spread are highly effective. It was confirmed that the companies were fully appropriate as sites proposed for the spread type model project. (NEDO)
Reverse preferential spread in complex networks
Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio
2012-08-01
Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Plume spread and atmospheric stability
Energy Technology Data Exchange (ETDEWEB)
Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.
Epidemic spreading on interconnected networks.
Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Magnetorheological fluids based on a hyperbranched polycarbosilane matrix and iron microparticles
International Nuclear Information System (INIS)
Vasiliev, V G; Buzin, M I; Papkov, V S; Muzafarov, A M; Kramarenko, E Yu; Sheremetyeva, N A; Turenko, D V; Klepikov, I A; Razumovskaya, I V
2016-01-01
Magnetorheological fluids (MFs) based on hyperbranched polycarbosilanes as a carrier medium and micron-sized carbonyl iron particles as filler have been synthesized for the first time. Their magnetorheological (MR) behavior has been studied in steady-state flow regime and under dynamic torsion oscillations on a commercial rheometer. At zero magnetic field, in spite of a rather high molecular mass, the hyperbranched polymers as well as their magnetic compositions with up to 72 mass% of magnetic filler demonstrate Newtonian behavior, and their viscosity considerably increases with magnetic filler content. In magnetic fields MFs show a huge MR response. Namely, in steady-state flow experiments a five orders of magnitude increase in viscosity was observed accompanied by magnetic-field-induced well-pronounced non-Newtonian behavior and a non-zero yield stress. Dynamic experiments demonstrate the transition from liquid-like to solid-like behavior of MFs with a large increase in both the storage and loss moduli under application of a magnetic field. In magnetic fields, the rheological behavior of the obtained MF resembles that of soft MR elastomers being mainly determined by the magnetic particle network formed due to magnetic interactions. In particular, like MR elastomers the MFs exhibit the Payne effect, i.e. dependence of the dynamic modulus on the strain amplitude. (paper)
Modelling the fluid mechanics of cilia and flagella in reproduction and development.
Montenegro-Johnson, Thomas D; Smith, Andrew A; Smith, David J; Loghin, Daniel; Blake, John R
2012-10-01
Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.
Emergence of coherent localized structures in shear deformations of temperature dependent fluids
Katsaounis, Theodoros
2016-11-25
Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.
Emergence of coherent localized structures in shear deformations of temperature dependent fluids
Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios
2016-01-01
Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\cite{KT}.
Borgia, Andrea; Spera, Frank J.
1990-01-01
This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.
Coding-Spreading Tradeoff in CDMA Systems
National Research Council Canada - National Science Library
Bolas, Eduardo
2002-01-01
.... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...
Lexical Ambiguity: Making a Case against Spread
Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.
2012-01-01
We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."
Cooperative spreading processes in multiplex networks.
Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An
2016-06-01
This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.
Fluid Mechanics and Homeland Security
Settles, Gary S.
2006-01-01
Homeland security involves many applications of fluid mechanics and offers many opportunities for research and development. This review explores a wide selection of fluids topics in counterterrorism and suggests future directions. Broad topics range from preparedness and deterrence of impending terrorist attacks to detection, response, and recovery. Specific topics include aircraft hardening, blast mitigation, sensors and sampling, explosive detection, microfluidics and labs-on-a-chip, chemical plume dispersal in urban settings, and building ventilation. Also discussed are vapor plumes and standoff detection, nonlethal weapons, airborne disease spread, personal protective equipment, and decontamination. Involvement in these applications requires fluid dynamicists to think across the traditional boundaries of the field and to work with related disciplines, especially chemistry, biology, aerosol science, and atmospheric science.
Directory of Open Access Journals (Sweden)
J.C. Misra
2017-06-01
Full Text Available The study deals with an investigation of the flow of a Bingham plastic fluid in a porous bed under the action of an external magnetic field. Porosity of the bed has been described by considering Brinkman model. Both steady and pulsatile motion of this non-Newtonian fluid have been analysed. The governing equations are solved numerically by developing a suitable finite difference scheme. As an application of the theory in the field of magneto-hemorheology, the said physical variables have been computed by considering the values of the involved parameters for blood flow in a pathological state, when the system is under the action of an external magnetic field. The pathological state corresponds to a situation, where the lumen of an arterial segment has turned into a porous structure due to formation of blood clots. Numerical estimates are obtained for the velocity profile and volumetric flow rate of blood, as well as for the shear stress, in the case of blood flow in a diseased artery, both the velocity and volumetric flow rate diminish, as the strength of the external magnetic field is enhanced. The study further shows that blood velocity is maximum in the plug (core region. It decreases monotonically as the particles of blood travel towards the wall. The study also bears the potential of providing numerical estimates for many industrial fluids that follow Bingham plastic model, when the values of different parameters are chosen appropriately.
Bank Lending, Housing and Spreads
DEFF Research Database (Denmark)
Aslam, Aqib; Santoro, Emiliano
The framework presented in this paper takes its cue from recent financial events and attempts to develop a tractable framework for policy analysis of macro-linkages, in particular a first attempt at the integration of an independent profit-maximising banking sector that lends to and borrows from...... agents in the economy, and through which changes in the monetary policy rate by the central bank are transmitted. The inter-linkages between housing and the role of the banking sector in the transmission of monetary policy is emphasized. Two competing effects are highlighted: (i) a financial accelerator...... channel, due to the presence of collateralized borrowers, and (ii) a banking attenuator effect, which crucially arises from the spread in interest rates caused by the introduction of monopolistically competitive financial intermediaries. We show how the classical amplification mechanism explored in models...
Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity
Varé, Thomas; Nouar, Chérif; Métivier, Christel
2017-10-01
Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.
Directory of Open Access Journals (Sweden)
Kun Sang Lee
2011-08-01
Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
International Nuclear Information System (INIS)
Granger, R.A.
1985-01-01
This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts
Droplet spreading driven by van der Waals force: a molecular dynamics study
Wu, Congmin
2010-07-07
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.
Ex-vessel corium spreading: results from the VULCANO spreading tests
Energy Technology Data Exchange (ETDEWEB)
Journeau, Christophe E-mail: christophe.journeau@cea.fr; Boccaccio, Eric E-mail: eric.boccaccio@cea.fr; Brayer, Claude; Cognet, Gerard E-mail: gerard.cognet@cea.fr; Haquet, Jean-Francois E-mail: haquet@eloise.cad.cea.fr; Jegou, Claude E-mail: claude.jegou@cea.fr; Piluso, Pascal E-mail: pascal.piluso@cea.fr; Monerris, Jose E-mail: jose.monerris@cea.fr
2003-07-01
In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture, called corium, of highly refractory oxides (UO{sub 2}, ZrO{sub 2}) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the basemat decomposition products (generally oxides such as SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, Fe{sub 2}O{sub 3}, ...). For some years, the French Atomic Energy Commission (CEA) has launched an R and D program which aimed at providing the tools for improving the mastering of severe accidents. Within this program, the VULCANO experimental facility is operated to perform experiments with prototypic corium (corium of realistic chemical composition including depleted UO{sub 2}). This is coupled with the use of specific high-temperature instrumentation requiring in situ cross calibration. This paper is devoted to the 'spreading experiments' performed in the VULCANO facility, in which the effects of flow and solidification are studied. Due to the complex behavior of corium in the solidification range, an interdisciplinary approach has been used combining thermodynamics of multicomponent mixtures, rheological models of silicic semisolid materials, heat transfer at high temperatures, free-surface flow of a fluid with temperature-dependant properties. Twelve high-temperature spreading tests have been performed and analyzed. The main experimental results are the good spreadability of corium-concrete mixtures having large solidification ranges even with viscous silicic melts, the change of microstructure due to cooling rates, the occurrence of a large thermal contact resistance at the corium-substrate interface, the presence of a steep viscosity gradient at the surface, the transient concrete ablation. Furthermore, the experiments showed the presence of the gaseous inclusions in the melt even without concrete substrate. This gas release is linked to the local oxygen content in the melt which is
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...
Perineural spread in head and neck tumors.
Brea Álvarez, B; Tuñón Gómez, M
2014-01-01
Perineural spread is the dissemination of some types of head and neck tumors along nervous structures. Perineural spread has negative repercussions on treatment because it requires more extensive resection and larger fields of irradiation. Moreover, perineural spread is associated with increased local recurrence, and it is considered an independent indicator of poor prognosis in the TNM classification for tumor staging. However, perineural spread often goes undetected on imaging studies. In this update, we review the concept of perineural spread, its pathogenesis, and the main pathways and connections among the facial nerves, which are essential to understand this process. Furthermore, we discuss the appropriate techniques for imaging studies, and we describe and illustrate the typical imaging signs that help identify perineural spread on CT and MRI. Finally, we discuss the differential diagnosis with other entities. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Model of fire spread around Krsko Power Plant
International Nuclear Information System (INIS)
Vidmar, P.; Petelin, S.
2001-01-01
The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. The study is based on thermodynamics, heat transfer and the study of hydrodynamics and combustion, which represent the bases of fire dynamics. The article shows a practical example of a leak of hazardous chemicals from a tank. Because of the inflammability of the fluid, fire may start. We have tried to model fire propagation around the Krsko power plant, and show what extended surrounding area could be affected. The model also considers weather conditions, in particular wind speed and direction. For this purpose we have used the computer code Safer Trace, which is based on zone models. That means that phenomena are described by physical and empirical equations. An imperfection in this computer code is the inability to consider ground topology. However in the case of the Krsko power plant, topology is not so important, as the plan is located in a relatively flat region. Mathematical models are presented. They show the propagation of hazardous fluid in the environment considering meteorological data. The work also shows which data are essential to define fire spread and shows the main considerations of Probabilistic Safety Assessment for external fire event.(author)
Simulation of spreading with solidification: assessment synthesis of Thema code
Energy Technology Data Exchange (ETDEWEB)
Spindler, B.; Veteau, J.M. [CEA Grenoble, Direction de l' Energie Nucleaire, Dept. de Technologie Nucleaire, Service d' Etudes Thermohydrauliques et Technologiques, 38 (France)
2004-07-01
After a presentation of the models included in THEMA code, which simulates the spreading of a fluid with solidification, the whole assessment calculations are presented. The first series concerns the comparison with analytical or numerical solutions: dam break, conduction for the heat transfer in the substrate, crust growth. The second series concerns the comparison with the CORINE isothermal tests (simulating fluid at low temperature). The third series concerns the CORINE tests with heat transfer. The fourth series concerns the tests with simulating materials at medium or high temperature (RIT, KATS). The fifth series concerns the tests with prototypical materials (COMAS, FARO, VULCANO). Finally the blind simulations of the ECOKATS tests are presented. All the calculations are performed with the same physical models (THEMA version 2.5), without any variable tuning parameter according to the test under consideration. Sensitivity studies concern the influence of the viscosity model in the solidification interval, and for the tests with prototypical materials the inlet temperature and the solid fraction. The relative difference between the calculated and measured spreading areas is generally less than 20 % except for the test with prototypical materials, for which the assessment is not easy due to the large experimental uncertainties. The level of validation of THEMA is considered as satisfactory, taking into account the required accuracy. (authors)
Simulation of spreading with solidification: assessment synthesis of Thema code
International Nuclear Information System (INIS)
Spindler, B.; Veteau, J.M.
