WorldWideScience

Sample records for non-native riparian vegetation

  1. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  2. Impact of non-native plant removal on lizards in riparian habitats in the southwestern United States

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell

    2008-01-01

    Many natural processes in the riparian cottonwood (Populus deltoides) forest of the Middle Rio Grande (MRG) in the southwestern United States have been disrupted or altered, allowing non-native plants such as saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) to establish. We investigated...

  3. Comparison of Leaf Breakdown for Native and Non-native Riparian Species in Streams Draining Urban, Agricultural, and Forested Land Cover.

    Science.gov (United States)

    Powers, M. D.; Benfield, E. F.

    2005-05-01

    Organic matter breakdown rates in streams vary among riparian tree species and are dependent on a variety of in-stream biological, chemical, and physical factors. These factors and the composition and distribution of riparian vegetation are changed by anthropogenic modification of the landscape. This may result in altered energy flow through stream ecosystems that is reflected in changes in organic matter input and breakdown. The goal of this study was to compare leaf breakdown rates between a native (box elder, Acer negundo) and non-native (weeping willow, Salix babylonica) species among three land cover categories: urban, agricultural, and forested. We conducted this study over 14 weeks in 13 streams near Roanoke, Virginia. Box elder occurs naturally along disturbed riparian corridors in this region, while weeping willow has been actively planted for its aesthetic value. Our results indicate weeping willow breakdown rates were faster than box elder across all land cover categories. Breakdown rates for both species were slowest in the urban streams, intermediate in agricultural streams, and fastest in forested streams.

  4. Do beavers promote the invasion of non-native Tamarix in the Grand Canyon riparian zone

    Science.gov (United States)

    Mortenson, S.G.; Weisberg, P.J.; Ralston, B.E.

    2008-01-01

    Beavers (Castor canadensis Kuhl) can influence the competitive dynamics of plant species through selective foraging, collection of materials for dam creation, and alteration of hydrologic conditions. In the Grand Canyon National Park, the native Salix gooddingii C.R.Ball (Goodding's willow) and Salix exigua Nutt. (coyote willow) are a staple food of beavers. Because Salix competes with the invasive Tamarix ramosissima Ledeb., land mangers are concerned that beavers may cause an increase in Tamarix through selective foraging of Salix. A spatial analysis was conducted to assess whether the presence of beavers correlates with the relative abundance of Salix and Tamarix. These methods were designed to detect a system-wide effect of selective beaver foraging in this large study area (367 linear km of riparian habitat). Beavers, Salix, and Tamarix co-occurred at the broadest scales because they occupied similar riparian habitat, particularly geomorphic reaches of low and moderate resistivity. Once the affinity of Salix for particular reach types was accounted for, the presence of Salix was independent of beaver distribution. However, there was a weak positive association between beaver presence and Salix cover. Salix was limited to geomorphic settings with greater sinuosity and distinct terraces, while Tamarix occurred in sinuous and straighter sections of river channel (cliffs, channel margins) where it dominated the woody species composition. After accounting for covariates representing river geomorphology, the proportion of riparian surfaces covered by Tamarix was significantly greater for sites where beavers were present. This indicates that either Tamarix and beavers co-occur in similar habitats, beavers prefer habitats that have high Tamarix cover, or beavers contribute to Tamarix dominance through selective use of its native woody competitors. The hypothesis that beaver herbivory contributes to Tamarix dominance should be considered further through more

  5. Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande

    Science.gov (United States)

    Petrakis, Roy; van Leeuwen, Willem J.D.; Villarreal, Miguel; Tashjian, Paul; Dello Russo, Regina; Scott, Christopher A.

    2017-01-01

    Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.

  6. Riparian vegetation and water yield: A synthesis

    Science.gov (United States)

    Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio

    2012-08-01

    SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.

  7. Application of Riparian Evapotranspiration Package in MODFLOW for Riparian Vegetation Restoration

    Science.gov (United States)

    Ajami, H.; Maddock, T., III

    2009-04-01

    Quantifying spatial and temporal variability of riparian evapotranspiration (ET) is essential in water resources management especially in management and restoration of riparian ecosystems where multiple agricultural, industrial, and domestic users may exist. To enhance riparian evapotranspiration estimation in a MODFLOW groundwater model, RIPGIS-NET, an ArcGIS custom application, was developed to derive parameters and visualize results of spatially explicit riparian evapotranspiration in groundwater flow models for ecohydrology, riparian ecosystem management, stream restoration and water resources applications. RIPGIS-NET works with RIP-ET, a modeling package for MODFLOW. RIP-ET improves riparian ET simulations by using a set of eco-physiologically based ET curves for plant functional subgroups (PFSG), and is able to separate ground evaporation and plant transpiration processes. To evaluate impact of riparian restoration scenarios on groundwater resources, the above packages were applied to MODFLOW model of hypothetical Dry Alkaline Valley area. Using riparian ET curve files which show the relation between the groundwater level and ET, aerial extent of riparian vegetation in each season and a digital elevation map, RIPGIS-NET derived RIP-ET model parameters for each season. After running MODFLOW, groundwater head dynamics and spatial variability of riparian ET were visualized in GIS environment for each restoration scenario. This study provided useful information for riparian restoration planning in this area. It further highlighted the advantage of using spatially explicit models and datasets for riparian restoration planning.

  8. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    Index (NDVI) average values in the adjacent uplands also decreased over thirty years and were correlated with the previous year's annual precipitation. Hence an increase in ET in the uplands did not appear to be responsible for the decrease in river flows in this study, leaving increased regional groundwater pumping as a feasible alternative explanation for decreased flows and deterioration of the riparian forest. The second research objective was to develop a new method of classification using very high-resolution aerial photo to map riparian vegetation at the species level in the Colorado River Ecosystem, Grand Canyon area, Arizona. Ground surveys have showed an obvious trend in which non-native saltcedar (Tamarix spp.) has replaced native vegetation over time. Our goal was to develop a quantitative mapping procedure to detect changes in vegetation as the ecosystem continues to respond to hydrological and climate changes. Vegetation mapping for the Colorado River Ecosystem needed an updated database map of the area covered by riparian vegetation and an indicator of species composition in the river corridor. The objective of this research was to generate a new riparian vegetation map at species level using a supervised image classification technique for the purpose of patch and landscape change detection. A new classification approach using multispectral images allowed us to successfully identify and map riparian species coverage the over whole Colorado River Ecosystem, Grand Canyon area. The new map was an improvement over the initial 2002 map since it reduced fragmentation from mixed riparian vegetation areas. The most dominant tree species in the study areas is saltcedar (Tamarix spp.). The overall accuracy is 93.48% and the kappa coefficient is 0.88. The reference initial inventory map was created using 2002 images to compare and detect changes through 2009. The third objective of my research focused on using multiplatform of remote sensing and ground calibration

  9. Phytostabilization of metals by indigenous riparian vegetation ...

    African Journals Online (AJOL)

    Seven commonly-occurring pollution-tolerant riparian plant species were evaluated to ... Al and Mn. Species included: Cyperus haspan, Schoenoplectus corymbosus, ... yet significantly lower concentrations in the river water compared to areas ...

  10. Effects of increased flooding on riparian vegetation

    DEFF Research Database (Denmark)

    Garssen, Annemarie G.; Baattrup-Pedersen, Annette; Riis, Tenna

    2017-01-01

    In many parts of the world, the magnitude and frequency of cold-season precipitation are expected to increase in the near future. This will result in an increased magnitude and duration of winter and spring flooding by rain-fed streams and rivers. Such climate-driven increases in flooding...... of 3 years. We assessed the responses in riparian plant species richness, biomass, plant-available nitrogen and phosphorus and seed deposition to increased flooding depth (+18 cm on average at the lowest positions along the riparian gradient) and prolonged flooding duration (6 weeks on average). After...... 3 years of increased flooding, there was an overall decline in riparian species richness, while riparian plant biomass increased. Extractable soil nitrogen and phosphorus also increased and are likely to have contributed to the increased biomass. Increased flooding resulted in the arrival of more...

  11. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  12. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  13. Monitoring vegetation water uptake in a semiarid riparian corridor

    Science.gov (United States)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  14. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  15. Sensitivity Analysis of a Riparian Vegetation Growth Model

    Directory of Open Access Journals (Sweden)

    Michael Nones

    2016-11-01

    Full Text Available The paper presents a sensitivity analysis of two main parameters used in a mathematic model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width. Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

  16. Hydraulic and Vegetative Models of Historic Environmental Conditions Isolate the Role of Riparian Vegetation in Inducing Channel Change

    Science.gov (United States)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2011-12-01

    An enduring question in geomorphology is the role of riparian vegetation in inducing or exacerbating channel narrowing. It is typically difficult to isolate the role of vegetation in causing channel narrowing, because narrowing typically occurs where there are changes in stream flow, sediment supply, the invasion of non-native vegetation, and sometimes climate change. Therefore, linkages between changes in vegetation communities and changes in channel form are often difficult to identify. We took a mechanistic approach to isolate the role of the invasive riparian shrub tamarisk (Tamarix spp) in influencing channel narrowing in the Colorado River basin. Detailed geomorphic reconstructions of two sites on the Yampa and Green Rivers, respectively, in Dinosaur National Monument show that channel narrowing has been progressive and that tamarisk encroachment has also occurred; at the same time, dams have been constructed, diversions increased, and spring snowmelt runoff has been occurring earlier in spring. We simulated hydraulic and sediment transport conditions during the two largest floods of record -- 1984 and 2011. Two-dimensional hydraulic models were built to reflect these conditions and allowed us to perform sensitivity tests to determine the dominant determinants of the observed patterns of erosion and deposition. Channel and floodplain topography were constrained through detailed stratigraphic analysis, including precise dating of deposits based on dating of buried tamarisk plants in a series of floodplain trenches and pits. We also used historical air photos to establish past channel topography. To parameterize the influence of riparian vegetation, we developed a model that links detailed terrestrial laser scan (TLS) measurements of stand structure and its corresponding hydraulic roughness at the patch scale to reach-scale riparian vegetation patterns determined from airborne LiDaR (ALS). This model, in conjunction with maps of the ages and establishment

  17. Vegetation and non-native ungulate monitoring at the Big Island National Wildlife Refuge Complex 2010–2014.

    Science.gov (United States)

    Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.

    2015-01-01

    The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral cattle (Bos taurus) and pigs (Sus scrofa) and monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. We: 1) provide results from recent ungulate surveys at HFU to determine current feral pig abundance and distribution; 2) present results of surveys of ungulate presence and distribution at the Kona Forest Unit (KFU); 3) present results of surveys of weed presence and cover at both refuge units; and 4) present baseline results from long-term vegetation monitoring plots at KFU. Overall pig abundance appears to have decreased at HFU, although not significantly, over the period from 2010 to 2014. Management units 2 and 4 contained the majority of pigs at HFU. Pig density outside of adjacent managed areas has declined significantly from 2010 to 2014 for unknown reasons. Ungulate sign occurred in > 50% of plots at KFU during the November 2012 and September 2013 surveys, but ungulate sign occurred in temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers’ abilities to recognize less common weeds. Nonetheless, the distribution and cover of fireweed (Senecio madagascariensis) at KFU may have increased over the study period. Vegetation surveys documented baseline floristic composition and forest structure at KFU. It is not known if this current amount of emerging cover is sufficient for long-term self-sustaining forest canopy regeneration; however, numerous ‘ōhi‘a seedlings were found in the wet forest and mesic ‘ōhi‘a habitats, indicating an ample viable seed source and robust potential for forest regeneration.

  18. Riparian Vegetation Encroachment Ratios in rivers below large Dams

    Science.gov (United States)

    Garcia de Jalón, Diego; Martínez-Fernández, Vanesa; González del Tánago, Marta

    2017-04-01

    Large Dams and reservoirs change the natural flow regime and consequently cause many alterations in riparian vegetation dynamics which may be assessed at different spatial and temporal scales. In Mediterranean regions flow regulation is frequently associated with irrigation. Regulated rivers with this purpose very often show reduced discharges during the wet season when the reservoir is being filled and increased discharges during the dry season when irrigation takes place. This type of regulation frequently promotes riparian vegetation growth as soil moisture levels are increased during summer when a natural drought would otherwise limit its growth. Additionally, flow regulation by large dams promotes the aging of late seral riparian vegetation reducing the frequency of flood disturbance and consequently, the potential recruitment of pioneer species. In this work we study the response of woody riparian vegetation to flow regulation by large dams in four rivers from Central Spain: Jarama, Manzanares, Guadalix and Alberche. The aim is to quantify the annual vegetation encroachment ratios and to develop a model to understand the main controlling factors, such as floodplain and channel traits; flow regulation intensity; type of regulation; present vegetation canopy; distance to the dam; and time since dam commissioning. A temporal comparison using aerial photographs from 1956, 1966, 1972, 1991, 2011 and 2014 was done in thirteen river reaches downstream from large dams, to evaluate their morphological evolution.. Floodplain dimensions and channel and riparian vegetation changes were assessed by comparing different pre-dam and post-dam conditions. Recent coloured photographs with 0.5 m spatial resolution and older black-and-white photographs at 1:33 000 spatial scale were supplied by the National Geographic Institute of Spain (www.ign.es) and the Statistical Institute (www.madrid.org/nomecalles/Inicio.icm) from Madrid Community. Similar visual scales were used to cope

  19. The impact of flood variables on riparian vegetation

    Science.gov (United States)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  20. Multicriteria analysis to evaluate the energetic reuse of riparian vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, Lucia; Cini, Enrico [Dipartimento di Ingegneria Agraria e Forestale, Universita di Firenze, Piazzale delle Cascine 15, 50144 Firenze (Italy); Corsi, Stefano [Consorzio di Bonifica per la difesa del suolo e la tutela dell' ambiente della Toscana Centrale, via Verdi 16, 50122 Firenze (Italy)

    2010-01-15

    The management of riparian vegetation which includes cutting operations of grass, reeds, bushes and trees, is very important to reduce hydrogeologic risk. In Tuscany, riparian biomass and residues are mainly left shredded along courses or disposed in landfills as special wastes: actually different laws prohibit that tree trunks are abandoned in areas naturally affected by flooding, because they can be moved contributing to increase the water level and to maximize the hydraulic risk of some other nearby areas. In some cases, it is also possible to store the logs in specified sites from where they can be taken and used as a fuel in fireplaces or domestic heating plants. This work studies the possibility of the reuse of riparian vegetation as biomass for energy production and evaluates benefits and drawbacks from the economical, environmental and managerial points of view. Particularly, a specific methodology has been developed for two hydrological districts of Tuscany, with different typologies and densities of vegetation. First, an estimation of biomass distribution on the land and an evaluation of annual wood availability have been carried out; then, different chains concerning harvesting operation, biomass transport, storage conditions and final utilisation, have been defined and compared by a specific multicriteria analysis (MCA); finally, for the most suitable bio-energy chains the Life Cycle Assessment (LCA) has been implemented. Results of the LCA have also permitted to validate some environmental indicators used in the MCA, as mechanisation level of yards, energy efficiency of plants or transport distances. The decision making tool developed allows to compare costs and environmental benefits of the energy use of riparian vegetation, supporting local authorities involved in energy planning: in this way it is possible to confront different alternatives to match the energy demand and meet the energy saving and sustainability issues at the lowest cost for the

  1. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  2. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Science.gov (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  3. Scales of form roughness on riverbanks with different riparian vegetation

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Langendoen, E. J.; Ursic, M.; Abad, J. D.; Garcia, M. H.

    2013-12-01

    Riverbanks often include topographic irregularities that occur over a range of scales and that are produced by interactions among erosional processes, vegetation, and the geotechnical properties of the banks and floodplains. Irregularity of the bank surface can increase form drag, affecting the overall flow resistance, near-bank shear stresses, and patterns of sediment transport. Understanding how dominant scales of form roughness influence the near-bank flow structure, and thus the shear stress partitioning, is vital for the development of accurate predictive morphodynamic models. In this paper, the scales of bank roughness are examined for two meander bends of a large alluvial river with differing riparian vegetation on the Wabash River near Grayville, Illinois. Detailed measurements of bank topography were obtained using terrestrial LiDAR during low flow events and a multibeam echo sounder (MBES) during bankfull events. These measurements yielded high spatial resolution maps (~5-10 cm) that were used to analyze scales of roughness at different elevations along the banks during both subaerial and subaqueous conditions. The results of these analyses provide insight into the influence of riparian vegetation on form roughness and patterns of near-bank flow structure as documented using acoustic Doppler current profilers (ADCP).

  4. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  5. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest...

  6. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  7. EnviroAtlas - Minneapolis/St. Paul, MN - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest,...

  8. EnviroAtlas - New York, NY - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest...

  9. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest,...

  10. Woody riparian vegetation of Great Basin National Park. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.L.; Smith, S.D.; Murray, K.J.; Landau, F.H.; Sala, A.

    1994-07-01

    The community composition and population structure of the woody riparian vegetation in Great Basin National Park are described. Community analyses were accomplished by sampling 229 plots placed in a systematic random fashion along elevational gradients of 8 major stream systems (Baker, Big Wash, Lehman, Pine, Pole, Shingle, Snake, and Strawberry Creeks) in the Park using the releve method. Stand demographics were determined for the four dominant tree species in the Park, based on absolute stem counts at 15 sites along 6 major watersheds. Elevational ranges of the dominant tree and shrub species along 8 major streams were determined via transect analysis and systematic reconnaissance efforts. TWINSPAN (two-way indicator analysis) indentified 4 primary species groups and 8 stand groups in the Park. Because of the homogeneity of riparian zones, both presence and abundance of species were important parameters in determining species groups. Although species such as Populus tremuloides (aspen), Abies concolor (white fir) and Rosa woodsii (Woods rose) are very common throughout the Park, they are particularly abundant at higher, upper intermediate, and lower intermediate elevations.

  11. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    Science.gov (United States)

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  12. Experimental and field investigations on uprooting of riparian vegetation

    Science.gov (United States)

    Calvani, Giulio; Francalanci, Simona; Solari, Luca; Gumiero, Bruna

    2017-04-01

    The morphology of a river reach is the result of many processes involving the motion of sediment (erosion, transport and deposition), the hydrological regime and the development and growth of vegetation. River evolution in the presence of vegetation depends on establishment of pioneer woody riparian seedlings on bars, and consequently on either their survival or death. Flooding events can cause young vegetation mortality by uprooting (Corenblit et al., 2007). These processes, despite their important implications on river morphodynamics, have been poorly investigated in the past. Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction, while few works considered the effect of flow direction on the uprooting process (Bywater-Reyes et al., 2015). In this work, we focused on vegetation uprooting due to flow and to bed erosion. We considered two different types of vegetation: Avena Sativa, grown from seeds in external boxes, was used to investigate instantaneous uprooting, and Salix Purpurea, collected in the field, for delayed uprooting (namely type I and type II mechanisms, according to Edmaier et al., 2011). The experiments were carried out in a 5 m long flume in the Hydraulic Laboratory in Florence. A 2 m long mobile bed was build inside the flume, and vegetation was arranged according to several configurations on it. Both types of vegetation were subject to constant discharges to investigate the effects of a general bed degradation in modifying the occurrence of uprooting. We also performed some experiments with Avena Sativa located in a fixed bed and subjected to an increasing flow discharge in order to simulate instantaneous uprooting due to the action of hydrodynamic forces. We measured flow velocity, flow discharge and water depth and characterized vegetation by stem and root diameter, height and root length. The experimental results have been interpreted in terms of a

  13. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  15. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  16. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  17. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  18. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  19. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  20. EnviroAtlas - Fresno, CA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  1. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  2. Riparian vegetation classification of the Colorado River Corridor, Grand Canyon, Arizona, 2013—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are classification maps of total riparian vegetation along the Colorado River in Grand Canyon from Glen Canyon Dam to Pearce Ferry in Arizona. The data...

  3. EnviroAtlas - Milwaukee, WI - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  4. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  5. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  6. EnviroAtlas - Green Bay, WI - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  7. EnviroAtlas - Paterson, NJ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  8. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  9. EnviroAtlas - Pittsburgh, PA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  10. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  11. EnviroAtlas - Portland, ME - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  12. RELATIONSHIPS OF ALIEN PLANT SPECIES ABUNDANCE TO RIPARIAN VEGETATION, ENVIRONMENT, AND DISTURBANCE

    Science.gov (United States)

    Riparian ecosystems are often invaded by alien species. We evaluated vegetation, environment, and disturbance conditions and their interrelationships with alien species abundance along reaches of 29 streams in eastern Oregon, USA. Using flexible-BETA clustering, indicator species...

  13. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  14. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  15. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    Science.gov (United States)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  16. Suspended sediment control and water quality conservation through riparian vegetation:

    Science.gov (United States)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    vegetation able to hold back the ground eroded by the slopes, but it is necessary to know where the critical zones are. The aim of the work is to propose a method allow us to detect the risk of soil erosion areas near the river and the functionality of existing riparian vegetation along river as buffers / filters towards the eroded soil from the hill slopes. The proposed methodology is supposed has been designed for water pollution control from suspended solids, pollutants and nutrients coming from hills and an improvement of the quality of the river environment. The methodology was applied on the riparian vegetation of the Gaiana torrent where it was related to soil cover and erosion areas of the hillslope, thus correlating the impact of human activities. The Gaiana catchment area is 8.6 km2 and the mean altitude is 237 a.m.s.l., the average rainfall is of 784 mm.. It is a typical Apennines streams, about 35 km south of Bologna, Italy. The main trunk stream is 6 km long and the whole drainage network is organized in a dendritic pattern, typical of clayey lithology of the basins. The main erosion processes active in the area are caused by precipitation and surface runoff: sheet wash, concentrated water erosion and badlands watersheds (calanchi), which represent about 15% of the basin area. The vegetation of the Gaiana basin is constituted by crops (39%), woods (37%), rock outcrops(i.e. badlands)(15%), bushes (5%) and pastures(3%). The stages of the study are to spot critical areas made up of streambank and the eroded areas on the slopes near the river, with the support of aerial photos and satellite images, survey and a geographic information system. The Gaiana riparian vegetation map has been drawn and, on a strip buffer 200 metres wide along river, the Vegetation cover and the Geomorphology maps (scale 1:5000) has been drawn, after photogrammetric interpretation of aerial photography and satellite images . The two maps have been overlapped to compare spatial distribution

  17. Downstream Effects of Diversion Dams on Riparian Vegetation Communities in the Routt National Forest, Colorado

    Science.gov (United States)

    Caskey, S. T.; Wohl, E. E.; Dwire, K. A.; Merritt, D. M.; Schnackenberg, L.

    2012-12-01

    The relationship between riparian vegetation and changes in fluvial processes as a response to flow diversion is not well understood. Water extraction affects the hydrologic flow regime (i.e., magnitude, duration, and frequency of flows) reducing peak and base-flows, which could negatively impact riparian vegetation. Vegetation communities are temporally and spatially variable and are strongly interrelated with alluvial landforms and hydrograph variability. This research compares riparian community characteristics on diverted and undiverted pool-riffle channels and low gradient valleys to examine changes associated with flow diversion in the Routt National Forest (RNF). The RNF is the only under-appropriated area in Colorado, making future water extraction proposals likely. Many small extraction canals siphon water from small, headwater streams in the RNF, but the site-specific or cumulative effects of these diversions on riverine ecosystems have not been investigated. Systematic investigation is necessary, however, to determine whether existing flow diversions have influenced riparian communities and, if so, which communities are most sensitive to diversions. A total of 36 sites were sampled with five channel cross sections established per site, extending into the riparian zone at distance of two times the active channel width, and vegetation was sampled using the line-point intercept method. Preliminary results suggest a shift in vegetation communities from typical riparian species composition to more upland vegetation. The relative sensitivity of these responses are different depending on valley type; low- gradient, unconfined areas are less tolerant of diversion than steeper, confined reaches. Additionally, when stratified by plant assemblage, Salix abundance is significantly reduced downstream of diversion. The results of this study contribute to the collective understanding of mountain headwater riparian vegetation community response to changes in flow

  18. The inbuilt long-term unfeasibility of environmental flows when disregarding riparian vegetation requirements

    Directory of Open Access Journals (Sweden)

    R. Rivaes

    2015-10-01

    Full Text Available Environmental flows remain biased towards the traditional fish biological group and ignore the inter-annual flow variability that rules longer species life cycles, thus disregarding the long-term perspective of the riverine ecosystem. Incorporating riparian vegetation requirements into environmental flows could bring an important contribute to fill in this gap. The long-term after-effects of this shortcoming on the biological communities downstream of dams were never estimated before. We address this concern by evaluating the effects of environmental flow regimes disregarding riparian vegetation in the long-term perspective of the fluvial ecosystem. To achieve that purpose, the riparian vegetation evolution was modeled considering its structural response to a decade of different environmental flows, and the fish habitat availability was assessed for each of the resulting riparian habitat scenarios. We demonstrate that fish habitat availability changes accordingly to the long-term structural adjustments that riparian habitat endure following river regulation. Environmental flow regimes considering only aquatic biota become obsolete in few years due to the change of the habitat premises in which they were based on and, therefore, are unsustainable in the long run. Therefore, considering riparian vegetation requirements on environmental flows is mandatory to assure the effectiveness of those in the long-term perspective of the fluvial ecosystem.

  19. The role of hydrochory in structuring riparian and wetland vegetation.

    Science.gov (United States)

    Nilsson, Christer; Brown, Rebecca L; Jansson, Roland; Merritt, David M

    2010-11-01

    Hydrochory, or the passive dispersal of organisms by water, is an important means of propagule transport, especially for plants. During recent years, knowledge about hydrochory and its ecological consequences has increased considerably and a substantial body of literature has been produced. Here, we review this literature and define the state of the art of the discipline. A substantial proportion of species growing in or near water have propagules (fruits, seeds or vegetative units) able to disperse by water, either floating, submerged in flowing water, or with the help of floating vessels. Hydrochory can enable plants to colonize sites out of reach with other dispersal vectors, but the timing of dispersal and mechanisms of establishment are important for successful establishment. At the population level, hydrochory may increase the effective size and longevity of populations, and control their spatial configuration. Hydrochory is also an important source of species colonizing recruitment-limited riparian and wetland communities, contributing to maintenance of community species richness. Dispersal by water may even influence community composition in different landscape elements, resulting in landscape-level patterns. Genetically, hydrochory may reduce spatial aggregation of genetically related individuals, lead to high gene flow among populations, and increase genetic diversity in populations receiving many propagules. Humans have impacted hydrochory in many ways. For example, dams affect hydrochory by reducing peak flows and hence dispersal capacity, altering the timing of dispersal, and by presenting physical barriers to dispersal, with consequences for riverine plant communities. Hydrochory has been inferred to be an important vector for the spread of many invasive species, but there is also the potential for enhancing ecosystem restoration by improving or restoring water dispersal pathways. Climate change may alter the role of hydrochory by modifying the

  20. Riparian vegetation and its water use during 1995 along the Mojave River, Southern California

    Science.gov (United States)

    Lines, Gregory C.; Bilhorn, Thomas W.

    1996-01-01

    The extent and areal density of riparian vegetation, including both phreatophytes and hydrophytes, were mapped along the 100-mile main stem of the Mojave River during 1995. Mapping was aided by vertical false-color infrared and low-level oblique photographs. However, positive identification of plant species and plant physiological stress required field examination. The consumptive use of ground water and surface water by different areal densities of riparian plant communities along the main stem of the Mojave River was estimated using water-use data from a select group of studies in the southwestern United States. In the Alto subarea of the Mojave basin management area, consumptive water use during 1995 by riparian vegetation was estimated to be about 5,000 acre-feet upstream from the Lower Narrows and about 6,000 acre-feet downstream in the transition zone. In the Centro and Baja subareas, consumptive water use was estimated to be about 3,000 acre-feet and 2,000 acre-feet, respectively, during 1995. Consumptive water use by riparian vegetation in the Afton area, downstream from the Baja subarea, was estimated to be about 600 acre-feet during 1995. Consumptive water use by riparian vegetation during 1995 is considered representative of "normal" hydrologic conditions along the Mojave River. Barring major changes in the areal extent and density of riparian vegetation, the 1995 consumptive-use estimates should be fairly representative of riparian vegetation water use during most years. Annual consumptive use, however, could vary from the 1995 estimates as much as plus or minus 50 percent because of extreme hydrologic conditions (periods of high water table following extraordinarily large runoff in the Mojave River or periods of extended drought).

  1. Remote sensing approach to map riparian vegetation of the Colorado River Ecosystem, Grand Canyon area, Arizona

    Science.gov (United States)

    Nguyen, U.; Glenn, E.; Nagler, P. L.; Sankey, J. B.

    2015-12-01

    Riparian zones in the southwestern U.S. are usually a mosaic of vegetation types at varying states of succession in response to past floods or droughts. Human impacts also affect riparian vegetation patterns. Human- induced changes include introduction of exotic species, diversion of water for human use, channelization of the river to protect property, and other land use changes that can lead to deterioration of the riparian ecosystem. This study explored the use of remote sensing to map an iconic stretch of the Colorado River in the Grand Canyon National Park, Arizona. The pre-dam riparian zone in the Grand Canyon was affected by annual floods from spring run-off from the watersheds of Green River, the Colorado River and the San Juan River. A pixel-based vegetation map of the riparian zone in the Grand Canyon, Arizona, was produced from high-resolution aerial imagery. The map was calibrated and validated with ground survey data. A seven-step image processing and classification procedure was developed based on a suite of vegetation indices and classification subroutines available in ENVI Image Processing and Analysis software. The result was a quantitative species level vegetation map that could be more accurate than the qualitative, polygon-based maps presently used on the Lower Colorado River. The dominant woody species in the Grand Canyon are now saltcedar, arrowweed and mesquite, reflecting stress-tolerant forms adapted to alternated flow regimes associated with the river regulation.

  2. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    2015-09-01

    Full Text Available Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI to two reservoirs in the Upper Paranapanema river basin, São Paulo State, Brazil. Methods The RFAI was adapted from metrics related to the functional characteristics and composition of fish assemblages through a protocol of metric selection and validation, and to its response to the presence of riparian vegetation. Results The final RFAI was composed by nine metrics, been lower in sites without riparian vegetation as consequence of the predominance of larger individuals and the percent of piscivorous and detritivorous fishes. Conclusions These results suggest that increasing shore habitat complexity in reservoirs by maintaining riparian vegetation increases fish biotic integrity.

  3. Riparian vegetation dynamics and evapotranspiration in the riparian corridor in the delta of the Colorado River, Mexico.

    Science.gov (United States)

    Nagler, Pamela L; Glenn, Edward P; Hinojosa-Huerta, Osvel; Zamora, Francisco; Howard, Keith

    2008-09-01

    Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4 x 10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of

  4. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  5. Connectivity processes and riparian vegetation of the upper Paraná River, Brazil

    Science.gov (United States)

    Stevaux, José C.; Corradini, Fabrício A.; Aquino, Samia

    2013-10-01

    In fluvial systems, the relationship between a dominant variable (e.g. flood pulse) and its dependent ones (e.g. riparian vegetation) is called connectivity. This paper analyzes the connectivity elements and processes controlling riparian vegetation for a reach of the upper Paraná River (Brazil) and estimates the future changes in channel-vegetation relationship as a consequence of the managing of a large dam. The studied reach is situated 30 km downstream from the Porto Primavera Dam (construction finished in 1999). Through aerial photography (1:25,000, 1996), RGB-CBERS satellite imagery and a previous field botany survey it was possible to elaborate a map with the five major morpho-vegetation units: 1) Tree-dominated natural levee, 2) Shrubby upper floodplain, 3) Shrub-herbaceous mid floodplain, 4) Grass-herbaceous lower floodplain and 5) Shrub-herbaceous flood runoff channel units. By use of a detailed topographic survey and statistical tools each morpho-vegetation type was analyzed according to its connectivity parameters (frequency, recurrence, permanence, seasonality, potamophase, limnophase and FCQ index) in the pre- and post-dam closure periods of the historical series. Data showed that most of the morpho-vegetation units were predicted to present changes in connectivity parameters values after dam closing and the new regime could affect, in different intensity, the river ecology and particularly the riparian vegetation. The methods used in this study can be useful for dam impact studies in other South American tropical rivers.

  6. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  7. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index

    Directory of Open Access Journals (Sweden)

    Russell L. Scott

    2013-08-01

    Full Text Available Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa based on the Enhanced Vegetation Index (EVI from the Moderate Resolution Imaging Spectrometer (MODIS sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo. The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI − c], where the term (1 − e−bEVI is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73. It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89 difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  8. Monitoring of riparian vegetation response to flood disturbances using terrestrial photography

    Directory of Open Access Journals (Sweden)

    K. Džubáková

    2014-03-01

    Full Text Available The distribution of riparian vegetation on river floodplains is strongly impacted by floods. In this study we use a new setup with high resolution ground-based cameras in an Alpine gravel bed braided river to quantify the immediate response of riparian vegetation to flood disturbance with the use of vegetation indices. Five largest floods with return periods between 1.4 and 20.1 years in the period 2008–2011 in the Maggia River were used to evaluate patterns of vegetation response in three distinct floodplain units (main bar, secondary bar, transitional zone and to compare seven vegetation indices. The results show both negative (damage and positive (enhancement response of vegetation in a short period following floods, with a selective impact based on the hydrogeomorphological setting and the intensity of the flood forcing. The spatial distribution of vegetation damage provides a coherent picture of floodplain response in the three floodplain units with different flood stress. We show that the tested vegetation indices generally agree on the direction of predicted change and its spatial distribution. The average disagreement between indices was in the range 14.4–24.9% despite the complex environment, i.e. highly variable surface wetness, high gravel reflectance, extensive water–soil–vegetation contact zones. We conclude that immediate vegetation response to flood disturbance may be effectively monitored by terrestrial photography with potential for long-term assessment in river management and restoration projects.

  9. Occurrence of a bimodal behavior in riparian vegetation dynamics driven by river flow variability

    Science.gov (United States)

    Camporeale, C.; Ridolfi, L.

    2006-12-01

    The riparian zone is a fluvial ecotone which exhibits very interesting interaction between hydraulics and ecology, with several important implications in the environmental management. Even though random variability is a key characteristic of the river hydrology, which plays a crucial role in the evolution of riparian vegetation, the impact of stochastic hydrologic fluctuations on the dynamics of riparian vegetation ecosystems remains for most part poorly understood. Here we propose a new approach to study the distribution of phreatophyte riparian vegetation, using a stochastic process to model the random forcing exerted by river flow on the dynamics of the overall biomass of vegetation. Growth and decrease of vegetation are modelled through a logistic and an exponential functions, respectively, which switch in a random way, depending on the flooding conditions. The time series of the river flow (described by the pdf and autocorrelation function), determines the corresponding time series of the water levels which in turn drives the statistical characteristics of the switching. In the logistic model, the carrying capacity is taken dependent on the water table depth through a quadratic optimum function with species-dependent parameters. A dimensional analysis shows that the fundamental factors are the autocorrelation function of the flow, the coefficient of variation, the ratio between growth and decrease rate of vegetation and the optimum water table depth. The switching dynamics is shown to be described by a single stochastic differential equation driven by dichotomic noise that is analytically solved herein. The main outcome is the pdf of the vegetation biomass at the steady state which allows the stability of the models and the central moments to be investigated. Bimodality of the solution and peculiar behaviors (e.g., noise-induced stability) are discussed, depending on the river geometry and the hydrological characteristics. The obtained analytical expressions

  10. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.

    Science.gov (United States)

    Tealdi, Stefano; Camporeale, Carlo; Ridolfi, Luca

    2013-02-07

    Riparian vegetation is a highly dynamic community that lives on river banks and which depends to a great extent on the fluvial hydrology. The stochasticity of the discharge and erosion/deposition processes in fact play a key role in determining the distribution of vegetation along a riparian transect. These abiotic processes interact with biotic competition/facilitation mechanisms, such as plant competition for light, water, and nutrients. In this work, we focus on the dynamics of plants characterized by three components: (1) stochastic forcing due to river discharges, (2) competition for resources, and (3) inter-species facilitation due to the interplay between vegetation and fluid dynamics processes. A minimalist stochastic bio-hydrological model is proposed for the dynamics of the biomass of two vegetation species: one species is assumed dominant and slow-growing, the other is subdominant, but fast-growing. The stochastic model is solved analytically and the probability density function of the plant biomasses is obtained as a function of both the hydrologic and biologic parameters. The impact of the competition/facilitation processes on the distribution of vegetation species along the riparian transect is investigated and remarkable effects are observed. Finally, a good qualitative agreement is found between the model results and field data.

  11. Comparison of remote sensing data sources and techniques for identifying and classifying alien invasive vegetation in riparian zones

    CSIR Research Space (South Africa)

    Rowlinson, LC

    1999-10-01

    Full Text Available of large amounts of water from riparian zones, is one of the methods of maximising water supply in South Africa. Remote sensing is a cost- and time-effective technique for identifying alien vegetation in riparian zones and remote sensing data can...

