WorldWideScience

Sample records for non-neutral trunk postures

  1. Relationships between trunk performance, gait and postural control in persons with multiple sclerosis.

    Science.gov (United States)

    Freund, Jane E; Stetts, Deborah M; Vallabhajosula, Srikant

    2016-06-30

    Multiple sclerosis (MS) is a chronic progressive disease of the central nervous system. Compared to healthy individuals, persons with multiple sclerosis (PwMS) have increased postural sway in quiet stance, decreased gait speed and increased fall incidence. Trunk performance has been implicated in postural control, gait dysfunction, and fall prevention in older adults. However, the relationship of trunk performance to postural control and gait has not been adequately studied in PwMS. To compare trunk muscle structure and performance in PwMS to healthy age and gendered-matched controls (HC); to determine the effects of isometric trunk endurance testing on postural control in both populations; and to determine the relationship of trunk performance with postural control, gait and step activity in PwMS. Fifteen PwMS and HC completed ultrasound imaging of trunk muscles, 10 m walk test, isometric trunk endurance tests, and postural sway test. Participants wore a step activity monitor for 7 days. PwMS had worse isometric trunk endurance compared to HC. PwMS trunk flexion endurance negatively correlated to several postural control measures and positively correlated to gait speed and step activity. Clinicians should consider evaluation and interventions directed at impaired trunk endurance in PwMS.

  2. Effects of pushing height on trunk posture and trunk muscle activity when a cart suddenly starts or stops moving.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2012-01-01

    Unexpected sudden (un)loading of the trunk may induce inadequate responses of trunk muscles and uncontrolled trunk motion. These unexpected perturbations may occur in pushing tasks, when the cart suddenly starts moving (unloading) or is blocked by an obstacle (loading). In pushing, handle height affects the user's working posture, which may influence trunk muscle activity and trunk movement in response to the perturbation. Eleven healthy male subjects pushed a 200 kg cart with handles at shoulder and hip height in a start condition (sudden release of brakes) and a stop condition (bumping into an obstacle). Before the perturbation, the baseline of the trunk inclination, internal moment and trunk extensor muscle activity were significantly higher when pushing at hip height than at shoulder height. After the perturbation, the changes in trunk inclination and internal moment were significantly larger when pushing at shoulder height than at hip height in both conditions. The opposite directions of changes in trunk inclination and internal moment suggest that the unexpected perturbations caused uncontrolled trunk motion. Pushing at shoulder height may impose a high risk of low-back injury due to the low trunk stiffness and large involuntary trunk motion occurring after carts suddenly move or stop.

  3. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  4. The impact of ergonomics intervention on trunk posture and cumulative compression load among carpet weavers.

    Science.gov (United States)

    Afshari, Davood; Motamedzade, Majid; Salehi, Reza; Soltanian, Alir Raze

    2015-01-01

    Work-related musculoskeletal disorders of back among weavers are prevalent. Epidemiological studies have shown an association between poor working postures and back disorders among carpet weavers. Therefore, the present study aimed to evaluate the impact of the traditional (A) and ergonomically designed (B) workstations on trunk posture and cumulative compression load in carpet weavers. In this study, subtasks were identified in terms of stressful postures and carpet weaving process. Postural data were collected during knotting and compacting subtasks using inclinometer during four hours for each workstation. Postural data, weight and height of the weavers were entered into the University of Michigan three-dimensional static biomechanical model for estimation of the compression load and cumulative load were estimated from the resultant load and exposure time. Thirteen healthy carpet weavers (four males and nine females) participated in the study. Median trunk flexion angle was reduced with workstation B during knotting subtask (18° versus 8.5°, pergonomically designed workstation.

  5. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  6. An assistance device to help people with trunk impairment maintain posture.

    Science.gov (United States)

    Ogura, Tomoka; Itami, Taku; Yano, Ken'ichi; Mori, Ichidai; Kameda, Kazuhiro

    2017-07-01

    People with trunk impairment cannot lean forward because of the dysfunction of the trunk resulting from events such as cervical cord injury (CCI). It is therefore difficult for such people to work at a table because they may easily fall from their wheelchair, and it is also hard for them to return to their original position. This limits the activities of daily living (ADLs) of people with trunk impairment. These problems can be solved to some extent with equipment such as a wheelchair belt or a spinal orthosis that can help the person to maintain his or her posture. However, people cannot move freely with this equipment. Furthermore, if this equipment is used for a long time, there is a risk of physical pain and skin issues. In this study, we developed a device that assists the trunk of people with trunk impairment when they lean forward. This device supports people with trunk impairment so that they may take their meals at the table and prevents them from falling over their wheelchair without hindering their daily performance when they are sitting normally. The effectiveness of our proposed device was verified by experiments involving having a meal, operating a wheelchair, and colliding with a curb. Our device can help people with trunk impairment by improving their ADLs and quality of life (QOL).

  7. The association between back pain and trunk posture of workers in a special school for the severe handicaps

    Directory of Open Access Journals (Sweden)

    Lee Raymond YW

    2009-04-01

    Full Text Available Abstract Background The present study aims to determine the time spent in different static trunk postures during a typical working day of workers in a special school for the severe handicaps. Methods Eighteen workers with low back pain (LBP and fifteen asymptomatic workers were recruited. A cross-sectional design was employed to study the time spent in different static trunk postures which was recorded by a biaxial accelerometer attached to the T12 level of the back of the subjects. Results The results of ANCOVA revealed that subjects with LBP spent significantly longer percentage of time in static trunk posture when compared to normal (p Conclusion An innovative method has been developed for continuous tracking of spinal posture, and this has potential for widespread applications in the workplace. The findings of the present investigation suggest that teachers in special schools are at increased risk of getting LBP. In order to minimise such risk, frequent postural change and awareness of work posture are recommended.

  8. BODY POSTURES AND ASYMMETRIES IN FRONTAL AND TRANSVERSE PLANES IN THE TRUNK AREA IN TABLE TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Katarzyna Barczyk-Pawelec

    2012-04-01

    Full Text Available The aim of this research was to assess the body posture within the trunk area in table tennis players and to estimate the correlations between the specific body posture types, their asymmetries and table tennis practice (training experience. To evaluate body posture the photogrammetric method based on the Moiré phenomenon with equipment by CQ Electronic was applied. Tests of significance of difference and correlation were used to estimate the correlation of the observed asymmetries with the training experience. 40 table tennis players and 43 subjects not practising sports participated in the research. The analysis of the results revealed that table tennis players, unlike non-players, are characterized by kyphotic body posture. It probably results from a specific trunk, head and limb position during table tennis matches. Thus, many asymmetries in frontal and transverse planes were observed in the examined table tennis players. Perhaps table tennis, which is characterized by intensive and one-sided trunk muscle work during its performance, is in favour of creating asymmetries. The majority of subjects did not reveal any statistically significant correlations between the observed body posture types, their asymmetries and training experience. However, it was observed that training experience is significantly related to the considerable asymmetry of the inclination angle of shoulder line (KLB. It may result from the negative influence of very intensive, one-sided work and constant work of the shoulder girdle muscles of the playing limb with negligence of exercises of the second limb.

  9. Pelvis morphology, trunk posture and standing imbalance and their relations to the Cobb angle in moderate and severe untreated AIS.

    Directory of Open Access Journals (Sweden)

    Georges Dalleau

    Full Text Available Adolescent idiopathic scoliosis (AIS is the most common form of scoliosis and usually affects young girls. Studies mostly describe the differences between scoliotic and non-scoliotic girls and focus primarily on a single set of parameters derived from spinal and pelvis morphology, posture or standing imbalance. No study addressed all these three biomechanical aspects simultaneously in pre-braced AIS girls of different scoliosis severity but with similar curve type and their interaction with scoliosis progression. The first objective of this study was to test if there are differences in these parameters between pre-braced AIS girls with a right thoracic scoliosis of moderate (less than 27° and severe (more than 27° deformity. The second objective was to identify which of these parameters are related to the Cobb angle progression either individually or in combination of thereof. Forty-five scoliotic girls, randomly selected by an orthopedic surgeon from the hospital scoliosis clinic, participated in this study. Parameters related to pelvis morphology, pelvis orientation, trunk posture and quiet standing balance were measured. Generally moderate pre-brace idiopathic scoliosis patients displayed lower values than the severe group characterized by a Cobb angle greater than 27°. Only pelvis morphology and trunk posture were statistically different between the groups while pelvis orientation and standing imbalance were similar in both groups. Statistically significant Pearson coefficients of correlation between individual parameters and Cobb angle ranged between 0.32 and 0.53. Collectively trunk posture, pelvis morphology and standing balance parameters are correlated with Cobb angle at 0.82. The results suggest that spinal deformity progression is not only a question of trunk morphology distortion by itself but is also related to pelvis asymmetrical bone growth and standing neuromuscular imbalance.

  10. Evaluation of a Training Program to Reduce Stressful Trunk Postures in the Nursing Professions: A Pilot Study.

    Science.gov (United States)

    Kozak, Agnessa; Freitag, Sonja; Nienhaus, Albert

    2017-01-01

    The aim of this pilot study was to evaluate metrologically the effectiveness of a training program on the reduction of stressful trunk postures in geriatric nursing professions. A training program, consisting of instruction on body postures in nursing, practical ergonomic work methods at the bedside or in the bathroom, reorganization of work equipment, and physical exercises, was conducted in 12 wards of 6 nursing homes in Germany. The Computer-Assisted Recording and Long-Term Analysis of Musculoskeletal Loads (CUELA) measurement system was used to evaluate all movements and trunk postures adopted during work before and 6 months after the training program. In total, 23 shifts were measured. All measurements were supported by video recordings. A specific software program (WIDAAN 2.75) was used to synchronize the measurement data and video footage. The median proportion of time spent in sagittal inclinations at an angle of >20° was significantly reduced (by 29%) 6 months after the intervention [from 35.4% interquartile range (27.6-43.1) to 25.3% (20.7-34.1); P 4 s [4.4% (3.0-6.7) to 3.6% (2.5-4.5); P ergonomic measures were implemented properly, either at the bedside or in the bathroom. Stressful trunk postures could be significantly reduced by raising awareness of the physical strains that frequently occur during a shift, by changes in work practices and by redesigning the work environment. Workplace interventions aimed at preventing or reducing low back pain in nursing personnel would probably benefit from sensitizing employees to their postures during work. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Effects of flexi-bar and non-flexi-bar exercises on trunk muscles activity in different postures in healthy adults.

    Science.gov (United States)

    Chung, Jun Sub; Park, Seol; Kim, JiYoung; Park, Ji Won

    2015-07-01

    [Purpose] The purpose of this study was to assess the effects of flexi-bar exercises and non-flexi-bar exercises on trunk muscle activity in different postures in healthy adults. [Subjects] Twenty healthy right-hand dominant adults (10 males and 10 females) were selected for this study. None of the participants had experienced any orthopedic problems in the spine or in the upper and lower extremities in the previous six months. [Methods] The subjects were instructed to adopt three exercise postures: posture 1, quadruped; posture 2, side-bridge; and posture 3, standing. Surface electromyography of selected trunk muscles was normalized to maximum voluntary isometric contraction. [Results] The external oblique, internal oblique, and erector spinae muscle activity showed significant differences between flexi-bar exercises and non-flexi-bar exercises. [Conclusion] The results of this study suggest that flexi-bar exercises are useful in the activation of trunk muscles.

  12. Effect of a trunk-targeted intervention using vibration on posture and gait in children with spastic type cerebral palsy: a randomized control trial.

    Science.gov (United States)

    Unger, Marianne; Jelsma, Jennifer; Stark, Christina

    2013-01-01

    This study aimed to determine whether strengthening trunk muscles using vibration can improve posture and gait in children with spastic-type cerebral palsy (STCP). A total of 27 children (6-13 years) participated in a single-blinded pre-post crossover experimental trial. The 1-Minute Walk Test, 2D-posturography, ultrasound imaging and sit-ups in one minute were used to assess effect on gait, posture, resting abdominal muscle thickness and functional strength. Significant increase in distance walked (p posture, an increase in sit-ups executed (p posture were maintained at 4-weeks post-intervention. A trunk-targeted intervention using vibration can improve posture and gait in children with STCP without any known side effects. It is recommended that vibration and specific trunk strengthening is included in training or rehabilitation programmes. Effects of vibration on force generation and spasticity need further investigation.

  13. Electromyographic activity of the trunk extensor muscles: effect of varying hip position and lumbar posture during Roman chair exercise.

    Science.gov (United States)

    Mayer, John M; Verna, Joe L; Manini, Todd M; Mooney, Vert; Graves, James E

    2002-11-01

    To evaluate the effect of hip position and lumbar posture on the surface electromyographic activity of the trunk extensors during Roman chair exercise. Descriptive, repeated measures. University-based musculoskeletal research laboratory. Twelve healthy volunteers (7 men, 5 women; age range, 18-35y) without a history of low back pain were recruited from a university setting. Not applicable. Surface electromyographic activity was recorded from the lumbar extensor, gluteal, and hamstring musculature during dynamic Roman chair exercise. For each muscle group, electromyographic activity (mV/rep) was compared among exercises with internal hip rotation and external hip rotation and among exercises by using a typical lumbar posture (nonbiphasic) and a posture that accentuated lumbar lordosis (biphasic). For the lumbar extensors, electromyographic activity during exercise was 18% greater with internal hip rotation than external hip rotation (Phamstrings, there was no difference in electromyographic activity between internal and external hip rotation or between biphasic and nonbiphasic postures (P >.05). The level of recruitment of the lumbar extensors can be modified during Roman chair exercise by altering hip position and lumbar posture. Clinicians can use these data to develop progressive exercise protocols for the lumbar extensors with a variety of resistance levels without the need for complex equipment. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  14. THE EFFECTS OF DIFFERENT TRUNK INCLINATIONS ON BILATERAL TRUNK MUSCULAR ACTIVITIES, CENTRE OF PRESSURE AND FORCE EXERTIONS IN STATIC PUSHING POSTURES.

    Science.gov (United States)

    Sanjaya, Kadek Heri; Lee, Soomin; Sriwarno, Andar Bagus; Shimomura, Yoshihito; Katsuura, Tetsuo

    2014-06-01

    In order to reconcile contradictory results from previous studies on manual pushing, a study was conducted to examine the effect of trunk inclination on muscular activities, centre of pressure (COP) and force exertion during static pushing. Ten subjects pushed at 0 degrees, 15 degrees, 30 degrees, and 45 degrees body inclinations in parallel and staggered feet stances. Wall and ground force plates measured pushing force, wall COP, vertical ground reaction force (GRF) and ground COP. Electromyogram data were recorded at 10 trunk muscle sites. Pushing force was found to increase with body inclination. GRF peaked at 15 degrees and reached its lowest level at the 45 degrees inclination. The lowest wall force plate standard deviation of COP displacement was found at the 30 degrees inclination. The lowest low back muscular activity was found at the 15 degrees and 30 degrees inclinations. Based on force exertion, muscular load, and stability, the 30 degrees body inclination was found to be the best posture for static pushing. This study also showed asymmetry in muscular activity and force exertion which has been received less attention in manual pushing studies. These findings will require further study.

  15. The effect of working position on trunk posture and exertion for routine nursing tasks: an experimental study.

    Science.gov (United States)

    Freitag, Sonja; Seddouki, Rachida; Dulon, Madeleine; Kersten, Jan Felix; Larsson, Tore J; Nienhaus, Albert

    2014-04-01

    To examine the influence of the two following factors on the proportion of time that nurses spend in a forward-bending trunk posture: (i) the bed height during basic care activities at the bedside and (ii) the work method during basic care activities in the bathroom. A further aim was to examine the connection between the proportion of time spent in a forward-bending posture and the perceived exertion. Twelve nurses in a geriatric nursing home each performed a standardized care routine at the bedside and in the bathroom. The CUELA (German abbreviation for 'computer-assisted recording and long-term analysis of musculoskeletal loads') measuring system was used to record all trunk inclinations. Each participant conducted three tests with the bed at different heights (knee height, thigh height, and hip height) and in the bathroom, three tests were performed with different work methods (standing, kneeling, and sitting). After each test, participants rated their perceived exertion on the 15-point Borg scale (6 = no exertion at all and 20 = exhaustion). If the bed was raised from knee to thigh level, the proportion of time spent in an upright position increased by 8.2% points. However, the effect was not significant (P = 0.193). Only when the bed was raised to hip height, there was a significant increase of 19.8% points (reference: thigh level; P = 0.003) and 28.0% points (reference: knee height; P nursing personnel work in an upright position, the less strenuous they perceive the work to be. Raising the bed to hip height and using a stool in the bathroom significantly increase the proportion of time that nursing personnel work in an upright position. Nursing staff can spend a considerably greater proportion of their time in an ergonomic posture if stools and height-adjustable beds are provided in healthcare institutions.

  16. Reliability of the Star Excursion Balance Test and Two New Similar Protocols to Measure Trunk Postural Control.

    Science.gov (United States)

    López-Plaza, Diego; Juan-Recio, Casto; Barbado, David; Ruiz-Pérez, Iñaki; Vera-Garcia, Francisco J

    2018-05-18

    Although the Star Excursion Balance test (SEBT) has shown a good intrasession reliability, the intersession reliability of this test has not been deeply studied. Furthermore, there is an evident high influence of the lower limbs in the performance of the SEBT, so even if it has been used to measure core stability, it is possibly not the most suitable measurement. The aims of this study were to (1) to assess the absolute and relative between-session reliability of the SEBT and 2 novel variations of this test to assess trunk postural control while sitting, ie, the Star Excursion Sitting Test (SEST) and the Star Excursion Timing Test (SETT); and (2) to analyze the relationships between these 3 test scores. Correlational and reliability test-retest study. Controlled laboratory environment. Twenty-seven physically active men (age: 24.54 ± 3.05 years). Relative and absolute reliability of the SEBT, SEST, and SETT were calculated through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM), respectively. A Pearson correlation analysis was carried out between the variables of the 3 tests. Maximum normalized reach distances were assessed for different SEBT and SEST directions. In addition, composite indexes were calculated for SEBT, SEST, and SETT. The SEBT (dominant leg: ICC = 0.87 [0.73-0.94], SEM = 2.12 [1.66-2.93]; nondominant leg: ICC = 0.74 [0.50-0.87], SEM = 3.23 [2.54-4.45]), SEST (ICC = 0.85 [0.68-0.92], SEM = 1.27 [1.03-1.80]), and SETT (ICC = 0.61 [0.30-0.80], SEM = 2.31 [1.82-3.17]) composite indexes showed moderate-to-high 1-month reliability. A learning effect was detected for some SEBT and SEST directions and for SEST and SETT composite indexes. No significant correlations were found between SEBT and its 2 variations (r ≤ .366; P > .05). A significant correlation was found between the SEST and SETT composite indexes (r = .520; P > .01). SEBT, SEST, and SETT are reliable field protocols to measure postural control. However

  17. Static trunk posture in sitting and standing during pregnancy and early postpartum.

    Science.gov (United States)

    Gilleard, Wendy L; Crosbie, Jack; Smith, Richard

    2002-12-01

    To investigate the postural alignment of the upper body in the sagittal plane during sitting and standing postures as pregnancy progressed and then in the postpartum period. Longitudinal, repeated-measures design. Biomechanics laboratory in an Australian university. A volunteer convenience sample of 9 primiparous and multiparous women and 12 nulliparous women serving as a control group. Not applicable. Subjects were filmed while sitting and during quiet standing at intervals throughout pregnancy and at 8 weeks postpartum. A repeated-measures analysis of variance was used to assess systematic changes in the alignment of the pelvic, thoracic, and head segments, and the thoracolumbar and cervicothoracic spines. Student t tests were used to compare the postpartum and nulliparous control groups. There was no significant effect of pregnancy on the upper-body posture, although there was a tendency in some subjects for a flatter thoracolumbar spinal curve in sitting as pregnancy progressed. Postpartum during standing, the pelvic segment had a reduced sagittal plane anterior orientation, and the thoracolumbar spine was less extended, indicating a flatter spinal curve compared with the control group. There was no significant effect of pregnancy on upper-body posture during sitting and standing, although individuals varied in their postural response. A flatter spinal curve was found during standing postpartum. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  18. Arm-trunk coordination in wheelchair initiation displacement: A study of anticipatory and compensatory postural adjustments during different speeds and directions of propulsion.

    Science.gov (United States)

    Chikh, Soufien; Garnier, Cyril; Faupin, Arnaud; Pinti, Antonio; Boudet, Samuel; Azaiez, Fairouz; Watelain, Eric

    2018-03-13

    Arm-trunk coordination during the initiation of displacement in manual wheelchair is a complex task. The objective of this work is to study the arm-trunk coordination by measuring anticipatory and compensatory postural adjustments. Nine healthy subjects participated in the study after being trained in manual wheelchair. They were asked to initiate a displacement in manual wheelchair in three directions (forward vs. left vs. right), with two speeds (spontaneous vs. maximum) and with two initial hand's positions (hands on thighs vs. hands on handrails). Muscular activities in the trunk (postural component) and the arms (focal component) were recorded bilaterally. The results show two strategies for trunk control: An anticipatory adjustment strategy and a compensatory adjustment strategy with a dominance of compensation. These two strategies are influenced by the finalities of displacement in terms of speed and direction depending on the hands positions. Arm-trunk coordination is characterized by an adaptability of anticipatory and compensatory postural adjustments. The study of this type of coordination for subjects with different levels of spinal cord injury could be used to predict the forthcoming displacement and thus assist the user in a complex task. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002adults for the trunk (0.001older adults for the ankle (0.009Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Trunk muscle exercises as a means of improving postural stability in people with Parkinson's disease: a protocol for a randomised controlled trial.

    Science.gov (United States)

    Hubble, Ryan P; Naughton, Geraldine A; Silburn, Peter A; Cole, Michael H

    2014-12-31

    Exercise has been shown to improve clinical measures of strength, balance and mobility, and in some cases, has improved symptoms of tremor and rigidity in people with Parkinson's disease (PD). However, to date, no research has examined whether improvements in trunk control can remedy deficits in dynamic postural stability in this population. The proposed randomised controlled trial aims to establish whether a 12-week exercise programme aimed at improving dynamic postural stability in people with PD; (1) is more effective than education; (2) is more effective when training frequency is increased; and (3) provides greater long-term benefits than education. Forty-five community-dwelling individuals diagnosed with idiopathic PD with a falls history will be recruited. Participants will complete baseline assessments including tests of cognition, vision, disease severity, fear of falling, mobility and quality of life. Additionally, participants will complete a series of standing balance tasks to evaluate static postural stability, while dynamic postural control will be measured during walking using head and trunk-mounted three-dimensional accelerometers. Following baseline testing, participants will be randomly-assigned to one of three intervention groups, who will receive either exercise once per week, exercise 3 days/week, or education. Participants will repeat the same battery of tests conducted at baseline after the 12-week intervention and again following a further 12-week sustainability period. This study has the potential to show that low-intensity and progressive trunk exercises can provide a non-invasive and effective means for maintaining or improving postural stability for people with PD. Importantly, if the programme is noted to be effective, it could be easily performed by patients within their home environment or under the guidance of available allied health professionals. The protocol for this study is registered with the Australian New Zealand Clinical

  1. Reliability and Repetition Effect of the Center of Pressure and Kinematics Parameters That Characterize Trunk Postural Control During Unstable Sitting Test.

    Science.gov (United States)

    Barbado, David; Moreside, Janice; Vera-Garcia, Francisco J

    2017-03-01

    Although unstable seat methodology has been used to assess trunk postural control, the reliability of the variables that characterize it remains unclear. To analyze reliability and learning effect of center of pressure (COP) and kinematic parameters that characterize trunk postural control performance in unstable seating. The relationships between kinematic and COP parameters also were explored. Test-retest reliability design. Biomechanics laboratory setting. Twenty-three healthy male subjects. Participants volunteered to perform 3 sessions at 1-week intervals, each consisting of five 70-second balancing trials. A force platform and a motion capture system were used to measure COP and pelvis, thorax, and spine displacements. Reliability was assessed through standard error of measurement (SEM) and intraclass correlation coefficients (ICC 2,1 ) using 3 methods: (1) comparing the last trial score of each day; (2) comparing the best trial score of each day; and (3) calculating the average of the three last trial scores of each day. Standard deviation and mean velocity were calculated to assess balance performance. Although analyses of variance showed some differences in balance performance between days, these differences were not significant between days 2 and 3. Best result and average methods showed the greatest reliability. Mean velocity of the COP showed high reliability (0.71 reliability (0.37 reliability using the average method (0.62 reliability than kinematics ones. Specifically, mean velocity of COP showed the highest test-retest reliability, especially for the average and best methods. Although correlations between COP and mean joint angular velocity were high, the few relationships between COP and kinematic standard deviation suggest different postural behavior can lead to a similar balance performance during an unstable sitting protocol. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights

  2. Interactions of touch feedback with muscle vibration and galvanic vestibular stimulation in the control of trunk posture

    NARCIS (Netherlands)

    Maaswinkel, E.; Veeger, H.E.J.; van Dieen, J.H.

    2014-01-01

    This study investigated the effect of touch on trunk sway in a seated position. Two touch conditions were included: touching an object with the index finger of the right hand (hand-touch) and maintaining contact with an object at the level of the spine of T10 on the mid back (back-touch). In both

  3. Perceptive rehabilitation and trunk posture alignment in patients with Parkinson disease: a single blind randomized controlled trial.

    Science.gov (United States)

    Morrone, Michelangelo; Miccinilli, Sandra; Bravi, Marco; Paolucci, Teresa; Melgari, Jean M; Salomone, Gaetano; Picelli, Alessandro; Spadini, Ennio; Ranavolo, Alberto; Saraceni, Vincenzo M; DI Lazzaro, Vincenzo; Sterzi, Silvia

    2016-12-01

    Recent studies aimed to evaluate the potential effects of perceptive rehabilitation in Parkinson Disease reporting promising preliminary results for postural balance and pain symptoms. To date, no randomized controlled trial was carried out to compare the effects of perceptive rehabilitation and conventional treatment in patients with Parkinson Disease. To evaluate whether a perceptive rehabilitation treatment could be more effective than a conventional physical therapy program in improving postural control and gait pattern in patients with Parkinson Disease. Single blind, randomized controlled trial. Department of Physical and Rehabilitation Medicine of a University Hospital. Twenty outpatients affected by idiopathic Parkinson Disease at Hoehn and Yahr stage ≤3. Recruited patients were divided into two groups: the first one underwent individual treatment with Surfaces for Perceptive Rehabilitation (Su-Per), consisting of rigid wood surfaces supporting deformable latex cones of various dimensions, and the second one received conventional group physical therapy treatment. Each patient underwent a training program consisting of ten, 45-minute sessions, three days a week for 4 consecutive weeks. Each subject was evaluated before treatment, immediately after treatment and at one month of follow-up, by an optoelectronic stereophotogrammetric system for gait and posture analysis, and by a computerized platform for stabilometric assessment. Kyphosis angle decreased after ten sessions of perceptive rehabilitation, thus showing a substantial difference with respect to the control group. No significant differences were found as for gait parameters (cadence, gait speed and stride length) within Su-Per group and between groups. Parameters of static and dynamic evaluation on stabilometric platform failed to demonstrate any statistically relevant difference both within-groups and between-groups. Perceptive training may help patients affected by Parkinson Disease into restoring

  4. Meta-Analysis: Association Between Wrist Posture and Carpal Tunnel Syndrome Among Workers

    Directory of Open Access Journals (Sweden)

    Doohee You

    2014-03-01

    Conclusion: We found evidence that prolonged exposure to non-neutral wrist postures is associated with a twofold increased risk for CTS compared with low hours of exposure to non-neutral wrist postures. Workplace interventions to prevent CTS should incorporate training and engineering interventions that reduce sustained non-neutral wrist postures.

  5. Predictors of severe trunk postures among short-haul truck drivers during non-driving tasks: an exploratory investigation involving video-assessment and driver behavioural self-monitoring.

    Science.gov (United States)

    Olson, R; Hahn, D I; Buckert, A

    2009-06-01

    Short-haul truck (lorry) drivers are particularly vulnerable to back pain and injury due to exposure to whole body vibration, prolonged sitting and demanding material handling tasks. The current project reports the results of video-based assessments (711 stops) and driver behavioural self-monitoring (BSM) (385 stops) of injury hazards during non-driving work. Participants (n = 3) worked in a trailer fitted with a camera system during baseline and BSM phases. Descriptive analyses showed that challenging customer environments and non-standard ingress/egress were prevalent. Statistical modelling of video-assessment results showed that each instance of manual material handling increased the predicted mean for severe trunk postures by 7%, while customer use of a forklift, moving standard pallets and moving non-standard pallets decreased predicted means by 12%, 20% and 22% respectively. Video and BSM comparisons showed that drivers were accurate at self-monitoring frequent environmental conditions, but less accurate at monitoring trunk postures and rare work events. The current study identified four predictors of severe trunk postures that can be modified to reduce risk of injury among truck drivers and showed that workers can produce reliable self-assessment data with BSM methods for frequent and easily discriminated events environmental.

  6. The Columbia Non-neutral Torus

    International Nuclear Information System (INIS)

    Pedersen, Thomas Sunn

    2009-01-01

    Final report for the Columbia Non-neutral Torus. This details the results from the design, construction and initial operation of the Columbia Non-neutral Torus. During the duration of this grant, I designed, built, and operated the Columbia Nonneutral Torus, the world's lowest aspect ratio stellarator, and arguably, the world's simplest stellarator. This demonstrates the ease and robustness of the chosen stellarator design and allowed us to commence the investigation of the physics of non-neutral plasmas confined on magnetic surfaces. These plasmas are unique in many ways and had not previously been studied in a stellarator. Our first results showed that it is possible to confine and study a relatively cold pure electron plasma in a stellarator. We confirmed that the plasma is stable, and that the plasma is reasonably well confined in a stellarator configuration. These results were published in Physics of Plasmas (2006) and Physical Review Letters (2006). They enabled the existing program which is resolving the underlying transport processes in a classical stellarator with intense self-electric fields and enable the next phase of operation, electron-positron plasma physics. During the period of this grant, two students were trained in experimental plasma physics and both received their PhD degrees shortly after the grant terminated. One student is now employed in the financial services industry, the other is a postdoctoral associate at Los Alamos National Laboratory. The chief goals were to build and begin operation of the Columbia Non-neutral Torus. These goals were achieved in the third year of funding. The development of diagnostic methods and the confirmation of stable equilibria were also achieved during the grant period. In summary, the main scientific goals were all met. The main educational goals were also met, as the experiment became the training ground not only for the two aforementioned graduate students but also for a number of undergraduate students

  7. Assessment of effects of differences in trunk posture during Fowler’s position on hemodynamics and cardiovascular regulation in older and younger subjects

    Science.gov (United States)

    Kubota, Satoshi; Endo, Yutaka; Kubota, Mitsue; Shigemasa, Tomohiko

    2017-01-01

    Background Downward shifts in blood volume with changing position generally cause tachycardic responses. Age-related decreases in vagal nerve activity could contribute to orthostatic hypotension in older individuals. Fowler’s position is a reclined position with the back between 30° and 60°, used to facilitate breathing, eating, and other routine daily activities in frail and elderly patients. Objective This study examined whether stroke volume (SV) was higher and heart rate (HR) lower in Fowler’s position with an upright upper trunk than in Fowler’s position with the whole trunk upright in both older and younger subjects, based on the assumption that lower HR would result from reduced sympathetic activation in older individuals. Methods We assessed hemodynamics and HR variability from electrocardiography, noninvasive arterial pressure and impedance cardiography in 11 younger male subjects (age range, 20–22 years) and 11 older male subjects (age range, 64–79 years), using three positions: supine, or Fowler’s positions with either 30° of lower trunk inclination and 60° of upper trunk inclination (UT60) or 60° of whole trunk inclination (WT60). Comparisons were then made between age groups and between positions. Results Reductions in SV and tachycardic response were smaller with UT60 than with WT60, in both younger and older subjects. In addition, reduced tachycardic response with upright upper trunk appeared attributable to decreased vagal withdrawal in younger subjects and to reduced sympathetic activation in older subjects. Conclusion Our findings indicate that an upright upper trunk during Fowler’s position allowed maintenance of SV and inhibited tachycardic response compared to an upright whole trunk regardless of age, although the autonomic mechanisms underlying tachycardic responses differed between younger and older adults. An upright upper trunk in Fowler’s position might help to reduce orthostatic stress and facilitate routine

  8. Assessment of effects of differences in trunk posture during Fowler’s position on hemodynamics and cardiovascular regulation in older and younger subjects

    Directory of Open Access Journals (Sweden)

    Kubota S

    2017-03-01

    Full Text Available Satoshi Kubota,1 Yutaka Endo,1 Mitsue Kubota,1 Tomohiko Shigemasa2 1School of Nursing and Rehabilitation Sciences at Odawara, International University of Health and Welfare, Odawara, Kanagawa, Japan; 2Department of Cardiology, International University of Health and Welfare Atami Hospital, Atami, Shizuoka, Japan Background: Downward shifts in blood volume with changing position generally cause tachycardic responses. Age-related decreases in vagal nerve activity could contribute to orthostatic hypotension in older individuals. Fowler’s position is a reclined position with the back between 30° and 60°, used to facilitate breathing, eating, and other routine daily activities in frail and elderly patients. Objective: This study examined whether stroke volume (SV was higher and heart rate (HR lower in Fowler’s position with an upright upper trunk than in Fowler’s position with the whole trunk upright in both older and younger subjects, based on the assumption that lower HR would result from reduced sympathetic activation in older individuals. Methods: We assessed hemodynamics and HR variability from electrocardiography, noninvasive arterial pressure and impedance cardiography in 11 younger male subjects (age range, 20–22 years and 11 older male subjects (age range, 64–79 years, using three positions: supine, or Fowler’s positions with either 30° of lower trunk inclination and 60° of upper trunk inclination (UT60 or 60° of whole trunk inclination (WT60. Comparisons were then made between age groups and between positions. Results: Reductions in SV and tachycardic response were smaller with UT60 than with WT60, in both younger and older subjects. In addition, reduced tachycardic response with upright upper trunk appeared attributable to decreased vagal withdrawal in younger subjects and to reduced sympathetic activation in older subjects. Conclusion: Our findings indicate that an upright upper trunk during Fowler’s position allowed

  9. Adolescents with Intellectual Disability Have Reduced Postural Balance and Muscle Performance in Trunk and Lower Limbs Compared to Peers without Intellectual Disability

    Science.gov (United States)

    Blomqvist, Sven; Olsson, Josefine; Wallin, Louise; Wester, Anita; Rehn, Borje

    2013-01-01

    For adolescent people with ID, falls are more common compared to peers without ID. However, postural balance among this group is not thoroughly investigated. The aim of this study was to compare balance and muscle performance among adolescents aged between 16 and 20 years with a mild to moderate intellectual disability (ID) to age-matched…

  10. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study.

    Science.gov (United States)

    Gagnon, Dany H; Roy, Audrey; Gabison, Sharon; Duclos, Cyril; Verrier, Molly C; Nadeau, Sylvie

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.

  11. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    OpenAIRE

    Oza, Chintan S.; Giszter, Simon F.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we e...

  12. Constrained posture in dentistry - a kinematic analysis of dentists.

    Science.gov (United States)

    Ohlendorf, Daniela; Erbe, Christina; Nowak, Jennifer; Hauck, Imke; Hermanns, Ingo; Ditchen, Dirk; Ellegast, Rolf; Groneberg, David A

    2017-07-05

    How a dentist works, such as the patterns of movements performed daily, is also largely affected by the workstation Dental tasks are often executed in awkward body positions, thereby causing a very high degree of strain on the corresponding muscles. The objective of this study is to detect those dental tasks, during which awkward postures occur most frequently. The isolated analysis of static postures will examine the duration for which these postures are maintained during the corresponding dental, respectively non-dental, activities. 21 (11f/10 m) dentists (age: 40.1 ± 10.4 years) participated in this study. An average dental workday was collected for every subject. To collect kinematic data of all activities, the CUELA system was used. Parallel to the kinematic examination, a detailed computer-based task analysis was conducted. Afterwards, both data sets were synchronized based on the chronological order of the postures assumed in the trunk and the head region. All tasks performed were assigned to the categories "treatment" (I), "office" (II) and "other activities" (III). The angle values of each body region (evaluation parameter) were examined and assessed corresponding to ergonomic standards. Moreover, this study placed a particular focus on static positions, which are held statically for 4 s and longer. For "treatment" (I), the entire head and trunk area is anteriorly tilted while the back is twisted to the right, in (II) and (III) the back is anteriorly tilted and twisted to the right (non-neutral position). Static positions in (I) last for 4-10s, static postures (approx. 60%) can be observed while in (II) and (III) in the back area static positions for more than 30 s are most common. Moreover, in (II) the back is twisted to the right for more than 60 s in 26.8%. Awkward positions are a major part of a dentists' work. This mainly pertains to static positions of the trunk and head in contrast to "office work." These insights facilitate the quantitative

  13. CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions

    DEFF Research Database (Denmark)

    Koblitz, Tilman

    model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability...... characteristics of neutral and non-neutral ABL flow. The developed ABL model significantly improves the predicted flow fields over both flat and complex terrain, when compared against neutral models and measurements....... cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...

  14. Measuring postural sway in sitting

    DEFF Research Database (Denmark)

    Curtis, Derek John; Hansen, Lisbeth; Luun, Malene

    2015-01-01

    group appeared to result from an equally stable trunk supported on a less stable pelvis. Mediolateral marker sway and intersegmental angular sway showed a clearer age dependency. Trunk postural control does not appear to differ between children older and younger than 10 years old, but sagittal plane...... and younger than 10 years old, participated in this study. The children sat unsupported for 30 s while their posture and sway were quantified using stereophotogrammetry. The tendency in both age groups was to sit with a backward tilted pelvis and a kyphotic trunk. The sitting position was most varied...

  15. Toroidal magnetic confinement of non-neutral plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Ogawa, Yuichi; Morikawa, Junji; Himura, Haruhiko; Kondo, Shigeo; Nakashima, Chihiro; Kakuno, Shuichi; Iqbal, Muhamad; Volponi, Francesco; Shibayama, Norihisa; Tahara, Shigeru

    1999-01-01

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyroradius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-β plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if β>1), a high-β equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law

  16. Non-Neutralizing Antibodies Directed against HIV and Their Functions

    Directory of Open Access Journals (Sweden)

    Luzia M. Mayr

    2017-11-01

    Full Text Available B cells produce a plethora of anti-HIV antibodies (Abs but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.

  17. Period doubling on a non-neutral magnetized electron beam

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1984-01-01

    Low frequency oscillations on a non-neutral magnetized electron beam of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large amplitude fundamental mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increasedthe waveform ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement

  18. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  19. Influence of continuously-varing profile on the diocotron instability in a non neutral plasma column

    International Nuclear Information System (INIS)

    Asgary, H. R.; Maraghehechi, Behrooz; Rafii, Mahboobeh

    2003-01-01

    In this paper we investigate the theoretical method related to density profile effect on diocotron instability in nonrelativistic state in non neutral plasma column. At first we introduce non neutral plasma and diocotron instability then we extract instability equation and we will investigate plasma stability with special profile density

  20. Comparison of trunk activity during gait initiation and walking in humans.

    Directory of Open Access Journals (Sweden)

    Jean-Charles Ceccato

    Full Text Available To understand the role of trunk muscles in maintenance of dynamic postural equilibrium we investigate trunk movements during gait initiation and walking, performing trunk kinematics analysis, Erector spinae muscle (ES recordings and dynamic analysis. ES muscle expressed a metachronal descending pattern of activity during walking and gait initiation. In the frontal and horizontal planes, lateroflexion and rotation occur before in the upper trunk and after in the lower trunk. Comparison of ES muscle EMGs and trunk kinematics showed that trunk muscle activity precedes corresponding kinematics activity, indicating that the ES drive trunk movement during locomotion and thereby allowing a better pelvis mobilization. EMG data showed that ES activity anticipates propulsive phases in walking with a repetitive pattern, suggesting a programmed control by a central pattern generator. Our findings also suggest that the programs for gait initiation and walking overlap with the latter beginning before the first has ended.

  1. POSTUR KERJA DAN RISIKO LOW BACK PAIN PADA PEKERJA PASIRAN

    Directory of Open Access Journals (Sweden)

    Denny Nurkertamanda

    2017-10-01

    Full Text Available Salah satu pekerjaan angkat angkut adalah pekerjaan menurunkan pasir dari atas truk. Dalam bekerja, pekerja menggunakan alat bantu berupa enggrong yang merupakan sekop dengan gagang pendek. Akibat penggunaan enggrong, pekerja bekerja dengan postur tubuh membungkuk. Postur kerja ini menimbulkan potensi low back pain pada pekerja. Penelitian ini merupakan penelitian cross sectional dengan jumlah sampel 9 partisipan. Tujuan dari penelitian adalah untuk mengetahui potensi risiko low back pain berdasarkan sudut kemiringan trunk ketika pekerja bekerja menurunkan pasir dengan enggrong. Sudut kemiringan trunk yang diprediksi meliputi: 1 sudut kemiringan trunk flexion, 2 sudut kemiringan trunk bending, dan 3 sudut kemiringan trunk twisting. Data postur kerja diambil dengan menggunakan kamera 3D Microsoft KinectTM dan dianalisis dengan menggunakan software Siemen Jack metode 3D Static Strength Prediction Program (3DSSPP untuk memprediksi sudut kemiringan trunk. Hasil analisis dari ke-6 postur kerja menunjukkan postur-postur kerja yang sering dilakukan pekerja mempunyai rerata sudut kemiringan trunk flexion sebesar 61,10 ± 10,090, sudut kemiringan trunk bending sebesar 19,80 ± 6,740 dan sudut kemiringan trunk twisting sebesar 20,00 ± 9,030. Rerata sudut kemiringan trunk flexion yang mencapai 87,28 %  dari sudut kemiringan maksimal merupakan penyebab utama risiko low back pain. Sehingga dapat disimpulkan potensi terjadinya low back pain pada pekerja pasiran dapat terjadi. Perlu intervensi ergonomi untuk mencegah dan mengurangi potensi risiko terjadi low back pain pada pekerja pasiran.   Abstract One of the manual matrial handling jobs is the derivative work from the top of the truck. In working the workers use a tool that enggrong which is a short-handed shovel. Due to the use of employee enggrong work with stooped posture. This work posture raises the potential for low back pain in workers. This study is a cross sectional study with a sample of 9

  2. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  3. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  4. Efficient simulation and likelihood methods for non-neutral multi-allele models.

    Science.gov (United States)

    Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge

    2012-06-01

    Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.

  5. Trunk Flexibility Improvement in Response to Powered Assisted Exercise

    Directory of Open Access Journals (Sweden)

    B.S. Bains

    2016-07-01

    Full Text Available Background study: Flexibility in human spine has always plays an important role in dexterity and seamless ambulatory activities. When optimum range is not maintained by the trunk column, due to lack of flexibility, the posture gets affected resulting in reduce trunk rotation flexibility and mobility hence loss of complete trunk rotation. Objective: The purpose of this study is to determine the effect of Shapemaster Power Assisted Exercise Equipment (SPAEE on trunk flexibility. Methodology: Twenty healthy individual ages between 40 to 60 years were randomly divided into control and exercise groups. Shapemaster exercise program performed two times per week for 5 weeks and 45 minutes per session. Before and after 10 sessions of Shapemaster exercise protocol, Seated trunk rotation test was used to measure trunk flexibility. Results: Repeated measurement ANOVA were used to analysis data between groups. The results of this study illustrated that after 10th sessions trunk flexibility significantly improved (F (1.0, 18 = 11.732, p < 0.003. Conclusion: In conclusion results were determined that SPAEE is safe and it did effectively enhance flexibility among individual healthy adults. Keyword: Shapemaster Power Assisted Exercise Equipment (SPAEE, Trunk Flexibility, Healthy individual

  6. Overview of recent results from non-neutral plasmas in the CNT stellarator

    Science.gov (United States)

    Pedersen, T. Sunn; Boozer, A. H.; Brenner, P. W.; Durand de Gevigney, B.; Hahn, M. S.; Sarasola, X.; Senter, A.

    2009-11-01

    An overview of recent results from the Columbia Non-neutral Torus (CNT) will be given. CNT is a stellarator dedicated to studies of non-neutral and electron-positron plasmas [1]. CNT operates with a surplus of electrons -- most of the time with only a trace amount of ions (ni/ne Kremer et al., PRL 97, (2006) 095003 [3] P. W. Brenner et al., this poster session [4] Q. R. Marksteiner et al., PRL 100 (2008) 065002 [5] X. Sarasola Martin et al., this poster session [6] M. S. Hahn et al., Phys. Plasmas 16 (2009) 022105

  7. Trunk Stability, Trunk Strength and Sport Performance Level in Judo.

    Directory of Open Access Journals (Sweden)

    David Barbado

    Full Text Available Although trunk muscle function has been suggested to be a determinant of judo performance, its contribution to high-level performance in this sport has been poorly studied. Therefore, several tests were used to assess the differences in trunk muscle function between 11 international and 14 national level judo practitioners (judokas. Trunk strength and endurance were assessed using isokinetic tests and core stability was assessed using two protocols: 1 sudden loading, to assess trunk responses to unexpected external perturbations; 2 stable and unstable sitting, to assess the participants' ability to control trunk balance. No differences between groups were found for trunk flexor isokinetic strength, trunk responses against lateral and posterior loading and trunk control while sitting. However, international level judokas showed significantly higher trunk extensor isokinetic strength (p <0.05 and lower trunk angular displacement after anterior trunk loading (p <0.05 than national level judokas. Few and low (r < 0.512 significant correlations were found between strength, endurance and stability parameters, which suggests that trunk strength and endurance are not limiting factors for trunk stability in competitive judokas. These results support the importance of trunk extensor strength and trunk stability against forward perturbations in elite judo performance.

  8. The central role of trunk control in the gross motor function of children with cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Butler, Penny; Saavedra, Sandy

    2015-01-01

    . The participants were tested using the Gross Motor Function Measure (GMFM), the Pediatric Evaluation of Disability Inventory (PEDI), and the Segmental Assessment of Trunk Control (SATCo). Results Linear regression analysis showed a positive relationship between the segmental level of trunk control and age......, with both gross motor function and mobility. Segmental trunk control measured using the SATCo could explain between 38% and 40% of variation in GMFM and between 32% and 37% of variation in PEDI. Interpretation This study suggests a strong association between segmental trunk postural control and gross motor...

  9. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Lakhina, G S

    2005-01-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses

  10. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    Science.gov (United States)

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms

  11. Ergonomic strategies to improve radiographers' posture during mammography activities.

    Science.gov (United States)

    Cernean, Nicolai; Serranheira, Florentino; Gonçalves, Pedro; Sá Dos Reis, Cláudia

    2017-08-01

    To identify alternatives for radiographers' postures while performing mammography that can contribute to reduce the risk of work-related musculoskeletal disorders (WRMSDs). Radiographers' postures to positioning craniocaudal (CC) and mediolateral oblique (MLO) views were simulated without any intervention for three scenarios: radiographer/patient with similar statures, radiographer smaller than patient and radiographer taller than patient. Actions were taken to modify the postures: seated radiographer; patient on a step; seated patient; radiographer on a step. All the postures were analysed using kinovea 0.8.15 software and the angles were measured twice and classified according to European standard EN1005-4: 2005. The non-acceptable angles were measured mainly during MLO positioning when radiographer was taller than the patient: 139° and 120° for arm-flexion and abduction, 72° for trunk and -24° for head/neck-flexion. The introduction of alternative postures (radiographer seated), allowed improvements in posture (60° and 99° for arm flexion and abduction, 14° for trunk and 0° for head/neck flexion), being classified as acceptable. The alternative postures simulated have the potential to reduce the risk of developing WRMSDs when radiographers and patients have different statures. • Radiographers' postures in mammography can contribute to work-related musculoskeletal disorders • Non-acceptable posture was identified for MLO breast positioning (radiographer taller than patient) • Adapting posture to patient biotype reduces the WRMSD risk for radiographers.

  12. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    Science.gov (United States)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  13. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  14. Relationship between craniomandibular disorders and poor posture.

    Science.gov (United States)

    Nicolakis, P; Nicolakis, M; Piehslinger, E; Ebenbichler, G; Vachuda, M; Kirtley, C; Fialka-Moser, V

    2000-04-01

    The purpose of this research was to show that a relationship between craniomandibular disorders (CMD) and postural abnormalities has been repeatedly postulated, but still remains unproven. This study was intended to test this hypothesis. Twenty-five CMD patients (mean age 28.2 years) were compared with 25 gender and age matched controls (mean age 28.3 years) in a controlled, investigator-blinded trial. Twelve postural and ten muscle function parameters were examined. Measurements were separated into three subgroups, consisting of those variables associated with the cervical region, the trunk in the frontal plane, and the trunk in the sagittal plane. Within these subgroups, there was significantly more dysfunction in the patients, compared to control subjects (Mann-Whitney U test p Postural and muscle function abnormalities appeared to be more common in the CMD group. Since there is evidence of the mutual influence of posture and the craniomandibular system, control of body posture in CMD patients is recommended, especially if they do not respond to splint therapy. Whether poor posture is the reason or the result of CMD cannot be distinguished by the data presented here.

  15. Comparison of trunk kinematics in trunk training exercises and throwing.

    Science.gov (United States)

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  16. Age-related reduction of trunk muscle torque and prevalence of trunk sarcopenia in community-dwelling elderly: Validity of a portable trunk muscle torque measurement instrument and its application to a large sample cohort study.