2004-01-01
After a presentation of the models included in THEMA code, which simulates the spreading of a fluid with solidification, the whole assessment calculations are presented. The first series concerns the comparison with analytical or numerical solutions: dam break, conduction for the heat transfer in the substrate, crust growth. The second series concerns the comparison with the CORINE isothermal tests (simulating fluid at low temperature). The third series concerns the CORINE tests with heat transfer. The fourth series concerns the tests with simulating materials at medium or high temperature (RIT, KATS). The fifth series concerns the tests with prototypical materials (COMAS, FARO, VULCANO). Finally the blind simulations of the ECOKATS tests are presented. All the calculations are performed with the same physical models (THEMA version 2.5), without any variable tuning parameter according to the test under consideration. Sensitivity studies concern the influence of the viscosity model in the solidification interval, and for the tests with prototypical materials the inlet temperature and the solid fraction. The relative difference between the calculated and measured spreading areas is generally less than 20 % except for the test with prototypical materials, for which the assessment is not easy due to the large experimental uncertainties. The level of validation of THEMA is considered as satisfactory, taking into account the required accuracy. (authors)
MIMO Based Eigen-Space Spreading
National Research Council Canada - National Science Library
Eltawil, Ahmed
2004-01-01
.... Combination of this powerful technique with orthogonal frequency division multiplexing (OFDM) based modulation and traditional time and frequency spreading techniques results in a highly secure mode of communications...
COMBINED SURGERY OF SPREAD THYROID CANCER
Directory of Open Access Journals (Sweden)
V. Zh. Brzhezovsky
2014-01-01
Full Text Available Results of treating of 99 patients with differentiated thyroid cancer spreading beyond the capsule of the organ were analysed. In most cases with spreading the tumor to the tracheal rings performing of organ-preserving operations (from “window-like” tracheal resections to circular tracheal resection with intertracheal anastomosis is possible. Choosing of type of operation to be performed depends on localisation and spread of tumor invasion of trachea, pharynx and esophagus. Using of combined operations in patients with locally-spread thyroid cancer allows to achieve long and stable remission in most of the cases.
Energy Spread Sources in TESLA and TTF
International Nuclear Information System (INIS)
Mosnier, A.; Tessier, J.M.
1995-03-01
The beam energy spread in the TESLA linac must be small enough to limit the emittance dilution due to the dispersive effects. This report summarizes the major sources of energy spread both for the TESLA linac and the TTF linac, where these estimations will be carefully checked with beam experiments. The first part recalls the intra-bunch energy spread while the second part looks into the bunch-to-bunch energy spread induced by rf field fluctuations within the bunch train and from pulse-to-pulse. (author). 3 refs., 4 figs
From human behavior to the spread of mobile phone viruses
Wang, Pu
Percolation theory was initiated some 50 years ago as a mathematical framework for the study of random physical processes such as the flow of a fluid through a disordered porous medium. It has been proved to be a remarkably rich theory, with applications from thermodynamic phase transitions to complex networks. In this dissertation percolation theory is used to study the diffusion process of mobile phone viruses. Some methodologies widely used in statistical physics are also applied to uncover the underlying statistical laws of human behavior and simulate the spread of mobile phone viruses in a large population. I find that while Bluetooth viruses can reach all susceptible handsets with time, they spread slowly due to human mobility, offering ample opportunities to deploy antiviral software. In contrast, viruses utilizing multimedia messaging services (MMS) could infect all users in hours, but currently a phase transition on the underlying call graph limits them to only a small fraction of the susceptible users. These results explain the lack of a major mobile virus breakout so far and predict that once a mobile operating system's market share reaches the phase transition point, viruses will pose a serious threat to mobile communications. These studies show how the large datasets and tools of statistical physics can be used to study some specific and important problems, such as the spread of mobile phone viruses.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Directory of Open Access Journals (Sweden)
M Soltani
Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.
Soltani, M; Chen, P
2013-01-01
Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.
Govindaraju, Kalimuthu; Badruddin, Irfan Anjum; Viswanathan, Girish N; Ramesh, S V; Badarudin, A
2013-05-01
Coronary Artery Disease (CAD) is responsible for most of the deaths in patients with cardiovascular diseases. Diagnostic coronary angiography analysis offers an anatomical knowledge of the severity of the stenosis. The functional or physiological significance is more valuable than the anatomical significance of CAD. Clinicians assess the functional severity of the stenosis by resorting to an invasive measurement of the pressure drop and flow. Hemodynamic parameters, such as pressure wire assessment fractional flow reserve (FFR) or Doppler wire assessment coronary flow reserve (CFR) are well-proven techniques to evaluate the physiological significance of the coronary artery stenosis in the cardiac catheterization laboratory. Between the two techniques mentioned above, the FFR is seen as a very useful index. The presence of guide wire reduces the coronary flow which causes the underestimation of pressure drop across the stenosis which leads to dilemma for the clinicians in the assessment of moderate stenosis. In such condition, the fundamental fluid mechanics is useful in the development of new functional severity parameters such as pressure drop coefficient and lesion flow coefficient. Since the flow takes place in a narrowed artery, the blood behaves as a non-Newtonian fluid. Computational fluid dynamics (CFD) allows a complete coronary flow simulation to study the relationship between the pressure and flow. This paper aims at explaining (i) diagnostic modalities for the evaluation of the CAD and valuable insights regarding FFR in the evaluation of the functional severity of the CAD (ii) the role of fluid dynamics in measuring the severity of CAD. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Blanco Muñoz, Miguel A.