  12. Repeatability of riparian vegetation sampling methods: how useful are these techniques for broad-scale, long-term monitoring?

    Science.gov (United States)

    Marc C. Coles-Ritchie; Richard C. Henderson; Eric K. Archer; Caroline Kennedy; Jeffrey L. Kershner

    2004-01-01

    Tests were conducted to evaluate variability among observers for riparian vegetation data collection methods and data reduction techniques. The methods are used as part of a largescale monitoring program designed to detect changes in riparian resource conditions on Federal lands. Methods were evaluated using agreement matrices, the Bray-Curtis dissimilarity metric, the...

  13. The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna

    Directory of Open Access Journals (Sweden)

    IC Valle

    Full Text Available We assessed two dimensions of stream connectivity: longitudinal (between forest patches along the stream and lateral (riparian vegetation, using macroinvertebrate assemblages as bioindicators. Sites representing different land-uses were sampled in a lowland basin that holds a mosaic of protected areas. Land-use analysis, forest successional stages and riparian zone widths were calculated by the GIS analysis. Macroinvertebrate fauna was strongly affected by land-use. We observed a continuous decrease in the number of sensitive species, %Shredders and IBE-IOC biotic index from the upstream protected area to highly deforested sites, increasing again where the stream crosses a Biological Reserve. When analysing buffer strips, we found aquatic fauna responding to land-use alterations beyond the 30 m riparian corridor (60 m and 100 m wide. We discussed the longitudinal connectivity between forest patches and the riparian vegetation buffer strips necessary to hold high macroinvertebrate diversity. We recommend actions for the increase/maintenance of biodiversity in this and other lowland basins.

  14. The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna.

    Science.gov (United States)

    Valle, I C; Buss, D F; Baptista, D F

    2013-05-01

    We assessed two dimensions of stream connectivity: longitudinal (between forest patches along the stream) and lateral (riparian vegetation), using macroinvertebrate assemblages as bioindicators. Sites representing different land-uses were sampled in a lowland basin that holds a mosaic of protected areas. Land-use analysis, forest successional stages and riparian zone widths were calculated by the GIS analysis. Macroinvertebrate fauna was strongly affected by land-use. We observed a continuous decrease in the number of sensitive species, %Shredders and IBE-IOC biotic index from the upstream protected area to highly deforested sites, increasing again where the stream crosses a Biological Reserve. When analysing buffer strips, we found aquatic fauna responding to land-use alterations beyond the 30 m riparian corridor (60 m and 100 m wide). We discussed the longitudinal connectivity between forest patches and the riparian vegetation buffer strips necessary to hold high macroinvertebrate diversity. We recommend actions for the increase/maintenance of biodiversity in this and other lowland basins.

  15. The importance of volumetric canopy morphology when modelling drag around riparian vegetation

    Science.gov (United States)

    Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Marjoribanks, Timothy

    2017-04-01

    Riparian vegetation has a significant impact on the hydraulic functioning of river systems. The bulk of past work concerned with modelling the influence of vegetation on flow has considered vegetation to be morphologically simple, and has generally neglected the complexity and porosity of natural plants, defined herein as the volumetric canopy morphology. However, the volumetric canopy morphology can influence the mean and turbulent properties of the flow, producing spatially heterogeneous downstream velocity fields. By explicitly accounting for this in a computational fluid dynamics (CFD) model, and representing the plant as a porous blockage, complex flow structures and drag can be modelled. For a riparian species, Hebe odora, good agreement with flume measurements are found. Plant shear layer turbulence is shown to be dominated by Kelvin-Helmholtz and Görtler-type vortices, generated through shear instability. Porous representations of the plants, that allow for flow to pass through the plant canopy interior, are compared against fully impermeable plant representations. Penetration of fluid through the canopy in the porous case resembles 'bleed-flow', and this results in a plant wake region that significantly differs from the impermeable case, which is characteristic of wake flow around a traditional bluff body. These results demonstrate the significant effect that the volumetric canopy morphology and porosity of natural plants has on the three-dimensional flow and in-stream drag, and enables a re-evaluation of vegetative flow resistance. The modelled results allow a species dependent Manning's n to be calculated, and this presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, in favour of a more physically determined approach. Given the importance of vegetation in river corridor management, and the increasing application of UAV imagery to map riparian vegetation, the numerical scheme developed here

  16. Hippopotamus and livestock grazing : Influences on riparian vegetation and facilitation of other herbivores in the Mara Region of Kenya

    NARCIS (Netherlands)

    Kanga, Erustus M.; Ogutu, Joseph O.; Piepho, Hans-Peter; Olff, Han

    Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing

  17. Riparian vegetation in South-western Europe: drivers of change across space and time (Invited)

    Science.gov (United States)

    Aguiar, F. C.; Ferriera, M.

    2010-12-01

    Riparian ecosystems of Mediterranean Europe have been largely disturbed for millennia due to human-driven alterations. Land-use, deforestation, water diversion and river regulation have been the major causes of change of riparian and freshwater ecosystems. Riparian vegetation in this region has particular features due to a large climatic and environmental variation; from the climatic harshness and the flash-flow hydrological regime of southern rivers to high-altitude permanent rivers of the north regions. Riparia is a fundamental element of the Mediterranean landscape by a number of ecological values, and economic and societal benefits, and they are usually seen as “linear oasis” embedded in the complex landscape matrix. We face a huge challenge in understanding the distribution trends of the riparian species assemblages in those diverse biogeographic regions and the varying effects of the multi-scaled drivers of change. I will review the main studies that have explored the patterns of variation of riparian plant assemblages across space and time in South-Western Europe, including its longitudinal and lateral dimension. Structural community features and plant functional traits, that can be described and quantified, are ecological expressions of both natural and human disturbances, and comparatively less understood than floral composition patterns, and many studies suggest that they are more reactive to disturbance. Linkages of taxonomic and functional trait variation will also be addressed, focusing in the influence of environment at various scale levels. Effects of human disturbances, particularly the alien plant invasions and the losses of biodiversity and connectivity will be tackled. These studies provided evidence of shifts in species composition and in structural complexity, as well as in individual and community responses to wetting and drying due to regulation and to physical disturbances of riverbanks. The intensive agriculture in adjacent lands is a

  18. USGS 2015 JSankey Riparian Vegetation and Colorado River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data include image-based classifications of total vegetation from 1965, 1973, 1984, 1992, 2002, 2004, 2005, and 2009, and characteristics of the river channel...

  19. Bank Erosion Modulated by Exposed Roots from Riparian Vegetation in Small Gravel-Bed Streams

    Science.gov (United States)

    Mendoza, A.; Frias, C. E.; Langendoen, E. J.; Abad, J. D.

    2013-12-01

    Bank erosion is a process present in rivers of all the scales and is a key aspect in the evolution of meandering streams. Its magnitude is significantly controlled by the resistance-to-erosion properties of the floodplain materials, which themselves are modified by the varying presence of riparian vegetation. Earlier studies have stated that the physical science of fluvial geomorphology was flawed because of omitting such processes, because they are difficult to describe physically or statistically. For example, the role of vegetation dynamics in modulating river migration, especially for small rivers where the effect of vegetation on channel morphology may be a more important component when compared to larger river systems such as the Amazon or Mississippi Rivers, is largely unknown. Though earlier studies have researched various aspects concerning the effects of riparian vegetation on bank erosion mechanics, a comprehensive framework that integrates and quantifies fluvial erosion and bank failure processes, near-bank hydrodynamics, soil properties and riparian vegetation characteristics is lacking. The effects of exposed roots and rootwads on the near-bank hydrodynamics and sediment transport processes are still not well understood. Laboratory studies have examined in detail the impact of vegetation located only on the bank toe or stream bed. Moreover, there exist no data that explicitly relates the characteristics of riparian vegetation on the bank top to changes in near-bank hydrodynamics and bank erosion mechanics. Further, there is a need to better understand the processes and their interactions occurring at the different spatial scales: single large root, rootwad, and reach. During 2011, 2012 a field campaign was carried out to study the effects of exposed root systems on flow in Fonner Run and Bates Fork, two tributaries of Tenmile Creek (Green and Washington Counties, Pennsylvania). Data collected consist of annual bathymetry, field velocity profiles

  20. Meander migration modeling accounting for the effect of riparian vegetation

    Science.gov (United States)

    Eke, E.; Parker, G.

    2010-12-01

    A numerical model is proposed to study the development of meandering rivers so as to reproduce patterns of both migration and spatial/temporal width variation pattern observed in nature. The model comprises of: a) a depth-averaged channel hydrodynamic/morphodynamic model developed using a two-parameter perturbation expansion technique that considers perturbations induced by curvature and spatial channel width variation and b) a bank migration model which separately considers bank erosional and depositional processes. Unlike most previous meandering river models where channel migration is characterized only in terms of bank erosion, channel dynamics are here defined at channel banks which are allowed to migrate independently via deposition/erosion based on the local flow field and bank characteristics. A bank erodes (deposits) if the near bank Shields stress computed from the flow field is greater (less) than a specified threshold. This threshold Shields number is equivalent to the formative Shields stress characterizing bankfull flow. Excessive bank erosion is controlled by means of natural armoring provided by cohesive/rooted slump blocks produced when a stream erodes into the lower non-cohesive part of a composite bank. Bank deposition is largely due to sediment trapping by vegetation; resultant channel narrowing is related to both a natural rate of vegetal encroachment and flow characteristics. This new model allows the channel freedom to vary in width both spatially and in time as it migrates, so accounting for the bi-directional coupling between vegetation and flow dynamics and reproducing more realistic planform geometries. Preliminary results based on the model are presented.

  1. The influence of flood frequency, riparian vegetation and threshold on long-term river transport capacity

    Science.gov (United States)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2016-04-01

    Climate fluctuations at geological timescales control the capacity of rivers to transport sediment with consequences on geochemical cycles, sedimentary basins dynamics and sedimentation/tectonics interactions. While the impact of differential friction generated by riparian vegetation has been studied for individual flood events, its impact on the long-term sediment transport capacity of rivers, modulated by the frequency of floods remains unknown. Here, we investigate this effect on a simplified river-floodplain configuration obeying observed hydraulic scaling laws. We numerically integrate the full-frequency magnitude distribution of discharge events and its impact on the transport capacity of bedload and suspended material for various level of vegetation-linked differential friction. We demonstrate that riparian vegetation by acting as a virtual confinement of the flow i) increases significantly the instantaneous transport capacity of the river independently of the transport mode and ii) increases the long term bedload transport rates as a function of discharge variability. Our results expose the dominance of flood frequency rather than riparian vegetation on the long term sediment transport capacity. Therefore, flood frequency has to be considered when evaluating long-term bedload transport capacity while floodplain vegetation is important only in high discharge variability regimes. By comparing the transport capacity of unconfined alluvial rivers and confined bedrock gorges, we demonstrate that the latter always presents the highest long term transport capacity at equivalent width and slope. The loss of confinement at the transition between bedrock and alluvial river must be compensated by a widening or a steepening of the alluvial channel to avoid infinite storage. Because steepening is never observed in natural system, we compute the alluvial widening factor value that varies between 3 to 11 times the width of the bedrock channel depending on riparian

  2. Vegetation - Medium Scale Central Valley Riparian Vegetation and Land Use, 2011 [ds723

    Data.gov (United States)

    California Department of Resources — Geodatabase (SDE) feature class containing map of vegetation along mainstem rivers and major tributaries (including ancillary natural and semi-natural vegetation)...

  3. Invasive riparian vegetation response to flow regimes and flood pulses in a braided river floodplain.

    Science.gov (United States)

    Caruso, Brian S; Pithie, Callum; Edmondson, Laura

    2013-08-15

    This study evaluated flow regimes and flood pulse characteristics, and their influences on invasive riparian vegetation, in a free-flowing braided river in the Southern Alps, South Island, New Zealand. A 46-year gauged flow record was used to evaluate 67 flow metrics for the Ahuriri River, and five sets of colour aerial photographs over 20 years (1991-2011) were analysed to quantify temporal and spatial changes in vegetation (crack willow, Russell lupin, and grassland). The correlation between flow metrics and vegetation class cover for each aerial photo interval was analysed, and multiple regression models were developed. Significant changes in different invasive vegetation classes were found, including cover, number and sizes of patches, and distances from patches to primary channels. In addition to infrequent large floods, specific characteristics of small floods, high flows, low/baseflows, and extreme low flows had influences on different vegetation classes. Key metrics that appear to drive changes in cover and provide a useful multiple regression model include the largest flood peak, frequency of floods, and the time since the last flood for each air photo interval. Up to 25% of invasive vegetation cover was removed and bare substrate increased after the largest flood on record (approximately 50-year flood), and the amount of vegetation cover is highly variable over time and space. Within approximately six years, however, the proportion of vegetation recovered to pre-flood levels. The study reach appears to demonstrate the "shifting-mosaic steady state" conceptual model of riverine floodplains, where the total proportion of substrate, vegetation and water remain relatively constant over long time periods.

  4. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  5. Aerial Photographic Analysis of Historic Riparian Vegetation Growth and Channel Change at Canyon de Chelly National Monument, Arizona: Preliminary Results

    Science.gov (United States)

    Cadol, D. D.; Rathburn, S. L.

    2005-12-01

    Aerial photographs over the past 70 years show that a profound alteration in the channels of Canyon de Chelly National Monument has coincided with the establishment and expansion of riparian vegetation, in particular invasive tamarisk ( Tamarix ssp.) and Russian olive ( Elaeagnus angustifolia). Rectification of the air photos, using GIS, enabled detailed mapping of the extent and density of vegetation in the canyon bottom, and analysis of stream channel geometry for each photo set. Photo sets from 1934, 1989, and 2004 were used to track changes in vegetation and channel morphology through time. In 1934, scattered riparian vegetation, including cottonwood ( Populus ssp.) and willow ( Salix ssp.), covered <1% of the canyon bottom. By 2004 the full length of the channel was lined with a riparian vegetation belt, with vegetation covering as much as 40% of the canyon bottom in some 1 km long study reaches . However the width of the riparian belt was spatially discontinuous, with other study reaches having less than 10% coverage of the canyon bottom. Riparian vegetation growth has coincided with an alteration in the hydrology of the streams within the canyon. Air photos from 1934 show a wide sandy wash throughout the extent of the study area. By 1989, some reaches had narrowed, with the channel becoming a single, meandering thread, and with woody riparian vegetation well established on much of the former wash. By 2004, long reaches of the study area were single thread, and dense Russian olive and tamarisk stands filled much of the former wash. While in some reaches the channel changed from a wide braided system to a single thread, other areas remain a sandy wash. Additionally, some reaches of the channel had become deeply incised, as much as 3 meters below the 1934 floodplain, as indicated by persistent cottonwood individuals. Field work indicates that incision was still very active in 2005. However, quantitative analysis of incision through time throughout the study

  6. The role of riparian vegetation density, channel orientation and water velocity in determining river temperature dynamics

    Science.gov (United States)

    Garner, Grace; Malcolm, Iain A.; Sadler, Jonathan P.; Hannah, David M.

    2017-10-01

    A simulation experiment was used to understand the importance of riparian vegetation density, channel orientation and flow velocity for stream energy budgets and river temperature dynamics. Water temperature and meteorological observations were obtained in addition to hemispherical photographs along a ∼1 km reach of the Girnock Burn, a tributary of the Aberdeenshire Dee, Scotland. Data from nine hemispherical images (representing different uniform canopy density scenarios) were used to parameterise a deterministic net radiation model and simulate radiative fluxes. For each vegetation scenario, the effects of eight channel orientations were investigated by changing the position of north at 45° intervals in each hemispheric image. Simulated radiative fluxes and observed turbulent fluxes drove a high-resolution water temperature model of the reach. Simulations were performed under low and high water velocity scenarios. Both velocity scenarios yielded decreases in mean (≥1.6 °C) and maximum (≥3.0 °C) temperature as canopy density increased. Slow-flowing water resided longer within the reach, which enhanced heat accumulation and dissipation, and drove higher maximum and lower minimum temperatures. Intermediate levels of shade produced highly variable energy flux and water temperature dynamics depending on the channel orientation and thus the time of day when the channel was shaded. We demonstrate that in many reaches relatively sparse but strategically located vegetation could produce substantial reductions in maximum temperature and suggest that these criteria are used to inform future river management.

  7. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on riparian vegetation of the Green River, Utah and Colorado

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.E.; Van Lonkhuyzen, R.A. [Argonne National Lab., IL (United States). Ecological Sciences Section

    1995-06-01

    Four hydropower operational scenarios at Flaming Gorge Dam were evaluated to determine their potential effects on riparian vegetation along the Green River in Utah and Colorado. Data collected in June 1992 indicated that elevation above the river had the largest influence on plant distribution. A lower riparian zone occupied the area between the approximate elevations of 800 and 4,200-cfs flows--the area within the range of hydropower operational releases. The lower zone was dominated by wetland plants such as cattail, common spikerush, coyote willow, juncus, and carex. An upper riparian zone was above the elevation of historical maximum power plant releases from the dam (4,200 cfs), and it generally supported plants adapted to mesic, nonwetland conditions. Common species in the upper zone included box elder, rabbitbrush, grasses, golden aster, and scouring rush. Multispectral aerial videography of the Green River was collected in May and June 1992 to determine the relationship between flow and the areas of water and the riparian zone. From these relationships, it was estimated that the upper zone would decrease in extent by about 5% with year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation, but it would increase by about 8% under seasonally adjusted steady flow. The lower zone would increase by about 13% for both year-round and seasonally adjusted high fluctuation scenarios but would decrease by about 40% and 74% for seasonally adjusted moderate fluctuation and steady flows, respectively. These changes are considered to be relatively minor and would leave pre-dam riparian vegetation unaffected. Occasional high releases above power plant capacity would be needed for long-term maintenance of this relict vegetation.

  8. Riparian woody vegetation history in the campos region, southeastern South America, during two time windows: late Pleistocene and late Holocene

    Science.gov (United States)

    Mourelle, Dominique; Prieto, Aldo R.; García-Rodríguez, Felipe

    2017-07-01

    A detailed palynological record from Laguna Formosa (northeastern campos region, 31°S; 54°W) documents the dynamic balance between grasslands and riparian forests during the late Pleistocene (14,570 to 13,500 cal yr BP) and late Holocene (3280 cal yr BP to the present). Modern pollen-vegetation relationships and the woody pollen dispersal capacity analyses were used to improve the vegetation reconstruction. Grasslands were regionally dominant throughout the record. However, at 14,570 cal yr BP hydrophilous taxa reflect the development of riparian hydrophilous shrublands along freshwater bodies, promoting the fixation of the riverbanks, maintaining shallow, calm and clear water conditions under a relatively wet and not so cool climate. This is the first evidence of woody riparian vegetation development along freshwater bodies for the lowlands of the northern campos during the late glacial period. At 3280 cal yr BP riparian forests consisted of both hydrophilous and mesophilous woody taxa. Since 2270 cal yr BP woody vegetation gradually increased, accompanied by the incorporation of other taxa by 940 cal yr BP, and achieving a composition similar to that of the contemporary time at ca. 540 cal yr BP. The increased woody vegetation since ca. 2270 cal yr BP, and the more frequent and intense flooding events between 1800 and 1200 cal yr BP, could be related to higher precipitation over La Plata Drainage Basin, related with the high ENSO amplitude. In addition, pollen from taxa that currently no longer develops in the study area suggests connections between southern Brazil and Uruguay, and between the campos and the Chaco phytogeographic province.

  9. Increasing the Stability of Streambanks through the Hydrologic Effects of Riparian Vegetation: Experimental Results

    Science.gov (United States)

    Simon, A.; Pollen, N. L.

    2003-12-01

    Riparian vegetation can provide both mechanical and hydrologic benefits to the shear strength of streambanks. Recent research has shown that the hydrologic effects of water withdrawal on streambank stability can be significant, and far exceeds that provided by root reinforcement during certain times of the year. To accurately quantify the hydrologic effects of riparian vegetation on streambank stability and to determine optimum species for bank stabilization, experiments with common riparian species (planted in 2000) were conducted in large soil monoliths. Pore-water pressure data from depths of 30 and 70 cm within soil monoliths containing Black Willow, River Birch, Eastern Sycamore, and bare soil were monitored for the period February through June, 2002 (Figure XX1). This period was selected because it represents the wettest and, therefore, the most critical period for streambank stability. With rainfall, all of the tensiometers showed decreases in matric suction (negative pore-water pressure) or increases in positive pore-water pressure reflecting the addition of water. However, both the magnitude of the changes and the absoulute values attained within the soil monoliths differed by treatment. At both 30 cm and 70 cm depths, the soil in the control monoliths became the wettest during and after rainfall indicating the role of the woody species in maintaining matric suction and enhancing shear strength. During late February and early March before leaves appeared on stems and branches, there appeared to be little difference in matric suction values between individual species although matirc suction values within these monoliths were still greater than within the control monoliths. This lack of significant differences between the vegetated monoliths and the controls are at least in part a function of the young age of the specimens and the lack of a carryover of high values of matric suction from the previous summer that can be typical in more mature stands of trees

  10. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    Science.gov (United States)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  11. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    Science.gov (United States)

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  12. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  13. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  14. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    Science.gov (United States)

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  15. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  16. Comparison of water consumption in two riparian vegetation communities along the central Platte River, Nebraska, 2008–09 and 2011

    Science.gov (United States)

    Hall, Brent M.; Rus, David L.

    2013-01-01

    The Platte River is a vital natural resource for the people, plants, and animals of Nebraska. A recent study quantified water use by riparian woodlands along central reaches of the Platte River, Nebraska, finding that water use was mainly regulated below maximum predicted levels. A comparative study was launched through a cooperative partnership between the U.S. Geological Survey, the Central Platte Natural Resources District, the Nebraska Department of Natural Resources, and the Nebraska Environmental Trust to compare water use of a riparian woodland with that of a grazed riparian grassland along the central Platte River. This report describes the results of the 3-year study by the U.S. Geological Survey to measure the evapotranspiration (ET) rates in the two riparian vegetation communities. Evapotranspiration was measured during 2008–09 and 2011 using the eddy-covariance method at a riparian woodland near Odessa, hereinafter referred to as the “woodland site,” and a riparian grassland pasture near Elm Creek, hereinafter referred to as the “grassland site.” Overall, annual ET totals at the grassland site were 90 percent of the annual ET measured at the woodland site, with averages of 653 millimeters (mm) and 726 mm, respectively. Evapotranspiration rates were similar at the grassland site and the woodland site during the spring and fall seasons, but at the woodland site ET rates were higher than those of the grassland site during the peak-growth summer months of June through August. These seasonal differences and the slightly lower ET rates at the grassland site were likely the result of differing plant communities, disturbance effects related to grazing and flooding, and climatic differences between the sites. The annual water balance was calculated for each site and indicated that the predominant factors in the water balance at both sites were ET and precipitation. Annual precipitation for the study period ranged from near to above the normal

  17. Spatial-seasonal variation of soil denitrification under three riparian vegetation types around the Dianchi Lake in Yunnan, China.

    Science.gov (United States)

    Wang, Shaojun; Cao, Zilin; Li, Xiaoying; Liao, Zhouyu; Hu, Binghui; Ni, Jie; Ruan, Honghua

    2013-05-01

    Outbreaks of nuisance cyanobacterial bloom are predicted to occur frequently under the effect of severe eutrophication in the water body of Lake Dianchi since the 1990s. Riparian buffers are now well recognized for their roles in the removal of inorganic nitrogen mainly via denitrification. Little is known, however, about the mechanisms of nitrate removal in the riparian buffers of Lake Dianchi. We investigated the wet and dry seasonal dynamics of denitrification rate (DNR) in the soil profiles along the topographic gradient in three riparian buffers with different vegetation types (i.e. forest, open forest, and grass). A strong vertical pattern was observed in soil organic C and N concentrations (i.e. total N, DON, NO3-N, and NH4-N) along the soil layers. We also found significantly higher in situ denitrification activity in the upper horizon along each topohydrosequence while the activities of soil denitrification could be detected down to deeper soil horizons (0.1 to 0.8 mg N per kg dry soil per day), which may contribute significantly to the reduction of the ground water nitrate. Meanwhile, the DNR in the zones near the lake was significantly higher than that in zones near the border with the upland terrace, and also in the wet seasons than in dry seasons. Denitrification rates in the forest, open forest and grass sites were significantly different only in wet seasons. Especially, we found soil organic C had a strong correlation with denitrification in all sites, despite the large intersite variability of soil and vegetation. Our data suggested spatial heterogeneity of substrate availability along a hydrologic and topographic gradient can be the primary control on spatial-seasonal patterns of denitrification in riparian buffers.

  18. Riparian vegetation abundance (percent cover) in the Elwha River estuary, Washington, in 2007 and 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents riparian plant species abundance (percent cover) data from plots sampled in the Elwha River estuary, Washington, in 2007...

  19. Riparian vegetation species richness in the Elwha River estuary, Washington, in 2007 and 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents riparian plant species richness (number of unique taxa) data from plots sampled in the Elwha River estuary, Washington, in...

  20. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  1. Flow recommendations for maintaining riparian vegetation along the Upper Missouri River, Montana

    Science.gov (United States)

    Scott, Michael L.; Auble, Gregor T.; Friedman, Jonathan M.; Ischinger, Lee S.; Eggleston, Erik D.; Wondzell, Mark A.; Shafroth, Patrick B.; Back, Jennifer T.; Jordan, Mette S.

    1993-01-01

    Montana Power Company, Inc. (MPC) submitted a final license application to the Federal Energy Regulatory Commission (FERC) on November 30, 1992. In this application, MPC proposed a plan for the protection of fish, wildlife, habitat, and water-quality resources. One concern was maintenance of woody riparian vegetation along the Missouri River, especially along the Wild and Scenic reach of the river, where the riparian forest occurs in relatively small discontinuous stands. The objectives of this project were 1) to recommend flows that would protect and enhance riparian forests along the Missouri River, and 2) to develop elements of an environmental monitoring program that could be used to assess the effectiveness of the recommended flows. Plains cottonwood (Populus deltoides subsp. monilifera) is the key structural component of riparian forests along the Missouri River. Therefore, we focused our analysis on factors affecting populations of this species. Previous work had demonstrated that the age structure of cottonwood populations is strongly influenced by aspects of flow that promote successfully establishment. In this study our approach was to determine the precise age of plains cottonwood trees growing along the Upper Missouri River and to relate years of establishment to the flow record. Our work was carried out between Coal Banks Landing and the Fred G. Robinson Bridge within the Wild and Scenic portion of the Missouri River. This segment of the river occupies a narrow valley and exhibits little channel migration. Maps and notes from the journals of Lewis and Clark (1804-1806) suggest that the present distribution and abundance of cottonwoods within the study reach is generally similar to presettlement conditions. Flows in the study reach are influenced by a number of dams and diversions, most importantly, Canyon Ferry and Tiber Dams. Although flow regulation has decreased peak flows and increased low flows, the gross seasonal pattern of flow has not been

  2. Hydrologic requirements of and consumptive ground-water use by riparian vegetation along the San Pedro River, Arizona. Chapters A-D.

    Science.gov (United States)

    Leenhouts, James M.; Stromberg, Juliet C.; Scott, Russell L.; authors include Leenhouts, James M.; Lite, Sharon J.; Dixon, Mark; Rychener, Tyler; Makings, Elizabeth; Williams, David G.; Goodrich, David C.; Cable, William L.; Levick, Lainie R.; McGuire, Roberta; Gazal, Rico M.; Yepez, Enrico A.; Ellsworth, Patrick; Huxman, Travis E.

    2006-01-01

    This study is a coordinated effort by the U.S. Geological Survey (USGS), the U.S. Department of Agriculture, Agricultural Research Service (USDA ARS), and Arizona State University, with assistance from the U.S. Army Corps of Engineers, the University of Wyoming, and the University of Arizona. The specific objectives of the study were: to determine the water needs of riparian vegetation through the riparian growing season and throughout the SPRNCA to ensure its long-term ecological integrity; to quantify the total water use of riparian vegetation within the SPRNCA; and to determine the source of water used by key riparian plant species within the SPRNCA. To meet these objectives, the study was divided into three elements: (1) a characterization of the status and variability of hydrologic factors within the riparian system (USGS), (2) a riparian biohydrology study to relate spatial and temporal aspects of riparian changes and condition to the hydrologic variables (Arizona State University), and (3) a water-use evapotranspiration (ET) study to quantify annual consumptive ground-water use by riparian transpiration and direct evaporation from the stream channel (USDA ARS) in cooperation with the U.S. Army Corps of Engineers, the University of Wyoming, and the University of Arizona. Twenty-six sites within the SPRNCA were selected for collection of vegetation data from three primary streamflow regimes (perennial, intermittent-wet, intermittent-dry), which include the principal vegetation communities. Detailed hydrologic-condition data were collected at a subset of 16 of these sites, called the SPRNCA biohydrology sites. Water-use and water-source data were collected at a subset of 5 of the 16 biohydrology sites. Vegetation data also were collected at supplemental sites within the SPRNCA boundary in the Upper San Pedro Basin and in the Lower San Pedro Basin. In addition to information about vegetation and geomorphic conditions, hydrologic data collected at the 16

  3. Assessment of the contamination of riparian soil and vegetation by trace metals--A Danube River case study.

    Science.gov (United States)

    Pavlović, P; Mitrović, M; Đorđević, D; Sakan, S; Slobodnik, J; Liška, I; Csanyi, B; Jarić, S; Kostić, O; Pavlović, D; Marinković, N; Tubić, B; Paunović, M

    2016-01-01

    The aim of this study was to assess the spatial distribution of arsenic and heavy metals (Cd, Cr, Cu Hg, Ni, Pb and Zn) in a riparian area influenced by periodical flooding along a considerable stretch of the Danube River. This screening was undertaken on soil and plant samples collected from 43 sites along 2386 km of the river, collected during the international Joint Danube Survey 3 expedition (ICPDR, 2015). In addition, data on the concentration of these elements in river sediment was used in order to describe the relationship between sediment, riparian soil and riparian plants. A significant positive correlation (Spearman r, for psoil (r=0.817). A significant correlation between soil and plants (r=0.438) and sediment and plants (r=0.412) was also found for trace metal concentrations. Elevated levels of Cd, Cr, Cu, and Ni were found at certain sites along the Serbian stretch, while elevated concentrations of Hg were also detected in Hungary, of Pb along the Romanian stretch and of As along the Bulgarian stretch (the Lower Danube). These results point to the presence of naturally-occurring metals derived from ore deposits in the Danube River Basin and anthropogenic metals, released by mining and processing of metal ores and other industrial facilities, which are responsible for the entry of metals such as Cu, Ni and Zn. Our results also indicated toxic Cd and Zn levels in plant samples, measured at the Hercegsznato site (Middle Danube, Hungary), which highlighted these elements as a potential limiting factor for riparian vegetation in that area. The distribution of the analysed elements in plant material also indicates the species-specific accumulation of trace metals. Based on our results, the Lower and Middle Danube were found to be more polluted in terms of the analysed elements.

  4. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: the Upper San Pedro, Arizona, United States

    Science.gov (United States)

    Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2015-01-01

    The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P  0·05). NDVI and enhanced vegetation index values were positively correlated (P factor in reducing river flows. Climate change, regional groundwater pumping, changes in the intensity of monsoon rain events and lack of overbank flooding are feasible explanations for deterioration of the riparian forest in the northern reach.

  5. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  6. Non-native plant invasions in managed and protected ponderosa pine/Douglas-fir forests of the Colorado Front Range

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stoker, J.M.; Stohlgren, T.J.

    2003-01-01

    We examined patterns of non-native plant diversity in protected and managed ponderosa pine/Douglas-fir forests of the Colorado Front Range. Cheesman Lake, a protected landscape, and Turkey Creek, a managed landscape, appear to have had similar natural disturbance histories prior to European settlement and fire protection during the last century. However, Turkey Creek has experienced logging, grazing, prescribed burning, and recreation since the late 1800s, while Cheesman Lake has not. Using the modified-Whittaker plot design to sample understory species richness and cover, we collected data for 30 0.1 ha plots in each landscape. Topographic position greatly influenced results, while management history did not. At both Cheesman Lake and Turkey Creek, low/riparian plots had highest native and non-native species richness and cover; upland plots (especially east/west-facing, south-facing and flat, high plots) had the lowest. However, there were no significant differences between Cheesman Lake and Turkey Creek for native species richness, native species cover, non-native species richness, or non-native species cover for any topographic category. In general, non-native species richness and cover were highly positively correlated with native species richness and/or cover (among other variables). In total, 16 non-native species were recorded at Cheesman Lake and Turkey Creek; none of the 16 non-native species were more common at one site than another. These findings suggest that: (1) areas that are high in native species diversity also contain more non-native species; (2) both protected and managed areas can be invaded by non-native plant species, and at similar intensities; and (3) logging, grazing, and other similar disturbances may have less of an impact on non-native species establishment and growth than topographic position (i.e., in lowland and riparian zones versus upland zones).

  7. Limiting the development of riparian vegetation in the Isère River: physical and numerical modelling study

    Science.gov (United States)

    Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément

    2017-04-01

    The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.

  8. Assessing the performance of a riparian vegetation model in a river with a low slope and fine sediment.

    Science.gov (United States)

    Sanjaya, Kelum; Asaeda, Takashi

    2017-03-01

    Riparian ecosystems are threatened worldwide, necessitating conservation strategies. Numerical models tailored for specific geographic areas have been developed as management support tools. However, few models are suitable for multiple river conditions, and developing these models or evaluating their suitability has become an emerging topic. The dynamic riparian vegetation model (DRIPVEM) is a numerical model developed for steep and gravelly Japanese rivers, where it has been successfully tested. Our objective was to assess the performance of DRIPVEM in a river with a low slope and fine sediment, similar to the characteristics of continental rivers. A reach of the Hii River was selected for testing the model's ability to predict the distribution of Salix spp. (willow) and herbs, as well as herb biomass and tree age. The model was calibrated based on field investigations of a selected river section. Simulation of the studied reach was carried out for the past five decades, depending on data availability. Non-parametric tests were used to compare the simulated and observed results. The simulated and observed vegetation distribution maps agreed fairly well and the sensitivity of the model for simulation of trees, herbs and bare areas was greater than 0.6. The kappa coefficients of agreement values were 0.48 and 0.49, indicating fair agreement. Moreover, the simulated biomass and tree age agreed well with observation. We conclude that the DRIPVEM simulated the observed conditions in the Hii River well, indicating that the model is applicable to rivers characterized by low slope and fine sediment grain size.

  9. Response of Riparian Vegetation in AUSTRALIA"S Largest River Basin to Inter and Intra-Annual Climate Variability and Flooding as Quantified with Landsat and Modis

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.

    2016-06-01

    Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km2, as a case study. The MDB is the country's primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999-2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a `boom' and `bust' cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or the

  10. Response of Riparian Vegetation in Australia's Largest River Basin to Inter and Intra-Annual Climate Variability and Flooding as Quantified with Landsat and MODIS

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.

    2015-12-01

    Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km^2, as a case study. The MDB is the country's primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999-2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the sub- continental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a 'boom' and 'bust' cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or

  11. Using remote sensing time series to model the impact of changing flooding regimes on riparian vegetation in Australia's most important river basin

    Science.gov (United States)

    Broich, M.; Tulbure, M. G.; Verbesselt, J.; Xin, Q.

    2016-12-01

    Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB), an area that covers over 1M km2, as a case study. The MDB is the country's primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999-2009). Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images), Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a `boom' and `bust' cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and Okavango River delta in Africa or the

  12. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona)

    Science.gov (United States)

    Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.

    2005-01-01

    The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant

  13. Medium Scale Central Valley Riparian Vegetation and Land Use with Aggregated Delta Veg, 2011 [ds724

    Data.gov (United States)

    California Department of Resources — Geodatabase (SDE) feature class containing map of vegetation along mainstem rivers and major tributaries (including ancillary natural and semi-natural vegetation)...