    Directory of Open Access Journals (Sweden)

    Eiji Sasaki

    Full Text Available Trunk muscle weakness and imbalance are risk factors for postural instability, low back pain, and poor postoperative outcomes. The association between trunk muscle strength and aging is poorly understood, and establishing normal reference values is difficult. We aimed to establish the validity of a novel portable trunk muscle torque measurement instrument (PTMI. We then estimated reference data for healthy young adults and elucidated age-related weakness in trunk muscle strength. Twenty-four university students were enrolled to validate values for PTMI, and 816 volunteers from the general population who were recruited to the Iwaki Health Promotion Project were included to estimate reference data for trunk muscle strength. Trunk flexion and extension torque were measured with PTMI and KinCom, and interclass correlation coefficients (ICC were estimated to evaluate the reliability of PTMI values. Furthermore, from the young adult reference, the age-related reduction in trunk muscle torque and the prevalence of sarcopenia among age-sex groups were estimated. The ICC in flexion and extension torque were 0.807 (p<0.001 and 0.789 (p<0.001, respectively. The prevalence of sarcopenia increased with age, and the prevalence due to flexion torque was double that of extension torque. Flexion torque decreased significantly after 60 years of age, and extension torque decreased after 70 years of age. In males over age 80, trunk muscle torque decreased to 49.1% in flexion and 63.5% in extension. In females over age 80, trunk muscle torque decreased to 60.7% in flexion and 68.4% in extension. The validity of PTMI was confirmed by correlation with KinCom. PTMI produced reference data for healthy young adults, and demonstrated age-related reduction in trunk muscle torque. Trunk sarcopenia progressed with aging, and the loss of flexion torque began earlier than extension torque. At age 80, trunk muscle torque had decreased 60% compared with healthy young adults.

  17. Age-related reduction of trunk muscle torque and prevalence of trunk sarcopenia in community-dwelling elderly: Validity of a portable trunk muscle torque measurement instrument and its application to a large sample cohort study.

    Science.gov (United States)

    Sasaki, Eiji; Sasaki, Shizuka; Chiba, Daisuke; Yamamoto, Yuji; Nawata, Atsushi; Tsuda, Eiichi; Nakaji, Shigeyuki; Ishibashi, Yasuyuki

    2018-01-01

    Trunk muscle weakness and imbalance are risk factors for postural instability, low back pain, and poor postoperative outcomes. The association between trunk muscle strength and aging is poorly understood, and establishing normal reference values is difficult. We aimed to establish the validity of a novel portable trunk muscle torque measurement instrument (PTMI). We then estimated reference data for healthy young adults and elucidated age-related weakness in trunk muscle strength. Twenty-four university students were enrolled to validate values for PTMI, and 816 volunteers from the general population who were recruited to the Iwaki Health Promotion Project were included to estimate reference data for trunk muscle strength. Trunk flexion and extension torque were measured with PTMI and KinCom, and interclass correlation coefficients (ICC) were estimated to evaluate the reliability of PTMI values. Furthermore, from the young adult reference, the age-related reduction in trunk muscle torque and the prevalence of sarcopenia among age-sex groups were estimated. The ICC in flexion and extension torque were 0.807 (psarcopenia increased with age, and the prevalence due to flexion torque was double that of extension torque. Flexion torque decreased significantly after 60 years of age, and extension torque decreased after 70 years of age. In males over age 80, trunk muscle torque decreased to 49.1% in flexion and 63.5% in extension. In females over age 80, trunk muscle torque decreased to 60.7% in flexion and 68.4% in extension. The validity of PTMI was confirmed by correlation with KinCom. PTMI produced reference data for healthy young adults, and demonstrated age-related reduction in trunk muscle torque. Trunk sarcopenia progressed with aging, and the loss of flexion torque began earlier than extension torque. At age 80, trunk muscle torque had decreased 60% compared with healthy young adults.

  18. Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U

    Science.gov (United States)

    Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao

    An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.

  19. Period doubling of azimuthal oscillations on a non-neutral magnetized electron column

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1985-01-01

    The low-frequency azimuthal oscillations on a non-neutral magnetized electron column of very low density are investigated. A perturbation analysis of the slow mode of the rigid rotator equilibrium is developed to illustrate the nature of large-amplitude fundamental-mode oscillations. The results of this theoretical analysis show two important characteristics: firstly, as the perturbation amplitude is increased the wave form ceases to be purely sinusoidal and shows period doubling. Secondly, above a certain threshold, all harmonics of the wave grow and the wave breaks. The results of the former are compared with a simple electron beam experiment and are found to be in good qualitative agreement. (author)

  20. Confinement of pure electron plasmas in the Columbia Non-neutral Torus

    International Nuclear Information System (INIS)

    Berkery, John W.; Pedersen, Thomas Sunn; Kremer, Jason P.; Marksteiner, Quinn R.; Lefrancois, Remi G.; Hahn, Michael S.; Brenner, Paul W.

    2007-01-01

    The Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgreen, and X. Sarasola, Fusion Sci. Technol. 50, 372 (2006)] is a stellarator used to study non-neutral plasmas confined on magnetic surfaces. A detailed experimental study of confinement of pure electron plasmas in CNT is described here. Electrons are introduced into the magnetic surfaces by placing a biased thermionic emitter on the magnetic axis. As reported previously, the insulated rods holding this and other emitter filaments contribute to the radial transport by charging up negatively and creating ExB convective transport cells. A model for the rod-driven transport is presented and compared to the measured transport rates under a number of different conditions, finding good agreement. Neutrals also drive transport, and by varying the neutral pressure in the experiment, the effects of rod-driven and neutral-driven transport are separated. The neutral-driven electron loss rate scales linearly with neutral pressure. The neutral driven transport, presumably caused by electron-neutral collisions, is much greater than theoretical estimates for neoclassical diffusion in a classical stellarator with strong radial electric fields. In fact the confinement time is on the order of the electron-neutral collision time. Ion accumulation, electron attachment, and other effects are considered, but do not explain the observed transport rates

  1. Compression of a mixed antiproton and electron non-neutral plasma to high densities

    Science.gov (United States)

    Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano

    2018-04-01

    We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

  2. Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects

    Directory of Open Access Journals (Sweden)

    J. Z. G. Ma

    2011-01-01

    Full Text Available Nonlinear "oscilliton" structures features a low-frequency (LF solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles, but on initial conditions as well.

  3. First experimental result of toroidal confinement of non-neutral plasma on Proto-RT

    International Nuclear Information System (INIS)

    Himura, H.; Yoshida, Z.; Morikawa, J.

    1999-01-01

    Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been just initiated. The goal of Proto-RT is to explore an innovative way which has a possibility to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasma (n e ∼10 12 m -3 ) is successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasma is the order of 1 sec. A shear effect of magnetic fields seems to result in longer confinement. The non-neutrality of Δn e ∼10 12 m -3 is already beyond the value required to produce an enough self-electric field E in plasma, causing a strong ExB flow thoroughly all over the plasma where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasma. (author)

  4. Ergonomic assessment of the posture of surgeons performing endoscopic transurethral resections in urology

    Directory of Open Access Journals (Sweden)

    Sökeland Jürgen

    2009-10-01

    Full Text Available Abstract Background During transurethral endoscopic prostate and bladder operations the influence of an ergonomic redesign of the arrangement of the operation equipment - including the introduction of a video-assisted resection method ('monitor endoscopy' instead of directly viewing onto the operation area via the endoscope ('direct endoscopy' - was studied with respect to the postures of the surgeons. Methods Postures were analysed on the basis of video recordings of the surgeons performed in the operation theatre during live operations and subsequent visual posture estimation executed by an observer. In particular, head, trunk and arm positions were assigned to posture categories according to a newly developed posture classification schema. 10 urological operations with direct endoscopy and 9 with monitor endoscopy were included. Results Application of direct endoscopy coincides with distinct lateral and sagittal trunk and head inclinations, trunk torsion and strong forearm and upper arm elevations of the surgeons whereas operations with monitor endoscopy were performed with an almost upright head and trunk and hanging arms. The disadvantageous postures observed during direct endoscopy are mainly caused by the necessity to hold the endoscope continuously in close contact with the eye. Conclusion From an ergonomic point of view, application of the video-assisted resection method should be preferred in transurethral endoscopic operations in order to prevent awkward postures of the surgeons and to limit muscular strain and fatigue. Furthermore, the application of the monitor method enables the use of a chair equipped with back support and armrests and benefits the reduction of postural stress.

  5. The variability of the trunk forward bending in standing activities during work vs. leisure time

    DEFF Research Database (Denmark)

    Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk

    2017-01-01

    . The study was conducted on 657 blue-collar workers. Two accelerometers were used to identify the body posture and forward bending of the trunk during work and leisure time. The pattern of forward bending was analyzed using exposure variation analysis (EVA). The recordings comprised of 2.6 ± 0.97 working...

  6. Effects of unexpected lateral mass placement on trunk loading in lifting

    NARCIS (Netherlands)

    van der Burg, J.C.E.; Kingma, I.; van Dieen, J.H.

    2003-01-01

    Study Design. A repeated measurements experiment of spinal loading in healthy subjects. Objectives. To test whether unexpected lateral mass placement increases low back loading and trunk movement when subjects are lifting a mass in upright posture. Summary of Background Data. Epidemiologic studies

  7. Analysis of right anterolateral impacts: the effect of trunk flexion on the cervical muscle whiplash response

    Directory of Open Access Journals (Sweden)

    Narayan Yogesh

    2006-05-01

    Full Text Available Abstract Background The cervical muscles are considered a potential site of whiplash injury, and there is a need to understand the cervical muscle response under non-conventional whiplash impact scenarios, including variable body position and impact direction. There is no data, however, on the effect of occupant position on the muscle response to frontal impacts. Therefore, the objective of the study was to measure cervical muscle response to graded right anterolateral impacts. Methods Twenty volunteers were subjected to right anterolateral impacts of 4.3, 7.8, 10.6, and 12.8 m/s2 acceleration with their trunk flexed forward 45 degrees and laterally flexed right or left by 45 degrees. Bilateral EMG of the sternocleidomastoids, trapezii, and splenii capitis and acceleration of the sled, torso, and head were measured. Results and discussion With either direction of trunk flexion at impact, the trapezius EMGs increased with increasing acceleration (p Conclusion When the subject sits with trunk flexed out of neutral posture at the time of anterolateral impact, the cervical muscle response is dramatically reduced compared to frontal impacts with the trunk in neutral posture. In the absence of bodily impact, the flexed trunk posture appears to produce a biomechanical response that would decrease the likelihood of cervical muscle injury in low velocity impacts.

  8. Stability and Control of Human Trunk Movement During Walking.

    Science.gov (United States)

    Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.

    1998-01-01

    A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.

  9. PRICE RIGIDITY AND MONETARY NON-NEUTRALITY IN DEVELOPING COUNTRIES: EVIDENCE FROM NIGERIA

    Directory of Open Access Journals (Sweden)

    Nathaniel E. Urama

    2013-04-01

    Full Text Available In an attempt to find out the degree of monetary non-neutrality in Nigeria we started from finding out the size of price rigidity in the country. Computation with Ball and Romer method showed that price rigidity is optimal decision for firms in Nigeria only when the menu cost is well above 2.28% of the firm’s revenue which is on the high side, showing the likelihood of weak price rigidity in the country. Confirming this, the IRFs of the SVAR shows that the response of inflation to nominal shock has only one period lag. These combined results led to a small though persistent response of output to the nominal shock. The result of the study therefore points towards large nominal and small real effect of monetary policy in Nigeria and conclude that monetary policy will be a better option for contractionary plan but not for an expansionary plan.

  10. Parameter Dependence of Inward Diffusion on Injected Electrons in Helical Non-Neutral Plasmas

    International Nuclear Information System (INIS)

    Wakabayashi, H.; Himura, H.; Fukao, M.; Yoshida, Z.

    2003-01-01

    Experimental studies on an electron injection into a helical magnetic field and characteristics of non-neutral plasmas have been performed. It is found that the space potential φs has a weak dependence on the injection angle except for a narrow 'window' region in which φs significantly drops. A calculation shows that because of the electric field Eg of the electron gun (e-gun), the emitted electrons are launched quasi-parallel to the helical magnetic field B, regardless of α. This seems to agree with the observation. The 'window' seen in the data may be attributed to an current-driven instability which might result in the insufficient electron penetration or the degradation of electron confinement in the magnetic surface

  11. Experimental observation of fluid echoes in a non-neutral plasma

    International Nuclear Information System (INIS)

    Yu, Jonathan H.; Driscoll, C. Fred

    2002-01-01

    Experimental observation of a nonlinear fluid echo is presented which demonstrates the reversible nature of spatial Landau damping, and that non-neutral plasmas behave as nearly ideal 2D fluids. These experiments are performed on UCSD's CamV Penning-Malmberg trap with magnetized electron plasmas. An initial m i =2 diocotron wave is excited, and the received wall signal damps away in about 5 wave periods. The density perturbation filaments are observed to wrap up as the wave is spatially Landau damped. An m t =4 'tickler' wave is then excited, and this wave also Landau damps. The echo consists of a spontaneous appearance of a third m e =2 wave after the responses to the first two waves have inviscidly damped away. The appearance time of the echo agrees with theory, and data suggests the echo is destroyed at least partly due to saturation

  12. Industrial Structure, Menu Costs and the Non-Neutrality of Money

    DEFF Research Database (Denmark)

    Dixon, Huw David; Hansen, Claus Thustrup

    by perfect competition. The mixed industrial structure implies that there is a misallocation of the input (labour) between sectors. Following a 5% monetary expansion, the menu costs required for price rigidity in the monopolistic sector can be 50 times smaller than in the symmetric case, while the ratio......New Keynesian literature assumes symmetric industrial structure when analysing explanations of monetary non-neutrality. We analyse the impact of modifying this assumption by allowing for a mixed industrial structure; some industries are characterized by monopolistic competition, and others...... of welfare gain to private loss can be as large as 200 times the corresponding symmetric case. This implies that in real world economies, menu costs may be even more significant than previously thought...

  13. Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution

    Science.gov (United States)

    Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan

    2016-10-01

    Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.

  14. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Fawcett

    2011-02-01

    Full Text Available Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.

  15. A flexed posture in elderly patients is associated with impairments in postural control during walking.

    Science.gov (United States)

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C

    2014-02-01

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    Science.gov (United States)

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.

  17. Muscular condition and trunk stability in judoka of national and international level

    Directory of Open Access Journals (Sweden)

    Casto Juan-Recio

    2013-12-01

    Full Text Available Background: It is theorized that the development of the ability to stabilize the trunk may improve the performance of a judoka because it improves body balance control and optimizes force transmission from the lower extremities to the upper limbs. However, there is a lack of scientific evidence to establish a clear relationship between trunk stability and performance in judo.Aim: The purpose of this study was to determine whether the quantification of trunk stability and muscular strength and endurance allowed differentiation between national level (n = 7 and international level judoka (n = 6. In addition, the relationship between trunk stability and muscular strength and endurance of the muscles involved in trunk stability control was analyzed.Method: To assess trunk stability, trunk responses to sudden loads applied by a pneumatic mechanism were analyzed, as well as trunk postural control through an unstable sitting paradigm. Muscular strength and endurance were assessed via a flexion and extension trunk test using an isokinetic dynamometer.Results/Conclusions: International level judokas showed lower CoP displacement in the most complex task in unstable seat (7.00 ± 1.19 vs 8.93 ± 1.45 mm, T = .025 and higher absolute and relative peak torque in extensor muscles (7.05 ± 0.87 vs 5.74 ± 0.72 Nm, T = .013 than national level judoka. According to these results, core stability and trunk muscular condition are important qualities in the physical training of elite judoka. Correlational analysis found no relation between the analyzed variables, thus muscular strength and endurance appear to have a non-significant effect on performance in the trunk stability tests.

  18. Spinal mobility and trunk muscle strength in elite hockey players.

    Science.gov (United States)

    Lindgren, S; Twomey, L

    1988-01-01

    Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.

  19. Neuromuscular Impairments Are Associated With Impaired Head and Trunk Stability During Gait in Parkinson Fallers.

    Science.gov (United States)

    Cole, Michael H; Naughton, Geraldine A; Silburn, Peter A

    2017-01-01

    Background The trunk plays a critical role in attenuating movement-related forces that threaten to challenge the body's postural control system. For people with Parkinson's disease (PD), disease progression often leads to dopamine-resistant axial symptoms, which impair trunk control and increase falls risk. Objective This prospective study aimed to evaluate the relationship between impaired trunk muscle function, segmental coordination, and future falls in people with PD. Methods Seventy-nine PD patients and 82 age-matched controls completed clinical assessments and questionnaires to establish their medical history, symptom severity, balance confidence, and falls history. Gait characteristics and trunk muscle activity were assessed using 3-dimensional motion analysis and surface electromyography. The incidence, cause, and consequence of any falls experienced over the next 12 months were recorded and indicated that 48 PD and 29 control participants fell at least once during this time. Results PD fallers had greater peak and baseline lumbar multifidus (LMF) and thoracic erector spinae (TES) activations than control fallers and nonfallers. Analysis of covariance indicated that the higher LMF activity was attributable to the stooped posture adopted by PD fallers, but TES activity was independent of medication use, symptom severity, and trunk orientation. Furthermore, greater LMF and TES baseline activity contributed to increasing lateral head, trunk, and pelvis movements in PD fallers but not nonfallers or controls. Conclusions The results provide evidence of neuromuscular deficits for PD fallers that are independent of medications, symptom severity, and posture and contribute to impaired head, trunk, and pelvis control associated with falls in this population. © The Author(s) 2016.

  20. Clinical working postures of bachelor of oral health students.

    Science.gov (United States)

    Horton, S J; Johnstone, C L; Hutchinson, C M W; Taylor, P A; Wade, K J

    2011-09-01

    To observe and describe the clinical working postures of final-year Bachelor of Oral Health (BOH) students. Pilot observational study. The University of Otago Faculty of Dentistry and School of Physiotherapy. Eight final-year BOH students voluntarily participated in this study, where postural data were collected using a digital video camera during a standard clinical treatment session. The postural data were analysed using 3D Match biomechanical software. Final-year BOH students who work in the seated position are exposed to neck flexion of greater than 35 degrees, together with trunk flexion greater than 20 degrees and bilateral elbow flexion greater than 90 degrees. The findings of this study agree with the findings of previous postural studies of dental professionals. Dental hygiene students, together with their clinical supervisors, need to be aware of the importance of good working posture early in their careers, and pay particular attention to the degree of neck flexion occurring for prolonged periods.

  1. Somatic features and body posture in children with scoliosis and scoliotic posture

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2017-08-01

    Full Text Available Abstract The aim of the study was to evaluate the relationship between somatic features and body posture in children with scoliosis and scoliotic posture. The study included 28 girls aged 7-18 with scoliosis and scoliotic posture. The selection of the subjects was deliberate. Height measurements were conducted with an anthropometer and weight measurements were done with an electronic scale. Body posture tests were performed using Exhibeon 3D digital photogrammetry and digital radiographs. The significant Spearman correlations between postural variables for the sagittal plane and the somatic variables regarded: trunk inclination angle and BMI (R= 0,4553, p= p=0,015, Abs of the trunk inclination angle and BMI (R = 0.5522, p = 0.002, length of thoracic kyphosis and BMI (R=0,4147, p=0.028, lumbar lordosis and BMI (R=0,4509, p=0,016. The significant Spearman correlations between scoliotic posture variables and the somatic variables concerned: length of primary lordosis and body height (R =0,4923, p=0.008, the length of the primary lordosis and body mass (R = 0.3932, p = 0.038, the length of the primary lordosis and BMI (R=0,4923, p=0.008. Variation analysis regarding postural (Exhibeon and somatic variables showed significant correlations between the direction of the primary curvature and body mass (p=0,0432, body height and primary angle location (p=0,0290 and between the height of the body and the location of the secondary angle (p = 0,0278.

  2. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial

  3. Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments.

    Science.gov (United States)

    Encheff, Jenna L; Armstrong, Charles; Masterson, Michelle; Fox, Christine; Gribble, Phillip

    2012-01-01

    This study investigated the effects of a 10-week hippotherapy program on trunk, pelvis, and hip joint positioning during the stance phase of gait. Eleven children (6 boys and 5 girls; 7.9 ± 2.7 years) with neurological disorders and impaired ambulation participated. Joint range of motion data were collected via 3-dimensional computerized gait analysis before and after the program. Paired t tests were performed on kinematic data for each joint. Significant improvements (P ≤ .008) and large effect sizes (ESs) for sagittal plane hip positions at initial contact and toe-off were found. No differences in pelvic or trunk positioning were determined, although sagittal plane pelvic positioning displayed a trend toward improvement with large ESs. Several trunk variables displayed moderate ESs with a trend toward more upright positioning. Improvements in pelvic and hip joint positioning and more normalized vertical trunk position may indicate increased postural control during gait after 10 sessions of hippotherapy.

  4. First observations of partially neutralized and quasineutral plasmas in the Columbia Non-neutral Torus

    Science.gov (United States)

    Sarasola, Xabier; Brenner, Paul; Hahn, Michael; Pedersen, Thomas

    2009-11-01

    The Columbia Non-neutral Torus (CNT) is the first stellarator devoted to the study of pure electron, partially neutralized and positron-electron plasmas. To date, CNT usually operates with electron rich plasmas (with negligible ion density) [1], but a stellarator can also confine plasmas of arbitrary degree of neutralization. In CNT the accumulation of ions alters the equilibrium of electron plasmas and a global instability has been observed when the ion fraction exceeds 10 %. A characterization of this instability is presented in [2], analyzing its parameter dependence and spatial structure (non- resonant with rational surfaces). A new set of experiments is currently underway studying plasmas of arbitrary degree of neutralization, ranging from pure electron to quasineutral plasmas. Basic observations show that the plasma potential decouples from emitter bias when we increase the degree of the neutralization of our plasmas. Partially neutralized plasmas are also characterized by multiple mode behavior with dominant modes between 20 and 200 kHz. When the plasma becomes quasineutral, it reverts to single mode behavior. The first results on partially neutralized plasmas confined on magnetic surfaces will be presented. [1] J. Kremer, PRL 97, (2006) 095003 [2] Q. Marksteiner, PRL 100 (2008) 065002

  5. Finite-Length Diocotron Modes in a Non-neutral Plasma Column

    Science.gov (United States)

    Walsh, Daniel; Dubin, Daniel

    2017-10-01

    Diocotron modes are 2D distortions of a non-neutral plasma column that propagate azimuthally via E × B drifts. While the infinite-length theory of diocotron modes is well-understood for arbitrary azimuthal mode number l, the finite-length mode frequency is less developed (with some exceptions), and is naturally of relevance to experiments. In this poster, we present an approach to address finite length effects, such as temperature dependence of the mode frequency. We use a bounce-averaged solution to the Vlasov Equation, in which the Vlasov Equation is solved using action-angle variables of the unperturbed Hamiltonian. We write the distribution function as a Fourier series in the bounce-angle variable ψ, keeping only the bounce-averaged term. We demonstrate a numerical solution to this equation for a realistic plasma with a finite Debye Length, compare to the existing l = 1 theory, and discuss possible extensions of the existing theory to l ≠ 1 . Supported by NSF/DOE Partnership Grants PHY1414570 and DESC0002451.

  6. Toroidal equilibrium of a non-neutral plasma with toroidal current, inertia and pressure

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Avinash, K.

    1992-01-01

    Equilibrium of non-neutral clouds in a toroidal vessel with toroidal magnetic field is demonstrated in the presence of a toroidal current, finite mass and finite pressure. With a toroidal current, it is shown that in a large-aspect-ratio conducting torus the equilibrium is governed by competition between forces produced by image charges and image currents. When μ 0 ε 0 E r 2 >B θ 2 (whe re E r and B θ are the self electrostatic and self magnetic fields of the cloud), the confinement is electrostatic and plasma shifts inwards; when μ 0 ε 0 E r 2 θ 2 , the confinement is magnetic and plasma shifts outwards. For μ 0 ε 0 E r 2 = B θ 2 there is no equilibrium. With finite mass or finite pressure, it is shown, in a large-aspect-ratio approximation, that the fluid drift surfaces and equipotential surfaces are displaced with respect to each other. In both cases the fluid drift surfaces are shifted inwards from the equipotential surfaces. (author)

  7. Meta-analysis: association between wrist posture and carpal tunnel syndrome among workers.

    Science.gov (United States)

    You, Doohee; Smith, Allan H; Rempel, David

    2014-03-01

    Carpal tunnel syndrome (CTS) is a common work-related peripheral neuropathy. In addition to grip force and repetitive hand exertions, wrist posture (hyperextension and hyperflexion) may be a risk factor for CTS among workers. However, findings of studies evaluating the relationship between wrist posture and CTS are inconsistent. The purpose of this paper was to conduct a meta-analysis of existing studies to evaluate the evidence of the relationship between wrist posture at work and risk of CTS. PubMed and Google Scholar were searched to identify relevant studies published between 1980 and 2012. The following search terms were used: "work related", "carpal tunnel syndrome", "wrist posture", and "epidemiology". The studies defined wrist posture as the deviation of the wrist in extension or flexion from a neutral wrist posture. Relative risk (RR) of individual studies for postural risk was pooled to evaluate the overall risk of wrist posture on CTS. Nine studies met the inclusion criteria. All were cross-sectional or case-control designs and relied on self-report or observer's estimates for wrist posture assessment. The pooled RR of work-related CTS increased with increasing hours of exposure to wrist deviation or extension/flexion [RR = 2.01; 95% confidence interval (CI): 1.646-2.43; p Workplace interventions to prevent CTS should incorporate training and engineering interventions that reduce sustained non-neutral wrist postures.

  8. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    International Nuclear Information System (INIS)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikić, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  9. Control of trunk motion following sudden stop perturbations during cart pushing.

    Science.gov (United States)

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2011-01-04

    External perturbations during pushing tasks have been suggested to be a risk factor for low-back symptoms. An experiment was designed to investigate whether self-induced and externally induced sudden stops while pushing a high inertia cart influence trunk motions, and how flexor and extensor muscles counteract these perturbations. Twelve healthy male participants pushed a 200 kg cart at shoulder height and hip height. Pushing while walking was compared to situations in which participants had to stop the cart suddenly (self-induced stop) or in which the wheels of the cart were unexpectedly blocked (externally induced stop). For the perturbed conditions, the peak values and the maximum changes from the reference condition (pushing while walking) of the external moment at L5/S1, trunk inclination and electromyographic amplitudes of trunk muscles were determined. In the self-induced stop, a voluntary trunk extension occurred. Initial responses in both stops consisted of flexor and extensor muscle cocontraction. In self-induced stops this was followed by sustained extensor activity. In the externally induced stops, an external extension moment caused a decrease in trunk inclination. The opposite directions of the internal moment and trunk motion in the externally induced stop while pushing at shoulder height may indicate insufficient active control of trunk posture. Consequently, sudden blocking of the wheels in pushing at shoulder height may put the low back at risk of mechanical injury. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Monosynaptic Stretch Reflex Fails to Explain the Initial Postural Response to Sudden Lateral Perturbations

    Directory of Open Access Journals (Sweden)

    Andreas Mühlbeier

    2017-06-01

    Full Text Available Postural reflexes are essential for locomotion and postural stability, and may play an important role in the etiology of chronic back pain. It has recently been theoretically predicted, and with the help of unilateral perturbations of the trunk experimentally confirmed that the sensorimotor control must lower the reflex amplitude for increasing reflex delays to maintain spinal stability. The underlying neuromuscular mechanism for the compensation of postural perturbations, however, is not yet fully understood. In this study, we applied unilateral and bilateral sudden external perturbations to the trunk of healthy subjects and measured the muscular activity and the movement onset of the trunk. We found that the onset of the trunk muscle activity is prior to, or coincident with, the onset of the trunk movement. Additionally, the results of our experiments imply that the muscular response mechanism integrates distant sensory information from both sides of the body. These findings rule out a simple monosynaptic stretch reflex in favor of a more complex polysynaptic postural reflex mechanism to compensate postural perturbations. Moreover, the previously predicted negative correlation between reflex delay and reflex gain was also confirmed for bilateral perturbations.

  11. Determining postural stability

    Science.gov (United States)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  12. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  13. Development of low postural tone compensatory patterns in children - theoretical basis.

    Science.gov (United States)

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.

  14. The functional effect of segmental trunk and head control training in moderate-to-severe cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Woollacott, Marjorie; Bencke, Jesper

    2018-01-01

    . Outcomes were Gross Motor Function Measure (GMFM), Pediatric Evaluation of Disability Inventory (PEDI), Segmental Assessment of Trunk Control (SATCo), and postural sway at baseline, at primary endpoint (6 months), and at follow-up (12 months). RESULTS: There were no significant differences in either GMFM...

  15. Lack of protection following passive transfer of polyclonal highly functional low-dose non-neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Dugast

    Full Text Available Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC, are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC, we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.

  16. Trunk proprioception adaptations to creep deformation.

    Science.gov (United States)

    Abboud, Jacques; Rousseau, Benjamin; Descarreaux, Martin

    2018-01-01

    This study aimed at identifying the short-term effect of creep deformation on the trunk repositioning sense. Twenty healthy participants performed two different trunk-repositioning tasks (20° and 30° trunk extension) before and after a prolonged static full trunk flexion of 20 min in order to induce spinal tissue creep. Trunk repositioning error variables, trunk movement time and erector spinae muscle activity were computed and compared between the pre- and post-creep conditions. During the pre-creep condition, significant increases in trunk repositioning errors, as well as trunk movement time, were observed in 30° trunk extension in comparison to 20°. During the post-creep condition, trunk repositioning errors variables were significantly increased only when performing a 20° trunk extension. Erector spinae muscle activity increased in the post-creep condition, while it remained unchanged between trunk repositioning tasks. Trunk repositioning sense seems to be altered in the presence of creep deformation, especially in a small range of motion. Reduction of proprioception acuity may increase the risk of spinal instability, which is closely related to the risk of low back pain or injury.

  17. The study of postural workload in assembly of furniture upholstery

    Directory of Open Access Journals (Sweden)

    Marek Lasota Andrzej

    2017-01-01

    Full Text Available The productivity of the workers is affected by the Work-related Musculoskeletal Disorders (WRMSDs which common cause of health problems, sick leave and it can result in decreased quality of work and increased absenteeism. The objective of this study is to evaluate and investigate the postural workload of sewing machine operators in the assembly of upholstery in furniture factory by using the Ovako Working Posture Analysing System (OWAS with sampling. The results indicated that posture code 2111 (back code: 2 – bent forward; arms code: 1 – both below the shoulder joint; legs code: 1 – sitting position; load code: – 1 less than 10 kg was the most common working posture rating 38.1%; 63.9% of positions displayed non-neutral back postures and 52% received harmful action categories. The performed assembly tasks have an influence on harmless and harmful action categories. This study is crucial on assembly, and in the future work allows develop a framework for assessment the physical risk of WRMSDs in assembly.

  18. Increased dynamic regulation of postural tone through Alexander Technique training.

    Science.gov (United States)

    Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E

    2011-02-01

    Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Spinal curvature and characteristics of postural change in pregnant women.

    Science.gov (United States)

    Okanishi, Natsuko; Kito, Nobuhiro; Akiyama, Mitoshi; Yamamoto, Masako

    2012-07-01

    Pregnant women often report complaints due to physiological and postural changes. Postural changes during pregnancy may cause low back pain and pelvic girdle pain. This study aimed to compare the characteristics of postural changes in pregnant compared with non-pregnant women. Prospective case-control study. Pregnancy care center. Fifteen women at 17-34 weeks pregnancy comprised the study group, while 10 non-pregnant female volunteers comprised the control group. Standing posture was evaluated in the sagittal plane with static digital pictures. Two angles were measured by image analysis software: (1) between the trunk and pelvis; and (2) between the trunk and lower extremity. Spinal curvature was measured with Spinal Mouse® to calculate the means of sacral inclination, thoracic and lumbar curvature and inclination. The principal components were calculated until eigenvalues surpassed 1. Three distinct factors with eigenvalues of 1.00-2.49 were identified, consistent with lumbosacral spinal curvature and inclination, thoracic spine curvature, and inclination of the body. These factors accounted for 77.2% of the total variance in posture variables. Eleven pregnant women showed postural characteristics of lumbar kyphosis and sacral posterior inclination. Body inclination showed a variety of patterns compared with those in healthy women. Spinal curvature demonstrated a tendency for lumbar kyphosis in pregnant women. Pregnancy may cause changes in spinal curvature and posture, which may in turn lead to relevant symptoms. Our data provide a basis for investigating the effects of spinal curvature and postural changes on symptoms during pregnancy. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  20. Is the basic trunk control recovery different between stroke patients with right and left hemiparesis?

    Science.gov (United States)

    Pappalardo, A; Ciancio, M R; Patti, F

    2014-01-01

    Basic trunk movement control is often impaired after stroke and its recovery is a "miliary stone" in rehabilitation. In this prospective, observational, parallel-group study, we investigated whether there are differences in terms of post-stroke recovery of basic trunk control between patients with left or with right hemiparesis. We recruited 94 patients with loss of postural trunk control due to stroke. Patients were divided into Group A (48 patients with left hemiparesis) and Group B (46 patients with right hemiparesis). We administered the Trunk Control Test (TCT) and the 13 motor items included on the Functional Independence Measure. Evaluation was performed at admission (To) and discharge (T1). TCT increased respectively from 46.7 ± 23.3 to 62.6 ± 19.5 (mean ± standard deviation-SD, p hemiparesis could affect the degree of recovery of basic trunk control after stroke. Patients with right hemiparesis benefit more than those with left hemiparesis. Improvement of basic trunk control was not responsible for an advantage on functional independence.

  1. Decreased Respiratory Muscle Function Is Associated with Impaired Trunk Balance among Chronic Stroke Patients: A Cross-sectional Study.

    Science.gov (United States)

    Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee

    2018-06-01

    The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.

  2. The effects of smart phone gaming duration on muscle activation and spinal posture: Pilot study.

    Science.gov (United States)

    Park, Joo-Hee; Kang, Sun-Young; Lee, Sa-Gyeom; Jeon, Hye-Seon

    2017-08-01

    This study investigates changes in the posture angles of the neck and trunk, together with changes in the muscle activation of users, at the start of and at 5, 10, and 15 minutes of smartphone use. Eighteen males participated in this study. Surface electromyography (EMG) and a digital camera were used to measure the muscle activation and angular changes of the neck and trunk of participants during smartphone use for a period of 16 minutes. Neck and trunk flexion significantly increased at 5, 10, and 15 minutes (p smartphone usage. The EMG activation and 10th%amplitude probability distribution function (APDF) values of the bilateral cervical erector spinae at 5-6, 10-11, and 15-16 minutes of usage (p Smartphone use induced more flexed posture on the neck and trunk than other visual display terminal (VDT) work. Smartphone use also changed posture and muscle activation within a relatively short amount of time, just 5 minutes. Pain after 16 minutes of smartphone use was also observed. Thus, clinicians should consider the influences of smartphone use in posture and muscle activity in evaluation, intervention, and prevention of neck and trunk conditions.

  3. Effects of altered sagittal trunk orientation on kinetic pattern in able-bodied walking on uneven ground

    Directory of Open Access Journals (Sweden)

    Soran Aminiaghdam

    2017-07-01

    Full Text Available Studies of disturbed human locomotion often focus on the dynamics of the gait when either posture, movement or surface is perturbed. Yet, the interaction effects of variation of trunk posture and ground level on kinetic behaviour of able-bodied gait have not been explored. For 12 participants we investigated the kinetic behaviour, as well as velocity and contact time, across four steps including an unperturbed step on level ground, pre-perturbation, perturbation (10-cm drop and post-perturbation steps while walking with normal speed with four postures: regular erect, with 30°, 50° and maximal sagittal trunk flexion (70°. Two-way repeated measures ANOVAs detected significant interactions of posture×step for the second peak of the vertical ground reaction force (GRF, propulsive impulse, contact time and velocity. An increased trunk flexion was associated with a systematic decrease of the second GRF peak during all steps and with a decreased contact time and an increased velocity across steps, except for the perturbation step. Pre-adaptations were more pronounced in the approach step to the drop in regular erect gait. With increased trunk flexion, walking on uneven ground exhibited reduced changes in GRF kinetic parameters relative to upright walking. It seems that in trunk-flexed gaits the trunk is used in a compensatory way during the step-down to accommodate changes in ground level by adjusting its angle leading to lower variations in centre of mass height. Exploitation of this mechanism resembles the ability of small birds in adjusting their zig-zag-like configured legs to cope with changes in ground level.

  4. Guide to Good Posture

    Science.gov (United States)

    ... you are moving or still, can prevent pain, injuries, and other health problems. What is posture? Posture is how you hold your body. There are two types: Dynamic posture is how you hold yourself when you are moving, like when you are walking, running, or bending over to pick up something. Static ...

  5. Multi-joint postural behavior in patients with knee osteoarthritis.

    Science.gov (United States)

    Turcot, Katia; Sagawa, Yoshimasa; Hoffmeyer, Pierre; Suvà, Domizio; Armand, Stéphane

    2015-12-01

    Previous studies have demonstrated balance impairment in patients with knee osteoarthritis (OA). Although it is currently accepted that postural control depends on multi-joint coordination, no study has previously considered this postural strategy in patients suffering from knee OA. The objectives of this study were to investigate the multi-joint postural behavior in patients with knee OA and to evaluate the association with clinical outcomes. Eighty-seven patients with knee OA and twenty-five healthy elderly were recruited to the study. A motion analysis system and two force plates were used to investigate the joint kinematics (trunk and lower body segments), the lower body joint moments, the vertical ground reaction force ratio and the center of pressure (COP) during a quiet standing task. Pain, functional capacity and quality of life status were also recorded. Patients with symptomatic and severe knee OA adopt a more flexed posture at all joint levels in comparison with the control group. A significant difference in the mean ratio was found between groups, showing an asymmetric weight distribution in patients with knee OA. A significant decrease in the COP range in the anterior-posterior direction was also observed in the group of patients. Only small associations were observed between postural impairments and clinical outcomes. This study brings new insights regarding the postural behavior of patients with severe knee OA during a quiet standing task. The results confirm the multi-joint asymmetric posture adopted by this population. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.

    Science.gov (United States)

    Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H

    1994-04-01

    This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.

  7. Divergence at neutral and non-neutral loci in Drosophila buzzatii populations and their hybrids

    DEFF Research Database (Denmark)

    Andersen, Ditte Holm; Pertoldi, Cino; Loeschcke, Volker

    2008-01-01

    The impact of intraspecific hybridisation on fitness and morphological traits depends on the history of natural selection and genetic drift, which may have led to differently coadapted gene-complexes in the parental populations. The divergence at neutral and non-neutral loci between populations can...... populations of Drosophila buzzatii, one between populations from Argentina and the Canary Islands (separated for 200 years), and the other between populations from Argentina and Australia (separated for 80 years). We observed the highest divergence at neutral loci between the Argentinean and Canary Island...

  8. Observation of transverse and longitudinal modes in non-neutral electron clouds confined in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1979-01-01

    Electrostatic modes on non-neutral electron clouds confined in a magnetic mirror field have been investigated. The cloud contains 2 x 10 11 electrons at an average kinetic energy of 0.3 MeV for a magnetic field with a peak intensity of 9 kG at the midplane. It was found that the cloud is moving azimuthally as well as longitudinally. The azimuthal motion has an m=1 spatial nature. The longitudinal modes have a more complicated nature, but their frequency equals that of the azimuthal mode

  9. Microwave sensing of tree trunks

    Science.gov (United States)

    Jezova, Jana; Mertens, Laurence; Lambot, Sebastien

    2015-04-01

    The main subject of this research is the observation of the inner part of living tree trunks using ground-penetrating radar (GPR). Trees are everyday part of human life and therefore it is important to pay attention to the tree conditions. The most obvious consequence of the poor tree condition is dead or injury caused by falling tree. The trunk internal structure is divided into three main parts: heartwood, sapwood and bark, which make this medium highly anisotropic and heterogeneous. Furthermore, the properties of the wood are not only specie-dependent but also depend on genetic and on environmental conditions. In urban areas the main problem for the stability of the trees relies in the apparition of decays provoked by fungi, insect or birds. This results in cavities or decreasing of the support capacity of the tree. GPR has proved itself to be a very powerful electromagnetic tool for non-destructive detection of buried objects. Since the beginning of the 20th century it has been used in several different areas (archaeology, landmine detection, civil engineering, ...). GPR uses the principle of the scattering of the electromagnetic waves that are radiated from a transmitting antenna. Then the waves propagate through the medium and are reflected from the object and then they are received by a receiving antenna. The velocity of the scattered signal is determined primarily by the permittivity of the material. The optimal functionality of the GPR was investigated using the numerical simulation tool gprMax2D. This tool is based on a Finite-Difference Time-Domain (FDTD) numerical model. Subsequently, the GPR functionality was tested using the laboratory model of a decayed tree trunk. Afterwards, the results and lessons learnt in the simplified tests will be used in the processing of the real data and will help to achieve deeper understanding of them. The laboratory model of the tree trunk was made by plastic or carton pipes and filled by sand. Space inside the model

  10. COELIAC TRUNK BRANCHING PATTERN AND VARIATION

    Directory of Open Access Journals (Sweden)

    Jude Jose Thomson

    2017-01-01

    Full Text Available BACKGROUND Anatomical variations involving the visceral arteries are common. However, variations in coeliac trunk are usually asymptomatic, they may become important in patients undergoing diagnostic angiography for gastrointestinal bleeding or prior to an operative procedure. This study was useful for knowing the possible morphological variations before an upper abdominal surgery. MATERIALS AND METHODS This was a descriptive study done by cadaveric dissection, conducted on thirty cadavers. The coeliac trunk being examined for its origin, branching pattern, distribution, and variations. Results were statistically analysed and compared with the previous studies. RESULTS In our study, 60% of the coeliac trunk shows variations and 40% have normal branching pattern. A complete absence of coeliac trunk was observed in one case. In the present study the Right inferior phrenic artery arising from coeliac trunk in 2 cases (6.6% and left inferior phrenic artery arising from coeliac trunk in 3 cases (9.9%. Both inferior phrenic arteries are arising from coeliac trunk in 2 cases (6.6%. The common hepatomesenteric trunk and gastro splenic trunk was found in 1 case (3.3%. Hepatosplenic trunk was found in 2 cases (6.6%. In another 2 cases (6.6% gastric and hepatic artery originate from coeliac trunk but splenic artery has a separate origin from abdominal aorta. An absent trunk was also found in 1 case (3.3%. In 5 cases (16.7% showed trifurcation with variation in the branching pattern. CONCLUSION The branching pattern and extreme degree variability in coeliac trunk as brought out in the observations of the present study make it obvious that the present study almost falls in description with previous studies.

  11. Trunk muscle activity increases with unstable squat movements.

    Science.gov (United States)

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  12. A comparison of economy and sagittal plane trunk movements among back-, back/front- and head-loading.

    Science.gov (United States)

    Hudson, Sean; Cooke, Carlton; Davies, Simeon; West, Sacha; Gamieldien, Raeeq; Low, Chris; Lloyd, Ray

    2018-05-14

    It has been suggested that freedom of movement in the trunk could influence load carriage economy. This study aimed to compare the economy and sagittal plane trunk movements associated with three load carriage methods that constrain posture differently. Eighteen females walked at 3 km.h -1 with loads of 0, 3, 6, 9, 12, 15 and 20 kg carried on the back, back/front and head. Load carriage economy was assessed using the Extra Load Index (ELI). Change in sagittal plane trunk forward lean and trunk angle excursion from unloaded to loaded walking were assessed. Results show no difference in economy between methods (p = 0.483), despite differences in the change in trunk forward lean (p = 0.001) and trunk angle excursion (p = 0.021) from unloaded to loaded walking. We conclude that economy is not different among the three methods of load carriage, despite significant differences in sagittal plane trunk movements.

  13. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity.

    Directory of Open Access Journals (Sweden)

    Brian J Laidlaw

    2013-03-01

    Full Text Available Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential "universal" vaccine.

  14. Biomechanical compensations of the trunk and lower extremities during stepping tasks after unilateral transtibial amputation.

    Science.gov (United States)

    Murray, Amanda M; Gaffney, Brecca M; Davidson, Bradley S; Christiansen, Cory L

    2017-11-01

    Lower extremity movement compensations following transtibial amputation are well-documented and are likely influenced by trunk posture and movement. However, the biomechanical compensations of the trunk and lower extremities, especially during high-demand tasks such as step ascent and descent, remain unclear. Kinematic and kinetic data were collected during step ascent and descent tasks for three groups of individuals: diabetic/transtibial amputation, diabetic, and healthy. An ANCOVA was used to compare peak trunk, hip and knee joint angles and moments in the sagittal and frontal planes between groups. Paired t-tests were used to compare peak joint angles and moments between amputated and intact limbs of the diabetic/transtibial amputation group. During step ascent and descent, the transtibial amputation group exhibited greater trunk forward flexion and lateral flexion compared to the other two groups (Pbiomechanical compensations of the trunk and lower extremities in individuals with dysvascular transtibial amputation, by identifying low back, hip, and knee joint moment patterns unique to transtibial amputation during stepping tasks. In addition, the results suggest that some movement compensations may be confounded by the presence of diabetes and precede limb amputation. The increased and asymmetrical loading patterns identified may predispose individuals with transtibial amputation to the development of secondary pain conditions, such as low back pain or osteoarthritis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Trunk orientation, stability and quadrupedalism

    Directory of Open Access Journals (Sweden)

    Yuri P Ivanenko

    2013-03-01

    Full Text Available Interesting cases of human quadrupedalism described by Uner Tan and colleagues (2005-2012 have attracted the attention of geneticists, neurologists and anthropologists. Since his first publications in 2005, the main attention has focused on the genetic aspects of disorders that lead to quadrupedalism within an evolutionary framework. In recent years this area has undergone a convincing critique (Downey 2010 and ended with a call "... to move in a different direction … away from thinking solely in terms of genetic abnormality and evolutionary atavism". We consider quadrupedalism as a ‘natural experiment’ that may contribute to our knowledge of the physiological mechanisms underlying our balance system and our tendency toward normal (upright posture. Bipedalism necessitates a number of characteristics that distinguish us from our ancestors and present-day mammals, including: size and shape of the bones of the foot, structure of the axial and proximal musculature, and the orientation of the human body and head. In this review we address the results of experimental studies on the mechanisms that stabilize the body in healthy people, as well as how these mechanisms may be disturbed in various forms of clinical pathology. These disturbances are related primarily to automatic rather than voluntary control of posture and suggest that human quadrupedalism is a behavior that can result from adaptive processes triggered by disorders in postural tone and environmental cues. These results will serve as a starting point for comparing and contrasting bi- and quadrupedalism.

  16. Trunk muscle activity is modified in osteoporotic vertebral fracture and thoracic kyphosis with potential consequences for vertebral health.

    Directory of Open Access Journals (Sweden)

    Alison M Greig

    Full Text Available This study explored inter-relationships between vertebral fracture, thoracic kyphosis and trunk muscle control in elderly people with osteoporosis. Osteoporotic vertebral fractures are associated with increased risk of further vertebral fractures; but underlying mechanisms remain unclear. Several factors may explain this association, including changes in postural alignment (thoracic kyphosis and altered trunk muscle contraction patterns. Both factors may increase risk of further fracture because of increased vertebral loading and impaired balance, which may increase falls risk. This study compared postural adjustments in 24 individuals with osteoporosis with and without vertebral fracture and with varying degrees of thoracic kyphosis. Trunk muscle electromyographic activity (EMG associated with voluntary arm movements was recorded and compared between individuals with and without vertebral fracture, and between those with low and high thoracic kyphosis. Overall, elderly participants in the study demonstrated co-contraction of the trunk flexor and extensor muscles during forwards arm movements, but those with vertebral fractures demonstrated a more pronounced co-contraction than those without fracture. Individuals with high thoracic kyphosis demonstrated more pronounced alternating flexor and extensor EMG bursts than those with less kyphosis. Co-contraction of trunk flexor and extensor muscles in older individuals contrasts the alternating bursts of antagonist muscle activity in previous studies of young individuals. This may have several consequences, including altered balance efficacy and the potential for increased compressive loads through the spine. Both of these outcomes may have consequences in a population with fragile vertebrae who are susceptible to fracture.

  17. Posture and low back pain during pregnancy - 3D study.

    Science.gov (United States)

    Glinkowski, Wojciech M; Tomasik, Paweł; Walesiak, Katarzyna; Głuszak, Michał; Krawczak, Karolina; Michoński, Jakub; Czyżewska, Anna; Żukowska, Agnieszka; Sitnik, Robert; Wielgoś, Mirosław

    2016-01-01

    Back pain is a common complaint of pregnant women. The posture, curvatures of the spine and the center of gravity changes are considered as the mechanisms leading to pain. The study aimed to assess spinal curvatures and static postural characteristics with three-dimensional surface topography and search for relationships with the occurrence of back pain complaints among pregnant women. The study was conducted from December 2012 to February 2014. Patients referred from University Clinic of Gynecology and Obstetrics were examined outpatient at the Posture Study Unit of Department of Orthopaedics and Traumatology. Sixty-five women at 4-39 weeks of pregnancy were assessed and surveyed with Oswestry Disability Index; posture was evaluated using surface topography. The study confirmed that difficulties in sitting and standing are significant in the third trimester of the pregnancy. The overall tendency for significant lumbar curvature changes in pregnant women was not confirmed. Major changes in sagittal trunk inclination in relation to the plumb line were not observed in the study group. The issue regarding how the pregnancy causes changes in spinal curvature and posture remains open for further studies. Presented method of 3D surface topography can reveal postural changes, but that requires several exams of each subject and strict follow-up of the series of cases.