2004-03-01
Full Text Available Chemical hydrogenation of unsaturated fatty acids is a commonly applied reaction to food industries. The process may imply the movement of double bonds in their positions on the fatty acid carbon chain, producing positional and geometrical isomers ( trans fatty acids. Through hydrogenation, unsaturated oils are converted to margarines and vegetable shortenings. The presence of trans fatty acids in foods is undesirable, as trans fatty acids raise the plasma levels of total and low-density lipoproteins (LDL, while decrease the plasma level of high-density lipoproteins (HDL, among other effects. The use of olive oil to prepare fat spread opens new insights into the commercial development of healthy novel foods with a positive image in terms of consumer appeal.La hidrogenación química de los ácidos grasos insaturados es una reacción que se utiliza con frecuencia en la industria alimentaria. El proceso implica el movimiento de los dobles enlaces en la cadena hidrocarbonada de los ácidos grasos, y la aparición de isómeros posicionales y geométricos (ácidos grasos trans . La ingesta inadecuada de alimentos que pueden contener cantidades significativas de ácidos grasos trans se asocia con el aumento en sangre de colesterol total y LDL, y la disminución de HDL, entre otros efectos. Por lo tanto, el uso de aceite de oliva en la preparación de grasas para untar constituye un importante avance en el desarrollo comercial de nuevos alimentos saludables con una imagen positiva para el consumidor.
Anomalous diffusion spreads its wings
Energy Technology Data Exchange (ETDEWEB)
Klafter, J. [School of Chemistry, Tel Aviv University, Tel-Aviv (Israel)]. E-mail: klafter@post.tau.ac.il; Sokolov, I.M. [Institute of Physics, Humboldt University, Berlin (Germany)]. E-mail: igor.sokolov@physik.hu-berlin.de
2005-08-01
An increasing number of natural phenomena do not fit into the relatively simple description of diffusion developed by Einstein a century ago. As all of us are no doubt aware, this year has been declared 'world year of physics' to celebrate the three remarkable breakthroughs made by Albert Einstein in 1905. However, it is not so well known that Einstein's work on Brownian motion - the random motion of tiny particles first observed and investigated by the botanist Robert Brown in 1827 - has been cited more times in the scientific literature than his more famous papers on special relativity and the quantum nature of light. In a series of publications that included his doctoral thesis, Einstein derived an equation for Brownian motion from microscopic principles - a feat that ultimately enabled Jean Perrin and others to prove the existence of atoms (see 'Einstein's random walk' Physics World January pp19-22). Einstein was not the only person thinking about this type of problem. The 27 July 1905 issue of Nature contained a letter with the title 'The problem of the random walk' by the British statistician Karl Pearson, who was interested in the way that mosquitoes spread malaria, which he showed was described by the well-known diffusion equation. As such, the displacement of a mosquito from its initial position is proportional to the square root of time, and the distribution of the positions of many such 'random walkers' starting from the same origin is Gaussian in form. The random walk has since turned out to be intimately linked to Einstein's work on Brownian motion, and has become a major tool for understanding diffusive processes in nature. (U.K.)
The Propagation of the Gravity Current of Viscoplastic Fluid
Liu, Ye
2014-11-01
We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.
Abdollahzadeh Jamalabadi, Mohammad Yaghoub; Daqiqshirazi, Mohammadreza; Nasiri, Hossein; Safaei, Mohammad Reza; Nguyen, Truong Khang
2018-01-01
We present a numerical investigation of tapered arteries that addresses the transient simulation of non-Newtonian bio-magnetic fluid dynamics (BFD) of blood through a stenosis artery in the presence of a transverse magnetic field. The current model is consistent with ferro-hydrodynamic (FHD) and magneto-hydrodynamic (MHD) principles. In the present work, blood in small arteries is analyzed using the Carreau-Yasuda model. The arterial wall is assumed to be fixed with cosine geometry for the stenosis. A parametric study was conducted to reveal the effects of the stenosis intensity and the Hartman number on a wide range of flow parameters, such as the flow velocity, temperature, and wall shear stress. Current findings are in a good agreement with recent findings in previous research studies. The results show that wall temperature control can keep the blood in its ideal blood temperature range (below 40°C) and that a severe pressure drop occurs for blockages of more than 60 percent. Additionally, with an increase in the Ha number, a velocity drop in the blood vessel is experienced.