  14. Release of dissolved phosphorus from riparian vegetated buffer strips: a field assessment of mechanisms and risks

    Science.gov (United States)

    Gruau, Gerard; Gu, Sen; Petitjean, Patrice; Dupas, Rémi; Gascuel-odoux, Chantal; Rumpel, Cornelia

    2017-04-01

    Riparian vegetated buffer strips (RVBS) have been promoted worldwide as a tool to reduce diffused phosphorus (P) emission from agriculture lands, mainly through their ability to retain particulate P. However, RVBSs are zones of periodic water table fluctuations, which may stimulate the transformation and release of particulate P into mobile dissolved P species. In this study, we evaluated how soil characteristics (P content and P speciation), groundwater dynamics and biogeochemical processes interact together to trigger these transformations and releases, by monitoring over three years molybdate reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil solutions from two RVBSs set in a small agricultural catchment located in Western France, as well as in the stream immediately close of these two RVBSs and at the catchment outlet. Two main mechanisms were evidenced that released dissolved P in the studied RVBSs, each under the control of groundwater dynamics, namely soil rewetting during water table rise after dry periods, and reductive dissolution of soil Fe-(hydr)oxides during prolonged soil water saturation. However, both mechanisms were shown to be strongly temporarily and spatially variable, being dependent on the local topographic slope and the amount and frequency of rainfall. In fact, the third monitored year which was characterized by numerous dry episodes during the winter season resulted in the almost total inhibition of the reductive dissolution release process in the steeper of the two monitored RVBSs. Comparison of sites also revealed strong differences in the size of the mobile P pools as well as in the speciation of the released P, which correlated with differences in the status and speciation of P in soils. Finally, P concentration fluctuations and P speciation variations similar to those observed in RVBS soils were observed in the stream both immediately close to the RVBSs and at the outlet of the catchment, demonstrating the

  15. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup;

    2016-01-01

    to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained......There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase...

  16. Effects of riparian vegetation on topographic change during a large flood event, Rio Puerco, New Mexico, USA

    Science.gov (United States)

    Perignon, M. C.; Tucker, G.E.; Griffin, Eleanor R.; Friedman, Jonathan M.

    2013-01-01

    The spatial distribution of riparian vegetation can strongly influence the geomorphic evolution of dryland rivers during large floods. We present the results of an airborne lidar differencing study that quantifies the topographic change that occurred along a 12 km reach of the Lower Rio Puerco, New Mexico, during an extreme event in 2006. Extensive erosion of the channel banks took place immediately upstream of the study area, where tamarisk and sandbar willow had been removed. Within the densely vegetated study reach, we measure a net volumetric change of 578,050 ± ∼ 490,000 m3, with 88.3% of the total aggradation occurring along the floodplain and channel and 76.7% of the erosion focusing on the vertical valley walls. The sediment derived from the devegetated reach deposited within the first 3.6 km of the study area, with depth decaying exponentially with distance downstream. Elsewhere, floodplain sediments were primarily sourced from the erosion of valley walls. Superimposed on this pattern are the effects of vegetation and valley morphology on sediment transport. Sediment thickness is seen to be uniform among sandbar willows and highly variable within tamarisk groves. These reach-scale patterns of sedimentation observed in the lidar differencing likely reflect complex interactions of vegetation, flow, and sediment at the scale of patches to individual plants.

  17. Investigation of the impact of climate change on river water temperature: possible mitigation measures using riparian vegetation

    Science.gov (United States)

    Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Kalny, Gerda; Rauch, Hans Peter; Leidinger, David

    2016-04-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influence the sensitive and latent heat flux. The present study investigates the influence of climate change on water temperature of streams and the potential of riparian vegetation to mitigate its effects. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz were performed from spring 2012 until autumn 2014. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity were carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. This time period also includes the heat episode of summer 2013 during which the highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. The influence of riparian vegetation on water temperature, leading to lower water temperature by shading, is also detectable

  18. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  19. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi; Neale, Christopher M.U; Cosh, Michael H.

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  20. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    Science.gov (United States)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  1. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    Science.gov (United States)

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.

  2. Prioritising the placement of riparian vegetation to reduce flood risk and end-of-catchment sediment yields: Important considerations in hydrologically-variable regions.

    Science.gov (United States)

    Croke, Jacky; Thompson, Chris; Fryirs, Kirstie

    2017-04-01

    In perennial stream settings, there is abundant literature confirming that riparian vegetation affects flood hydrology by attenuating the flood wave, enhancing deposition and reducing bank erosion. In contrast, relatively little is known about the effectiveness of riparian vegetation during floods in hydrologically-variable regions. The dominant channel form in these settings is often referred to as a 'macrochannel' or compound channel-in-channel which displays multiple inundation surfaces where it is often difficult to identify the active channel bank and bank top. This study uses the inundation pattern of recent flood events in the Lockyer Valley of South East Queensland (SEQ), Australia to present a framework which specifically considers the interaction between inundation frequency and trapping potential on a range of inundation surfaces. Using hydrological modelling and a consistent definition of floodplains and within-channel features, it outlines five key priority areas for the placement of riparian vegetation to alleviate common flood problems within the catchment. The highest priority for the placement of riparian vegetation to ameliorate the effects of small-moderate floods is on within-channel benches. For out-of-macrochannel flows, riparian vegetation is most effective on genetic floodplains which occupy the largest spatial extent within the valley. In particular, it identifies the need for, and benefits of, revegetation in spill out zones (SOZ) which occur where upstream channel capacity is larger and flow is funnelled at high velocity onto the floodplain downstream. This study highlights the importance of understanding the key geomorphic processes occurring within a catchment and developing effective catchment management plans to suit these conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  4. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Science.gov (United States)

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  5. NATIVE VS NON-NATIVE ENGLISH TEACHERS

    Directory of Open Access Journals (Sweden)

    Masrizal Masrizal

    2013-02-01

    Full Text Available Although the majority of English language teachers worldwide are non-native English speakers (NNS, no research was conducted on these teachers until recently. A pioneer research by Peter Medgyes in 1994 took quite a long time until the other researchers found their interests in this issue. There is a widespread stereotype that a native speaker (NS is by nature the best person to teach his/her foreign language. In regard to this assumption, we then see a very limited room and opportunities for a non native teacher to teach language that is not his/hers. The aim of this article is to analyze the differences among these teachers in order to prove that non-native teachers have equal advantages that should be taken into account. The writer expects that the result of this short article could be a valuable input to the area of teaching English as a foreign language in Indonesia.

  6. The Hydrological Regimes Brought by the Three Gorges Project Affected Riparian Vegetation Distribution and Diversity in 2009 and 2010

    Science.gov (United States)

    Miao, Ling-Feng; Liu, Wei-Wei; Yang, Fan

    2017-01-01

    Post-dam riparian vegetations affected by the new hydrological regimes in the Three Gorges Reservoir (TGR) were investigated in 2009 and 2010, respectively. The investigation in 2009 showed that about 231 vascular plant species belonging to 169 genera of 61 families were distributed in the water-level-fluctuation zone (WLFZ) of the (TGR). Three vegetation types, including Chuanjiang, Gorge, and other vegetation types, were classified efficiently via cluster analysis. Alpha diversity analysis indicated that species richness gradually decreased with decreasing elevation. Beta diversity analysis indicated that high environment heterogeneity was existed between the lower section and the other two sections, and environment homogeneity was also existed between middle section and upper section. Using the analysis of the field growth in the 2009 and 2010 field surveys as bases, we proposed a list of perennial herb species and woody species that may potentially occurred in the WLFZ of the TGR. In addition, we predicted plant community structural changes in the different altitude sections of WLFZ in the future.

  7. What matters most: Are summer stream temperatures more sensitive to changing air temperature, changing discharge, or changing riparian vegetation under future climates?

    Science.gov (United States)

    Diabat, M.; Haggerty, R.; Wondzell, S. M.

    2012-12-01

    We investigated stream temperature responses to changes in both air temperature and stream discharge projected for 2040-2060 from downscaled GCMs and changes in the height and canopy density of streamside vegetation. We used Heat Source© calibrated for a 37 km section of the Middle Fork John Day River located in Oregon, USA. The analysis used the multiple-variable-at-a-time (MVAT) approach to simulate various combinations of changes: 3 levels of air warming, 5 levels of stream flow (higher and lower discharges), and 6 types of streamside vegetation. Preliminary results show that, under current discharge and riparian vegetation conditions, projected 2 to 4 °C increase in air temperature will increase the 7-day Average Daily Maximum Temperature (7dADM) by 1 to 2 °C. Changing stream discharge by ±30% changes stream temperature by ±0.5 °C, and the influence of changing discharge is greatest when the stream is poorly shaded. In contrast, the 7dADM could change by as much as 11°C with changes in riparian vegetation from unshaded conditions to heavily shaded conditions along the study section. The most heavily shaded simulations used uniformly dense riparian vegetation over the full 37-km reach, and this vegetation was composed of the tallest trees and densest canopies that can currently occur within the study reach. While this simulation represents an extreme case, it does suggest that managing riparian vegetation to substantially increase stream shade could decrease 7dADM temperatures relative to current temperatures, even under future climates when mean air temperatures have increased from 2 to 4 °C.

  8. Dynamic simulation of vegetation abundance in a reservoir riparian zone using a sub-pixel Markov model

    Science.gov (United States)

    Gong, Zhaoning; Cui, Tianxiang; Pu, Ruiliang; Lin, Chuan; Chen, Yuzhu

    2015-03-01

    Vegetation abundance is a significant indicator for measuring the coverage of plant community. It is also a fundamental data for the evaluation of a reservoir riparian zone eco-environment. In this study, a sub-pixel Markov model was introduced and applied to simulate dynamics of vegetation abundance in the Guanting Reservoir Riparian zone based on seven Landsat Thematic Mapper/Enhanced Thematic Mapper Plus/Operational Land Imager data acquired between 2001 and 2013. Our study extended Markov model's application from a traditional regional scale to a sub-pixel scale. Firstly, Linear Spectral Mixture Analysis (LSMA) was used to obtain fractional images with a five-endmember model consisting of terrestrial plants, aquatic plants, high albedo, low albedo, and bare soil. Then, a sub-pixel transitive probability matrix was calculated. Based on the matrix, we simulated statuses of vegetation abundance in 2010 and 2013, which were compared with the results created by LSMA. Validations showed that there were only slight differences between the LSMA derived results and the simulated terrestrial plants fractional images for both 2010 and 2013, while obvious differences existed for aquatic plants fractional images, which might be attributed to a dramatically diversity of water level and water discharge between 2001 and 2013. Moreover, the sub-pixel Markov model could lead to an RMSE (Root Mean Square Error) of 0.105 and an R2 of 0.808 for terrestrial plants, and an RMSE of 0.044 and an R2 of 0.784 for aquatic plants in 2010. For the simulated results with the 2013 image, an RMSE of 0.126 and an R2 of 0.768 could be achieved for terrestrial plants, and an RMSE of 0.086 and an R2 of 0.779 could be yielded for aquatic plants. These results suggested that the sub-pixel Markov model could yield a reasonable result in a short period. Additionally, an analysis of dynamics of vegetation abundance from 2001 to 2020 indicated that there existed an increasing trend for the average

  9. Value of Riparian Vegetation Remnants for Leaf-Litter Ants (Hymenoptera: Formicidae) in a Human-Dominated Landscape in Central Veracruz, Mexico.

    Science.gov (United States)

    García-Martínez, Miguel Á; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela; Valenzuela-González, Jorge E

    2015-12-01

    Riparian remnants are linear strips of vegetation immediately adjacent to rivers that may act as refuges for biodiversity, depending on their habitat quality. In this study, we evaluated the role of riparian remnants in contributing to the diversity of leaf-litter ants by determining the relationship between ant diversity and several riparian habitat characteristics within a human-dominated landscape in Veracruz, Mexico. Sampling was carried out in 2012 during both dry and rainy seasons at 12 transects 100 m in length, where 10 leaf-litter samples were collected along each transect and processed with Berlese-Tullgren funnels and Winkler sacks. A total of 8,684 individuals belonging to 53 species, 22 genera, and seven subfamilies were collected. The observed mean alpha diversity accounted for 34.4% of the total species recorded and beta diversity for 65.6%. Species richness and composition were significantly related to litter-layer depth and soil compaction, which could limit the distribution of ant species depending on their nesting, feeding, and foraging habits. Riparian remnants can contribute toward the conservation of ant assemblages and likely other invertebrate communities that are threatened by anthropogenic pressures. In human-dominated landscapes where remnants of riparian vegetation give refuge to a diverse array of myrmecofauna, the protection of the few remaining and well-preserved riparian sites is essential for the long-term maintenance of biodiversity. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  11. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  12. The interrelationship of riparian vegetation and water temperature demonstrated with field data measurements and analysis of the rivers Pinka and Lafnitz

    Science.gov (United States)

    Holzapfel, Gerda; Rauch, Hans Peter; Weihs, Philipp; Trimmel, Heidelinde

    2015-04-01

    Riparian vegetation is an important part of riverine system and plays a key role in terms of eco-sustainable streams, which consequently also affect the water driven erosion processes and flooding from an engineering point of view. Furthermore it is a crucial prerequisite for intact and balanced terrestrial and aquatic ecosystems. Due to intensive anthropogenic impacts, especially in lowlands, streams in Central Europe were strongly influenced and set to a moderate ecological status. Riverine forests changed to settlements or agricultural areas and so important functions of the riparian vegetation, such as shading decreased. Consequently, stream warming occurs and has an impact on the water quality of small and moderate sized streams. The objective of this study is to correlate different vegetation parameters and the river water temperature. The study was carried out in the Pinka and Lafnitz river catchments, located in the Austrian provinces Styria and Burgenland. Both rivers are medium sized lowland rivers of the "Hungarian Plains". Digital aerial photograph analysis and field measurements are the basement of the vegetation analysis. Water temperature was measured at several points along both rivers. Data were sampled every hour from July 2012 until September 2013. For the water temperature measurements HOBO Pendant Temperature/Light Data Logger 8K * UA-002-08 were used. The results show that there is a correlation between water temperature and riparian vegetation parameter depending on the temporal and spatial scale. There is a verifiable difference in daily water temperature range (6.7° to 3.5°) of different vegetation stands in contrast to unshaded areas. Also the peak time of the daily water temperature is different comparing high shaded areas with unshaded areas. The results confirm that the riparian vegetation has a significantly impact on the water temperature specifically at low water conditions and demonstrate the need for more in depth studies of this

  13. Non-natives: 141 scientists object

    OpenAIRE

    Simberloff, D.; van der Putten, W. H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. Jake Alexander Institute of Integrative Biology, Zurich, Switzerland. Fred Allendorf University of Montana, Missoula, Montana, USA. James Aronson CEFE/CNRS, Montpellier, France. Pedro M. Antunes Algoma University, Sault Ste. Marie, Onta...

  14. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: a case study in the Yellow River wetland in China.

    Science.gov (United States)

    Zhao, Tongqian; Xu, Huashan; He, Yuxiao; Tai, Chao; Meng, Hongqi; Zeng, Fanfu; Xing, Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K(15)NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.

  15. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: A case study in the Yellow River wetland in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tongqian; XU Huashan; HE Yuxiao; TAI Chao; MENG Hongqi; ZENG Fanfu; XING Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Lima, 0.036 mg/g for Scirpus triqueter Liun, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K15NO3 to the tested vegetation, nitrogen content was 77.78% for P. Communis Trin, 68.75% for T. Angustifolia, and 8.33% for S. Triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. Communis Trin, 72.22% for S. Triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. Communis Trin (9.731 mg/g)>old P. Communis Trin (4.939 mg/g)>S. Triqueter (0.620 mg/g)>T. Angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.

  16. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  17. Hydraulic, Vegetation and Water Quality Characteristics of Heavily Vegetated Groundwater-Fed Ditches in a Riparian Peatland in Northern Germany

    Science.gov (United States)

    Scholz, M.; Olson, M. S.; Trepel, M.

    2003-12-01

    The Environmental Ministry of Schleswig-Holstein (Northern Germany) has implemented a novel peatland management strategy in order to use the high nutrient retention potential of degenerated wetlands and peatlands, and to improve the habitat conditions at the same time. The effect of raised water levels and passive land use management on hydraulic properties and water quality of heavily vegetated and groundwater-fed ditches at one nationally important wetland case study at the Eider River valley was investigated. Most ditches in the Eider River valley were small and overgrown. The flow properties of selected ditches were regularly assessed at different discharge levels during different vegetation cover periods. The hydraulic residence is predominantly a function of the ditch geometry and overall obstruction cover including the presence of macrophytes. Vegetation cover and other hydraulic obstructions such as accumulated silt and organic debris slow down the hydraulic residence time and lead to a change in the water quality along the ditch. Experimental results were evaluated to get more realistic values for total bed-roughness and pollution loading under different hydraulic flow regimes. The total-roughness Km values of both vegetated and excavated ditch stretches were about 1 and 10, respectively. However, Km is actually a crude "fudge factor" depending predominantly on the hydraulic radius rather than on the total-roughness. This is in contrast to the theory presented in the literature. The biochemical oxygen demand and nutrient concentrations of 24 ditches were analyzed. Mean biochemical oxygen demand, ammonia, nitrite, nitrate and ortho-phosphate concentrations were 6.0 (+/-2.74), 0.2 (+/-0.44), 0.0 (+/-0.02), 1.6 (+/-2.04) and 0.0 (+/-0.02) mg/L, respectively. Elevated biochemical oxygen demand and nitrate concentrations for upstream ditch cross-sections were apparent.

  18. Managing riparian zone vegetation to sustain streamflow: results of paired catchment experiments in South Africa

    CSIR Research Space (South Africa)

    Scott, DF

    1999-07-01

    Full Text Available of the copyright owner. Further reproduction prohibited without permission. Managing reparian zone vegetation to sustain streamflow: Results of paired c... David F Scott Canadian Journal of Forest Research; Jul 1999; 29, 7; ProQuest Agriculture Journals pg. 1149...

  19. Hydrologic, soil, and vegetation gradients in remnant and constructed riparian wetlands in west-central Missouri, 2001-04

    Science.gov (United States)

    Heimann, David C.; Mettler-Cherry, Paige A.

    2004-01-01

    A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has

  20. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  1. Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: a scenario analysis

    Science.gov (United States)

    Groundwater is a key driver of riparian condition on dryland rivers but is in high demand for municipal, industrial, and agricultural uses. Approaches are needed to guide decisions that balance human water needs while conserving riparian ecosystems. We developed a space-for-time substitution model ...

  2. Roles of the riparian vegetation: the antagonism between flooding risk and the protection of environments

    Directory of Open Access Journals (Sweden)

    Zanetti Caroline

    2016-01-01

    Full Text Available Since the beginning of the 20th century, man has domesticated his environment and caused the modification of hydraulic conditions during floods. In parallel, civil engineering has strongly progressed in the domain of hydraulic structures but especially the construction of dams and dikes has also massively increased and part of the population has lost the culture of risk by thinking they were completely out of danger from flooding. Events of hydrometeorological origin over the last 25 years has reminded man that the hydraulic infrastructures in place for a few centuries now, are not unalterable. An unmanaged vegetal colonization along the edge of watercourses (protection dikes, retention dams, appointed river banks, ect… can present three types of inconvenience as (i overflow in the case of watercourse containment, (ii formation of woody jams which generate a risk of bridge obstructions or water retention, (iii the presence of trees and their roots which damages the containment systems protecting the territories. It is important to manage the development of this vegetation in order to conserve the positive effects on the area while also limiting the negative impacts. The current boom in vegetation engineering techniques shows that man is relearning how to live as a ‘team” with nature.

  3. Ecophysiological Competence of Populus alba L., Fraxinus angustifolia Vahl., and Crataegus monogyna Jacq. Used in Plantations for the Recovery of Riparian Vegetation

    Science.gov (United States)

    Manzanera, Jose A.; Martínez-Chacón, Maria F.

    2007-12-01

    In many semi-arid environments of Mediterranean ecosystems, white poplar ( Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash ( Fraxinus angustifolia Vahl.) and hawthorn ( Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.

  4. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    Science.gov (United States)

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  5. Influence of riparian vegetation on near-bank flow structure and erosion rates on a large meandering river

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Langendoen, E. J.; Johnson, K.; Ursic, M.

    2012-12-01

    Rates of meander migration are dependent upon dynamic interactions between planform geometry, three-dimensional flow structure, sediment transport, and the erodibility and geotechnical properties of the channel banks and floodplains. Riparian vegetation can greatly reduce the rate of migration through root-reinforcement and increased flow resistance near the bank. In particular, forested riverbanks can also provide large woody debris (LWD) to the channel, and if located near the outer bank, can act to amour the bank by disrupting three-dimensional flow patterns and redirecting flow away from the bank-toe, the locus of erosion in meandering rivers. In this paper, three-dimensional flow patterns and migration rates are compared for two meander bends, one forested and one non-forested, on the Wabash River, near Grayville, Illinois. Flow data were obtained using acoustic Doppler current profilers (ADCP) for two large flow events in May and June 2011. LWD was mapped using a terrestrial LiDAR survey, and residence times for the LWD were estimated by comparing the survey data to time-series aerial photography. Rates of migration and planform evolution were determined through time-series analysis of aerial photography from 1938-2011. Results from this study show that near-bank LWD can have a significant influence on flow patterns through a meander bend and can disrupt helical flow near the outer bank, thereby reducing the effect of the high velocity core on the toe of the bank. Additionally, these effects influence migration rates and the planform evolution of meandering rivers.

  6. Water Tables, Evapotranspiration, and Climate Variability: A Decade of Observations From a Semi-Arid Riparian Ecosystem

    Science.gov (United States)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2009-12-01

    Native (Rio Grande cottonwood) riparian ecosystems in the semi-arid Rio Grande floodplain of central New Mexico are threatened by hydrologic alterations and highly competitive invasive vegetation (saltcedar, Russian olive). Climate change is expected to alter surface runoff in the southwestern United States and exacerbate water scarcity. Depletions are likely to increase in this agricultural riverine corridor downstream of the rapidly growing Albuquerque metropolitan area. Long-term monitoring of shallow alluvial water tables (WTs) and evapotranspiration (ET) in native, non-native, and mixed communities along the river has provided critical information to help understand how water availability affects these ecosystems during a decade of extreme climate variability. Here, we present several observations, with implications for restoration. WTs ranged from several meters depth to flood stage and from relatively stable to highly dynamic, which can influence recruitment of native vegetation and ecosystem functioning. Annual ET declined with deeper WTs across sites, with robust correlations where WTs were dynamic. Riparian communities responded differently to drought cycles and to restorative flooding during peak runoff at the onset of the growing season. Annual ET in a native-dominated system was reduced following removal of non-native understory vegetation, but returned to previous levels when regrowth was left unmanaged. Long-term data are valuable assets that can help optimize efforts to sustain and restore native ecosystems amid the challenges of a changing climate.

  7. Defining the Impact of Non-Native Species

    OpenAIRE

    Jeschke, Jonathan M; Bacher, Sven; Tim M Blackburn; Dick, Jaimie T. A.; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E.; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M.

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward ...

  8. Development of a high-resolution binational vegetation map of the Santa Cruz River riparian corridor and surrounding watershed, southern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel L.; Norman, Laura M.

    2011-01-01

    This report summarizes the development of a binational vegetation map developed for the Santa Cruz Watershed, which straddles the southern border of Arizona and the northern border of Sonora, Mexico. The map was created as an environmental input to the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM) that is being created by the U.S. Geological Survey for the watershed. The SCWEPM is a map-based multicriteria evaluation tool that allows stakeholders to explore tradeoffs between valued ecosystem services at multiple scales within a participatory decision-making process. Maps related to vegetation type and are needed for use in modeling wildlife habitat and other ecosystem services. Although detailed vegetation maps existed for the U.S. side of the border, there was a lack of consistent data for the Santa Cruz Watershed in Mexico. We produced a binational vegetation classification of the Santa Cruz River riparian habitat and watershed vegetation based on NatureServe Terrestrial Ecological Systems (TES) units using Classification And Regression Tree (CART) modeling. Environmental layers used as predictor data were derived from a seasonal set of Landsat Thematic Mapper (TM) images (spring, summer, and fall) and from a 30-meter digital-elevation-model (DEM) grid. Because both sources of environmental data are seamless across the international border, they are particularly suited to this binational modeling effort. Training data were compiled from existing field data for the riparian corridor and data collected by the NM-GAP (New Mexico Gap Analysis Project) team for the original Southwest Regional Gap Analysis Project (SWReGAP) modeling effort. Additional training data were collected from core areas of the SWReGAP classification itself, allowing the extrapolation of the SWReGAP mapping into the Mexican portion of the watershed without collecting additional training data.

  9. Non-native educators in English language teaching

    CERN Document Server

    Braine, George

    2013-01-01

    The place of native and non-native speakers in the role of English teachers has probably been an issue ever since English was taught internationally. Although ESL and EFL literature is awash, in fact dependent upon, the scrutiny of non-native learners, interest in non-native academics and teachers is fairly new. Until recently, the voices of non-native speakers articulating their own concerns have been even rarer. This book is a response to this notable vacuum in the ELT literature, providing a forum for language educators from diverse geographical origins and language backgrounds. In additio

  10. Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature.

    Science.gov (United States)

    Wawrzyniak, Vincent; Allemand, Pascal; Bailly, Sarah; Lejot, Jérôme; Piégay, Hervé

    2017-03-16

    In the context of global warming, it is important to understand the drivers controlling river temperature in order to mitigate temperature increases. A modeling approach can be useful for quantifying the respective importance of the different drivers, notably groundwater inputs and riparian shading which are potentially critical for reducing summer temperature. In this study, we use a one-dimensional deterministic model to predict summer water temperature at an hourly time step over a 21km reach of the lower Ain River (France). This sinuous gravel-bed river undergoes summer temperature increase with potential impacts on salmonid populations. The model considers heat fluxes at the water-air interface, attenuation of solar radiation by riparian forest, groundwater inputs and hydraulic characteristics of the river. Modeling is performed over two periods of five days during the summers 2010 and 2011. River properties are obtained from hydraulic modeling based on cross-section profiles and water level surveys. We model shadows of the vegetation on the river surface using LiDAR data. Groundwater inputs are determined using airborne thermal infrared (TIR) images and hydrological data. Results indicate that vegetation and groundwater inputs can mitigate high water temperatures during summer. Riparian shading effect is fairly similar between the two periods (-0.26±0.12°C and -0.31±0.18°C). Groundwater input cooling is variable between the two studied periods: when groundwater discharge represents 16% of the river discharge, it cools the river down by 0.68±0.13°C while the effect is very low (0.11±0.01°C) when the groundwater discharge contributes only 2% to the discharge. The effect of shading varies through the day: low in the morning and high during the afternoon and the evening whereas those induced by groundwater inputs is more constant through the day. Overall, the effect of riparian vegetation and groundwater inputs represents about 10% in 2010 and 24% in 2011

  11. Changes in soil organic matter compositrion after introduction of riparian vegetation on shores of hydroelectric reservoires (Southeast of Brazil)

    NARCIS (Netherlands)

    Alcantara, de F.A.; Buurman, P.; Curi, N.; Furtini Neto, A.E.; Lagen, van B.; Meijer, E.M.

    2004-01-01

    This work is part of a research program with the general objective of evaluating soil sustainability in areas surrounding hydroelectric reservoirs, which have been planted with riparian forest. The specific aims were: (i) to assess if and how the soil organic matter (SOM) chemical composition has ch

  12. Cactus, Riparian Habitat, and Turf Grass: Water Budget and Policy Implications of Vegetation Change Under Urban Heat Island and Effluent Irrigation in the Southwest U.S.

    Science.gov (United States)

    Scott, C. A.

    2008-12-01

    This paper assesses the impacts of two urban growth drivers--urban heat island (UHI) and effluent irrigation--on the landscaping vegetation component of water budgets in semi-arid southern Arizona, and has policy significance for other urbanizing regions facing water scarcity. Landscaping irrigation, accounting for up to half of the study area's urban water demand, is influenced by vegetation type, UHI temperature and evapotranspiration, and water type (potable or effluent). Conservation programs that have resulted in widespread adoption of low-flow indoor plumbing fixtures and appliances currently identify irrigation of lawns, trees, and other landscaping as targets to reduce water use. At the same time, however, high water-demand turf grass is expanding on golf courses, public parks, and campuses that are irrigated using effluent that historically has supported riparian corridor habitat. Tucson, Arizona's UHI over 1969-2006 is characterized by a 0.043 degC/yr increase in annual average differences between urban - nonurban minimum temperatures (Tmin). The most pronounced trends in urban Tmin increases are 0.097 degC/yr for the months of March, April, May, and June corresponding to the pre- monsoon period of highest outdoor water demand. The UHI Tmax and reference evapotranspiration trends are less marked but indicate increasing irrigation demand for both residential and public landscaping. Normalized difference vegetation index (NDVI) from Landsat Thematic Mapper for 1984-2005 shows that vegetation, particularly turf on golf courses, is increasing in Tucson's expanding urban fringe but has largely stabilized or is marginally decreasing in the urban core. Regression analysis of NDVI with water use (records only available for 2000-2006) shows mixed results. The tradeoff between water conservation for residential landscaping and expanding turf grass on public landscaping at the cost of riparian corridors is explored from dual water budget and policy perspectives.

  13. Non-native speech perception in adverse conditions: A review

    NARCIS (Netherlands)

    Garcia Lecumberri, M.L.; Cooke, M.P.; Cutler, A.

    2010-01-01

    If listening in adverse conditions is hard, then listening in a foreign language is doubly so: non-native listeners have to cope with both imperfect signals and imperfect knowledge. Comparison of native and non-native listener performance in speech-in-noise tasks helps to clarify the role of prior l

  14. Intelligibility of native and non-native Dutch Speech

    NARCIS (Netherlands)

    Wijngaarden, S.J. van

    2001-01-01

    The intelligibility of speech is known to be lower if the speaker is non-native instead of native for the given language. This study is aimed at quantifying the overall degradation due to limitations of non-native speakers of Dutch, specifically of Dutch-speaking Americans who have lived in the Neth

  15. Speech intelligibility of native and non-native speech

    NARCIS (Netherlands)

    Wijngaarden, S.J. van

    1999-01-01

    The intelligibility of speech is known to be lower if the talker is non-native instead of native for the given language. This study is aimed at quantifying the overall degradation due to acoustic-phonetic limitations of non-native talkers of Dutch, specifically of Dutch-speaking Americans who have l

  16. Preparing Non-Native English-Speaking ESL Teachers

    Science.gov (United States)

    Shin, Sarah J.

    2008-01-01

    This article addresses the challenges that non-native English-speaking teacher trainees face as they begin teaching English as a Second Language (ESL) in Western, English-speaking countries. Despite a great deal of training, non-native speaker teachers may be viewed as inadequate language teachers because they often lack native speaker competence…

  17. When the Teacher Is a Non-native Speaker

    Institute of Scientific and Technical Information of China (English)

    Pèter Medgyes

    2005-01-01

    @@ In "When the Teacher is a Non-native Speaker," Medgyes examines the differences in teaching behavior between native and non-native teachers of English, and then specifies the causes of those differences. The aim of the discussion is to raise the awareness of both groups of teachers to their respective strengths and weaknesses, and thus help them become better teachers.

  18. The Non-Native English Speaker Teachers in TESOL Movement

    Science.gov (United States)

    Kamhi-Stein, Lía D.

    2016-01-01

    It has been almost 20 years since what is known as the non-native English-speaking (NNES) professionals' movement--designed to increase the status of NNES professionals--started within the US-based TESOL International Association. However, still missing from the literature is an understanding of what a movement is, and why non-native English…

  19. Multi-Source Remote Sensing to Observe Impacts of Fluctuating Management and Climate on Riparian Vegetation of the Rio Grande: 1935 to 2014

    Science.gov (United States)

    Petrakis, R.; Tashjian, P.; Russo, R. D.; Thomson, B.; Van Leeuwen, W. J. D.

    2015-12-01

    Large rivers of the Southwestern United States are central to both ecological and human communities. Complex relationships exist between water policy, management, and natural ecosystems. The San Acacia Reach of the Rio Grande in central New Mexico, a 50 mile stretch from San Acacia to San Marcial, has experienced multiple management and climate fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. These changes have included channelization of the river, reduced seasonal flooding due to upstream dams and conveyance channels, and varying river flows as a result of drought cycles. Understanding how the location and composition of vegetation has responded to these changes is essential in understanding the larger influence on the riparian vegetation which surrounds the river. This research used remote sensing data, land cover change analysis, GIS, and a review of the on-the-ground management decisions to accomplish the following goals: 1) determine how the channel has changed spatially over time, 2) determine the location and composition of vegetation change, and 3) determine potential linkages between management and the terrestrial and aquatic ecosystems. This research focused on four research periods which provide unique opportunities to observe a direct relationship between river management and land cover change. The periods are: 1) 1935 to 1962, 2) 1962 to 1987, 3) 1987 to 1999, and 4) 1999 to 2014. Initial results show increased invasive vegetation growth in response to early large scale, basin-wide changes in river management. Between 1962 and 1987, invasive forest/woodland land cover increased by more than 250%. However, as a result of restoration efforts over the past 25 years, combined with periods of increased precipitation and an aging ecosystem limiting new growth, native vegetation has responded and invasive vegetation growth has slowed. This has occurred despite a more constricted and incised river channel. Overall

  20. Speech Recognition of Non-Native Speech Using Native and Non-Native Acoustic Models

    Science.gov (United States)

    2000-08-01

    NATIVE AND NON-NATIVE ACOUSTIC MODELS David A. van Leeuwen and Rosemary Orr vanLeeuwentm .tno. nl R. 0rr~kno. azn. nl TNO Human Factors Research...a] is pronounced closer to the [c] by the vowels . Journal of Phonetics, 25:437-470, 1997. 32 [2] D. B. Paul and J. M. Baker. The design for [9] R. H...J. Kershaw, [12] Tony Robinson. Private Communication. L. Lamel, D. A. van Leeuwen , D. Pye, A. J. Robinson, H. J. M. Steeneken, and P. C. Wood- [13

  1. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.

    Science.gov (United States)

    Weissteiner, Christof J; Pistocchi, Alberto; Marinov, Dimitar; Bouraoui, Fayçal; Sala, Serenella

    2014-06-15

    Vegetated riparian areas alongside streams are thought to be effective at intercepting and controlling chemical loads from diffuse agricultural sources entering water bodies. Based on a recently compiled European map of riparian zones and a simplified soil chemical balance model, we propose a new indicator at a continental scale. QuBES (Qualitative indicator of Buffered Emissions to Streams) allows a qualitative assessment of European rivers exposed to pesticide input. The indicator consists of normalised pesticide loads to streams computed through a simplified steady-state fate model that distinguishes various chemical groups according to physico-chemical behaviour (solubility and persistence). The retention of pollutants in the buffer zone is modelled according to buffer width and sorption properties. While the indicator may be applied for the study of a generic emission pattern and for a chemical of generic properties, we demonstrate it to the case of agricultural emissions of pesticides. Due to missing geo-spatial data of pesticide emissions, a total pesticide emission scenario is assumed. The QuBES indicator is easy to calculate and requires far less input data and parameterisation than typical chemical-specific models. At the same time, it allows mapping of (i) riparian buffer permeability, (ii) chemical runoff from soils, and (iii) the buffered load of chemicals to the stream network. When the purpose of modelling is limited to identifying chemical pollution patterns and understanding the relative importance of emissions and natural attenuation in soils and stream buffer strips, the indicator may be suggested as a screening level, cost-effective alternative to spatially distributed models of higher complexity.

  2. Native and Non-Native Perceptions on a Non-Native Oral Discourse in an Academic Setting

    Directory of Open Access Journals (Sweden)

    Kenan Dikilitaş

    2012-07-01

    Full Text Available This qualitative study investigates discourse-level patterns typically employed by a Turkish lecturer based on the syntactic patterns found in the collected data. More specifically, the study aims to reveal how different native and non-native speakers of English perceive discourse patterns used by a non-native lecturer teaching in English. The data gathered from a Turkish lecturer teaching finance, and the interviews both with the lecturer and the students. The lecturer and the students were videotaped and the data was evaluated by content analysis. The results revealed a difference between the way non-native and native speakers evaluate an oral discourse of a non-native lecturer teaching in English. Native speakers of English found the oral performance moderately comprehensible, while non-native speakers found it relatively comprehensible.

  3. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  4. Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýrany Member, Central and Western Bohemian Basin, Czech Republic)

    DEFF Research Database (Denmark)

    Bashforth, Arden Roy; Drábková, Jana; Opluštil, Stanislav;

    2011-01-01

    to avulsion and flooding. Taphonomic observations and multivariate analysis of 41 quadrats containing mostly (par)autochthonous megafloral assemblages reveal that riparian vegetation comprised a collage of monospecific to low-diversity communities, with patchiness prevalent at local and regional scales...

  5. Measuring Phenological Changes due to Defoliation of the Non-Native Species, Saltcedar (Tamarisk) Following Episodic Foliage Removal by the Beetle Diorhabda elongate and Phenological Impacts on Forage Quality for Insectivorous Birds on the Dolores River

    Science.gov (United States)

    Nagler, P. L.; Dennison, P. E.; Hultine, K. R.; van Riper, C.; Glenn, E. P.

    2008-12-01

    feet above the ground at two saltcedar-dominated sap flow sites along the Dolores River. These two sites have both been defoliated by the saltcedar leaf beetle, but in 2007 these sites refoliated at different rates, 0-25 percent and 75 percent respectively. 2008 was a critical year to be able to capture changes in the post-infestation regrowth period (measuring quantity and quality of foliage), rates of change, extent of change, replacement vegetation (canopy components, native vs. non- native, grasses vs. shrubs vs. trees), surface reflectance changes (canopy cover), and avian habitat use. Continued ground and remote sensing estimation of ET will allow assessment of potential water salvage resulting from biocontrol of tamarisk.