  18. Effects of Levodopa on Postural Strategies in Parkinson's disease.

    Science.gov (United States)

    Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay

    2016-05-01

    Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    Science.gov (United States)

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  20. Effects of Vojta method on trunk stability in healthy individuals.

    Science.gov (United States)

    Ha, Sun-Young; Sung, Yun-Hee

    2016-12-01

    Vojta reflex locomotion is important to main upright posture through stimulation of breast zone to patient with cerebral palsy. However, application in other diseases is no investigated. So, we determined the effects of stimulation of the breast zone on trunk stability in healthy individuals. Fourteen young healthy adults (7 males and 7 females) voluntarily participated in this study. The subjects were randomly divided into an experimental group (breast zone) and control group (arbitrary point). All groups were stimulated for 5 min on the left and right sides, respectively, for a total 10 times. We used the thickness of the external oblique abdominal muscle (EO), the internal oblique abdominal muscle, the transversus abdominis muscle (TrA), and the rectus abdominis muscles, as well as the area of the diaphragm by using ultrasonography. In the experimental group, the thickness of the TrA significantly increased during stimulation ( P <0.05) while the thickness of the EO significantly decreased ( P <0.05). Also, the area of diaphragm in inspiration was significantly different ( P <0.05). Therefore, stimulation of the breast zone may be effective to improve trunk stability through activation of the TrA muscle and the diaphragm.

  1. Use of a design challenge to develop postural support devices for intermediate wheelchair users

    Directory of Open Access Journals (Sweden)

    Brenda N. Onguti

    2017-09-01

    Full Text Available The provision of an appropriate wheelchair, one that provides proper fit and postural support, promotes wheelchair users’ physical health and quality of life. Many wheelchair users have postural difficulties, requiring supplemental postural support devices for added trunk support. However, in many low- and middle-income settings, postural support devices are inaccessible, inappropriate or unaffordable. This article describes the use of the design challenge model, informed by a design thinking approach, to catalyse the development of an affordable, simple and robust postural support device for low- and middle-income countries. The article also illustrates how not-for-profit organisations can utilise design thinking and, in particular, the design challenge model to successfully support the development of innovative solutions to product or process challenges.

  2. Development and evaluation of a passive trunk support system for Duchenne muscular dystrophy patients.

    Science.gov (United States)

    Mahmood, Mohammad Nauzef; Peeters, Laura H C; Paalman, Micha; Verkerke, Gijsbertus J; Kingma, Idsart; van Dieën, Jaap H

    2018-03-14

    Patients with Duchenne muscular dystrophy gradually lose the ability to use different muscles of their body. Consequently, they lose the ability to stabilize their trunk against gravity. This hinders them to effectively perform different daily activities. In this paper, we describe the design, realization and evaluation of a trunk orthosis for these patients that should allow them to move their trunk and maintain stability. This study aimed to primarily assess the effectiveness of the trunk support system in terms of unloading of trunk muscles, so only healthy participants were recruited for this phase of the study. Measurements were done on 10 healthy participants (23.4±2.07 [M±SD] years old, average body weight 68.42±24.22 [M±SD] kg). The experiment comprised maintaining a constant trunk posture in three different device conditions (control without orthosis and two conditions with different configurations of the orthosis), at four different flexion angles (10°, 20°, 30°, 40°) for each device condition and for two load conditions (with and without stretching the arms). Electromyography (EMG) signals from the trunk muscles were measured to estimate activation levels of the trunk muscles (iliocostalis, longissimus, external oblique and rectus abdominis) and a motion capture system was used to record the movement of the participants during the experiment. Wearing the orthosis caused reductions in longissimus and iliocostalis activity. The average muscle activity level was 5%-10% of maximum voluntary contraction in the unsupported conditions for those particular muscles. This level was reduced to 3%-9% of maximal voluntary contraction for the supported conditions. No effect on external oblique and rectus abdominis activity was observed. Moreover, no pain or discomfort was reported by any of the participants during the experiment. The results from the current experiment also suggests the necessity of lumber stabilizing systems while using trunk orthosis. The

  3. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; plean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  4. Mobile Phone Use Behaviors and Postures on Public Transportation Systems.

    Science.gov (United States)

    Liang, Huey-Wen; Hwang, Yaw-Huei

    2016-01-01

    Mobile phones are common in our daily life, but the users' preferences for postures or screen operating styles have not been studied. This was a cross-sectional and observational study. We randomly sampled passengers who used mobile phones on the Mass Rapid Transit (MRT) system in metropolitan Taipei. A checklist was used to observe their body postures and screen operating styles while sitting or standing. As a result, 1,230 subjects from 400 trips were observed. Overall, of all the passengers who were sitting, 41% of them were using mobile phones. The majority of the tasks involved browsing (84%) with their phones in a portrait orientation (93%). Different-hand holding/operating was the most commonly used operating style while sitting (46%) and same-hand holding/operating was the most common while standing (46%). The distribution of screen operating styles was significantly different for those sitting than for those standing and for different genders and age groups. The most frequently observed postures while sitting were having one's trunk against a backrest, feet on the floor and with or without an arm supported (58%). As for the users who were standing, the both- and different-hands groups had a high proportion of arms unsupported, feet on the floor and either their trunk supported or not. In contrast, the same-hand group tended to have their trunk unsupported, were holding a pole or handstrap and had both feet on floor. Further studies are warranted to characterize the ergonomic exposure of these commonly used postures and operating styles, and our results will help guide the selection of experimental conditions for laboratory settings.

  5. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    Science.gov (United States)

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  6. Effect of posture on hip joint moment during pregnancy, while performing a standing task.

    Science.gov (United States)

    Paul, J A; Sallé, H; Frings-Dresen, M H W

    1996-03-01

    In this paper the combined effect on reactive hip joint moment due to changes in (1) segment mass, (2) trunk centre of mass, and (3) working posture during pregnancy was estimated, and the relative contributions of these three changes to the change in the moment were assessed. The situation studied concerned standing work at a table. Sixteen women were studied monthly during pregnancy. The working posture was assessed by two-dimensional photographic posture recording and description. Body dimensions were measured to assess segment characteristics. A two-dimensional static model was used to estimate the reactive hip joint moment at 10, 20, 30 and 40 weeks of pregnancy. Between 10 and 40 weeks of pregnancy the moment increase was 52 Nm, i.e. the load at 40 weeks of pregnancy is 2.8 times the load at 10 weeks of pregnancy. On average half of this increase was due to postural changes. Changes in segment mass, trunk centre of mass, and the interaction between the three changes accounted for rougly 10, 20 and 15% of the load increase respectively. The increase in reactive hip joint moment may be minimized by preventing adverse postural changes, and optimizing the posture to reduce the contribution of changes in body weight (distribution).

  7. Changes in gait and posture as factors of dynamic stability during walking in pregnancy.

    Science.gov (United States)

    Krkeljas, Zarko

    2018-04-01

    Changes in gait and postural control during pregnancy may lead to increased fall rates during walking relative to non-pregnant women. Due to lack of empirical evidence on balance and postural control in dynamic conditions, the primary aim of this study was investigate the changes in gait and postural control as factors of stability during walking. Gait and posture of thirty-five (35) pregnant women (27 ± 6.1 years) were analysed at self-selected walking speed, and at different stage of pregnancy. The results indicate that although the gait kinematics did not differ between the trimesters, significant associations were noted between the step width, the lateral trunk lean, and the medio-lateral deviations in centre of gravity and centre of pressure. In contrast to the static conditions, anterior-posterior postural sway is not present during walking, whereas the lateral trunk lean is the primary factor women use in pregnancy to keep the centre of gravity closer to the base of support. Postural changes and those in gait kinematics were largely affected by the relative mass gain, rather than the absolute mass. Considering the importance of relative mass gain, more attention during healthy pregnancy should be given to monitoring the timing of onset of musculoskeletal changes, and design of antenatal exercise programs targeting core strength and pelvic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Three components of postural control associated with pushing in symmetrical and asymmetrical stance.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2013-07-01

    A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.

  9. The effect of externally applied oscillating electric fields on the l=1 and l=2 diocotron modes in non-neutral plasmas

    International Nuclear Information System (INIS)

    Spencer, R.L.

    1990-01-01

    A high-frequency oscillating electric field can change the properties of diocotron modes in non-neutral plasmas. The effect depends crucially on the azimuthal mode number, m, of the applied field. For m=0,±1 there is no effect, and for applied standing waves there is also no effect. But if the applied field has the form of a traveling wave with |m|≥2, the frequency of stable diocotron modes can be modified and for |m|≥3, the l=2 instability of hollow density profiles can be stabilized. The analytic results are verified with a nonlinear fluid simulation of an infinitely long non-neutral plasma

  10. Fingertip touch improves postural stability in patients with peripheral neuropathy.

    Science.gov (United States)

    Dickstein, R; Shupert, C L; Horak, F B

    2001-12-01

    The purpose of this work was to determine whether fingertip touch on a stable surface could improve postural stability during stance in subjects with somatosensory loss in the feet from diabetic peripheral neuropathy. The contribution of fingertip touch to postural stability was determined by comparing postural sway in three touch conditions (light, heavy and none) in eight patients and eight healthy control subjects who stood on two surfaces (firm or foam) with eyes open or closed. In the light touch condition, fingertip touch provided only somatosensory information because subjects exerted less than 1 N of force with their fingertip to a force plate, mounted on a vertical support. In the heavy touch condition, mechanical support was available because subjects transmitted as much force to the force plate as they wished. In the no touch condition, subjects held the right forefinger above the force plate. Antero-posterior (AP) and medio-lateral (ML) root mean square (RMS) of center of pressure (CoP) sway and trunk velocity were larger in subjects with somatosensory loss than in control subjects, especially when standing on the foam surface. The effects of light and heavy touch were similar in the somatosensory loss and control groups. Fingertip somatosensory input through light touch attenuated both AP and ML trunk velocity as much as heavy touch. Light touch also reduced CoP sway compared to no touch, although the decrease in CoP sway was less effective than with heavy touch, particularly on the foam surface. The forces that were applied to the touch plate during light touch preceded movements of the CoP, lending support to the suggestion of a feedforward mechanism in which fingertip inputs trigger the activation of postural muscles for controlling body sway. These results have clinical implications for understanding how patients with peripheral neuropathy may benefit from a cane for postural stability in stance.

  11. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.

    Science.gov (United States)

    Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori

    2016-09-01

    [Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.

  12. Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects.

    Science.gov (United States)

    Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura

    2014-01-01

    The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with 2 types of Parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), and in age-matched control subjects standing under perturbed conditions implemented by the Sensory Organization Test (SOT). Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measured the amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions. PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use of inertial sensors on the upper and lower body segments, is a promising and unobtrusive tool to characterize postural strategies performed to attain balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Holding a handle for balance during continuous postural perturbations – immediate and transitionary effects on whole body posture

    Directory of Open Access Journals (Sweden)

    Jernej Camernik

    2016-09-01

    Full Text Available When balance is exposed to perturbations, hand contacts are often used to assist postural control. We investigated the immediate and the transitionary effects of supportive hand contacts during continuous anteroposterior perturbations of stance by automated waist-pulls. Ten young adults were perturbed for five minutes and required to maintain balance by holding to a stationary, shoulder-high handle and following its removal. Centre of pressure (COP displacement, hip, knee, and ankle angles, leg and trunk muscle activity and handle contact forces were acquired. The analysis of results show that COP excursions are significantly smaller when the subjects utilize supportive hand contact and that the displacement of COP is strongly correlated to the perturbation force and significantly larger in the anterior than posterior direction. Regression analysis of hand forces revealed that subjects utilized the hand support significantly more during the posterior than anterior perturbations. Moreover, kinematical analysis showed that utilization of supportive hand contacts alters posture of the whole body and that postural readjustments after the release of the handle occur at different time scales in the hip, knee, and ankle joints. Overall, our findings show that supportive hand contacts are efficiently used for balance control during continuous postural perturbations and that utilization of a handle has significant immediate and transitionary effects on whole body posture.

  14. Identification of the unstable human postural control system

    Directory of Open Access Journals (Sweden)

    Sungjae eHwang

    2016-03-01

    Full Text Available Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input-output (JIO method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders.

  15. Exercise and Posture

    Science.gov (United States)

    ... About Spondylitis › Treatment Information › Exercise & Posture Print Page Exercise Exercise is an integral part of any spondylitis ... For First Responders For Chiropractors Research Article Archive Exercise Guidelines Having an exercise program that accomplishes your ...

  16. Trunk imbalance in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Fortin, Carole; Grunstein, Erin; Labelle, Hubert; Parent, Stefan; Ehrmann Feldman, Debbie

    2016-06-01

    Trunk imbalance (ie, frontal trunk shift measured with a plumb line from C7 to S1) is part of the clinical evaluation in adolescent idiopathic scoliosis (AIS), but its prevalence and relationship with scoliosis, back pain, and health-related factors are not well documented. The principal objectives are to document trunk imbalance prevalence and to explore the association between trunk imbalance and the following factors: Cobb angle, type of scoliosis, back pain, function, mental health, and self-image. The secondary objective is to determine back pain prevalence and the relationship between back pain and each of the following: Cobb angle, function, mental health, and self-image. This is a cross-sectional study in a scoliosis clinic of a tertiary university hospital center. The sample includes youth with AIS (N=55). The outcome measures were trunk imbalance prevalence and magnitude, and back pain prevalence and intensity using the Numeric Pain Rating Scale (NPRS) and the Scoliosis Research Society-22 (SRS-22) pain score, and the function, self-image, and mental health domains of the SRS-22. Trunk imbalance and back pain were assessed in 55 patients with AIS (Cobb angle: 10-60°). Patients completed the SRS-22 questionnaire and the NPRS. Correlations were done between trunk imbalance and scoliosis (Cobb angle, type of scoliosis), back pain (NPRS and SRS-22 pain score), and health-related factors using Pearson correlation coefficients (r) and logistic regression models. Trunk imbalance prevalence is 85% and back pain prevalence is 73%. We found fair to moderate significant positive correlation between trunk imbalance and Cobb angle (r=0.32-0.66, pself-image, or type of scoliosis. Lower self-reported pain significantly correlated with lower Cobb angles (r=0.29, p=.03), higher function (r=0.55, p=.000), higher self-image (r=0.44, p=.001), and better mental health (r=0.48, p=.000). There was a trend for trunk imbalance to be related with lower pain in logistic regression

  17. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Barton Gabor J

    2013-02-01

    Full Text Available Abstract Background Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. Methods One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Results Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019. Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007. Conclusions Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture.

  18. The effects of virtual reality game training on trunk to pelvis coupling in a child with cerebral palsy.

    Science.gov (United States)

    Barton, Gabor J; Hawken, Malcolm B; Foster, Richard J; Holmes, Gill; Butler, Penny B

    2013-02-07

    Good control of trunk and pelvic movements is necessary for well controlled leg movements required to perform activities of daily living. The nature of movement coupling between the trunk and pelvis varies and depends on the type of activity. Children with cerebral palsy often have reduced ability to modulate coupling between the trunk and pelvis but movement patterns of the pelvis can be improved by training. The aim of this study was to examine how pelvis to trunk coupling changed while playing a computer game driven by pelvic rotations. One boy with cerebral palsy diplegia played the Goblin Post Office game on the CAREN virtual rehabilitation system for six weeks. He navigated a flying dragon in a virtual cave towards randomly appearing targets by rotating the pelvis around a vertical axis. Motion of the pelvis and trunk was captured in real-time by a Vicon 612 optoelectronic system tracking two clusters of three markers attached to the sacrum and thoracic spine. Convex hull areas calculated from angle-angle plots of pelvic and trunk rotations showed that coupling increased over game training (F1,11 = 7.482, p = 0.019). Reaching to targets far from the midline required tighter coupling than reaching near targets (F1,12 = 10.619, p = 0.007). Increasing coupling appears to be an initial compensation mechanism using the better controlled trunk to drive rotation of the pelvis. Co-contractions causing increased coupling are expected to reduce over longer exposure to training. The control scheme of the training game can be set to facilitate de-coupling of pelvic movements from the trunk. Using large ranges of pelvic rotation required more coupling suggesting that training of selective pelvic movements is likely to be more effective close to a neutral pelvic posture.

  19. Vegetation attached to the elephant trunk.

    Science.gov (United States)

    Tanaka, Akiko; Sakamoto, Toshihito; Okada, Kenji; Okita, Yutaka

    2013-09-01

    The elephant trunk technique is used as a standard method in the approach to staged repair of extensive thoracic aneurysms. Here, we present a rare case of a graft infection, in which vegetation was attached to the distal end of the elephant trunk. A 36-year old male who had undergone total arch replacement with elephant trunk installation for type A aortic dissection was readmitted for high-grade fever. At the time of admission, Osler's nodules were present and brain magnetic resonance imaging showed multiple small emboli and haemorrhages. Transoesophageal echocardiography could not locate any sign of infection within the cardiac chambers, but disclosed vegetation attached to the elephant trunk. He underwent successful emergent graft replacement of the lesion, and no recurrence of the infection has been observed.

  20. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?

    Science.gov (United States)

    Horak, Fay B

    2006-09-01

    Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.

  1. The Efficacy of a Perceptive Rehabilitation on Postural Control in Patients with Chronic Nonspecific Low Back Pain

    Science.gov (United States)

    Paolucci, Teresa; Fusco, Augusto; Iosa, Marco; Grasso, Maria R.; Spadini, Ennio; Paolucci, Stefano; Saraceni, Vincenzo M.; Morone, Giovanni

    2012-01-01

    Patients with chronic low back pain have a worse posture, probably related to poor control of the back muscles and altered perception of the trunk midline. The aim of this study was to evaluate the efficacy of a perceptive rehabilitation in terms of stability and pain relief in patients with chronic nonspecific low back pain. Thirty patients were…

  2. The development of postural adjustments during reaching in 6-to 18-month-old infants - Evidence for two transitions

    NARCIS (Netherlands)

    Van der Fits, IBM; Klip, AWJ; Van Eykern, LA; Hadders-Algra, M

    The present study focused on the developmental changes of postural adjustments accompanying reaching movements in healthy infants. We made a longitudinal study of ten infants between 6 and 18 months of age. During each session multiple surface electromyograms of arm, neck, trunk and leg muscles at

  3. Internal Oblique and Transversus Abdominis Muscle Fatigue Induced by Slumped Sitting Posture after 1 Hour of Sitting in Office Workers

    Directory of Open Access Journals (Sweden)

    Pooriput Waongenngarm

    2016-03-01

    Conclusion: Prolonged sitting led to increased body discomfort in the neck, shoulder, upper back, low back, and buttock. No sign of trunk muscle fatigue was detected over 1 hour of sitting in the upright and forward leaning postures. Prolonged slumped sitting may relate to IO/TrA muscle fatigue, which may compromise the stability of the spine, making it susceptible to injury.

  4. Toward sub-Kelvin resistive cooling and non destructive detection of trapped non-neutral electron plasma

    Science.gov (United States)

    Di Domizio, S.; Krasnický, D.; Lagomarsino, V.; Testera, G.; Vaccarone, R.; Zavatarelli, S.

    2015-01-01

    A resonant circuit tuned to a particular frequency of the motion of charged particles stored in a Penning trap and connected to a low noise amplifier allows, at the same time, cooling and non destructive detection of the particles. Its use is widely diffused when single or few particles are stored near the centre of a hyperbolic Penning trap. We present a consistent model that predicts the shape of the induced signal when the tuned circuit is used to detect and cool the axial motion of a cold non neutral plasma stored in an open-ended cylindrical Penning trap. The model correctly accounts for the not negligible axial plasma size. We show that the power spectrum of the signal measured across the tuned circuit provides information about the particle number and insights about the plasma temperature. We report on the design of a HEMT-based cryogenic amplifier working at 14.4 MHz and 4.2 K and the results of the noise measurements. We have measured a drain current noise in the range from 6 to 17 pA/√Hz, which corresponds to an increase of the tuned circuit equivalent temperature of at maximum 0.35 K. The cryogenic amplifier has a very low power consumption from few tens to few hundreds of μW corresponding to a drain current in the range 100-800 μ A. An additional contribution due to the gate noise has been identified when the drain current is below 300 μA above that value an upper limit of the increase of the equivalent tuned circuit temperature due to this contribution of 0.02 K has been obtained. These features make the tuned circuit connected to this amplifier a promising device for detecting and cooling the axial motion of an electron plasma when the Penning trap is mounted inside a dilution refrigerator.

  5. Delayed Compensatory Postural Adjustments After Lateral Perturbations Contribute to the Reduced Ability of Older Adults to Control Body Balance.

    Science.gov (United States)

    Claudino, Renato; Dos Santos, Marcio José; Mazo, Giovana Zarpellon

    2017-10-01

    The goal of this study was to investigate the timing of compensatory postural adjustments in older adults during body perturbations in the mediolateral direction, circumstances that increase their risk of falls. The latencies of leg and trunk muscle activation to body perturbations at the shoulder level and variables of center of pressure excursion, which characterize postural stability, were analyzed in 40 older adults (nonfallers and fallers evenly split) and in 20 young participants. The older adults exhibited longer latencies of muscular activation in eight out of 15 postural muscles as compared with young participants; for three muscles, the latencies were longer for the older fallers than nonfallers. Simultaneously, the time for the center of pressure displacement reached its peak after the perturbation was significant longer in both groups of older adults. The observed delays in compensatory postural adjustments may affect the older adults' ability to prompt control body balance after postural disturbances and predispose them to falls.

  6. Response to Niklasson's comment on Lin, et al. (2012) : "the relation between postural movement and bilateral motor integration".

    Science.gov (United States)

    Lin, Chin-Kai; Kuo, Bor-Chen; Wu, Huey-Min

    2014-10-01

    In the study of Lin, Wu, Lin, Wu, Wu, Kuo, and Yeung (2012 ), the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory was examined. Postural movement is the ability to use the antigravity postures required for stabilization of the neck, trunk and upper extremities via muscle co-contractions in the neck and upper extremities, and balance. Niklasson's (2013 ) comment argued that postural movement should include primitive reflexes in terms of the general abilities approach. Niklasson (2013 ) focused on the efficacy of the treatment rather than the theoretical frameworks implied in the therapeutic activities. For that purpose Lin, et al. (2012 ) used sensory integration as the theoretical foundation, and the relationship between postural movement and bilateral motor integration was assessed via empirical data. The result of Lin, et al. (2012 ) was offered as a theoretical reference for therapeutic activities.

  7. A Cross-Sectional Study for Screening of Postural Deficits among University Students

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelmoniem Ibrahim

    2017-09-01

    Full Text Available Background: Postural deviations are frequent in university students and may cause pain and functional impairment. Few studies have examined the association between body posture and intrinsic and extrinsic factors. Objective: To assess the prevalence of postural changes in university students, and to determine whether factors such as age, gender, BMI, and physical activity might explain these deviations, this study helping in preventing aggravation of postural deviations and providing the young adolescent students with exercises and help tips for correcting these problems. Design: Cross sectional study. Subjects and Methods: The posture of 48 students in Hail University was assessed by DIER formetric 4D. Their mean age was 20.35 ± 2.678, height was 185.56 ± 7.128 and weight was 54.19 ± 7.085. Results: results revealed positive correlation between height and weight, height and self-image, weight and surface rotation, self-image and pelvic tilting, kyphotic angle and lordotic angle, pelvic tilt and trunk imbalance, lateral deviation and trunk imbalance. Conclusion: high prevalence of abnormalities among students, so it is recommended that all instructors place more emphasis on training and using corrective actions in course one of general physical education. Furthermore, teaching the correct sleeping, sitting and carrying ways will stop high expenses and devoting long times for clinical remedies.

  8. Feeding and resting postures of wild northern muriquis (Brachyteles hypoxanthus).

    Science.gov (United States)

    Iurck, Maria F; Nowak, Matthew G; Costa, Leny C M; Mendes, Sérgio L; Ford, Susan M; Strier, Karen B

    2013-01-01

    Increased body size in Brachyteles has been regarded as an important evolutionary adaptation that allowed a greater reliance on leaves compared to other more frugivorous Atelidae, but its association with muriqui positional behavior and substrate use is still unknown. Here, we present original data on the feeding and resting postures of the northern muriqui (Brachyteles hypoxanthus) and evaluate predictions about the relationships between body size, postural behavior, and substrate use derived from previously published data for other atelids (e.g. Alouatta, Ateles, and Lagothrix). The study was undertaken from August 2002 to July 2003 on a large group of well-habituated muriquis inhabiting the Reserva Particular do Patrimônio Natural - Felíciano Miguel Abdala in Minas Gerais, Brazil. Consistent with our predictions, we found that B. hypoxanthus was highly suspensory during postural feeding (60.9%) and commonly used tail-hind limb suspension/horizontal tripod (38.0%) or tail-forelimb/hind limb suspension (21.4%). However, although tail-suspensory postures permitted the muriquis to use the terminal canopy and small-sized substrates, these areas were also accessed via tail-assisted above-branch postural behaviors involving multiple substrates. Unexpectedly, tail-suspensory postures were found to be frequently associated with large substrates, tree trunks, and the understory. We suggest that Brachyteles' ability to access food resources from all areas of a feeding tree and from tree crowns at different canopy levels may account for their ability to efficiently exploit food resources in seasonal disturbed forest fragments of the Brazilian Atlantic Forest today. © 2012 Wiley Periodicals, Inc.

  9. Impairments of postural stability, core endurance, fall index and functional mobility skills in patients with patello femoral pain syndrome.

    Science.gov (United States)

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Dalkilinç, Murat; Demir, Yasemin Parlak; Baltaci, Gul; Kömürcü, Mahmut; Yelvar, Gul Deniz Yilmaz

    2016-06-30

    Postural control allows performance of daily and sports activities. The previous studies show that postural sway inceases in orthopaedic injuries such as osteoarthritis and total knee arthroplasty. To compare postural sway, risk of falling and function between individuals with and without patellofemoral pain syndrome (PFS). This study included 22 subjects with patellofemoral pain syndrome, age-matched pain-free 22 females serving as a control group. Visual anolog scale and Kujala were used to evaluate the pain. Posturographic assesment was performed by Tetrax posturographic device. Biering Modified Sorenson test for extensor endurance and sit-up test for flexor endurance were used for the evaluation of trunk endurance. Timed get-up and go test was used for lower extremity function. The Student's t Test was used to compare variables between the groups. The Pearson correlation coefficients were calculated to examine correlation between the quantitative variables. Postural sway included eyes open without pillow, eyes open on pillow, eyes closed on pillow, risk of falling, function and postural stabilization included flexor endurance, extansor endurance are impared in patient with patellofemoral pain syndrome when compare to controls. In subjects with PFPS increased postural sway significantly associated with body mass index (r= 0.52), pain duration (r= 0.43), postural control (extansor endurance) (r= -0.50) and risk of falling (r= 0.62) on pillow with open eyes. In addition we found function significantly related with postural control (extansor endurance and flexor endurance) (r= -0.59 and r= -0.59) and risk of falling (r= 0.77)CONCLUSIONS: Decreased neuromuscular control of the trunk core and increased postural sway and falling risk were found in patients with PFPS. Patients may be evaluated for deficits in postural control and falling risk before treatment.

  10. Postural ortostatisk takykardisyndrom

    DEFF Research Database (Denmark)

    Brinth, Louise; Pors, Kirsten; Mehlsen, Jesper

    2014-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous condition of dysautonomia and suspected autoimmunity characterized by abnormal increments in heart rate upon assumption of the upright posture accompanied by symptoms of cerebral hypoperfusion and sympathoexcitation. An increase...... in heart rate equal to or greater than 30 bpm or to levels higher than 120 bpm during a head-up tilt test is the main diagnostic criterion. Management includes both non-pharmacological and pharmacological treatment focusing on stress management, volume expansion and heart rate control....

  11. Analisis Migrasi Radio Trunking Analog ke Radio Trunking Digital di Indonesia

    Directory of Open Access Journals (Sweden)

    Riza Azmi

    2013-09-01

    Full Text Available Dalam Tabel Alokasi Spektrum Frekuensi di Indonesia pada catatan kaki INS9 dan INS13 disebutkan bahwa alokasi pada pita-pita frekuensi yang digunakan untuk teknologi trunking direncanakan dimigrasi ke sistem komunikasi trunking digital pada waktu yang akan ditentukan oleh pemerintah. Terkait dengan hal itu, studi ini bertujuan untuk mengkaji bagaimana kelayakan migrasi dari sistem trunking analog ke sistem trunking digital dan hal-hal yang terkait dengannya. Dengan menggunakan analisis biaya dan manfaat (Cost-Benefit Analysis studi ini melihat bahwa migrasi hanya dapat dilakukan jika umur masing-masing lisensi dari operator telah berakhir, atau dengan kata lain pemerintah dapat mendorong transisi ke digital dengan menerbitkan lisensi baru yaitu lisensi trunking digital.

  12. Improving gross motor function and postural control with hippotherapy in children with Down syndrome: case reports.

    Science.gov (United States)

    Champagne, Danielle; Dugas, Claude

    2010-11-01

    The purpose of this case report is to describe the impact of an 11-week hippotherapy program on the gross motor functions of two children (respectively 28 and 37 months old) diagnosed with Down syndrome. Hippotherapy is a strategy that uses the horse's motion to stimulate and enhance muscle contraction and postural control. The children were assessed by the Gross Motor Function Measure (GMFM) and accelerometry. The results indicate that both children improved on many dimensions of the GMFM. Power spectral analysis of the acceleration signals showed improvement in postural control of either the head or trunk, because the children adopted two different adaptative strategies to perturbation induced by the moving horse.

  13. An Anomalous Branching of Coeliac Trunk

    Directory of Open Access Journals (Sweden)

    Jadhav Surekha D

    2013-07-01

    Full Text Available Anatomical variations of the coeliac trunk arevery common. A variation of coeliac trunk oc-curs due to the developmental abnormalities inthe ventral splanchnic arteries. Present paperhighlights a rare variation of branching patternof coeliac trunk which was observed during rou-tine dissection. In a 63 year old male cadaver,we observed a bifurcation of coeliac trunk intoshort hepato-splenic and longer hepato-gastrictrunks. The hepato-splenic trunk divided intocommon hepatic artery and splenic artery. Cys-tic artery originated from proper hepatic arteryand then proper hepatic artery divided into rightand left hepatic arteries. Hepato-gastric trunkran laterally and upward, and then it divided intotwo branches: a left gastric artery and left ac-cessory hepatic artery. Knowledge of this rarevariation is clinically very important for sur-geons, especially while performing liver trans-plantation, gastric, gallbladder surgeries andtransarterial chemoembolization for hepatictumor and during invasive procedures like an-giography and also other radiological studies.

  14. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  15. Body posture modulates action perception.

    Science.gov (United States)

    Zimmermann, Marius; Toni, Ivan; de Lange, Floris P

    2013-04-03

    Recent studies have highlighted cognitive and neural similarities between planning and perceiving actions. Given that action planning involves a simulation of potential action plans that depends on the actor's body posture, we reasoned that perceiving actions may also be influenced by one's body posture. Here, we test whether and how this influence occurs by measuring behavioral and cerebral (fMRI) responses in human participants predicting goals of observed actions, while manipulating postural congruency between their own body posture and postures of the observed agents. Behaviorally, predicting action goals is facilitated when the body posture of the observer matches the posture achieved by the observed agent at the end of his action (action's goal posture). Cerebrally, this perceptual postural congruency effect modulates activity in a portion of the left intraparietal sulcus that has previously been shown to be involved in updating neural representations of one's own limb posture during action planning. This intraparietal area showed stronger responses when the goal posture of the observed action did not match the current body posture of the observer. These results add two novel elements to the notion that perceiving actions relies on the same predictive mechanism as planning actions. First, the predictions implemented by this mechanism are based on the current physical configuration of the body. Second, during both action planning and action observation, these predictions pertain to the goal state of the action.

  16. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults.

    Science.gov (United States)

    Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert

    2013-01-01

    Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p training-related improvements were found for spinal mobility in the sagittal (11%, p velocity (9%, p velocity (31%, p training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.

  17. The posture of adolescent male handball players: A two-year study.

    Science.gov (United States)

    Grabara, Małgorzata

    2018-02-06

    Young athletes at the stage of growth acceleration tend to exhibit increased susceptibility to postural abnormalities, especially in the trunk region. The aim of this study was to assess and compare the posture in male adolescent handball players over two years of regular training sessions. The study group comprised 21 handball players. At the start of the study 15 participants were aged 14 and 6 participants were aged 15 (mean 14.25 ± 0.58). The measurements were repeated three times. Posture was assessed with a photogrammetric method based on the moiré phenomenon. The analysis of posture relative to symmetry in the frontal and transverse planes did not reveal any significant differences between posture indicators obtained during the successive measurements. Sagittal plane posture indicators revealed significant changes in torso forward inclination angle and the shape of anteroposterior spinal curvatures. The latter consisted of significant deepening of the upper thoracic curve (angle α) and flattening of the lumbosacral curve (angle γ). A two-year period of handball training did not result in posture asymmetries in young male handball players. The observed changes in the shape of anteroposterior spinal curvatures might be related both to sports training and somatic parameters.

  18. Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.

    Science.gov (United States)

    Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L

    2017-01-01

    Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.

  19. Interactive Trunk Extraction from Forest Point Cloud

    Directory of Open Access Journals (Sweden)

    T. Mizoguchi

    2014-06-01

    Full Text Available For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.

  20. Nuclear Posture Review

    Science.gov (United States)

    2018-02-01

    REVIEW margin for further delay in recapitalizing the physical infrastructure needed to produce strategic materials and components for U.S. nuclear... REVIEW 2018 This page left intentionally blank REVIEW NUCLEAR POSTURE REVIEW FEBRUARY 2018...OFFICE OF THE SECRETARY OF DEFENSE This page left intentionally blank REVIEW CONTENTS SECRETARY’S PREFACE

  1. mDurance: A Novel Mobile Health System to Support Trunk Endurance Assessment

    Directory of Open Access Journals (Sweden)

    Oresti Banos

    2015-06-01

    Full Text Available Low back pain is the most prevalent musculoskeletal condition. This disorder constitutes one of the most common causes of disability worldwide, and as a result, it has a severe socioeconomic impact. Endurance tests are normally considered in low back pain rehabilitation practice to assess the muscle status. However, traditional procedures to evaluate these tests suffer from practical limitations, which potentially lead to inaccurate diagnoses. The use of digital technologies is considered here to facilitate the task of the expert and to increase the reliability and interpretability of the endurance tests. This work presents mDurance, a novel mobile health system aimed at supporting specialists in the functional assessment of trunk endurance by using wearable and mobile devices. The system employs a wearable inertial sensor to track the patient trunk posture, while portable electromyography sensors are used to seamlessly measure the electrical activity produced by the trunk muscles. The information registered by the sensors is processed and managed by a mobile application that facilitates the expert’s normal routine, while reducing the impact of human errors and expediting the analysis of the test results. In order to show the potential of the mDurance system, a case study has been conducted. The results of this study prove the reliability of mDurance and further demonstrate that practitioners are certainly interested in the regular use of a system of this nature.

  2. Inefficient postural responses to unexpected slips during walking in older adults.

    Science.gov (United States)

    Tang, P F; Woollacott, M H

    1998-11-01

    Slips account for a high percentage of falls and subsequent injuries in community-dwelling older adults but not in young adults. This phenomenon suggests that although active and healthy older adults preserve a mobility level comparable to that of young adults, these older adults may have difficulty generating efficient reactive postural responses when they slip. This study tested the hypothesis that active and healthy older adults use a less effective reactive balance strategy than young adults when experiencing an unexpected forward slip occurring at heel strike during walking. This less effective balance strategy would be manifested by slower and smaller postural responses, altered temporal and spatial organization of the postural responses, and greater upper trunk instability after the slip. Thirty-three young adults (age range=19-34 yrs, mean=25+/-4 yrs) and 32 community-dwelling older adults (age range=70-87 yrs, mean=74+/-14 yrs) participated. Subjects walked across a movable forceplate which simulated a forward slip at heel strike. Surface electromyography was recorded from bilateral leg, thigh, hip, and trunk muscles. Kinematic data were collected from the right (perturbed) side of the body. Although the predominant postural muscles and the activation sequence of these muscles were similar between the two age groups, the postural responses of older adults were of longer onset latencies, smaller magnitudes, and longer burst durations compared to young adults. Older adults also showed a longer coactivation duration for the ankle, knee, and trunk agonist/antagonist pairs on the perturbed side and for the knee agonist/antagonist pair on the nonperturbed side. Behaviorally, older adults became less stable after the slips. This was manifested by a higher incidence of being tripped (21 trials in older vs 5 trials in young adults) and a greater trunk hyperextension with respect to young adults. Large arm elevation was frequently used by older adults to assist in

  3. Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns

    Science.gov (United States)

    Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.

    2016-01-01

    In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997

  4. The Elephant Trunk Technique: A New Complication

    OpenAIRE

    Neri, Eugenio; Toscano, Thomas; Frati, Giacomo; Sassi, Carlo

    2001-01-01

    We describe a complication that occurred during the 2nd stage of an “elephant trunk” aortic replacement. The patient was a 58-year-old woman who had undergone graft replacement of the ascending aorta and aortic arch with the elephant trunk technique for an acute, Stanford type-A aortic dissection.

  5. The effect of resistance level and stability demands on recruitment patterns and internal loading of spine in dynamic flexion and extension using a simple trunk model.

    Science.gov (United States)

    Zeinali-Davarani, Shahrokh; Shirazi-Adl, Aboulfazl; Dariush, Behzad; Hemami, Hooshang; Parnianpour, Mohamad

    2011-07-01

    The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.

  6. Determination of concentric and eccentric peak moment values for trunk flexion and extension in sedentary asymptomatic individuals by isokinetic dynamometry: a pilot study

    Directory of Open Access Journals (Sweden)

    Rafaella Stradiotto Bernardelli

    2017-11-01

    Full Text Available The spine has a direct influence on postural alignment and movement of the whole body. Lumbar muscles constitute a critical element in trunk performance while weakness of these muscles has been associated with low back pain. Hence, strength profiling of trunk muscles is clinically significant. The objective of this research was to determine, by means of isokinetic dynamometry, peak moment (PM values during isokinetic concentric and eccentric efforts of trunk flexion and extension in sedentary asymptomatic individuals. The sample consisted of 100 asymptomatic sedentary volunteers, fifty from each sex, aging 22.2 ± 3.3 years old. The sample underwent concentric and eccentric isokinetic assessment of the trunk flexor and extensor muscles at an angular velocity of 60 degrees/sec for each mode of contraction. The mean concentric PM for trunk flexion and extension were 139.5 and 166.6 Nm, respectively, while the respective values for the eccentric efforts were 188.8 and 221.2 Nm. The PM flexion/extension ratio was 0.87 and 0.89 for the concentric and eccentric efforts, respectively. These values of concentric and eccentric PM and PM ratio will serve as comparison parameters for future research, as well as for the assessment of symptomatic patients, and to help in the creation of the trunk muscle rebalance protocols.

  7. Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments.

    Science.gov (United States)

    Klous, Miriam; Mikulic, Pavle; Latash, Mark L

    2011-05-01

    We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified

  8. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  9. Trunk Muscle Function Deficit in Youth Baseball Pitchers With Excessive Contralateral Trunk Tilt During Pitching.

    Science.gov (United States)

    Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L

    2017-09-01

    Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.

  10. Influence of Hamstring Tightness in Pelvic, Lumbar and Trunk Range of Motion in Low Back Pain and Asymptomatic Volunteers during Forward Bending

    OpenAIRE

    Jandre Reis, Felipe Jose; Macedo, Adriana Ribeiro

    2015-01-01

    Study Design Cross-sectional study. Purpose To verify the association of hamstring tightness and range of motion in anterior pelvic tilt (PT), lumbar motion (LM), and trunk flexion (TF) during forward bending. Overview of Literature Increased hamstring stiffness could be a possible contributing factor to low back injuries. Clinical observations have suggested that hamstring tightness influences lumbar pelvic rhythm. Movement restrictions or postural asymmetry likely lead to compensatory movem...

  11. Older adults utilize less efficient postural control when performing pushing task.

    Science.gov (United States)

    Lee, Yun-Ju; Chen, Bing; Aruin, Alexander S

    2015-12-01

    The ability to maintain balance deteriorates with increasing age. The aim was to investigate the role of age in generation of anticipatory (APA) and compensatory (CPA) postural adjustments during pushing an object. Older (68.8 ± 1.0 years) and young adults (30.1 ± 1.4 years) participated in the experiment involving pushing an object (a pendulum attached to the ceiling) using both hands. Electrical activity of six leg and trunk muscles and displacements of the center of pressure (COP) were recorded and analyzed during the APA and CPA phases. The onset time, integrals of muscle activity, and COP displacements were determined. In addition, the indexes of co-activation and reciprocal activation of muscles for the shank, thigh, and trunk segments were calculated. Older adults, compared to young adults, showed less efficient postural control seen as delayed anticipatory muscle onset times and delayed COP displacements. Moreover, older adults used co-activation of muscles during the CPA phase while younger subjects utilized reciprocal activation of muscles. The observed diminished efficiency of postural control during both anticipatory and compensatory postural adjustments observed in older adults might predispose them to falls while performing tasks involving pushing. The outcome provides a background for future studies focused on the optimization of the daily activities of older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of a Worksite Supervised Adapted Physical Activity Program on Trunk Muscle Endurance, Flexibility, and Pain Sensitivity Among Vineyard Workers.

    Science.gov (United States)

    Balaguier, Romain; Madeleine, Pascal; Rose-Dulcina, Kévin; Vuillerme, Nicolas

    2017-01-01

    In viticulture, the prevalence of low back pain is particularly high among vineyard workers exposed to sustained and awkward postures. One promising setting for low back pain prevention resides in the implementation of workplace physical activity. This nonrandomized pilot study aims at evaluating the effects of a worksite supervised adapted physical activity program among 17 vineyard workers volunteered to enter either an intervention group (n = 10) or a control group (n = 7).The intervention group followed a physical activity program for 8 weeks involving (1) 15 minutes of warm-up every working day and (2) two weekly 1-hour adapted physical activity sessions targeting trunk muscle endurance and flexibility. The control group was advised to continue normal physical activity. Evaluations were carried out at weeks 0, 4, 8, and 12. Physical capacity was assessed using flexibility tests for the trunk, along with trunk muscle flexor and extensor endurance tests. Finally, pain sensitivity was evaluated by assessing pressure pain thresholds over 14 anatomical locations in the low back region. For the intervention group, the endurance of the trunk extensor and flexor significantly increased from baseline to week 8 as well as the pressure pain thresholds. No change was observed for the control group over the same period. These encouraging results in combination with the high adherence rate set interesting foundations for the promotion of worksite supervised adapted physical activity and, most likely, offer a new promising approach to prevent low back pain among vineyard workers.

  13. Trunk biomechanics during hemiplegic gait after stroke: A systematic review.

    Science.gov (United States)

    Van Criekinge, Tamaya; Saeys, Wim; Hallemans, Ann; Velghe, Silke; Viskens, Pieter-Jan; Vereeck, Luc; De Hertogh, Willem; Truijen, Steven

    2017-05-01

    Stroke commonly results in trunk impairments that are associated with decreased trunk coordination and limited trunk muscle strength. These impairments often result in biomechanical changes during walking. Additionally, the so-called pelvic step might be influenced by these impairments. Therefore, the aim of this review was twofold. First, to gain more insight into trunk biomechanics during walking in stroke patients compared to healthy individuals. Second, to investigate the influence of walking speed on trunk biomechanics. The search strategy was performed by the PRISMA guidelines and registered in the PROSPERO database (no. CRD42016035797). Databases MEDLINE, Web of Science, Cochrane Library, ScienceDirect, and Rehabdata were systematically searched until December 2016. Sixteen of the 1099 studies met the eligibility criteria and were included in this review. Risk of bias was assessed by the Newcastle-Ottawa Scale. The majority of studies reported on trunk kinematics during walking, data on trunk kinetics and muscle activity is lacking. Following stroke, patients walk with increased mediolateral trunk sway and larger sagittal motion of the lower trunk. Although rotation of the upper trunk is increased, the trunk shows a more in-phase coordination. Acceleration of the trunk diminishes while instability and asymmetry increase as there are less movement towards the paretic side. However, it is of great importance to differentiate between compensatory trunk movements and intrinsic trunk control deficits. Specific exercise programs, assistive devices and orthoses might be of help in controlling these deficits. Importantly, studies suggested that more natural trunk movements were observed when walking speed was increased. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    Science.gov (United States)

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  15. STATIC AND DYNAMIC POSTURE CONTROL IN POSTLINGUAL COCHLEAR IMPLANTED PATIENTS: Effects of dual-tasking, visual and auditory inputs suppression

    Directory of Open Access Journals (Sweden)

    BERNARD DEMANZE eLaurence

    2014-01-01

    Full Text Available Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body’s position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of post-lingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static and dynamic conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO and eyes closed (EC conditions, with the cochlear implant activated (ON or not (OFF. Results showed that the CI patients significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk while the controls showed a whole body rigidification strategy. Hearing (prosthesis on as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions.

  16. The Subfossil Trunk of Chiarano (TV

    Directory of Open Access Journals (Sweden)

    Tiziana Urso

    2017-06-01

    Full Text Available This paper reports the results of the characterization of a subfossil trunk found buried in the mud of the Piavon canal, at Chiarano (TV, when dredging took place in 2008. The trunk, of imposing dimensions, lacking branches and bark, has a black, deeply cracked and strongly deteriorated outer surface with a carbonized appearance, while internally it has the typical blackish colour of the so-called drowned oak. The studies have demonstrated that it is a tree belonging to the genus Quercus, common oak or sessile oak, that may have been felled between the end of the 12 th and early 14 th century A.D.. Determination of the MWC and residual basic density indicate that the deterioration decreases from the outside inwards; the ash content is high externally and diminishes moving toward the centre. Nowadays, the Piavon is an irrigation canal, but in Venetian times it was navigable and was used for the transport of goods and timber. There were extensive woodlands of common oak and sessile oak all along the Piavon, the size and composition of which is documented in the Venetian cadastres, which also report the distances between the woodlands and the nearest water courses, proof of the importance of river transport for the timber. In particular, an 18 hectare oak woodland is recorded in the Surian cadastre (1569-70 for the villa at Chiarano. The oaks were used by the Republic of Venice mainly for the construction and maintenance of the shipping fleet. The Chiarano trunk, given its age and the area where it was found, may therefore be a trunk felled in Venetian times, perhaps destined for naval use, which was lost during its transport by floating.

  17. Trunk stabilization exercises for healthy individuals

    Directory of Open Access Journals (Sweden)

    Francisco J Vera-Garcia

    2014-01-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2014v16n2p200   The aim of this study was to analyze the trunk muscular response during different variations of some of the most popular stabilization exercises: front-bridge, back-bridge, side-bridge, and bird-dog. Surface electromyography was bilaterally re-corded from rectus abdominis, external and internal oblique and erector spinae during 25 variations of the aforementioned exercises. Compared to the conventional form of the front- and side-bridge, performing these exercises kneeling on a bench or with elbows extended reduced the muscular challenge. Conversely, performing the back-bridge with elbows extended elicited higher muscular activation than the conventional exercise. While bridge exercises with double leg support produced the highest activation levels in those muscles that counteracted gravity, single leg support while bridging increased the activation of the trunk rotators, especially internal oblique. The highest activation levels were found in three exercises: sagittal walkout in a front-bridge position, rolling from right side-bridge into front-bridge position, and side-bridge with single leg support on a BOSUTMbalance trainer. Although the exercises performed on unstable surfaces usu-ally enhanced the muscle activation, performing the exercises on the BOSUTMbalance trainer did not always increase the trunk muscle activity. Overall, this information may be useful to guide fitness instructors and clinicians when establishing stabilization exercise progressions for the trunk musculature.

  18. [Conservative treatment of idiopathic scoliosis with effective braces: early response to trunk asymmetry may avoid curvature progress].

    Science.gov (United States)

    Matussek, J; Dingeldey, E; Wagner, F; Rezai, G; Nahr, K

    2014-07-01

    Vertical posture of the growing child requires minute central nervous control mechanisms in order to maintain symmetry of the torso in its various activities. Scoliosis describes a constant deviation in the frontal, transverse and sagittal planes from the dynamic symmetry of the trunk. Early intervention with effective bracing, physiotherapy and sports can reverse curve progression during growth spurts, once these are identified in screening. Modern braces have a derotating and reducing effect (mirror effect) on asymmetric body volumes, thus influencing the growing torso and restoring lasting symmetry. Recent data support the use of braces to reverse progressing scoliosis.

  19. The differences in postural reactions between scoliosis and scoliotic posture

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2017-05-01

    Full Text Available The aim of the research was to demonstrate the differences in amplitudes of postural reactions in girls with scoliotic posture and idiopathic scoliosis. 28 girls aged 7-18 years old were involved in the study. Children attended to the Interschool Centre of Corrective Exercises in Starachowice. The research was conducted in June 2011. Spine research was made by Exhibeon digital radiography. Based on the size of the angle of spinal curvature there were identified: scoliotic posture: 1-9° and scoliosis: ≥10°. Postural reactions were examined by static-dynamic Tecnobody’s ST 310 Plus Stability System platform. There were 21 (75% children with scoliotic posture, and 7 (25% with idiopathic scoliosis. Student's t-test showed a significantly higher postural reactions for scoliosis in relation to scoliotic postures in case of: Average Forward-Backward Speed (OE, (p=0,05, Medium-Lateral Standard Deviation X (CE, (p=0,002, and Ellipse area (CE, (p=0,012. To verify the significant differences, demonstrating the lack of homogeneity of variance, the Mann–Whitney U-test has been used, which showed a significant differences between the scoliotic posture and scoliosis in case of: Medium-Lateral Standard Deviation X (CE, (p=0,0012, Average Forward-Backward Speed (OE, (p=0,0548, and Ellipse area (CE (p=0,0047. Together with an increase of the angle of curvature, the value of these postural reactions also grew. Most of postural reactions didn’t fit the norm.