Kafi, Oualid; Khatib, Nader El; Tiago, Jorge; Sequeira, Adelia
2017-02-01
The inflammatory process of atherosclerosis leads to the formation of an atheromatous plaque in the intima of the blood vessel. The plaque rupture may result from the interaction between the blood and the plaque. In each cardiac cycle, blood interacts with the vessel, considered as a compliant nonlinear hyperelastic. A three dimensional idealized fluid-structure interaction (FSI) model is constructed to perform the blood-plaque and blood-vessel wall interaction studies. An absorbing boundary condition (BC) is imposed directly on the outflow in order to cope with the spurious reflexions due to the truncation of the computational domain. The difference between the Newtonian and non-Newtonian effects is highlighted. It is shown that the von Mises and wall shear stresses are significantly affected according to the rigidity of the wall. The numerical results have shown that the risk of plaque rupture is higher in the case of a moving wall, while in the case of a fixed wall the risk of progression of the atheromatous plaque is higher.
On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet
Hashim; Khan, Masood
The underlying intentions of this article are to investigate the impact of non-Fourier heat flux model on the stagnation-point flow of non-Newtonian Carreau fluid. In this study, the innovative Cattaneo-Christov constitutive model is introduced to study the characteristics of thermal relaxation time. The flow is impelled by a slendering surface which is of the variable thickness. In the model, the physical mechanism responsible for homogeneous-heterogeneous reactions are further taken into account. Also, the diffusion coefficients of the reactant and auto catalyst are considered to be equal. The governing non-linear partial differential equations consisting of the momentum, energy and concentration equations are reduced to the coupled ordinary differential equations by means of local similarity transformations. The transformed ODEs are tackled numerically by employing an effective shooting algorithm along with the Runge-Kutta Fehlberg scheme. The physical characteristics of the fluid velocity, temperature and concentration profiles are illuminated with the variation of numerous governing factors and are presented graphically. For instance, our result indicates that the temperature and thermal boundary layer thickness are lower in case of Cattaneo-Christov heat flux model when compared to classical Fourier's heat model. Meanwhile, the rate of heat transfer is significantly improved by a high wall thickness parameter and an opposite influence is found due to the thermal relaxation parameter. We further noticed that a higher value of homogeneous and heterogeneous reaction parameter corresponds to a deceleration in the concentration field and it shows an inverse relation for the Schmidt number. A correlation with accessible results for specific cases is found with fabulous consent.
On entanglement spreading from holography
Energy Technology Data Exchange (ETDEWEB)
Mezei, Márk [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)
2017-05-11
A global quench is an interesting setting where we can study thermalization of subsystems in a pure state. We investigate entanglement entropy (EE) growth in global quenches in holographic field theories and relate some of its aspects to quantities characterizing chaos. More specifically we obtain four key results: We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times. In a companion paper https://arxiv.org/abs/1608.05101, these results are put in the broader context of EE growth in chaotic systems: we relate EE growth to the chaotic spreading of operators, derive bounds on EE at a given time, and compare the holographic results to spin chain numerics and toy models. In this paper, we perform holographic calculations that provide the basis of arguments presented in that paper. We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times.
Directory of Open Access Journals (Sweden)
Payam Hooshmand
2017-03-01
Full Text Available Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished. The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the Rosseland approximation for the thermal radiation through a highly absorbing medium are considered. The temperature dependent heat sources, Joule heating, and viscous heating are considered as the source terms in the energy balance. The non-dimensional boundary layer equations are solved numerically in terms of similarity variable. A parameter study on the Nusselt number, viscous components of entropy generation, and thermal components of entropy generation in fluid is performed as a function of thermal radiation parameter (0 to 2, Brinkman number (0 to 10, Prandtl number (0 to 10, Hartmann number (0 to 1, power law index (0 to 1, and heat source coefficient (0 to 0.1.
International Nuclear Information System (INIS)
Chang-Jian, C.-W.; Chen, C.-K.
2008-01-01
This study presents a dynamic analysis of a flexible rotor supported by two porous squeeze couple stress fluid film journal bearings with non-linear suspension. The dynamics of the rotor center and bearing center are studied. The analysis of the rotor-bearing system is investigated under the assumptions of non-Newtonian fluid and a short bearing approximation. The spatial displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The numerical results show that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional parameter l* and the permeability. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided
Spreading to localized targets in complex networks
Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu
2016-12-01
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
Epidemic spreading through direct and indirect interactions.
Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta
2014-09-01
In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.
Age, spreading rates, and spreading asymmetry of the world's ocean crust
National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
Spread and Liquidity Issues: A markets comparison
Directory of Open Access Journals (Sweden)
Strašek Sebastjan
2016-03-01
Full Text Available The financial crises are closely connected with spread changes and liquidity issues. After defining and addressing spread considerations, we research in this paper the topic of liquidity issues in times of economic crisis. We analyse the liquidity effects as recorded on spreads of securities from different markets. We stipulate that higher international risk aversion in times of financial crises coincides with widening security spreads. The paper then introduces liquidity as a risk factor into the standard value-at-risk framework, using GARCH methodology. The comparison of results of these models suggests that the size of the tested markets does not have a strong effect on the models. Thus, we find that spread analysis is an appropriate tool for analysing liquidity issues during a financial crisis.
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
International Nuclear Information System (INIS)
Graney, K.; Chu, J.; Lin, P.C.
2002-01-01
Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc
DEFF Research Database (Denmark)
RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi
2010-01-01
The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...
Stronger constraints on non-Newtonian gravity from the Casimir effect
Energy Technology Data Exchange (ETDEWEB)
Mostepanenko, V M; Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E; Krause, D E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States)
2008-04-25
We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precise dynamic determination of the Casimir pressure between the two parallel plates by means of a micromechanical torsional oscillator. The possibility of setting limits on the predictions of chameleon field theories using the results of gravitational experiments and Casimir force measurements is discussed.