  6. Health of native riparian vegetation and its relation to hydrologic conditions along the Mojave River, southern California

    Science.gov (United States)

    Lines, Gregory C.

    1999-01-01

    The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize

  7. The Attitudes and Perceptions of Non-Native English Speaking ...

    African Journals Online (AJOL)

    The Attitudes and Perceptions of Non-Native English Speaking Adults toward Explicit Grammar Instruction. ... to excel in their academic careers, obtain good jobs, and interact well with those who speak English. ... AJOL African Journals Online.

  8. Perceptual assimilation and discrimination of non-native vowel contrasts

    Science.gov (United States)

    Tyler, Michael D.; Best, Catherine T.; Faber, Alice; Levitt, Andrea G.

    2014-01-01

    Research on language-specific tuning in speech perception has focused mainly on consonants, while that on non-native vowel perception has failed to address whether the same principles apply. Therefore, non-native vowel perception was investigated here in light of relevant theoretical models: The Perceptual Assimilation Model (PAM) and the Natural Referent Vowel (NRV) framework. American-English speakers completed discrimination and L1-assimilation (categorization and goodness rating) tests on six non-native vowel contrasts. Discrimination was consistent with PAM assimilation types, but asymmetries predicted by NRV were only observed for single-category assimilations, suggesting that perceptual assimilation might modulate the effects of vowel peripherality on non-native vowel perception. PMID:24923313

  9. Perceptual assimilation and discrimination of non-native vowel contrasts

    OpenAIRE

    2014-01-01

    Research on language-specific tuning in speech perception has focused mainly on consonants, while that on non-native vowel perception has failed to address whether the same principles apply. Therefore, non-native vowel perception was investigated here in light of relevant theoretical models: The Perceptual Assimilation Model (PAM) and the Natural Referent Vowel (NRV) framework. American-English speakers completed discrimination and L1-assimilation (categorization and goodnes...

  10. The role of abstraction in non-native speech perception.

    Science.gov (United States)

    Pajak, Bozena; Levy, Roger

    2014-09-01

    The end-result of perceptual reorganization in infancy is currently viewed as a reconfigured perceptual space, "warped" around native-language phonetic categories, which then acts as a direct perceptual filter on any non-native sounds: naïve-listener discrimination of non-native-sounds is determined by their mapping onto native-language phonetic categories that are acoustically/articulatorily most similar. We report results that suggest another factor in non-native speech perception: some perceptual sensitivities cannot be attributed to listeners' warped perceptual space alone, but rather to enhanced general sensitivity along phonetic dimensions that the listeners' native language employs to distinguish between categories. Specifically, we show that the knowledge of a language with short and long vowel categories leads to enhanced discrimination of non-native consonant length contrasts. We argue that these results support a view of perceptual reorganization as the consequence of learners' hierarchical inductive inferences about the structure of the language's sound system: infants not only acquire the specific phonetic category inventory, but also draw higher-order generalizations over the set of those categories, such as the overall informativity of phonetic dimensions for sound categorization. Non-native sound perception is then also determined by sensitivities that emerge from these generalizations, rather than only by mappings of non-native sounds onto native-language phonetic categories.

  11. A large-scale environmental flow experiment for riparian restoration in the Colorado River delta

    Science.gov (United States)

    Shafroth, Patrick B.; Schlatter, Karen; Gomez-Sapiens, Martha; Lundgren, Erick; Grabau, Matthew R.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Flessa, Karl W.

    2017-01-01

    Managing streamflow is a widely-advocated approach to provide conditions necessary for seed germination and seedling establishment of trees in the willow family (Salicaceae). Experimental flow releases to the Colorado River delta in 2014 had a primary objective of promoting seedling establishment of Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii). We assessed seed germination and seedling establishment of these taxa as well as the non-native tamarisk (Tamarix spp.) and native seepwillow shrubs (Baccharis spp.) in the context of seedling requirements and active land management (land grading, vegetation removal) at 23 study sites along 87 river km. In the absence of associated active land management, experimental flows to the Colorado River delta were minimally successful at promoting establishment of new woody riparian seedlings, except for non-native Tamarix. Our results suggest that the primary factors contributing to low seedling establishment varied across space, but included low or no seed availability in some locations for some taxa, insufficient soil moisture availability during the growing season indicated by deep groundwater tables, and competition from adjacent vegetation (and, conversely, availability of bare ground). Active land management to create bare ground and favorable land grades contributed to significantly higher rates of Salicaceae seedling establishment in a river reach with high groundwater tables. Our results provide insights that can inform future environmental flow deliveries to the Colorado River delta and its ecosystems and other similar efforts to restore Salicaceae taxa around the world.

  12. Hiawatha National Forest Riparian Inventory: A Case Study

    Science.gov (United States)

    Abood, S. A.

    2014-12-01

    Riparian areas are dynamic, transitional ecotones between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Riparian areas offers wildlife habitat and stream water quality, offers bank stability and protects against erosions, provides aesthetics and recreational value, and other numerous valuable ecosystem functions. Quantifying and delineating riparian areas is an essential step in riparian monitoring, riparian management/planning and policy decisions, and in preserving its valuable ecological functions. Previous approaches to riparian areas mapping have primarily utilized fixed width buffers. However, these methodologies only take the watercourse into consideration and ignore critical geomorphology, associated vegetation and soil characteristics. Other approaches utilize remote sensing technologies such as aerial photos interpretation or satellite imagery riparian vegetation classification. Such techniques requires expert knowledge, high spatial resolution data, and expensive when mapping riparian areas on a landscape scale. The goal of this study is to develop a cost effective robust workflow to consistently map the geographic extent and composition of riparian areas within the Hiawatha National Forest boundary utilizing the Riparian Buffer Delineation Model (RBDM) v3.0 and open source geospatial data. This approach recognizes the dynamic and transitional natures of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process and the results would suggests incorporating functional variable width riparian mapping within watershed management planning to improve protection and restoration of valuable riparian functionality and biodiversity.

  13. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  14. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  15. Riparian States

    African Journals Online (AJOL)

    Kenya, the rest of the Nile River riparian countries fall in the category of least developed ... state econo-political and socio-cultural utilisation remains a major challenge. .... Nyukuri, African Centre for Technology Studies (ACTS), Kenya.

  16. Engineering biofuel tolerance in non-native producing microorganisms.

    Science.gov (United States)

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria.

  17. Defining the impact of non-native species.

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; Vilà, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-10-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  18. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  19. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  20. Perceptual assimilation and discrimination of non-native vowel contrasts.

    Science.gov (United States)

    Tyler, Michael D; Best, Catherine T; Faber, Alice; Levitt, Andrea G

    2014-01-01

    Research on language-specific tuning in speech perception has focused mainly on consonants, while that on non-native vowel perception has failed to address whether the same principles apply. Therefore, non-native vowel perception was investigated here in light of relevant theoretical models: the Perceptual Assimilation Model (PAM) and the Natural Referent Vowel (NRV) framework. American-English speakers completed discrimination and native language assimilation (categorization and goodness rating) tests on six nonnative vowel contrasts. Discrimination was consistent with PAM assimilation types, but asymmetries predicted by NRV were only observed for single-category assimilations, suggesting that perceptual assimilation might modulate the effects of vowel peripherality on non-native vowel perception.

  1. Landscape gradients and patchiness in riparian vegetation on a Middle Pennsylvanian braided-river plain prone to flood disturbance (Nýrany Member, Central and Western Bohemian Basin, Czech Republic)

    DEFF Research Database (Denmark)

    Bashforth, Arden Roy; Drábková, Jana; Opluštil, Stanislav

    2011-01-01

    and conglomerate dominate at the four localities studied, but fine-grained intercalations, representing abandoned channels, floodplains, and shallow lakes, yielded rich megafloral and palynological assemblages. Sedimentological evidence indicates that high-energy flow characterized a braided-river plain prone......, and ephemeral mires on distal floodplains. The heterogeneous distribution of riparian plants is consistent with that of modern, disturbance-dominated fluvial environments, although Pennsylvanian species richness was much lower. A review of floristic patterns in latest Middle Pennsylvanian vegetation...

  2. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  3. Vegetation and proximity to the river control amorphous silica storage in a riparian wetland (Biebrza National Park, Poland

    Directory of Open Access Journals (Sweden)

    E. Struyf

    2009-01-01

    Full Text Available Wetlands can modify and control nutrient fluxes between terrestrial and aquatic ecosystems, yet little is known of their potential as biological buffers and sinks in the biogeochemical silica cycle. We investigated the storage of amorphous silica (ASi in a central-European riparian wetland. The variation in storage of ASi in the soil of an undisturbed wetland was significantly controlled by two factors: dominance of sedges and grasses and distance to the river (combined R2=78%. Highest ASi storage was found near the river and in sites with a dominance of grasses and sedges, plants which are well known to accumulate ASi. The management practice of mowing reduced the amount of variation attributed to both factors (R2=51%. Although ASi concentrations in soils were low (between 0.1 and 1% of soil dry weight, ASi controlled the availability of dissolved silica (DSi in the porewater, and thus potentially the exchange of DSi with the nearby river system through both diffusive and advective fluxes. A depth gradient in ASi concentrations, with lower ASi in the deeper layers, indicates dissolution. Our results show that storage and recycling of ASi in wetland ecosystems can differ significantly on small spatial scales. Human management interferes with the natural control mechanisms. Our study demonstrates that wetlands have the potential to modify the fluxes of both DSi and ASi along the land-ocean continuum and supports the hypothesis that wetlands are important ecosystems in the biogeochemical cycling of silica.

  4. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  5. Initial Teacher Training Courses and Non-Native Speaker Teachers

    Science.gov (United States)

    Anderson, Jason

    2016-01-01

    This article reports on a study contrasting 41 native speakers (NSs) and 38 non-native speakers (NNSs) of English from two short initial teacher training courses, the Cambridge Certificate in English Language Teaching to Adults and the Trinity College London CertTESOL. After a brief history and literature review, I present findings on teachers'…

  6. Initial Teacher Training Courses and Non-Native Speaker Teachers

    Science.gov (United States)

    Anderson, Jason

    2016-01-01

    This article reports on a study contrasting 41 native speakers (NSs) and 38 non-native speakers (NNSs) of English from two short initial teacher training courses, the Cambridge Certificate in English Language Teaching to Adults and the Trinity College London CertTESOL. After a brief history and literature review, I present findings on teachers'…

  7. The Ceremonial Elements of Non-Native Cultures.

    Science.gov (United States)

    Horwood, Bert

    1994-01-01

    Explores reasons behind the wrongful adoption of Native American ceremonies by Euro-Americans. Focuses on the need for ceremony, its relevance to environmental education, and the fact that some immigrant cultural traditions neither fit this new land nor value the earth. Suggests how non-Natives can express their connection to the land by creating…

  8. Non-Native University Students' Perception of Plagiarism

    Science.gov (United States)

    Ahmad, Ummul Khair; Mansourizadeh, Kobra; Ai, Grace Koh Ming

    2012-01-01

    Plagiarism is a complex issue especially among non-native students and it has received a lot of attention from researchers and scholars of academic writing. Some scholars attribute this problem to cultural perceptions and different attitudes toward texts. This study evaluates student perception of different aspects of plagiarism. A small group of…

  9. Native Speakers' Perception of Non-Native English Speech

    Science.gov (United States)

    Jaber, Maysa; Hussein, Riyad F.

    2011-01-01

    This study is aimed at investigating the rating and intelligibility of different non-native varieties of English, namely French English, Japanese English and Jordanian English by native English speakers and their attitudes towards these foreign accents. To achieve the goals of this study, the researchers used a web-based questionnaire which…

  10. Empowering Non-Native English Speaking Teachers through Critical Pedagogy

    Science.gov (United States)

    Hayati, Nur

    2010-01-01

    Critical pedagogy is a teaching approach that aims to develop students' critical thinking, political and social awareness, and self esteem through dialogue learning and reflection. Related to the teaching of EFL, this pedagogy holds the potential to empower non native English speaking teachers (NNESTs) when incorporated into English teacher…

  11. Survey of vegetation and its diametric distribution in an area of cerrado sensu stricto and riparian forest fragment at Dois Irmãos stream in the Area of Environmental Protection (APA of Cafuringa, Federal District, Brazil.

    Directory of Open Access Journals (Sweden)

    José Elias de Paula

    2009-09-01

    Full Text Available All individual trees with a diameter at breast height (DBH of over 5cm, as well as the natural succession, were identified in 2,500m2 of the savannah (cerrado sensu stricto area and in 5,000m2 of the “Dois Irmãos” riparian forest vegetation (15º30’19”S and 48º06’18”W. The floristic composition of the cerrado sensu stricto was composed by 100 trees distributed in 25 species, and the riparian forest consisted of 155 trees distributed in 55 species. The natural regeneration was formed with 211 and 287 individuals in the cerrado sensu stricto and riparian forest distributed into 38 and 55 species respectively. The basal areas of the trees occupied 3.40m2.ha-1 in the cerrado sensu stricto and 5.08m2.ha-1 in the riparian forest. The diametric distribution curves for both plant communities, adjusted by the Meyers equation, demonstrated a typical tendency of reversed-J shape with strongly antropic action in the 11 to 17cm diametric classes.

  12. The intelligibility of Lombard speech for non-native listeners.

    Science.gov (United States)

    Cooke, Martin; Lecumberri, Maria Luisa García

    2012-08-01

    Speech produced in the presence of noise--Lombard speech--is more intelligible in noise than speech produced in quiet, but the origin of this advantage is poorly understood. Some of the benefit appears to arise from auditory factors such as energetic masking release, but a role for linguistic enhancements similar to those exhibited in clear speech is possible. The current study examined the effect of Lombard speech in noise and in quiet for Spanish learners of English. Non-native listeners showed a substantial benefit of Lombard speech in noise, although not quite as large as that displayed by native listeners tested on the same task in an earlier study [Lu and Cooke (2008), J. Acoust. Soc. Am. 124, 3261-3275]. The difference between the two groups is unlikely to be due to energetic masking. However, Lombard speech was less intelligible in quiet for non-native listeners than normal speech. The relatively small difference in Lombard benefit in noise for native and non-native listeners, along with the absence of Lombard benefit in quiet, suggests that any contribution of linguistic enhancements in the Lombard benefit for natives is small.

  13. Drivers of Non-Native Aquatic Species Invasions across the ...

    Science.gov (United States)

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m

  14. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  15. Kalispel Non-Native Fish Suppression Project 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

    2008-11-18

    Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public

  16. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  17. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  18. An Assessment of the Vulnerability of Native Phreatophytes to Replacement by Invasive Species in a Mid-Continent Riparian Setting

    Science.gov (United States)

    Shea, J. A.; Bauer, J. P.; Keller, J.; Butler, J. J.; Kluitenberg, G. J.; Whittemore, D. O.; Jin, W.; Loheide, S. P.

    2005-12-01

    In many areas of the Great Plains region of the United States, non-native phreatophytes, particularly the salt cedar (Tamarix spp.) and the Russian olive (Elaeagnus angustifolia L.), have become the dominant riparian-zone vegetation. The factors that contribute to the establishment of invasive species are under investigation at the Larned Research Site (LRS), located in the riparian corridor of the Arkansas River in south-central Kansas. The riparian zone at the LRS consists of native vegetation; the major phreatophytes at the site are the cottonwood (Populus deltoids), willow (Salix spp.), and mulberry (Morus spp.). The LRS has been the focus of extensive research on stream-aquifer interactions, so considerable data have been collected on the shallow groundwater flow system underlying the area. On-site instrumentation includes 18 wells equipped for continuous water-level monitoring, eight neutron-probe access tubes for observation of soil moisture, and a weather station. Inventories of all trees larger than 0.08 m in diameter at breast height (1266 trunks) were conducted in a portion of the LRS in the summers of 2002 and 2005, and sapflow data were collected in the summers of 2003 and 2004. Water-level data from mid-August 2002 to the present show diurnal fluctuations during the growing season superimposed on a general water-level decline. These diurnal fluctuations are a diagnostic indicator of phreatophyte activity, while the declining water levels can be attributed to regional irrigation pumping during periods of little recharge from streamflow. Estimates of groundwater consumption by phreatophytes, obtained using the approach of White (1932), show a year-to-year decrease in water use, associated with a falling water table; however, potential evapotranspiration values calculated from meteorological data did not decrease significantly. Groundwater consumption estimates using the White method are consistent with sapflow and soil-moisture data. In addition

  19. Arboreous vegetation of an alluvial riparian forest and their soil relations: Porto Rico island, Paraná river, Brazil

    Directory of Open Access Journals (Sweden)

    João Batista Campos

    2002-06-01

    Full Text Available The dynamics of alluvial deposits in floodplains forms islands and sandbanks. Deposits frequently accumulate at the river margins and on islands with consequent side growths. One of these sandbanks which started to form in 1952 annexed an area of 12.4ha to the Porto Rico island (53º15’W and 22º45’S. At present a forest fragment of approximately 2.0 ha exists in this place. The structural analysis of arboreous vegetation of this fragment showed a floristic gradient related to the physical and chemical variations of the substratum. High density of pioneer species associated to the absence of recruitment of new individuals of these and other successional categories indicated that the forest was impaired in its succession process. This fact could be associated with constant disturbances caused by cattle in the area.A dinâmica de deposições aluviais em planícies de inundação proporciona a formação de ilhas e barras (bancos de areia, que muitas vezes agregam-se às margens dos rios ou ilhas propiciando o seu crescimento lateral. Uma dessas barras, com início de formação a partir de 1952, agregou a ilha Porto Rico (53º15’W e 22º45’S uma área de 12,40ha, onde existe, atualmente, um fragmento florestal de aproximadamente 2,0ha. A análise estrutural da vegetação arbórea desse fragmento mostra a presença de um gradiente florístico relacionado às variações físicas e químicas do substrato. A elevada densidade de espécies pioneiras, associada a ausência de recrutamento de novos indivíduos, dessas e de outras categorias sucessionais, indicam que esta floresta está limitada em seu processo de sucessão, podendo, este fato, estar associado às constantes perturbações provocada pela presença de gado na área.

  20. Physical and vegetative characteristics of a relocated stream reach, constructed wetland, and riparian buffer, Upper Saucon Township, Lehigh County, Pennsylvania, 2000-04

    Science.gov (United States)

    Chaplin, Jeffrey J.; White, Kirk E.; Loper, Connie A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Pennsylvania Department of Transportation, Engineering District 5-0, investigated physical and vegetative changes within a relocated stream reach, constructed wetland, and riparian buffer from September 2000 to October 2004. This report presents an evaluation of data collected using methods from multiple sources that have been adapted into a consistent approach. This approach is intended to satisfy a need for consistent collection of different types of data with the goal of transferring technology and findings to similar projects. Survey data indicate that adjustment of the upstream part of the relocated stream reach slowed over the monitoring period, but the downstream channel remains unstable as evidenced by excessive deposition. Upstream migration of a nick point has slowed or stopped altogether as of the 2003 assessment when this feature came in contact with the upstream-most part of the channel that is lined with riprap. Documented streambed erosion in the upstream cross sections, along with deposition downstream, has resulted in an overall decrease in slope of the stream channel over the monitoring period. Most streambed erosion took place prior to the 2002 assessment when annual mean streamflows were less than those in the final 2 years of monitoring. An abundance of fine sediment dominates the substrate of the relocated channel. Annual fluctuations of large particles within each cross section demonstrates the capacity of the relocated channel to transport the entire range of sediment. The substrate within the 0.28-acre constructed wetland (a mixture of soil from an off-site naturally occurring wetland and woodchips) supported a hydrophytic-vegetation community throughout the investigation. Eleocharis obtusa (spike rush), an obligate-wetland herb, was the most prevalent species, having a maximum areal cover of 90 percent in fall 2001 and a minimum of 23 percent in fall 2004. Drought-like conditions in water

  1. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J. Boone

    2002-09-17

    aquatic habitats and associated riparian functions; (2) a means of determining rates of aquatic habitat improvement; and (3) a basis for projecting future trends of habitat recovery. The proposed research is intended to provide an improved understanding of both the effects and effectiveness of a commonly used habitat enhancement approach in the upper Columbia River Basin. This is the exclusion of domestic livestock from streamside communities and streams via corridor fencing (exclosures). This final report is broken into three separate chapters. The first chapter covers the vegetation change associated with livestock exclusion. The second chapter focuses on the physical geomorphic changes to the streambank and channel. The final chapter covers the response of salmonids and warmwater fishes to livestock exclusion at the spatial scales of exclosures as is commonly constructed today. It is expected that this study will provide an important scientific basis, currently lacking, for understanding the ecological principles of restoration/enhancement of sustainable aquatic habitats for salmonids. Thus, the results of this work are likely to have important ramifications for habitat improvement projects within and beyond the general geographic region of northeastern Oregon.

  2. Plot- and landscape-level changes in climate and vegetation following defoliation of exotic saltcedar (Tamarix sp.) from the biocontrol agent Diorhabda carinulata along a stream in the Mojave Desert (USA)

    Science.gov (United States)

    Bateman, H.L.; Nagler, P.L.; Glenn, E.P.

    2013-01-01

    The biocontrol agent, northern tamarisk beetle (Diorhabda carinulata), has been used to defoliate non-native saltcedar (Tamarix spp.) in USA western riparian systems since 2001. Biocontrol has the potential to impact biotic communities and climatic conditions in affected riparian areas. To determine the relationships between biocontrol establishment and effects on vegetation and climate at the plot and landscape scales, we measured temperature, relative humidity, foliage canopy, solar radiation, and used satellite imagery to assess saltcedar defoliation and evapotranspiration (ET) along the Virgin River in the Mojave Desert. Following defoliation solar radiation increased, daily humidity decreased, and maximum daily temperatures tended to increase. MODIS and Landsat satellite imagery showed defoliation was widespread, resulting in reductions in ET and vegetation indices. Because biocontrol beetles are spreading into new saltcedar habitats on arid western rivers, and the eventual equilibrium between beetles and saltcedar is unknown, it is necessary to monitor trends for ecosystem functions and higher trophic-level responses in habitats impacted by biocontrol.

  3. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  4. Defining the Impact of Non-Native Species

    Science.gov (United States)

    Jeschke, Jonathan M; Bacher, Sven; Blackburn, Tim M; Dick, Jaimie T A; Essl, Franz; Evans, Thomas; Gaertner, Mirijam; Hulme, Philip E; Kühn, Ingolf; Mrugała, Agata; Pergl, Jan; Pyšek, Petr; Rabitsch, Wolfgang; Ricciardi, Anthony; Richardson, David M; Sendek, Agnieszka; VilÀ, Montserrat; Winter, Marten; Kumschick, Sabrina

    2014-01-01

    Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los

  5. Modeled riparian stream shading: Agreement with field measurements and sensitivity to riparian conditions

    Science.gov (United States)

    Li, Guoyuan; Jackson, C. Rhett; Kraseski, Kristin A.

    2012-03-01

    SummaryShading by riparian vegetation and streambanks reduces incident solar radiation on channels, and accurate estimation of riparian shading through the sun's daily arc is a critical aspect of water temperature and dissolved oxygen modeling. However, riparian trees exhibit complex shapes, often leaning and growing branches preferentially over channels to utilize the light resource. As a result, riparian vegetation cast complex shadows with significant variability at the scale of meters. Water quality models necessarily simplify factors affecting shading at the expense of accuracy. All models must make simplifying assumptions about tree geometry. Reach-based models must average channel azimuth and riparian conditions over each reach, and GIS models must also accept errors in the channel-riparian relationships caused by the DEM grid detail. We detail minor improvements to existing shade models and create a model (SHADE2) that calculates shading ratio (%) by riparian canopy at any time and location for given stream characteristics including stream azimuth, stream width, canopy height, canopy overhang, and height of maximum canopy overhang. Sensitivity of simulated shade to these variables is explored. We also present a new field photographic technique for quantifying shade and use this technique to provide data to test the SHADE2 algorithm. Twenty-four independent shade measurements were made in eight channels with mature hardwood riparian trees at different times of the summer and at different times of the day. Agreement between measured and modeled shade was excellent, with r2 of 0.90.

  6. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    Directory of Open Access Journals (Sweden)

    Mark W Chynoweth

    Full Text Available Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI. Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  7. EMPOWERING NON-NATIVE ENGLISH SPEAKING TEACHERS THROUGH CRITICAL PEDAGOGY

    Directory of Open Access Journals (Sweden)

    Nur Hayati

    2010-02-01

    Full Text Available Critical pedagogy is a teaching approach that aims to develop students’ critical thinking, political and social awareness, and self esteem through dialogue learning and reflection. Related to the teaching of EFL, this pedagogy holds the potential to empower non native English speaking teachers (NNESTs when incorporated into English teacher education programs. It can help aspiring NNESTs to grow awareness of the political and sociocultural implications of EFL teaching, to foster their critical thinking on any concepts or ideas regarding their profession, and more importantly, to recognize their strengths as NNESTs. Despite the potential, the role of critical pedagogy in improving EFL teacher education program in Indonesia has not been sufficiently discussed. This article attempts to contribute to the discussion by looking at a number of ways critical pedagogy can be incorporated in the programs, the rationale for doing so, and the challenges that might come on the way.

  8. Free classification of American English dialects by native and non-native listeners.

    Science.gov (United States)

    Clopper, Cynthia G; Bradlow, Ann R

    2009-10-01

    Most second language acquisition research focuses on linguistic structures, and less research has examined the acquisition of sociolinguistic patterns. The current study explored the perceptual classification of regional dialects of American English by native and non-native listeners using a free classification task. Results revealed similar classification strategies for the native and non-native listeners. However, the native listeners were more accurate overall than the non-native listeners. In addition, the non-native listeners were less able to make use of constellations of cues to accurately classify the talkers by dialect. However, the non-native listeners were able to attend to cues that were either phonologically or sociolinguistically relevant in their native language. These results suggest that non-native listeners can use information in the speech signal to classify talkers by regional dialect, but that their lack of signal-independent cultural knowledge about variation in the second language leads to less accurate classification performance.

  9. Riparian forestry management and adult stream insects

    Directory of Open Access Journals (Sweden)

    R. A. Briers

    2004-01-01

    Full Text Available The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of adult stages through alteration of microclimate, habitat structure and potential food sources, in addition to effects carried over from larval stages. Here, current riparian management strategies are analysed in the light of available information on the ecology of adult stream insects. On the whole, management practices appear to favour adult stream insects, although an increase in tree cover in riparian areas could be beneficial, by providing more favourable microclimatic conditions for adults. This conclusion is drawn based on rather limited information, and the need for further research into the effects of riparian forestry management on adult stream insects is highlighted. Keywords: microclimate, plantation, life history, riparian vegetation

  10. Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska

    Science.gov (United States)

    Conway, Alexandra J.; Jean, Mélanie

    2017-01-01

    Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector. PMID:28158284

  11. Using the Speech Transmission Index to predict the intelligibility of non-native speech

    Science.gov (United States)

    van Wijngaarden, Sander J.; Steeneken, Herman J. M.; Houtgast, Tammo; Bronkhorst, Adelbert W.

    2002-05-01

    The calibration of the Speech Transmission Index (STI) is based on native speech, presented to native listeners. This means that the STI predicts speech intelligibility under the implicit assumption of fully native communication. In order to assess effects of both non-native production and non-native perception of speech, the intelligibility of short sentences was measured in various non-native scenarios, as a function of speech-to-noise ratio. Since each speech-to-noise ratio is associated with a unique STI value, this establishes the relation between sentence intelligibility and STI. The difference between native and non-native intelligibility as a function of STI was used to calculate a correction function for the STI for each separate non-native scenario. This correction function was applied to the STI ranges corresponding to certain intelligibility categories (bad-excellent). Depending on the proficiency of non-native talkers and listeners, the category boundaries were found to differ from the standard (native) boundaries by STI values up to 0.30 (on the standard 0-1 scale). The corrections needed for non-native listeners are greater than for non-native talkers with a similar level of proficiency. For some categories of non-native communicators, the qualification excellent requires an STI higher than 1.00, and therefore cannot be reached.

  12. Emotion and lying in a non-native language.

    Science.gov (United States)

    Caldwell-Harris, Catherine L; Ayçiçeği-Dinn, Ayşe

    2009-03-01

    Bilingual speakers frequently report experiencing greater emotional resonance in their first language compared to their second. In Experiment 1, Turkish university students who had learned English as a foreign language had reduced skin conductance responses (SCRs) when listening to emotional phrases in English compared to Turkish, an effect which was most pronounced for childhood reprimands. A second type of emotional language, reading out loud true and false statements, was studied in Experiment 2. Larger SCRs were elicited by lies compared to true statements, and larger SCRs were evoked by English statements compared to Turkish statements. In contrast, ratings of how strongly participants felt they were lying showed that Turkish lies were more strongly felt than English lies. Results suggest that two factors influence the electrodermal activity elicited when bilingual speakers lie in their two languages: arousal due to emotions associated with lying, and arousal due to anxiety about managing speech production in non-native language. Anxiety and emotionality when speaking a non-naive language need to be better understood to inform practices ranging from bilingual psychotherapy to police interrogation of suspects and witnesses.

  13. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  14. Native and Non-Native English Language Teachers

    Directory of Open Access Journals (Sweden)

    Ian Walkinshaw

    2014-05-01

    Full Text Available The English language teaching industry in East and Southeast Asia subscribes to an assumption that native English-speaking teachers (NESTs are the gold standard of spoken and written language, whereas non-native English-speaking teachers (non-NESTs are inferior educators because they lack this innate linguistic skill. But does this premise correspond with the views of second language learners? This article reports on research carried out with university students in Vietnam and Japan exploring the advantages and disadvantages of learning English from NESTs and non-NESTs. Contrary to the above notion, our research illuminated a number of perceived advantages—and disadvantages—in both types of teachers. Students viewed NESTs as models of pronunciation and correct language use, as well as being repositories of cultural knowledge, but they also found NESTs poor at explaining grammar, and their different cultures created tension. Non-NESTs were perceived as good teachers of grammar, and had the ability to resort to the students’ first language when necessary. Students found classroom interaction with non-NESTs easier because of their shared culture. Non-NESTs’ pronunciation was often deemed inferior to that of NESTs, but also easier to comprehend. Some respondents advocated learning from both types of teachers, depending on learners’ proficiency and the skill being taught.

  15. Effects of training on learning non-native speech contrasts

    Science.gov (United States)

    Sinnott, Joan M.

    2002-05-01

    An animal psychoacoustic procedure was used to train human listeners to categorize two non-native phonemic distinctions. In Exp 1, Japanese perception of the English liquid contrast /r-l/ was examined. In Exp 2, American-English perception of the Hindi dental-retroflex contrast /d-D/was examined. The training methods were identical in the two studies. The stimuli consisted of 64 CVs produced by four different native talkers (two male, two female) using four different vowels. The procedure involved manually moving a lever to make either a ``go-left'' or ``go-right'' response to categorize the stimuli. Feedback was given for correct and incorrect responses after each trial. After 32 training sessions, lasting about 8 weeks, performance was analyzed using both percent correct and response time as measures. Results showed that the Japanese listeners, as a group, were statistically similar to a group of native listeners in categorizing the liquid contrast. In contrast, the Amercan-English listeners were not nativelike in categorizing the dental-retroflex contrast. Hypotheses for the different results in the two experiments are discussed, including possible subject-related variables. In addition, the use of an animal model is proposed to objectively ``calibrate'' the psychoacoustic salience of various phoneme contrasts used in human speech.

  16. Birds of the riparian corridors of Potchefstroom, South Africa / Rindert Wyma

    OpenAIRE

    Wyma, Rindert

    2012-01-01

    A riparian ecosystem is the area between the aquatic and terrestrial setting of a stream, and serves as a corridor and habitat for birds. Several riparian ecosystems are located in urban environments, and three main riparian corridors are located in Potchefstroom. They are the Mooi River, Wasgoed Spruit, and Spitskop Spruit, which encompass a wide range of different vegetation types and anthropogenic factors. Therefore, different habitat types for birds occur along the riparian corridors of P...

  17. Modern Greek Language: Acquisition of Morphology and Syntax by Non-Native Speakers

    Science.gov (United States)

    Andreou, Georgia; Karapetsas, Anargyros; Galantomos, Ioannis

    2008-01-01

    This study investigated the performance of native and non native speakers of Modern Greek language on morphology and syntax tasks. Non-native speakers of Greek whose native language was English, which is a language with strict word order and simple morphology, made more errors and answered more slowly than native speakers on morphology but not…

  18. 75 FR 60405 - Lincoln National Forest, New Mexico, Integrated Non-Native Invasive Plant Project

    Science.gov (United States)

    2010-09-30

    ... Forest Service Lincoln National Forest, New Mexico, Integrated Non-Native Invasive Plant Project AGENCY... control spread of non- native invasive plants (NNIP) within the LNF. The proposal utilizes several... methods, and adaptive management. Invasive plants designated by the State of New Mexico as noxious weeds...

  19. Language Distance and Non-Native Syntactic Processing: Evidence from Event-Related Potentials

    Science.gov (United States)

    Zawiszewski, Adam; Gutierrez, Eva; Fernandez, Beatriz; Laka, Itziar

    2011-01-01

    In this study, we explore native and non-native syntactic processing, paying special attention to the language distance factor. To this end, we compared how native speakers of Basque and highly proficient non-native speakers of Basque who are native speakers of Spanish process certain core aspects of Basque syntax. Our results suggest that…

  20. Chinese Fantasy Novel: Empirical Study on New Word Teaching for Non-Native Learners

    Science.gov (United States)

    Meng, Bok Check; Soon, Goh Ying

    2014-01-01

    Giving additional learning materials such as Chinese fantasy novel to non-native learners can be strenuous. This study seeks to render empirical support on the usefulness of the use of new words in Chinese fantasy novel to enhance vocabulary learning among the non-native learners of Chinese. In general, the students agreed that they like to learn…

  1. The Impact of Non-Native English Teachers' Linguistic Insecurity on Learners' Productive Skills

    Science.gov (United States)

    Daftari, Giti Ehtesham; Tavil, Zekiye Müge

    2017-01-01

    The discrimination between native and non-native English speaking teachers is reported in favor of native speakers in literature. The present study examines the linguistic insecurity of non-native English speaking teachers (NNESTs) and investigates its influence on learners' productive skills by using SPSS software. The eighteen teachers…

  2. Determinants of success in native and non-native listening comprehension: an individual differences approach

    NARCIS (Netherlands)

    S. Andringa; N. Olsthoorn; C. van Beuningen; R. Schoonen; J. Hulstijn

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation mo

  3. The Factors Influencing the Motivational Strategy Use of Non-Native English Teachers

    Science.gov (United States)

    Solak, Ekrem; Bayar, Adem

    2014-01-01

    Motivation can be considered one of the most important factors determining success in language classroom. Therefore, this research aims to determine the variables influencing the motivational strategies used by non-native English teachers in Turkish context. 122 non-native English teachers teaching English at a state-run university prep school…

  4. Cognitive and Emotional Evaluation of Two Educational Outdoor Programs Dealing with Non-Native Bird Species

    Science.gov (United States)

    Braun, Michael; Buyer, Regine; Randler, Christoph

    2010-01-01

    "Non-native organisms are a major threat to biodiversity". This statement is often made by biologists, but general conclusions cannot be drawn easily because of contradictory evidence. To introduce pupils aged 11-14 years to this topic, we employed an educational program dealing with non-native animals in Central Europe. The pupils took part in a…

  5. The effect of L1 orthography on non-native vowel perception

    NARCIS (Netherlands)

    Escudero, P.; Wanrooij, K.E.

    2010-01-01

    Previous research has shown that orthography influences the learning and processing of spoken non-native words. In this paper, we examine the effect of L1 orthography on non-native sound perception. In Experiment 1, 204 Spanish learners of Dutch and a control group of 20 native speakers of Dutch

  6. The Effect of L1 Orthography on Non-Native Vowel Perception

    Science.gov (United States)

    Escudero, Paola; Wanrooij, Karin

    2010-01-01

    Previous research has shown that orthography influences the learning and processing of spoken non-native words. In this paper, we examine the effect of L1 orthography on non-native sound perception. In Experiment 1, 204 Spanish learners of Dutch and a control group of 20 native speakers of Dutch were asked to classify Dutch vowel tokens by…

  7. Delayed Next Turn Repair Initiation in Native/Non-native Speaker English Conversation.

    Science.gov (United States)

    Wong, Jean

    2000-01-01

    Examines a form of other-initiated conversational repair that is delayed within next turn position, a form that is produced by non-native speakers of English whose native language is Mandarin. Using the framework of conversational analysis, shows that in native/non-native conversation, other-initiated repair is not always done as early as possible…

  8. Facing Innovation: Preparing Lecturers for English-Medium Instruction in a Non-Native Context.

    Science.gov (United States)

    Klaassen, R. G.; De Graaff, E.