  20. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir

    2016-01-01

    for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference...... between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from...

  1. Pelvic Morphology, Body Posture and Standing Balance Characteristics of Adolescent Able-Bodied and Idiopathic Scoliosis Girls

    OpenAIRE

    Stylianides, Georgios A.; Dalleau, Georges; Begon, Micka?l; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds sys...

  2. Do adolescent idiopathic scoliosis (AIS neglect proprioceptive information in sensory integration of postural control?

    Directory of Open Access Journals (Sweden)

    Christine Assaiante

    Full Text Available INTRODUCTION: It has been reported that AIS rely much more on ankle proprioception to control the amplitude of the balance control commands as compared to age-matched healthy adolescents. Our hypothesis was that AIS do not neglect proprioceptive information to control posture probably because of their vestibular deficits. We investigated the proprioceptive contribution to postural control in AIS which expresses spinal deformity during a crucial transitional period of ontogenesis. METHODS: 10 adolescents with idiopathic scoliosis (AIS with moderate spinal deformity (10° 35° and 10 control adolescents (CA had to maintain vertical stance while very slow oscillations in the frontal plane (below the detection threshold of the semicircular canal system were applied to the support with the eyes open and closed. Postural orientation and segmental stabilisation were analysed at head, shoulder, trunk and pelvis levels. RESULTS: Scoliosis did not affect vertical orientation control and segmental stabilization strategies. Vision improves postural control in both CA and AIS, which seem more dependent on visual cues than adults. CONCLUSIONS: AIS as CA were unable to control efficiently their postural orientation on the basis of the proprioceptive cues, the only sensory information available in the EC situation, whereas in the same condition healthy young adults present no difficulty to achieve the postural control. This suggests that AIS as CA transitory neglect proprioceptive information to control their posture. These results and previous studies suggest the existence of different afferent pathways for proprioceptive information subserving different parts in sensory integration of postural control. We conclude that the static proprioceptive system is not affected by the idiopathic scoliosis, while the dynamic proprioceptive system would be mainly affected.

  3. Functional synergies underlying control of upright posture during changes in head orientation.

    Directory of Open Access Journals (Sweden)

    Eunse Park

    Full Text Available BACKGROUND: Studies of human upright posture typically have stressed the need to control ankle and hip joints to achieve postural stability. Recent studies, however, suggest that postural stability involves multi degree-of-freedom (DOF coordination, especially when performing supra-postural tasks. This study investigated kinematic synergies related to control of the body's position in space (two, four and six DOF models and changes in the head's orientation (six DOF model. METHODOLOGY/PRINCIPAL FINDINGS: Subjects either tracked a vertically moving target with a head-mounted laser pointer or fixated a stationary point during 4-min trials. Uncontrolled manifold (UCM analysis was performed across tracking cycles at each point in time to determine the structure of joint configuration variance related to postural stability or tracking consistency. The effect of simulated removal of covariance among joints on that structure was investigated to further determine the role of multijoint coordination. Results indicated that cervical joint motion was poorly coordinated with other joints to stabilize the position of the body center of mass (CM. However, cervical joints were coordinated in a flexible manner with more caudal joints to achieve consistent changes in head orientation. CONCLUSIONS/SIGNIFICANCE: An understanding of multijoint coordination requires reference to the stability/control of important performance variables. The nature of that coordination differs depending on the reference variable. Stability of upright posture primarily involved multijoint coordination of lower extremity and lower trunk joints. Consistent changes in the orientation of the head, however, required flexible coordination of those joints with motion of the cervical spine. A two-segment model of postural control was unable to account for the observed stability of the CM position during the tracking task, further supporting the need to consider multijoint coordination to

  4. Modification of male adult simulator posture of ICRP 110 reference

    International Nuclear Information System (INIS)

    Galeano, Diego C.; Souza, Divanizia N.; Santos, Willian S.; Carvalho Junior, Alberico B.

    2014-01-01

    Voxel simulators are usually constructed based on computed tomography and magnetic resonance, so the supine position (lying) is the most used. This may result in a overestimated or underestimated the radiation dose, depending on the exposure scenario adopted. Thus, the objective was to change the attitude of the male adult simulator reference ICRP 110, AM (Adult Male), to a sitting posture. For change of posture were possible, it was necessary increasing the number of slices that comprise AM simulator by reducing the height of the voxel of 8.0 mm to 2.0 mm, thus making each voxel approximately cubic. A subroutine was created in Visual Monte Carlo software (VMC) to rotate the thigh region of the simulator and position it between the region of the leg and trunk. The ScionImage software was used to rebuild and soften the contours of the knee and hip of the simulator in a sitting posture, and 3D visualization of the simulator was used VolView software. The AM simulator in the seated position has the same anatomical features of the simulator in the standing posture. Using the MCNPX code [ref] was carried out the conversion coefficients for calculating the AP irradiation geometry (anteroposterior) comparing the AM simulator standing and sitting in order to evaluate the difference scattering and absorption of radiation by the two simulators. The result shows a difference up to 100% in the fluency conversion coefficients in nearby organs located in the pelvic region and in organs with distribution in the whole body (such as skin, muscle, lymph nodes and skeletal)

  5. POSTUR PADA WANITA HAMIL

    Directory of Open Access Journals (Sweden)

    Paryono .

    2013-09-01

    Full Text Available ABSTRACTIntroduction: Pregnancy effects in changes on all body systems leading to a new balance women and maternal adaptation.Weight gain in pregnant women from both the uterus and breast development generally occurs at the front of the body, butwhen standing they were still able to maintain a posture that does not face. The purpose of this article is to examine thereasons why pregnant women do not fall to front and how the good attitude of the pregnant woman's body.Materials and Methods: Material of this article are literatures related to pregnancy and the pregnant woman's bodyp o s t u r e , a n d t h e y w e r e c o l l e c t e d b y l i t e r a t u r e ' s s t u d y a n d l i t e r a r y s t u d y .Discussion: Increased abdominal distension that makes tilting the pelvis forward, decreased abdominal muscle tone andincrease weight gain in late pregnancy requires a readjustment spinal curvature. Woman's center of gravity shifts forward.Lumbosakrum normal curve should be more curved and the curvature of the servikodorsal be formed to maintain balance.Assessment of anterior view, lateral and posterior body should include an understanding of the physical structures such asjoints and muscles as well as how the meridian pathways. To compensate for the anterior position of the enlarged uterus,lordosis shifting center of gravity to the back of the lower limbs. There is an increased sacroiliac joint mobility,sakrokoksigeal, and pubic joints during pregnancy, possibly due to hormonal changes. Individual assessments will berequired to determine the pattern of muscle for every person, especially for those who have musculoskeletal problems.Conclusions and Recommendations: The size of the stomach in a pregnant woman, then the gravity of the body changes.Body to be biased toward the rear, but this position makes your back hurt. Advice for pregnant women in order to maintainyour posture as follows: head upKeyword : Posture, Pregnancy, Women.

  6. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    OpenAIRE

    Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D

    2011-01-01

    Abstract Background Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component...

  7. Development of the Italian version of the trunk impairment scale in subjects with acute and chronic stroke. Cross-cultural adaptation, reliability, validity and responsiveness.

    Science.gov (United States)

    Monticone, Marco; Ambrosini, Emilia; Verheyden, Geert; Brivio, Flavia; Brunati, Roberto; Longoni, Luca; Mauri, Gaia; Molteni, Alessandro; Nava, Claudia; Rocca, Barbara; Ferrante, Simona

    2017-09-10

    To cross-culturally adapt and psychometrically analyse the Italian version of the Trunk Impairment Scale on acute (cohort 1) and chronic stroke patients (cohort 2). The Trunk Impairment Scale was culturally adapted in accordance with international standards. The psychometric testing included: internal consistency (Cronbach's alpha), inter- and intra-rater reliability (intraclass correlation coefficient; standard error of measurement and minimal detectable change), construct validity by comparing Trunk Impairment Scale score with Barthel Index, motor subscale of Functional Independence Measure, and Trunk Control Test (Pearson's correlation), and responsiveness (Effect Size, Effect Size with Guyatt approach, standardized response mean, and Receiver Operating Characteristics curves). The Trunk Impairment Scale was administered to 125 and 116 acute and chronic stroke patients, respectively. Internal consistency was acceptable (α > 0.7), inter- and intra-rater reliability (ICC > 0.9, Minimal Detectable Change for total score  0.4) with all scales but the motor Functional Independence Measure in cohort 2. Distribution-based methods showed large effects in cohort 1 and moderate to large effects in cohort 2. The Minimal Important Difference was 3.5 both from patient's and therapist's perspective in cohort 1 and 2.5 and 1.5 from patient's and therapist's perspective, respectively, in cohort 2. The Trunk Impairment Scale was successfully translated into Italian and proved to be reliable, valid, and responsive. Its use is recommended for clinical and research purposes. Implications for Rehabilitation Trunk control is an essential part of balance and postural control, constituting an important prerequisite for daily activities and function. The TIS administered in subjects with subacute and chronic stroke was reliable, valid and responsive. The TIS is expected to help clinicians and researchers by identifying key functional processes related to disability in people

  8. Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic.

    Science.gov (United States)

    Grabiner, Mark D; Donovan, Stephanie; Bareither, Mary Lou; Marone, Jane R; Hamstra-Wright, Karrie; Gatts, Strawberry; Troy, Karen L

    2008-04-01

    This paper reviews some of our experiences over nearly 15 years of trying to determine modifiable factors that contribute to the high incidence of fall by older adults. As part of our approach, we have subjected healthy young and older adults to very large postural disturbances during locomotion, in the form of trips and slips, to which rapid compensatory responses have been necessary to avoid falling. For both trips and slips, the ability to limit trunk motion has consistently discriminated older adults who fall from both younger adults and older adults who have been able to avoid falling. We have shown that the ability to limit trunk motion can be rapidly acquired, or learned, by older adults as a result of task-specific training. The learned motor skill has demonstrated short-term retention and has been shown to effectively decrease fall-risk due to trips. Collectively, we believe the works strongly suggests that the traditional exercise-based fall-prevention and whole-body, task-specific training can synergize to reduce falls and fall-related injury in older adults.

  9. Estimating Co-Contraction Activation of Trunk Muscles Using a Novel Musculoskeletal Model for Pregnant Women

    Directory of Open Access Journals (Sweden)

    Saori Morino

    2017-10-01

    Full Text Available Weight gain and stretched abdominal muscles from an enlarged gravid uterus are remarkable features during pregnancy. These changes elicit postural instability and place strain on body segments, contributing to lower back pain. In general, the agonist and antagonist muscles act simultaneously to increase joint stabilization; however, this can cause additional muscle stress during movement. Furthermore, this activation can be observed in pregnant women because of their unstable body joints. Hence, physical modalities based on assessments of muscle activation are useful for managing low back pain during pregnancy. Musculoskeletal models are common when investigating muscle load. However, it is difficult to apply such models to pregnant women and estimate the co-contraction of muscles using musculoskeletal models. Therefore, the purpose of this study is to construct a musculoskeletal model for pregnant women that estimates the co-contraction of trunk muscles. First, motion analysis was conducted on a pregnant woman and the muscle activations of the rectus abdominis and erector spinae were measured. Then, the musculoskeletal model was specifically modified for pregnant women. Finally, the co-contraction was estimated from the results of the musculoskeletal model and electromyography data using a genetic algorithm. With the proposed methods, weakened abdominal muscle torque and the co-contraction activation of trunk muscles were estimated successfully.

  10. Evaluation of non-invasive trunk sprays and trunk-injected emamectic benzoate

    Science.gov (United States)

    Deborah G. McCullough; D.L. Cappaert; T.M. Poland; A.C. Anulewicz; P. Lewis; J. Molongoski

    2008-01-01

    In 2007, we continued to evaluate two neo-nicotinoid insecticides, imidacloprid and dinotefuron, applied as non-invasive trunk sprays to control emerald ash borer (EAB), Agrilus planipennis Fairmaire. Neo-nicotinoid products are widely used to protect landscape ash trees because they are relatively safe for humans and non-target species. These...

  11. Time course of the acute effects of core stabilisation exercise on seated postural control.

    Science.gov (United States)

    Lee, Jordan B; Brown, Stephen H M

    2017-09-20

    Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.

  12. Body posture and postural stability of people practicing qigong

    Directory of Open Access Journals (Sweden)

    Jacek Wilczyński

    2015-07-01

    Full Text Available Introduction: Correct and stable posture is essential for the implementation of the majority of voluntary movements and locomotion. The study of postural stability is an element of clinical trials evaluating physical activity in order to determine the optimal therapeutic procedures. Qigong exercises are not only a form of prevention, helpful in maintaining wellbeing, but also a means of therapy in many diseases, including disorders of postural stability. Aim of the research: To analyse the association between the quality of posture and postural stability of people practicing qigong. Material and methods : The study involved 32 people. The mean age of those tested was 54 years. Posture study used optoelectronic method Diers formetric III 4D. Postural stability was tested on the platform Biodex Balance System. The studies were performed at the Posture Laboratory of the Institute of Physiotherapy at Jan Kochanowski University in Kielce. Results and conclusions : Spearman rank order correlation showed a positive correlation of relative rotation of the spine area with a general indicator of stability (p = 0.0206 at an average level (R = 0.4075 and with the index of the stability A/P (p = 0.0310, although at a lower level (R = 0.3819. With the increase in the relative rotation of the spine area the overall stability indicator and stability indicator A/P also increased. Significant positive correlations were also seen for the surface rotation (+max and a general indication of the stability and the stability index A/P. With the increase of surface rotation (+max of the spine the overall stability indicator and stability indicator A/P also increased.

  13. Assemblages of saproxylic beetles on large downed trunks of oak.

    Science.gov (United States)

    Milberg, Per; Bergman, Karl-Olof; Sancak, Kerem; Jansson, Nicklas

    2016-03-01

    Old living oaks (Quercus robur) are known as a very species-rich habitat for saproxylic beetles, but it is less clear to what extent such veteran trees differ from an even rarer feature: downed trunks of large oaks. In this study, we set out to sample this habitat, using window traps, with two aims: (1) to describe the variation of assemblages among downed trunks of different type and (2) to compare beetles on downed oaks with data from veteran standing trees. The results showed that trunk volume and sun exposure better explained assemblages as well as species numbers on downed trunks than did decay stage. Furthermore, species classified as facultative saproxylic species showed weak or no differentiation among downed trunks. Species with different feeding habits showed no apparent differentiation among downed trunks. Furthermore, species composition on dead, downed oak trunks differed sharply from that of living, veteran oaks. Wood or bark feeders were more common on veterans than downed trunks, but there was no difference for those species feeding on fungi or those feeding on insects and their remains. In conclusion, for a successful conservation of the saproxylic beetle fauna it is important to keep downed oak trunks, and particularly large ones, in forest and pastures as they constitute a saproxylic habitat that differs from that of living trees.

  14. A pilot study on the influence of exercising on unstable training machine on balance control and trunk muscles activity.

    Science.gov (United States)

    Domeika, Aurelijus; Aleknaite-Dambrauskiene, Ieva; Poskaitis, Vytautas; Zaveckas, Vidmantas; Grigas, Vytautas; Zvironiene, Ausra

    2018-05-16

    The main position of the working population is becoming sitting. Immobile prolonged sedentary time may cause negative effects including reduced intervertebral discs nutrition. Main ways of mitigating them are regular position changes and exercising. To evaluate influence of the short term training on unstable training machine on balance control and trunk muscles activity in patients with lower back pain. Participants (n=16) experiencing lower back pain were trained on an unstable sculling machine "Rehabili". Their balance tested by (Biodex Balance System) and rectus abdominis, externus oblique, transverse abdominis, multifidus and erector spine muscles activity (measured by surface electromyography) while sitting and standing with usual and aligned body postures both before and after six weeks of training (three 15 minutes sessions per week) were compared in between. Balance control improved after the training program. Besides, more symmetrical activation of both sides rectus and transversus abdominis muscles, as well as increased transversus abdominis muscle activation of 19% (p< 0.05), were observed. Six weeks short sessions training on unstable training machine improved balance control and increased trunk muscles activity especially in aligned body posture when standing or sitting on unstable surface.

  15. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions – a full-scale validation study

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Larsen, Torben J.; Chougule, A.

    2017-01-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine......) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using...... the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load...

  16. Reliability of photogrammetry in the evaluation of the postural aspects of individuals with structural scoliosis.

    Science.gov (United States)

    Saad, Karen Ruggeri; Colombo, Alexandra Siqueira; Ribeiro, Ana Paula; João, Sílvia Maria Amado

    2012-04-01

    The purpose of this study was to investigate the reliability of photogrammetry in the measurement of the postural deviations in individuals with idiopathic scoliosis. Twenty participants with scoliosis (17 women and three men), with a mean age of 23.1 ± 9 yrs, were photographed from the posterior and lateral views. The postural aspects were measured with CorelDRAW software. High inter-rater and test-retest reliability indices were found. It was observed that with more severity of scoliosis, greater were the variations between the thoracic kyphosis and lumbar lordosis measures obtained by the same examiner from the left lateral view photographs. A greater body mass index (BMI) was associated with greater variability of the trunk rotation measures obtained by two independent examiners from the right, lateral view (r = 0.656; p = 0.002). The severity of scoliosis was also associated with greater inter-rater variability measures of trunk rotation obtained from the left, lateral view (r = 0.483; p = 0.036). Photogrammetry demonstrated to be a reliable method for the measurement of postural deviations from the posterior and lateral views of individuals with idiopathic scoliosis and could be complementarily employed for the assessment procedures, which could reduce the number of X-rays used for the follow-up assessments of these individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls.

    Science.gov (United States)

    Chow, Daniel H K; Kwok, Monica L Y; Cheng, Jack C Y; Lao, Miko L M; Holmes, Andrew D; Au-Yang, Alexander; Yao, Fiona Y D; Wong, M S

    2006-10-01

    Concerns have been raised regarding the effect of carrying a backpack on adolescent posture and balance, but the effect of backpack loading combined with other factors affecting balance, such as adolescent idiopathic scoliosis (AIS), has not been determined. This study examines the effects of backpack load on the posture and balance of schoolgirls with AIS and normal controls. The standing posture of 26 schoolgirls with mild AIS (mean age 13, Cobb angle 10-25 degrees ) and 20 age-matched normal schoolgirls were recorded without a backpack and while carrying a standard dual-strap backpack loaded at 7.5%, 10%, 12.5% and 15% of the subject's bodyweight (BW). Kinematics of the pelvis, trunk and head were recorded using a motion analysis system and centre of pressure (COP) data were recorded using a force platform. Reliable COP data could only be derived for 13 of the subjects with AIS. Increasing backpack load causes a significantly increased flexion of the trunk in relation to the pelvis and extension of the head in relation to the trunk, as well as increased antero-posterior range of COP motion. While backpack load appears to affect balance predominantly in the antero-posterior direction, differences between groups were more evident in the medio-lateral direction, with AIS subjects showing poor balance in this direction. Overall, carrying a backpack causes similar sagittal plane changes in posture and balance in both normal and AIS groups. Load size or subject group did not influence balance, but the additive effect of backpack carrying and AIS on postural control alters the risk of fall in this population. Therefore, load limit recommendations based on normal subjects should not be applicable to subjects with AIS.

  18. Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection.

    Directory of Open Access Journals (Sweden)

    Gene S Tan

    2016-04-01

    Full Text Available In the early spring of 2013, Chinese health authorities reported several cases of H7N9 influenza virus infections in humans. Since then the virus has established itself at the human-animal interface in Eastern China and continues to cause several hundred infections annually. In order to characterize the antibody response to the H7N9 virus we generated several mouse monoclonal antibodies against the hemagglutinin of the A/Shanghai/1/13 (H7N9 virus. Of particular note are two monoclonal antibodies, 1B2 and 1H5, that show broad reactivity to divergent H7 hemagglutinins. Monoclonal antibody 1B2 binds to viruses of the Eurasian and North American H7 lineages and monoclonal antibody 1H5 reacts broadly to virus isolates of the Eurasian lineage. Interestingly, 1B2 shows broad hemagglutination inhibiting and neutralizing activity, while 1H5 fails to inhibit hemagglutination and demonstrates no neutralizing activity in vitro. However, both monoclonal antibodies were highly protective in an in vivo passive transfer challenge model in mice, even at low doses. Experiments using mutant antibodies that lack the ability for Fc/Fc-receptor and Fc/complement interactions suggest that the protection provided by mAb 1H5 is, at least in part, mediated by the Fc-fragment of the mAb. These findings highlight that a protective response to a pathogen may not only be due to neutralizing antibodies, but can also be the result of highly efficacious non-neutralizing antibodies not readily detected by classical in vitro neutralization or hemagglutination inhibition assays. This is of interest because H7 influenza virus vaccines induce only low hemagglutination inhibiting antibody titers while eliciting robust antibody titers as measured by ELISA. Our data suggest that these binding but non-neutralizing antibodies contribute to protection in vivo.

  19. Postural changes versus balance control and falls in community-living older adults: a systematic review

    Directory of Open Access Journals (Sweden)

    Viviane Lemos Silva Fernandes

    2018-06-01

    Full Text Available Abstract Introduction: Since falls are considered to be a public health problem, it is important to identify whether postural changes over time contribute to the risk of falls in older adults. Objective: To investigate whether postural changes increase fall risk and/or postural imbalance in healthy, community-dwelling older adults. Methods: In April 2016, two reviewers independently searched the PubMed, Web of Science, SPORTDiscus, and CINAHL databases for studies in English published in the previous 10 years, using the following combined keywords: “posture” or (“kyphosis”,“lumbar lordosis”,“flexed posture”,“spinal curvature”,“spinal sagittal contour” AND “elderly” AND “fall”. Study quality was assessed according to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology guidelines for observational studies. Results: The search retrieved 1,734 articles. Only observational studies that assessed posture, balance, and/or falls in older adults were considered eligible for review. The final sample included 17 articles: reliability and reproducibility of the instruments were not reported in five studies, while two studies offered a questionable description of the instruments used. Fourteen articles analyzed postural changes at the trunk level and three articles assessed them at the ankles and feet. Most studies found a positive association between postural changes and an increased risk for loss of balance and falls. Conclusion: Thoracic hyperkyphosis, loss of lumbar lordosis, and decreased plantar arch seem to contribute to greater postural instability, and thus to a higher risk of falls in community-living older adults.

  20. Standing working posture compared in pregnant and non-pregnant conditions.

    Science.gov (United States)

    Paul, J A; Frings-Dresen, M H

    1994-09-01

    During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.

  1. Imaging Posture Veils Neural Signals

    Directory of Open Access Journals (Sweden)

    Robert T Thibault

    2016-10-01

    Full Text Available Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay.Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy. Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  2. Robust hopping based on virtual pendulum posture control

    International Nuclear Information System (INIS)

    Sharbafi, Maziar A; Ahmadabadi, Majid Nili; Yazdanpanah, Mohammad J; Maufroy, Christophe; Seyfarth, Andre

    2013-01-01

    A new control approach to achieve robust hopping against perturbations in the sagittal plane is presented in this paper. In perturbed hopping, vertical body alignment has a significant role for stability. Our approach is based on the virtual pendulum concept, recently proposed, based on experimental findings in human and animal locomotion. In this concept, the ground reaction forces are pointed to a virtual support point, named virtual pivot point (VPP), during motion. This concept is employed in designing the controller to balance the trunk during the stance phase. New strategies for leg angle and length adjustment besides the virtual pendulum posture control are proposed as a unified controller. This method is investigated by applying it on an extension of the spring loaded inverted pendulum (SLIP) model. Trunk, leg mass and damping are added to the SLIP model in order to make the model more realistic. The stability is analyzed by Poincaré map analysis. With fixed VPP position, stability, disturbance rejection and moderate robustness are achieved, but with a low convergence speed. To improve the performance and attain higher robustness, an event-based control of the VPP position is introduced, using feedback of the system states at apexes. Discrete linear quartic regulator is used to design the feedback controller. Considerable enhancements with respect to stability, convergence speed and robustness against perturbations and parameter changes are achieved. (paper)

  3. Behavioral and cognitive evaluation of FireWorks education trunk

    Science.gov (United States)

    Linda R. Thomas; James A. Walsh; Jane Kapler Smith

    2000-01-01

    This study assessed the effectiveness of FireWorks, an educational trunk about wildland fire, in increasing student understanding, enabling students to apply classroom learning in a field setting, and improving the learning environment. Students who were in classrooms using the FireWorks educational trunk demonstrated more knowledge in both classroom and field-based...

  4. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the anatomical structure of the trunk wood and the roots of A. nitida and R. racemosa, two mangrove trees from Gabon. The anatomical differences between the trunks and the roots were used to understand their bio-remediating differences through heavy metals. It was found that the ...

  5. Mechanical trunk in pine wood for cattle

    Directory of Open Access Journals (Sweden)

    Antonio Orlando da Luz Freire Neto

    2012-12-01

    Full Text Available The timber reforestation, mainly by Eucalyptus and Pinus sp., has low power processing, strength, good natural durability and, most importantly, provide reduce pressure on native forests. The concern with native forests and the high price of some of these woods force the market to replace those species by other, more abundant and available at most competitive prices. Anything that involves the handling of animals in its various phases has a direct dependency of husbandry facilities, pastures and actions of the people involved (best practices. With the segment of the production and export of meat increasingly competitive and globalized world, the adoption of best practices and animal welfare criteria are striking and decision makers for the acceptance of Brazilian beef in the world market, especially the European market. The use of appropriate animal husbandry facilities is critical to the proper rational management ("action with knowledge" of animals and increased productivity. The trunk restraint carries important role in the implementation and conduct of good animal welfare as having desirable features strength, durability, ability to contain cattle of various sizes, as well as easy to manipulate when the animal inside. Available on the market in the form of different models and costs, is an installation manufactured in wood and iron or galvanized, and may or may not be coupled with an analytical balance or digital, still and mechanical and other systems or electronics. The concern in this installation is perceived improvement in the number of patents filed and recorded and the constant evolution of their functions, with various companies operating in this segment. However, the development and validation of containment trunks with alternative materials, reflecting mainly the reduction of the final cost are poorly studied. In this first phase of the project will be considered the construction of trunk restraint coupled with analytical balance

  6. Anomalous Posterior Intercostal Arterial Trunk Arising From the Abdominal Aorta

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Bing, E-mail: jbshh@163.com; Yu, Dong, E-mail: yudong-mail@126.com; Jiang, Sen, E-mail: jasfly77@vip.163.com [Tongji University School of Medicine, Department of Radiology, Shanghai Pulmonary Hospital (China)

    2016-04-15

    A common trunk of the ipsilateral posterior intercostal artery (PIA) arising from the thoracic aorta is usually an anatomical variation. However, a common trunk of bilateral posterior intercostal arterial trunk (PIAT) arising from the abdominal aorta is rare. It is important to recognize this anatomical variation of PIA when performing interventional radiological procedures. We present a rare case of an anomalous PIAT that originated from the abdominal aorta in a patient with hemoptysis caused by tuberculosis sequelae. Bilateral 4th to 11th PIAs arose from a common trunk and the trunk arising from the posterior aspect of the abdominal aorta at the level of T12/L1 intervertebral space. The pathological right 4th and 5th PIAs and bronchial arteries were embolized. Hemoptysis has been controlled for 3 months.

  7. Effects of regular Tai Chi practice and jogging on neuromuscular reaction during lateral postural control in older people.

    Science.gov (United States)

    Wang, Shao-Jun; Xu, Dong-Qing; Li, Jing-Xian

    2017-01-01

    This study examined the effects of regular Tai Chi practice and jogging on the neuromuscular activity of the trunk, hip, and ankle joint muscles of older people during lateral postural perturbation. A total of 42 older people participated in the study and formed the Tai Chi, jogging, and sedentary control groups. Electromyography signals were collected from the peroneus longus, anterior tibialis, gluteus medius, and erector spinae during unpredictable mediolateral perturbation. The Tai Chi group exhibited significantly faster latencies of the tibialis anterior and erector spinae than the control group. The jogging group showed a significantly shorter neuromuscular reaction time of the erector spinae than the control group. No significant difference was observed between the Tai Chi and jogging groups. Long-term regular Tai Chi practice enhanced the neuromuscular reaction of the erector spinae and tibialis anterior to lateral perturbation and will help timely posture correction when lateral postural distributions occur.

  8. Effects of carrying a backpack in an asymmetrical manner on the asymmetries of the trunk and parameters defining lateral flexion of the spine.

    Science.gov (United States)

    Drzał-Grabiec, Justyna; Snela, Sławomir; Rachwał, Maciej; Podgórska, Justyna; Rykała, Justyna

    2015-03-01

    The aim of this study was to examine changes in the body posture parameters defining asymmetry of the trunk and lateral flexion of the spine in children while carrying a backpack weighing 10% of a child's weight. Carrying a backpack may negatively affect the posture of schoolchildren and contribute to spinal pain. The study involved 162 primary school students ages 11 to 13 years. The parameters describing body posture were assessed with a backpack carried on the right or left shoulder as well as without a load. To assess the predefined parameters, we used the CQ Elektronik System, employing the photogrammetric method. Trunk inclination shifted significantly in the opposite direction to the shoulder the backpack was carried on, and an increase in shoulder asymmetry was also found. We also observed a more pronounced right-side lateral flexion of the spine when the backpack was carried on the right shoulder and an analogous relationship for the left side. The results of this study show that carrying a backpack in an asymmetrical manner negatively affects spine, even if the backpack weight constitutes 10% of the child's weight, which has been previously recommended as a safe load for a child's shoulders. We suggest that the issue of safe backpack weight be reassessed and that students be taught basic ergonomic principles on how to carry loads. Changes to the management pattern of carrying textbooks to and from school also should be considered. © 2014, Human Factors and Ergonomics Society.

  9. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  10. Influence of lumbar muscle fatigue on trunk adaptations during sudden external perturbations

    Directory of Open Access Journals (Sweden)

    Jacques Abboud

    2016-11-01

    Full Text Available IntroductionWhen the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g. attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. AimTo characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG.MethodsTwenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess 1 the adaptation effect across trials, 2 the fatigue effect, and 3 the interaction effect (fatigue x adaptation for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity. Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. ResultsAn attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  11. Anterioposterior spinal curvatures and magnitude of asymmetry in the trunk in musicians playing the violin compared with nonmusicians.

    Science.gov (United States)

    Barczyk-Pawelec, Katarzyna; Sipko, Tomasz; Demczuk-Włodarczyk, Ewa; Boczar, Agata

    2012-05-01

    Playing an instrument often requires a certain posture and asymmetric position that may affect the anteroposterior spinal curvatures and may lead to postural asymmetry. The aim of the study was to evaluate the spinal curvatures in the sagittal plane and the magnitude of asymmetries in the trunk in the frontal plane in a group of music students in comparison with a control group. The group of 67 students aged 20 to 26 years was made up of 2 subgroups: the musicians (violin playing students of the Academy of Music in Wroclaw) and the control group (physical therapy students who played no instruments). The examination included an interview, measuring of somatic characteristics, and evaluation of body posture by means of the photogrammetric method. The spinal curvatures of the instrumentalists in the sagittal plane differ from the control group mainly in terms of length and depth parameters. Compared with the control group, the musicians were characterized by statistically more significantly longer and deeper thoracic kyphosis (P < .01) and more shallow lumbar lordosis (P < .05), a greater angle of thoracic kyphosis (P < .005), and a smaller inclination angle of the thoracolumbar and lumbosacral section of the spine (P < .01). In the group of musicians, the asymmetries in the area of shoulders and waist triangles as well as the distance of the spinous processes from the C7 to S1 line were more frequent. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  12. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults

    Directory of Open Access Journals (Sweden)

    Angélica Castilho Alonso

    2012-12-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years. METHODS: The following body composition measurements were collected (using bone densitometry measurements: fat percentage (% fat, tissue (g, fat (g, lean mass (g, bone mineral content (g, and bone mineral density (g/cm2. In addition, the following anthropometric measurements were collected: body mass (kg, height (cm, length of the trunk-cephalic region (cm, length of the lower limbs (cm and length of the upper limbs (cm. The following indices were calculated: body mass index (kg/m², waist-hip ratio and the support base (cm². Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.

  13. Investigating the Effects of Different Working Postures on Cognitive Performance

    Directory of Open Access Journals (Sweden)

    Sharareh Mohammadi

    2018-01-01

    Conclusion This study demonstrates that cognitive performance is affected by working postures. This study demonstrates that standard sitting posture is the best posture. Therefore, it is recommended that sitting posture can help in increasing cognitive performance in the workplace.

  14. Cinerama sickness and postural instability.

    Science.gov (United States)

    Bos, Jelte E; Ledegang, Wietse D; Lubeck, Astrid J A; Stins, John F

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.

  15. Trunk's natural inclination influences stance limb kinetics, but not body kinematics, during gait initiation in able men.

    Directory of Open Access Journals (Sweden)

    Sébastien Leteneur

    Full Text Available The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW or backward (BW with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5 moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001 for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001 before the swing limb's heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01 during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001, 1.4 (P<0.001 and 1.7 (P<0.01 times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.

  16. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41.

    Directory of Open Access Journals (Sweden)

    Elena Gustchina

    Full Text Available A series of mini-antibodies (monovalent and bivalent Fabs targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066 broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062 non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN363 or 3-H has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen

  17. Stability of Non-Neutral Plasma Cylinder Consisting of Magnetized Cold Electrons and of Small Density Fraction of Ions Born at Rest: Non-Local Analysis

    International Nuclear Information System (INIS)

    Yeliseyev, Y. N.

    2009-01-01

    The non-local stability problem of the plasma cylinder, filled with 'cold' magnetized rigidly rotating electrons, and a small density fraction of ions, is solved. The ions are supposed to be born at rest by ionization of background gas. The study is based on the kinetic description of ions. The equilibrium distribution function, taking into account the peculiarity of ions birth, is used. The radial electric field is caused by space charge of non-neutral plasma. The dispersion equation for plasma eigen frequencies is obtained analytically. It is valid within the total admissible range of values of electric and magnetic fields. Normalized eigen frequencies ω'/Ω i are calculated for the basic azimuth mode m = 1(ω' ω-mω i + , ω + = (-ω ci +Ω i )/2, Ω i (ω ci 2 -4eE r /m i r) 1/2 is called the 'modified' ion cyclotron (MIC) frequency), for the density fraction of ions of atomic nitrogen f N i /n e = 0,01 and are presented in graphic form versus parameter 2ω pe 2 /ω ce 2 . The spectra of oscillations ω'/Ω i consist of the family of electron Trivel-piece--Gould (TG) modes and of the families of MIC modes. The frequencies of MIC modes are located in a small vicinity of harmonics of the MIC frequency Ω i above and below the harmonic. The TG modes in non-neutral plasma fall in the region of MIC frequencies Ω i and interact strongly with MIC modes. The slow TG modes become unstable near the crossings with non-negative harmonics of MIC frequencies. The instabilities have a resonant character. The lowest radial TG mode has a maximum growth rate at crossing with a zero harmonic of Ω i ((Im ω'/Ω i ) max ≅0,074). The growth rates of MIC modes are much lower ((Im ω'/Ω i ) max pe 2 /ω ce 2 , corresponding to strong radial electric fields (ω ci 2 r /m i r|), in which the ions are unmagnetized. The oscillations of small amplitude are seen on some frequency dependencies of MIC modes. They are similar to oscillations on dispersion curves of electron waves in

  18. Thermoregulatory postures limit antipredator responses in peafowl.

    Science.gov (United States)

    Yorzinski, Jessica L; Lam, Jennifer; Schultz, Rachel; Davis, Melissa

    2018-01-05

    Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl ( Pavo cristatus ) and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior. © 2018. Published by The Company of Biologists Ltd.

  19. Thermoregulatory postures limit antipredator responses in peafowl

    Directory of Open Access Journals (Sweden)

    Jessica L. Yorzinski

    2018-01-01

    Full Text Available Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus and evaluated whether the head-tuck posture imposes a predation cost. The heads and legs of peafowl are significantly warmer when the birds exhibit these postures, demonstrating that these postures serve an important thermoregulatory role. In addition, the birds are slower to respond to an approaching threat when they display the head-tuck posture, suggesting that a thermoregulatory posture can limit antipredator behavior.

  20. Body posture changes in women with migraine with or without temporomandibular disorders

    Science.gov (United States)

    Ferreira, Mariana C.; Bevilaqua-Grossi, Débora; Dach, Fabíola É.; Speciali, José G.; Gonçalves, Maria C.; Chaves, Thais C.

    2014-01-01

    Background Migraine and temporomandibular disorders (TMDs) are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD), 22 volunteers with migraines without TMD (MG) and 22 women in the control group (CG). Static posture was assessed by photogrammetry, and 19 angles were measured. Results Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60). For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42). The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54) and for two angles between MG and CG (ES>0.48). Conclusion The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD. PMID:24675909

  1. Body posture changes in women with migraine with or without temporomandibular disorders

    Directory of Open Access Journals (Sweden)

    Mariana C. Ferreira

    2014-03-01

    Full Text Available Background: Migraine and temporomandibular disorders (TMDs are reported to be associated. However, there are no reports on the association among migraines, TMDs and changes in body posture. Objectives : To assess changes in body posture in women suffering migraines with or without TMD compared with a control group. Method: Sixty-six women with a mean age of 18 to 45 years participated in this study. The groups were composed of 22 volunteers with migraine and TMD (MTMD, 22 volunteers with migraines without TMD (MG and 22 women in the control group (CG. Static posture was assessed by photogrammetry, and 19 angles were measured. Results: Postural asymmetry was observed in the face for 4 angles measured on the frontal plane in the MG group and for 4 angles of the trunk in the MG and MTMD groups with respect to CG. However, for comparisons between MTMD and CG, clinical relevance was identified for two angles of the sagittal plane (Cervical and Lumbar Lordosis, Effect Size - ES - moderate: 0.53 and 0.60. For comparisons between the MG and CG, the clinical relevance/potential was verified for three angles with moderate ES (ES>0.42. The clinical relevance when comparing MTMD and CG was identified for four angles of facial symmetry head inclination (ES>0.54 and for two angles between MG and CG (ES>0.48. Conclusion : The results demonstrated the presence of postural changes compared with a control group in women with migraines with or without TMD, and there were similar clinically relevant postural changes among the patients with migraines with and without TMD.

  2. Body posture in children with obesity - the relationship to physical activity (PA).

    Science.gov (United States)

    Brzęk, Anna; Sołtys, Jacek; Gallert-Kopyto, Weronika; Gwizdek, Katarzyna; Plinta, Ryszard

    2016-01-01

    The modern world of electronic devices offers children and young people various forms of leisure activities, while reducing the need for natural movement, necessary for normal psychomotor development. Sedentary life contributes to an increased body weight and, thereby, to the development of body posture abnormalities. The aim of the study was to evaluate body posture, leisure activities, and the number of hours spent using electronic devices among children with obesity. The study involved 51 children with obesity (BMI above 95 percentile) - A group, and 69 children with normal body weight at the age of 9-13 years (10.98 ± 1.29) - B group (control). Body posture has been evaluated with the scoliometer, the digital inclinometer and the plumb line. The hump ratio has been calculated on the basis of SOSORT recommendations. Time spent in front of electronic devices based on a questionnaire results has also been calculated. Children with obesity have more body posture defects in the sagittal plane than children with normal z-scores (pchildren in group A have distorted depth of the two curvatures of the spine. In the control group, the majority of deviations have been observed in the evaluation of the ATR (Angle Trunk Rotation) at the lumbar spine (pelectronic devices at least 3 days a week (p>0.05). Obese children often use mobile devices, while children with normal body weight often use desktop equipment. Definitely more body posture abnormalities are found in the group of obese children. Children use electronic devices regardless of weight. It is worth to expand educational activities with programs that improve the quality of body posture through a daily change of abnormal patterns. © Polish Society for Pediatric Endocrinology and Diabetology.

  3. Gait, posture and cognition in Parkinson's disease

    OpenAIRE

    Barbosa, Alessandra Ferreira; Chen, Janini; Freitag, Fernanda; Valente, Debora; Souza, Carolina de Oliveira; Voos, Mariana Callil; Chien, Hsin Fen

    2016-01-01

    ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD). Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do n...

  4. Thermoregulatory postures limit antipredator responses in peafowl

    OpenAIRE

    Jessica L. Yorzinski; Jennifer Lam; Rachel Schultz; Melissa Davis

    2018-01-01

    Many animals inhabit environments where they experience temperature fluctuations. One way in which animals can adjust to these temperature changes is through behavioral thermoregulation. However, we know little about the thermal benefits of postural changes and the costs they may incur. In this study, we examined the thermoregulatory role of two postures, the head-tuck and leg-tuck posture, in peafowl (Pavo cristatus) and evaluated whether the head-tuck posture imposes a predation cost. The h...

  5. Postural ortostatisk takykardi-syndrom

    DEFF Research Database (Denmark)

    Brinth, Louise; Pors, Kirsten; Mehlsen, Jesper

    2015-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous condition of dysautonomia and suspected autoimmunity characterized by abnormal increments in heart rate upon assumption of the upright posture accompanied by symptoms of cerebral hypoperfusion and sympathoexcitation. An increase...... in heart rate equal to or greater than 30 bpm or to levels higher than 120 bpm during a head-up tilt test is the main diagnostic criterion. Management includes both non-pharmacological and pharmacological treatment focusing on stress management, volume expansion and heart rate control....

  6. Support surface related changes in feedforward and feedback control of standing posture.

    Science.gov (United States)

    Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S

    2014-02-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Simulations of the instability of the m=1 self-shielding diocotron mode in finite-length non-neutral plasmas

    International Nuclear Information System (INIS)

    Mason, Grant W.; Spencer, Ross L.

    2002-01-01

    The 'self-shielding' m=1 diocotron mode in Malmberg-Penning traps has been known for over a decade to be unstable for finite length non-neutral plasmas with hollow density profiles. Early theoretical efforts were unsuccessful in accounting for the exponential growth and/or the magnitude of the growth rate. Recent theoretical work has sought to resolve the discrepancy either as a consequence of the shape of the plasma ends or as a kinetic effect resulting from a modified distribution function as a consequence of the protocol used to form the hollow profiles in experiments. Both of these finite length mechanisms have been investigated in selected test cases using a three-dimensional particle-in-cell code that allows realistic treatment of shape and kinetic effects. A persistent discrepancy of a factor of 2-3 remains between simulation and experimental values of the growth rate. Simulations reported here are more in agreement with theoretical predictions and fail to explain the discrepancy

  8. Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses

    Directory of Open Access Journals (Sweden)

    Lannes Nils

    2012-08-01

    Full Text Available Abstract Foot-and-mouth disease virus (FMDV is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN by plasmacytoid dendritic cells (pDC. The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses.

  9. Postural Control in Children with Autism.

    Science.gov (United States)

    Kohen-Raz, Reuven; And Others

    1992-01-01

    Postural control was evaluated in 91 autistic, 166 normal, and 18 mentally retarded children using a computerized posturographic procedure. In comparison to normal children, the autistic subjects were less likely to exhibit age-related changes in postural performance, and postures were more variable and less stable. (Author/JDD)

  10. Automated Assessment of Postural Stability (AAPS)

    Science.gov (United States)

    2016-10-01

    performed a battery of standard clinical tests of dynamic posture, whereas the fourth subject performed the stereotyped postures (e.g. movements restricted...Processing & Control [2] Napoli A, Ward C, Glass S, Tucker C, Obeid I (2016) “Automated Assessment of Postural Stability System,” IEEE Engineering in

  11. Static and dynamic posture control in postlingual cochlear implanted patients: effects of dual-tasking, visual and auditory inputs suppression.

    Science.gov (United States)

    Bernard-Demanze, Laurence; Léonard, Jacques; Dumitrescu, Michel; Meller, Renaud; Magnan, Jacques; Lacour, Michel

    2013-01-01

    Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body's position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI) surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of postlingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static (stable platform) and dynamic (platform in translation) conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO) and eyes closed (EC) conditions, with the CI activated (ON) or not (OFF). Results showed that the postural performance of the CI patients strongly differed from the controls, mainly in the EC condition. The CI patients showed significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk: they behaved dynamically without vision like an inverted pendulum while the controls showed a whole body rigidification strategy. Hearing (prosthesis on) as well

  12. Two stages and three components of the postural preparation to action.

    Science.gov (United States)

    Krishnan, Vennila; Aruin, Alexander S; Latash, Mark L

    2011-07-01

    Previous studies of postural preparation to action/perturbation have primarily focused on anticipatory postural adjustments (APAs), the changes in muscle activation levels resulting in the production of net forces and moments of force. We hypothesized that postural preparation to action consists of two stages: (1) Early postural adjustments (EPAs), seen a few hundred ms prior to an expected external perturbation and (2) APAs seen about 100 ms prior to the perturbation. We also hypothesized that each stage consists of three components, anticipatory synergy adjustments seen as changes in covariation of the magnitudes of commands to muscle groups (M-modes), changes in averaged across trials levels of muscle activation, and mechanical effects such as shifts of the center of pressure. Nine healthy participants were subjected to external perturbations created by a swinging pendulum while standing in a semi-squatting posture. Electrical activity of twelve trunk and leg muscles and displacements of the center of pressure were recorded and analyzed. Principal component analysis was used to identify four M-modes within the space of muscle activations using indices of integrated muscle activation. This analysis was performed twice, over two phases, 400-700 ms prior to the perturbation and over 200 ms just prior to the perturbation. Similar robust results were obtained using the data from both phases. An index of a multi-M-mode synergy stabilizing the center of pressure displacement was computed using the framework of the uncontrolled manifold hypothesis. The results showed high synergy indices during quiet stance. Each of the two stages started with a drop in the synergy index followed by a change in the averaged across trials activation levels in postural muscles. There was a very long electromechanical delay during the early postural adjustments and a much shorter delay during the APAs. Overall, the results support our main hypothesis on the two stages and three components

  13. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    Any interspecies variability was found between their trunk vessels diameter. However, a significant ... are discharged in the sea, releasing like this toxic organic ...... Water. Discharge on nutrient contamination of mangrove soils and plants.

  14. A Case of an Aortic Abscess around the Elephant Trunk.

    Science.gov (United States)

    Fujii, Takeshiro; Kawasaki, Muneyasu; Katayanagi, Tomoyuki; Okuma, Shinnosuke; Masuhara, Hiroshi; Shiono, Noritsugu; Watanabe, Yoshinori

    2015-01-01

    A 52-year-old male patient with a history of total arch replacement using the elephant trunk technique for acute aortic dissection 4 years before visited our hospital with the chief complaint of persistent fever. Chest computed tomography (CT) suggested prosthetic vascular graft infection, which was treated surgically after chemotherapy. The first surgery consisted of debridement of an abscess around the vascular graft and in the aorta around the elephant trunk, and thoracic descending aorta replacement and vacuum-assisted closure (VAC) in view of the risk of bleeding from the peripheral region of the elephant trunk. One week later, omental filling was performed as the second step. This is a very rare case of aortic abscess around the elephant trunk that could successfully be managed by graft-conserving treatment.

  15. Observing of tree trunks and other cylindrical objects using GPR

    Science.gov (United States)

    Jezova, Jana; Lambot, Sebastien

    2016-04-01

    Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar

  16. Gait, posture and cognition in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    Full Text Available ABSTRACT Gait disorders and postural instability are the leading causes of falls and disability in Parkinson's disease (PD. Cognition plays an important role in postural control and may interfere with gait and posture assessment and treatment. It is important to recognize gait, posture and balance dysfunctions by choosing proper assessment tools for PD. Patients at higher risk of falling must be referred for rehabilitation as early as possible, because antiparkinsonian drugs and surgery do not improve gait and posture in PD.

  17. Visual Vection does not Perturb Squatting Posture

    Directory of Open Access Journals (Sweden)

    Dietrich Gilles

    2011-12-01

    Full Text Available Vision contributes fundamentally to the control of the standing posture. The illusion of self motion falsely perceived (vection increases postural sway while standing. In this paper we examine the effect of vection on both standing and deep squatting with the hypothesis that the squatting posture should not be disturbed by the conflict of sensory information due to vection. The results show that standing posture only was affected by the visual stimuli. The widespread use of squatting for work as well as rest could be due in part to this lack of effect of sensory perturbation on postural stability.