The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension
Directory of Open Access Journals (Sweden)
Eskandar Moghimipour
2013-01-01
Full Text Available Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC, polyvinyl pyrrolidone (PVP, tragacanth, and magnesium aluminum silicate (Veegum were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F, redispersibility (n, and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions.
The Effect of Polymer Content on the Non-Newtonian Behavior of Acetaminophen Suspension
Moghimipour, Eskandar; Kouchak, Maryam; Salimi, Anayatollah; Bahrampour, Saeed; Handali, Somayeh
2013-01-01
Acetaminophen is used as an analgesic and antipyretic agent. The aim of the study was evaluation of the effect of different polymers on rheological behavior of acetaminophen suspension. In order to achieve controlled flocculation, sodium chloride was added. Then structural vehicles such as carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), tragacanth, and magnesium aluminum silicate (Veegum) were evaluated individually and in combination. Physical stability parameters such as sedimentation volume (F), redispersibility (n), and growth of crystals of the suspensions were determined. Also, the rheological properties of formulations were studied. The results of this study showed that the combination of suspending agents had the most physical stability and pseudoplastic behavior with some degree of thixotropy. Viscosity of suspensions was increased by adding NaCl 0.02%. Presence of PVP is necessary for improving rheological behavior of suspensions by NaCl. This may be related to the cross-linking between the carbonyl group in the PVP segment and Na+ ions. PMID:24109512
Break-up of a non-Newtonian jet injected downwards in a ...
Indian Academy of Sciences (India)
2Department of Chemical Engineering, Indian Institute of Technology Bombay,. Powai, Mumbai ... (Cramer et al 2004) has diverse applications in chemical, pharmaceutical, food and cosmetic industries. A wide ...... Ph.D Thesis, IIT Bombay.
Was Newton right? A search for non-Newtonian behavior of weak-field gravity
Directory of Open Access Journals (Sweden)
Boynton Paul
2014-06-01
Full Text Available Empirical tests of Einstein’s metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton’s theory by assuring that the linearized equations of GTR matched the Newtonian formalism under “classical” conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.
Young, Paul M; Traini, Daniela; Ong, Hui Xin; Granieri, Angelo; Zhu, Bing; Scalia, Santo; Song, Jie; Spicer, Patrick T
2017-10-01
Thickening polymers have been used as excipients in nasal formulations to avoid nasal run-off (nasal drip) post-administration. However, increasing the viscosity of the formulation can have a negative impact on the quality of the aerosols generated. Therefore, the study aims to investigate the use of a novel smart nano-cellulose excipient to generate suitable droplets for nasal drug delivery that simultaneously has only marginally increased viscosity while still reducing nasal drips. Nasal sprays containing nano-cellulose at different concentrations were investigated for the additive's potential as an excipient. The formulations were characterized for their rheological and aerosol properties. This was then compared to conventional nasal spray formulation containing the single-component hydroxyl-propyl methyl cellulose (HPMC) viscosity enhancing excipient. The HPMC-containing nasal formulations behave in a Newtonian manner while the nano-cellulose formulations have a yield stress and shear-thinning properties. At higher excipient concentrations and shear rates, the nano-cellulose solutions have significantly lower viscosities compared to the HPMC solution, resulting in improved droplet formation when actuated through conventional nasal spray. Nano-cellulose materials could potentially be used as a suitable excipient for nasal drug delivery, producing consistent aerosol droplet size, and enhanced residence time within the nasal cavity with reduced run-offs compared to conventional polymer thickeners.
Fractional Flow Theory Applicable to Non-Newtonian Behavior in EOR Processes
Rossen, W.R.; Venkatraman, A.; Johns, R.T.; Kibodeaux, K.R.; Lai, H.; Moradi Tehrani, N.
2011-01-01
The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with
International Nuclear Information System (INIS)
Slatter, P.T.
1986-09-01
The novel Balanced Beam Tube Viscometer (BBTV), developed at the University of Cape Town, has been further developed and refined. Extensive work has been done in the following areas: (i) The effective length of BBTV tubes. (ii) Interpretation of the data obtained using the BBTV in both the laminar and turbulent flow regimes. (iii) Comparison with the rotary type viscometer. Kaolin clay and uranium tailings, slimes and slurries of different particle size range and concentration have been successfully characterised by yield-pseudoplastic rheologies using the BBTV. The BBTV is in fact a miniature pipeline and it has been shown that it is capable of producing valid turbulent flow data and indicating the laminar/turbulent transition region in the two tube sizes
Development of Pistachio (Pistacia vera L.) spread.
Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling
2013-03-01
Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food. © 2013 Institute of Food Technologists®
Energy Technology Data Exchange (ETDEWEB)
Kerbel, G.D.
1981-01-20
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.
International Nuclear Information System (INIS)
Kerbel, G.D.
1981-01-01
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch
Credit Spreads Across the Business Cycle
DEFF Research Database (Denmark)
Nielsen, Mads Stenbo
This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model...... that accounts for both business cycle and jump risk, and show by estimation that the model captures the counter-cyclical level and pro-cyclical slope of empirical credit spread curves. In addition, I provide a new procedure for estimation of idiosyncratic jump risk, which is consistent with observed shocks...