    2001-01-01

    Discusses the effects of training on the teaching staff in an innovation process that is the implementation of English-medium instruction by non-native speaking lecturers to non-native speaking students. The workshop turned out to be the most appropriate professional development for the first two phases in the innovation process. (Contains 13…

  9. Cross-Linguistic Influence in Non-Native Languages: Explaining Lexical Transfer Using Language Production Models

    Science.gov (United States)

    Burton, Graham

    2013-01-01

    The focus of this research is on the nature of lexical cross-linguistic influence (CLI) between non-native languages. Using oral interviews with 157 L1 Italian high-school students studying English and German as non-native languages, the project investigated which kinds of lexis appear to be more susceptible to transfer from German to English and…

  10. Structural Correlates for Lexical Efficiency and Number of Languages in Non-Native Speakers of English

    Science.gov (United States)

    Grogan, A.; Parker Jones, O.; Ali, N.; Crinion, J.; Orabona, S.; Mechias, M. L.; Ramsden, S.; Green, D. W.; Price, C. J.

    2012-01-01

    We used structural magnetic resonance imaging (MRI) and voxel based morphometry (VBM) to investigate whether the efficiency of word processing in the non-native language (lexical efficiency) and the number of non-native languages spoken (2+ versus 1) were related to local differences in the brain structure of bilingual and multilingual speakers.…

  11. Managing conflicts arising from fisheries enhancements based on non-native fishes in southern Africa.

    Science.gov (United States)

    Ellender, B R; Woodford, D J; Weyl, O L F; Cowx, I G

    2014-12-01

    Southern Africa has a long history of non-native fish introductions for the enhancement of recreational and commercial fisheries, due to a perceived lack of suitable native species. This has resulted in some important inland fisheries being based on non-native fishes. Regionally, these introductions are predominantly not benign, and non-native fishes are considered one of the main threats to aquatic biodiversity because they affect native biota through predation, competition, habitat alteration, disease transfer and hybridization. To achieve national policy objectives of economic development, food security and poverty eradication, countries are increasingly looking towards inland fisheries as vehicles for development. As a result, conflicts have developed between economic and conservation objectives. In South Africa, as is the case for other invasive biota, the control and management of non-native fishes is included in the National Environmental Management: Biodiversity Act. Implementation measures include import and movement controls and, more recently, non-native fish eradication in conservation priority areas. Management actions are, however, complicated because many non-native fishes are important components in recreational and subsistence fisheries that contribute towards regional economies and food security. In other southern African countries, little attention has focussed on issues and management of non-native fishes, and this is cause for concern. This paper provides an overview of introductions, impacts and fisheries in southern Africa with emphasis on existing and evolving legislation, conflicts, implementation strategies and the sometimes innovative approaches that have been used to prioritize conservation areas and manage non-native fishes.

  12. Cross-Linguistic Influence in Non-Native Languages: Explaining Lexical Transfer Using Language Production Models

    Science.gov (United States)

    Burton, Graham

    2013-01-01

    The focus of this research is on the nature of lexical cross-linguistic influence (CLI) between non-native languages. Using oral interviews with 157 L1 Italian high-school students studying English and German as non-native languages, the project investigated which kinds of lexis appear to be more susceptible to transfer from German to English and…

  13. Discriminative Phoneme Sequences Extraction for Non-Native Speaker's Origin Classification

    CERN Document Server

    Bouselmi, Ghazi; Illina, Irina; Haton, Jean-Paul

    2007-01-01

    In this paper we present an automated method for the classification of the origin of non-native speakers. The origin of non-native speakers could be identified by a human listener based on the detection of typical pronunciations for each nationality. Thus we suppose the existence of several phoneme sequences that might allow the classification of the origin of non-native speakers. Our new method is based on the extraction of discriminative sequences of phonemes from a non-native English speech database. These sequences are used to construct a probabilistic classifier for the speakers' origin. The existence of discriminative phone sequences in non-native speech is a significant result of this work. The system that we have developed achieved a significant correct classification rate of 96.3% and a significant error reduction compared to some other tested techniques.

  14. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  15. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  16. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  17. Channel Narrowing and Channel Reset: Effects of a Large Flood on the Vegetated, Narrowing Rio Grande

    Science.gov (United States)

    Dean, D. J.; Schmidt, J. C.

    2009-12-01

    In September 2008, heavy precipitation from a tropical storm in the Sierra Madre Occidental, MX, produced large amounts of stream flow to the Rio Conchos and lower Rio Grande. This flood was well publicized in the media due to the widespread flooding in Ojinaga, Chih., and Presidio, TX. Gage records indicate that this flood had an approximate recurrence of 15 years as measured on the Rio Grande near Presidio. Nevertheless, flood stages were the highest ever recorded and resulted from a significant loss of channel capacity due to channel narrowing that had occurred during the previous 18 years. Measurements from aerial photographs indicate that channel width had decreased between 35 and 50% between 1990 and 2008 during regional drought. During this period of low stream flow, invasion by non-native riparian vegetation (Tamarix spp., Arundo donax) helped trap sediment and promote floodplain accretion. Our resurveys of the channel indicate that the 2008 flood was a reset event and that the channel was re-widened by 32 to 48%. Repeated, oblique photographs showed significant channel migration and large scale floodplain stripping during this flood. These results show that although riparian vegetation may actively promote channel narrowing and floodplain accretion, moderately large floods may cause large scale bank erosion, floodplain stripping, and vegetation removal in alluvial valleys subject to large-scale invasion by nonnative plants.

  18. How much does language proficiency by non-native listeners influence speech audiometric tests in noise?

    Science.gov (United States)

    Warzybok, Anna; Brand, Thomas; Wagener, Kirsten C; Kollmeier, Birger

    2015-01-01

    The current study investigates the extent to which the linguistic complexity of three commonly employed speech recognition tests and second language proficiency influence speech recognition thresholds (SRTs) in noise in non-native listeners. SRTs were measured for non-natives and natives using three German speech recognition tests: the digit triplet test (DTT), the Oldenburg sentence test (OLSA), and the Göttingen sentence test (GÖSA). Sixty-four non-native and eight native listeners participated. Non-natives can show native-like SRTs in noise only for the linguistically easy speech material (DTT). Furthermore, the limitation of phonemic-acoustical cues in digit triplets affects speech recognition to the same extent in non-natives and natives. For more complex and less familiar speech materials, non-natives, ranging from basic to advanced proficiency in German, require on average 3-dB better signal-to-noise ratio for the OLSA and 6-dB for the GÖSA to obtain 50% speech recognition compared to native listeners. In clinical audiology, SRT measurements with a closed-set speech test (i.e. DTT for screening or OLSA test for clinical purposes) should be used with non-native listeners rather than open-set speech tests (such as the GÖSA or HINT), especially if a closed-set version in the patient's own native language is available.

  19. Habitat distribution for non-native Amazona viridigenalis within San Diego County using Maxent predictive model

    Science.gov (United States)

    Meseck, Kristin April

    generated depicts highly suitable habitat for A. viridigenalis along the entire coast of San Diego County with pockets of moderately suitable to highly suitable habitat infiltrating into the interior. Some locations in East County were also identified as having moderate habitat suitability. It was found that A. viridigenalis requires habitat with elevations between sea level and 200 m., slopes of zero to 11% grade, and large amounts of non-native vegetated ground cover. More suitable habitat was found at locations with moderate to high population density and in close proximity to roads, suggesting the importance of human-presence in shaping habitat for A. viridigenalis.

  20. Feedback in online course for non-native English-speaking students

    CERN Document Server

    Olesova, Larisa

    2013-01-01

    Feedback in Online Course for Non-Native English-Speaking Students is an investigation of the effectiveness of audio and text feedback provided in English in an online course for non-native English-speaking students. The study presents results showing how audio and text feedback can impact on non-native English-speaking students' higher-order learning as they participate in an asynchronous online course. It also discusses the results of how students perceive both types of the feedback provided. In addition, the study examines how the impact and perceptions differ when the instructor giving the

  1. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments Riparian Buffer (Version 2.1) for the Conterminous United States: Nonnative LANDFIRE Vegetation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the average height of the dominant vegetation for a 30-m grid cell within individual local NHDPlusV2 catchments and upstream, contributing...

  2. Riparian vegetation affected by bank erosion in the Lower São Francisco River, Northeastern Brazil Vegetação ciliar afetada pela erosão na margem do baixo São Francisco, Nordeste do Brasil

    Directory of Open Access Journals (Sweden)

    Francisco Sandro Rodrigues Holanda

    2005-04-01

    Full Text Available Changes in the hydrological regime of the Lower São Francisco River, located in Northeastern Brazil have brought negative environmental impacts, jeopardizing the flora and fauna of a global biodiversity hotspot, due to implementation of hydroelectric power dams and surface water withdrawal for irrigation in public and private perimeters. Remnants of the riparian stratum associated to the riverbank destabilization in six fragments were studied by surveying trees, shrubs, herbs, and aquatic species. The calculation of the Factor of Safety (FS was performed in order to understand the riverbank's stability related to soil texture and vegetation cover. An overall number of 51 botanic families distributed in 71 genera and 79 species were recorded, predominantly from the families Mimosaceae, Myrtaceae, and Fabaceae. The fragmented riparian vegetation is mostly covered by secondary species under a strong anthropogenic impact such as deforestation, mining and irrigation, with an advanced erosion process in the river margins. Strong species that withstand the waves present in the river flow are needed to reduce the constant landslides that are mainly responsible for the river sedimentation and loss of productive lands. A lack of preservation attitude among the local landholders was identified, and constitutes a continuing threat to the riparian ecosystem biodiversity.Mudanças no regime hidrológico no baixo curso do rio São Francisco, localizado na Região Nordeste do Brasil, trouxeram impactos negativos, como a ameaça à fauna e à flora em um dos 25 "hotspots" do mundo para a conservação da biodiversidade, em razão da construção de usinas hidroelétricas e retiradas de água para irrigação em perímetros de irrigação públicos e privados. Foram estudados remanescentes da vegetação ciliar associados com a desestabilização dos barrancos do rio, em seis fragmentos de mata, por meio de levantamento florístico e histórico de degrada

  3. 2011 Invasive Non-native Plant Inventory dataset : Quivira National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This dataset is a product of the 2011 invasive non-native plant inventory conducted at Quivira National Wildlife Refuge by Utah State University. This inventory...

  4. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  5. Non-native Chinese Foreign Language (CFL) Teachers: Identity and Discourse

    DEFF Research Database (Denmark)

    Zhang, Chun

    2014-01-01

    Abstract Native Chinese foreign language (CFL) teacher identity is an emerging subject of research interest in the teacher education. Yet, limited study has been done on the construction of Non-native CFL teachers in their home culture. Guided by a concept of teacher identity......-in-discourse, the paper reports on a qualitative study that explores how three Non-native CFL teachers construct their teacher identity as they interact with Danish students while teaching CFL at one Danish university. Data collected from in-depth interviews over a period of two years show that the Non-native CFL...... teachers face tensions and challenges in constructing their identities as CFL teachers, and the tensions and challenges that arose from Danish teaching culture could influence the Non-native CFL teachers' contributions to CFL teaching in their home cultures. The findings further show that in order to cope...

  6. Using the Speech Transmission Index for predicting non-native speech intelligibility

    Science.gov (United States)

    van Wijngaarden, Sander J.; Bronkhorst, Adelbert W.; Houtgast, Tammo; Steeneken, Herman J. M.

    2004-03-01

    While the Speech Transmission Index (STI) is widely applied for prediction of speech intelligibility in room acoustics and telecommunication engineering, it is unclear how to interpret STI values when non-native talkers or listeners are involved. Based on subjectively measured psychometric functions for sentence intelligibility in noise, for populations of native and non-native communicators, a correction function for the interpretation of the STI is derived. This function is applied to determine the appropriate STI ranges with qualification labels (``bad''-``excellent''), for specific populations of non-natives. The correction function is derived by relating the non-native psychometric function to the native psychometric function by a single parameter (ν). For listeners, the ν parameter is found to be highly correlated with linguistic entropy. It is shown that the proposed correction function is also valid for conditions featuring bandwidth limiting and reverberation.

  7. Abundance and species richness of snakes along the Middle Rio Grande riparian forest in New Mexico

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell; Deborah M. Finch

    2009-01-01

    To understand the effects of removal of non-native plants and fuels on wildlife in the riparian forest of the Middle Rio Grande in New Mexico, we monitored snakes from 2000 to 2006 using trap arrays of drift fences, pitfalls, and funnel traps. We recorded 158 captures of 13 species of snakes from 12 study sites. We captured more snakes in funnel traps than in pitfalls...

  8. Non-native fishes in Florida freshwaters: a literature review and synthesis

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.

    2015-01-01

    Non-native fishes have been known from freshwater ecosystems of Florida since the 1950s, and dozens of species have established self-sustaining populations. Nonetheless, no synthesis of data collected on those species in Florida has been published until now. We searched the literature for peer-reviewed publications reporting original data for 42 species of non-native fishes in Florida that are currently established, were established in the past, or are sustained by human intervention. Since the 1950s, the number of non-native fish species increased steadily at a rate of roughly six new species per decade. Studies documented (in decreasing abundance): geographic location/range expansion, life- and natural-history characteristics (e.g., diet, habitat use), ecophysiology, community composition, population structure, behaviour, aquatic-plant management, and fisheries/aquaculture. Although there is a great deal of taxonomic uncertainty and confusion associated with many taxa, very few studies focused on clarifying taxonomic ambiguities of non-native fishes in the State. Most studies were descriptive; only 15 % were manipulative. Risk assessments, population-control studies and evaluations of effects of non-native fishes were rare topics for research, although they are highly valued by natural-resource managers. Though some authors equated lack of data with lack of effects, research is needed to confirm or deny conclusions. Much more is known regarding the effects of lionfish (Pterois spp.) on native fauna, despite its much shorter establishment time. Natural-resource managers need biological and ecological information to make policy decisions regarding non-native fishes. Given the near-absence of empirical data on effects of Florida non-native fishes, and the lengthy time-frames usually needed to collect such information, we provide suggestions for data collection in a manner that may be useful in the evaluation and prediction of non-native fish effects.

  9. Turkish Students' Perspectives on Speaking Anxiety in Native and Non-Native English Speaker Classes

    Science.gov (United States)

    Bozavli, Ebubekir; Gulmez, Recep

    2012-01-01

    The aim of this study is to reveal the effect of FLA (foreign language anxiety) in native/non-native speaker of English classrooms. In this study, two groups of students (90 in total) of whom 38 were in NS (native speaker) class and 52 in NNS (non-native speaker) class taking English as a second language course for 22 hours a week at Erzincan…

  10. Spatial arrangement overrules environmental factors to structure native and non-native assemblages of synanthropic harvestmen.

    Directory of Open Access Journals (Sweden)

    Christoph Muster

    Full Text Available Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens. Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance exceeded the environmental (10.6% and shared (4% components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.

  11. An Analysis of Student Evaluations of Native and Non Native Korean Foreign Language Teachers

    Directory of Open Access Journals (Sweden)

    Julie Damron

    2009-08-01

    Full Text Available In an effort to analyze the strengths and weaknesses of native and non-native teaching assistants and part-time teachers (both referred to as TAs in this article, students completed 632 evaluations of Ko-rean Language TAs from 2005 to 2008, and these evaluations were compiled for an analysis of variants (ANOVA. The evaluations were categorized into three groups of TAs: native Korean-speaking female, native Korean-speaking male, and non-native male; non-native females would have been included in the study, but there were not enough non-native female teachers to have a reliable sample. In an effort to encourage more self-examined teaching practices, this study addresses the greatest strengths and weaknesses of each group. Results revealed several significant differences between the ratings of the groups: native female TAs rated lowest overall, and non-native male TAs rated highest overall. The most prominent differences be-tween groups occurred in ratings of amount students learned, TAs’ preparedness, TAs’ active involvement in students’ learning, TAs’ enthusiasm, and TAs’ tardiness. This study reviews students’ written comments on the evaluations and proposes possible causes of these findings, concluding that differences in ratings are based on both teaching patterns associated with each group of TAs and student re-sponse bias that favors non-native male speakers. Teaching patterns include a tendency for native (Korean female TAs to teach using a lecture format and non-native male TAs to teach using a discussion format; for native TAs to have difficulty adapting to the language level of the students; and for a more visible enthusiasm for Korean culture held by non-native TAs. Causes for bias may include “other-ing” females and natives, TA selection procedures, and trends in evaluating TAs based on language level.

  12. Trophic consequences of non-native pumpkinseed Lepomis gibbosus for native pond fishes

    OpenAIRE

    Copp, G. H.; Britton, J R; Guo, Z.; Edmonds-Brown, V; Pegg, Josie; L. VILIZZI; Davison, P.

    2017-01-01

    Introduced non-native fishes can cause considerable adverse impacts on freshwater ecosystems. The pumpkinseed Lepomis gibbosus, a North American centrarchid, is one of the most widely distributed non-native fishes in Europe, having established self-sustaining populations in at least 28 countries, including the U.K. where it is predicted to become invasive under warmer climate conditions. To predict the consequences of increased invasiveness, a field experiment was completed over a summer peri...

  13. Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach

    Science.gov (United States)

    Koch, Christiane; Jeschke, Jonathan M.; Overbeck, Gerhard E.; Kollmann, Johannes

    2016-09-01

    Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.

  14. Comprehending non-native speakers: theory and evidence for adjustment in manner of processing.

    Science.gov (United States)

    Lev-Ari, Shiri

    2014-01-01

    Non-native speakers have lower linguistic competence than native speakers, which renders their language less reliable in conveying their intentions. We suggest that expectations of lower competence lead listeners to adapt their manner of processing when they listen to non-native speakers. We propose that listeners use cognitive resources to adjust by increasing their reliance on top-down processes and extracting less information from the language of the non-native speaker. An eye-tracking study supports our proposal by showing that when following instructions by a non-native speaker, listeners make more contextually-induced interpretations. Those with relatively high working memory also increase their reliance on context to anticipate the speaker's upcoming reference, and are less likely to notice lexical errors in the non-native speech, indicating that they take less information from the speaker's language. These results contribute to our understanding of the flexibility in language processing and have implications for interactions between native and non-native speakers.

  15. The influence of non-native language proficiency on speech perception performance

    Directory of Open Access Journals (Sweden)

    Lisa eKilman

    2014-07-01

    Full Text Available The present study examined to what extent proficiency in a non-native language influences speech perception in noise. We explored how English proficiency affected native (Swedish and non-native (English speech perception in four speech reception threshold (SRT conditions including two energetic (stationary, fluctuating noise and two informational (two-talker babble Swedish, two-talker babble English maskers. Twenty-three normal-hearing native Swedish listeners participated, age between 28 and 64 years. The participants also performed standardized tests in English proficiency, non-verbal reasoning and working memory capacity. Our approach with focus on proficiency and the assessment of external as well as internal, listener-related factors allowed us to examine which variables explained intra-and interindividual differences in native and non-native speech perception performance. The main result was that in the non-native target, the level of English proficiency is a decisive factor for speech intelligibility in noise. High English proficiency improved performance in all four conditions when target language was English. The informational maskers were interfering more with perception than energetic maskers, specifically in the non-native language. The study also confirmed that the SRT's were better when target language was native compared to non-native.

  16. Exploring Public Perception of Non-native Species from a Visions of Nature Perspective

    Science.gov (United States)

    Verbrugge, Laura N. H.; Van den Born, Riyan J. G.; Lenders, H. J. Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  17. Description of vegetation types

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides descriptions of five vegetation types found in Iowa- oak savannah, mature hardwoods, floodplain woods, scrub woods, and riparian woods. Oak...

  18. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.;

    2012-01-01

    • Over the past 30 years (1982-2011), the Normalized Difference Vegetation Index (NDVI), an index of green vegetation, has increased 15.5% in the North American Arctic and 8.2% in the Eurasian Arctic. In the more southern regions of Arctic tundra, the estimated aboveground plant biomass has...

  19. Water Tables, Flooding, and Water Use by Riparian Phreatophyte Communities

    Science.gov (United States)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2010-12-01

    Phreatophytic riparian vegetation relies heavily on ground water transported from upstream sources. In the American southwest, the phenology of native phreatophytes, e.g., Rio Grande cottonwood, (Populus deltoides) is also dependent on seasonal flooding, which has been greatly diminished by hydrologic alterations and competing allocations. In this semi-arid, water-scarce region, a long history of agriculture and a rapidly expanding population impose limits on water available for ecological purposes, such as managed, restorative flooding. At native and non-native (e.g., saltcedar, (Tamarix spp.)) sites along the Rio Grande floodplain of central New Mexico, eddy covariance flux towers and monitoring wells are deployed to quantify evapotranspiration (ET) and investigate relationships between ET, water table (WT) depth, and flooding. Season-long measurements have been completed over several years in flooding and non-flooding sites under climatic conditions fluctuating from wet to extreme drought. Total growing season ET declines with deeper WTs across sites, with robust correlations where strong hydrologic connections exist between the river and ground water. As such, wet years with elevated WTs result in greater annual ET. However, ET responds less clearly to floods within the growing season. Longer duration floods lasting several weeks are more typical earlier in the growing season, associated with sufficient snowmelt runoff. Extensive spring flooding in two recent years coincided with significantly higher ET at a young, mixed stand, but had no effect on ET at a mature saltcedar forest. Summer monsoons and drier springs typically bring more transitory flood pulses with rapid WT ascent and decline measured in days. Elevated ET occurred during only one of several shorter flood pulses, at a saltcedar site during an otherwise dry spring. ET was not affected by monsoon flood pulses. Recruitment of native vegetation requires spring floods with favorable timing, magnitude

  20. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  1. Non-native species in the vascular flora of highlands and mountains of Iceland.

    Science.gov (United States)

    Wasowicz, Pawel

    2016-01-01

    The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1) How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2) Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3) Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4) Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5) Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive). Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland's highlands and mountain areas.

  2. Riparian woodland flora in upland rivers of Western Greece

    Directory of Open Access Journals (Sweden)

    S. ZOGARIS

    2012-12-01

    Full Text Available Although natural riparian woodlands are an important feature that affects the quality of aquatic conditionsin streams and rivers, surveying riparian zone flora is rarely implemented in the Mediterraneancountries. We developed a rapid assessment method for gathering standardized plot-based woody flora andvegetation data from riparian woodlands. In 2005 we surveyed 218 streamside vegetation plots at 109 sitesin upland areas of four major rivers in mainland Greece (Alfios, Acheloos, Arachthos, and Aoos. Herewe describe the survey method and provide selected results from its initial implementation. The simplicityand effectiveness of this survey procedure supports the use of rapid site-based biodiversity surveys for riparianzones alongside aquatic status assessments.

  3. Influence of native and non-native multitalker babble on speech recognition in noise

    Directory of Open Access Journals (Sweden)

    Chandni Jain

    2014-03-01

    Full Text Available The aim of the study was to assess speech recognition in noise using multitalker babble of native and non-native language at two different signal to noise ratios. The speech recognition in noise was assessed on 60 participants (18 to 30 years with normal hearing sensitivity, having Malayalam and Kannada as their native language. For this purpose, 6 and 10 multitalker babble were generated in Kannada and Malayalam language. Speech recognition was assessed for native listeners of both the languages in the presence of native and nonnative multitalker babble. Results showed that the speech recognition in noise was significantly higher for 0 dB signal to noise ratio (SNR compared to -3 dB SNR for both the languages. Performance of Kannada Listeners was significantly higher in the presence of native (Kannada babble compared to non-native babble (Malayalam. However, this was not same with the Malayalam listeners wherein they performed equally well with native (Malayalam as well as non-native babble (Kannada. The results of the present study highlight the importance of using native multitalker babble for Kannada listeners in lieu of non-native babble and, considering the importance of each SNR for estimating speech recognition in noise scores. Further research is needed to assess speech recognition in Malayalam listeners in the presence of other non-native backgrounds of various types.

  4. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    Science.gov (United States)

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  5. Looking through phonological shape to lexical meaning: the bottleneck of non-native sign language processing.

    Science.gov (United States)

    Mayberry, R I; Fischer, S D

    1989-11-01

    In two studies, we find that native and non-native acquisition show different effects on sign language processing. Subjects were all born deaf and used sign language for interpersonal communication, but first acquired it at ages ranging from birth to 18. In the first study, deaf signers shadowed (simultaneously watched and reproduced) sign language narratives given in two dialects, American Sign Language (ASL) and Pidgin Sign English (PSE), in both good and poor viewing conditions. In the second study, deaf signers recalled and shadowed grammatical and ungrammatical ASL sentences. In comparison with non-native signers, natives were more accurate, comprehended better, and made different kinds of lexical changes; natives primarily changed signs in relation to sign meaning independent of the phonological characteristics of the stimulus. In contrast, non-native signers primarily changed signs in relation to the phonological characteristics of the stimulus independent of lexical and sentential meaning. Semantic lexical changes were positively correlated to processing accuracy and comprehension, whereas phonological lexical changes were negatively correlated. The effects of non-native acquisition were similar across variations in the sign dialect, viewing condition, and processing task. The results suggest that native signers process lexical structural automatically, such that they can attend to and remember lexical and sentential meaning. In contrast, non-native signers appear to allocate more attention to the task of identifying phonological shape such that they have less attention available for retrieval and memory of lexical meaning.

  6. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    Science.gov (United States)

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  7. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    Science.gov (United States)

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  8. Impacts of non-native plant removal on vertebrates along the Middle Rio Grande (New Mexico)

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Deborah M. Finch; Howard L. Snell; David L. Hawksworth

    2008-01-01

    The Middle Rio Grande and its riparian forest in central New Mexico are the focus of restoration activities to reverse or lessen negative anthropogenic impacts. The riparian forest is the largest gallery cottonwood (Populus deltoides) forest in the Southwest (Hink and Ohmart 1984). Historically, the river was free to meander across the floodplain,...

  9. Evidence for language transfer leading to a perceptual advantage for non-native listeners.

    Science.gov (United States)

    Chang, Charles B; Mishler, Alan

    2012-10-01

    Phonological transfer from the native language is a common problem for non-native speakers that has repeatedly been shown to result in perceptual deficits vis-à-vis native speakers. It was hypothesized, however, that transfer could help, rather than hurt, if it resulted in a beneficial bias. Due to differences in pronunciation norms between Korean and English, Koreans in the U.S. were predicted to be better than Americans at perceiving unreleased stops-not only in their native language (Korean) but also in their non-native language (English). In three experiments, Koreans were found to be significantly more accurate than Americans at identifying unreleased stops in Korean, at identifying unreleased stops in English, and at discriminating between the presence and absence of an unreleased stop in English. Taken together, these results suggest that cross-linguistic transfer is capable of boosting speech perception by non-natives beyond native levels.

  10. Epistemologies in the Text of Children's Books: Native- and non-Native-authored books

    Science.gov (United States)

    Dehghani, Morteza; Bang, Megan; Medin, Douglas; Marin, Ananda; Leddon, Erin; Waxman, Sandra

    2013-09-01

    An examination of artifacts provides insights into the goals, practices, and orientations of the persons and cultures who created them. Here, we analyze storybook texts, artifacts that are a part of many children's lives. We examine the stories in books targeted for 4-8-year-old children, contrasting the texts generated by Native American authors versus popular non-Native authors. We focus specifically on the implicit and explicit 'epistemological orientations' associated with relations between human beings and the rest of nature. Native authors were significantly more likely than non-Native authors to describe humans and the rest of nature as psychologically close and embedded in relationships. This pattern converges well with evidence from a behavioral task in which we probed Native (from urban inter-tribal and rural communities) and non-Native children's and adults' attention to ecological relations. We discuss the implications of these differences for environmental cognition and science learning.

  11. Diabetic retinopathy in native and non-native Sarawakians--findings from the Diabetic Eye Registry.

    Science.gov (United States)

    Mallika, P S; Aziz, S; Goh, P P; Lee, P Y; Cheah, W L; Chong, M S; Tan, A K

    2012-08-01

    This study aims to determine the risk factors associated with diabetic retinopathy (DR) among natives and non-natives Sarawakians who were seen at 3 public hospitals and one health clinic in Sarawak. It is a cross sectional study where data on patients with DM were collected by staff at these healthcare facilities and entered into the web-based Diabetic Eye Registry. Univariate and multivariate analysis was used to determine the association factors for DR. DR was significantly less associated with natives (24.4%) compared to non-native Sarawakians (34.1%) (p < 0.001). The odds of getting DR was higher in patients whose duration of DM was more than 20 years (OR = 2.6), who have renal impairment (OR = 1.7) and non-natives (OR = 1.4).

  12. Perceptual learning of non-native speech contrast and functioning of the olivocochlear bundle.

    Science.gov (United States)

    Kumar, Ajith U; Hegde, Medha; Mayaleela

    2010-07-01

    The purpose of this study was to investigate the relationship between perceptual learning of non-native speech sounds and strength of feedback in the medial olivocochlear bundle (MOCB). Discrimination abilities of non-native speech sounds (Malayalam) from its native counterparts (Hindi) were monitored during 12 days of training. Contralateral inhibition of otoacoustic emissions were measured on the first and twelfth day of training. Results suggested that training significantly improved reaction time and accuracy of identification of non-native speech sounds. There was a significant positive correlation between the slope (linear) of identification scores and change in distortion product otoacoustic emission inhibition at 3000 Hz. Findings suggest that during perceptual learning feedback from the MOCB may fine tune the brain stem and/or cochlea. However, such a change, isolated to a narrow frequency region, represents a limited effect and needs further exploration to confirm and/or extend any generalization of findings.

  13. Sleep and native language interference affect non-native speech sound learning.

    Science.gov (United States)

    Earle, F Sayako; Myers, Emily B

    2015-12-01

    Adults learning a new language are faced with a significant challenge: non-native speech sounds that are perceptually similar to sounds in one's native language can be very difficult to acquire. Sleep and native language interference, 2 factors that may help to explain this difficulty in acquisition, are addressed in 3 studies. Results of Experiment 1 showed that participants trained on a non-native contrast at night improved in discrimination 24 hr after training, while those trained in the morning showed no such improvement. Experiments 2 and 3 addressed the possibility that incidental exposure to perceptually similar native language speech sounds during the day interfered with maintenance in the morning group. Taken together, results show that the ultimate success of non-native speech sound learning depends not only on the similarity of learned sounds to the native language repertoire, but also to interference from native language sounds before sleep.

  14. Combined Acoustic and Pronunciation Modelling for Non-Native Speech Recognition

    CERN Document Server

    Bouselmi, Ghazi; Illina, Irina

    2007-01-01

    In this paper, we present several adaptation methods for non-native speech recognition. We have tested pronunciation modelling, MLLR and MAP non-native pronunciation adaptation and HMM models retraining on the HIWIRE foreign accented English speech database. The ``phonetic confusion'' scheme we have developed consists in associating to each spoken phone several sequences of confused phones. In our experiments, we have used different combinations of acoustic models representing the canonical and the foreign pronunciations: spoken and native models, models adapted to the non-native accent with MAP and MLLR. The joint use of pronunciation modelling and acoustic adaptation led to further improvements in recognition accuracy. The best combination of the above mentioned techniques resulted in a relative word error reduction ranging from 46% to 71%.

  15. Food sources of dominant macrozoobenthos between native and non-native mangrove forests: A comparative study

    Science.gov (United States)

    Chen, Luzhen; Yan, Ting; Xiong, Yiyi; Zhang, Yihui; Lin, Guanghui

    2017-03-01

    The macrozoobenthos is an important link of the food web in coastal wetlands. Diet-habitat relationships may significantly depend on qualitative differences and seasonal availability of food sources. Increasing interest has been shown in food web structure altered by non-native plants. In particular, however, a non-native mangrove species from Bangladesh, Sonneratia apetala, has been widely planted in China, but little is known about its possible impact on food sources of macrozoobenthos living in these non-native mangrove forests. Therefore, in this study, we used fatty acid analysis to compare the food sources of one littorinid snail and two grapsid crab species between two native mangrove forests and one non-native S. apetala plantation in the Zhanjiang Mangrove National Nature Reserve of China. We found that the sediment of all three forests had high diatom and bacteria signals, but low mangrove leaf signals, while the opposite patterns were detected in the three macrozoobenthos. Specifically, the gastropod Littoraria melanostoma relied mainly on mangrove leaves and brown algae as food sources, with significant differences among the three mangrove forests, and showed significant seasonal variation in its diet. The grapsidae species (Perisesarma bidens and Parasesarma plicatum) mainly grazed on mangrove litter, brown and green algae, and occasionally consumed diatoms and bacteria, also showing significant seasonal variation in their diet. Overall, Principle Components Analysis (PCA) of the fatty acid profiles showed a significant overlapping in food sources among the macrozoobenthos living in the non-native and native mangrove forests, but significant seasonal variations in their food sources. This suggests that the planting of non-native S. apetala near original mangrove forests has had little effect on the feeding behavior of macrozoobenthos some 10 years after planting.

  16. [Research progress on the degradation mechanisms and restoration of riparian ecosystem].

    Science.gov (United States)

    Huang, Kai; Guo, Huai-cheng; Liu, Yong; Yu, Ya-juan; Zhou, Feng

    2007-06-01

    Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The disturbances on riparian ecosystem include flow regime alteration, direct modification and watershed disturbance, which have different affecting mechanisms. Flow regime alteration affects riparian ecosystem by changing riparian soil humidity, oxidation-reduction potential, biotaliving environment, and sediment transfer; direct modification affects riparian vegetation diversity through human activities and exotic plants invasion; and watershed disturbance mainly manifests in the channel degradation, aggradation or widening, the lowering of groundwater table, and the modification in fluvial process. The assessment objects of riparian restoration are riparian ecosystem components, and the assessment indicators are shifted from ecological to synthetic indices. Riparian restoration should be based on the detailed understanding of the biological and physical processes which affect riparian ecosystem, and implemented by vegetation restoration and hydrological adjustment at watershed or landscape scale. To extend the research scales and objects and to apply interdisciplinary approaches should be the key points in the further studies on the degradation mechanisms and restoration of riparian ecosystem.

  17. Fully Automated Non-Native Speech Recognition Using Confusion-Based Acoustic Model Integration

    OpenAIRE

    Bouselmi, Ghazi; Fohr, Dominique; Illina, Irina; Haton, Jean-Paul

    2005-01-01

    This paper presents a fully automated approach for the recognition of non-native speech based on acoustic model modification. For a native language (L1) and a spoken language (L2), pronunciation variants of the phones of L2 are automatically extracted from an existing non-native database as a confusion matrix with sequences of phones of L1. This is done using L1's and L2's ASR systems. This confusion concept deals with the problem of non existence of match between some L2 and L1 phones. The c...

  18. Biogeomorphic feedbacks within riparian corridors: the role of positive interactions between riparian plants

    Science.gov (United States)

    Corenblit, Dov; Steiger, Johannes; Till-Bottraud, Irène

    2017-04-01

    Riparian vegetation affects hydrogeomorphic processes and leads to the construction of wooded fluvial landforms within riparian corridors. Multiple plants form dense multi- and mono-specific stands that enhance plant resistance as grouped plants are less prone to be uprooted than free-standing individuals. Riparian plants which grow in dense stands also enhance their role as ecosystem engineers through the trapping of sediment, organic matter and nutrients. The wooded biogeomorphic landforms which originate from the effect of vegetation on geomorphology lead in return to an improved capacity of the plants to survive, exploit resources, and reach sexual maturity in the intervals between destructive floods. Thus, these vegetated biogeomorphic landforms likely represent a positive niche construction of riparian plants. The nature and intensity of biotic interactions between riparian plants of different species (inter-specific) or the same species (intra-specific) which form dense stands and construct together the niche remain unclear. We strongly suspect that indirect inter-specific positive interactions (facilitation) occur between plants but that more direct intra-specific interactions, such as cooperation and altruism, also operate during the niche construction process. Our aim is to propose an original theoretical framework of inter and intra-specific positive interactions between riparian plants. We suggest that positive interactions between riparian plants are maximized in river reaches with an intermediate level of hydrogeomorphic disturbance. During establishment, plants that grow within dense stands improve their survival and growth because individuals protect each other from shear stress. In addition to the improved capacity to trap mineral and organic matter, individuals which constitute the dense stand can cooperate to mutually support a mycorrhizal fungi network that will connect plants, soil and ground water and influence nutrient transfer, cycling and

  19. Non-Native Pre-Service English Teachers’ Narratives about Their Pronunciation Learning and Implications for Pronunciation Training

    OpenAIRE

    Chin Wen Chien

    2014-01-01

    This study analyzes 58 non-native pre-service elementary school English teachers’ narratives about their pronunciation learning and teaching. Two important findings emerge in this study.  First, participants did not have the same attitude toward their roles as non-native English speakers regarding pronunciation learning and teaching. Second, regardless of their attitude or roles as non-native English speakers, participants claimed that when they become language teachers in the future, they wi...