  18. MRI of lumbar trunk muscles in patients with Parkinson's disease and camptocormia.

    Science.gov (United States)

    Margraf, N G; Rohr, A; Granert, O; Hampel, J; Drews, A; Deuschl, G

    2015-07-01

    Camptocormia in Parkinson's disease (PD) is an axial postural disorder usually accompanied by histopathological changes in the paravertebral muscles of unknown etiology. The diagnostic potential of magnetic resonance imaging (MRI) of back muscles in camptocormia has not been systematically assessed. Our objective was to characterize pathological muscle changes with MRI and to develop radiological criteria for camptocormia. The criteria edema, swelling and fatty degeneration in 20 idiopathic PD patients with camptocormia were assessed using MRI (T1w and short tau inversion recovery (STIR) sequences) of the lumbar trunk muscles and compared with 20 group-matched PD patients without camptocormia. Edema and fatty degeneration of the paravertebral muscles were significantly more frequent in camptocormia. Edema correlated negatively and fatty degeneration positively with the duration of camptocormia and not PD. Swelling of the paravertebral muscles, edema and swelling of the quadratus lumborum muscle and rare edema of the psoas muscle were only found in camptocormia patients. In this case-control study the defined MRI criteria distinguish the group of PD patients with camptocormia versus those without. Our findings suggest dynamic changes in the MRI signals over time in the paravertebral muscles: edema and swelling are found initially, followed by fatty atrophic degeneration 2-3 years after the beginning of camptocormia. Muscle MRI qualifies as a tool for categorizing phases of camptocormia as acute or chronic, with potential consequences for therapeutic approaches. The involvement of muscles beyond an isolated impairment of the paravertebral muscles implies a more systemic view with a deregulation of lumbar trunk muscles.

  19. Stability of Non-Neutral Plasma Cylinder Consisting of Magnetized Cold Electrons and of Small Density Fraction of Ions Born at Rest: Non-Local Analysis

    Science.gov (United States)

    Yeliseyev, Y. N.

    2009-03-01

    The non-local stability problem of the plasma cylinder, filled with "cold" magnetized rigidly rotating electrons, and a small density fraction of ions, is solved. The ions are supposed to be born at rest by ionization of background gas. The study is based on the kinetic description of ions. The equilibrium distribution function, taking into account the peculiarity of ions birth, is used. The radial electric field is caused by space charge of non-neutral plasma. The dispersion equation for plasma eigen frequencies is obtained analytically. It is valid within the total admissible range of values of electric and magnetic fields. Normalized eigen frequencies ω'/Ωi are calculated for the basic azimuth mode m = 1 (ω' = ω-mωi+, ω+ = (-ωci+Ωi)/2, Ωi = (ωci2-4eEr/mir)1/2 is called the "modified" ion cyclotron (MIC) frequency), for the density fraction of ions of atomic nitrogen f = Ni/ne = 0,01 and are presented in graphic form versus parameter 2ωpe2/ωce2. The spectra of oscillations ω'/Ωi consist of the family of electron Trivel-piece—Gould (TG) modes and of the families of MIC modes. The frequencies of MIC modes are located in a small vicinity of harmonics of the MIC frequency Ωi above and below the harmonic. The TG modes in non-neutral plasma fall in the region of MIC frequencies Ωi and interact strongly with MIC modes. The slow TG modes become unstable near the crossings with non-negative harmonics of MIC frequencies. The instabilities have a resonant character. The lowest radial TG mode has a maximum growth rate at crossing with a zero harmonic of Ωi ((Im ω'/Ωi)max≈0,074). The growth rates of MIC modes are much lower ((Im ω'/Ωi)max≲0,002). Their instability has a threshold character. The instabilities of TG and MIC modes take place mainly at the values of parameter 2ωpe2/ωce2, corresponding to strong radial electric fields (ωci2≪|eEr/mir|), in which the ions are unmagnetized. The oscillations of small amplitude are seen on some frequency

  20. Relative contributions of neutral and non-neutral processes to clinal variation in calyx lobe length in the series Sakawanum (Asarum: Aristolochiaceae).

    Science.gov (United States)

    Takahashi, Daiki; Teramine, Tsutomu; Sakaguchi, Shota; Setoguchi, Hiroaki

    2018-01-25

    Clines, the gradual variation in measurable traits along a geographical axis, play a major role in evolution and can contribute to our understanding of the relative roles of selective and neutral process in trait variation. Using genetic and morphological analyses, the relative contributions of neutral and non-neutral processes were explored to infer the evolutionary history of species of the series Sakawanum (genus Asarum), which shows significant clinal variation in calyx lobe length. A total of 27 populations covering the natural geographical distribution of the series Sakawanum were sampled. Six nuclear microsatellite markers were used to investigate genetic structure and genetic diversity. The lengths of calyx lobes of multiple populations were measured to quantify their geographical and taxonomic differentiation. To detect the potential impact of selective pressure, morphological differentiation was compared with genetic differentiation (QCT-FST comparison). Average calyx lobe length of A. minamitanianum was 124.11 mm, while that of A. costatum was 13.80 mm. Though gradually changing along the geographical axis within series, calyx lobe lengths were significantly differentiated among the taxa. Genetic differentiation between taxa was low (FST = 0.099), but a significant geographical structure along the morphological cline was detected. Except for one taxon pair, pairwise QCT values were significantly higher than the neutral genetic measures of FST and G'ST. Divergent selection may have driven the calyx lobe length variation in series Sakawanum taxa, although the underlying mechanism is still not clear. The low genetic differentiation indicates recent divergence and/or gene flows between geographically close taxa. These neutral processes would also affect the clinal variation in calyx lobe lengths. Overall, this study implies the roles of population history and divergent selection in shaping the current cline of a flower trait in the series Sakawanum. © The

  1. Effect of table top slope and height on body posture and muscular activity pattern.

    Science.gov (United States)

    Hassaïne, M; Hamaoui, A; Zanone, P-G

    2015-04-01

    The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Gender features of functional condition of backbone of teenagers with scoliotic posture

    Directory of Open Access Journals (Sweden)

    Sergiy Afanasiev

    2016-10-01

    Full Text Available Purpose: to study mobility of backbone, endurance of muscles of a trunk and to define gender features of functional condition of backbone at children of the middle school age with scoliotic posture depending on the direction of the top of arch of curvature of spine. Material & Methods: 40 girls and 40 boys, including 18 girls and 18 boys with the right-side deformation of backbone in the thoracic department, the left-side – 22 girls and 22 boys are examined. Results: features of changes of indicators, depending on sex of children and frontage of the top of arch of curvature of spine column, are revealed when studying the level of flexibility of backbone and endurance of muscles of a trunk at children of the middle school age with scoliotic posture. Conclusions: it is established that the level of decrease in flexibility of backbone is higher at boys, than at girls, whereas indicators of contractile ability and tone of muscles of "muscular corset" are higher at boys.

  3. A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model.

    Science.gov (United States)

    Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung

    2017-07-01

    This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.

  4. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    Science.gov (United States)

    Stylianides, Georgios A; Dalleau, Georges; Begon, Mickaël; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP), and its anteroposterior (AP) and mediolateral (ML) displacements. A multivariate analysis of variance (MANOVA) was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1), body posture variables (factor 2), and pelvic morphology variables (factors 3 and 4). Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  5. Pelvic morphology, body posture and standing balance characteristics of adolescent able-bodied and idiopathic scoliosis girls.

    Directory of Open Access Journals (Sweden)

    Georgios A Stylianides

    Full Text Available The purpose of this study was to determine how pelvic morphology, body posture, and standing balance variables of scoliotic girls differ from those of able-bodied girls, and to classify neuro-biomechanical variables in terms of a lower number of unobserved variables. Twenty-eight scoliotic and twenty-five non-scoliotic able-bodied girls participated in this study. 3D coordinates of ten anatomic body landmarks were used to describe pelvic morphology and trunk posture using a Flock of Birds system. Standing balance was measured using a force plate to identify the center of pressure (COP, and its anteroposterior (AP and mediolateral (ML displacements. A multivariate analysis of variance (MANOVA was performed to determine differences between the two groups. A factor analysis was used to identify factors that best describe both groups. Statistical differences were identified between the groups for each of the parameter types. While spatial orientation of the pelvis was similar in both groups, five of the eight trunk postural variables of the scoliotic group were significantly different that the able-bodied group. Also, five out of the seven standing balance variables were higher in the scoliotic girls. Approximately 60% of the variation is supported by 4 factors that can be associated with a set of variables; standing balance variables (factor 1, body posture variables (factor 2, and pelvic morphology variables (factors 3 and 4. Pelvic distortion, body posture asymmetry, and standing imbalance are more pronounced in scoliotic girls, when compared to able-bodied girls. These findings may be beneficial when addressing balance and ankle proprioception exercises for the scoliotic population.

  6. Spinal Cord Stimulation in Failed Back Surgery Syndrome: Effects on Posture and Gait—A Preliminary 3D Biomechanical Study

    Directory of Open Access Journals (Sweden)

    L. Brugliera

    2017-01-01

    Full Text Available We studied 8 patients with spinal cord stimulation (SCS devices which had been previously implanted to treat neuropathic chronic pain secondary to Failed Back Surgery Syndrome. The aim of our study was to investigate the effects of SCS on posture and gait by means of clinical scales (Short Form Health Survey-36, Visual Analogue Scale for pain, and Hamilton Depression Rating Scale and instrumented evaluation with 3D Gait Analysis using a stereophotogrammetric system. The latter was performed with the SCS device turned both OFF and ON. We recorded gait and posture using the Davis protocol and also trunk movement during flexion-extension on the sagittal plane, lateral bending on the frontal plane, and rotation on the transversal plane. During and 30 minutes after the stimulation, not only the clinical scales but also spatial-temporal gait parameters and trunk movements improved significantly. Improvement was not shown under stimulation-OFF conditions. Our preliminary data suggest that SCS has the potential to improve posture and gait and to provide a window of pain-free opportunity to optimize rehabilitation interventions.

  7. Nutcracker syndrome associated with celiacomesentric trunk anomaly: case report

    Directory of Open Access Journals (Sweden)

    Al-Zoubi NA

    2017-12-01

    Full Text Available Nabil A Al-Zoubi,1 Ibrahim F Al-Ghalayini,1,2 Radwan Al-Okour1,2 1Department of Surgery, 2Division of Urology, Jordan University of Science and Technology, Irbid, Jordan Introduction: Nutcracker syndrome is a rare disease entity that is caused by entrapment of the left renal vein between the aorta and superior mesenteric artery, usually due to abnormal branching of the superior mesenteric artery from the aorta causing renal venous hypertension. The symptoms vary from asymptomatic hematuria to severe pelvic congestion. Celiacomesenteric trunk anomaly is a rare variation of splanchnic artery anomaly that occurs when the celiac trunk and superior mesenteric arteries have a common origin from the aorta. A disease involving the rarely encountered celiacomesenteric trunk anomaly is extremely uncommon. To our knowledge, association between nutcracker syndrome and celiacomesentric trunk anomaly has not been reported in the literature.Case presentation: A 14-year-old boy with no significant past medical history presented with a 3-year painless hematuria. CT-angiogram revealed anterior nutcracker syndrome with celiacomesenteric trunk anomaly. The patient was managed conservatively with close follow-up.Conclusion: Nutcracker syndrome associated with celiacomesenteric trunk anomaly is extremely uncommon and is a rare cause of hematuria in children. Whether this abnormal anatomy is the cause of nutcracker syndrome or just an association should be investigated. Moreover, awareness of this anatomical variation may help in planning therapeutic options and reducing the chance of surgical iatrogenic injuries. Keywords: nutcracker syndrome, celiacomesenteric trunk, hematuria in children

  8. Postural risk assessment of mechanised firewood processing.

    Science.gov (United States)

    Spinelli, Raffaele; Aminti, Giovanni; De Francesco, Fabio

    2017-03-01

    The study assessed the postural risk of mechanised firewood processing with eight machines, representing the main technology solutions available on the market. Assessment was conducted with the Ovako Working posture Analysis System (OWAS) on 1000 still frames randomly extracted from videotaped work samples. The postural risk associated with firewood processing was variable and associated with technology type. Simple, manually operated new machines incurred a higher postural risk compared with semi- or fully automatic machines. In contrast, new semi-automatic and automatic machines were generally free from postural risk. In all cases, attention should be paid to postural risk that may occur during blockage resolution. The study did not cover the postural risk of firewood processing sites as a whole. The study provided useful information for selecting firewood processing machinery and for improving firewood machinery design, as part of a more articulate strategy aimed at enhancing the safety of firewood processing work sites. Practitioner Summary: The postural risk associated with mechanised firewood processing (eg cutting and splitting) depends on the type of equipment. Postural risk is highest (OWAS Action Category 2) with new in-line machines, designed for operation by a single worker. Fully automatic machines present minimum postural risk, except during blockage resolution.

  9. Postural control in blind subjects.

    Science.gov (United States)

    Soares, Antonio Vinicius; Oliveira, Cláudia Silva Remor de; Knabben, Rodrigo José; Domenech, Susana Cristina; Borges Junior, Noe Gomes

    2011-12-01

    To analyze postural control in acquired and congenitally blind adults. A total of 40 visually impaired adults participated in the research, divided into 2 groups, 20 with acquired blindness and 20 with congenital blindness - 21 males and 19 females, mean age 35.8 ± 10.8. The Brazilian version of Berg Balance Scale and the motor domain of functional independence measure were utilized. On Berg Balance Scale the mean for acquired blindness was 54.0 ± 2.4 and 54.4 ± 2.5 for congenitally blind subjects; on functional independence measure the mean for acquired blind group was 87.1 ± 4.8 and 87.3 ± 2.3 for congenitally blind group. Based upon the scale used the results suggest the ability to control posture can be developed by compensatory mechanisms and it is not affected by visual loss in congenitally and acquired blindness.

  10. Postural control in blind subjects

    Directory of Open Access Journals (Sweden)

    Antonio Vinicius Soares

    2011-12-01

    Full Text Available Objective: To analyze postural control in acquired and congenitally blind adults. Methods: A total of 40 visually impaired adults participated in the research, divided into 2 groups, 20 with acquired blindness and 20 with congenital blindness - 21 males and 19 females, mean age 35.8 ± 10.8. The Brazilian version of Berg Balance Scale and the motor domain of functional independence measure were utilized. Results: On Berg Balance Scale the mean for acquired blindness was 54.0 ± 2.4 and 54.4 ± 2.5 for congenitally blind subjects; on functional independence measure the mean for acquired blind group was 87.1 ± 4.8 and 87.3 ± 2.3 for congenitally blind group. Conclusion: Based upon the scale used the results suggest the ability to control posture can be developed by compensatory mechanisms and it is not affected by visual loss in congenitally and acquired blindness.

  11. Avaliação postural em pacientes com doença pulmonar obstrutiva crônica Postural assessment in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Célia Aparecida Stellutti Pachioni

    2011-12-01

    scanned and subsequently evaluated ten postural changes with SPA [lateral head tilting (LHT, shoulder asymmetry (SA1, anterior pelvic asymmetry (APA, lateral trunk tilting (LTT, scapular asymmetry (SA2, posterior pelvic asymmetry (PPA, head protrusion (HP, shoulder protrusion (SP, anterior pelvic tilting (ABT, and thoracic kyphosis (TK]. These postural changes, obtained in the control group, were compared with the normal range for young adults, proposed in a previous study. For the comparison of postural changes between the control and COPD groups was used Mann-Whitney test in the control group, and young adults, the unpaired Students's t-test. The level of statistical significance was 5%. Among the ten postural changes, the control group had seven (LHT, APA, SA2, PPA, HP, SP, ABT outside the normal range for young adults, with significantly higher angular values. When compared to healthy elderly, patients with COPD showed a significant increase in the angle of three postural changes (ABT, PPA, and TK. Patients with COPD have three postural changes that are probably related to the disease.

  12. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    Science.gov (United States)

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Functional and morphological variety in trunk muscles of Urodela.

    Science.gov (United States)

    Omura, Ayano; Anzai, Wataru; Endo, Hideki

    2014-03-01

    Trunk musculature in Urodela species varies by habitat. In this study, trunk musculature was examined in five species of adult salamanders representing three different habitats: aquatic species, Amphiuma tridactylum and Necturus maculosus; semi-aquatic species, Cynops pyrrhogaster; terrestrial species, Hynobius nigrescens and Ambystoma tigrinum. More terrestrial species have heavier dorsal and ventral trunk muscles than more aquatic forms. By contrast, the lateral hypaxial musculature was stronger in more aquatic species. The number of layers of lateral hypaxial musculature varied among Urodela species and did not clearly correlate with their habitats. The M. rectus abdominis was separated from the lateral hypaxial musculature in both terrestrial and semi-aquatic species. In aquatic species, M. rectus abdominis was not separated from lateral hypaxial musculature. Lateral hypaxial musculature differed in thickness among species and was relatively thinner in terrestrial species. In more terrestrial species, dorsal muscles may be used for stabilization and ventral flexing against gravity. Ventral muscle may be used in preventing dorsally concave curvature of the trunk by dorsal muscles and by weight. The lengthy trunk supported by limbs needs muscular forces along the ventral contour line in more terrestrial species. And, the locomotion on well-developed limbs seems to lead to a decrease of the lateral hypaxial musculature.

  14. The genus Allogamus Schmid, 1955 (Trichoptera, Limnephilidae: revised by sexual selection-driven adaptive, non-neutral traits of the phallic organ

    Directory of Open Access Journals (Sweden)

    Oláh, János

    2014-06-01

    Full Text Available Based upon our previous reviews on the phylogenetic species concept, initial split criteria and fine structure analysis here we summarize population and model thinking as support to our diverged structure matrix procedure to test simply visually or, if required, by geometric morphometrics the stability of sexual selection-driven adaptive, non-neutral traits of the phallic organ. Complexity review helped us to establish plesiomorphic and apomorphic states of parameres of the phallic organ. Fine structure diversity of the adaptive traits of paramere and the apical portion of aedeagus has been applied to revise the Allogamus genus. All the known 22 taxa, 19 species and 3 subspecies, have been revised. Apomorphic fusion of parameres and complexity evolution of aedeagus directed us to erect 2 rediagnosed species groups, 1 new species group, 4 new species subgroups, 1 new species complex, 10 new species and 4 new or revised species status as follows: Allogamus auricollis species group, rediagnosed. Allogamus antennatus new subgroup: A. antennatus (McLachlan, 1876, A. ausoniae Moretti, 1991, stat. rev., A. morettii DePietro & Cianficconi, 2001, stat. rev., A. silanus Moretti 1991, stat. nov. Allogamus auricollis new subgroup: A. alpensis Oláh, Lodovici & Valle sp. nov., A. auricollis (Pictet, 1834, A. despaxi Decamps, 1967, A. zomok Oláh & Coppa sp. nov. Allogamus hilaris new subgroup: A. hilaris (McLachlan, 1876. Allogamus ligonifer new subgroup: A. gibraltaricus Gonzalez & Ruiz, 2001, A. kefes Coppa & Oláh sp. nov., A. laureatus (Navas, 1918, A. ligonifer (McLachlan, 1876, A. pertuli Malicky, 1974, A. pupos Coppa & Oláh sp. nov. Allogamus mortoni new species complex: A. kampos Oláh & Ruiz sp. nov., A. kettos Oláh & Ruiz sp. nov., A. kurtas Oláh & Zamora-Muñoz sp. nov., A. mortoni (Navas, 1907, A. pohos Oláh & Zamora-Muñoz sp. nov., A. tuskes Oláh & Sáinz-Bariáin sp. nov. Allogamus corsicus new species group: A. corsicus (Ris, 1897. A

  15. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.

    Science.gov (United States)

    El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A

    2018-03-21

    To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    OpenAIRE

    Cavanaugh, J; Guskiewicz, K; Giuliani, C; Marshall, S; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion.

  17. Common postural defects among music students.

    Science.gov (United States)

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Influence of Botulinum Toxin Therapy on Postural Control and Lower Limb Intersegmental Coordination in Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Bernard Dan

    2013-01-01

    Full Text Available Botulinum toxin injections may significantly improve lower limb kinematics in gait of children with spastic forms of cerebral palsy. Here we aimed to analyze the effect of lower limb botulinum toxin injections on trunk postural control and lower limb intralimb (intersegmental coordination in children with spastic diplegia or spastic hemiplegia (GMFCS I or II. We recorded tridimensional trunk kinematics and thigh, shank and foot elevation angles in fourteen 3–12 year-old children with spastic diplegia and 14 with spastic hemiplegia while walking either barefoot or with ankle-foot orthoses (AFO before and after botulinum toxin infiltration according to a management protocol. We found significantly greater trunk excursions in the transverse plane (barefoot condition and in the frontal plane (AFO condition. Intralimb coordination showed significant differences only in the barefoot condition, suggesting that reducing the degrees of freedom may limit the emergence of selective coordination. Minimal relative phase analysis showed differences between the groups (diplegia and hemiplegia but there were no significant alterations unless the children wore AFO. We conclude that botulinum toxin injection in lower limb spastic muscles leads to changes in motor planning, including through interference with trunk stability, but a combination of therapies (orthoses and physical therapy is needed in order to learn new motor strategies.

  19. A radiolucent chair for sitting-posture radiographs in non-ambulatory children: use in biplanar digital slot-scanning

    Energy Technology Data Exchange (ETDEWEB)

    Bouloussa, Houssam; Dubory, Arnaud; Bachy, Manon [Universite Pierre et Marie Curie-Paris 6, Armand Trousseau Hospital, Department of Pediatric Orthopaedics, Paris Cedex 12 (France); Seiler, Catherine [Groupe Lagarrigue, Clichy (France); Morel, Baptiste [Universite Pierre et Marie Curie-Paris 6, Armand Trousseau Hospital, Department of Pediatric Imaging, Paris (France); Vialle, Raphael [Universite Pierre et Marie Curie-Paris 6, Armand Trousseau Hospital, Department of Pediatric Orthopaedics, Paris Cedex 12 (France); Armand Trousseau Hospital, The MAMUTH Hospital-University Department for Innovative Therapies in Musculoskeletal Diseases, Paris (France)

    2015-11-15

    EOS imaging (EOS System; EOS imaging, Paris, France) enables fast 2-D/3-D imaging of children in standing load-bearing position. Non-ambulatory children with neuromuscular scoliosis need evaluation of their spinal balance while in a normal daily position. We designed a customized chair fitting the EOS patient-area dimensions to obtain images in natural sitting postures. The chair is a 360 rotating orthopaedic chair made of fully radiolucent polyethylene and equipped with an adjustable headrest and three-point belts. Out of 41 consecutive patients, 36 (88%, 95% confidence interval 74-96%) had successful imaging. In most patients with severe neuromuscular trunk deformities, the EOS system combined with our chair was useful for assessing preoperative trunk collapse, pelvic obliquity and postoperative corrections in all planes. This specific device changed our daily practice for the assessment of spinal deformities in non-ambulatory patients. (orig.)

  20. A radiolucent chair for sitting-posture radiographs in non-ambulatory children: use in biplanar digital slot-scanning

    International Nuclear Information System (INIS)

    Bouloussa, Houssam; Dubory, Arnaud; Bachy, Manon; Seiler, Catherine; Morel, Baptiste; Vialle, Raphael

    2015-01-01

    EOS imaging (EOS System; EOS imaging, Paris, France) enables fast 2-D/3-D imaging of children in standing load-bearing position. Non-ambulatory children with neuromuscular scoliosis need evaluation of their spinal balance while in a normal daily position. We designed a customized chair fitting the EOS patient-area dimensions to obtain images in natural sitting postures. The chair is a 360 rotating orthopaedic chair made of fully radiolucent polyethylene and equipped with an adjustable headrest and three-point belts. Out of 41 consecutive patients, 36 (88%, 95% confidence interval 74-96%) had successful imaging. In most patients with severe neuromuscular trunk deformities, the EOS system combined with our chair was useful for assessing preoperative trunk collapse, pelvic obliquity and postoperative corrections in all planes. This specific device changed our daily practice for the assessment of spinal deformities in non-ambulatory patients. (orig.)

  1. Assessing Somatosensory Utilization during Unipedal Postural Control

    OpenAIRE

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orie...

  2. Studi Perencanaan Migrasi Sistem Digital Oleh Penyelenggara Radio Trunking di Indonesia

    Directory of Open Access Journals (Sweden)

    Awangga Febian Surya Admaja

    2013-06-01

    Full Text Available Sistem Radio Trunking merupakan sistem radio yang berbasis repeater untuk satu atau lebih menara dengan menggunakan lebih dari satu frekuensi, dimana pengguna secara semi-privat dapat memiliki kanal tersendiri untuk melakukan pembicaraan secara grup. Di Indonesia, alokasi pada pita frekuensi radio trunking analog direncanakan akan digunakan untuk trunking digital, dimana aplikasi sistem radio trunking  yang baru harus menggunakan teknologi trunking digital dan sistem analog yang ada disyaratkan untuk beralih ke teknologi digital. Studi ini bertujuan untuk melihat seberapa besar kesiapan dari penyelenggara radio trunking di Indonesia dalam melakukan migrasi radio trunking digital. Studi ini menggunakan pendekatan kualitatif melalui wawancara mendalam dan didukung dengan data kuantitatif untuk menunjukkan nilai indeks kesiapan dari penyelenggara radio trunking. Studi ini menghasilkan nilai indeks kesiapan dari sampel penyelenggara radio trunking dengan skema perencanaan migrasi sesuai dengan nilai indeks kesiapan.

  3. Education and the Prevention of Postural Defects

    Directory of Open Access Journals (Sweden)

    Olchowska-Kotala Agnieszka

    2014-12-01

    Full Text Available Purpose. The aim of this study was to determine: whether and at what stage of education is proper body posture learned, the intention of young adults to participate in activities teaching proper posture, and the effects of factors related with the said intention. Methods. The study involved 430 university students aged 18-24 years. Anthropometric data was collected. Participants completed questionnaires assessing physical activity level (IPAQ and their intention to participate in extracurricular activities teaching proper posture while sitting or walking, proper running technique, corrective gymnastics, or weight loss exercises. A self-assessment of posture, physical fitness, attractiveness, and body satisfaction was also completed. Results. Lower back pain was experienced by 41% of the respondents. Most were taught proper posture-related habits in primary school, followed by secondary school, and then at university. Many students expressed their intention to participate in the extracurricular activities. None of the questionnaire variables were associated with the intention to learn proper walking posture or proper running technique. The intention to participate in classes teaching proper sitting posture was associated with lower back pain in women and low physical activity level in men. In women, a relationship was found between the intention to participate in weight loss exercises and body dissatisfaction, high BMI, and poor self-evaluations of posture and attractiveness. In men, this activity was associated with body dissatisfaction. Conclusions. There is a need for further education on the development of proper postural habits at the university level.

  4. The dentist's operating posture - ergonomic aspects.

    Science.gov (United States)

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-06-15

    The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist's physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture.

  5. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    Science.gov (United States)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  6. Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren

    Directory of Open Access Journals (Sweden)

    Negrini Stefano

    2007-07-01

    Full Text Available Abstract The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 ± 0.5 years were considered: average backpack loads and average time spent getting to/from home/school (7 min had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum and 8 (week average kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load. Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthood

  7. Chondroid lipoma of the trunk: MRI appearance and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Boets, An; Mieghem, Isabelle M.Van; Breuseghem, Iwan Van [Catholic University Leuven Radiology, University Hospitals, Leuven (Belgium); Sciot, Raf [Catholic University Leuven, Pathology, University Hospitals, Leuven (Belgium)

    2004-11-01

    Chondroid lipoma is a rare tumour of adipose tissue, bearing a strikingly close pathologic resemblance to myxoid liposarcoma and extraskeletal myxoid chondrosarcoma. Unlike these malignant tumours, chondroid lipoma has a non-aggressive behaviour and does not require radical treatment. Although repeatedly reported in the proximal extremities and limb girdles, this rare entity may less frequently be observed in the trunk. We describe the imaging findings of a chondroid lipoma in the trunk and provide a discussion on the radiologic-pathologic correlation and differential diagnosis. (orig.)

  8. Duplicated facial nerve trunk with a first branchial cleft cyst.

    Science.gov (United States)

    Hinson, Drew; Poteet, Perry; Bower, Charles

    2014-03-01

    First branchial cleft anomalies are rare and their various anatomical relationships to the facial nerve have been described. We encountered a 15-year-old female with a type II first branchial cleft cyst presenting as a right neck mass that we found during surgical excision to transverse two main facial nerve trunks. To our knowledge, this is the first reported case of a first branchial cleft anomaly in conjunction with a duplicated facial nerve trunk. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Neck pain and postural balance among workers with high postural demands - a cross-sectional study

    DEFF Research Database (Denmark)

    Jørgensen, Marie B.; Skotte, Jørgen H.; Holtermann, Andreas

    2011-01-01

    Neck pain is related to impaired postural balance among patients and is highly prevalent among workers with high postural demands, for example, cleaners. We therefore hypothesised, that cleaners with neck pain suffer from postural dysfunction. This cross-sectional study tested if cleaners with neck...... pain have an impaired postural balance compared with cleaners without neck pain. Postural balance of 194 cleaners with (n = 85) and without (N = 109) neck pain was studied using three different tests. Success or failure to maintain the standing position for 30 s in unilateral stance was recorded...... to cleaners without neck/low back pain (p balance, measured as CEA (p

  10. Functional Neuroanatomy for Posture and Gait Control

    Directory of Open Access Journals (Sweden)

    Kaoru Takakusaki

    2017-01-01

    Full Text Available Here we argue functional neuroanatomy for posture- gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture- gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  11. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  12. Compromising Postural Balance in the Elderly

    NARCIS (Netherlands)

    Swanenburg, Jaap; de Bruin, Eling D.; Uebelhart, Daniel; Mulder, Theo

    2009-01-01

    Background: Additional tasks that are assumed to disturb standing postural control can be divided in added motor or added cognitive tasks. It is unknown which type of task causes the most disturbances of postural control in elderly. Objective: The aim of this study was to determine whether the dual

  13. Postural Variables in Girls Practicing Volleyball

    Science.gov (United States)

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  14. The Relationship Between Postural and Movement Stability.

    Science.gov (United States)

    Feldman, Anatol G

    2016-01-01

    Postural stabilization is provided by stretch reflexes, intermuscular reflexes, and intrinsic muscle properties. Taken together, these posture-stabilizing mechanisms resist deflections from the posture at which balance of muscle and external forces is maintained. Empirical findings suggest that for each muscle, these mechanisms become functional at a specific, spatial threshold-the muscle length or respective joint angle at which motor units begin to be recruited. Empirical data suggest that spinal and supraspinal centers can shift the spatial thresholds for a group of muscles that stabilized the initial posture. As a consequence, the same stabilizing mechanisms, instead of resisting motion from the initial posture, drive the body to another stable posture. In other words by shifting spatial thresholds, the nervous system converts movement resisting to movement-producing mechanisms. It is illustrated that, contrary to conventional view, this control strategy allows the system to transfer body balance to produce locomotion and other actions without loosing stability at any point of them. It also helps orient posture and movement with the direction of gravity. It is concluded that postural and movement stability is provided by a common mechanism.

  15. Lung function and postural changes during pregnancy.

    Science.gov (United States)

    Nørregaard, O; Schultz, P; Ostergaard, A; Dahl, R

    1989-11-01

    The aim of this study was to determine the effects of postural changes on lung function in pregnant women during the first, second, third trimester and post partum. A significant decrease in FRC, PEF and FEV1 was observed as a result of the postural changes. Arterial oxygenation, MVV and DLCO remained largely the same.

  16. Effects of posture on postoperative pulmonary function

    DEFF Research Database (Denmark)

    Nielsen, K G; Holte, Kathrine; Kehlet, H

    2003-01-01

    BACKGROUND: Pulmonary morbidity is still a relevant complication to major surgery despite improvements in surgical technique and anaesthetic methods. Postoperative posture may be a pathogenic factor, but the effects of changes in postoperative posture on pulmonary function have not been reviewed...

  17. Correcting Poor Posture without Awareness or Willpower

    Science.gov (United States)

    Wernik, Uri

    2012-01-01

    In this article, a new technique for correcting poor posture is presented. Rather than intentionally increasing awareness or mobilizing willpower to correct posture, this approach offers a game using randomly drawn cards with easy daily assignments. A case using the technique is presented to emphasize the subjective experience of living with poor…

  18. Task-related and person-related variables influence the effect of low back pain on anticipatory postural adjustments.

    Science.gov (United States)

    Jacobs, Jesse V; Lyman, Courtney A; Hitt, Juvena R; Henry, Sharon M

    2017-08-01

    People with low back pain exhibit altered postural coordination that has been suggested as a target for treatment, but heterogeneous presentation has rendered it difficult to identify appropriate candidates and protocols for such treatments. This study evaluated the associations of task-related and person-related factors with the effect of low back pain on anticipatory postural adjustments. Thirteen subjects with and 13 without low back pain performed seated, rapid arm flexion in self-initiated and cued conditions. Mixed-model ANOVA were used to evaluate group and condition effects on APA onset latencies of trunk muscles, arm-raise velocity, and pre-movement cortical potentials. These measures were evaluated for correlation with pain ratings, Fear Avoidance Beliefs Questionnaire scores, and Modified Oswestry Questionnaire scores. Delayed postural adjustments of subjects with low back pain were greater in the cued condition than in the self-initiated condition. The group with low back pain exhibited larger-amplitude cortical potentials than the group without pain, but also significantly slower arm-raise velocities. With arm-raise velocity as a covariate, the effect of low back pain remained significant for the latencies of postural adjustments but not for cortical potentials. Latencies of the postural adjustments significantly correlated with Oswestry and Fear Avoidance Beliefs scores. Delayed postural adjustments with low back pain appear to be influenced by cueing of movement, pain-related disability and fear of activity. These results highlight the importance of subject characteristics, task condition, and task performance when comparing across studies or when developing treatment of people with low back pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.

    Science.gov (United States)

    Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D

    2011-10-31

    Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame--Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. These results support the feasibility of using the custom-made 3D

  20. Trunk muscle recruitment patterns in simulated precrash events.

    Science.gov (United States)

    Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P

    2018-02-28

    To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.

  1. Structural evolution and diversity of the caterpillar trunk

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    cuticle thickness, the degree of myrmecopily and the underlying mechanism of lycaenid-ant associations (MS4). In two major manuscripts (MS1-2), comparative descriptions are provided of the larval trunk in, respectively the Micropterigidae and the lowest-grade leaf-mining caterpillars. Available knowledge...

  2. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  3. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    Science.gov (United States)

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  4. Diverticulum of the brachiocephalic trunk - angiography and embryological explanation

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferkorn, J.R.; Lunkenheimer, A.; Loeser, H.; Hilgenberg, F.

    1983-03-01

    A diverticulum of the brachiocephalic trunk is described in 5 children with unilateral absence of the pulmonary artery, in a child with tetralogy of Fallot, and in an other child with Bland-White-Garland syndrome. The diverticulum is a remnant of a contralateral ductus arteriosus, which closed after birth and represents the origin of the distal part of the sixth aortic arch.

  5. TD-LTE maritime trunking communication system based on TVWS

    Science.gov (United States)

    Ren, Chunxiang; Chen, Xing; Li, Wanchao; Chen, Baodan

    2014-10-01

    This paper collects the measurement results of 470 MHZ-960MHZ spectrum in the coastal areas, and analyzes the characteristics of TV broadcast spectrum occupancy in the measurement region. Moreover, this article proposes construct the TD-LTE maritime trunking communication system using geolocation database, television database (TVDB) and cognitive radio (CR) technology.

  6. Hip and trunk muscles activity during nordic hamstring exercise

    Science.gov (United States)

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (Phamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  7. Trunk Reservation in Multi-service Networks with BPP Traffic

    DEFF Research Database (Denmark)

    Zheng, H.; Zhang, Qi; Iversen, Villy Bæk

    2006-01-01

    In this paper we develop approximate models for trunk reservation in multi-service systems with BPP (Binomial-Poisson-Pascal) multi-rate traffic streams. The approximation is a generalization of previous work by Tran-Gia & Hubner who assumed Poisson arrival processes. It is based on a generalized...

  8. Hip and trunk muscles activity during nordic hamstring exercise.

    Science.gov (United States)

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  9. Concordance between VDU-users' ratings of comfort and perceived exertion with experts' observations of workplace layout and working postures.

    Science.gov (United States)

    Lindegård, A; Karlberg, C; Wigaeus Tornqvist, E; Toomingas, A; Hagberg, M

    2005-05-01

    The aim of the present study was to evaluate the concordance (agreement) between VDU-users' ratings of comfort and ergonomists' observations of workplace layout, and the concordance between VDU-users' ratings of perceived exertion and ergonomists' observations of working postures during VDU-work. The study population consisted of 853 symptom free subjects. Data on perceived comfort in different dimensions and data regarding perceived exertion in different body locations were collected by means of a questionnaire. Data concerning workplace layout and working postures were collected with an observation protocol, by an ergonomist. Concordance between ratings of comfort and observations of workplace layout was reasonably good for the chair and the keyboard (0.60, 0.58) and good regarding the screen and the input device (0.72, 0.61). Concordance between ratings of perceived exertion and observations of working postures indicated good agreement (0.63-0.77) for all measured body locations (neck, shoulder, wrist and trunk). In conclusion ratings of comfort and perceived exertion could be used as cost-efficient and user-friendly methods for practitioners to identify high exposure to poor workplace layout and poor working postures.

  10. An analysis of trunk kinematics and gait parameters in people with stroke

    Directory of Open Access Journals (Sweden)

    Adnil W. Titus

    2018-03-01

    Conclusion: This pilot study found significant asymmetry in trunk motion between the affected and unaffected sides that varied across the gait cycle. This suggests the trunk may need to be targeted in clinical gait retraining post-stroke.

  11. Postural Coordination during Socio-motor Improvisation.

    Science.gov (United States)

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  12. Postural coordination during socio-motor improvisation

    Directory of Open Access Journals (Sweden)

    Mathieu Gueugnon

    2016-08-01

    Full Text Available Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation. Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively. Our results revealed the spontaneous emergence of in-phase pattern in ML direction and anti-phase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability and antiphase supporting postural control in AP (mechanical stability. Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination.

  13. Energy cost of running instability evaluated with wearable trunk accelerometry.

    Science.gov (United States)

    Schütte, Kurt H; Sackey, Saint; Venter, Rachel; Vanwanseele, Benedicte

    2018-02-01

    Maintaining stability under dynamic conditions is an inherent challenge to bipedal running. This challenge may impose an energetic cost (Ec) thus hampering endurance running performance, yet the underlying mechanisms are not clear. Wireless triaxial trunk accelerometry is a simple tool that could be used to unobtrusively evaluate these mechanisms. Here, we test a cost of instability hypothesis by examining the contribution of trunk accelerometry-based measures (triaxial root mean square, step and stride regularity, and sample entropy) to interindividual variance in Ec (J/m) during treadmill running. Accelerometry and indirect calorimetry data were collected concurrently from 30 recreational runners (16 men; 14 women) running at their highest steady-state running speed (80.65 ± 5.99% V̇o 2max ). After reducing dimensionality with factor analysis, the effect of dynamic stability features on Ec was evaluated using hierarchical multiple regression analysis. Three accelerometry-based measures could explain an additional 10.4% of interindividual variance in Ec after controlling for body mass, attributed to anteroposterior stride regularity (5.2%), anteroposterior root mean square ratio (3.2%), and mediolateral sample entropy (2.0%). Our results lend support to a cost of instability hypothesis, with trunk acceleration waveform signals that are 1) more consistent between strides anteroposterioly, 2) larger in amplitude variability anteroposterioly, and 3) more complex mediolaterally and are energetically advantageous to endurance running performance. This study shows that wearable trunk accelerometry is a useful tool for understanding the Ec of running and that running stability is important for economy in recreational runners. NEW & NOTEWORTHY This study evaluates and more directly lends support to a cost of instability hypothesis between runners. Moreover, this hypothesis was tested using a minimalist setup including a single triaxial trunk mounted accelerometer

  14. Surgical treatment of celiomesenteric trunk aneurysm-7 case report.

    Science.gov (United States)

    Wang, Chunxi; Cai, Xiangjun; Liang, Faqi; Chu, Futao; Chen, Gang; Duan, Zhiquan

    2014-01-01

    The celiomesenteric trunk is a rare anomaly characterized by a common origin of the celiac axis and superior mesenteric artery from the aorta, which accounts for less than 1% of all celiac artery anomalies, so the aneurysm occurred in such trunk is even rarer. There have been few reports on how to diagnose and deal with such malformed celiomesenteric trunk aneurysms till now. This paper tries to summarize the experience of how to expose and excise such kind of aneurysm according to the seven cases' data. The clinic data were collected retrospectively. There were seven cases with celiomesenteric trunk aneurysm from February 2000 to February 2013, including 5 males and 2 females aged 35~62. The operations were done including aneurysm resection and vascular reconstruction under general anesthesia. The operated patients were followed-up at the sixth month and each year post operation. The vascular stomas were detected or examined by Color Doppler Sonography, spiral Computed Tomography angiography (SCTA). The seven operated patients were cured and discharged from hospital, and they were followed up for 3~10 years (mean time 5 years), with four patients being followed up longer than 5 years. No sign of intestinal ischemia or hepatic ischemia or splenic ischemia was found, and no image of anastomosis stricture or stenosis was found during the follow-up. Five patients are alive now while two patients were dead, with one dying of large area myocardial infarction unexpectedly at 6 years post operation and the other dying of cerebral infarction abruptly at 4 years post operation. It is an effective and safe method to treat the celiomesenteric trunk aneurysm by using by-pass operation with artificial blood vessels, originating from inferior kidney aorta to visceral arteries including hepatic artery, splenic artery and superior mesenteric artery. Its short-term and middle-term effects are relatively better.

  15. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    International Nuclear Information System (INIS)

    Galeano, D.C.; Santos, W.S.; Alves, M.C.; Souza, D.N.; Carvalho, A.B.

    2016-01-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010–10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario. - Highlights: • The reference phantoms AM and AF had modified its posture. • The AM and AF phantoms were irradiated in standing and sitting postures. • The irradiation geometry used were the AP, PA, LLAT, RLAT, ROT and ISO. • The CCs for standing and sitting postures were compared

  16. Trace element concentrations in the fruit peels and trunks of Musa paradisiaca.

    Science.gov (United States)

    Selema, M D; Farago, M E

    1996-08-01

    Chemical analyses for the elementary compositions of the ashes of the fruit peels and trunks of the tropical plantain Musa paradisiaca have been undertaken. The elements, categorized as trace elements, generally are found to have higher mean concentrations in the fruit peels than in the trunks (except in the case of Zn). Their peel-trunk uptake ratios have been calculated and range between 1 and 4, showing normal levels of accumulations in the fruit peels over the trunks.

  17. Velocity dependence of vestibular information for postural control on tilting surfaces

    Science.gov (United States)

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  18. Postural Stability Evaluation of Patients Undergoing Vestibular Schwannoma Microsurgery Employing the Inertial Measurement Unit

    Directory of Open Access Journals (Sweden)

    Patrik Kutilek

    2018-01-01

    Full Text Available The article focuses on a noninvasive method and system of quantifying postural stability of patients undergoing vestibular schwannoma microsurgery. Recent alternatives quantifying human postural stability are rather limited. The major drawback is that the posturography system can evaluate only two physical quantities of body movement and can be measured only on a transverse plane. A complex movement pattern can be, however, described more precisely while using three physical quantities of 3-D movement. This is the reason why an inertial measurement unit (Xsens MTx unit, through which we obtained 3-D data (three Euler angles or three orthogonal accelerations, was placed on the patient’s trunk. Having employed this novel method based on the volume of irregular polyhedron of 3-D body movement during quiet standing, it was possible to evaluate postural stability. To identify and evaluate pathological balance control of patients undergoing vestibular schwannoma microsurgery, it was necessary to calculate the volume polyhedron using the 3-D Leibniz method and to plot three variables against each other. For the needs of this study, measurements and statistical analysis were made on nine patients. The results obtained by the inertial measurement unit showed no evidence of improvement in postural stability shortly after surgery (4 days. The results were consistent with the results obtained by the posturography system. The evaluated translation variables (acceleration and rotary variables (angles measured by the inertial measurement unit correlate strongly with the results of the posturography system. The proposed method and application of the inertial measurement unit for the purpose of measuring patients with vestibular schwannoma appear to be suitable for medical practice. Moreover, the inertial measurement unit is portable and, when compared to other traditional posturography systems, economically affordable. Inertial measurement units can

  19. Postural stability effects of random vibration at the feet of construction workers in simulated elevation.

    Science.gov (United States)

    Simeonov, P; Hsiao, H; Powers, J; Ammons, D; Kau, T; Amendola, A

    2011-07-01

    The risk of falls from height on a construction site increases under conditions which degrade workers' postural control. At elevation, workers depend heavily on sensory information from their feet to maintain balance. The study tested two hypotheses: "sensory enhancement"--sub-sensory (undetectable) random mechanical vibrations at the plantar surface of the feet can improve worker's balance at elevation; and "sensory suppression"--supra-sensory (detectable) random mechanical vibrations can have a degrading effect on balance in the same experimental settings. Six young (age 20-35) and six aging (age 45-60) construction workers were tested while standing in standard and semi-tandem postures on instrumented gel insoles. The insoles applied sub- or supra-sensory levels of random mechanical vibrations to the feet. The tests were conducted in a surround-screen virtual reality system, which simulated a narrow plank at elevation on a construction site. Upper body kinematics was assessed with a motion-measurement system. Postural stability effects were evaluated by conventional and statistical mechanics sway measures, as well as trunk angular displacement parameters. Analysis of variance did not confirm the "sensory enhancement" hypothesis, but provided evidence for the "sensory suppression" hypothesis. The supra-sensory vibration had a destabilizing effect, which was considerably stronger in the semi-tandem posture and affected most of the sway variables. Sensory suppression associated with elevated vibration levels on a construction site may increase the danger of losing balance. Construction workers at elevation, e.g., on a beam or narrow plank might be at increased risk of fall if they can detect vibrations under their feet. To reduce the possibility of losing balance, mechanical vibration to supporting structures used as walking/working surfaces should be minimized when performing construction tasks at elevation. Published by Elsevier Ltd.

  20. The influence of artificially increased trunk stiffness on the balance recovery after a trip

    NARCIS (Netherlands)

    van der Burg, J.C.E.; Pijnappels, M.A.G.M.; van Dieen, J.H.

    2007-01-01

    Falls occur frequently in the growing population of elderly. Since trunk control is critical for maintaining balance, the higher trunk stiffness in elderly people compared to the general population has been associated with their increased fall-risk. Theoretically, trunk stiffness may be beneficial

  1. Reorganized trunk muscle activity during multidirectional floor perturbations after experimental low back pain

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2016-01-01

    Low back pain changes the trunk muscle activity after external perturbations but the relationship between pain intensities and distributions and their effect on the trunk muscle activity remains unclear. The effects of unilateral and bilateral experimental low back pain on trunk muscle activity w...

  2. 49 CFR 571.401 - Standard No. 401; Interior trunk release.

    Science.gov (United States)

    2010-10-01

    .... Requirements. S4.1 Each passenger car with a trunk compartment must have an automatic or manual release... possible for a person trapped inside the trunk compartment of a passenger car to escape from the compartment. S2. Application. This standard applies to passenger cars that have a trunk compartment. This...

  3. File list: His.Emb.10.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.AllAg.Embryonic_trunk mm9 Histone Embryo Embryonic trunk SRX093317,SRX09...3316 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.10.AllAg.Embryonic_trunk.bed ...

  4. File list: NoD.Emb.20.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Emb.20.AllAg.Embryonic_trunk mm9 No description Embryo Embryonic trunk ERX40226...7,ERX402264 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Emb.20.AllAg.Embryonic_trunk.bed ...

  5. File list: DNS.Emb.20.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Emb.20.AllAg.Embryonic_trunk mm9 DNase-seq Embryo Embryonic trunk SRX191030 htt...p://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Emb.20.AllAg.Embryonic_trunk.bed ...

  6. File list: His.Emb.50.AllAg.Embryonic_trunk [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.50.AllAg.Embryonic_trunk mm9 Histone Embryo Embryonic trunk SRX093317,SRX09...3316 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Emb.50.AllAg.Embryonic_trunk.bed ...

  7. CONTROL OF APERTURE CLOSURE INITIATION DURING TRUNK-ASSISTED REACH-TO-GRASP MOVEMENTS

    Science.gov (United States)

    Rand, Miya K.; Van Gemmert, Arend W. A.; Hossain, Abul B.M.I.; Shimansky, Yury P.; Stelmach, George E.

    2012-01-01

    The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relation between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relation between the time of peak wrist velocity and the time of peak grip aperture did not change or became less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation that is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp initiation in

  8. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Van Gemmert, Arend W A; Hossain, Abul B M I; Shimansky, Yury P; Stelmach, George E

    2012-06-01

    The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relationship between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relationship between the time of peak wrist velocity and the time of peak grip aperture did not change or become less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation, which is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp

  9. FACTORES PARA LA NO NEUTRALIDAD DE LA EVALUACIÓN DE LA CALIDAD DE LA EDUCACIÓN SUPERIOR (FACTORS FOR NON-NEUTRALITY OF THE EVALUATION OF THE HIGHER EDUCATION QUALITY

    Directory of Open Access Journals (Sweden)

    Vizcarra Herles Nina Eleonor

    2011-08-01

    Full Text Available Resumen:En el presente ensayo, los autores con base en la revisión de fuentes bibliográficas, abordan el tema de la no neutralidad de la evaluación de la calidad de la educación superior, se identifican factores de la no neutralidad en la evaluación y en la calidad relacionados con: el referente (modelo de referencia utilizado para la evaluación, las dimensiones explicativo-relacionales de la calidad y las demandas de calidad formuladas por actores sociales; estos factores expresan el propósito del evaluador, componente ideológico que determina la no neutralidad de la evaluación de la calidad. Se infiere que para los sistemas nacionales de evaluación la definición y la mejora de la calidad de la educación superior compromete la participación multisectorial.Abstract: In this essay, the authors based on a review of literature sources, address the issue of non-neutrality of the evaluation of the quality of higher education, identify factors of non-neutrality in the evaluation and quality related to: the reference model used for evaluation, the explanatory-relational dimensions of quality and quality demands made by social actors; these factors express the purpose of evaluator, ideological component that determines the non-neutrality of quality assessment. It is inferred that for the national assessment systems; the definition and the improving of the quality of higher education undertake multi-stakeholder participation.