Modelling unidirectional liquid spreading on slanted microposts
DEFF Research Database (Denmark)
Cavalli, Andrea; Blow, Matthew L.; Yeomans, Julia M.
2013-01-01
A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts....... Regimes for spreading in no, one or two directions are identified, and shown to agree well with a two-dimensional theory proposed in Chu, Xiao and Wang. A more detailed numerical analysis of the contact line shapes allows us to understand deviations from the two dimensional model, and to identify...
On CattaneoâChristov heat flux model for Carreau fluid flow over a slendering sheet
Directory of Open Access Journals (Sweden)
Hashim
Full Text Available The underlying intentions of this article are to investigate the impact of non-Fourier heat flux model on the stagnation-point flow of non-Newtonian Carreau fluid. In this study, the innovative CattaneoâChristov constitutive model is introduced to study the characteristics of thermal relaxation time. The flow is impelled by a slendering surface which is of the variable thickness. In the model, the physical mechanism responsible for homogeneousâheterogeneous reactions are further taken into account. Also, the diffusion coefficients of the reactant and auto catalyst are considered to be equal. The governing non-linear partial differential equations consisting of the momentum, energy and concentration equations are reduced to the coupled ordinary differential equations by means of local similarity transformations. The transformed ODEs are tackled numerically by employing an effective shooting algorithm along with the RungeâKutta Fehlberg scheme. The physical characteristics of the fluid velocity, temperature and concentration profiles are illuminated with the variation of numerous governing factors and are presented graphically. For instance, our result indicates that the temperature and thermal boundary layer thickness are lower in case of CattaneoâChristov heat flux model when compared to classical Fourierâs heat model. Meanwhile, the rate of heat transfer is significantly improved by a high wall thickness parameter and an opposite influence is found due to the thermal relaxation parameter. We further noticed that a higher value of homogeneous and heterogeneous reaction parameter corresponds to a deceleration in the concentration field and it shows an inverse relation for the Schmidt number. A correlation with accessible results for specific cases is found with fabulous consent. Keywords: CattaneoâChristov model, Carreau fluid, Slendering sheet, Homogeneousâheterogeneous reactions, RungeâKutta method
Hamid, Aamir; Hashim; Khan, Masood
2018-06-01
The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.
Epidemic spreading in a hierarchical social network.
Grabowski, A; Kosiński, R A
2004-09-01
A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.
Heterogeneous incidence and propagation of spreading depolarizations
Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek
2016-01-01
Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866
Interference management using direct sequence spread spectrum ...
African Journals Online (AJOL)
Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.
Flame spread along thermally thick horizontal rods
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
Multi-station investigation of spread F over Europe during low to high solar activity
Czech Academy of Sciences Publication Activity Database
Paul, K.S.; Haralambous, H.; Oikonomou, Ch.; Paul, A.; Belehaki, A.; Tsagouri, I.; Kouba, Daniel; Burešová, Dalia
2018-01-01
Roč. 8, A27 (2018), č. článku A27. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : nighttime midlatitude ionosphere over Europe * effects of solar activity over spread F occurrence * longitudinal and latitudinal dependence of spread F occurrence Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/articles/swsc/full_html/2018/01/swsc170091/swsc170091.html
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-01-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, s...
Mapping the Spread of Mounted Warfare
Directory of Open Access Journals (Sweden)
Peter Turchin
2016-12-01
Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.
Ignition and spread of electrical wire fires
Huang, Xinyan
2012-01-01
Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...
Spreading characteristics of proprietary rectal steroid preparations
International Nuclear Information System (INIS)
Hay, D.J.
1982-01-01
Three types of rectal steroid preparation were labelled with Technetium 99 or Indium 111, and the extent of spread of each within the bowel was followed, immediately after administration and at 2hrs, using a gamma camera. Patients with ulcerative colitis were compared with controls. Results indicate that 'Colifoam' enema and 'Predsol' suppository act mainly in the rectum, but 'Predsol retention' enema spreads further into the colon, making it more useful for patients with extensive ulcerative colitis. (U.K.)
Dynamical Model about Rumor Spreading with Medium
Directory of Open Access Journals (Sweden)
Xiaxia Zhao
2013-01-01
Full Text Available Rumor is a kind of social remark, that is untrue, and not be confirmed, and spreads on a large scale in a short time. Usually, it can induce a cloud of pressure, anxiety, and panic. Traditionally, it is propagated by word of mouth. Nowadays, with the emergence of the internet, rumors can be spread by instant messengers, emails, or publishing. With this new pattern of spreading, an ISRW dynamical model considering the medium as a subclass is established. Beside the dynamical analysis of the model, we mainly explore the mechanism of spreading of individuals-to-individuals and medium-to-individual. By numerical simulation, we find that if we want to control the rumor spreading, it will not only need to control the rate of change of the spreader subclass, but also need to control the change of the information about rumor in medium which has larger influence. Moreover, to control the effusion of rumor is more important than deleting existing information about rumor. On the one hand, government should enhance the management of internet. On the other hand, relevant legal institutions for punishing the rumor creator and spreader on internet who can be tracked should be established. Using this way, involved authorities can propose efficient measures to control the rumor spreading to keep the stabilization of society and development of economy.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks
Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong
2018-02-01
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
Emergencies in the retroperitoneum: assessment of spread of disease by helical CT
Energy Technology Data Exchange (ETDEWEB)
Scialpi, M. E-mail: michelescialpi@libero.it; Scaglione, M.; Angelelli, G.; Lupattelli, L.; Resta, M.C.; Resta, M.; Rotondo, A
2004-04-01
Acute pancreatitis, leaking abdominal aortic aneurysm, and renal trauma frequently occur in the setting of patients with abdominal nontraumatic and traumatic injury; it represents the most urgent conditions that may determine the presence of fluid collections or haematoma in the retroperitoneum. Single spiral CT and multidetector-row CT (MDCT) play an important role in diagnosis of retroperitoneal emergencies, providing useful informations on the type, site, extent and management of the fluid collections. An accurate CT assessment requires the awareness of the existence of dissectable retroperitoneal fascial planes. Fluid collections or haematoma tends to escape the retroperitoneal site of origin into planes extend from the diaphragm to the pelvic floor. We assess the multicompartimental anatomy of the retroperitoneum and the pathway of spread of the most frequent retroperitoneal fluid collections or haematoma by helical CT.