  20. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  1. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  2. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  3. Strategies for Improving Academic Performance by Non-Native English Speakers in Graduate Programs

    Science.gov (United States)

    Todd, Tracye A.; Stinson, Terrye A.; Sivakumaran, Thillainatarajan

    2011-01-01

    Over the past decade, the number of non-native English speaking students in higher education has increased dramatically. Educators at all levels have experienced challenges in meeting the academic needs of these students and continue to seek strategies for addressing these challenges. This paper describes some of this research related to K-12 and…

  4. Proficient beyond borders: assessing non-native speakers in a native speakers’ framework

    Directory of Open Access Journals (Sweden)

    Johanna Fleckenstein

    2016-11-01

    Full Text Available Abstract Background English language proficiency is considered a basic skill that students from different language backgrounds are expected to master, independent of whether they are native or non-native speakers. Tests that measure language proficiency in non-native speakers are typically linked to the common European framework of reference for languages. Such tests, however, often lack the criteria to define a practically relevant degree of proficiency in English. We approach this deficit by assessing non-native speakers’ performance within a native speakers’ framework. Method Items from two English reading assessments—the Programme for International Student Assessment (PISA and the National Assessment (NA for English as a foreign language in Germany—were administered to N = 427 German high school students. Student abilities were estimated by drawing plausible values in a two-dimensional Rasch model. Results Results show that non-native speakers of English generally underperformed compared to native speakers. However, academic track students in the German school system achieved satisfactory levels of proficiency on the PISA scale. Linking the two scales showed systematic differences in the proficiency level classifications. Conclusion The findings contribute to the validation and international localization of NA standards for English as a foreign language. Practical implications are discussed with respect to policy-defined benchmarks for the successful participation in a global English-speaking society.

  5. TOEFL11: A Corpus of Non-Native English. Research Report. ETS RR-13-24

    Science.gov (United States)

    Blanchard, Daniel; Tetreault, Joel; Higgins, Derrick; Cahill, Aoife; Chodorow, Martin

    2013-01-01

    This report presents work on the development of a new corpus of non-native English writing. It will be useful for the task of native language identification, as well as grammatical error detection and correction, and automatic essay scoring. In this report, the corpus is described in detail.

  6. The online application of binding condition B in native and non-native pronoun resolution.

    Science.gov (United States)

    Patterson, Clare; Trompelt, Helena; Felser, Claudia

    2014-01-01

    Previous research has shown that anaphor resolution in a non-native language may be more vulnerable to interference from structurally inappropriate antecedents compared to native anaphor resolution. To test whether previous findings on reflexive anaphors generalize to non-reflexive pronouns, we carried out an eye-movement monitoring study investigating the application of binding condition B during native and non-native sentence processing. In two online reading experiments we examined when during processing local and/or non-local antecedents for pronouns were considered in different types of syntactic environment. Our results demonstrate that both native English speakers and native German-speaking learners of English showed online sensitivity to binding condition B in that they did not consider syntactically inappropriate antecedents. For pronouns thought to be exempt from condition B (so-called "short-distance pronouns"), the native readers showed a weak preference for the local antecedent during processing. The non-native readers, on the other hand, showed a preference for the matrix subject even where local coreference was permitted, and despite demonstrating awareness of short-distance pronouns' referential ambiguity in a complementary offline task. This indicates that non-native comprehenders are less sensitive during processing to structural cues that render pronouns exempt from condition B, and prefer to link a pronoun to a salient subject antecedent instead.

  7. Taiwanese University Students' Attitudes to Non-Native Speakers English Teachers

    Science.gov (United States)

    Chang, Feng-Ru

    2016-01-01

    Numerous studies have been conducted to explore issues surrounding non-native speakers (NNS) English teachers and native speaker (NS) teachers which concern, among others, the comparison between the two, the self-perceptions of NNS English teachers and the effectiveness of their teaching, and the students' opinions on and attitudes towards them.…

  8. Ethical Considerations in Conducting Research with Non-Native Speakers of English

    Science.gov (United States)

    Koulouriotis, Joanna

    2011-01-01

    The ethical considerations of three education researchers working with non-native English-speaking participants were examined from a critical theory stand-point in the light of the literature on research ethics in various disciplines. Qualitative inquiry and data analysis were used to identify key themes, which centered around honor and respect…

  9. A Corpus-Based Study of Adverbial Connectors in Native and Non-native Students’ Writing

    DEFF Research Database (Denmark)

    WANG, Yan-jun; Li, Rui

    2016-01-01

    , this paper firstly makes a comparison to the usage of adverbial connectors in their writings of the native students and non-native students and then exposes a distinctive gap between these two types of writings in usage of adverbial connectors. In order to help Chinese second-language learners acquire...

  10. Facebook-Photovoice Interface: Empowering Non-Native Pre-Service English Language Teachers

    Science.gov (United States)

    Rubrico, Jessie Grace U.; Hashim, Fatimah

    2014-01-01

    Engaging non-native pre-service English teachers who are still learning the language themselves requires two tasks: facilitating their language teaching skills and scaffolding their language learning. This action research interfaced Facebook and Photovoice technologies in order to empower participants to be proactive in their language learning and…

  11. The Knowledge Base of Non-Native English-Speaking Teachers: Perspectives of Teachers and Administrators

    Science.gov (United States)

    Zhang, Fengjuan; Zhan, Ju

    2014-01-01

    This study explores the knowledge base of non-native English-speaking teachers (NNESTs) working in the Canadian English as a second language (ESL) context. By examining NNESTs' experiences in seeking employment and teaching ESL in Canada, and investigating ESL program administrators' perceptions and hiring practices in relation to NNESTs, it…

  12. Comparison of native and non-native phone imitation by English and Spanish speakers.

    Science.gov (United States)

    Olmstead, Anne J; Viswanathan, Navin; Aivar, M Pilar; Manuel, Sarath

    2013-01-01

    Experiments investigating phonetic convergence in conversation often focus on interlocutors with similar phonetic inventories. Extending these experiments to those with dissimilar inventories requires understanding the capacity of speakers to imitate native and non-native phones. In the present study, we tested native Spanish and native English speakers to determine whether imitation of non-native tokens differs qualitatively from imitation of native tokens. Participants imitated a [ba]-[pa] continuum that varied in VOT from -60 ms (prevoiced, Spanish [b]) to +60 ms (long lag, English [p]) such that the continuum consisted of some tokens that were native to Spanish speakers and some that were native to English speakers. Analysis of the imitations showed two critical results. First, both groups of speakers demonstrated sensitivity to VOT differences in tokens that fell within their native regions of the VOT continuum (prevoiced region for Spanish and long lag region for English). Secondly, neither group of speakers demonstrated such sensitivity to VOT differences among tokens that fell in their non-native regions of the continuum. These results show that, even in an intentional imitation task, speakers cannot accurately imitate non-native tokens, but are clearly flexible in producing native tokens. Implications of these findings are discussed with reference to the constraints on convergence in interlocutors from different linguistic backgrounds.

  13. Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host

    NARCIS (Netherlands)

    Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W.

    2016-01-01

    Many species have been introduced worldwide into areas outside their natural range. Often these non-native species are introduced without their natural enemies, which sometimes leads to uncontrolled population growth. It is rarely reported that an introduced species provides a new resource for a nat

  14. Patterns of English phoneme confusions by native and non-native listeners

    NARCIS (Netherlands)

    Cutler, A.; Weber, A.C.; Smits, R.; Cooper, N.

    2004-01-01

    Native American English and non-native (Dutch) listeners identified either the consonant or the vowel in all possible American English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0, 8, and 16 dB). The phoneme identification performance of

  15. Juggling Identity and Authority: A Case Study of One Non-Native Instructor of English

    Science.gov (United States)

    Subtirelu, Nicholas

    2011-01-01

    Authority in the classroom is an important concept to teachers everywhere. The act of teaching continuously engages them in the negotiation and construction of an identity that is accepted as authoritative by their students. Identity and authority, however, are in conflict in the context of NNSTs ["non-native" speaker teachers] of English (and…

  16. User requirement analysis of social conventions learning applications for non-natives and low-literates

    NARCIS (Netherlands)

    Schouten, Dylan; Smets, Nanja; Driessen, Marianne; Hanekamp, Marieke; Cremers, Ania

    2013-01-01

    Learning and acting on social conventions is problematic for low-literates and non-natives, causing problems with societal participation and citizenship. Using the Situated Cognitive Engineering method, requirements for the design of social conventions learning software are derived from demographic

  17. Non-Native English-Speaking Teachers, Context and English Language Teaching

    Science.gov (United States)

    Hayes, David

    2009-01-01

    This article contends that, in spite of a recent upsurge in writing on non-native English-speaking teachers (NNESTs) in the global discourse of English language teaching (ELT), the experiences of NNESTSs working within their own state educational systems remain seriously under-investigated. To help to redress this, the article explores, from their…

  18. The online application of binding condition B in native and non-native pronoun resolution

    Directory of Open Access Journals (Sweden)

    Clare ePatterson

    2014-02-01

    Full Text Available Previous research has shown that anaphor resolution in a non-native language may be more vulnerable to interference from structurally inappropriate antecedents compared to native anaphor resolution. To test whether previous findings on reflexive anaphors generalise to non-reflexive pronouns, we carried out an eye-movement monitoring study investigating the application of binding condition B during native and non-native sentence processing. In two online reading experiments we examined when during processing local and/or non-local antecedents for pronouns were considered in different types of syntactic environment. Our results demonstrate that both native English speakers and native German-speaking learners of English showed online sensitivity to binding condition B in that they did not consider syntactically inappropriate antecedents. For pronouns thought to be exempt from condition B (so-called 'short-distance pronouns', the native readers showed a weak preference for the local antecedent during processing. The non-native readers, on the other hand, showed a preference for the matrix subject even where local coreference was permitted, and despite demonstrating awareness of short-distance pronouns' referential ambiguity in a complementary offline task. This indicates that non-native comprehenders are less sensitive during processing to structural cues that render pronouns exempt from condition B, and prefer to link a pronoun to a salient subject antecedent instead.

  19. Expansion and fragment settlement of the non-native seagrass Halophila stipulacea in a Caribbean bay

    NARCIS (Netherlands)

    Smulders, Fee O.H.; Vonk, J.A.; Engel, M.S.; Christianen, Marjolijn J.A.

    2017-01-01

    The non-native seagrass species Halophila stipulacea has spread throughout the Eastern Caribbean since 2002, and could potentially impact the functioning of local seagrass ecosystems. Important characteristics for invasiveness, such as dispersal, recruitment and expansion of H. stipulacea at a lo

  20. Perception of Non-Native Consonant Length Contrast: The Role of Attention in Phonetic Processing

    Science.gov (United States)

    Porretta, Vincent J.; Tucker, Benjamin V.

    2015-01-01

    The present investigation examines English speakers' ability to identify and discriminate non-native consonant length contrast. Three groups (L1 English No-Instruction, L1 English Instruction, and L1 Finnish control) performed a speeded forced-choice identification task and a speeded AX discrimination task on Finnish non-words (e.g.…

  1. Native- and Non-Native Speaking English Teachers in Vietnam: Weighing the Benefits

    Science.gov (United States)

    Walkinshaw, Ian; Duong, Oanh Thi Hoang

    2012-01-01

    This paper examines a common belief that learners of English as a foreign language prefer to learn English from native-speaker teachers rather than non-native speakers of English. 50 Vietnamese learners of English evaluated the importance of native-speakerness compared with seven qualities valued in an English language teacher: teaching…

  2. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  3. Risk to native Uroleucon aphids (Hemiptera: Aphididae) from non-native lady beetles (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...

  4. Predicting establishment of non-native fishes in Greece: identifying key features

    Directory of Open Access Journals (Sweden)

    Christos Gkenas

    2015-11-01

    Full Text Available Non-native fishes are known to cause economic damage to human society and are considered a major threat to biodiversity loss in freshwater ecosystems. The growing concern about these impacts has driven to an investigation of the biological traits that facilitate the establishment of non-native fish. However, invalid assessment in choosing the appropriate statistical model can lead researchers to ambiguous conclusions. Here, we present a comprehensive comparison of traditional and alternative statistical methods for predicting fish invasions using logistic regression, classification trees, multicorrespondence analysis and random forest analysis to determine characteristics of successful and failed non-native fishes in Hellenic Peninsula through establishment. We defined fifteen categorical predictor variables with biological relevance and measures of human interest. Our study showed that accuracy differed according to the model and the number of factors considered. Among all the models tested, random forest and logistic regression performed best, although all approaches predicted non-native fish establishment with moderate to excellent results. Detailed evaluation among the models corresponded with differences in variables importance, with three biological variables (parental care, distance from nearest native source and maximum size and two variables of human interest (prior invasion success and propagule pressure being important in predicting establishment. The analyzed statistical methods presented have a high predictive power and can be used as a risk assessment tool to prevent future freshwater fish invasions in this region with an imperiled fish fauna.

  5. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  6. Computer Vision Syndrome for Non-Native Speaking Students: What Are the Problems with Online Reading?

    Science.gov (United States)

    Tseng, Min-chen

    2014-01-01

    This study investigated the online reading performances and the level of visual fatigue from the perspectives of non-native speaking students (NNSs). Reading on a computer screen is more visually more demanding than reading printed text. Online reading requires frequent saccadic eye movements and imposes continuous focusing and alignment demand.…

  7. 5.0 Monitoring methods for forests vulnerable to non-native invasive pest species

    Science.gov (United States)

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans

    2008-01-01

    Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...

  8. Computer Vision Syndrome for Non-Native Speaking Students: What Are the Problems with Online Reading?

    Science.gov (United States)

    Tseng, Min-chen

    2014-01-01

    This study investigated the online reading performances and the level of visual fatigue from the perspectives of non-native speaking students (NNSs). Reading on a computer screen is more visually more demanding than reading printed text. Online reading requires frequent saccadic eye movements and imposes continuous focusing and alignment demand.…

  9. Facebook-Photovoice Interface: Empowering Non-Native Pre-Service English Language Teachers

    Science.gov (United States)

    Rubrico, Jessie Grace U.; Hashim, Fatimah

    2014-01-01

    Engaging non-native pre-service English teachers who are still learning the language themselves requires two tasks: facilitating their language teaching skills and scaffolding their language learning. This action research interfaced Facebook and Photovoice technologies in order to empower participants to be proactive in their language learning and…

  10. Non-Native English Language Teachers' Perspective on Culture in English as a Foreign Language Classrooms

    Science.gov (United States)

    Bayyurt, Yasemin

    2006-01-01

    This article examines the importance of raising non-native English language teachers' awareness of different dimensions of culture in the teaching of English as an international language. The author believes that the more critical English language teachers become about the involvement of culture in their English language teaching, the more they…

  11. Using the Speech Transmission Index for predicting non-native speech intelligibility

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Houtgast, T.; Steeneken, H.J.M.

    2004-01-01

    While the Speech Transmission Index ~STI! is widely applied for prediction of speech intelligibility in room acoustics and telecommunication engineering, it is unclear how to interpret STI values when non-native talkers or listeners are involved. Based on subjectively measured psychometric functions

  12. Non-native megaherbivores: the case for novel function to manage plant invasions on islands.

    Science.gov (United States)

    Hansen, Dennis M

    2015-07-20

    There is a heated debate about whether all non-native species are 'guilty until proven innocent', or whether some should be accepted or even welcomed. Further fanning the flames, I here present a case where introductions of carefully vetted, non-native species could provide a net conservation benefit. On many islands, native megaherbivores (flightless birds, tortoises) recently went extinct. Here, rewilding with carefully selected non-native species as ecological replacements is increasingly considered a solution, reinstating a herbivory regime that largely benefits the native flora. Based on these efforts, I suggest that restoration practitioners working on islands without a history of native megaherbivores that are threatened by invasive plants should consider introducing a non-native island megaherbivore, and that large and giant tortoises are ideal candidates. Such tortoises would be equally useful on islands where eradication of invasive mammals has led to increased problems with invasive plants, or on islands that never had introduced mammalian herbivores, but where invasive plants are a problem. My proposal may seem radical, but the reversibility of using giant tortoises means that nothing is lost from trying, and that indeed much is to be gained. As an easily regulated adaptive management tool, it represents an innovative, hypothesis-driven 'innocent until proven guilty' approach.

  13. Comparison of native and non-native phone imitation by English and Spanish speakers

    Directory of Open Access Journals (Sweden)

    Annie J Olmstead

    2013-07-01

    Full Text Available Experiments investigating phonetic convergence in conversation often focus on interlocutors with similar phonetic inventories. Extending these experiments to those with dissimilar inventories requires understanding the capacity of speakers to imitate native and non-native phones. In the present study, we tested native Spanish and native English speakers to determine whether imitation of non-native tokens differs qualitatively from imitation of native tokens. Participants imitated a [ba] -[pa] continuum that varied in VOT from -60 ms (prevoiced, Spanish [b] to +60 ms (long lag, English [p] such that the continuum consisted of some tokens that were native to Spanish speakers and some that were native to English speakers. Analysis of the imitations showed two critical results. First, both groups of speakers demonstrated sensitivity to VOT differences in tokens that fell within their native regions of the VOT continuum (prevoiced region for Spanish and long lag region for English. Secondly, neither group of speakers demonstrated such sensitivity to VOT differences among tokens that fell in their non-native regions of the continuum. These results show that, even in an intentional imitation task, speakers cannot accurately imitate non-native tokens, but are clearly flexible in producing native tokens. Implications of these findings are discussed with reference to the constraints on convergence in interlocutors from different linguistic backgrounds.

  14. Early detection of non-native fishes using next-generation DNA sequencing of fish larvae

    Science.gov (United States)

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy based on next-generation DNA sequencing to investigate potential efficiencies. Our approach was to intensively sample a Great Lakes non-nati...

  15. User requirement analysis of social conventions learning applications for Non-natives and low-literates

    NARCIS (Netherlands)

    Schouten, D.; Smets, N.; Driessen, M.; Hanekamp, M.; Cremers, A.H.M.; Neerincx, M.A.

    2013-01-01

    Learning and acting on social conventions is problematic for low-literates and non-natives, causing problems with societal participation and citizenship. Using the Situated Cognitive Engineering method, requirements for the design of social conventions learning software are derived from demographic

  16. Linguistic Support for Non-Native English Speakers: Higher Education Practices in the United States

    Science.gov (United States)

    Snow Andrade, Maureen; Evans, Norman W.; Hartshorn, K. James

    2014-01-01

    Higher education institutions in English-speaking nations host significant populations of non-native English speakers (NNES), both international and resident. English language proficiency is a critical factor to their success. This study reviews higher education practices in the United States related to this population. Findings indicate…

  17. User requirement analysis of social conventions learning applications for Non-natives and low-literates

    NARCIS (Netherlands)

    Schouten, D.; Smets, N.; Driessen, M.; Hanekamp, M.; Cremers, A.H.M.; Neerincx, M.A.

    2013-01-01

    Learning and acting on social conventions is problematic for low-literates and non-natives, causing problems with societal participation and citizenship. Using the Situated Cognitive Engineering method, requirements for the design of social conventions learning software are derived from demographic

  18. Using the Speech Transmission Index for predicting non-native speech intelligibility

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Houtgast, T.; Steeneken, H.J.M.

    2004-01-01

    While the Speech Transmission Index ~STI! is widely applied for prediction of speech intelligibility in room acoustics and telecommunication engineering, it is unclear how to interpret STI values when non-native talkers or listeners are involved. Based on subjectively measured psychometric functions

  19. To What Extent Do Native and Non-Native Writers Make Use of Collocations?

    Science.gov (United States)

    Durrant, Philip; Schmitt, Norbert

    2009-01-01

    Usage-based models claim that first language learning is based on the frequency-based analysis of memorised phrases. It is not clear though, whether adult second language learning works in the same way. It has been claimed that non-native language lacks idiomatic formulas, suggesting that learners neglect phrases, focusing instead on orthographic…

  20. Quantifying the intelligibility of speech in noise for non-native listeners

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Steeneken, H.J.M.; Houtgast, T.

    2002-01-01

    When listening to languages learned at a later age, speech intelligibility is generally lower than when listening to one's native language. The main purpose of this study is to quantify speech intelligibility in noise for specific populations of non-native listeners, only broadly addressing the unde

  1. Managing the Weed-Shaped Hole: Improving Nitrogen Uptake and Preventing Re-invasion in Urban Riparian Restoration

    OpenAIRE

    2013-01-01

    As the field of ecological restoration grows, novel methods to improve the effectiveness of restoration projects are being advanced and tested. Here, measured plant functional traits are used to select a native planting palette for the restoration of riparian habitat at Strawberry Creek, a heavily invaded urban ecosystem in Berkeley, CA. I partnered with an active restoration program and together we focused on methods to prevent re-invasion by a dominant non-native understory species and redu...

  2. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  3. Microhabitat interactions of non-native pumpkinseed Lepomis gibbosus in a Mediterranean-type stream suggest no evidence for impact on endemic fishes

    Directory of Open Access Journals (Sweden)

    Top Nildeniz

    2016-01-01

    Full Text Available The pumpkinseed Lepomis gibbosus was introduced to Europe and parts of the Mediterranean Region more than 100 years ago. However, relatively little is known of its potential ecological impacts on the native species and freshwater ecosystems of Anatolia (Turkey, where the species is currently established in ponds and rivers. In this study, interactions between L. gibbosus and native and non-native stream fishes were investigated between June 2009 and May 2010 in Sarıçay Stream, a Mediterranean-type water course. Microhabitat preferences for depth, substratum composition, distance from bank and from vegetation, plant cover, velocity, turbidity and light intensity were studied by Constrained Quadratic Ordination. The species sampled in larger frequency of occurrence (and for which microhabitat relationships could be investigated comprised endemic Smyrna chub Petroleuciscus smyrnaeus and Aegean chub Squalius fellowesii, and non-native L. gibbosus (both juveniles and adults and topmouth gudgeon Pseudorasbora parva. Adult L. gibbosus were found to prefer locations closer to the bank with less turbid water, plant cover, light intensity, woody structure and with sandy substratum whilst avoiding riffle habitats with coarser debris, deeper water, dense submersed aquatic vegetation and higher velocities. These preferences overlapped with those for the other non-native species P. parva, but not with those for the endemic species and for L. gibbosus juveniles. The results of this study suggest that the potential for adverse impacts through competition for habitat of adult L. gibbosus with the native fish fauna is not apparent in Sarıçay Stream.

  4. Risk assessment of non-native fishes in the Balkans Region using FISK, the invasiveness screening tool for non-native freshwater fishes

    Directory of Open Access Journals (Sweden)

    P. SIMONOVIC

    2013-06-01

    Full Text Available A high level of freshwater fish endemism in the Balkans Region emphasizes the need for non-native species risk assessments to inform management and control measures, with pre-screening tools, such as the Fish Invasiveness Screening Kit (FISK providing a useful first step. Applied to 43 non-native and translocated freshwater fishes in four Balkan countries, FISK reliably discriminated between invasive and non-invasive species, with a calibration threshold value of 9.5 distinguishing between species of medium and high risk sensu lato of becoming invasive. Twelve of the 43 species were assessed by scientists from two or more Balkan countries, and the remaining 31 species by a single assessor. Using the 9.5 threshold, three species were classed as low risk, 10 as medium risk, and 30 as high risk, with the latter category comprised of 26 moderately high risk, three high risk, and one very high risk species. Confidence levels in the assessments were relatively constant for all species, indicating concordance amongst assessors.

  5. Tolerance of native and non-native fish species to chemical stress: a case study for the River Rhine

    NARCIS (Netherlands)

    A. Fedorenkova; J.A. Vonk; A.M. Breure; A.J. Hendriks; R.S.E.W. Leuven

    2013-01-01

    Freshwater ecosystems can be impacted by invasive species. Non-native species can become invasive due to their high tolerance to environmental stressors (e.g., pollution and habitat modifications). Yet, tolerance of native and non-native fish species exposed simultaneously to multiple chemical stres

  6. Higher dropout rate in non-native patients than in native patients in rehabilitation in The Netherlands

    NARCIS (Netherlands)

    Sloots, Maurits; Scheppers, Emmanuel F.; van de Weg, Frans B.; Bartels, Edien A.; Geertzen, Jan H.; Dekker, Joost; Dekker, Jaap

    2009-01-01

    Dropout from a rehabilitation programme often occurs in patients with chronic nonspecific low back pain of non-native origin. However, the exact dropout rate is not known. The objective of this study was to determine the difference in dropout rate between native and non-native patients with chronic

  7. Spatial Characterization of Riparian Buffer Effects on Sediment Loads from Watershed Systems

    Science.gov (United States)

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural lands...

  8. Spatial Characterization of Riparian Buffer Effects on Sediment Loads from Watershed Systems

    Science.gov (United States)

    Understanding all watershed systems and their interactions is a complex, but critical, undertaking when developing practices designed to reduce topsoil loss and chemical/nutrient transport from agricultural fields. The presence of riparian buffer vegetation in agricultural lands...

  9. Intelligibility of non-natively produced Dutch words: interaction between segmental and suprasegmental errors.

    Science.gov (United States)

    Caspers, Johanneke; Horłoza, Katarzyna

    2012-01-01

    In the field of second language research many adhere to the idea that prosodic errors are more detrimental to the intelligibility of non-native speakers than segmental errors. The current study reports on a series of experiments testing the influence of stress errors and segmental errors, and a combination of these, on native processing of words produced by intermediate speakers of Dutch as a second language with either Mandarin Chinese or French as mother tongue. The results suggest that both stress and segmental errors influence processing, but suprasegmental errors do not outweigh segmental errors. It seems that a more 'foreign' generic pronunciation leads to a greater impact of (supra)segmental errors, suggesting that segmental and prosodic deviations should not be viewed as independent factors in processing non-native speech.

  10. Mental health status in pregnancy among native and non-native Swedish-speaking women

    DEFF Research Database (Denmark)

    Wangel, Anne-Marie; Schei, Berit; Ryding, Elsa Lena

    2012-01-01

    OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics in South......OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics...... in Southern Sweden. SAMPLE: A non-selected group of women in mid-pregnancy. METHODS: Participants completed a questionnaire covering background characteristics, social support, life events, mental health variables and the short Edinburgh Depression Scale. MAIN OUTCOME MEASURES: Depressive symptoms during...

  11. Teaching Media in the Teaching of Arabic Language to Non-Native Arabic Speakers

    Directory of Open Access Journals (Sweden)

    Rais Abdullah

    2016-06-01

    Full Text Available Learning media has demonstrated its superiority in helping educators or teachers in the process of conveying the message of learning more quickly and easily caught by the students. The media play a role in enriching the learning experience of students, increase their attention to the lesson, minimize differences in perception between teachers and students as well as to help resolve personal differences between students. The teaching Arabic to non-native speaker would be more interesting and easier to learn, remembered, understood and practiced by the students, if taught through the media. This article aims to explore the benefits, importance and role of instructional media in teaching Arabic to non- native Speaker

  12. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  13. Non-native novice EFL teachers' beliefs about teaching and learning

    OpenAIRE

    Erkmen, Besime

    2010-01-01

    This study investigated the beliefs about teaching and learning English of nine non-native novice teachers at a private university in Northern Cyprus, and the extent to which these beliefs changed in their first year of teaching. Data was collected over an academic year of nine months by means of semi-structured interviews, credos, classroom observations, post-lesson reflection forms, stimulated-recall interviews, diaries and a metaphor-elicitation task. The study found that novice teachers’ ...

  14. Emergence of category-level sensitivities in non-native speech sound learning

    Directory of Open Access Journals (Sweden)

    Emily eMyers

    2014-08-01

    Full Text Available Over the course of development, speech sounds that are contrastive in one’s native language tend to become perceived categorically: that is, listeners are unaware of variation within phonetic categories while showing excellent sensitivity to speech sounds that span linguistically meaningful phonetic category boundaries. The end stage of this developmental process is that the perceptual systems that handle acoustic-phonetic information show special tuning to native language contrasts, and as such, category-level information appears to be present at even fairly low levels of the neural processing stream. Research on adults acquiring non-native speech categories offers an avenue for investigating the interplay of category-level information and perceptual sensitivities to these sounds as speech categories emerge. In particular, one can observe the neural changes that unfold as listeners learn not only to perceive acoustic distinctions that mark non-native speech sound contrasts, but also to map these distinctions onto category-level representations. An emergent literature on the neural basis of novel and non-native speech sound learning offers new insight into this question. In this review, I will examine this literature in order to answer two key questions. First, where in the neural pathway does sensitivity to category-level phonetic information first emerge over the trajectory of speech sound learning? Second, how do frontal and temporal brain areas work in concert over the course of non-native speech sound learning? Finally, in the context of this literature I will describe a model of speech sound learning in which rapidly-adapting access to categorical information in the frontal lobes modulates the sensitivity of stable, slowly-adapting responses in the temporal lobes.

  15. Increased Abundance of Native and Non-Native Spiders With Habitat Fragmentation

    OpenAIRE

    Bolger, Douglas T.; Beard, Karen H.; Suarez, Andrew; Case, Ted

    2008-01-01

    Habitat fragmentation and invasive species often contribute to the decline of native taxa. Since the penetration of non-native species into natural habitat may be facilitated by habitat fragmentation, it is important to examine how these two factors interact. Previous research documented that, in contrast to most other arthropod taxa, spiders increased in density and morphospecies richness with decreasing fragment area and increasing fragment age (time since insularization) in urban habitat f...

  16. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    Science.gov (United States)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  17. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation.

    Science.gov (United States)

    Taylor, Andrew T; Papeş, Monica; Long, James M

    2017-09-06

    Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the shoal bass (Micropterus cataractae) is a fluvial-specialist species experiencing continual range loss, yet how perceived threats have contributed to range loss is largely unknown. We employed species distribution models (SDMs) to disentangle which factors are contributing most to shoal bass range loss by estimating a potential distribution based on natural abiotic factors and by estimating a series of current, occupied distributions that also incorporated variables characterizing land cover, non-native species, and fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). Model construction allowed for interspecific relationships between non-native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of current occupied distribution illustrated increased range loss as fragmentation intensified. Response curves from current occupied models indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non-native congeners, wherein non-natives may be favored at the highest fragmentation intensity. Response curves also suggested that free-flowing fragment lengths of > 100 km were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested models had favorable predictive and discriminative abilities. Similar approaches that use readily-available, diverse geospatial datasets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Riparian Areas of Greece: Their Definition and Characteristics

    Directory of Open Access Journals (Sweden)

    D. Gounaridis

    2010-01-01

    Full Text Available Riparian areas are unique and of high importance ecosystems because they are adjacent to surface freshwater bodies suchas streams, rivers and lakes. They are the semi-aquatic transitional zones (ecotones between terrestrial and aquatic ecosystems.Water, soil and vegetation are the three main characteristics that differentiate them compared to other ecosystems.Furthermore, they are present in all biomes (from deserts to tropical forests and are found in a great range of hydrologic andgeomorphologic conditions that results in a great variety of riparian habitat types. In Greece, there are five major riparianforest habitat types that also occur in most of the semi-arid Mediterranean regions. Frequent disturbance is another uniquecharacteristic that differentiates riparian areas. The major disturbances that shape riparian areas in Greece are unpredictedflood and drought events, as well as fires but to a lesser degree. Wetlands are another important semi-aquatic ecosystemsthat many consider as synonymous to riparian areas. In reality, these two ecosystems overlap but they are also different sincewetlands are considered as “wetter” and less disturbance driven than riparian areas.

  19. An invasive non-native mammal population conserves genetic diversity lost from its native range.

    Science.gov (United States)

    Veale, A J; Holland, O J; McDonald, R A; Clout, M N; Gleeson, D M

    2015-05-01

    Invasive, non-native species are one of the major causes of global biodiversity loss. Although they are, by definition, successful in their non-native range, their populations generally show major reductions in their genetic diversity during the demographic bottleneck they experience during colonization. By investigating the mitochondrial genetic diversity of an invasive non-native species, the stoat Mustela erminea, in New Zealand and comparing it to diversity in the species' native range in Great Britain, we reveal the opposite effect. We demonstrate that the New Zealand stoat population contains four mitochondrial haplotypes that have not been found in the native range. Stoats in Britain rely heavily on introduced rabbits Oryctolagus cuniculus as their primary prey and were introduced to New Zealand in a misguided attempt at biological control of rabbits, which had also been introduced there. While invasive stoats have since decimated the New Zealand avifauna, native stoat populations were themselves decimated by the introduction to Britain of Myxoma virus as a control measure for rabbits. We highlight the irony that while introduced species (rabbits) and subsequent biocontrol (myxomatosis) have caused population crashes of native stoats, invasive stoats in New Zealand, which were also introduced for biological control, now contain more genetic haplotypes than their most likely native source. © 2015 John Wiley & Sons Ltd.

  20. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    Full Text Available The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead. Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  1. Economic impacts of non-native forest insects in the continental United States.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.

  2. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  3. Understanding the threats posed by non-native species: public vs. conservation managers.

    Science.gov (United States)

    Gozlan, Rodolphe E; Burnard, Dean; Andreou, Demetra; Britton, J Robert

    2013-01-01

    Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  4. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  5. Adaptive responses to cool climate promotes persistence of a non-native lizard.

    Science.gov (United States)

    While, Geoffrey M; Williamson, Joseph; Prescott, Graham; Horváthová, Terézia; Fresnillo, Belén; Beeton, Nicholas J; Halliwell, Ben; Michaelides, Sozos; Uller, Tobias

    2015-03-22

    Successful establishment and range expansion of non-native species often require rapid accommodation of novel environments. Here, we use common-garden experiments to demonstrate parallel adaptive evolutionary response to a cool climate in populations of wall lizards (Podarcis muralis) introduced from southern Europe into England. Low soil temperatures in the introduced range delay hatching, which generates directional selection for a shorter incubation period. Non-native lizards from two separate lineages have responded to this selection by retaining their embryos for longer before oviposition--hence reducing the time needed to complete embryogenesis in the nest--and by an increased developmental rate at low temperatures. This divergence mirrors local adaptation across latitudes and altitudes within widely distributed species and suggests that evolutionary responses to climate can be very rapid. When extrapolated to soil temperatures encountered in nests within the introduced range, embryo retention and faster developmental rate result in one to several weeks earlier emergence compared with the ancestral state. We show that this difference translates into substantial survival benefits for offspring. This should promote short- and long-term persistence of non-native populations, and ultimately enable expansion into areas that would be unattainable with incubation duration representative of the native range.

  6. Identifying and ascribing the relative significance of introduction pathways for non-native plants into Iceland

    Directory of Open Access Journals (Sweden)

    Wasowicz Pawel

    2014-12-01

    Full Text Available The study is aimed at identifying pathways frequently used by non-native plant species, assessing their relative significance and development in time. Pathways were defined following NOBANIS framework (Madsen et al., 2014. Species assessments were based on HARMONIA scheme (Branquart, 2007. Four categories of environmental hazards were assessed plus two additional categories summarizing impacts on health and economy. Temporal development of pathways was assessed using cumulative per annum taxa records. To quantify the activity of investigated pathways over time an index (δ10 showing the number of new species introduced during the period of 10 years was calculated. The study shows that horticulture, landscaping and agriculture can be pointed out as pathways of concern in Iceland. A set of species of concern is also proposed. Two plant taxa are included in A list (high risk species: Anthriscus sylvestis and Lupinus nootkatensis. Three taxa are placed in B list (watch list: Heracleum mantegazzianum, Heracleum persicum and Pinus contorta. Results of the present study are compared with similar studies carried out in Denmark, Scandinavia and Baltic countries. Different measures to prevent introductions of new and potentially dangerous non-native species are also discussed including selection of good practices that may significantly reduce the threat from non-native species used in agriculture and horticulture.

  7. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  8. Elucidating Native and Non-Native Plant-Fog Interactions Across Microclimatic Zones in San Cristobal Island, Galapagos

    Science.gov (United States)

    Schmitt, S.; Riveros-Iregui, D. A.; Hu, J.

    2015-12-01

    Changes in land use, such as the clear cutting of forests and the abandonment of land once used for agriculture, pose an incredible threat to the fragile ecosystems in the tropics. One such consequence of land use change in the tropics is the propagation of invasive plant species. The Galapagos Islands, an ecosystem subject to significant anthropogenic pressure by both increasing tourism and a growing native population, are especially threatened by invasive plant species. More than 800 plant species have been introduced in Galapagos, comprising over 60% of the total flora. San Cristobal Island in particular has been impacted by the introduction of non-native species; the combined pressures of invasive species and land use change have fundamentally altered 70% of the landscape of the island. We performed stable isotope analysis of fog water, surface water and plant xylem water to examine water use by both native and invasive plant species across different microclimatic zones. We conducted these measurements starting at the end of the rainy season and through the middle of the dry season. Our results represent an initial effort to characterize the effects of a changing vegetative cover on the water cycling of tropical islands and provide insight into the interactions between plants, surface water and groundwater at various spatial and temporal scales.