  10. An investigation into essential aspects of posture in primary school ...

    African Journals Online (AJOL)

    Postures of the subjects were analysed by means of photographic images using the pro forma of Barlow (1956, 1990). The majority of the executives had malposture with 2.3%, 23.3%, 58.1% and 16.3% and 6.3% of the subjects being categorised with slight postural defects, severe postural defects, very severe postural ...

  11. Vliv kineziotapingu na posturální stabilitu u pacientů po totální endoprotéze kyčelního kloubu

    OpenAIRE

    Tani, Klejda

    2012-01-01

    The aim of the thesis is to evaluate and objectify the effects of Kinesiotaping on postural stability in pacients after total hip arthroplasty. The theoretical section of the thesis concentrates on providing information about the total hip arthroplasty, the stability of the motion systems and Kinesiotaping. Based on these information was assembled a report plan and hypotheses. The second part analyses the impact of Kinesiotaping on the activation of the trunk and femoral muscles during select...

  12. Isolated and combined effects of asymmetric stance and pushing movement on the anticipatory and compensatory postural control.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2014-04-01

    To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Does increased postural threat lead to more conscious control of posture?

    Science.gov (United States)

    Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L

    2009-11-01

    Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).

  14. Relationship between Postural Deformities and Frontal Function in Parkinson's Disease

    OpenAIRE

    Ninomiya, Satoko; Morita, Akihiko; Teramoto, Hiroko; Akimoto, Takayoshi; Shiota, Hiroshi; Kamei, Satoshi

    2015-01-01

    Postural deformities and executive dysfunction (ED) are common symptoms of Parkinson's disease (PD); however, the relationship between postural deformities and ED in patients with PD remains unclear. This study assessed the relationship between postural deformities and ED in patients with PD. Sixty-five patients with sporadic PD were assessed for the severity of postural deformities and executive function. The severity of postural deformities was scored using the United Parkinson's Disease Ra...

  15. [Head posture in orthodontics: physiopathology and clinical aspects 2].

    Science.gov (United States)

    Caltabiano, M; Verzi, P; Scire Scappuzzo, G

    1989-01-01

    The Authors review in orthodontic respects present knowledges about head posture involvement in craniofacial morphogenesis and pathology. Relationships between craniofacial morphology, craniocervical posture, craniomandibular posture, cervical spine curvature, hyoid bone position and posture of whole body in space are shown, in attempt to explain conditions such as "forward head posture", mouth breathing and some occlusal disorders. Main methods to evaluate craniocervical relations on lateral skull radiographs are analysed. Pathogenesis of pain syndromes associated with abnormal craniocervical and craniomandibular mechanics are also briefly treated.

  16. The measurement of blood speed in the pulmonary artery trunk

    Energy Technology Data Exchange (ETDEWEB)

    Saro, J P; Bula-Cruz, J [UTAD - 5000 Vila Real (Spain); Rafael, J A [Dep. Electronica e Telecomunicacoes da Univ. de Aveiro - 3800 Aveiro (Spain); Botelho, M F; Lima, J P [IBILI - Faculdade de Medicina da Univ. de Coimbra - 3000 Coimbra (Spain)

    1999-12-31

    The paper describes a non invasive methodology for the measurement of blood speed in the pulmonary artery trunk. The methodology has been tested with a moving radioactive tracer (nuclear medicine). An image processing technique is proposed, for detection and analysis of a moving object with variable shape and intensity over time (radioactive bolus). Experiments on the application of the technique in nuclear medicine are critically analysed. (authors) 9 refs., 7 figs.

  17. Celiac artery trunk thrombosis presenting as acute liver failure

    International Nuclear Information System (INIS)

    Akbarian, M.A.; Kahrom, M.; Kahrom, H.

    2011-01-01

    Acute mesenteric ischemia is a life-threatening vascular emergency that requires early diagnosis and intervention to adequately restore mesenteric blood flow and to prevent bowel necrosis and patient death. While, almost always superior and inferior mesenteric arteries are involved, we report a 57-year-old male with an unusual celiac artery trunk thrombosis leading to gastero-duodenal and hepato-splenic infarction, and presenting an acute liver failure. (author)

  18. Pseudo aneurysm of the celiac trunk - radiological findings report

    International Nuclear Information System (INIS)

    Magalhaes Junior, Mauricio R. de; Henrique, Katia; Teixeira, Sonia Marcelino; Cardenas, Gloria Pamela Galdames; Marchiori, Edson; Acceta, Pietro

    1997-01-01

    The authors report a case of a celiac trunk pseudoneurysm, diagnosed by ultrasonography, computed tomography and arteriography, in a 54-year-old man, alcoholic, with gastrointestinal bleeding, abdominal pain and an epigastric pulsatile mass. After the diagnostic, he was operated and it was showed a fistula from the pseudoaneurysm to the choledoch and the gall bladder fill with blood. The patient has a good clinic development. (author)

  19. A diverticulum of the brachiocephalic trunk - angiography and embryological explanation

    International Nuclear Information System (INIS)

    Pfefferkorn, J.R.; Lunkenheimer, A.; Loeser, H.; Hilgenberg, F.

    1983-01-01

    A diverticulum of the brachiocephalic trunk is described in 5 children with unilateral absence of the pulmonary artery, in a child with tetralogy of Fallot, and in an other child with Bland-White-Garland syndrome. The diverticulum is a remnant of a contralateral ductus arteriosus, which closed after birth and represents the origin of the distal part of the sixth aortic arch. (orig.) [de

  20. Application of computer graphics to regional trunk road network planning

    OpenAIRE

    M Odani

    1992-01-01

    The author attempts to demonstrate the use of computer graphics to provide an efficient and effective visual presentation method for tranbsprtation planning. First, the basic concept of the visual presentation method of planning is explained and the required hardware is introduced. The information presented graphically by the proposed method is then shown for each step in the process of regional trunk road network planning in the Keihanshin Metropolitan Area of Japan: analysis of the traffic-...

  1. THE RELATIONSHIP BETWEEN TRUNK MUSCLES ENDURANCE AND NORMAL BMI AMONG UNIVERSITY STUDENTS WITH SEDENTARY LIFESTYLE

    Directory of Open Access Journals (Sweden)

    Karthikeyan Selvaganapathy

    2017-12-01

    Full Text Available Background: The most important trunk stabilizers are the trunk flexors and extensors. The isometric endurance of the trunk muscles is an essential element for mechanical support of the spine in all positions. The study objectives were to find out the trunk flexors and extensors endurance, its relationship with normal BMI and to find out the ratio of trunk flexors to extensors endurance. Methods: In this correlation study, 50 subjects were selected by convenience sampling method on the basis of inclusion and exclusion criteria from Asia metropolitan university, Malaysia. The trunk flexors and extensors endurance were assessed by Kraus- Weber and Sorenson test respectively. Paired 't' test and Spearman correlation test were used for data analysis. Results: There was a significant difference (p 0.01 and TEE, rs (50 = -0.162, p >0.01 but there was a significant strong positive relationship between TFE and TEE, rs (50 = 0.68, p < 0.01. The ratio of trunk flexors to extensors was 0.61. Conclusion: The trunk extensors endurance is higher than trunk flexors endurance and BMI has no relationship with trunk flexors and extensors muscle endurance. The ratio of trunk flexors to extensors endurance value is low

  2. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    Science.gov (United States)

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  3. [Muscular trunk stability in professional and amateur volleyball players].

    Science.gov (United States)

    Miltner, O; Siebert, C; Tschaepe, R; Maus, U; Kieffer, O

    2010-03-01

    The aim of this study was to analyse the efficiency of muscular activity in the trunk stabilisation of professional volleyball players compared to a group of amateur hobby players. The results were compared amongst the groups as well as with a reference group consisting of asymptomatic individuals. The question to be answered was whether or not professional volleyball players possess a characteristic strength profile in their trunk musculature and if differences exist with regard to the individuals' competitive playing level. In this comparative study 12 professional volleyball players (German Bundesliga) and 18 non-professional volleyball players were analysed with regard to their isometric strength profile in all three planes. The reference group was provided by the Proxomed company, which had previously analysed healthy untrained individuals (n = 1045) of various age groups. A sports-specific profile for the musculature of volleyball players revealed a significant reduction in the flexion and rotation strength as well as a well-developed lateral flexion strength (highly significant when compared to the reference group). With reference to the level played, better strength values in flexion and lateral flexion were found among the professional athletes. Professional volleyball players present with a characteristic trunk musculature strength profile. A detailed analysis of the muscle strength of the spine as part of a sports medicine work-up could prove helpful in preventing injuries and overuse problems in professional and hobby volleyball players.

  4. Evolution of the head-trunk interface in tetrapod vertebrates

    Science.gov (United States)

    Sefton, Elizabeth M; Bhullar, Bhart-Anjan S; Mohaddes, Zahra; Hanken, James

    2016-01-01

    Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes. DOI: http://dx.doi.org/10.7554/eLife.09972.001 PMID:27090084

  5. Adsorption of Cu, As, Pb and Zn by Banana Trunk

    International Nuclear Information System (INIS)

    Nurzulaifa Shaheera Erne Mohd Yasim; Zitty Sarah Ismail; Suhanom Mohd Zaki; Mohd Fahmi Abd Azis

    2016-01-01

    The purpose of this study is to investigate the effectiveness of banana trunk as an adsorbent in removal of heavy metals in aqueous solution. Functional groups of adsorbent were determined using Fourier Transform Infrared spectroscopy (FTIR). Batch experiments were conducted to determine the adsorption percentage of heavy metals (Cu, As, Pb and Zn). The optimum adsorption using banana trunk was based on pH difference, contact time and dosage. Adsorption percentage was found to be proportional to pH, contact time and dosage. Maximum adsorption percentage of Cu, As, Pb and Zn at pH 6, 100 minutes and 8 gram of dosage are 95.80 %, 75.40 %, 99.36 % and 97.24 %, respectively. Langmuir and Freundlich isotherms were used to determine the equilibrium state for heavy metals ion adsorption experiments. All equilibrium heavy metals were well explained by the Freundlich isotherm model with R"2= 0.9441, R"2= 0.8671, R"2= 0.9489 and R"2= 0.9375 for Cu, As, Pb and Zn respectively. It is concluded that banana trunk has considerable potential for the removal of heavy metals from aqueous solution. (author)

  6. [Neuronal control of posture and locomotion in decerebrated and spinalized animals].

    Science.gov (United States)

    Musienko, P E; Gorskiĭ, O V; Kilimnik, V A; Kozlovskaia, I B; Courtine, G; Edgerton, V R; Gerasimenko, Iu P

    2013-03-01

    We have found that the brainstem-spinal cord circuitry of decerebrated cats actively maintain the equilibrium during standing, walking and imposed mechanical perturbations similar to that observed in intact animals. The corrective hindlimb motor responses during standing included redistribution of the extensor activity ipsilateral and contralateral to perturbation. The postural corrections in walking cats were due to considerable modification of EMG pattern in the limbs as well as changing of the swing-stance phases of the step cycle and ground reaction forces depending of perturbation side. Thus the basic mechanisms for balance control of decerebrated animals in these two forms of motor behavior are different. Balance-related adjustments relied entirely on the integration of somatosensory information arising from the moving hindquarters because of the suppression of vestibular, visual, and head-neck-trunk sensory input. We propose that the somatosensory input from the hindquarters in concert with the lumbosacral spinal circuitry can control the dynamics of the hindquarters sufficient to sustain balance. We found that, after isolation from the brainstem or forebrain, lumbosacral circuits receiving tonic epidural electrical stimulation can effectively control equilibrium during standing and stepping. Detailed analyses of the relationships among muscle activity, trunk kinematics, and limb kinetics indicate that spinal motor systems utilize a combination of feedback and feedforward strategies to maintain dynamic equilibrium during walking. The unexpected ability of spinal circuitries to exert efficient postural control in the presence of epidural electrical stimulation in decerebrated and spinal cats have significant implications for the potential of humans with a severe spinal cord injury to regain a significant level of functional standing and walking capacities.

  7. Determination of the Timing and Level of Activities of Lumbopelvic Muscles in Response to Postural Perturbations

    Directory of Open Access Journals (Sweden)

    S Ebrahimi Takamjani

    2005-05-01

    Full Text Available Background: One of the most important concerns in orthopedic medicine is the low back. Considering the importance of muscle function in preventing LBT by controlling too much load and stress applied on the spinal joints and ligaments. Materials and Methods: The aim of this research was to determine the timing and level of activities of lumbopelvic muscles in response to postural perturbations caused by unexpected loading of the upper limbs in standing on three different supporting surfaces (neutral, positive slope, negative slope in 20 healthy females 18 to 30 years old ( = 23.20 SD = 2.55 . The electromyographic signals were recorded from the deltoid, gluteus maximus, internal oblique abdominis and lumbar paraspinal muscles of the dominant side of the body to evaluate the onset time, end time, level of muscle activity (RMS and duration of different muscles in one task and one muscle in different tasks. Results: The results showed that the agonists (posterior muscles activated at first to compensate the flexor torque caused by loading and then the antagonists (anterior muscles switched-on to compensate the reaction forces caused by agonist activities. With regards to continuous activity of internal oblique and its attachments via thoracalumbar fascia to the transverse processes of the lumbar vertebrae, it can be considered as one of the major stabilizer muscles of the trunk . Conclusion: Finally the results indicated that supporting surface type didn’t have any effect on timing and scaling of muscle activities in different tasks suggesting that probably spinal and trunk priprioceptors are just responsible for triggering postural responses and they don’t have any role in determining timing and scaling.

  8. Postural balance in low back pain patients

    DEFF Research Database (Denmark)

    Maribo, Thomas; Schiøttz-Christensen, Berit; Jensen, Lone Donbæk

    2012-01-01

    INTRODUCTION: Altered postural control has been observed in low back pain (LBP) patients. They seem to be more dependent on vision when standing. The objective of the study was to determine concurrent and predictive validity of measures of postural stability in LBP patients. MATERIALS AND METHODS......: Centre of Pressure (CoP) measurements were tested against pain, fear of pain, and physical function. Velocity, anterior-posterior displacement, and the Romberg Ratio obtained on a portable force platform were used as measures of postural stability. RESULTS: Baseline and 12-week follow-up results of 97....... CONCLUSION: This first study of concurrent and predictive validity of postural balance in LBP patients revealed no association between CoP measures and pain, fear of pain, and physical function....

  9. Postural stability in young and old women

    DEFF Research Database (Denmark)

    Jørgensen, Martin Grønbech

    at an early stage, good knowledge and sensitive measurements of postural stability are essential. In addition, in order to develop effective intervention strategies such knowledge is of major importance. However, no single postural stability parameter has effectively been able to identify individuals at risk...... of falling. Hence, there is a strong need for development and identification of sensitive postural sway parameters in various demographic groups. The aim of this study was to explore differences in postural stability between physically active old (O) and young (Y) women using newly developed sway parameters....... METHODS AND MATERIALS: Center of pressure (CoP) excursion was measured (100 Hz) by force plate (AMTI) analysis in old (72.5±6.3 years) and young (25.8±1.6 years) women during static 2-leg (bilateral) and 1-leg (unilateral) standing (15-s) with eyes opened. RESULTS: O demonstrated elevated CoP sway length...

  10. Postural effects when cycling in late pregnancy.

    Science.gov (United States)

    O'Neill, Maureen E; Cooper, Karen A; Boyce, E Stewart; Hunyor, Stephen N

    2006-12-01

    This study assessed if upright cycling is preferable to semi-recumbent cycling during pregnancy. Healthy women with low risk singleton pregnancies were tested at 34-38 weeks gestation. They cycled for 12 min, either semi-recumbent (45 degrees, n = 27) or upright (n = 23), at 135-145 beats min(-1). When semi-recumbent, minute ventilation was greater (pposture-independent. All increased with exercise (p0.05). Small post-exercise fetal heart rate increases (by 8 beats min(-1), ppostures (n = 11 in each sub-group), with no adverse changes. Fetal heart rate accelerations and uterine activity (n = 11 in each sub-group) were not influenced by posture or exercise. (1) Neither posture had a distinct advantage. (2) Both postures were safe for short duration cycling. (3) The same target maternal heart rates are suitable for both postures because they resulted in similar oxygen consumptions and fetal heart rates.

  11. Impaired postural stability after laparoscopic surgery

    DEFF Research Database (Denmark)

    Eskildsen, K Z; Staehr-Rye, A K; Rasmussen, L S

    2015-01-01

    . METHODS: We included 25 women undergoing outpatient gynaecological laparoscopic surgery in the study. Patients received standardised anaesthesia with propofol, remifentanil and rocuronium. Postural stability was assessed preoperatively, at 30 min after tracheal extubation, and at discharge from the post...

  12. Effect of absence of vision on posture

    OpenAIRE

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the ...

  13. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available Page 1 of 8 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa A POSTURE ESTIMATION SYSTEM FOR UNDERGROUND MINE VEHICLES Khonzumusa Hlophe1, Gideon Ferreira2... and the transmitter. The main difference between the three systems is their implementation. This paper describes an implementation of a posture estimation system for underground mine vehicles. The paper is organized as follows. In the next section, a brief...

  14. Assessing Somatosensory Utilization during Unipedal Postural Control.

    Science.gov (United States)

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  15. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    Science.gov (United States)

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The

  16. The relationship between sitting posture and seated-related upper quadrant musculoskeletal pain in computing South African adolescents: A prospective study.

    Science.gov (United States)

    Brink, Yolandi; Louw, Quinette; Grimmer, Karen; Jordaan, Esmè

    2015-12-01

    There is evidence that consistent sitting for prolonged periods is associated with upper quadrant musculoskeletal pain (UQMP). It is unclear whether postural alignment is a significant risk factor. The aim of the prospective study (2010-2011) was to ascertain if three-dimensional sitting postural angles, measured in a real-life school computer classroom setting, predict seated-related UQMP. Asymptomatic Grade 10 high-school students, aged 15-17 years, undertaking Computer Application Technology, were eligible to participate. Using the 3D Posture Analysis Tool, sitting posture was measured while students used desk-top computers. Posture was reported as five upper quadrant angles (Head flexion, Neck flexion; Craniocervical angle, Trunk flexion and Head lateral bending). The Computer Usage Questionnaire measured seated-related UQMP and hours of computer use. The Beck Depression Inventory and the Multidimensional Anxiety Scale for Children assessed psychosocial factors. Sitting posture, computer use and psychosocial factors were measured at baseline. UQMP was measured at six months and one-year follow-up. 211, 190 and 153 students participated at baseline, six months and one-year follow-up respectively. 34.2% students complained of seated-related UQMP during the follow-up period. Increased head flexion (HF) predicted seated-related UQMP developing over time for a small group of students with pain scores greater than the 90th pain percentile, adjusted for age, gender, BMI, computer use and psychosocial factors (p = 0.003). The pain score increased 0.22 points per 1° increase in HF. Classroom ergonomics and postural hygiene should therefore focus on reducing large HF angles among computing adolescents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Riscos biomecânicos posturais em trabalhadores de uma serraria Biomechanical risks in sawmill worker postures

    Directory of Open Access Journals (Sweden)

    André Gustavo Soares de Oliveira

    2009-03-01

    . Musculoskeletal symptoms were identified using Corlett's body map. Four postures were evaluated: anterior trunk flexion with weight lifting, deep crouching, anterior trunk flexion with lateral inclination and extended body to move a press. The REBA method showed a very high risk level for the anterior trunk flexion; the other postures - deep crouching, anterior trunk flexion with lateral inclination, and extended body to move a press - were shown to bear a high risk level. Accordingly, 73.3% of the workers complained of back pain or discomfort and 26.8% of pain in the shoulder area. Considering the risk levels assessed, there is a need for ergonomic and preventive interventions in the workplace so that workers adopt postures that best suit their work activities with lesser risk to their health.

  18. Assessment of the postural control strategies used to play two Wii Fit™ videogames.

    Science.gov (United States)

    Michalski, A; Glazebrook, C M; Martin, A J; Wong, W W N; Kim, A J W; Moody, K D; Salbach, N M; Steinnagel, B; Andrysek, J; Torres-Moreno, R; Zabjek, K F

    2012-07-01

    The Nintendo Wii Fit™ may provide an affordable alternative to traditional biofeedback or virtual reality systems for retraining or improving motor function in populations with impaired balance. The purpose of this study was to evaluate postural control strategies healthy individuals use to play Wii Fit™ videogames. Sixteen young adults played 10 trials of Ski Slalom and Soccer Heading respectively. Centre of pressure (COP) excursion and three-dimensional movement data were acquired to determine variability in medial-lateral COP sway and shoulder-pelvic movement. While there was no difference in medial-lateral COP variability between games during trial 1, there was a significant difference after 10 trials. COP sway increased (59-75 mm) for Soccer Heading while it decreased (67-33 mm) for Ski Slalom from trial 1 to trial 10. During Ski Slalom participants demonstrated decreased shoulder and pelvic movement combined with increased pelvic-shoulder coupling. Conversely, participants demonstrated greater initial shoulder tilt when playing Soccer Heading, with no reduction in pelvic rotation and tilt. Participants decreased pelvic and trunk movements when skiing, suggesting a greater contribution of lower extremity control while they primarily used a trunk strategy to play Soccer Heading. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Additional helmet and pack loading reduce situational awareness during the establishment of marksmanship posture.

    Science.gov (United States)

    Lim, Jongil; Palmer, Christopher J; Busa, Michael A; Amado, Avelino; Rosado, Luis D; Ducharme, Scott W; Simon, Darnell; Van Emmerik, Richard E A

    2017-06-01

    The pickup of visual information is critical for controlling movement and maintaining situational awareness in dangerous situations. Altered coordination while wearing protective equipment may impact the likelihood of injury or death. This investigation examined the consequences of load magnitude and distribution on situational awareness, segmental coordination and head gaze in several protective equipment ensembles. Twelve soldiers stepped down onto force plates and were instructed to quickly and accurately identify visual information while establishing marksmanship posture in protective equipment. Time to discriminate visual information was extended when additional pack and helmet loads were added, with the small increase in helmet load having the largest effect. Greater head-leading and in-phase trunk-head coordination were found with lighter pack loads, while trunk-leading coordination increased and head gaze dynamics were more disrupted in heavier pack loads. Additional armour load in the vest had no consequences for Time to discriminate, coordination or head dynamics. This suggests that the addition of head borne load be carefully considered when integrating new technology and that up-armouring does not necessarily have negative consequences for marksmanship performance. Practitioner Summary: Understanding the trade-space between protection and reductions in task performance continue to challenge those developing personal protective equipment. These methods provide an approach that can help optimise equipment design and loading techniques by quantifying changes in task performance and the emergent coordination dynamics that underlie that performance.

  20. Influence of carrying heavy loads on soldiers' posture, movements and gait.

    Science.gov (United States)

    Attwells, Renee L; Birrell, Stewart A; Hooper, Robin H; Mansfield, Neil J

    2006-11-15

    Military personnel are required to carry heavy loads whilst marching; this load carriage represents a substantial component of training and combat. Studies in the literature mainly concentrate on physiological effects, with few biomechanical studies of military load carriage systems (LCS). This study examines changes in gait and posture caused by increasing load carriage in military LCS. The four conditions used during this study were control (including rifle, boots and helmet carriage, totalling 8 kg), webbing (weighing 8 kg), backpack (24 kg) and a light antitank weapon (LAW; 10 kg), resulting in an incremental increase in load carried from 8, 16, 40 to 50 kg. A total of 20 male soldiers were evaluated in the sagittal plane using a 3-D motion analysis system. Measurements of ankle, knee, femur, trunk and craniovertebral angles and spatiotemporal parameters were made during self-paced walking. Results showed spatiotemporal changes were unrelated to angular changes, perhaps a consequence of military training. Knee and femur ranges of motion (control, 21.1 degrees +/- 3.0 and 33.9 degrees +/- 7.1 respectively) increased (p < 0.05) with load (LAW, 25.5 degrees +/- 2.3 and 37.8 degrees +/- 1.5 respectively). The trunk flexed significantly further forward, confirming results from previous studies. In addition, the craniovertebral angle decreased (p < 0.001) indicating a more forward position of the head with load. It is concluded that the head functions in concert with the trunk to counterbalance load. The higher muscular tensions necessary to sustain these changes have been associated with injury, muscle strain and joint problems.

  1. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  2. The influence of artificially increased trunk stiffness on the balance recovery after a trip.

    Science.gov (United States)

    van der Burg, J C E; Pijnappels, M; van Dieën, J H

    2007-07-01

    Falls occur frequently in the growing population of elderly. Since trunk control is critical for maintaining balance, the higher trunk stiffness in elderly people compared to the general population has been associated with their increased fall-risk. Theoretically, trunk stiffness may be beneficial for balance recovery in walking, i.e. after a trip. A stiff joint may provide a torque that restricts the perturbation effects and thereby reduces the probability of a fall. The aim of this study was to test whether trunk stiffness impaired or assisted balance recovery after a trip during walking. An orthopedic corset was used to simulate trunk stiffness in 11 young male adults. Subjects walked over a platform, with or without the corset on, and were occasionally tripped over a hidden obstacle. Kinematics of the tripping reaction were measured. Initial trunk accelerations were significantly attenuated by the corset, which indicates a positive effect of the stiffening corset. However, no subsequent effects on peak trunk inclination and on the peak moment arm of gravity on the trunk were found. The pattern of trunk motion allowed ample time for triggered or voluntary muscle responses to be generated, before a substantial inclination occurred. It appears that such active responses were sufficient in the young subjects tested to obtain a similar net effect with or without the increased trunk stiffness induced by the corset.

  3. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2018-01-01

    Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.

  4. Trunk muscle attributes are associated with balance and mobility in older adults: a pilot study.

    Science.gov (United States)

    Suri, Pradeep; Kiely, Dan K; Leveille, Suzanne G; Frontera, Walter R; Bean, Jonathan F

    2009-10-01

    To determine whether trunk muscle attributes are associated with balance and mobility performance among mobility-limited older adults. Cross-sectional analysis of data from a randomized clinical trial. Outpatient rehabilitation research center. Community-dwelling older adults (N = 70; mean age 75.9 years) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Independent variables included physiologic measures of trunk extension strength, trunk flexion strength, trunk extension endurance, trunk extension endurance, and leg press strength. All measures were well tolerated by the study subjects without the occurrence of any associated injuries or adverse events. The association of each physiologic measure with each outcome was examined by the use of separate multivariate models to calculate the partial variance (R(2)) of each trunk and extremity measure. Balance measured by the Berg Balance Scale and Unipedal Stance Test and mobility performance as measured by the SPPB. Trunk extension endurance (partial R(2) = .14, P = .02), and leg press strength (partial R(2) = .14, P = .003) accounted for the greatest amount of the variance in SPPB performance. Trunk extension endurance (partial R(2) = .17, P = .007), accounted for the greatest amount of the variance in BBS performance. Trunk extension strength (R(2) = .09, P = .03), accounted for the greatest amount of the variance in UST performance. The variance explained by trunk extension endurance equaled or exceeded the variance explained by limb strength across all three performance outcomes. Trunk endurance and strength can be safely measured in mobility-limited older adults and are associated with both balance and mobility performance. Trunk endurance and trunk strength are physiologic attributes worthy of targeting in the rehabilitative care of mobility-limited older adults.

  5. Ergonomic analysis of construction worker's body postures using wearable mobile sensors.

    Science.gov (United States)

    Nath, Nipun D; Akhavian, Reza; Behzadan, Amir H

    2017-07-01

    Construction jobs are more labor-intensive compared to other industries. As such, construction workers are often required to exceed their natural physical capability to cope with the increasing complexity and challenges in this industry. Over long periods of time, this sustained physical labor causes bodily injuries to the workers which in turn, conveys huge losses to the industry in terms of money, time, and productivity. Various safety and health organizations have established rules and regulations that limit the amount and intensity of workers' physical movements to mitigate work-related bodily injuries. A precursor to enforcing and implementing such regulations and improving the ergonomics conditions on the jobsite is to identify physical risks associated with a particular task. Manually assessing a field activity to identify the ergonomic risks is not trivial and often requires extra effort which may render it to be challenging if not impossible. In this paper, a low-cost ubiquitous approach is presented and validated which deploys built-in smartphone sensors to unobtrusively monitor workers' bodily postures and autonomously identify potential work-related ergonomic risks. Results indicates that measurements of trunk and shoulder flexions of a worker by smartphone sensory data are very close to corresponding measurements by observation. The proposed method is applicable for workers in various occupations who are exposed to WMSDs due to awkward postures. Examples include, but are not limited to industry laborers, carpenters, welders, farmers, health assistants, teachers, and office workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of the sitting position on the body posture of children aged 11 to 13 years.

    Science.gov (United States)

    Drza-Grabiec, Justyna; Snela, Sławomir; Rykała, Justyna; Podgórska, Justyna; Rachwal, Maciej

    2015-01-01

    Nowadays, children spend increasingly more time in a seated position, both at school during class and at home in front of a computer or television. The aim of this study was to compare selected parameters describing body posture and scoliosis among children in sitting and standing positions. It was an observational, cross-sectional study involving 91 primary school children aged 11-13 years. The children's backs were photographed in standing and sitting positions. The values of selected parameters were calculated using photogrammetric examination based on the Moire projection phenomenon. The results show significant statistical differences for the parameters defining the anteroposterior curves of the spine. The sitting position resulted in a decreased angle of inclination of the thoracolumbar spine, reduced depths of thoracic kyphosis and lumbar lordosis, and pelvic asymmetry. Maintaining a sitting position for a long time results in advanced asymmetries of the trunk and scoliosis, and causes a decrease in lumbar lordosis and kyphosis of a child's entire spine. Therefore, we advocate the introduction of posture education programs for schoolchildren.

  7. Control of vertical posture while standing on a sliding board and pushing an object.

    Science.gov (United States)

    Lee, Yun-Ju; Chen, Bing; Liang, Jing-Nong; Aruin, Alexander S

    2018-03-01

    Voluntary pushing or translation perturbation of the support surface each induces a body perturbation that affects postural control. The objective of the study was to investigate anticipatory (APA) and compensatory (CPA) postural adjustments when pushing an object (that induces self-initiated perturbation) and standing on a sliding board (that induces translational perturbation). Thirteen healthy young participants were instructed to push a handle with both hands while standing on a sliding board that was either free to move in the anterior-posterior direction or stationary. Electromyographic activity (EMG) of trunk and lower extremity muscles, center of pressure (COP) displacements, and the forces exerted by the hand were recorded and analyzed during the APA and CPA phases. When the sliding board was free to move during pushing (translation perturbation), onsets of activity of ventral leg muscles and COP displacement were delayed as compared to pushing when standing on a stationary board. Moreover, magnitudes of shank muscle activity and the COP displacement were decreased. When pushing heavier weight, magnitudes of muscle activity, COP displacement, and pushing force increased. The magnitude of activity of the shank muscles during the APA and CPA phases in conditions with translational perturbation varied with the magnitude of the pushing weight. The outcome of the study suggests that the central nervous system prioritizes the pushing task while attenuates the source of additional perturbation induced by translation perturbation. These results could be used in the development of balance re-training paradigms involving pushing weight while standing on a sliding surface.

  8. Head movements and postures as pain behavior

    Science.gov (United States)

    Al-Hamadi, Ayoub; Limbrecht-Ecklundt, Kerstin; Walter, Steffen; Traue, Harald C.

    2018-01-01

    Pain assessment can benefit from observation of pain behaviors, such as guarding or facial expression, and observational pain scales are widely used in clinical practice with nonverbal patients. However, little is known about head movements and postures in the context of pain. In this regard, we analyze videos of three publically available datasets. The BioVid dataset was recorded with healthy participants subjected to painful heat stimuli. In the BP4D dataset, healthy participants performed a cold-pressor test and several other tasks (meant to elicit emotion). The UNBC dataset videos show shoulder pain patients during range-of-motion tests to their affected and unaffected limbs. In all videos, participants were sitting in an upright position. We studied head movements and postures that occurred during the painful and control trials by measuring head orientation from video over time, followed by analyzing posture and movement summary statistics and occurrence frequencies of typical postures and movements. We found significant differences between pain and control trials with analyses of variance and binomial tests. In BioVid and BP4D, pain was accompanied by head movements and postures that tend to be oriented downwards or towards the pain site. We also found differences in movement range and speed in all three datasets. The results suggest that head movements and postures should be considered for pain assessment and research. As additional pain indicators, they possibly might improve pain management whenever behavior is assessed, especially in nonverbal individuals such as infants or patients with dementia. However, in advance more research is needed to identify specific head movements and postures in pain patients. PMID:29444153

  9. Water-based vs. non-water-based physiotherapy for rehabilitation of postural deformities in Parkinson's disease: a randomized controlled pilot study.

    Science.gov (United States)

    Volpe, Daniele; Giantin, Maria Giulia; Manuela, Pilleri; Filippetto, Consuelo; Pelosin, Elisa; Abbruzzese, Giovanni; Antonini, Angelo

    2017-08-01

    To compare the efficacy of two physiotherapy protocols (water-based vs. non-water-based) on postural deformities of patients with Parkinson's disease. A single blind, randomized controlled pilot study. Inpatient (Rehabilitative Department). A total of 30 patients with idiopathic Parkinson's disease. Participants were randomly assigned to one of two eight-week treatment groups: Water-based ( n = 15) or non-water-based physiotherapy exercises ( n = 15). Changes in the degree of cervical and dorsal flexion and in the angle of lateral inclination of the trunk (evaluated by means of a posturographic system) were used as primary outcomes. Unified Parkinson Disease Rating Scale section III, Time Up and Go Test, Berg Balance Scale, Activities-specific Balance Confidence, Falls Efficacy Scale and the Parkinson's disease quality of life questionnaire (39 items) were the secondary outcomes. All outcomes were assessed at baseline, at the end of training and eight weeks after treatment. Patients were always tested at the time of their optimal antiparkinsonian medication ('on' phase). After the treatment, only Parkinson's disease subjects randomized to water-based treatment showed a significant improvement of trunk posture with a significant reduction of cervical flexion (water-based group: -65.2°; non-water-based group: +1.7°) and dorsal flexion (water-based group: -22.5°; non-water-based group: -6.5°) and lateral inclination of the trunk (water-based group: -2.3°; non-water-based group: +0.3°). Both groups presented significant improvements in the secondary clinical outcomes without between-group differences. Our results show that water-based physiotherapy was effective for improving postural deformities in patients with Parkinson's disease.

  10. Postural Response Signal Characteristics Identified by Method of Developed Statokinesigram

    Directory of Open Access Journals (Sweden)

    Barbolyas Boris

    2015-12-01

    Full Text Available Human postural system is taken as complex biological system with specific input and output time characteristics, in this study. Evaluation of measured output characteristics is useful in medical diagnostics or in describing postural system disorders. System theory principle provide suitable basis for postural signals analysis. Participating volunteers were instructed to maintain quiet upright stance posture on firm support surface of stabilometric platform for 60s. Postural system actuation was realized by vibration stimuli applied bilaterally on Achilles tendons for 20s. Postural reaction signal, its time profile and static and dynamic characteristics were evaluated by Method of Developed Statokinesigram Trajectory (MDST.

  11. Sitting and standing postures are corrected by adjustable furniture with lowered muscle tension in high-school students.

    Science.gov (United States)

    Koskelo, R; Vuorikari, K; Hänninen, O

    2007-10-01

    This study compared the effect of 24 months of adjustable school desks and chairs usage (the intervention) and traditional non-adjustable usage (the control condition) on sitting and standing postures, muscle strength, classroom muscle tension, pain and learning in 15 (8 female and 7 male) high-school students and 15 anthropometrically and gender matched control students from neighbouring schools. It was assessed whether any responses took place after growth cessation. In comparison with controls, the intervention group of students' sitting postures standing kyphosis, scoliosis and lordosis became significantly better, both before and after growth cessation. Trunk muscle strength increased in the intervention students whose muscle tension during classes fell significantly in the trapezius and lumbar muscles, whereas in control students' lumbar tension increased. Headache and low-back pain correlated with neck-shoulder pain and trapezius muscle tension. Intervention students reported that they experienced benefits from the adjustable tables and chairs. They also received significantly better overall marks than the controls at the end of high school. It is concluded that the adjustable school desks and chairs promoted better sitting and standing postures, increased muscle strength, alleviated pain and appeared to be associated with better overall academic marks.

  12. Trunk muscle activation during moderate- and high-intensity running.

    Science.gov (United States)

    Behm, David G; Cappa, Dario; Power, Geoffrey A

    2009-12-01

    Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.

  13. Survey Study of Trunk Materials for Direct ATRP Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomonori [ORNL; Chatterjee, Sabornie [ORNL; Johnson, Joseph C. [ORNL; Dai, Sheng [ORNL; Brown, Suree [ORNL

    2015-02-01

    In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.

  14. A tutorial on queuing and trunking with applications to communications

    CERN Document Server

    Tranter, William H

    2012-01-01

    The motivation for developing this synthesis lecture was to provide a tutorial on queuing and trunking, with extensions to networks of queues, suitable for supplementing courses in communications, stochastic processes, and networking. An essential component of this lecture is MATLAB-based demonstrations and exercises, which can be easily modified to enable the student to observe and evaluate the impact of changing parameters, arrival and departure statistics, queuing disciplines, the number of servers, and other important aspects of the underlying system model. Much of the work in this lecture

  15. Improved postural control after dynamic balance training in older overweight women.

    Science.gov (United States)

    Bellafiore, Marianna; Battaglia, Giuseppe; Bianco, Antonino; Paoli, Antonio; Farina, Felicia; Palma, Antonio

    2011-01-01

    Many studies have reported a greater frequency of falls among older women than men in conditions which stress balance. Previously, we found an improvement in static balance in older women with an increased support surface area and equal load redistribution on both feet, in response to a dynamic balance training protocol. The aim of the present study was to examine whether the same training program and body composition would have effects on the postural control of older overweight women. Ten healthy women (68.67 ± 5.50 yrs; 28.17 ± 3.35 BMI) participated in a five-week physical activity program. This included dynamic balance exercises, such as heel-to-toe walking in different directions, putting their hands on their hips, eyes open (EO) or closed (EC), with a tablet on their heads, going up and down one step, and walking on a mat. Postural stability was assessed before and after training with an optoelectronic platform and a uni-pedal balance performance test. Body composition of the trunk, upper limbs and lower limbs was measured by bio-impedance analysis. The mean speed (MS), medial-lateral MS (MS-x), anterior-posterior MS (MS-y), sway path (SP) and ellipse surface area (ESA) of the pressure center was reduced after training in older women. However, only MS, MS-x, MS-y and SP significantly decreased in bipodalic conditions with EO and MS-y also with EC (punipedal static balance. Our dynamic balance training protocol appears to be feasible, safe and repeatable for older overweight women and to have positive effects in improving their lateral and anterior-posterior postural control, mainly acting on the visual and skeletal muscle components of the balance control system.

  16. Effect of absence of vision on posture.

    Science.gov (United States)

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished.

  17. Kinematics of the human mandible for different head postures.

    Science.gov (United States)

    Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M

    2000-04-01

    The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.

  18. The effect of complex rehabilitation training for 12 weeks on trunk muscle function and spine deformation of patients with SCI.

    Science.gov (United States)

    Sung, Dong-Hun; Yoon, Seong-Deok; Park, Gi Duck

    2015-03-01

    [Purpose] It is important for patients with incomplete spinal cord injury (SCI) to strengthen their muscle strength and return to the work force one of the ultimate objectives of rehabilitation. This study reports how a single patient with SCI became stabilized in terms of abdominal muscles and back extension muscles, as well as returning the back to the neutral position from spinal deformation, as result of complex exercises performed for 12 weeks. [Subjects] The degree of damage of the subject was rated as C grade. The subject of this study had unstable posture due to paralysis in the lower extremities of the left side after removal of a malignant tumor by surgical operation, and tilting and torsion in the pelvis increased followed by increase of kyphosis in the thoracolumbar spine. The subject was more than two years since diagnosis of incomplete SCI after surgery. [Methods] Using isokinetic lumbar muscle strength measurement equipment, peak torque/weight, total work and average power in flexion and extension of the lumbar region were measured. A trunk measurement system (Formetric 4D, DIERS, Germany), which is a 3D image processing apparatus with high resolution for vertebrae, was used in order to measure 3D vertebrae and pelvis deformation as well as static balance abilities. As an exercise method, a foam roller was used to conduct fascia relaxation massage for warming-up, and postural kyphosis was changed into postural lordosis by lat pull-down using equipment, performed in 5 sets of 15 times preset at 60% intensity of 1RM 4 set of 10 crunch exercises per set using Togu's were done while sitting at the end of Balance pad, and 4 sets of 15 bridge exercises. [Results] All angular speed tests showed a gradual increase in muscle strength. Flexion and extension showed 10% and 3% improvements, respectively. The spine deformation test showed that isokinetic exercise and lat pull-down exercise for 12 weeks resulted in improved spinal shape. [Conclusion] In this study

  19. Long-term follow-up of a randomized controlled trial on additional core stability exercises training for improving dynamic sitting balance and trunk control in stroke patients.

    Science.gov (United States)

    Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard

    2017-11-01

    Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.

  20. Neck pain and postural balance among workers with high postural demands - a cross-sectional study

    Science.gov (United States)

    2011-01-01

    Background Neck pain is related to impaired postural balance among patients and is highly prevalent among workers with high postural demands, for example, cleaners. We therefore hypothesised, that cleaners with neck pain suffer from postural dysfunction. This cross-sectional study tested if cleaners with neck pain have an impaired postural balance compared with cleaners without neck pain. Methods Postural balance of 194 cleaners with (n = 85) and without (N = 109) neck pain was studied using three different tests. Success or failure to maintain the standing position for 30 s in unilateral stance was recorded. Participants were asked to stand on a force platform for 30 s in the Romberg position with eyes open and closed. The centre of pressure of the sway was calculated, and separated into a slow (rambling) and fast (trembling) component. Subsequently, the 95% confidence ellipse area (CEA) was calculated. Furthermore a perturbation test was performed. Results More cleaners with neck pain (81%) failed the unilateral stance compared with cleaners without neck pain (61%) (p neck pain in comparison with cleaners without neck pain in the Romberg position with eyes closed, but not with eyes open. Conclusions Postural balance is impaired among cleaners with neck pain and the current study suggests a particular role of the slow component of postural sway. Furthermore, the unilateral stance test is a simple test to illustrate functional impairment among cleaners with concurrent neck and low back pain. Trial registration ISRCTN96241850 PMID:21806796

  1. Assessing delay and lag in sagittal trunk control using a tracking task.

    Science.gov (United States)

    Reeves, N Peter; Luis, Abraham; Chan, Elizabeth C; Sal Y Rosas, Victor G; Tanaka, Martin L

    2018-05-17

    Slower trunk muscle responses are linked to back pain and injury. Unfortunately, clinical assessments of spine function do not objectively evaluate this important attribute, which reflects speed of trunk control. Speed of trunk control can be parsed into two components: (1) delay, the time it takes to initiate a movement, and (2) lag, the time it takes to execute a movement once initiated. The goal of this study is to demonstrate a new approach to assess delay and lag in trunk control using a simple tracking task. Ten healthy subjects performed four blocks of six trials of trunk tracking in the sagittal plane. Delay and lag were estimated by modeling trunk control for predictable and unpredictable (control mode) trunk movements in flexion and extension (control direction) at movement amplitudes of 2°, 4°, and 6° (control amplitude). The main effect of control mode, direction, and amplitude of movement were compared between trial blocks to assess secondary influencers (e.g., fatigue). Only control mode was consistent across trial blocks with predictable movements being faster than unpredictable for both delay and lag. Control direction and amplitude effects on delay and lag were consistent across the first two trial blocks and less consistent in later blocks. Given the heterogeneity in the presentation of back pain, clinical assessment of trunk control should include different control modes, directions, and amplitudes. To reduce testing time and the influence of fatigue, we recommend six trials to assess trunk control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    Science.gov (United States)

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  3. Is postural control affected by expertise in alpine skiing?

    OpenAIRE

    Noe, F; Paillard, T

    2005-01-01

    Objectives: This study examined the postural performance of two groups of male skiers competing at different levels and the consequences on postural control of the suppression of visual afferences by eye closure.

  4. Short-term forecasting of turbidity in trunk main networks.

    Science.gov (United States)

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Classifying Transition Behaviour in Postural Activity Monitoring

    Directory of Open Access Journals (Sweden)

    James BRUSEY

    2009-10-01

    Full Text Available A few accelerometers positioned on different parts of the body can be used to accurately classify steady state behaviour, such as walking, running, or sitting. Such systems are usually built using supervised learning approaches. Transitions between postures are, however, difficult to deal with using posture classification systems proposed to date, since there is no label set for intermediary postures and also the exact point at which the transition occurs can sometimes be hard to pinpoint. The usual bypass when using supervised learning to train such systems is to discard a section of the dataset around each transition. This leads to poorer classification performance when the systems are deployed out of the laboratory and used on-line, particularly if the regimes monitored involve fast paced activity changes. Time-based filtering that takes advantage of sequential patterns is a potential mechanism to improve posture classification accuracy in such real-life applications. Also, such filtering should reduce the number of event messages needed to be sent across a wireless network to track posture remotely, hence extending the system’s life. To support time-based filtering, understanding transitions, which are the major event generators in a classification system, is a key. This work examines three approaches to post-process the output of a posture classifier using time-based filtering: a naïve voting scheme, an exponentially weighted voting scheme, and a Bayes filter. Best performance is obtained from the exponentially weighted voting scheme although it is suspected that a more sophisticated treatment of the Bayes filter might yield better results.

  6. Effects of posture on postoperative pulmonary function

    DEFF Research Database (Denmark)

    Nielsen, K G; Holte, Kathrine; Kehlet, H

    2003-01-01

    BACKGROUND: Pulmonary morbidity is still a relevant complication to major surgery despite improvements in surgical technique and anaesthetic methods. Postoperative posture may be a pathogenic factor, but the effects of changes in postoperative posture on pulmonary function have not been reviewed....... METHODS: Review of controlled, clinical trials evaluating postoperative pulmonary function in patients positioned in the supine vs. the sitting or standing position and patients positioned in the supine vs. the lateral position. Data were obtained from a search in the Medline and Cochrane databases (1966...

  7. Improved ambulation and speech production in an adolescent post-traumatic brain injury through a therapeutic intervention to increase postural control.

    Science.gov (United States)

    Reinthal, Ann Karas; Mansour, Linda Moeller; Greenwald, Glenna

    2004-01-01

    This case study examined the effectiveness of a programme designed to improve anticipatory postural control in an adolescent over years 2 and 3 post-traumatic brain injury (TBI). It was hypothesized that her difficulty in walking and talking simultaneously was caused by excessive co-activation of extremity, trunk, and oral musculature during upright activities. The participant was treated weekly by physical and speech therapy. Treatment focussed on improving anticipatory postural control during gross motor activities in conjunction with oral-motor function. Initially, the participant walked using a walker at a speed of 23 cm s(-1). Two years later, she could walk without a device at 53 cm s(-1). Initial laryngoscopic examination showed minimal movement of the velum or pharyngeal walls; full movement was present after treatment. The measure of intelligibility improved from no single word intelligible utterances to 85% intelligible utterances after 2 years. The results suggest that less compensatory rigidification of oral musculature was needed to maintain an upright position against gravity as postural control improved. An adolescent 1-year post-TBI was followed as she underwent additional rehabilitation focussed on improving anticipatory postural control. The functional goal of simultaneously talking while walking was achieved through this intervention.

  8. Development of the Coordination between Posture and Manual Control

    Science.gov (United States)

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  9. Postural Control in Children: Implications for Pediatric Practice

    Science.gov (United States)

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  10. Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants.

    Science.gov (United States)

    Frank, Barnett; Bell, David R; Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A

    2013-11-01

    Excessive trunk motion and deficits in neuromuscular control (NMC) of the lumbopelvic hip complex are risk factors for anterior cruciate ligament (ACL) injury. However, the relationship between trunk motion, NMC of the lumbopelvic hip complex, and triplanar knee loads during a sidestep cutting task has not been examined. To determine if there is an association between multiplanar trunk motion, NMC of the lumbopelvic hip complex, and triplanar knee loads with ACL injury during a sidestep cutting task. Descriptive laboratory study. The hip and knee biomechanics and trunk motion of 30 participants (15 male, 15 female) were analyzed during a sidestep cutting task using an optoelectric camera system interfaced to a force plate. Trunk and lower extremity biomechanics were calculated from the kinematic and ground-reaction force data during the first 50% of the stance time during the cutting task. Pearson product moment correlation coefficients were calculated between trunk and lower extremity biomechanics. Multiple linear regression analyses were carried out to determine the amount of variance in triplanar knee loading explained by trunk motion and hip moments. A greater internal knee varus moment (mean, 0.11 ± 0.12 N·m/kg*m) was associated with less transverse-plane trunk rotation away from the stance limb (mean, 20.25° ± 4.42°; r = -0.46, P = .011) and a greater internal hip adduction moment (mean, 0.33 ± 0.25 N·m/kg*m; r = 0.83, P < .05). A greater internal knee external rotation moment (mean, 0.11 ± 0.08 N·m/kg*m) was associated with a greater forward trunk flexion (mean, 7.62° ± 5.28°; r = 0.42, P = .020) and a greater hip internal rotation moment (mean, 0.15 ± 0.16 N·m/kg*m; r = 0.59, P = .001). Trunk rotation and hip adduction moment explained 81% (P < .05) of the variance in knee varus moment. Trunk flexion and hip internal rotation moment explained 48% (P < .05) of the variance in knee external rotation moment. Limited trunk rotation displacement

  11. Steps for arm and trunk actions of overhead forehand stroke used in badminton games across skill levels.

    Science.gov (United States)

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2009-08-01

    The purpose of this study was to examine arm and trunk actions in overhead forehand strokes used in badminton games across skill levels. The participants were 80 students (40 boys, 40 girls) who were randomly selected from video recordings of 300 students ages 16 to 19 years. The videotaped performances of overhead forehand strokes were coded based on three steps of arm action (elbow flexion, elbow and humeral flexion, and upward backswing) and three steps of trunk action (no trunk action, forward-backward movement, and trunk rotation). Students across the four skill levels exhibited different patterns of arm and trunk actions. Students at advanced levels used more mature arm and trunk actions.