A network model for Ebola spreading.
Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio
2016-04-07
The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.
1989-01-01
The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.
Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...
Free energy analysis of cell spreading.
McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick
2017-10-01
In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Self lubricating fluid bearings
International Nuclear Information System (INIS)
Kapich, D.D.
1980-01-01
The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr
Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate
Directory of Open Access Journals (Sweden)
Hyun Jun Jeong
2012-01-01
Full Text Available We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.
Seasonal variations of equatorial spread-F
Directory of Open Access Journals (Sweden)
B. V. Krishna Murthy
Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.
Seasonal variations of equatorial spread-F
Directory of Open Access Journals (Sweden)
K. S. V. Subbarao
1994-01-01
Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.
Diffusive spreading in nature, technology and society
Caro, Jürgen; Kärger, Jörg; Vogl, Gero
2018-01-01
This book deals with randomly moving objects and their spreading. The objects considered are particles like atoms and molecules, just as living beings like humans, animals, plants, bacteria and even abstract entities like ideas, rumors, information, innovations and linguistic features. The book explores and communicates the laws behind these movements and reports about astonishing similarities and very specific features typical of the given object under considerations. Leading scientists in disciplines as different as archeology, epidemics, linguistics and sociology, in contact with their colleagues from engineering, natural sciences and mathematics, introduce into the phenomena of spreading as relevant for their fields. An introductory chapter on “Spreading Fundamentals” provides a common basis for all these considerations, with a minimum of mathematics, selected and presented for enjoying rather than frustrating the reader.
A Study on Fluid Dispersion after Liquid Filled Missile Impact
International Nuclear Information System (INIS)
Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil
2015-01-01
In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results
A Study on Fluid Dispersion after Liquid Filled Missile Impact
Energy Technology Data Exchange (ETDEWEB)
Shin, Sang Shup; Hahm, Daegi; Choi, In-Kil [KAERI, Daejeon (Korea, Republic of)
2015-05-15
In order to fire damage evaluations by fuel included transportation crash, the fire duration should be analyzed that consider the fuel spread range, amount of leaked fuel, and various ignition sources. The water slug impact test performed in Sandia National Laboratory (SNL) in 2002 was representative. The cloud of mist dispersion range of the dyed red water and ejection velocity of water after impact were analyzed using Particle Image Velocimetry (PIV) method and numerical simulation. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique. The fluid dispersion range following impact was analyzed by considering the particle velocity and flying distance. The result values obtained through this study were compared to the water slug (WS) test results. And the applicability of an analysis method was verified by comparing the WS test results. The results and methodology obtained through this study can be utilized to damage assessment, fuel spread and fire risk for large infrastructures such as nuclear power plants following an aircraft impact. In this study, the included fluid was modeled by using smooth particle hydrodynamics (SPH) technique; the fluid spread range following an impact was analyzed. The radius of fluid spread on the numerical analysis became conservative than the WS test results. However, the shape of the cloud is similar to the WS test results.
Turbulent forces within river plumes affect spread
Bhattacharya, Atreyee
2012-08-01
When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.
The spread of gossip in American schools
Lind, P. G.; da Silva, L. R.; Andrade, J. S., Jr.; Herrmann, H. J.
2007-06-01
Gossip is defined as a rumor which specifically targets one individual and essentially only propagates within its friendship connections. How fast and how far a gossip can spread is for the first time assessed quantitatively in this study. For that purpose we introduce the "spread factor" and study it on empirical networks of school friendships as well as on various models for social connections. We discover that there exists an ideal number of friendship connections an individual should have to minimize the danger of gossip propagation.
Can rewiring strategy control the epidemic spreading?
Dong, Chao; Yin, Qiuju; Liu, Wenyang; Yan, Zhijun; Shi, Tianyu
2015-11-01
Relation existed in the social contact network can affect individuals' behaviors greatly. Considering the diversity of relation intimacy among network nodes, an epidemic propagation model is proposed by incorporating the link-breaking threshold, which is normally neglected in the rewiring strategy. The impact of rewiring strategy on the epidemic spreading in the weighted adaptive network is explored. The results show that the rewiring strategy cannot always control the epidemic prevalence, especially when the link-breaking threshold is low. Meanwhile, as well as strong links, weak links also play a significant role on epidemic spreading.
Simulation of core melt spreading with lava: theoretical background and status of validation
International Nuclear Information System (INIS)
Allelein, H.-J.; Breest, A.; Spengler, C.
2000-01-01
The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)