  9. Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America

    Science.gov (United States)

    Shafroth, Patrick B.; Briggs, Mark K.

    2008-01-01

    River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarixoccupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally.

  10. Marine Riparian Vegetation Communities of Puget Sound

    Science.gov (United States)

    2007-02-01

    refuge and spawning substrate for fishes and aquatic inver- tebrates; and attachment substrate for algae . Logs high in the intertidal zone may become...dune grass (dune wildrye), sedges, rushes, seaside ar- rowgrass, seaside plantain, saltgrass, pickleweed, gumweed, saltweed (fat hen ), fleshy jaumea...clay and silt are mixed with coarser particles (Franklin and Dyrness 1973) or are in stratified layers , vary- ing in sediment composition. Over time

  11. Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda).

    Science.gov (United States)

    Ondračková, Markéta; Hudcová, Iveta; Dávidová, Martina; Adámek, Zdeněk; Kašný, Martin; Jurajda, Pavel

    2015-07-19

    Introduced species can modify local host-parasite dynamics by amplifying parasite infection which can 'spill-back' to the native fauna, whether they are competent hosts for local parasites, or by acting as parasite sinks with 'dilution' of infection decreasing the parasite burden of native hosts. Recently infection by the trematode Bucephalus polymorphus has increased in several European rivers, being attributed to the introduction of intermediate host species from the Ponto-Caspian region. Using a combination of field and experimental data, we evaluated the competence of non-native and native fish as intermediate hosts for B. polymorphus and its role for parasite development in a definitive host. The density of 0+ juvenile fish (the second intermediate hosts for B. polymorphus) was measured in the River Morava, Czech Republic and fish were screened for natural metacercariae infection. The stomach contents of predatory fish that are definitive hosts of B. polymorphus were examined to assess the importance of non-native gobies for parasite transmission. In semi-natural conditions, parasite establishment, initial survival, and maturity rates in experimentally infected definitive hosts pikeperch Sander lucioperca were measured in flukes recovered from native white bream Abramis bjoerkna and non-native tubenose goby Proterorhinus semilunaris and round goby Neogobius melanostomus. Adult fluke size and egg production was also measured to evaluate the potential effect of intermediate host species on parasite fitness. We detected high natural infection parameters of B. polymorphus in native cyprinids and non-native gobies compared to data from the period prior to goby establishment. Both fish groups are consumed by predatory fish and represent a major component of the littoral fish community. Parasite establishment and adult size in definitive hosts was equivalent among the second intermediate host species, despite a lower size of metacercariae recovered from round gobies

  12. Efecto del reemplazo de la vegetación nativa de ribera sobre la comunidad de macroinvertebrados bentónicos en arroyos de climas templados, Chile central Replacement effect of riparian native vegetation on benthic macroinvertebrates community in temperate climate streams, Central Chile

    Directory of Open Access Journals (Sweden)

    Gabriela Mancilla

    2009-12-01

    Full Text Available El aporte de materia orgánica desde la vegetación ribereña es determinante en la estructura y complejidad de los sistemas fluviales; es identificado como el mayor aporte energético en ríos y una fuente importante de alimento para macroinvertebrados en arroyos de cabecera. No obstante, el paisaje ribereño ha sido altamente degradado por actividades humanas, lo que ha afectado la estructura y composición de las comunidades acuáticas. El presente estudio se desarrolló en Chile central (región del Biobío donde se concentra una intensa actividad forestal con especies exóticas. Se seleccionaron ríos de bajo orden (The organic matter from riparian vegetation is determined by the structure and complexity of streams. It presents a higher energetic input to streams as well as important source of food for macroinvertebrates in head streams. In spite of its importance, riparian landscape has been rapidly degraded by human activity, this affects structure and composition of the aquatic community. The present study was made in Central Chile (Biobio Region which has intensive forest activity with exotic species. Small streams were selected (< 3 order, because they are very particularly sensitive to changes in land use. The sites were grouped identified according to native forest land cover larger than 20% (group 1 and smaller than 20% (group 2. Significant differences (p< 0.05 in Plecoptera abundance (p < 0.05 were found between the two groups. Differences in trophic groups were significant for shredders and predators increased and gathering-collectors decreased their abundance, with native cover smaller than 20%. This showed the dependent on allochthonous material. The vegetation cover and community parameters correlations showed that Diversity (W increased with higher percentage of watershed covered by native vegetation and exotic species mix. Results suggest that a buffer conservation area of native riparian vegetation is necessary in streams

  13. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants

    Science.gov (United States)

    Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela

    2017-01-01

    Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to

  14. Population size structure of non-native fishes along longitudinal gradients in a highly regulated Mediterranean basin.

    Directory of Open Access Journals (Sweden)

    Fátima Amat-Trigo

    2015-10-01

    Documented changes in fish size metrics at population levels can demonstrate trends in non-native fishes at basin scale, however, the collinearity with spatial gradients and the species-specific response could make it a difficult undertaking.

  15. Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.

    Directory of Open Access Journals (Sweden)

    Alex Brandmeyer

    Full Text Available Brain-computer interfaces (BCIs are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1 Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2 Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native. A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.

  16. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  17. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal.

    Science.gov (United States)

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2016-10-01

    Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal.

  18. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  19. Is my stress right or wrong? Studying the production of stress by non-native speaking teachers of English

    OpenAIRE

    Ika Apriani Fata

    2014-01-01

    This study aims at exploring the production of stress by non native English teachers in Aceh. It also inquires into how these teachers of English overcame their shortcomings in oral English language teaching. 45 non native English teachers from Aceh were recorded. They came from four regions in the province of Aceh, namely Aceh Timur, Langsa, Aceh Utara and Aceh Besar. The participants have taught English from five to 15 years. The approach used in this paper is qualitative by focusing on the...

  20. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Science.gov (United States)

    Strong, Justin S; Leroux, Shawn J

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  1. Reproduction of the non-native fish Lepomis gibbosus (Perciformes: Centrarchidae) in Brazil.

    Science.gov (United States)

    Santos, Rangel E; Silva, Tayara P; Chehayeb, Igor V; de Magalhães, André L B

    2012-09-01

    Minas Gerais is the fourth largest Brazilian state, and has an estimate of 354 native fish species. However, these fish species may be threatened, as this state has the highest rank of fish introductions reported for Brazil and South America. As one from the total of 85 non-native species detected, Lepomis gibbosus was introduced in the 60s to serve both as foragefish and to improve sport fishing. In this study, we evaluated the establishment of L. gibbosus in a shallow lake in the city ofOuro Preto, Doce River basin, state of Minas Gerais, Southeastern Brazil. We collected fish with fishing rods every two months from March 2002-February 2003. Fragments of gonads from a total of 226 females and 226 males were obtained and processed following standard histological techniques; then 5-7 microm thickness sections were taken and stained in hematoxylin-eosin. Besides, for each specimen, the biometric measurements included the standard length (SL) and body weight (BW); and the sex ratio was obtained. The reproductive cycle stages were confirmed by the distribution of oocytes and spermatogenic cells. The type of spawning was determined by the frequency distribution of the reproductive cycle stages and ovarian histology. Based on the microscopic characteristics of the gonads, the following stages of the reproductive cycle were determined: one=Rest, two=Mature, three=Spawned for females or Spent for males; males and females in reproduction were found throughout the study period. Post-spawned ovaries containing oocytes in stages one (initial perinucleolar), two (advanced perinucleolar), three (pre-vitellogenic), four (vitellogenic) and post-ovulatory follicles indicated fractionated-type spawning in this species. The smallest breeding male and female measured were 4.6 and 4.9cm standard length, respectively, suggesting stunting. The sex ratio did not vary between males and females along the year and bimonthly, being 1:1. Moreover, L. gibbosus appears to be at stage three of

  2. Phonetic processing of non-native speech in semantic vs non-semantic tasks.

    Science.gov (United States)

    Gustafson, Erin; Engstler, Caroline; Goldrick, Matthew

    2013-12-01

    Research with speakers with acquired production difficulties has suggested phonetic processing is more difficult in tasks that require semantic processing. The current research examined whether similar effects are found in bilingual phonetic processing. English-French bilinguals' productions in picture naming (which requires semantic processing) were compared to those elicited by repetition (which does not require semantic processing). Picture naming elicited slower, more accented speech than repetition. These results provide additional support for theories integrating cognitive and phonetic processes in speech production and suggest that bilingual speech research must take cognitive factors into account when assessing the structure of non-native sound systems.

  3. Overview of Native-speaker English Teacher Versus Non-native-speaker English Teacher

    Institute of Scientific and Technical Information of China (English)

    ZOU Xu

    2015-01-01

    As much more non-native-speaker English teachers teach alongside native-speaker English teachers, either in China or any other non-English-speaking country, research on the differences between native-speaker English teacher and non-na⁃tive-speaker English teacher is necessary. This paper offers an overview of such difference between the two groups of English teachers in terms of their strengths and weaknesses, teaching styles and approaches. The conclusion suggests that cooperation and communication be emphsised and that the two groups of teachers communicate more and exchange their ideas on how to teach the same group of students more effectively.

  4. How noise and language proficiency influence speech recognition by individual non-native listeners.

    Science.gov (United States)

    Zhang, Jin; Xie, Lingli; Li, Yongjun; Chatterjee, Monita; Ding, Nai

    2014-01-01

    This study investigated how speech recognition in noise is affected by language proficiency for individual non-native speakers. The recognition of English and Chinese sentences was measured as a function of the signal-to-noise ratio (SNR) in sixty native Chinese speakers who never lived in an English-speaking environment. The recognition score for speech in quiet (which varied from 15%-92%) was found to be uncorrelated with speech recognition threshold (SRTQ/2), i.e. the SNR at which the recognition score drops to 50% of the recognition score in quiet. This result demonstrates separable contributions of language proficiency and auditory processing to speech recognition in noise.

  5. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  6. Across-talker effects on non-native listeners’ vowel perception in noise1

    OpenAIRE

    Bent, Tessa; Kewley-Port, Diane; Ferguson, Sarah Hargus

    2010-01-01

    This study explored how across-talker differences influence non-native vowel perception. American English (AE) and Korean listeners were presented with recordings of 10 AE vowels in ∕bVd∕ context. The stimuli were mixed with noise and presented for identification in a 10-alternative forced-choice task. The two listener groups heard recordings of the vowels produced by 10 talkers at three signal-to-noise ratios. Overall the AE listeners identified the vowels 22% more accurately than the Korean...

  7. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Science.gov (United States)

    Peter, S.; Rechsteiner, R.; Lehmann, M. F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E.

    2012-11-01

    For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N) can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3-) removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ) were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3- concentration (> 50%) was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3- pool (by up to 22‰ for δ15N and up to 12‰ for δ18O) provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3- removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3- concentration with a rate of ~21 μmol N l-1 d-1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3- removal rates were lower (~6 μmol l-1 d-1). Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a key driver for riparian NO3- removal. We estimated that, despite higher rates in the fairly constrained willow bush hot spot, total NO3- removal from the groundwater is lower than in the extended forest area. Overall, the aquifer in the restored section was more effective and removed ~20% more NO3- than the channelized section.

  8. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera in Cerrado areas

    Directory of Open Access Journals (Sweden)

    Helena S.R. Cabette

    Full Text Available ABSTRACT Preserved riparian vegetation usually has greater environmental complexity than the riparian vegetation modified by human actions. These systems may have a greater availability and diversity of food resources for the species. Our objective was to evaluate the effect of changes on the structure of the riparian forest on species richness, beta diversity and composition of butterfly species in the Cerrado of Mato Grosso. We tested the hypotheses that: (i higher species richness and (ii beta diversity would be recorded in more preserved environments; and (iii species composition would be more homogeneous in disturbed habitats. For hypothesis testing, the riparian vegetation of eight streams were sampled in four periods of the year in a fixed transect of 100 m along the shores. The richness of butterfly species is lower in disturbed than in preserved areas. However, species richness is not affected by habitat integrity. Beta diversity differed among sites, such that preserved sites have greater beta diversity, showing greater variation in species composition. In addition, beta diversity was positively affected by environmental heterogeneity. A total of 23 of the 84 species sampled occurred only in the changed environment, 42 were exclusive to preserved sites and 19 occurred in both environments. The environmental change caused by riparian forest removal drastically affects the butterfly community. Therefore, riparian vegetation is extremely important for butterfly preservation in the Cerrado and may be a true biodiversity oasis, especially during the dry periods, when the biome undergoes water stress and resource supply is more limited.

  9. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  10. Non-Native (Exotic Snake Envenomations in the U.S., 2005–2011

    Directory of Open Access Journals (Sweden)

    Brandon J. Warrick

    2014-09-01

    Full Text Available Non-native (exotic snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.. We performed a retrospective case series of the National Poison Data System (NPDS database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40. Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994–2004 in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases.

  11. Non-Native (Exotic) Snake Envenomations in the U.S., 2005–2011

    Science.gov (United States)

    Warrick, Brandon J.; Boyer, Leslie V.; Seifert, Steven A.

    2014-01-01

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40). Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994–2004) in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases. PMID:25268980

  12. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  13. Adaptive Communication: Languages with More Non-Native Speakers Tend to Have Fewer Word Forms

    Science.gov (United States)

    Bentz, Christian; Verkerk, Annemarie; Kiela, Douwe; Hill, Felix; Buttery, Paula

    2015-01-01

    Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language. PMID:26083380

  14. Optimizing Automatic Speech Recognition for Low-Proficient Non-Native Speakers

    Directory of Open Access Journals (Sweden)

    Catia Cucchiarini

    2010-01-01

    Full Text Available Computer-Assisted Language Learning (CALL applications for improving the oral skills of low-proficient learners have to cope with non-native speech that is particularly challenging. Since unconstrained non-native ASR is still problematic, a possible solution is to elicit constrained responses from the learners. In this paper, we describe experiments aimed at selecting utterances from lists of responses. The first experiment on utterance selection indicates that the decoding process can be improved by optimizing the language model and the acoustic models, thus reducing the utterance error rate from 29–26% to 10–8%. Since giving feedback on incorrectly recognized utterances is confusing, we verify the correctness of the utterance before providing feedback. The results of the second experiment on utterance verification indicate that combining duration-related features with a likelihood ratio (LR yield an equal error rate (EER of 10.3%, which is significantly better than the EER for the other measures in isolation.

  15. The non-native seaweed Asparagopsis armata supports a diverse crustacean assemblage.

    Science.gov (United States)

    Pacios, I; Guerra-García, J M; Baeza-Rojano, E; Cabezas, M P

    2011-05-01

    This is the first study describing the crustacean fauna associated to Asparagopsis armata, a non-native, red seaweed widely distributed along western Mediterranean coasts. First found in Australia and New Zealand, it was introduced naturally through the Strait of Gibraltar and rapidly spread out. A one-year spatio-temporal study (Feb 08-Feb 09) was carried out in the Strait of Gibraltar to characterize the spatio-temporal patterns of the associated crustacean fauna. Maximum biomass of A. armata was measured during April-June, whereas the maximum crustacean abundances were registered from June-October. In total 41 crustacean species were identified. The caprellid Caprella penantis, traditionally associated to non-polluted areas, was more abundant on Tarifa Island (higher values of dissolved oxygen and pH) than in Algeciras (lower oxygen and pH). The gammarid Podocerus variegatus was dominant in Algeciras Bay while Hyale schmidti and Apherusa mediterranea were the most abundant on Tarifa Island. Among isopods, Synisoma nadejda was only found on Tarifa Island. When compared with literature of native algae of the intertidal and shallow sublittoral, the species richness of associated crustaceans was similar in A. armata and the natives. Very little is known about the influence of this algae on altering marine communities, so complete faunistic studies dealing with other groups such as polychaetes or molluscs are necessary to properly address biogeographical, ecological and management programmes dealing with this non-native species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Adaptive Communication: Languages with More Non-Native Speakers Tend to Have Fewer Word Forms.

    Science.gov (United States)

    Bentz, Christian; Verkerk, Annemarie; Kiela, Douwe; Hill, Felix; Buttery, Paula

    2015-01-01

    Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language.

  17. Locking horns with Hawai‘i’s non-native ungulate issues

    Science.gov (United States)

    Hess, Steve

    2014-01-01

    Conservation and management interests for sustained-yield hunting of non-native ungulates in Hawai‘i have conflicted with the conservation of native biota for several decades. Hawaiian ecosystems evolved in the absence of large mammals and all currently hunted animals in Hawai‘i are non-native species. The best-studied aspects of Hawai‘i’s ungulates have dealt primarily with direct negative effects on native biota in natural areas, but there has been little research in population dynamics for sustained-yield management. Ungulates have been removed from approximately 750 km2 throughout the Hawaiian Islands to protect these natural areas, thereby reducing the amount of land area available for hunting activities and the maintenance of game populations. At the same time, unauthorized introductions of additional wild ungulate species between Hawaiian Islands have recently increased in frequency. The majority of hunting activities are of feral domestic livestock species for subsistence purposes, which typically do not generate sufficient revenue to offset costs of game management. Moreover, bag limits and seasons are generally not determined from biological criteria because harvest reporting is voluntary and game populations are rarely monitored. Consequently, ungulate populations cannot be managed for any particular level of abundance or other objectives. Research and monitoring which emphasize population dynamics and productivity would enable more precisely regulated sustained-yield game management programs and may reduce potential conflicts with the conservation of native biota.

  18. Disadvantages of publishing biomedical research articles in English for non-native speakers of English.

    Science.gov (United States)

    Rezaeian, Mohsen

    2015-01-01

    English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans.

  19. The relationship between brain reaction and English reading tests for non-native English speakers.

    Science.gov (United States)

    Cheng, Pei-Wen; Tian, Yu-Jie; Kuo, Ting-Hua; Sun, Koun-Tem

    2016-07-01

    This research analyzed the brain activity of non-native English speakers while engaged in English reading tests. The brain wave event-related potentials (ERPs) of participants were used to analyze the difference between making correct and incorrect choices on English reading test items. Three English reading tests of differing levels were designed and 20 participants, 10 males and 10 females whose ages ranged from 20 to 24, voluntarily participated in the experiment. Experimental results were analyzed by performing independent t-tests on the ERPs of participants for gender, difficulty level, and correct versus wrong options. Participants who chose incorrect options elicited a larger N600, verifying results found in the literature. Another interesting result was found: For incorrectly answered items, different areas of brain showing a significant difference in ERPs between the chosen and non-chosen options corresponded to gender differences; for males, this area was located in the right hemisphere whereas for females, it was located in the left. Experimental results imply that non-native English speaking males and females employ different areas of the brain to comprehend the meaning of difficult items.

  20. Quantifying the intelligibility of speech in noise for non-native talkers

    Science.gov (United States)

    van Wijngaarden, Sander J.; Steeneken, Herman J. M.; Houtgast, Tammo

    2002-12-01

    The intelligibility of speech pronounced by non-native talkers is generally lower than speech pronounced by native talkers, especially under adverse conditions, such as high levels of background noise. The effect of foreign accent on speech intelligibility was investigated quantitatively through a series of experiments involving voices of 15 talkers, differing in language background, age of second-language (L2) acquisition and experience with the target language (Dutch). Overall speech intelligibility of L2 talkers in noise is predicted with a reasonable accuracy from accent ratings by native listeners, as well as from the self-ratings for proficiency of L2 talkers. For non-native speech, unlike native speech, the intelligibility of short messages (sentences) cannot be fully predicted by phoneme-based intelligibility tests. Although incorrect recognition of specific phonemes certainly occurs as a result of foreign accent, the effect of reduced phoneme recognition on the intelligibility of sentences may range from severe to virtually absent, depending on (for instance) the speech-to-noise ratio. Objective acoustic-phonetic analyses of accented speech were also carried out, but satisfactory overall predictions of speech intelligibility could not be obtained with relatively simple acoustic-phonetic measures.

  1. Across-talker effects on non-native listeners' vowel perception in noise.

    Science.gov (United States)

    Bent, Tessa; Kewley-Port, Diane; Ferguson, Sarah Hargus

    2010-11-01

    This study explored how across-talker differences influence non-native vowel perception. American English (AE) and Korean listeners were presented with recordings of 10 AE vowels in /bVd/ context. The stimuli were mixed with noise and presented for identification in a 10-alternative forced-choice task. The two listener groups heard recordings of the vowels produced by 10 talkers at three signal-to-noise ratios. Overall the AE listeners identified the vowels 22% more accurately than the Korean listeners. There was a wide range of identification accuracy scores across talkers for both AE and Korean listeners. At each signal-to-noise ratio, the across-talker intelligibility scores were highly correlated for AE and Korean listeners. Acoustic analysis was conducted for 2 vowel pairs that exhibited variable accuracy across talkers for Korean listeners but high identification accuracy for AE listeners. Results demonstrated that Korean listeners' error patterns for these four vowels were strongly influenced by variability in vowel production that was within the normal range for AE talkers. These results suggest that non-native listeners are strongly influenced by across-talker variability perhaps because of the difficulty they have forming native-like vowel categories.

  2. Exploring Non-Native EFL Teachers’ Knowledge Base: Practices and Perceptions

    Directory of Open Access Journals (Sweden)

    Anchalee Jansem

    2014-11-01

    Full Text Available This qualitative study was conducted to explore non-native EFL teachers’ knowledge base performed during instruction, perceived knowledge base underlying teaching practices, and perceived pathways of knowledge base construction.  The data from four sources including video recordings of classroom observations, interviews, detailed field-notes taken during classroom observations, and participants’ reflections revealed that the eight participants integrated knowledge of the English language, other content areas, instructional delivery, classroom management, and the changing world and social contexts in their instruction.  The findings indicated that the participants realized that their knowledge consisted of language construction and skills, other content areas, ability to teach, understanding students’ strengths, weaknesses, and needs, the changing world, social contexts, and technology, as well as problem solving ability.  Also, they perceived teacher education programs, additional learning experience, teaching experience, in-service professional development activities, and a working environment as key sources of knowledge base construction for non-native teachers. Keywords: knowledge base, English as a Foreign language teachers, knowledge construction

  3. Toward efficient riparian restoration: integrating economic, physical, and biological models.

    Science.gov (United States)

    Watanabe, Michio; Adams, Richard M; Wu, Junjie; Bolte, John P; Cox, Matt M; Johnson, Sherri L; Liss, William J; Boggess, William G; Ebersole, Joseph L

    2005-04-01

    This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on water temperatures and the subsequent impacts on endangered juvenile salmonid populations. The integrated modeling system consists of a physical model that links riparian conditions and hydrological characteristics to water temperature; a biological model that links water temperature and riparian conditions to salmonid abundance, and an economic model that incorporates both physical and biological models to estimate minimum cost allocations of conservation efforts. Our findings indicate that conservation alternatives such as passive and active riparian restoration, the width of riparian restoration zones, and the types of vegetation used in restoration activities should be selected based on the spatial distribution of riparian characteristics in the basin. The relative effectiveness of passive and active restoration plays an important role in determining the efficient allocations of conservation efforts. The time frame considered in the restoration efforts and the magnitude of desired temperature reductions also affect the efficient combinations of restoration activities. If the objective of conservation efforts is to maximize fish populations, then fishery benefits should be directly targeted. Targeting other criterion such as water temperatures would result in different allocations of conservation efforts, and therefore are not generally efficient.

  4. Spatial patterns of water-dispersed seed deposition along stream riparian gradients.

    Science.gov (United States)

    Fraaije, Rob G A; Moinier, Sophie; van Gogh, Iris; Timmers, Robert; van Deelen, Joost J; Verhoeven, Jos T A; Soons, Merel B

    2017-01-01

    species-specific dispersal pathways. This shows that hydrochory likely has important consequences for riparian vegetation development and that flooding forms a key process for successful restoration.

  5. Are non-native plants perceived to be more risky? Factors influencing horticulturists' risk perceptions of ornamental plant species.

    Directory of Open Access Journals (Sweden)

    Franziska Humair

    Full Text Available Horticultural trade is recognized as an important vector in promoting the introduction and dispersal of harmful non-native plant species. Understanding horticulturists' perceptions of biotic invasions is therefore important for effective species risk management. We conducted a large-scale survey among horticulturists in Switzerland (N = 625 to reveal horticulturists' risk and benefit perceptions from ornamental plant species, their attitudes towards the regulation of non-native species, as well as the factors decisive for environmental risk perceptions and horticulturists' willingness to engage in risk mitigation behavior. Our results suggest that perceived familiarity with a plant species had a mitigating effect on risk perceptions, while perceptions of risk increased if a species was perceived to be non-native. However, perceptions of the non-native origin of ornamental plant species were often not congruent with scientific classifications. Horticulturists displayed positive attitudes towards mandatory trade regulations, particularly towards those targeted against known invasive species. Participants also expressed their willingness to engage in risk mitigation behavior. Yet, positive effects of risk perceptions on the willingness to engage in risk mitigation behavior were counteracted by perceptions of benefits from selling non-native ornamental species. Our results indicate that the prevalent practice in risk communication to emphasize the non-native origin of invasive species can be ineffective, especially in the case of species of high importance to local industries and people. This is because familiarity with these plants can reduce risk perceptions and be in conflict with scientific concepts of non-nativeness. In these cases, it might be more effective to focus communication on well-documented environmental impacts of harmful species.

  6. Mental health status in pregnancy among native and non-native Swedish-speaking women: a Bidens study.

    Science.gov (United States)

    Wangel, Anne-Marie; Schei, Berit; Ryding, Elsa Lena; Ostman, Margareta

    2012-12-01

    To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics in Southern Sweden. A non-selected group of women in mid-pregnancy. Participants completed a questionnaire covering background characteristics, social support, life events, mental health variables and the short Edinburgh Depression Scale. Depressive symptoms during the past week and PTS symptoms during the past year. Out of 1003 women, 21.4% reported another language than Swedish as their mother tongue and were defined as non-native. These women were more likely to be younger, have fewer years of education, potential financial problems, and lack of social support. More non-native speakers self-reported depressive, PTS, anxiety and, psychosomatic symptoms, and fewer had had consultations with a psychiatrist or psychologist. Of all women, 13.8% had depressive symptoms defined by Edinburgh Depression Scale 7 or above. Non-native status was associated with statistically increased risks of depressive symptoms and having ≥1 PTS symptom compared with native-speaking women. Multivariate modeling including all selected factors resulted in adjusted odds ratios for depressive symptoms of 1.75 (95% confidence interval: 1.11-2.76) and of 1.56 (95% confidence interval: 1.10-2.34) for PTS symptoms in non-native Swedish speakers. Non-native Swedish-speaking women had a more unfavorable mental health status than native speakers. In spite of this, non-native speaking women had sought less mental health care. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Levantamento florístico do componente arbustivo-arbóreo da vegetação ciliar na bacia do rio Taperoá, PB, Brasil Floristic survey of components of shrub-tree riparian vegetation in the Taperoá river basin, Paraíba State, Brasil

    Directory of Open Access Journals (Sweden)

    Alecksandra Vieira de Lacerda

    2005-09-01

    Full Text Available Considerando o papel relevante e o nível de degradação presente nas áreas ciliares, a pesquisa objetivou estudar a composição florística do componente arbustivo-arbóreo da vegetação ciliar em diferentes ambientes hídricos do semi-árido paraibano na bacia do rio Taperoá. O levantamento florístico foi realizado no período de junho/2002 a fevereiro/2003 e abrangeu nove pontos distribuídos ao longo de rios, riachos, lagoa e açude. A definição das atividades apoiou-se em análise de cartas e mapas da vegetação em escala de 1:100.000 e caminhadas aleatórias que permitiram a realização de coleta de material vegetal, utilizado para identificação por meio de consultas a especialistas e de morfologia comparada, usando bibliografia especializada e análise das exsicatas depositadas no herbário Lauro Pires Xavier - JPB (UFPB, João Pessoa, PB. A vegetação arbustivo-arbórea da mata ciliar nos nove pontos amostrados foi representada por 43 espécies, das quais 41 são pertencentes a 19 famílias, e duas espécies permaneceram indeterminadas. As famílias que apresentaram o maior número de espécies foram Mimosaceae (sete, Caesalpiniaceae (cinco e Euphorbiaceae (cinco. Os resultados da análise de agrupamento indicaram que as áreas ciliares apresentaram certa particularização em termos de composição florística, o que se refletiu nos baixos índices de similaridades entre o conjunto de áreas amostradas.Considering the relevant role and the current level of degradation of riparian areas, this work aimed to study the floristic composition of shrub-tree riparian vegetation at different hydric environments in the Taperoá river basin, in the semi-arid region of the Paraíba State, Northeast Brazil. The survey was performed from June 2002 to February 2003. Nine sampling sites were distributed along rivers and streams, and around lagoon, and dam. The definition of activities was based on the analysis of charts and vegetation maps

  8. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Science.gov (United States)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  9. Geomorphic controls on riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon

    Science.gov (United States)

    Grabs, T.; Ledesma, J.; Laudon, H.; Seibert, J.; Kohler, S. J.; Bishop, K. H.

    2014-12-01

    Near stream (riparian) zones are an important link between terrestrial and aquatic ecosystems and influence a wide range of processes including solute transport or hydrologic behavior of headwater catchments. Understanding the links between geomorphology and riparian soils, vegetation and hydrology is, thus, a prerequisite for relating small scale processes to observations at the watershed scale. Geographic information systems (GIS) have traditionally been used to study links between geomorphology and properties of terrestrial ecosystems. Applying this approach to riparian zones, however, has only recently become feasible with the availability of high-resolution digital elevation models and the new development of suitable computational methods. In this study we present links between geomorphology and riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon. Geomorphometric attributes were successfully used to predict (1) riparian groundwater levels and flow pathways, (2) the size of riparian soil carbon pools, (3) the vertical variation of dissolved organic carbon (DOC) in riparian soil profiles, as well as (4) riparian carbon fluxes and turnover times.

  10. Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista Subwatershed of the Upper San Pedro Basin, southeastern Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.; Leenhouts, James M.

    2008-01-01

    In the context of ground-water resources, “capture” or “streamflow depletion” refers to withdrawal-induced changes in inflow to or outflow from an aquifer. These concepts are helpful in understanding the effects of long-term development of ground-water resources. For the Upper San Pedro Basin in Arizona, USA and Sonora, Mexico, a recently developed ground-water flow model is available to help quantify capture of water from the river and riparian system. A common method of analysis is to compute curves of capture and aquifer-storage change for a range of time at select points of interest. This study, however, presents results of a method to show spatial distributions of total change in inflow and outflow from withdrawal or injection for select times of interest. The mapped areal distributions show the effect of a single well in terms of the ratio of the change in boundary flow rate to rate of withdrawal or injection by the well. To the extent that the system responds linearly to ground-water withdrawal or injection, fractional responses in the mapped distributions can be used to quantify response for any withdrawal or injection rate. Capture distributions calculated using the Upper San Pedro model include response to (1) withdrawal in the lower basin-fill aquifer for times of 10 and 50 years following the initiation of pumping from predevelopment conditions and (2) artificial recharge to the water table in the area underlain by the lower basin-fill aquifer after 10 and 50 years. The mapped distributions show that response to withdrawals and injections is greatest near the river/riparian system. Presence of clay layers in the vertical interval between withdrawal locations and the river/riparian system, however, can delay the response.

  11. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  12. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon.

    Science.gov (United States)

    Wigington, P J; Griffith, S M; Field, J A; Baham, J E; Horwath, W R; Owen, J; Davis, J H; Rain, S C; Steiner, J J

    2003-01-01

    The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.

  13. Características sedimentares fluviais associadas ao grau de reservação da mata Ciliar - Rio Urumajó, Nordeste Paraense Fluvial sedimentology associated with the degree of preservation of the riparian vegetation, Urumajó River, PA / Brazil

    Directory of Open Access Journals (Sweden)

    Roney Nonato Reis de Brito

    2009-03-01

    sedimentology of the Urumajó River (Pará, Brazil in relation to the preservation state of riparian vegetation. Sediment samples were collected at five sites (A to E, including a five-sample transversal profile at each site. The sites were distributed from the source to the estuarine area. The characteristics and preservation state of the riparian vegetation were analyzed at each site as well. The collected sediments were submitted to grain size analysis, where mean grain size, median, asymmetry, selection and kurtosis were obtained. The results made it possible to recognize the regular characteristics (sites A and C, which included median sand as the main sediment class and well-sorted and approximate symmetric grain size distribution, directly related to the well-preserved riparian vegetation at sites A and C. On the other hand, sites B, D and E showed substantial differences in relation to the regular pattern. This fact could be associated to the vegetation degradation at those sites, resulting in margin erosion. Furthermore, at site E, reflexes of tide influence on the sediment characteristics could be observed, subsidizing the estuary delimitation.

  14. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  15. Durations of American English vowels by native and non-native speakers: acoustic analyses and perceptual effects.

    Science.gov (United States)

    Liu, Chang; Jin, Su-Hyun; Chen, Chia-Tsen

    2014-06-01

    The goal of this study was to examine durations of American English vowels produced by English-, Chinese-, and Korean-native speakers and the effects of vowel duration on vowel intelligibility. Twelve American English vowels were recorded in the /hVd/ phonetic context by native speakers and non-native speakers. The English vowel duration patterns as a function of vowel produced by non-native speakers were generally similar to those produced by native speakers. These results imply that using duration differences across vowels may be an important strategy for non-native speakers' production before they are able to employ spectral cues to produce and perceive English speech sounds. In the intelligibility experiment, vowels were selected from 10 native and non-native speakers and vowel durations were equalized at 170 ms. Intelligibility of vowels with original and equalized durations was evaluated by American English native listeners. Results suggested that vowel intelligibility of native and non-native speakers degraded slightly by 3-8% when durations were equalized, indicating that vowel duration plays a minor role in vowel intelligibility.

  16. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  17. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  18. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  19. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Department of Resources — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  20. Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

    Science.gov (United States)

    Ajami, Hoori; Meixner, Thomas; Maddock, Thomas; Hogan, James F.; Guertin, D. Phillip

    2011-09-01

    Riparian groundwater evapotranspiration (ETg) constitutes a major component of the water balance especially in many arid and semi-arid environments. Although spatial and temporal variability of riparian ETg are controlled by climate, vegetation and subsurface characteristics, depth to water table (DTWT) is often considered the major controlling factor. Relationships between ETg rates and DTWT, referred to as ETg curves, are implemented in MODFLOW ETg packages (EVT, ETS1 and RIP-ET) with different functional forms. Here, the sensitivity of the groundwater budget in MODFLOW groundwater models to ETg parameters (including ETg curves, land-surface elevation and ETg seasonality) are investigated. A MODFLOW model of the hypothetical Dry Alkaline Valley in the Southwestern USA is used to show how spatial representation of riparian vegetation and digital elevation model (DEM) processing methods impact the water budget when RIPGIS-NET (a GIS-based ETg program) is used with MODFLOW's RIP-ET package, and results are compared with the EVT and ETS1 packages. Results show considerable impact on ETg and other groundwater budget components caused by spatial representation of riparian vegetation, vegetation type, fractional coverage areas and land-surface elevation. RIPGIS-NET enhances ETg estimation in MODFLOW by incorporating vegetation and land-surface parameters, providing a tool for ecohydrology studies, riparian ecosystem management and stream restoration.

  1. Learning foreign sounds in an alien world: videogame training improves non-native speech categorization.

    Science.gov (United States)

    Lim, Sung-joo; Holt, Lori L

    2011-01-01

    Although speech categories are defined by multiple acoustic dimensions, some are perceptually weighted more than others and there are residual effects of native-language weightings in non-native speech perception. Recent research on nonlinguistic sound category learning suggests that the distribution characteristics of experienced sounds influence perceptual cue weights: Increasing variability across a dimension leads listeners to rely upon it less in subsequent category learning (Holt & Lotto, 2006). The present experiment investigated the implications of this among native Japanese learning English /r/-/l/ categories. Training was accomplished using a videogame paradigm that emphasizes associations among sound categories, visual information, and players' responses to videogame characters rather than overt categorization or explicit feedback. Subjects who played the game for 2.5h across 5 days exhibited improvements in /r/-/l/ perception on par with 2-4 weeks of explicit categorization training in previous research and exhibited a shift toward more native-like perceptual cue weights.

  2. A Multidimensional Scaling Study of Native and Non-Native Listeners' Perception of Second Language Speech.

    Science.gov (United States)

    Foote, Jennifer A; Trofimovich, Pavel

    2016-04-01

    Second language speech learning is predicated on learners' ability to notice differences between their own language output and that of their interlocutors. Because many learners interact primarily with other second language users, it is crucial to understand which dimensions underlie the perception of second language speech by learners, compared to native speakers. For this study, 15 non-native and 10 native English speakers rated 30-s language audio-recordings from controlled reading and interview tasks for dissimilarity, using all pairwise combinations of recordings. PROXSCAL multidimensional scaling analyses revealed fluency and aspects of speakers' pronunciation as components underlying listener judgments but showed little agreement across listeners. Results contribute to an understanding of why second language speech learning is difficult and provide implications for language training.