  12. A modified sagittal spine postural classification and its relationship to deformities and spinal mobility in a chinese osteoporotic population.

    Directory of Open Access Journals (Sweden)

    Hua-Jun Wang

    Full Text Available BACKGROUND: Abnormal posture and spinal mobility have been demonstrated to cause functional impairment in the quality of life, especially in the postmenopausal osteoporotic population. Most of the literature studies focus on either thoracic kyphosis or lumbar lordosis, but not on the change of the entire spinal alignment. Very few articles reported the spinal alignment of Chinese people. The purpose of this study was threefold: to classify the spinal curvature based on the classification system defined by Satoh consisting of the entire spine alignment; to identify the change of trunk mobility; and to relate spinal curvature to balance disorder in a Chinese population. METHODOLOGY/PRINCIPAL FINDINGS: 450 osteoporotic volunteers were recruited for this study. Spinal range of motion and global curvature were evaluated noninvasively using the Spinal-Mouse® system and sagittal postural deformities were characterized. RESULTS: We found a new spine postural alignment consisting of an increased thoracic kyphosis and decreased lumbar lordosis which we classified as our modified round back. We did not find any of Satoh's type 5 classification in our population. Type 2 sagittal alignment was the most common spinal deformity (38.44%. In standing, thoracic kyphosis angles in types 2 (58.34° and 3 (58.03° were the largest and lumbar lordosis angles in types 4 (13.95° and 5 (-8.61° were the smallest. The range of flexion (ROF and range of flexion-extension (ROFE of types 2 and 3 were usually greater than types 4 and 5, with type 1 being the largest. CONCLUSIONS/SIGNIFICANCE: The present study classified and compared for the first time the mobility, curvature and balance in a Chinese population based on the entire spine alignment and found types 4 and 5 to present the worst balance and mobility. This study included a new spine postural alignment classification that should be considered in future population studies.

  13. Measurement of action forces and posture to determine the lumbar load of healthcare workers during care activities with patient transfers.

    Science.gov (United States)

    Theilmeier, Andreas; Jordan, Claus; Luttmann, Alwin; Jäger, Matthias

    2010-11-01

    Moving patients or other care activities with manual patient handling is characterized by high mechanical load on the lumbar spine of healthcare workers (HCWs). During the patient transfer activity, the caregivers exert lifting, pulling, and pushing forces varying over time with respect to amplitude and direction. Furthermore, the caregivers distinctly change their posture and frequently obtain postures asymmetrical to the median sagittal plane, including lateral bending and turning the trunk. This paper describes a procedure to determine lumbar load during patient transfer supported by measurement techniques and an exemplary application; this methodology represents the basis of a complex research project, the third 'Dortmund Lumbar Load Study (DOLLY 3)'. Lumbar load was determined by simulation calculations using a comprehensive biomechanical model ('The Dortmunder'). As the main influencing factors, the hand forces of the caregiver exerted during typical patient transfers and the posture and movements of the HCW were recorded in laboratory studies. The action forces were determined three-dimensionally with the help of a newly developed 'measuring bed', two different 'measuring chairs', a 'measuring bathtub', and a 'measuring floor'. To capture the forces during transfers in or at the bed, a common hospital bed was equipped with an additional framework, which is attached to the bedstead and connected to the bedspring frame via three-axial force sensors at the four corners. The other measuring systems were constructed similarly. Body movements were recorded using three-dimensional optoelectronic recording tools and video recordings. The posture and force data served as input data for the quantification of various lumbar-load indicators.

  14. 2012 National Guard Bureau Posture Statement

    Science.gov (United States)

    2012-01-01

    Illinois / Poland Indiana / Slovakia Kansas / Armenia Maine/ Montenegro Maryland / Estonia Maryland / Bosnia Michigan / Latvia Minnesota / Croatia New Jersey...alternative methods of planting to help increase crop production in the area. 2012 Posture Statement 19 Global Engagement State Partnership...horticulture ( plant cultivation), pest control, veterinary/animal husbandry techniques, civil engineering, and energy management. As a result of the

  15. Postural Determinants in the Blind. Final Report.

    Science.gov (United States)

    Siegel, Irwin M.; Murphy, Thomas J.

    The problem of malposture in the blind and its affect on orientation and travel skills was explored. A group of 45 students were enrolled in a standard 3-month mobility training program. Each student suffered a postural problem, some compounded by severe orthopedic and/or neurological deficit. All subjects were given complete orthopedic and…

  16. Smart rehabilitation garment for posture monitoring

    NARCIS (Netherlands)

    Wang, Q.; Chen, W.; Timmermans, A.A.A.; Karachristos, C.; Martens, J.B.O.S.; Markopoulos, P.

    Posture monitoring and correction technologies can support prevention and treatment of spinal pain or can help detect and avoid compensatory movements during the neurological rehabilitation of upper extremities, which can be very important to ensure their effectiveness. We describe the design and

  17. Robust balance shift control with posture optimization

    NARCIS (Netherlands)

    Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.

    2015-01-01

    In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using

  18. Can smartwatches replace smartphones for posture tracking?

    Science.gov (United States)

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-10-22

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed.

  19. Forearm posture and mobility in quadrupedal dinosaurs.

    Science.gov (United States)

    VanBuren, Collin S; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  20. Public and Private Posture : Zadie Smith

    NARCIS (Netherlands)

    Heynders, Odile

    2016-01-01

    This chapter will focus on Smith’s posture, and in particular on how her public position and literary work negotiate issues such as identification, celebrity, style and authenticity. First, the paradox of the ‘celebrity authority’ will be examined, followed by a Derrida-inspired analysis of Smith’s

  1. Evaluation of body posture in nursing students

    Directory of Open Access Journals (Sweden)

    Marília Fernandes Andrade

    2017-08-01

    Full Text Available Abstract OBJECTIVE To investigate the body posture of nursing students before and after clinical practice. METHOD The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. RESULTS The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (p< 0.00, except for the angle of the Thales triangle. Reassessment of these students evidenced significant differences in the angles of the acromioclavicular joint (p=0.03, knee flexion (p< 0.00 and in the tibiotarsal angle (p< 0.00. CONCLUSION All the students presented alterations when compared to the normality values. The segments that presented significant differences between before and after practice were the acromioclavicular angle, knee flexion, and tibiotarsal angle; the latter two were in the rolling position.

  2. Influence of musical groove on postural sway.

    Science.gov (United States)

    Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh

    2016-03-01

    Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Posture changes and subfoveal choroidal blood flow.

    Science.gov (United States)

    Longo, Antonio; Geiser, Martial H; Riva, Charles E

    2004-02-01

    To evaluate the effect of posture change on subfoveal choroidal blood flow (ChBF) in normal volunteers. The pulsatile, nonpulsatile, and mean ChBF were measured with laser Doppler flowmetry in 11 healthy volunteers with a mean age of 32 +/- 13 (SD) years. The posture of the subjects was changed from standing (90 degrees ), to supine (-8 degrees ), and back to standing, with a mechanically driven table. During the whole experimental procedure, ChBF and heart rate (HR) were continuously recorded. After 30 seconds in standing position, the subjects were tilted to supine during approximately 30 seconds. They remained in this position for approximately 2 minutes, after which they were tilted back to the standing position (recovery), where they remained for another approximately 2 minutes. Systemic brachial artery blood pressure (BP) was measured in the baseline, supine, and recovery positions. This procedure was repeated to measure the intraocular pressure (IOP) at the different postures. Mean BP did not change significantly throughout the experimental procedure. As the body was tilted from standing to supine, HR decreased by 16% (P blood velocity. Based on previously reported experimental data that indicate that the ocular perfusion pressure increases less than predicted by purely hydrostatic considerations when the body is tilted from the standing to the supine position, the observed increase in ChBF suggests a passive response of the choroidal circulation to the posture change.

  4. Forearm posture and mobility in quadrupedal dinosaurs.

    Directory of Open Access Journals (Sweden)

    Collin S VanBuren

    Full Text Available Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination. Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  5. Changes in Trunk and Head Stability in Children with Cerebral Palsy after Hippotherapy: A Pilot Study

    Science.gov (United States)

    Shurtleff, Tim L.; Engsberg, Jack R.

    2010-01-01

    Hippotherapy (HPOT) is a therapy that uses horse movement. This pilot investigation objectively evaluated the efficacy of HPOT in improving head/trunk stability in children with cerebral palsy (CP). The participants were six children with spastic diplegia and six children without disability. Head and trunk stability was challenged by using a…

  6. Ultrasound-guided drainage of subcutaneous abscesses on the trunk is feasible

    DEFF Research Database (Denmark)

    Kjær, Søren; Rud, Bo; Bay-Nielsen, Morten

    2013-01-01

    Subcutaneous trunk abscesses are frequent, and current treatment options generally involve incision. By contrast, the standard care for breast abcesses is ultrasound-guided drainage. The aim of this study was to evaluate the feasibility of ultrasound-guided drainage combined with antibiotics...... in the treatment of subcutaneous abscesses on the trunk....

  7. Effect of Ankle Mobility and Segment Ratios on Trunk Lean in the Barbell Back Squat

    DEFF Research Database (Denmark)

    Fuglsang, Emil I; Telling, Anders S; Sørensen, Henrik

    2017-01-01

    , injuries are common, and people with a history of lower back pain are especially vulnerable. Past studies have shown that higher trunk angles (less forward lean) generate less stress on the lower back; thus, it seems appropriate to investigate the factors presumed to influence the trunk angle. Therefore...

  8. Trunk position modulates anterior cruciate ligament forces and strains during a single-leg squat

    NARCIS (Netherlands)

    Kulas, Anthony S.; Hortobagyi, Tibor; DeVita, Paul

    Background: Although the squat exercise and its variations are commonly prescribed for anterior cruciate ligament rehabilitation, whether trunk position affects these ligament forces and strains during the squat is unclear. Our purpose was to evaluate the effects of trunk position on anterior

  9. Three-dimensional trunk kinematics in golf: between-club differences and relationships to clubhead speed.

    Science.gov (United States)

    Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Ball, Kevin

    2013-06-01

    The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 +/- 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7-66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.

  10. Screen time viewing behaviors and isometric trunk muscle strength in youth

    DEFF Research Database (Denmark)

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten

    2013-01-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth.......The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth....

  11. Researchers and stakeholders shape advances in management of tree and vine trunk-disease complexes

    Science.gov (United States)

    The grapevine trunk-disease complex limits grape production and vineyard longevity worldwide. Every vineyard in California eventually is infected by one or more trunk diseases. The causal fungi, which are taxonomically unrelated Ascomycetes, infect and then degrade the permanent woody structure of t...

  12. Neocosmospora perseae sp. nov., causing trunk cankers on avocado in Italy

    NARCIS (Netherlands)

    Guarnaccia, Vladimiro; Sandoval-Denis, Marcelo; Aiello, Dalia; Polizzi, Giancarlo; Crous, P.W.

    2018-01-01

    Trunk and branch cankers are among the most important diseases compromising avocado production worldwide. A novel species, Neocosmospora perseae sp. nov. is described isolated from trunk lesions on Persea americana in the main avocado producing area of Sicily, Italy. The new species is characterised

  13. Posture and Texting: Effect on Balance in Young Adults.

    Directory of Open Access Journals (Sweden)

    Nurul Retno Nurwulan

    Full Text Available Using a mobile phone while doing another activity is a common dual-task activity in our daily lives. This study examined the effect of texting on the postural stability of young adults. Twenty college students were asked to perform static and dynamic postural stability tasks. Traditional COP and multivariate multiscale entropy (MMSE were used to assess the static postural stability and the Star Excursion Balance Test (SEBT was used to assess the dynamic postural stability. Results showed that (1 texting impaired postural stability, (2 the complexity index did not change much although the task conditions changed, and (3 performing texting is perceived to be more difficult.

  14. Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?

    Science.gov (United States)

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2018-01-01

    Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.

  15. Novel anatomic variation: heptafurcation of the celiac trunk.

    Science.gov (United States)

    Rusu, M C; Manta, B A

    2018-04-01

    We report here anatomic variants which were found during a retrospective study of a male patient, 54 years old, evaluated in computed tomography: heptafurcation of the celiac trunk (CT) and bilateral double renal arteries. The seven branches of the heptafurcated CT were the (1) left and (2) right inferior phrenic arteries, the (3) splenic and (4) left gastric artery, the (5) common hepatic artery, further sending off the (a) proper, continued as left, hepatic artery and (b) the gastroduodenal artery, (6) a replaced right hepatic artery and (7) the dorsal pancreatic artery. To our knowledge, heptafurcation of the CT was not reported previously. The arterial variants have great importance during various surgical and interventional procedures and should be documented prior to respective procedures.

  16. The 30/20 GHz communications satellite trunking network study

    Science.gov (United States)

    Kolb, W.

    1981-01-01

    Alternative transmission media for a CONUS-wide trunking network in the years 1990 and 2000 are examined. The alternative technologies comprised fiber optic cable, conventional C- and Ku-band satellites, and 30/20 GHz satellites. Three levels of implementation were considered - a 10-city network, a 20-city network, and a 40-city network. The cities selected were the major metropolitan areas with the greatest communications demand. All intercity voice, data, and video traffic carried more than 40 miles was included in the analysis. In the optimized network, traffic transmitted less than 500 miles was found to be better served by fiber optic cable in 1990. By the year 2000, the crossover point would be down to 200 miles, assuming availability of 30/20 GHz satellites.

  17. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  18. Along the Grand Trunk Road: The Photography of Raghubir Singh

    Directory of Open Access Journals (Sweden)

    Chaya Chandrasekhar

    2013-05-01

    Full Text Available For more than two millennia, the historic Grand Trunk Road, the busy thoroughfare that extends some 1500 miles through north India and Pakistan served as the main artery of South Asia. It was also the gateway through which waves of immigrants, travelers, and invaders entered the subcontinent. As a result, a great deal of diversity and tolerance marks the road. Between 1988 and 1991, Raghubir Singh (1942-1999, one of India’s renowned documentary photographers, traveled and photographed the Indian stretch of the Road. Ninety-six photographs from his journeys appear in the publication, 'The Grand Trunk Road: A Passage Through India '(1995. Singh used the pictorial style of street photography that he is known for to capture everyday life along the path. Further, he emphasized the tremendous diversity he witnessed along the road through the selections he made for inclusion in the book and the specific manner in which he arranged many of them. By underscoring the heterogeneity, Singh provided a critical visual commentary of the political climate in India during the 1980s and early nineties. This period coincided with the rise of Hindu nationalism, which aimed to erase the subcontinent’s diverse past and promote instead the idea of a homogenous/Hindu India. By documenting the road in his uniquely pictorial style and arranging the photographs in his book to draw attention to the differences and tolerance witnessed along the path, Singh demonstrated that India was not a monolithic culture as the politics of the time claimed, but a rich interwoven fabric of many varied strands.

  19. Duplication of Inferior Gluteal Artery and Course of Superior Gluteal Artery Through the Lumbosacral Trunk

    Directory of Open Access Journals (Sweden)

    Satheesha Nayak B

    2017-07-01

    Full Text Available Internal iliac artery (IIA shows great deal of variations in its branching pattern. The knowledge of its variant branches is required for successful surgical, orthopedic, plastic surgery and radiological procedures. We observed variations of some of the branches of right IIA in an adult male cadaver. The iliolumbar artery originated from the main trunk of the IIA. After this, IIA divided into anterior and posterior divisions. The posterior division gave lateral sacral and superior gluteal arteries. Superior gluteal artery pierced the lumbosacral trunk before leaving the pelvis. The anterior division further divided into anterior and posterior trunks. Anterior trunk gave rise to superior vesical, inferior vesical, middle rectal and obturator arteries. The posterior trunk gave two inferior gluteal arteries and an internal pudendal artery.

  20. Trunk- and head-centred spatial coordinates do not affect free-viewing perceptual asymmetries.

    Science.gov (United States)

    Nicholls, Michael E R; Mattingley, Jason B; Bradshaw, John L; Krins, Phillip W

    2003-11-01

    Turning the trunk or head to the left can reduce the severity of leftward neglect. This study sought to determine whether turning the trunk or head to the right would reduce pseudoneglect: A phenomenon where normal participants underestimate the rightward features of a stimulus. Participants made luminance judgements of two mirror-reversed greyscales stimuli. A preference for selecting the stimulus dark on the left was found. The effect of trunk-centred coordinates was examined in Expt. 1 by facing the head toward the display and turning the trunk to the left, right or toward the display. Head-centred coordinates were examined in Expt. 2 by directing the eyes toward the display and then turning the head and trunk. No effect of rotation was observed. It was concluded that the leftward bias for the greyscales task could be based on an object-centred attentional bias or left-to-right eye scanning habits.

  1. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    Directory of Open Access Journals (Sweden)

    Cassavaugh Nicholas D

    2011-10-01

    Full Text Available Abstract Background Traumatic brain injury (TBI disrupts the central and executive mechanisms of arm(s and postural (trunk and legs coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. Methods The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. Results As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. Conclusion

  2. Neck and shoulder muscle activity and posture among helicopter pilots and crew-members during military helicopter flight.

    Science.gov (United States)

    Murray, Mike; Lange, Britt; Chreiteh, Shadi Samir; Olsen, Henrik Baare; Nørnberg, Bo Riebeling; Boyle, Eleanor; Søgaard, Karen; Sjøgaard, Gisela

    2016-04-01

    Neck pain among helicopter pilots and crew-members is common. This study quantified the physical workload on neck and shoulder muscles using electromyography (EMG) measures during helicopter flight. Nine standardized sorties were performed, encompassing: cruising from location A to location B (AB) and performing search and rescue (SAR). SAR was performed with Night Vision Goggles (NVG), while AB was performed with (AB+NVG) and without NVG (AB-NVG). EMG was recorded for: trapezius (TRA), upper neck extensors (UNE), and sternocleido-mastoid (SCM). Maximal voluntary contractions (MVC) were performed for normalization of EMG (MVE). Neck posture of pilots and crew-members was monitored and pain intensity of neck, shoulder, and back was recorded. Mean muscle activity for UNE was ∼10% MVE and significantly higher than TRA and SCM, and SCM was significantly lower than TRA. There was no significant difference between AB-NVG and AB+NVG. Muscle activity in the UNE was significantly higher during SAR+NVG than AB-NVG. Sortie time (%) with non-neutral neck posture for SAR+NVG and AB-NVG was: 80.4%, 74.5% (flexed), 55.5%, 47.9% (rotated), 4.5%, 3.7% (lateral flexed). Neck pain intensity increased significantly from pre- (0.7±1.3) to post-sortie (1.6±1.9) for pilots (p=0.028). If sustained, UNE activity of ∼10% MVE is high, and implies a risk for neck disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The reliability and validity of the Saliba Postural Classification System.

    Science.gov (United States)

    Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos

    2016-07-01

    To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.

  4. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    Science.gov (United States)

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  5. Multipole traps for non-neutral plasmas

    International Nuclear Information System (INIS)

    Tiouririne, T.N.; Turner, L.; Lau, A.W.C.

    1994-01-01

    A multipolar generalization of the Penning trap is presented. The case of l=1 is that of standard Penning trap. For the case of a quadrupolar magnetic field, analytic solutions are presented for cold, confined, one-species plasmas with spheroidal or spherical boundaries; for higher l values analytic solutions are given only for spherically bounded plasmas. By virtue of the sheared flow present for solutions with l>1, the classical Brillouin ratio (stored rest energy of particles/stored magnetic energy) of unity is exceeded and attains a global limit of 2 at infinitely high l

  6. Conventional versus frozen elephant trunk surgery for extensive disease of the thoracic aorta.

    Science.gov (United States)

    Di Eusanio, Marco; Borger, Michael; Petridis, Francesco D; Leontyev, Sergey; Pantaleo, Antonio; Moz, Monica; Mohr, Friedrich; Di Bartolomeo, Roberto

    2014-11-01

    To compare early and mid-term outcomes after repair of extensive aneurysm of the thoracic aorta using the conventional elephant trunk or frozen elephant trunk (FET) procedures. Fifty-seven patients with extensive thoracic aneurysmal disease were treated using elephant trunk (n = 36) or FET (n = 21) procedures. Patients with aortic dissection, descending thoracic aorta (DTA) diameter less than 40 mm, and thoracoabdominal aneurysms were excluded from the analysis, as were those who did not undergo antegrade selective cerebral perfusion during circulatory arrest. Short-term and mid-term outcomes were compared according to elephant trunk/FET surgical management. Preoperative and intraoperative variables were similar in the two groups, except for a higher incidence of female sex, coronary artery disease and associated procedures in elephant trunk patients. Hospital mortality (elephant trunk: 13.9% versus FET: 4.8%; P = 0.2), permanent neurologic dysfunction (elephant trunk: 5.7% versus FET: 9.5%; P = 0.4) and paraplegia (elephant trunk: 2.9% versus FET: 4.8%; P = 0.6) rates were similar in the two groups. Follow-up was 100% complete. In the elephant trunk group, 68.4% of patients did not undergo a second-stage procedure during follow-up for a variety of reasons. Of these patients, the DTA diameter was greater than 51 mm in 72.2% and two (6.7%) died due to aortic rupture while awaiting stage-two intervention. Endovascular second-stage procedures were successfully performed in all FET patients with residual DTA aneurysmal disease (n = 3), whereas nine of 11 elephant trunk patients who returned for second-stage procedures required conventional surgical replacement through a lateral thoracotomy. Kaplan-Meier estimate of 4-year survival was 75.8 ± 7.6 and 72.8 ± 10.6 in elephant trunk and FET patients, respectively (log-rank P = 0.8). In patients with extensive aneurysmal disease of thoracic aorta, elephant trunk and FET procedures

  7. Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis

    NARCIS (Netherlands)

    Reininga, Inge H. F.; Stevens, Martin; Wagenmakers, Robert; Bulstra, Sjoerd K.; Groothoff, Johan W.; Zijlstra, Wiebren

    2012-01-01

    Background: Compensatory trunk movements during gait, such as a Duchenne limp, are observed frequently in subjects with osteoarthritis of the hip, yet angular trunk movements are seldom included in clinical gait assessments. Hence, the objective of this study was to quantify compensatory trunk

  8. Anticipation of direction and time of perturbation modulates the onset latency of trunk muscle responses during sitting perturbations.

    Science.gov (United States)

    Milosevic, Matija; Shinya, Masahiro; Masani, Kei; Patel, Kramay; McConville, Kristiina M V; Nakazawa, Kimitaka; Popovic, Milos R

    2016-02-01

    Trunk muscles are responsible for maintaining trunk stability during sitting. However, the effects of anticipation of perturbation on trunk muscle responses are not well understood. The objectives of this study were to identify the responses of trunk muscles to sudden support surface translations and quantify the effects of anticipation of direction and time of perturbation on the trunk neuromuscular responses. Twelve able-bodied individuals participated in the study. Participants were seated on a kneeling chair and support surface translations were applied in the forward and backward directions with and without direction and time of perturbation cues. The trunk started moving on average approximately 40ms after the perturbation. During unanticipated perturbations, average latencies of the trunk muscle contractions were in the range between 103.4 and 117.4ms. When participants anticipated the perturbations, trunk muscle latencies were reduced by 16.8±10.0ms and the time it took the trunk to reach maximum velocity was also reduced, suggesting a biomechanical advantage caused by faster muscle responses. These results suggested that trunk muscles have medium latency responses and use reflexive mechanisms. Moreover, anticipation of perturbation decreased trunk muscles latencies, suggesting that the central nervous system modulated readiness of the trunk based on anticipatory information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The effect of different supermarket checkout workstations on trunk kinematics of checkout operators O efeito de diferentes modelos de checkout na cinemática de operadores de supermercado

    Directory of Open Access Journals (Sweden)

    André L. F. Rodacki

    2010-02-01

    Full Text Available OBJECTIVES: This study analyzed the effect of a standard and a modified checkout workstation during a simulated task on trunk postures of a supermarket checkout operator. METHODS: Eight participants performed a task involving grasping, scanning and depositing products, while 3D images of the trunk were collected. RESULTS: A number of kinematic changes were observed in trunk posture. A greater anterior flexion (3.0±1.2º and lateral bending during grasping (7.1±1.4º were found in the standard checkout workstation when compared to the modified model (p0.05. DISCUSSION: The modified checkout workstation provided less lateral bending of the trunk to grasp products (8.1º ± 2.8; p0.05, irrespective of the checkout workstations (p>0.05. The modified checkout workstation successfully reduced risk of injury in some aspects, particularly the problems associated with lateral bending of the trunk. Other studies are required to test whether such potential benefits are obtained on a daily basis. CONCLUSIONS: Supermarket checkout operators may be at high risk of occupational injury due to different workstation demands. Modifications to checkout workstation design are an attractive possibility to reduce postural stress and fatigue in checkout operators. Longitudinal studies are required to test whether changes observed in the present study are sustained in the long term.OBJETIVOS: Analisar o efeito de um modelo padrão e de um modificado de checkout durante uma tarefa simulada de um operador de caixa de supermercado. MÉTODOS: Oito participantes desempenharam uma tarefa envolvendo apanhar, ler e depositar produtos, enquanto imagens 3D do tronco foram coletadas. RESULTADOS: Um número de mudanças cinemáticas foram observadas na postura do tronco. Uma maior flexão anterior (3.0±1.2º e uma inclinação lateral durante o apanhar (7.1±1.4º foram encontradas no checkout padrão quando comparadas ao modelo modificado (p0.05. DISCUSSÃO: O checkout

  10. Obesity impact on the attentional cost for controlling posture.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Mignardot

    2010-12-01

    Full Text Available This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing.Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1 and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6 maintained postural stability on a force platform in two postural tasks (seated and unipedal. The two postural tasks were performed (1 alone and (2 in a dual-task paradigm in combination with an auditory reaction time task (RT. Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials.(1 Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP, in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2 Whatever the postural task, the additional RT task did not affect postural stability. (3 Seated, RT did not differ between the two groups. (4 RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity.Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.

  11. Obesity Impact on the Attentional Cost for Controlling Posture

    Science.gov (United States)

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  12. Measuring postural control during mini-squat posture in men with early knee osteoarthritis.

    Science.gov (United States)

    Petrella, M; Gramani-Say, K; Serrão, P R M S; Lessi, G C; Barela, J A; Carvalho, R P; Mattiello, S M

    2017-04-01

    Studies have suggested a compromised postural control in individuals with knee osteoarthritis (OA) evidenced by larger and faster displacement of center of pressure (COP). However, quantification of postural control in the mini-squat posture performed by patients with early knee OA and its relation to muscle strength and self-reported symptoms have not been investigated. The main aim of this cross-sectional, observational, controlled study was to determine whether postural control in the mini-squat posture differs between individuals with early knee OA and a control group (CG) and verify the relation among knee extensor torque (KET) and self-reported physical function, stiffness and pain. Twenty four individuals with knee OA grades I and II (OAG) (mean age: 52.35±5.00) and twenty subjects without knee injuries (CG) (mean age: 51.40±8.07) participated in this study. Participants were assessed in postural control through a force plate (Bertec Mod. USA), which provided information about the anterior-posterior (AP) and medial-lateral (ML) COP displacement during the mini-squat, in isometric, concentric and eccentric knee extensor torque (KET) (90°/s) through an isokinetic dynamometer (BiodexMulti-Joint System3, Biodex Medical Incorporation, New York, NY, USA), and in self-reported symptoms through the WOMAC questionnaire. The main outcomes measured were the AP and ML COP amplitude and velocity of displacement; isometric, concentric, and eccentric KET and self-reported physical function, stiffness and pain. No significant differences were found between groups for postural control (p>0.05). Significant lower eccentric KET (p=0.01) and higher scores for the WOMAC subscales of pain (p=postural instability and the need to include quadriceps muscle strengthening, especially by eccentric contractions. The relationship between the self-reported symptoms and a lower and slower COP displacement suggest that the postural control strategy during tasks with a semi-flexed knee

  13. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Hens, Gerrit; Clijsen, Ron; Goossens, Maggie; Buyl, Ronald; Meeusen, Romain; Kerckhofs, Eric

    2015-05-01

    The goal was to assess in healthy participants the three-dimensional kinematics of the pelvis and the trunk during robot-assisted treadmill walking (RATW) at 0%, 30% and 50% body weight support (BWS), compared with treadmill walking (TW). 18 healthy participants walked (2 kmph) on a treadmill with and without robot assistance (Lokomat; 60% guidance force; 0%, 30% and 50% BWS). After an acclimatisation period (four minutes), trunk and pelvis kinematics were registered in each condition (Polhemus Liberty [240 Hz]). The results were analysed using a repeated measures analysis of variance with Bonferroni correction, with the level of suspension as within-subject factor. During RATW with BWS, there were significantly (1) smaller antero-posterior and lateral translations of the trunk and the pelvis; (2) smaller antero-posterior flexion and axial rotation of the trunk; (3) larger lateral flexion of the trunk; and (4) larger antero-posterior tilting of the pelvis compared with TW. There are significant differences in trunk and pelvis kinematics in healthy persons during TW with and without robot assistance. These data are relevant in gait rehabilitation, relating to normal balance regulation. Additional research is recommended to further assess the influence of robot assistance on human gait. The trunk and pelvis moves in a different way during walking with robot assistance. The data suggest that the change in movement is due to the robot device and the harness of the suspension system more than due to the level of suspension itself.

  14. Trunk lean gait decreases multi-segmental coordination in the vertical direction.

    Science.gov (United States)

    Tokuda, Kazuki; Anan, Masaya; Sawada, Tomonori; Tanimoto, Kenji; Takeda, Takuya; Ogata, Yuta; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2017-11-01

    [Purpose] The strategy of trunk lean gait to reduce external knee adduction moment (KAM) may affect multi-segmental synergy control of center of mass (COM) displacement. Uncontrolled manifold (UCM) analysis is an evaluation index to understand motor variability. The purpose of this study was to investigate how motor variability is affected by using UCM analysis on adjustment of the trunk lean angle. [Subjects and Methods] Fifteen healthy young adults walked at their preferred speed under two conditions: normal and trunk lean gait. UCM analysis was performed with respect to the COM displacement during the stance phase. The KAM data were analyzed at the points of the first KAM peak during the stance phase. [Results] The KAM during trunk lean gait was smaller than during normal gait. Despite a greater segmental configuration variance with respect to mediolateral COM displacement during trunk lean gait, the synergy index was not significantly different between the two conditions. The synergy index with respect to vertical COM displacement during trunk lean gait was smaller than that during normal gait. [Conclusion] These results suggest that trunk lean gait is effective in reducing KAM; however, it may decrease multi-segmental movement coordination of COM control in the vertical direction.

  15. Strategic political postures and political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Henneberg, Stephan C.

    2010-01-01

    by developing an integrated concept of political marketing strategy using two complementary frameworks, namely Strategic Political Postures (SPP) and Political Market Orientation (PMO). We introduce the two main concepts and derive for each of the strategic posture-specific PMO profiles as well as inter......Recently, the areas of strategic political marketing and political market orientation have been the subject of several conceptual articles which have provided the theoretical foundations for further empirical work. However, despite the close conceptual relatedness of the proposed concepts......, these have yet to be integrated to provide a more nuanced framework which both researchers and political marketing practitioners can utilise in the development of strategies and offerings with which to achieve their organizational goals. The aim of this conceptual paper is to address this deficit...

  16. Postural balance in low back pain patients

    DEFF Research Database (Denmark)

    Maribo, Thomas; Stengaard-Pedersen, Kristian; Jensen, Lone Donbæk

    2011-01-01

    Low back pain (LBP) patients have poorer postural control compared to healthy controls, and the importance of assessing and addressing balance is a matter of debate. In the clinic, balance is often tested by means of the one leg stand test (OLST) while research often employs center of pressure (Co......P) on a force platform. Portable force platforms might be of clinical relevance, but their reliability for LBP patients in a clinical setting has not been demonstrated. As LBP patients are more dependent on vision compared to healthy controls, the ratio of tests performed with eyes open and eyes closed (Romberg...... Ratio) might be of clinical interest. This study aimed to assess postural balance in LBP patients by analyzing intra-session reliability of CoP parameters on a portable force platform, the Romberg Ratio, and the OLST. Furthermore, we aimed to determine whether CoP parameters and OLST measure identical...

  17. Research of Human Postural Balance Parameters

    Directory of Open Access Journals (Sweden)

    Julius Griškevičius

    2011-02-01

    Full Text Available In present article postural balance between subjects with stroke and healthy subjects, is being investigated with eyes opened and eyes closed. In the research participated 30 healthy subjects and 15 subjects with stroke. At the same time two experimental measurements were performed – postural balance was measured using balance platform and oscillations of the centre of mass were observed using two-axial accelerometer. It was noted, that amplitudes of subjects with stroke were larger almost two times than control group’s of healthy subjects. It was find out, that ratios of pressure distribution on both left and right legs are in range from 1 to 0.9 for healthy subjects, and ratios below 0.9 are common for subjects with stroke. When subjects were standing with eyes closed, sway amplitudes were higher and the ratios of load distribution on left and right legs were lower.Article in Lithuanian

  18. Human Posture Identification Using a MIMO Array

    Directory of Open Access Journals (Sweden)

    Dai Sasakawa

    2018-03-01

    Full Text Available The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper proposes a human posture identification scheme based on height and a Doppler radar cross section (RCS as estimated by a MIMO array. This scheme allows smart home applications to dispense with contact and wearable devices. Experiments demonstrate that this method can identify the supine position (i.e., after a fall with 100% accuracy, and the average identification rate is 95.0%.

  19. Effects of posture on postoperative pulmonary function

    DEFF Research Database (Denmark)

    Nielsen, K G; Holte, Kathrine; Kehlet, H

    2003-01-01

    effect on postoperative pulmonary function in the sitting or standing position compared with the supine. Thus, avoidance of the supine position may improve postoperative pulmonary function. Three of six studies showed a positive effect on postoperative pulmonary function of the lateral side compared......BACKGROUND: Pulmonary morbidity is still a relevant complication to major surgery despite improvements in surgical technique and anaesthetic methods. Postoperative posture may be a pathogenic factor, but the effects of changes in postoperative posture on pulmonary function have not been reviewed...... with the supine. Thus, the lateral position has limited effects on pulmonary function. CONCLUSION: Changes of postoperative position from supine to sitting or standing are of major importance in the interpretation of postoperative pulmonary outcome studies and in future strategies to improve pulmonary outcome....

  20. Evaluation of body posture in nursing students.

    Science.gov (United States)

    Andrade, Marília Fernandes; Chaves, Érika de Cássia Lopes; Miguel, Michele Rita Oliveira; Simão, Talita Prado; Nogueira, Denismar Alves; Iunes, Denise Hollanda

    2017-08-28

    To investigate the body posture of nursing students before and after clinical practice. The study was developed in two stages. Initially the body posture of students of the 2nd, 4th, 6th, and 8th periods were assessed through photogrammetry. All images were analyzed in a random and masked manner with CorporisPro® 3.1.3 software. Three evaluations were performed for each angle and then the mean value was calculated. Two years later, when the 4th period students had developed their clinical internships, their body posture was again evaluated. The total sample consisted of 112 students. Comparison of their posture with the normality pattern showed that all the angles presented significant differences (pcomposta por 112 estudantes. Comparando-se os estudantes com o padrão de normalidade, todos os ângulos apresentaram diferença significativa (p< 0,00), com exceção do ângulo triângulo de Tales. Reavaliando os mesmos estudantes, houve diferença significativa nos ângulos da articulação acromioclavicular (p=0,03), da flexão de joelhos (p< 0,00) e no ângulo tibiotársico (p< 0,00). Todos os estudantes apresentaram alterações, comparadas aos valores de normalidade. Os segmentos com diferença significativa, comparando-se antes e após a prática, foram o ângulo acromioclavicular, flexo de joelho e ângulo tibiotársico, sendo os dois últimos na posição de rolamento.

  1. Human Posture Identification Using a MIMO Array

    OpenAIRE

    Dai Sasakawa; Naoki Honma; Takeshi Nakayama; Shoichi Iizuka

    2018-01-01

    The elderly are constantly in danger of falling and injuring themselves without anyone realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO) radar to localize persons by capturing their biological activities such as respiration. However, our studies to date have focused on localization, which is easier to achieve than an estimation of human postures. This paper pr...

  2. Trunk repositioning errors are increased in balance-impaired older adults.

    Science.gov (United States)

    Goldberg, Allon; Hernandez, Manuel Enrique; Alexander, Neil B

    2005-10-01

    Controlling the flexing trunk is critical in recovering from a loss of balance and avoiding a fall. To investigate the relationship between trunk control and balance in older adults, we measured trunk repositioning accuracy in young and balance-impaired and unimpaired older adults. Young adults (N = 8, mean age 24.3 years) and two groups of community-dwelling older adults defined by unipedal stance time (UST)-a balance-unimpaired group (UST > 30 seconds, N = 7, mean age 73.9 years) and a balance-impaired group (UST tested in standing trunk control ability by reproducing a approximately 30 degrees trunk flexion angle under three visual-surface conditions: eyes opened and closed on the floor, and eyes opened on foam. Errors in reproducing the angle were defined as trunk repositioning errors (TREs). Clinical measures related to balance, trunk extensor strength, and self-reported disability were obtained. TREs were significantly greater in the balance-impaired group than in the other groups, even when controlling for trunk extensor strength and body mass. In older adults, there were significant correlations between TREs and three clinical measures of balance and fall risk, UST and maximum step length (-0.65 to -0.75), and Timed Up & Go score (0.55), and between TREs and age (0.63-0.76). In each group TREs were similar under the three visual-surface conditions. Test-retest reliability for TREs was good to excellent (intraclass correlation coefficients > or =0.74). Older balance-impaired adults have larger TREs, and thus poorer trunk control, than do balance-unimpaired older individuals. TREs are reliable and valid measures of underlying balance impairment in older adults, and may eventually prove to be useful in predicting the ability to recover from losses of balance and to avoid falls.

  3. Correlação entre padrão postural em jovens praticantes do atletismo Correlation of the postural standard in young track and field practitioners

    Directory of Open Access Journals (Sweden)

    Fábio do Nascimento Bastos

    2009-12-01

    Full Text Available O estudo objetivou observar o alinhamento corporal de jovens atletas praticantes de atletismo e analisar a associação de tais padrões dentro e entre os grupos de provas desta modalidade. Participaram 63 atletas de ambos os sexos e o protocolo de coleta para análise postural baseou-se na observação e registro fotográfico com marcações nos principais acidentes ósseos visando à verificação do alinhamento dessas estruturas. Os segmentos considerados para análise foram: tronco, pelve, joelho e tornozelo. Foi utilizado para análise dos dados o teste de Goodman para contrastes entre e dentro de proporções binomiais. Os resultados mostraram que saltadores (58,33% e arremessadores/lançadores (50,00% apresentam o tronco em posição mais equilibrada que atletas de resistência (5,56%. Na região do quadril, arremessadores/lançadores apresentaram predomínio de pelve com rotação esquerda (66,67%, enquanto nos saltadores foi observada elevada frequência de anteversão pélvica (58,33%. A observação do joelho revelou altas taxas de normalidade e recurvatum em fundistas, valgo nos arremessadores/lançadores (50,00% e varo para os demais grupos. Para a articulação do tornozelo, nota-se que, exceto os saltadores, os grupos apresentaram predominância de valgismo. Conclui-se que, para atender às características particulares de cada prova, níveis distintos de postura são estabelecidos.The aim of this study was to observe the body alignment of young athletes practicing athletics and analyze the combination of such patterns within and between groups of this modality. The sample was composed of 63 athletes of both sexes and the postural analysis protocol was based on observation and photographic record with markings on bone's accidents to verify the alignment of these structures. The segments considered in the analysis were: trunk, pelvis, knee and ankle. The Goodmann's test for contrasts between and within binomial proportions was used

  4. Lead effects on postural balance of children

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, A.; Shukla, R.; Bornschein, R.L.; Dietrich, K.N. (Univ. of Cincinnati, OH (USA)); Keith, R. (Univ. of Cincinnati Medical Center, OH (USA))

    1990-11-01

    The postural sway responses of 63 children with a mean age of 5.74 years were quantified with a Force Platform technique. The average maximum (max) blood lead (PbB) of these children during the first 5 years of life was 20.7 {mu}g/dL (range 9.2 to 32.5). The backward stepwise regression analysis for sway area response during the eyes-closed, no-foam test with all the covariates and confounders and the PbB parameters showed a significant relationship with peak or max PbB during the second year of life. These results are consistent with their previous study with a smaller group of children. The data have been analyzed to provide some insight into the role of various afferents for the maintenance of postural balance. The results suggests a hypothesis that if the max PbB had caused some level of impairment in the functional capacities or interconnectivity of the vestibular and/or proprioception systems at 2 years of age, then it is reasonable to assume that the redundancy in the postural afferent systems would naturally adapt to rely more on the remaining intact afferent system (in this case, vision).

  5. A postural `stressed` cerebral HMPAO case study

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.C.; Jost, G.M.; Bolitho, L.; Grantham, M. [Wangaratta District Hospital, VIC (Australia)

    1998-03-01

    Full text: This case study represents an example of the utility of postural hypoperfusion stressed HMPAO SPECT. An elderly woman of 78 with a long history of giddiness was referred to our laboratory for examination of possible cerebral ischaemia. She had recurrent dizzy episodes, sometimes posture related, over the past few years and had suffered several falls. Cerebral DSA revealed minimal disease. CT scans were reported as normal. Carotid duplex Doppler studies revealed bilateral plaque disease in the carotid bulbs extending to the origins of the ICAs which were not significant stenoses. Postural symptoms were induced by standing the patient up rapidly and HMPAO was administered at the same time. A SPECT scan of the brain was performed. Quantitative analysis showed a left to right decrease of 10.8% in the temporo-occipital area, 5.6% in the temporo-parietal area and 2.5% in the cerebellar and parietal areas. Images revealed moderately reduced tracer concentration in the left half of the cerebellum and the left occipital region extending as far forward as the temporo-parietal region A repeat HMPAO SPECT scan without stress was normal. This would appear to indicate reversible ischaemia in the left posterior region, and is consistent with the reported symptoms. This case illustrates the usefulness of HMPAO in the diagnosis of reversible cerebral ischaemia.

  6. Ice skating promotes postural control in children.

    Science.gov (United States)

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A postural 'stressed' cerebral HMPAO case study

    International Nuclear Information System (INIS)

    Williams, R.C.; Jost, G.M.; Bolitho, L.; Grantham, M.

    1998-01-01

    Full text: This case study represents an example of the utility of postural hypoperfusion stressed HMPAO SPECT. An elderly woman of 78 with a long history of giddiness was referred to our laboratory for examination of possible cerebral ischaemia. She had recurrent dizzy episodes, sometimes posture related, over the past few years and had suffered several falls. Cerebral DSA revealed minimal disease. CT scans were reported as normal. Carotid duplex Doppler studies revealed bilateral plaque disease in the carotid bulbs extending to the origins of the ICAs which were not significant stenoses. Postural symptoms were induced by standing the patient up rapidly and HMPAO was administered at the same time. A SPECT scan of the brain was performed. Quantitative analysis showed a left to right decrease of 10.8% in the temporo-occipital area, 5.6% in the temporo-parietal area and 2.5% in the cerebellar and parietal areas. Images revealed moderately reduced tracer concentration in the left half of the cerebellum and the left occipital region extending as far forward as the temporo-parietal region A repeat HMPAO SPECT scan without stress was normal. This would appear to indicate reversible ischaemia in the left posterior region, and is consistent with the reported symptoms. This case illustrates the usefulness of HMPAO in the diagnosis of reversible cerebral ischaemia

  8. [Intravascular Hemolysis Caused by Stenosis of an Elephant Trunk;Report of a Case].

    Science.gov (United States)

    Takamaru, Rikako; Kawahito, Koji; Aizawa, Kei; Misawa, Yoshio

    2017-07-01

    Symptomatic intravascular hemolysis after prosthetic aortic graft replacement is rare. It is primarily attributed to mechanical injury of red blood cells caused by stenosis of the vascular graft. A 50-year-old man presented with hemolytic anemia, 5 years after total arch replacement with an elephant trunk for type A aortic dissection. The hemolysis was caused by graft stenosis of the elephant trunk. Endovascular treatment for the stenotic elephant trunk was successfully performed. The postoperative course was uneventful, and the hemolysis was resolved immediately after operation.

  9. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism.

    Science.gov (United States)

    Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G; Horak, Fay B

    2017-01-01

    The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson's disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4-L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls ( p   0.74), demonstrating the method's validity. Our findings support the validity of the proposed method for assessing the OLS test and its sensitivity in distinguishing among the tested groups. The instrumented test discriminated between healthy controls and people with parkinsonism and among the three groups with parkinsonism. The objective characterization of the initial anticipatory phase represents an interesting improvement compared to most clinical OLS tests.

  10. Data collection costs in industrial environments for three occupational posture exposure assessment methods

    Science.gov (United States)

    2012-01-01

    Background Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Methods Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Results Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. Conclusions This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models. PMID:22738341

  11. Biomechanical assessment of balance and posture in subjects with ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Sawacha Zimi

    2012-08-01

    Full Text Available Abstract Background Ankylosing spondylitis is a major chronic rheumatic disease that predominantly affects axial joints, determining a rigid spine from the occiput to the sacrum. The dorsal hyperkyphosis may induce the patients to stand in a stooped position with consequent restriction in patients’ daily living activities. The aim of this study was to develop a method for quantitatively and objectively assessing both balance and posture and their mutual relationship in ankylosing spondylitis subjects. Methods The data of 12 healthy and 12 ankylosing spondylitis subjects (treated with anti-TNF-α stabilized, with a mean age of 51.42 and 49.42 years; mean BMI of 23.08 and 25.44 kg/m2 were collected. Subjects underwent a morphological examination of the spinal mobility by means of a pocket compass needle goniometer, together with an evaluation of both spinal and hip mobility (Bath Ankylosing Spondylitis Metrology Index, and disease activity (Bath Ankylosing Spondylitis Disease Activity Index. Quantitative evaluation of kinematics and balance were performed through a six cameras stereophotogrammetric system and a force plate. Kinematic models together with a test for evaluating balance in different eye level conditions were developed. Head protrusion, trunk flexion-extension, pelvic tilt, hip-knee-ankle flexion-extension were evaluated during Romberg Test, together with centre of pressure parameters. Results Each subject was able to accomplish the required task. Subjects’ were comparable for demographic parameters. A significant increment was observed in ankylosing spondylitis subjects for knee joint angle with the target placed at each eye level on both sides (p  Conclusions Our findings confirm the need to investigate both balance and posture in ankylosing spondylitis subjects. This methodology could help clinicians to plan rehabilitation treatments.

  12. EFFECT OF SITTING POSTURE ON THORACIC CONFIGURATION AND CHANGES IN VOLUME OF HEMITHORACES

    Directory of Open Access Journals (Sweden)

    Shōbo A

    2017-06-01

    Full Text Available Background: Poor posture is detrimental to breathing. Our purpose was to investigate the effect of upright and hunchbacked sitting on thoracic configuration and changes in the volume of the thorax during quiet and volitional deep breathing. Methods: The participants were 11 healthy men with a mean age of 21.6 years, mean body mass of 59.8 kg, mean height of 169.7 cm and a body mass index of 20.7 kg/m2. Eighty-four reflective markers were placed on the trunk. Three-dimensional motion analysis measured the volume within the hemithoraces. To calculate upper and lower thoracic volumes, six imaginary hexahedra were visualized using four reflective markers for each on both aspects of the thorax. Each hexahedron was divided into three imaginary triangular pyramids to calculate positional vectors. Finally, the volume for the hexahedra and triangular pyramids was calculated. Upper thoracic volume encompassed a space from the sternal notch to a midpoint on the ventral aspect of the third rib and the lower thoracic volume from the xiphoid process to the midpoint on tenth rib’s dorsal aspect. Results: In hunchbacked sitting during quiet breathing the left lower hemithorax yielded a significantly larger volume (p=0.003, and both breathing patterns during inspiration and expiration yielded a significantly greater change in thoracic configuration (p=0.01, p=0.016. Conclusion: Findings suggested that, in a hunchbacked sitting, there was decreased thoracic asymmetry with re-establishment of thoracic vertebral alignment, consequently stabilizing the sitting position, but breathing was suppressed and tidal volume decreased. Physiotherapy should aim at ensuring correction of hunchbacked posture and maintenance of thoracic symmetry.

  13. [Supra-aortic trunks occlusive disease: three different treatment approaches].

    Science.gov (United States)

    Dias, P; Almeida, P; Sampaio, S; Silva, A; Leite-Moreira, A; Pinho, P; Roncon de Albuquerque, R

    2010-01-01

    Unlike carotid bifurcation atherosclerotic stenosis, supra-aortic trunks (SAT) occlusive disease is rare and its revascularization uncommon, accouting for less than 10% of the operations performed on the extracranial brain-irrigating arteries. There are three different treatment approaches: transthoracic, extra-anatomic cervical and endovascular. Endovascular repair is gaining popularity as first-line therapy for proximal lesions with favorable anatomy because of its low morbidity and rare mortality. Extra-anatomic bypass is a safe and durable reconstruction and should be considered in patients with single vessel disease, with cardiopulmonary high-risk or with limited life expectancy. If cardiac surgery is needed, central transthoracic reconstruction is preferable, and the two procedures should be combined. The long-term patency of bypasses with aortic origin, specially when multiple vessels are involved, is superior to other repair techniques. We present three clinical cases that illustrate each of these therapeutic strategies: central brachiocephalic revascularization and synchronous cardiac surgery in a patient with complex SAT atherosclerosis disease; subclavian-carotid transposition for disabling upper limb claudication; and subclavian artery stenting for subclavian-steal syndrome. Surgical approach selection should be based on the individual patient's anatomy and operative risk.

  14. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    Science.gov (United States)

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-01-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed. PMID:22295177

  15. Gnarled-trunk evolutionary model of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Kimihito Ito

    Full Text Available Human influenza A viruses undergo antigenic changes with gradual accumulation of amino acid substitutions on the hemagglutinin (HA molecule. A strong antigenic mismatch between vaccine and epidemic strains often requires the replacement of influenza vaccines worldwide. To establish a practical model enabling us to predict the future direction of the influenza virus evolution, relative distances of amino acid sequences among past epidemic strains were analyzed by multidimensional scaling (MDS. We found that human influenza viruses have evolved along a gnarled evolutionary pathway with an approximately constant curvature in the MDS-constructed 3D space. The gnarled pathway indicated that evolution on the trunk favored multiple substitutions at the same amino acid positions on HA. The constant curvature was reasonably explained by assuming that the rate of amino acid substitutions varied from one position to another according to a gamma distribution. Furthermore, we utilized the estimated parameters of the gamma distribution to predict the amino acid substitutions on HA in subsequent years. Retrospective prediction tests for 12 years from 1997 to 2009 showed that 70% of actual amino acid substitutions were correctly predicted, and that 45% of predicted amino acid substitutions have been actually observed. Although it remains unsolved how to predict the exact timing of antigenic changes, the present results suggest that our model may have the potential to recognize emerging epidemic strains.

  16. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Evidente

    2011-12-01

    Full Text Available Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed.

  17. The effects of brief swaying on postural control.

    Science.gov (United States)

    Pagé, Sara; Maheu, Maxime; Landry, Simon P; Champoux, François

    2017-12-06

    Postural control can be improved with balance training. However, the nature and duration of the training required to enhance posture remains unclear. We studied the effects of 5 min of a self-initiated balance exercise along a single axis on postural control in healthy individuals. Postural control was measured before and after a 5-min period where members of the experimental group were asked to lean their entire body forward and backward and members of the control group were asked to remain seated. A significant improvement for sway velocity, a postural control variable significantly associated with an increased risk of falls, was found in the experimental group following the body sway exercise. These data suggest that a basic exercise can rapidly improve postural control and reduce the risk of falls.

  18. Postural steadiness and ankle force variability in peripheral neuropathy

    Science.gov (United States)

    Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.

    2015-01-01

    Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897

  19. Inactivity periods and postural change speed can explain atypical postural change patterns of Caenorhabditis elegans mutants.

    Science.gov (United States)

    Fukunaga, Tsukasa; Iwasaki, Wataru

    2017-01-19

    With rapid advances in genome sequencing and editing technologies, systematic and quantitative analysis of animal behavior is expected to be another key to facilitating data-driven behavioral genetics. The nematode Caenorhabditis elegans is a model organism in this field. Several video-tracking systems are available for automatically recording behavioral data for the nematode, but computational methods for analyzing these data are still under development. In this study, we applied the Gaussian mixture model-based binning method to time-series postural data for 322 C. elegans strains. We revealed that the occurrence patterns of the postural states and the transition patterns among these states have a relationship as expected, and such a relationship must be taken into account to identify strains with atypical behaviors that are different from those of wild type. Based on this observation, we identified several strains that exhibit atypical transition patterns that cannot be fully explained by their occurrence patterns of postural states. Surprisingly, we found that two simple factors-overall acceleration of postural movement and elimination of inactivity periods-explained the behavioral characteristics of strains with very atypical transition patterns; therefore, computational analysis of animal behavior must be accompanied by evaluation of the effects of these simple factors. Finally, we found that the npr-1 and npr-3 mutants have similar behavioral patterns that were not predictable by sequence homology, proving that our data-driven approach can reveal the functions of genes that have not yet been characterized. We propose that elimination of inactivity periods and overall acceleration of postural change speed can explain behavioral phenotypes of strains with very atypical postural transition patterns. Our methods and results constitute guidelines for effectively finding strains that show "truly" interesting behaviors and systematically uncovering novel gene

  20. Is the frozen elephant trunk procedure superior to the conventional elephant trunk procedure for completion of the second stage?

    Science.gov (United States)

    Rustum, Saad; Beckmann, Erik; Wilhelmi, Mathias; Krueger, Heike; Kaufeld, Tim; Umminger, Julia; Haverich, Axel; Martens, Andreas; Shrestha, Malakh

    2017-10-01

    Our goal was to compare the results and outcomes of second-stage completion in patients who had previously undergone the elephant trunk (ET) or the frozen elephant trunk (FET) procedure for the treatment of complex aortic arch and descending aortic disease. Between August 2001 and December 2014, 53 patients [mean age 61 ± 13 years, 64% (n = 34) male] underwent a second-stage completion procedure. Of these patients, 32% (n = 17) had a previous ET procedure and 68% (n = 36) a previous FET procedure as a first-stage procedure. The median times to the second-stage procedure were 7 (0-78) months in the ET group and 8 (0-66) months in the FET group. The second-stage procedure included thoracic endovascular aortic repair in 53% (n = 28) of patients and open surgical repair in 47% (n = 25). More endovascular interventions were performed in FET patients (61%, n = 22) than in the ET group (35%, n = 6, P = 0.117). The in-hospital mortality rate was significantly lower in the FET (8%, n = 3) group compared with the ET group (29%, n = 5, P = 0.045). The median follow-up time after the second-stage operation for the entire cohort was 4.6 (0.4-10.4) years. The 5-year survival rate was 76% in the ET patients versus 89% in the FET patients (log-rank: P = 0.11). We observed a significantly lower in-hospital mortality rate in the FET group compared to the ET group. This result might be explained by the higher rate of endovascular completion in the FET group. We assume that the FET procedure offers the benefit of a more ideal landing zone, thus facilitating endovascular completion. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Time-of-day influences postural balance in older adults

    DEFF Research Database (Denmark)

    Jorgensen, M G; Rathleff, Michael Skovdal; Laessoe, U

    2012-01-01

    Postural balance assessments are performed in both clinical and basic research settings on a daily basis. During a 24-h time span our physiology and physical performance undergo radical changes as we are influenced by the circadian rhythm. The time-of-day interaction on postural balance is unknow...... in older adults. The aim of this study was to investigate the time-of-day effect on postural balance in older adults....

  2. The study of postural workload in assembly of furniture upholstery

    OpenAIRE

    Marek Lasota Andrzej; Hankiewicz Krzysztof

    2017-01-01

    The productivity of the workers is affected by the Work-related Musculoskeletal Disorders (WRMSDs) which common cause of health problems, sick leave and it can result in decreased quality of work and increased absenteeism. The objective of this study is to evaluate and investigate the postural workload of sewing machine operators in the assembly of upholstery in furniture factory by using the Ovako Working Posture Analysing System (OWAS) with sampling. The results indicated that posture code ...

  3. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    OpenAIRE

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. Accordi...

  4. Finding the neck-trunk boundary in snakes: anteroposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization.

    Science.gov (United States)

    Tsuihiji, Takanobu; Kearney, Maureen; Rieppel, Olivier

    2012-09-01

    The neck and trunk regionalization of the presacral musculoskeletal system in snakes and other limb-reduced squamates was assessed based on observations on craniovertebral and body wall muscles. It was confirmed that myological features characterizing the neck in quadrupedal squamates (i.e., squamates with well-developed limbs) are retained in all examined snakes, contradicting the complete lack of the neck in snakes hypothesized in previous studies. However, the posterior-most origins of the craniovertebral muscles and the anterior-most bony attachments of the body wall muscles that are located at around the neck-trunk boundary in quadrupedal squamates were found to be dissociated anteroposteriorly in snakes. Together with results of a recent study that the anterior expression boundaries of Hox genes coinciding with the neck-trunk boundary in quadrupedal amniotes were dissociated anteroposteriorly in a colubrid snake, these observations support the hypothesis that structures usually associated with the neck-trunk boundary in quadrupedal squamates are displaced relative to one another in snakes. Whereas certain craniovertebral muscles are elongated in some snakes, results of optimization on an ophidian cladogram show that the most recent common ancestor of extant snakes would have had the longest craniovertebral muscle, M. rectus capitis anterior, that is elongated only by several segments compared with that of quadrupedal squamates. Therefore, even such a posteriorly displaced "cervical" characteristic plesiomorphically lies fairly anteriorly in the greatly elongated precloacal region of snakes, suggesting that the trunk, not the neck, would have contributed most to the elongation of the snake precloacal region. A similar dissociation of structures usually associated with the neck-trunk boundary in quadrupedal squamates is observed in limb-reduced squamates, suggesting that these forms and snakes may share a developmental mechanism producing modifications in the

  5. The effects of Bobath-based trunk exercises on trunk control, functional capacity, balance, and gait: a pilot randomized controlled trial.

    Science.gov (United States)

    Kılınç, Muhammed; Avcu, Fatma; Onursal, Ozge; Ayvat, Ender; Savcun Demirci, Cevher; Aksu Yildirim, Sibel

    2016-02-01

    The aim of this study was to investigate the effects of Bobath-based individually designed trunk exercises on trunk control, upper and lower extremity function, and walking and balance in stroke patients. The main aim of treatment was to eliminate individual trunk impairments during various patient functions. The study was planned as an assessor-blinded, randomized controlled trial. A total of 22 patients volunteered to participate in the study. Trunk function, functional capacity, and gait were assessed with the Trunk Impairment Scale (TIS), stroke rehabilitation assessment of movement (STREAM), and a 10-m walking test, respectively. The Berg Balance Test (BBT), functional reach (FR), and timed up-and-go (TUG) tests were used to evaluate balance. After the initial assessment, the patients were divided randomly into two groups, the study group (12 patients) and the control group (10 patients). The mean age of the patients in the study group was 55.91 years (duration of stroke 58.66 months) and that of the control group was 54.00 years (duration of stroke 67.20 months). Individual training programs were determined for the patients in the study group, taking into consideration their evaluation results; and strengthening, stretching, range of motion, and mat exercises were determined for the control group according to their functional level. The participants in both groups were taken into the physiotherapy program for 12 weeks, 3 days a week for 1 hour a day. In group analyses, both groups showed improvement in STREAM, TIS, and TUG tests. Only the study group produced significant gains in the BBT, FR, and 10 m walking tests (P 0.05). Individually developed exercise programs in the Bobath concept improve trunk performance, balance, and walking ability in stroke patients more than do conventional exercises.

  6. Postural adjustments are modulated by manual task complexity

    Directory of Open Access Journals (Sweden)

    Luis Augusto Teixeira

    2009-09-01

    Full Text Available Daily life activities of humans are characterized by dual tasks, in which a manual task is performed concomitantly with a postural task. Based on the assumption that both manual and postural tasks require attentional resources, no consensus exists as to how the central nervous system modulates postural adjustments in dual tasks. The aim of the present study was to analyze the effect of a manual task requiring attentional resources on shoulder and ankle adjustments as a function of the direction and predictability of postural perturbation. The participants (n=6 were evaluated during the performance of a simple and a complex manual task, while the base of support was moved backward or forward. Latency of activation of the tibialis anterior and gastroc-nemius muscles and angular acceleration of the shoulder were analyzed. The results showed that execution of the complex manual task delayed postural adjustment. Moreover, this delay occurred differently depending on the direction of postural perturbation. The delay in postural adjustment occurred proximally in the case of anterior displacement of the platform, and distally in the case of posterior displacement. Postural adjustments were more affected by the attentional task than by the predictability of platform displacement. These results are consistent with the concept of an integrated control between manual actions and the maintenance of static posture.

  7. Eye Movements Affect Postural Control in Young and Older Females.

    Science.gov (United States)

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  8. The dentist’s operating posture – ergonomic aspects

    Science.gov (United States)

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-01-01

    Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007

  9. Diagnosis of celiac trunk compression stenosis in ischemic gastric and duodenal ulcer

    International Nuclear Information System (INIS)

    Potashov, L.V.; Morozov, V.P.; Chekhuta, S.M.; Rodionov, K.K.

    1986-01-01

    Chronic gastric and duodenal ulcers may result from ischemia determined by celiac trunk compression stenosis (CTCS). In such cases angiography is necessary to specify diagnosis, to bring to light the causes of ulceration and to define therapeutic tactics. An analysis of angiograms of 75 patients with gastric and duodenal mucosa ulcers in CTCS and its characteristics have presented. The opening and proximal part of the celiac trunk are more frequently subjected to compression. The length of a narrow part of the celiac trunk is on an average of 6.62±0.31 mm. Enlargement in the diameter of the gastroduodenal artery was noted. Simultaneous narrowing of the celaic trunk and the upper mesenteric artery was found in 18 patients

  10. Studies on oil palm trunks as sources of infection in the field.

    Science.gov (United States)

    Flood, J; Keenan, L; Wayne, S; Hasan, Y

    2005-01-01

    Diseases of oil palm caused by Ganoderma boninense are of major economic importance in much of South-East Asia. This paper describes results from an ongoing field trial concerning the spread of the pathogen from artificially inoculated trunks used to simulate spread from windrowed trunks. Three planting distances for bait seedlings revealed that the closer the seedling was planted to the source of inoculum the sooner it succumbed to the disease. However, infection only occurred when the trunks were mounded (covered with soil), and seedlings planted around uncovered trunks (at any distance) have showed no symptoms of disease to date. Isolates are being collected from infected plants and molecular analysis is being undertaken to give more information on the spread of the pathogen.

  11. Vulnerability of terrestrial-trunked radio to intelligent intentional electromagnetic interference

    NARCIS (Netherlands)

    Tanuhardja, Ray R.; van de Beek, G.S.; Bentum, Marinus Jan; Leferink, Frank Bernardus Johannes

    2015-01-01

    The terrestrial-trunked radio (TETRA) specification is produced by the European Telecommunication Standards Institute for private mobile radio systems. We investigated the resilience of TETRA against intelligent intentional electromagnetic interference (IEMI) with low amplitude. Low power signals

  12. Back muscle response to sudden trunk loading can be modified by training among healthcare workers

    DEFF Research Database (Denmark)

    Pedersen, Mogens Theisen; Essendrop, Morten; Skotte, Jørgen H.

    2007-01-01

    Study Design. Experimental study of the effect of physical training on the reaction to sudden back loading. Objective. To investigate the effect and sustainability of "on the job training" on the reaction to sudden back loading among employees at a geriatric ward. Summary of Background Data...... of the trunk (stopping time). Data on the possibilities of a training-induced improvement in the reflex response among workers exposed to sudden trunk loading on the job are, however, nonexistent, and there is no evidence of long-term benefits, i.e., the sustainability of a positive training effect. Methods....... Available data suggest that a delayed muscle reflex response to sudden trunk loading may increase the risk of low back injuries. We have previously shown that training may alter the response to sudden trunk loading in healthy subjects and decrease the time elapsed until stopping of the forward movement...

  13. Using data from the Microsoft Kinect 2 to determine postural stability in healthy subjects: A feasibility trial.

    Directory of Open Access Journals (Sweden)

    Behdad Dehbandi

    Full Text Available The objective of this study was to determine whether kinematic data collected by the Microsoft Kinect 2 (MK2 could be used to quantify postural stability in healthy subjects. Twelve subjects were recruited for the project, and were instructed to perform a sequence of simple postural stability tasks. The movement sequence was performed as subjects were seated on top of a force platform, and the MK2 was positioned in front of them. This sequence of tasks was performed by each subject under three different postural conditions: "both feet on the ground" (1, "One foot off the ground" (2, and "both feet off the ground" (3. We compared force platform and MK2 data to quantify the degree to which the MK2 was returning reliable data across subjects. We then applied a novel machine-learning paradigm to the MK2 data in order to determine the extent to which data from the MK2 could be used to reliably classify different postural conditions. Our initial comparison of force plate and MK2 data showed a strong agreement between the two devices, with strong Pearson correlations between the trunk centroids "Spine_Mid" (0.85 ± 0.06, "Neck" (0.86 ± 0.07 and "Head" (0.87 ± 0.07, and the center of pressure centroid inferred by the force platform. Mean accuracy for the machine learning classifier from MK2 was 97.0%, with a specific classification accuracy breakdown of 90.9%, 100%, and 100% for conditions 1 through 3, respectively. Mean accuracy for the machine learning classifier derived from the force platform data was lower at 84.4%. We conclude that data from the MK2 has sufficient information content to allow us to classify sequences of tasks being performed under different levels of postural stability. Future studies will focus on validating this protocol on large populations of individuals with actual balance impairments in order to create a toolkit that is clinically validated and available to the medical community.

  14. Reconstructed frontal and coronal cuts in computed tomography of the trunk

    International Nuclear Information System (INIS)

    Fochem, K.; Klumair, J.

    1982-01-01

    A comparison between the original coronally cuts and the reconstructed coronal cuts yielded basic information on the loss of quality by computed reconstruction of images. As for the trunk, only comparisons between the conventional linear tomography and computed frontal of trunk cuts are possible. A few examples will demonstrate that despite a considerable loss of quality, computed frontal cuts will supply additional information in certain cases. It is also shown that the reconstructed frontal cuts cannot replace conventional tomography. (orig.) [de

  15. An Unusual Case of Stent Migration After Celiac Trunk Endovascular Revascularization

    Energy Technology Data Exchange (ETDEWEB)

    Negri, Silvia; Ferraro, Stefania; Piffaretti, Gabriele, E-mail: gabriele.piffaretti@uninsubria.it; Rivolta, Nicola; Bossi, Matteo [University of Insubria School of Medicine, Vascular Surgery, Department of Surgical Sciences, Circolo University Hospital (Italy); Carrafiello, Gianpaolo [University of Insubria School of Medicine, Interventional Radiology, Department of Radiology, Circolo University Hospital (Italy); Castelli, Patrizio [University of Insubria School of Medicine, Vascular Surgery, Department of Surgical Sciences, Circolo University Hospital (Italy)

    2012-08-15

    A 61-year-old woman underwent celiac trunk stenting to treat abdominal angina. Three months later, she was readmitted for recurrent symptoms. Computed tomography control revealed the migration of the stent into the splenic artery. No sign of vessel injury or end-organ ischemia was detected. Repeat stenting of the celiac trunk was performed; the postoperative course was uneventful. 12 months later, the patient was asymptomatic with the second stent in its correct position, and she was asymptomatic for mesenteric ischemia.

  16. An Unusual Case of Stent Migration After Celiac Trunk Endovascular Revascularization

    International Nuclear Information System (INIS)

    Negri, Silvia; Ferraro, Stefania; Piffaretti, Gabriele; Rivolta, Nicola; Bossi, Matteo; Carrafiello, Gianpaolo; Castelli, Patrizio

    2012-01-01

    A 61-year-old woman underwent celiac trunk stenting to treat abdominal angina. Three months later, she was readmitted for recurrent symptoms. Computed tomography control revealed the migration of the stent into the splenic artery. No sign of vessel injury or end-organ ischemia was detected. Repeat stenting of the celiac trunk was performed; the postoperative course was uneventful. 12 months later, the patient was asymptomatic with the second stent in its correct position, and she was asymptomatic for mesenteric ischemia.

  17. Trunk Dynamics Are Impaired in Ballet Dancers with Back Pain but Improve with Imagery.

    Science.gov (United States)

    Gildea, Jan E; VAN DEN Hoorn, Wolbert; Hides, Julie A; Hodges, Paul W

    2015-08-01

    Trunk control is essential in ballet and may be compromised in dancers with a history of low back pain (LBP) by associated changes in motor control. This study aimed to compare trunk mechanical properties between professional ballet dancers with and without a history of LBP. As a secondary aim, we assessed whether asking dancers to use motor imagery to respond in a "fluid" manner could change the mechanical properties of the trunk and whether this was possible for both groups. Trunk mechanical properties of stiffness and damping were estimated with a linear second-order system, from trunk movement in response to perturbations, in professional ballet dancers with (n = 22) and without (n = 8) a history of LBP. The second-order model adequately described trunk movement in response to the perturbations. Trials were performed with and without motor imagery to respond in a fluid manner to the perturbation. Dancers with a history of LBP had lower damping than dancers without LBP during the standard condition (P = 0.002) but had greater damping during the "fluid" condition (P 0.99). Stiffness was not different between the dancers with and those without a history of LBP (P = 0.252) but was less during the fluid condition than the standard condition (P < 0.001). Although dancers with a history of LBP have less trunk damping than those without LBP, they have the capacity to modulate the trunk's mechanical properties to match that of pain-free dancers by increasing damping with motor imagery. These observations have potential relevance for LBP recurrence and rehabilitation.

  18. Multisensory training for postural sway control in non-injured elderly ...

    African Journals Online (AJOL)

    Multisensory training for postural sway control in non-injured elderly females. ... Elderly adults demonstrate increased postural sway, which may ultimately lead to falls. ... Keywords: multisensory training, postural sway control, balance ability, ...

  19. Trunk muscle activation during golf swing: Baseline and threshold.

    Science.gov (United States)

    Silva, Luís; Marta, Sérgio; Vaz, João; Fernandes, Orlando; Castro, Maria António; Pezarat-Correia, Pedro

    2013-10-01

    There is a lack of studies regarding EMG temporal analysis during dynamic and complex motor tasks, such as golf swing. The aim of this study is to analyze the EMG onset during the golf swing, by comparing two different threshold methods. Method A threshold was determined using the baseline activity recorded between two maximum voluntary contraction (MVC). Method B threshold was calculated using the mean EMG activity for 1000ms before the 500ms prior to the start of the Backswing. Two different clubs were also studied. Three-way repeated measures ANOVA was used to compare methods, muscles and clubs. Two-way mixed Intraclass Correlation Coefficient (ICC) with absolute agreement was used to determine the methods reliability. Club type usage showed no influence in onset detection. Rectus abdominis (RA) showed the higher agreement between methods. Erector spinae (ES), on the other hand, showed a very low agreement, that might be related to postural activity before the swing. External oblique (EO) is the first being activated, at 1295ms prior impact. There is a similar activation time between right and left muscles sides, although the right EO showed better agreement between methods than left side. Therefore, the algorithms usage is task- and muscle-dependent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. On the functional integration between postural and supra-postural tasks on the basis of contextual cues and task constraint.

    Science.gov (United States)

    de Lima, Andrea Cristina; de Azevedo Neto, Raymundo Machado; Teixeira, Luis Augusto

    2010-10-01

    In order to evaluate the effects of uncertainty about direction of mechanical perturbation and supra-postural task constraint on postural control, young adults had their upright stance perturbed while holding a tray in a horizontal position. Stance was perturbed by moving forward or backward a supporting platform, contrasting situations of certainty versus uncertainty of direction of displacement. Increased constraint on postural stability was imposed by a supra-postural task of equilibrating a cylinder on the tray. Performance was assessed through EMG of anterior leg muscles, angular displacement of the main joints involved in the postural reactions and displacement of the tray. Results showed that both certainty on the direction of perturbation and increased supra-postural task constraint led to decreased angular displacement of the knee and the hip. Furthermore, combination of certainty and high supra-postural task constraint produced shorter latency of muscular activation. Such postural responses were paralleled by decreased displacement of the tray. These results suggest a functional integration between the tasks, with central set priming reactive postural responses from contextual cues and increased stability demand. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Effect of Gene and Physical Activity Interaction on Trunk Fat Percentage Among the Newfoundland Population

    Directory of Open Access Journals (Sweden)

    Anthony Payne

    2014-01-01

    Full Text Available Objective To explore the effect of FTO gene and physical activity interaction on trunk fat percentage. Design and Methods Subjects are 3,004 individuals from Newfoundland and Labrador whose trunk fat percentage and physical activity were recorded, and who were genotyped for 11 single-nucleotide polymorphisms (SNPs in the FTO gene. Subjects were stratified by gender. Multiple tests and multiple regressions were used to analyze the effects of physical activity, variants of FTO , age, and their interactions on trunk fat percentage. Dietary information and other environmental factors were not considered. Results Higher levels of physical activity tend to reduce trunk fat percentage in all individuals. Furthermore, in males, rs9939609 and rs1421085 were significant (α = 0.05 in explaining central body fat, but no SNPs were significant in females. For highly active males, trunk fat percentage varied significantly between variants of rs9939609 and rs1421085, but there is no significant effect among individuals with low activity. The other SNPs examined were not significant in explaining trunk fat percentage. Conclusions Homozygous male carriers of non-obesity risk alleles at rs9939609 and rs1421085 will have significant reduction in central body fat from physical activity in contrast to homozygous males of the obesity-risk alleles. The additive effect of these SNPs is found in males with high physical activity only.

  2. Application of Ground-Penetrating Radar for Detecting Internal Anomalies in Tree Trunks with Irregular Contours.

    Science.gov (United States)

    Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia

    2018-02-22

    To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.

  3. Richness and epiphytic mosses cover variation on ironwood trees (Parrotia persica Pojark trunks

    Directory of Open Access Journals (Sweden)

    Seyedeh Rahimeh Yavarynik

    2016-06-01

    Full Text Available This research was conducted to determination and assess changes in richness and cover of epiphytic mosses on ironwood trees(Parrotia persica Pojark trunks along trunk elevation and slope aspect gradients, in lowland and protected forest of Natural Resource College of Tarbiat Modares University (Parts of western limit of Noor forest reserved. To do this, a number of 20 individual of ironwood trees with a diamerter higher than 40 cm were selected randomly in the study area. A rectangle with 40*30 cm in two geographical directions (Northern and Southern, in 4 height classes (from 0 to 160cm on the trunks was sampled and related characteristics were recorded. Results of floristic study showed that presence of 17 epiphytic mosses species and the endemic species Palamocladium euchloron among the species with highest presence and Brachytheciaceae family with 7 species were the most important taxa and family in the forest. Richness and cover percentage of epiphytic mosses had the highest averages in northern and lower parts of the trees trunk, this could be due to higher moisture in northern direction and lower parts of the trunk. Result of the study, well clarified the changes of distribution and abundance of the most important forest elements in relationship changes of geographical situation of Parrotia persica trunks.

  4. Trunk muscle activation in a person with clinically complete thoracic spinal cord injury.

    Science.gov (United States)

    Bjerkefors, Anna; Carpenter, Mark G; Cresswell, Andrew G; Thorstensson, Alf

    2009-04-01

    The aim of this study was to assess if, and how, upper body muscles are activated in a person with high thoracic spinal cord injury, clinically classified as complete, during maximal voluntary contractions and in response to balance perturbations. Data from one person with spinal cord injury (T3 level) and one able-bodied person were recorded with electromyography from 4 abdominal muscles using indwelling fine-wire electrodes and from erector spinae and 3 upper trunk muscles with surface electrodes. Balance perturbations were carried out as forward or backward support surface translations. The person with spinal cord injury was able to activate all trunk muscles, even those below the injury level, both in voluntary efforts and in reaction to balance perturbations. Trunk movements were qualitatively similar in both participants, but the pattern and timing of muscle responses differed: upper trunk muscle involvement and occurrence of co-activation of ventral and dorsal muscles were more frequent in the person with spinal cord injury. These findings prompt further investigation into trunk muscle function in paraplegics, and highlight the importance of including motor tests for trunk muscles in persons with thoracic spinal cord injury, in relation to injury classification, prognosis and rehabilitation.

  5. Real time noninvasive assessment of external trunk geometry during surgical correction of adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Mac-Thiong Jean-Marc

    2009-02-01

    Full Text Available Abstract Background The correction of trunk deformity is crucial in scoliosis surgery, especially for the patient's self-image. However, direct visualization of external scoliotic trunk deformity during surgical correction is difficult due to the covering draping sheets. Methods An optoelectronic camera system with 10 passive markers is used to track the trunk geometry of 5 scoliotic patients during corrective surgery. The position of 10 anatomical landmarks and 5 trunk indices computed from the position of the passive markers are compared during and after instrumentation of the spine. Results Internal validation of the accuracy of tracking was evaluated at 0.41 +/- 0.05 mm RMS. Intra operative tracking during surgical maneuvers shows improvement of the shoulder balance during and after correction of the spine. Improvement of the overall patient balance is observed. At last, a minor increase of the spinal length can be noticed. Conclusion Tracking of the external geometry of the trunk during surgical correction is useful to monitor changes occurring under the sterile draping sheets. Moreover, this technique can used be used to reach the optimal configuration on the operating frame before proceeding to surgery. The current tracking technique was able to detect significant changes in trunk geometry caused by posterior instrumentation of the spine despite significant correction of the spinal curvature. It could therefore become relevant for computer-assisted guidance of surgical maneuvers when performing posterior instrumentation of the scoliotic spine, provide important insights during positioning of patients.

  6. Radiologic Findings of Epidermal Cysts in the Trunk

    International Nuclear Information System (INIS)

    Kim, Myung Hyun; Chung, Jae Joon; Park, Kyoung Seuk; Park, Su Mi

    2005-01-01

    To evaluate the ultrasonographic (US) or computer tomography (CT) findings of surgically proven epidermal cysts in the trunk, and to compare the echogenicity of cysts with internal contents. Forty-five patients were retrospectively evaluated. US and CT findings of epidermal cysts were assessed in regard to location, size, shape, number, echogenicity, posterior sound enhancement, internal density, septa, mural nodule and calcification, perilesional infiltration, contrast enhancement, and internal contents. All 45 patients (M:F=29:16; US in 26, CT in 19) had only one cyst, and they were located in the buttocks (n=19), back (n=13), inguinal (n=4), posterior neck (n=3), perineum (n=2), abdominal wall (n=2), presternal (n=1), and axilla (n=1). Of 26 patients who underwent US, there were 8 cases of homogeneously hypoechoic mass (30.8%), 8 of inhomogeneously hypoechoic mass (30.8%), 7 of homogeneously hypoechoic mass with internal hypoechoic lines and echogenic spots (26.9%) and 3 of homogeneously hypoechoic mass with internal echogenic spots (11.5%). Posterior sound enhancement was noted in 21 patients (80.8%). Of 19 patients who underwent CT, there were 14 cases of simple cyst (73.7%) and 5 of abscess-like lesion (26.3%). Overlying skin thickening (n=13), contrast enhancement of cystic wall (n=11), perilesional infiltration (n=7), and internal septa (n=6) were demonstrated. The internal contents of the cysts were keratinous (n=27, 60.0%) or greasy (n=15, 33.3%) material. There was no statistical significance between the echogenicity of the cysts and the internal contents (p > 0.2). Epidermal cysts showed homogeneous or inhomogeneous hypoechoic mass with posterior sound enhancement on US. There was no relationship between the echogenicity of the cysts and the internal contents. In the case of ruptured cyst, an abscess-like lesion with wall enhancement and perilesional infiltration was noted on CT scan

  7. The Comparison of Propagation Model for Terrestrial Trunked Radio (TETRA

    Directory of Open Access Journals (Sweden)

    Ayu Kartika R

    2013-12-01

    Full Text Available A system of digital radio Terrestrial Trunked Radio (TETRA is designed for communication which need specialility, better privacy, better quality of audio with speed transmission data and access capacity to the internet and telephone network. TETRA system of TMO and DMO operation mode which has wide coverage and reliable than the interference so that the TETRA planning needs a propagation model which corresponding with environment. Therefore, this research compare a pathloss value of calculation of propagation model such as Free Space Loss, Wickson, Bacon, CEPT SE21, Ericsson (9999, ITU-R SM 2028 and Okumura Hata based on the environment are clutter urban, sub urban dan rural. The calculation of pathloss provide that Bacon propagation model is an corresponding model for DMO operation mode with a frequency of 380 MHz, height handhelds 1.5 m and 2 m with pathloss value of 76.82 dB at a distance of 100 m and 113.63 dB at a distance of 1 km while the 400 MHz frequency pathloss value of 77.08 dB at a distance of 100 m and 113.6 dB at a distance of 1 km. The propagation model which corresponding to the TMO operation mode with a frequency of 400 MHz distance of 1 km, the transmitter antenna height (hb 30 m and receiver antenna height (hm 1.5 m is a model of Ericsson (9999 on urban clutter with pathloss value of 96.4 dB, the model ITU-R SM2028 in suburban clutter with a pathloss value of 101.13 dB, and the model ITU-R SM2028 on rural clutter with pathloss value of 83.59 dB. Keywords: TETRA, propagation model, urban, suburban, rural

  8. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  9. A flexed posture in elderly patients is associated with impairments in postural control during walking

    NARCIS (Netherlands)

    de Groot, Maartje H.; van der Jagt-Willems, Hanna C.; van Campen, Jos P. C. M.; Lems, Willem F.; Beijnen, Jos H.; Lamoth, Claudine J. C.

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current

  10. A flexed posture in elderly patients is associated with impairments in postural control during walking

    NARCIS (Netherlands)

    de Groot, M.H.; van der Jagt-Willems, H.; van Campen, J.P.C.M.; Lems, W.F.; Beijnen, J.H.; Lamoth, C.J.C.

    2014-01-01

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current

  11. Effects of rapid maxillary expansion on head posture, postural stability, and fall risk

    Directory of Open Access Journals (Sweden)

    Fatih Celebi

    2017-01-01

    Full Text Available Objective: The aim of this study was to investigate the effects of rapid maxillary expansion (RME on head posture, postural stability, and fall risk. Materials and Methods: A sample of 51 adolescent patients was randomly divided into two groups. In the first group, which consisted of 28 patients (15 females and 13 males, RME was performed as a part of routine orthodontic treatment. The remaining 23 individuals (12 females and 11 males served as the control group. Lateral cephalometric radiographs taken in natural head position, postural stability, and fall risk scores were obtained during the first visit. They were repeated on average 3.8 months and 3.5 months later for the study and control groups, respectively. The changes were analyzed using the Wilcoxon signed-rank test, paired samples t-test, Mann–Whitney U-test, and independent samples t-test. Results: As a result of RME, a statistically significant decrease was detected in the fall risk score (P < 0.05 in the study group, while the head position and postural stability remained unchanged. For the control group, no significant changes were observed in all measurements. Conclusions: The result of the present study suggests that RME has a capacity of improving fall risk.

  12. Clinical evaluation of postural posture of patients with previous stroke subjected to early rehabilitation

    Directory of Open Access Journals (Sweden)

    Anna Sagan

    2018-02-01

    Full Text Available Introduction: Impairment disorders are often found in patients with stroke and impairment of motor and cognitive functions. This is a very serious complication because, by imposing a motor impairment, it aggravates the condition of disability and makes it difficult to conduct physical rehabilitation.The resulting neurological deficits due to stroke determine functional disorders. The possibility of locomotion is usually compromised, therefore the risk of falls increases significantly. The aim of the work is to present Postural Assesment Scale for Strock PASS with the postural stroke assessment scale, the impact of early rehabilitation of patients staying in the neurology ward.Material and methods: Postural examination was carried out among 17 people, of which 8 were women, and 9 were male. The study was divided into two stages. The first stage occurred immediately after the stroke and the second one before the patient was discharged from the ward. Research was carried out at the Biegański Specialist Hospital in Grudziądz in the Department of Neurology and Clinical Neuroimmunology and Impact Department.Conclusions: The results of the postural studies carried out in people with previous stroke subjected to early physiotherapy have a beneficial effect of the conducted therapy. There are positive changes between the first and the final examination of the patients.

  13. Cardiovascular function in pregnancy: effects of posture.

    Science.gov (United States)

    Del Bene, R; Barletta, G; Mello, G; Lazzeri, C; Mecacci, F; Parretti, E; Martini, E; Vecchiarino, S; Franchi, F; La Villa, G

    2001-04-01

    To evaluate the cardiovascular response to active postural changes in pregnancy. Prospective study. Outpatient Clinic, Fetal Maternity Unit. Sixteen healthy women referred prior to pregnancy. Heart rate, arterial pressure, echocardiographic end-diastolic and end-systolic left ventricular volumes (Teichholz' s formula) were measured in the three months before pregnancy, at the end of the first and second trimester, at mid third trimester, and six months after delivery in the supine and standing position, in thirteen women (mean age 33, range 25-38 years). Cardiac output (supine position) significantly increased (28%): it reached its maximum at the second trimester, remained steadily elevated in the mid third trimester, and returned to baseline after delivery. Cardiac output increased during pregnancy also in the active orthostatic position, the percentage increase being greater (70%) since the standing pre-conception value was lower. The postural stress induced similar changes in heart rate, arterial pressure and left ventricular ejection fraction before, during and after pregnancy. However, the reduction in cardiac output associated with early standing attenuated significantly at the second trimester and it was absent at mid third trimester (F = 3.13, P = 0.021). This was due to the interplay between the significantly lesser increase in systemic vascular resistance, occurring since the first trimester, and the significantly lesser decrease in left ventricular end-diastolic volume which was observed in the mid third trimester. These data indicate that the elevated cardiac output is adequately maintained in pregnancy during the postural challenge, due to optimisation of the responses of preload and afterload.

  14. Postural Hand Synergies during Environmental Constraint Exploitation

    Directory of Open Access Journals (Sweden)

    Cosimo Della Santina

    2017-08-01

    Full Text Available Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings.

  15. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  16. Artificial Intelligence Software for Assessing Postural Stability

    Science.gov (United States)

    Lieberman, Erez; Forth, Katharine; Paloski, William

    2013-01-01

    A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.

  17. Stooped postures are modified by pretask walking in a simulated weed-pulling task.

    Science.gov (United States)

    Hudson, D S; Copeland, J L; Hepburn, C G; Doan, J B

    2014-01-01

    Seasonal agricultural workers are hired in some sectors for intermittent manual weed removal, a stoop and grasp harvesting task likely similar to those associated with the high prevalence of musculoskeletal disorders in agriculture. Evaluation of this task in an experimental situation would be useful for identifying and controlling musculoskeletal injury risks, presuming a valid experimental model of the task can be created. The purpose of the present study was to examine how a relevant work-related task, namely prolonged walking, altered the biomechanics of manual weed removal in a laboratory setting. Preliminary field assessments informed the development and analysis of a simulated manual weed removal with two separate conditions: not primed, where 11 participants (4 female, mean age 21.6 years) manually removed a simulated weed six times, and primed, where 23 participants (13 female, mean age 22.1 years) walked 1600 m prior to manually removing the same simulated weed six successive times. Segment end point markers and experimental motion capture were used to determine hip, knee, and ankle angles, as well as toe-target proximity, during weed removal. Significant differences between primed and not primed participants were found for angular displacement at the ankle (t(32) = 5.08, P weed, leading to decreased trunk flexion during the harvesting task. These findings suggest that priming can positively influence whole-body postures for manual weed removal.

  18. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk

    NARCIS (Netherlands)

    Kingma, I.; Staudenmann, D.; van Dieen, J.H.

    2007-01-01

    High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a

  19. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    Science.gov (United States)

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of Functional Head Postures on the Dynamic Functional ...

    African Journals Online (AJOL)

    Background: The dentist utilizes supine position during therapeutic procedures, while the patients assumes extended head posture during mastication. It is critical for the restorative dentist to evaluate and understand the possible effect of change in head posture on occlusal contacts. An understanding of the possible effect ...

  1. Effects of Dyslexia on Postural Control in Adults

    Science.gov (United States)

    Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.

    2010-01-01

    Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…

  2. Characterization of postural control impairment in women with fibromyalgia

    Science.gov (United States)

    Sempere-Rubio, Núria; López-Pascual, Juan; Aguilar-Rodríguez, Marta; Cortés-Amador, Sara; Espí-López, Gemma; Villarrasa-Sapiña, Israel

    2018-01-01

    The main goal of this cross-sectional study was to detect whether women with fibromyalgia syndrome (FMS) have altered postural control and to study the sensory contribution to postural control. We also explored the possibility that self-induced anxiety and lower limb strength may be related to postural control. For this purpose, 129 women within an age range of 40 to 70 years were enrolled. Eighty of the enrolled women had FMS. Postural control variables, such as Ellipse, Root mean square (RMS) and Sample entropy (SampEn), in both directions (i.e. mediolateral and anteroposterior), were calculated under five different conditions. A force plate was used to register the center of pressure shifts. Furthermore, isometric lower limb strength was recorded with a portable dynamometer and normalized by lean body mass. The results showed that women with FMS have impaired postural control compared with healthy people, as they presented a significant increase in Ellipse and RMS values (pPostural control also worsens with the gradual alteration of sensory inputs in this population (p0.05). There were no significant correlations between postural control and lower limb strength (p>0.05). Therefore, women with FMS have impaired postural control that is worse when sensory inputs are altered but is not correlated with their lower limb strength. PMID:29723223

  3. Thoracic posture, shoulder muscle activation patterns and isokinetic ...

    African Journals Online (AJOL)

    Poor posture, scapular dyskinesia, altered scapular muscle recruitment patterns and ... postural deviation and incorrect shoulder kinematics.[5]. Knowledge of the .... the contra-lateral hand was placed as far down the spinal column as possible, and the ... produced by muscle contraction for rotation around a joint.[12] During.

  4. The final common pathway in postural control - Developmental perspective

    NARCIS (Netherlands)

    Kernell, D

    A brief review is given concerning postural specialisations among mammalian muscle fibres and motor units. Most skeletal muscles contain a mixture of fibres with different characteristics, and their slow-twitch (S) units are well-known to possess properties suitable for postural tasks: they are

  5. Effect of magnification loupes on dental hygiene student posture.

    Science.gov (United States)

    Maillet, J Peggy; Millar, A Michele; Burke, Jillian M; Maillet, Michelle A; Maillet, Wayne A; Neish, Nancy R

    2008-01-01

    The chair-side work posture of dental hygienists has long been a concern because of health-related problems potentially caused or exacerbated by poor posture. The purpose of this study was to investigate if using magnification loupes improved dental hygiene students' posture during provision of treatment. The treatment chosen was hand-scaling, and the effect of the timing of introduction of the loupes to students was also examined. Thirty-five novice dental hygiene students took part in the study. Each student was assessed providing dental hygiene care with and without loupes, thus controlling for innate differences in natural posture. Students were randomized into two groups. Group one used loupes in the first session and did not use them for the second session. Group two reversed this sequence. At the end of each session, all students were videotaped while performing scaling procedures. Their posture was assessed using an adapted version of Branson et al.'s Posture Assessment Instrument (PAI). Four raters assessed students at three time periods for nine posture components on the PAI. A paired t-test compared scores with and without loupes for each student. Scores showed a significant improvement in posture when using loupes (ppostural benefit is realized by requiring students to master the use of magnification loupes as early as possible within the curriculum.

  6. Postural stability and occlusal status among Japanese elderly.

    Science.gov (United States)

    Song-Yu, Xuan; Rodis, Omar M M; Ogata, Sagiri; Can-Hu, Jin; Nishimura, Michiko; Matsumura, Seishi

    2012-06-01

    There are still no data available on the relationship between postural stability and occlusal status among the elderly. To examine relationships between postural stability and occlusal status through a cohort study among elderly Japanese. Oral examination, occlusal status, postural stability and a questionnaire were conducted and given to 87 community-dwelling Japanese at enrolment. The average occlusal pressure of the female group was statistically higher than the male group while average occlusal pressure and postural stability length were lesser in the group with more remaining teeth. Postural stability area and number of remaining teeth showed statistically significant correlations. Postural stability length was lesser in the group with strong occlusal force. Furthermore, the number of decayed teeth was fewer in the good hygiene group. This study identified a close relationship between occlusal status and postural stability of Japanese older individuals. Occlusal hypofunction was observed more in those with occlusal problems, and a decrease in their occlusal functions resulted in postural instability. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  7. Problems of display postures in the Charadrii (Aves: Charadriiformes)

    African Journals Online (AJOL)

    Studies of displays in the Charadrii (= waders or shorebirds) show that the same posture in different species, even quite closely related, may have a different function in a given context. As a corollary to this, two species even in the same genus may have quite different display postures to convey the same message.

  8. Differences in body composition and prevalence for postural ...

    African Journals Online (AJOL)

    The aim of this study is to compare the prevalence rate for postural deviations and body composition status among two racial groups in South Africa. The sample (n = 216) consisted of 89 African girls and 127 Caucasian girls. Anthropometric (BMI and percentage body fat) and body posture measurements were performed.

  9. Posture and isokinetic shoulder strength in female water polo players

    African Journals Online (AJOL)

    Background: Being overhead athletes, water polo players can present with muscular imbalances of the shoulder, between the internal rotators (IR) and external rotators (ER), leading to changes in posture and an increased risk of injury. Objectives: To assess posture and isokinetic shoulder strength of female club-level ...

  10. Prism adaptation improves postural imbalance in neglect patients

    NARCIS (Netherlands)

    Nijboer, Tanja C W; Olthoff, Liselot; Van der Stigchel, Stefan; Visser-Meily, Johanna M a

    2014-01-01

    Several studies have found a negative relation between neglect and postural imbalance. The aim of the current study was to investigate the influence of a single session of prism adaptation on balance [i.e. mediolateral and anteroposterior center of pressure (CoP)] and postural sway (i.e. mean

  11. Predictors of Postural Stability in Children with ADHD

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2011-01-01

    Objective: As children with ADHD who have more inattention problems are more frequently with fine motor problems, it is not clear whether postural balance problems are associated with different subtypes of ADHD. This study investigates the predictors of postural stability in children with ADHD considering the covariant factors of age, gender, and…

  12. Relationship between posterior crossbite and postural alterations in children

    Directory of Open Access Journals (Sweden)

    Juliana Jaqueline de Matos Lopes

    2009-12-01

    Full Text Available Objective: To evaluate the posture of individuals with functional posterior crossbite, malocclusion is one of the most in need of orthodontic treatment. Methods: This work presents an analysis of postural among children 6 to 12 years who present functional posterior cross bite of both genders who are in mixed dentition or no intervention prior orthodontic and orthopedic. Was obtained images in the plans: front and back where it was analyzed the asymmetry or symmetry of the individual in the image and in the lateral, anterior, a posterior or normality. Results: 100% had some kind of postural change, and the asymmetry between the scapulae (shoulder found the greatest change, as one of extreme importance in this age group represents a growing skeletal muscle. Conclusion: analyzes all of the children showed postural abnormalities and malocclusion are also of great importance not only to be treating the problem orally, but the postural problem with the help of a multidisciplinary team.

  13. Barnacle geese achieve significant energetic savings by changing posture.

    Directory of Open Access Journals (Sweden)

    Peter G Tickle

    Full Text Available Here we report the resting metabolic rate in barnacle geese (Branta leucopsis and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  14. Barnacle geese achieve significant energetic savings by changing posture.

    Science.gov (United States)

    Tickle, Peter G; Nudds, Robert L; Codd, Jonathan R

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture.

  15. Sensory modulation of movement, posture and locomotion.

    Science.gov (United States)

    Saradjian, A H

    2015-11-01

    During voluntary movement, there exists a well known functional sensory attenuation of afferent inputs, which allows us to discriminate between information related to our own movements and those arising from the external environment. This attenuation or 'gating' prevents some signals from interfering with movement elaboration and production. However, there are situations in which certain task-relevant sensory inputs may not be gated. This review begins by identifying the prevalent findings in the literature with specific regard to the somatosensory modality, and reviews the many cases of classical sensory gating phenomenon accompanying voluntary movement and their neural basis. This review also focuses on the newer axes of research that demonstrate that task-specific sensory information may be disinhibited or even facilitated during engagement in voluntary actions. Finally, a particular emphasis will be placed on postural and/or locomotor tasks involving strong somatosensory demands, especially for the setting of the anticipatory postural adjustments observed prior the initiation of locomotion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Posture of the head and pharyngeal swallowing

    International Nuclear Information System (INIS)

    Ekberg, O.

    1986-01-01

    Closure of the laryngeal vestibule during swallowing is important for protection of the airways. The present investigation included 53 patients with dysphagia examined cineradiographically with the head held in resting posture, flexion and extension. The ability to protect the airways by the downward movement of the epiglottis and by obliteration of the laryngeal vestibule was studied in different postures of the head. Of 35 patients with normal laryngeal obliteration with the head in resting position 10 showed a defective closure at swallowing in extension. In 18 patients with defective closure of the laryngeal vestibule in resting position 9 were improved on flexion and two on extension of the head. In one patient with defectie closure of the laryngeal vestibule in resting position swallowing in flexion showed an aggravated dysfunction. In our other patients the defective closure became more marked on extension. Four patients had less effective downward movement of the epiglottis with the head in extension. Of 10 patients with defective epiglottic movement with the head in resting position two were improved on tilting the head forwards. The results show that the position of the head influences the closure of the airways during swallowing. Patients with defective protection of the laryngeal vestibule should be instructed to swallow with the head tilted forwards. (orig.)

  17. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  18. Emotion expression in body action and posture.

    Science.gov (United States)

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Bo