  3. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    Science.gov (United States)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  4. Reproduction of the non-native fish Lepomis gibbosus (Perciformes: Centrarchidae in Brazil

    Directory of Open Access Journals (Sweden)

    Rangel E. Santos

    2012-09-01

    Full Text Available Minas Gerais is the fourth largest Brazilian state, and has an estimate of 354 native fish species. However, these fish species may be threatened, as this state has the highest rank of fish introductions reported for Brazil and South America. As one from the total of 85 non-native species detected, Lepomis gibbosus was introduced in the 60s to serve both as foragefish and to improve sport fishing. In this study, we evaluated the establishment of L. gibbosus in a shallow lake in the city of Ouro Preto, Doce River basin, state of Minas Gerais, Southeastern Brazil. We collected fish with fishing rods every two months from March 2002-February 2003. Fragments of gonads from a total of 226 females and 226 males were obtained and processed following standard histological techniques; then 5-7μm thickness sections were taken and stained in hematoxylin-eosin. Besides, for each specimen, the biometric measurements included the standard length (SL and body weight (BW; and the sex ratio was obtained. The reproductive cycle stages were confirmed by the distribution of oocytes and spermatogenic cells. The type of spawning was determined by the frequency distribution of the reproductive cycle stages and ovarian histology. Based on the microscopic characteristics of the gonads, the following stages of the reproductive cycle were determined: one=Rest, two=Mature, three=Spawned for females or Spent for males; males and females in reproduction were found throughout the study period. Post-spawned ovaries containing oocytes in stages one (initial perinucleolar, two (advanced perinucleolar, three (pre-vitellogenic, four (vitellogenic and post-ovulatory follicles indicated fractionated-type spawning in this species. The smallest breeding male and female measured were 4.6 and 4.9cm standard length, respectively, suggesting stunting. The sex ratio did not vary between males and females along the year and bimonthly, being 1:1. Moreover, L. gibbosus appears to be at stage

  5. Assessing the impact of non-native freshwater fishes on native species using relative weight

    Directory of Open Access Journals (Sweden)

    Giannetto D.

    2012-01-01

    Full Text Available The aim of the research was to test relative weight (Wr, a condition index which allows evaluation of fish well-being, as a tool to investigate the impact of the presence of non native species (NNS on the condition of the key native species (NS of the Tiber River basin (Italy: Barbustyberinus Bonaparte, Leuciscus cephalus (Linnaeus, Leuciscus lucumonis Bianco, Rutilus rubilio (Bonaparte and Telestes muticellus (Bonaparte. By means of Canonical Correlation Analysis, data from 130 sampling sites, distributed throughout Tiber River basin, were examined. Wr of NS was related to densities of NNS and to environmental variables. Moreover, the correlation between Wr of NS and density of NNS was investigated through linear regression analysis and covariance analysis. Preliminary results encourage the use of Wr as a tool to assess the relationship between NS and ecological factors (such as the presence of NNS and to explain the changes that occur along the longitudinal gradient of a river.

  6. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees

    Science.gov (United States)

    Ranger, Christopher M.; Schultz, Peter B.; Frank, Steven D.; Chong, Juang H.; Reding, Michael E.

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  7. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds.

    Directory of Open Access Journals (Sweden)

    Olatz San Sebastián

    Full Text Available One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis or alternative resources (opportunistic hypothesis. To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals, the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter.

  8. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  9. Am\\'elioration des Performances des Syst\\`emes Automatiques de Reconnaissance de la Parole pour la Parole Non Native

    CERN Document Server

    Bouselmi, Ghazi; Illina, Irina; Haton, Jean-Paul

    2007-01-01

    In this article, we present an approach for non native automatic speech recognition (ASR). We propose two methods to adapt existing ASR systems to the non-native accents. The first method is based on the modification of acoustic models through integration of acoustic models from the mother tong. The phonemes of the target language are pronounced in a similar manner to the native language of speakers. We propose to combine the models of confused phonemes so that the ASR system could recognize both concurrent pronounciations. The second method we propose is a refinment of the pronounciation error detection through the introduction of graphemic constraints. Indeed, non native speakers may rely on the writing of words in their uttering. Thus, the pronounctiation errors might depend on the characters composing the words. The average error rate reduction that we observed is (22.5%) relative for the sentence error rate, and 34.5% (relative) in word error rate.

  10. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Department of Resources — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  11. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    Science.gov (United States)

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  12. Comparison of bird community indices for riparian restoration planning and monitoring

    Science.gov (United States)

    Young, Jock S.; Ammon, Elisabeth M.; Weisburg, Peter J.; Dilts, Thomas E.; Newton, Wesley E.; Wong-Kone, Diane C.; Heki, Lisa G.

    2013-01-01

    The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.

  13. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico

    OpenAIRE

    2014-01-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-nati...

  14. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    Science.gov (United States)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  15. Introduction and spread of non-native parasites with Silurus glanis L. (Teleostei: Siluridae) in UK fisheries.

    Science.gov (United States)

    Reading, A J; Britton, J R; Davies, G D; Shinn, A P; Williams, C F

    2012-12-01

    Despite growing concern of the ecological risks posed by the European catfish Siluris glanis L. in freshwater fisheries, little information exists on the parasite fauna of this silurid catfish in Britain. Parasitological examinations of released S. glanis from four still-water fisheries in England revealed the presence of Thaparocleidus vistulensis (Siwak, 1932) and Ergasilus sieboldi (Nordmann, 1832), both non-native parasites, the latter known to be an important fish pathogen. This represents the first record of T. vistulensis from British freshwater fish. The human-assisted movement of S. glanis between UK recreational still-water fisheries provides a clear avenue for the introduction and spread of non-native parasites.

  16. Woody species composition, diversity and structure of riparian forests of four watercourses types in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Oumarou Sambaré; Fidèle Bognounou; Rüdiger Wittig; Adjima Thiombiano

    2011-01-01

    Riparian forests are classified as endangered ecosystems in general, particularly in sahelian countries like Burkina Faso because of human-induced alterations and civil engineering works. The modification of this important habitat is continuing, with little attention being paid to the ecological or human consequences of these changes. The objective of this study is to describe the variation of woody species diversity and dynamic in riparian forests on different type of watercourse banks along phytogeographical gradient in Burkina Faso. All woody species were systematically measured in 90 sample plots with sides of 50 m × 20 m.Density, dominance, frequency and species and family importance values were computed to characterize the species composition. Different diversity indices were calculated to examine the heterogeneity of riparian forests. A total of 196 species representing 139 genera and 51 families were recorded in the overall riparian forests. The species richness of individuals with dbh ≥ 5cm increased significantly from the North to the South along the phytogeographical gradient and varied significantly between the different types of riparian forests. Similarity in tree species composition between riparian forests was low, which indicates high beta diversity and reflects differences in habitat conditions and topography.The structural characteristics varied significantly along the phytogeographical gradient and between the different types of riparian forests.The diameter class distribution of trees in all riparian forests showed a reverse “J” shaped curve except riparian forest of stream indicating vegetation dominated by juvenile individuals. Considering the ecological importance of riparian forest, there is a need to delineate and classify them along watercourses throughout the country.

  17. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  18. FlexAID: Revisiting Docking on Non-Native-Complex Structures.

    Science.gov (United States)

    Gaudreault, Francis; Najmanovich, Rafael J

    2015-07-27

    Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.

  19. 河岸带不同植被类型对土壤有机碳和全氮分布特征的影响——以北京地区温榆河为例%Effects of riparian vegetation on soil organic carbon and total nitrogen distribution——a case study of Wenyu River, Beijing

    Institute of Scientific and Technical Information of China (English)

    郭二辉; 孙然好; 陈利顶; 王赵明; 肖峻; 时鹏

    2012-01-01

    河岸带生态系统是河流生态系统和陆地生态系统之间的生态交错带,也是一个敏感和脆弱的生态区域.由于受河道周边人类活动的干扰,河岸带生态系统的植被类型发生了巨大变化.本文以北京市地区的温榆河为研究对象,分析了河岸带7种植被类型对土壤有机碳和全氮含量及其空间分布特征的影响.结果表明:(1)河岸带不同植被类型对土壤有机碳和全氮的影响主要表现在表层土壤,尤其是0~5 cm土层,而对5 cm以下土层的影响相对较小.(2)河岸带不同植被类型土壤全氮和有机碳含量的空间分布特征具有显著差异.随着土层深度增加,土壤全氮和有机碳整体上呈下降趋势,但不同植被类型的垂直变化规律有较大差异,如自然草地、退耕撂荒地和林地的土壤有机碳、全氮含量随土层深度加深而降低的速率明显高于农田生态系统.(3)在0~30 cm土壤剖面上,土壤有机碳平均含量从高到低依次为杨树林(9.54 g·kg-1)、自然荒草地(9.33 g·kg-1)、梨树果园(9.18 g·kg-1)、火炬树林地(8.89 g·kg-1)、退耕撂荒地(7.91 g·kg-1)、玉米地(7.22 g·kg-1)和黄豆地(7.17g·kg-1);土壤全氮的平均含量从高到低依次为自然荒草地(1.30 g·kg-1)、杨树林(0.91 g·kg-1)、梨树果园(0.90g·kg-1)、火炬树林地(0.83 g·kg-1)、退耕撂荒地(0.80 g·kg-1)、玉米地(0.72 g·kg-1)和黄豆地(0.70 g·kg-1).%Riparian ecosystem is an ecological ecotone that occurs between river and terrestrial ecosystems. Riparian ecosystems are normally sensitive and vulnerable ecological niches. There are vast changes in riparian vegetation systems due to human disturbances of river systems. Thus this study analyzed the effects of 7 riparian vegetation systems on the contents and spatial distributions of soil organic carbon and total nitrogen in Wenyu River in Beijing. The results showed that riparian vegetation mainly affected soil organic carbon

  20. Assessment of water-recharging based on ecological features of riparian forest in the lower reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhenyong; WANG Ranghui; SUN Hongbo; ZHANG Huizhi

    2006-01-01

    The occurrence and development of riparian forests which are mainly dominated by mesophytes species relate closely with surface water.Since there is no water discharge to the lower reaches of Tarim River in past 5 decade years, the riparian forests degrade severely. Based on the analyses of the monitored data of Yingsu, Argan and Luobuzhuang in 2002 and 2003, the effect of water-recharging is discussed. The water-recharging project neglects the fact that that it is flooding that controls the process of Populus euphratica colonizing on the bare surface, but focuses on groundwater influence on vegetation. The flooding control deviates inherent laws of riparian forests development, so the natural regeneration of riparian forests is checked.The responsescope of riparian plants on groundwater uplift is extremely narrow, and most riparian communities have not been optimized. No seedlings of dominant species are found in flooding areas because their physio-ecological characteristics are ignored. The vegetation changes in vicinities of stream only reflect the demand of mesophytes species on the shallow groundwater, however, the water-recharging fails to provide suitable habitats for the seedlings establishment of riparian plants. The present water-recharging scheme is difficult to realize vegetation restoration.

  1. Assessing climate refugia from a terrestrial vegetation vulnerability assessment for 29 types in California.

    Science.gov (United States)

    Thorne, J. H.; Bjorkman, J.; Boynton, R.; Stewart, J.; Holguin, A.; Schwartz, M.; Albright, W.

    2015-12-01

    We assessed the climate vulnerability of 29 terrestrial macrogroup vegetation types in the National Vegetation Classification Scheme covering 99% of California. Using a 2015 landcover map, we defined current and future climate exposure of each type by assessing conditions at all known locations. This approach identifies both areas of expected high stress and of climate refugia. Species distribution models of the vegetation types proved to over-predict the extent of occupied lands, compared to their mapped extents. Trait based components of the vulnerability assessment were far less influential on level of vulnerability than climate projection. Various cutoffs can be selected to describe refugia. Here we classed refugia as the 20% of climate conditions most frequently occupied by a type. Under CNRM CM5 RCP 4.5, of 70,143 km2 that are the most climate-insulated locations, 46,420 km2 move to higher levels of climate exposure. At the other extreme of climate projections tested, MIROC ESM RCP 8.5, 59,137 km2 are lost. Four macrogroups lose their refugia under CNRM 4.5: Pacific Northwest Conifer Forests, Mountain Riparian Scrub and Wet Meadow, Salt Marsh, and Great Basin Upland Scrub. Under MIROC 8.5 and additional 8 macrogroups lose the most commonly experienced climate: Subalpine Aspen Forests & Pine Woodlands, Non-Native Forest and Woodlands, North Coast Deciduous Scrub and Terrace Prairie, Coastal Dune and Bluff Scrub, Freshwater Marsh, Wet Mountain Meadow, Big Sagebrush Scrub, and Alpine Vegetation. These results raise interesting questions regarding the definition of refugia. We review the results and ask how appropriate they are for different ecosystem types.

  2. Voice vs. Text Chats: Their Efficacy for Learning Probing Questions by Non-Native Speaking Medical Professionals in Online Courses

    Science.gov (United States)

    Ellis, Olga

    2012-01-01

    Through an English for Specific Purposes (ESP): Communication in Nursing online course, the present study examines the efficacy of synchronous voice-based and text-based chats as instructional and communicative modes in learning to use open questions for probing in therapeutic dialogues by non-native speaking (NNS) participants, students of a…

  3. Pragmatic Competence and Social Power Awareness: The Case of Written and Spoken Discourse in Non-Native English Environments

    Science.gov (United States)

    Pérez-Sabater, Carmen; Montero-Fleta, Begoña

    2014-01-01

    Following one of the new challenges suggested by the Common European Framework of Reference for Languages, a treatment was developed to enhance pragmatic competence, since this competence is not easy to acquire by non-native speakers. Within this context, we focused on pragmatic awareness in the workplace, an area of expertise in growing demand…

  4. Learning to Teach English Language in the Practicum: What Challenges do Non-Native ESL Student Teachers Face?

    Science.gov (United States)

    Gan, Zhengdong

    2013-01-01

    This study investigates the challenges sixteen non-native preservice ESL teachers in a Bachelor of Education (English Language) (BEdEL) programme from Hong Kong experienced in an eight-week teaching practicum. Qualitative data from semi-structured interviews and reflective journals were collected from all 16 participants to obtain a detailed…

  5. 3D Talking-Head Mobile App: A Conceptual Framework for English Pronunciation Learning among Non-Native Speakers

    Science.gov (United States)

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah

    2013-01-01

    One of the critical issues pertaining learning English as second language successfully is pronunciation, which consequently contributes to learners' poor communicative power. This situation is moreover crucial among non-native speakers. Therefore, various initiatives have been taken in order to promote effective language learning, which includes…

  6. Descriptions of Difficult Conversations between Native and Non-Native English Speakers: In-Group Membership and Helping Behaviors

    Science.gov (United States)

    Young, Ray; Faux, William V., II

    2011-01-01

    This study illustrated the perceptions of native English speakers about difficult conversations with non-native English speakers. A total of 114 native English speakers enrolled in undergraduate communication courses at a regional state university answered a questionnaire about a recent difficult conversation the respondent had with a non-native…

  7. Age of Acquisition and Proficiency in a Second Language Independently Influence the Perception of Non-Native Speech

    Science.gov (United States)

    Archila-Suerte, Pilar; Zevin, Jason; Bunta, Ferenc; Hernandez, Arturo E.

    2012-01-01

    Sensorimotor processing in children and higher-cognitive processing in adults could determine how non-native phonemes are acquired. This study investigates how age-of-acquisition (AOA) and proficiency-level (PL) predict native-like perception of statistically dissociated L2 categories, i.e., within-category and between-category. In a similarity…

  8. Scaffolding Learning: Developing Materials to Support the Learning of Science and Language by Non-Native English-Speaking Students

    Science.gov (United States)

    Afitska, Oksana

    2016-01-01

    In recent years, the UK, like many other English first-language-speaking countries, has encountered a steady and continuous increase in the numbers of non-native English-speaking learners entering state primary and secondary schools. A significant proportion of these learners has specific language and subject learning needs, many of which can only…

  9. Effects of noise, reverberation and foreign accent on native and non-native listeners' performance of English speech comprehension.

    Science.gov (United States)

    Peng, Z Ellen; Wang, Lily M

    2016-05-01

    A large number of non-native English speakers may be found in American classrooms, both as listeners and talkers. Little is known about how this population comprehends speech in realistic adverse acoustical conditions. A study was conducted to investigate the effects of background noise level (BNL), reverberation time (RT), and talker foreign accent on native and non-native listeners' speech comprehension, while controlling for English language abilities. A total of 115 adult listeners completed comprehension tasks under 15 acoustic conditions: three BNLs (RC-30, RC-40, and RC-50) and five RTs (from 0.4 to 1.2 s). Fifty-six listeners were tested with speech from native English-speaking talkers and 59 with native Mandarin-Chinese-speaking talkers. Results show that, while higher BNLs were generally more detrimental to listeners with lower English proficiency, all listeners experienced significant comprehension deficits above RC-40 with native English talkers. This limit was lower (i.e., above RC-30), however, with Chinese talkers. For reverberation, non-native listeners as a group performed best with RT up to 0.6 s, while native listeners performed equally well up to 1.2 s. A matched foreign accent benefit has also been identified, where the negative impact of higher reverberation does not exist for non-native listeners who share the talker's native language.

  10. Students Writing Emails to Faculty: An Examination of E-Politeness among Native and Non-Native Speakers of English

    Science.gov (United States)

    Biesenbach-Lucas, Sigrun

    2007-01-01

    This study combines interlanguage pragmatics and speech act research with computer-mediated communication and examines how native and non-native speakers of English formulate low- and high-imposition requests to faculty. While some research claims that email, due to absence of non-verbal cues, encourages informal language, other research has…

  11. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Science.gov (United States)

    Previous research indicates that a difference occurs in native and non-native grass species in regard to drivers of greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. Drivers of soil nutrients could help establish best management practices to mit...

  12. Unpacking Race, Culture, and Class in Rural Alaska: Native and Non-Native Multidisciplinary Professionals' Perceptions of Child Sexual Abuse

    Science.gov (United States)

    Bubar, Roe; Bundy-Fazioli, Kimberly

    2011-01-01

    The purpose of this study was to unpack notions of class, culture, and race as they relate to multidisciplinary team (MDT) professionals and their perceptions of prevalence in child sexual abuse cases in Native and non-Native rural Alaska communities. Power and privilege within professional settings is significant for all social work professionals…

  13. Language and Academic Identity: A Study of the Experiences of Non-Native English Speaking International Students

    Science.gov (United States)

    Halic, Olivia; Greenberg, Katherine; Paulus, Trena

    2009-01-01

    This phenomenological study explores the experiences of non-native English-speaking international students regarding language, culture and identity in the context of their graduate studies. Interviews were conducted with each of the eight participants. Interpretive analysis was used within a constructivist frame. The findings of this study are…

  14. Integrating Academic Language, Thinking, and Content: Learning Scaffolds for Non-Native Speakers in the Middle Grades

    Science.gov (United States)

    Zwiers, Jeff

    2006-01-01

    The purpose of this action research study was to explore possibilities for scaffolding academic language and historical thinking for non-native English speaking students in two middle school classrooms. The teaching approach focused on six dimensions of historical thinking: background knowledge, cause, effect, bias, empathy, and application. The…

  15. Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information.

    Science.gov (United States)

    Kempe, Vera; Bublitz, Dennis; Brooks, Patricia J

    2015-05-01

    Is the observed link between musical ability and non-native speech-sound processing due to enhanced sensitivity to acoustic features underlying both musical and linguistic processing? To address this question, native English speakers (N = 118) discriminated Norwegian tonal contrasts and Norwegian vowels. Short tones differing in temporal, pitch, and spectral characteristics were used to measure sensitivity to the various acoustic features implicated in musical and speech processing. Musical ability was measured using Gordon's Advanced Measures of Musical Audiation. Results showed that sensitivity to specific acoustic features played a role in non-native speech-sound processing: Controlling for non-verbal intelligence, prior foreign language-learning experience, and sex, sensitivity to pitch and spectral information partially mediated the link between musical ability and discrimination of non-native vowels and lexical tones. The findings suggest that while sensitivity to certain acoustic features partially mediates the relationship between musical ability and non-native speech-sound processing, complex tests of musical ability also tap into other shared mechanisms. © 2014 The British Psychological Society.

  16. A Non-Native Student's Experience on Collaborating with Native Peers in Academic Literacy Development: A Sociopolitical Perspective

    Science.gov (United States)

    Cheng, Rui

    2013-01-01

    This sociopolitically-oriented case study aims to further explore the complex social network non-native students are engaged in during their literacy activities. In previous research, institutional policies, supervisors and instructors, and gatekeepers of target journals are normally regarded as key players to influence students fulfilling their…

  17. Communicative Functions of the Nurse-Patient Relationship: Observations of Native and Non-Native Nurses in United States Hospitals.

    Science.gov (United States)

    Hadley, Jo Linda

    A study compared the nurse-patient communication of native and non-native English-speaking nurses. Examination of the literature on nurse-patient relationships and a brief survey of native nurses yielded an instrument for observation of nurses. Ten nurses were observed for 3 hourse each. Transcripts of the observations of the five non-native…

  18. Scaffolding Learning: Developing Materials to Support the Learning of Science and Language by Non-Native English-Speaking Students

    Science.gov (United States)

    Afitska, Oksana

    2016-01-01

    In recent years, the UK, like many other English first-language-speaking countries, has encountered a steady and continuous increase in the numbers of non-native English-speaking learners entering state primary and secondary schools. A significant proportion of these learners has specific language and subject learning needs, many of which can only…

  19. The Development and Validation of the "Academic Spoken English Strategies Survey (ASESS)" for Non-Native English Speaking Graduate Students

    Science.gov (United States)

    Schroeder, Rui M.

    2016-01-01

    This study reports on the three-year development and validation of a new assessment tool--the Academic Spoken English Strategies Survey (ASESS). The questionnaire is the first of its kind to assess the listening and speaking strategy use of non-native English speaking (NNES) graduate students. A combination of sources was used to develop the…

  20. Competitive effects of non-native plants are lowest in native plant communities that are most vulnerable to invasion

    Science.gov (United States)

    J.Stephen Brewer; W. Chase Bailey

    2014-01-01

    Despite widespread acknowledgment that disturbance favors invasion, a hypothesis that has received little attention is whether non-native invaders have greater competitive effects on native plants in undisturbed habitats than in disturbed habitats. This hypothesis derives from the assumption that competitive interactions are more persistent in habitats that have not...

  1. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    Science.gov (United States)

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  2. Non-Native Japanese Listeners' Perception of Vowel Length Contrasts in Japanese and Modern Standard Arabic (MSA)

    Science.gov (United States)

    Tsukada, Kimiko

    2012-01-01

    This study aimed to compare the perception of short vs. long vowel contrasts in Japanese and Modern Standard Arabic (MSA) by four groups of listeners differing in their linguistic backgrounds: native Arabic (NA), native Japanese (NJ), non-native Japanese (NNJ) and Australian English (OZ) speakers. The NNJ and OZ groups shared the first language…

  3. The Pedagogy and Its Effectiveness among Native and Non-Native English Speaking Teachers in the Korean EFL Context

    Science.gov (United States)

    Nam, Hyun Ha

    2010-01-01

    As English progressively becomes the global language, many native English speakers move to foreign countries to work as English teachers. However a review of the literature reveals that there is little research on their actual performance compared to the non-native local English teachers. This comparative case study examines pedagogic practices of…

  4. Memory for non-native language: the role of lexical processing in the retention of surface form.

    Science.gov (United States)

    Sampaio, Cristina; Konopka, Agnieszka E

    2013-01-01

    Research on memory for native language (L1) has consistently shown that retention of surface form is inferior to that of gist (e.g., Sachs, 1967). This paper investigates whether the same pattern is found in memory for non-native language (L2). We apply a model of bilingual word processing to more complex linguistic structures and predict that memory for L2 sentences ought to contain more surface information than L1 sentences. Native and non-native speakers of English were tested on a set of sentence pairs with different surface forms but the same meaning (e.g., "The bullet hit/struck the bull's eye"). Memory for these sentences was assessed with a cued recall procedure. Responses showed that native and non-native speakers did not differ in the accuracy of gist-based recall but that non-native speakers outperformed native speakers in the retention of surface form. The results suggest that L2 processing involves more intensive encoding of lexical level information than L1 processing.

  5. Unpacking Race, Culture, and Class in Rural Alaska: Native and Non-Native Multidisciplinary Professionals' Perceptions of Child Sexual Abuse

    Science.gov (United States)

    Bubar, Roe; Bundy-Fazioli, Kimberly

    2011-01-01

    The purpose of this study was to unpack notions of class, culture, and race as they relate to multidisciplinary team (MDT) professionals and their perceptions of prevalence in child sexual abuse cases in Native and non-Native rural Alaska communities. Power and privilege within professional settings is significant for all social work professionals…

  6. Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions.

    Science.gov (United States)

    Ranganathan, Sridhar; Maranas, Costas D

    2010-07-01

    The potential of engineering microorganisms with non-native pathways for the synthesis of long-chain alcohols has been identified as a promising route to biofuels. We describe computationally derived predictions for assembling pathways for the production of biofuel candidate molecules and subsequent metabolic engineering modifications that optimize product yield. A graph-based algorithm illustrates that, by culling information from BRENDA and KEGG databases, all possible pathways that link the target product with metabolites present in the production host are identified. Subsequently, we apply our recent OptForce procedure to pinpoint reaction modifications that force the imposed product yield in Escherichia coli. We demonstrate this procedure by suggesting new pathways and genetic interventions for the overproduction of 1-butanol using the metabolic model for Escherichia coli. The graph-based search method recapitulates all recent discoveries based on the 2-ketovaline intermediate and hydroxybutyryl-CoA but also pinpoints one novel pathway through thiobutanoate intermediate that to the best of our knowledge has not been explored before.

  7. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability.

    Science.gov (United States)

    Studer, Sarah V; Schwartzman, Julia A; Ho, Jessica S; Geske, Grant D; Blackwell, Helen E; Ruby, Edward G

    2014-08-01

    Quorum sensing, a group behaviour coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type N-acyl L-homoserine (AHL) quorum sensing is common in Gram-negative Proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signalling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogues can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established.

  8. Automatic pronunciation error detection in non-native speech: the case of vowel errors in Dutch.

    Science.gov (United States)

    van Doremalen, Joost; Cucchiarini, Catia; Strik, Helmer

    2013-08-01

    This research is aimed at analyzing and improving automatic pronunciation error detection in a second language. Dutch vowels spoken by adult non-native learners of Dutch are used as a test case. A first study on Dutch pronunciation by L2 learners with different L1s revealed that vowel pronunciation errors are relatively frequent and often concern subtle acoustic differences between the realization and the target sound. In a second study automatic pronunciation error detection experiments were conducted to compare existing measures to a metric that takes account of the error patterns observed to capture relevant acoustic differences. The results of the two studies do indeed show that error patterns bear information that can be usefully employed in weighted automatic measures of pronunciation quality. In addition, it appears that combining such a weighted metric with existing measures improves the equal error rate by 6.1 percentage points from 0.297, for the Goodness of Pronunciation (GOP) algorithm, to 0.236.

  9. Information encoded in non-native states drives substrate-chaperone pairing.

    Science.gov (United States)

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones.

  10. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL.

  11. Exploring the beliefs of native and non-native English speaking kindergarten teachers in Taiwan

    Directory of Open Access Journals (Sweden)

    Chiung-Wen Chang

    2012-12-01

    Full Text Available This study investigates the beliefs of native and non-native English speaking teachers on teaching English in kindergartens. A qualitative case study design is used to construct individual portraits and a cross-case analysis of several kindergarten teachers and analyze data following the qualitative data analysis methods by Taylor and Bodgan (1998. Data collected by interview and classroom observation show 4 different beliefs to be salient across the cases: language learning, the role of the teacher, the role of the learner, and self-efficacy. Data analysis shows teacher beliefs that are complex and closely related to the teacher’s life and learning experiences, multiple identities, and different environmental affordances and constraints. Therefore, the teachers’ subjective account from an emic perspective is useful for describing this complexity. The findings of this study have implications for constructing "a technical culture" (Kleinsasser, 1993, in which teachers may find themselves, that supports the teacher, and that contributes to quality teaching and professional growth.

  12. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  13. Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients.

    Directory of Open Access Journals (Sweden)

    Karin Forsberg

    Full Text Available Mutations in CuZn-superoxide dismutase (SOD1 cause amyotrophic lateral sclerosis (ALS and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28 neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43, ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA patients and they were the major type of inclusion detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be involved in ALS pathogenesis in patients lacking mutations in the enzyme.

  14. Surveillance potential of non-native Hawaiian birds for detection of West Nile Virus

    Science.gov (United States)

    Hofmeister, Erik K.; Dusek, Robert J.; Brand, Christopher J.

    2015-01-01

    West Nile virus (WNV) was first detected in North America in 1999. Alaska and Hawaii (HI) remain the only U.S. states in which transmission of WNV has not been detected. Dead bird surveillance has played an important role in the detection of the virus geographically, as well as temporally. In North America, corvids have played a major role in WNV surveillance; however, the only corvid in HI is the endangered Hawaiian crow that exists only in captivity, thus precluding the use of this species for WNV surveillance in HI. To evaluate the suitability of alternate avian species for WNV surveillance, we experimentally challenged seven abundant non-native bird species present in HI with WNV and compared mortality, viremia, oral shedding of virus, and seroconversion. For detection of WNV in oral swabs, we compared viral culture, reverse-transcriptase polymerase chain reaction, and the RAMP® test. For detection of antibodies to WNV, we compared an indirect and a competitive enzyme-linked immunoassay. We found four species (house sparrow, house finch, Japanese white-eye, and Java sparrow) that may be useful in dead bird surveillance for WNV; while common myna, zebra dove, and spotted dove survived infection and may be useful in serosurveillance.

  15. ERP evidence for different strategies in the processing of case markers in native speakers and non-native learners

    Directory of Open Access Journals (Sweden)

    Friederici Angela D

    2007-03-01

    Full Text Available Abstract Background The present experiments were designed to test how the linguistic feature of case is processed in Japanese by native and non-native listeners. We used a miniature version of Japanese as a model to compare sentence comprehension mechanisms in native speakers and non-native learners who had received training until they had mastered the system. In the first experiment we auditorily presented native Japanese speakers with sentences containing incorrect double nominatives and incorrect double accusatives, and with correct sentences. In the second experiment we tested trained non-natives with the same material. Based on previous research in German we expected an N400-P600 biphasic ERP response with specific modulations depending on the violated case and whether the listeners were native or non-native. Results For native Japanese participants the general ERP response to the case violations was an N400-P600 pattern. Double accusatives led to an additional enhancement of the P600 amplitude. For the learners a native-like P600 was present for double accusatives and for double nominatives. The additional negativity, however, was present in learners only for double nominative violations, and it was characterized by a different topographical distribution. Conclusion The results indicate that native listeners use case markers for thematic as well as syntactic structure building during incremental sentence interpretation. The modulation of the P600 component for double accusatives possibly reflects case specific syntactic restrictions in Japanese. For adult language learners later processes, as reflected in the P600, seem to be more native-like compared to earlier processes. The anterior distribution of the negativity and its selective emergence for canonical sentences were taken to suggest that the non-native learners resorted to a rather formal processing strategy whereby they relied to a large degree on the phonologically salient

  16. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  17. Reasons for drop-out in rehabilitation treatment of native patients and non-native patients with chronic low back pain in the Netherlands : a medical file study

    NARCIS (Netherlands)

    Sloots, M.; Dekker, J. H. M.; Bartels, E. A. C.; Geertzen, J. H. B.; Dekker, J.

    2010-01-01

    Aim. Drop-out of rehabilitation treatment in non-native patients with chronic low back pain has been reported to be higher than in native Dutch patients. It was expected that drop-out in non-native patients would be due to different expectations on the content of rehabilitation treatment and due to

  18. Perceived Job Skill Limitations and Participation in Education and Training Opportunities: Differences between Us Native-Born and Non-Native-Born Individuals

    Science.gov (United States)

    Smith, M. Cecil; Smith, Thomas J.

    2010-01-01

    Data from the 2003 National Assessment of Adult Literacy were examined to determine if non-native-born adults in the US differ from their native-born counterparts in (1) participation in work-related training or education, and (2) perceptions that specific skills limit their job opportunities. Results indicated that non-native-born persons were…

  19. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  20. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Science.gov (United States)

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  1. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    Science.gov (United States)

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  2. Carbon Costs of Constitutive and Expressed Resistance to a Non-Native Pathogen in Limber Pine

    Science.gov (United States)

    2016-01-01

    Increasing the frequency of resistance to the non-native fungus Cronartium ribicola (causative agent of white pine blister rust, WPBR) in limber pine populations is a primary management objective to sustain high-elevation forest communities. However, it is not known to what extent genetic disease resistance is costly to plant growth or carbon economy. In this study, we measured growth and leaf-level physiology in (1) seedling families from seed trees that have previously been inferred to carry or not carry Cr4, the dominant R gene allele conferring complete, gene-for-gene resistance to WPBR in limber pine, and (2) populations that were and were not infected with C. ribicola. We found that, in the absence of C. ribicola exposure, there was no significant difference in carbon relations between families born from seed trees that harbor the resistance allele compared to those that lack it, either to plant growth and phenology or leaf-level photosynthetic traits. However, post-infection with C. ribicola, growth was significantly reduced in inoculation survivors expressing complete resistance compared to uninoculated seedlings. Furthermore, inoculation survivors exhibited significant increases in a suite of traits including photosynthetic rate, respiration rate, leaf N, and stomatal conductance and a decrease in photosynthetic water-use efficiency. The lack of constitutive carbon costs associated with Cr4 resistance in non-stressed limber pine is consistent with a previous report that the R gene allele is not under selection in the absence of C. ribicola and suggests that host resistance may not bear a constitutive cost in pathosystems that have not coevolved. However, under challenge by C. ribicola, complete resistance to WPBR in limber pine has a significant cost to plant growth, though enhanced carbon acquisition post-infection may offset this somewhat. These costs and effects on performance further complicate predictions of this species’ response in warmer future

  3. Floral ecology and insect visitation in riparian Tamarix sp. (saltcedar)

    Science.gov (United States)

    Andersen, D.C.; Nelson, S.M.

    2013-01-01

    Climate change projections for semiarid and arid North America include reductions in stream discharge that could adversely affect riparian plant species dependent on stream-derived ground water. In order to better understand this potential impact, we used a space-for-time substitution to test the hypotheses that increasing depth-to-groundwater (DGW) is inversely related to Tamarix sp. (saltcedar) flower abundance (F) and nectar production per flower (N). We also assessed whether DGW affected the richness or abundance of insects visiting flowers. We examined Tamarix floral attributes and insect visitation patterns during 2010 and 2011 at three locations along a deep DWG gradient (3.2–4.1 m) on a floodplain terrace adjacent to Las Vegas Wash, an effluent-dominated Mojave Desert stream. Flower abundance and insect visitation patterns differed between years, but no effect from DGW on either F or N was detected. An eruption of a novel non-native herbivore, the splendid tamarisk weevil (Coniatus splendidulus), likely reduced flower production in 2011.

  4. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    Science.gov (United States)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  5. Riparian and in-stream controls on nutrient concentrations along a headwater forested stream

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2014-07-01

    Full Text Available Headwater streams have a strong capacity to transform and retain nutrients, and thus, a longitudinal decrease in stream nutrient concentrations would be expected from in-stream nutrient removal alone. Yet, a number of other factors within the catchment, including biogeochemical processing within the riparian zone and export to streams, can contribute to stream nutrient concentration, which may overcome the effect of in-stream biogeochemical processing. To explore this idea, we analyzed the longitudinal patterns of stream and riparian groundwater concentrations for chloride (Cl−, nitrate (NO3−, ammonium (NH4+, and phosphate (PO43− along a 3.7 km reach at an annual scale. The reach showed a gradual increase in stream and riparian width, riparian tree basal area, and abundance of riparian N2-fixing tree species. Concentrations of Cl− indicated a~strong hydrological connection at the riparian-stream edge. However, stream and riparian groundwater nutrient concentrations showed a moderate to null correlation, suggesting high biogeochemical processing at the riparian-stream edge and within the stream. A mass balance approach along the reach indicated that, on average, in-stream net nutrient uptake prevailed over release for NH4+ and PO43−, but not for NO3−. On an annual basis, in-stream processes contributed to change stream input fluxes by 11%, 26%, and 29% for NO3−, NH4+, and PO43−, respectively. Yet, longitudinal trends in concentration were not consistent with the prevailing in-stream biogeochem ical processes. During the riparian dormant period, stream concentration decreased along the reach for NO3−, but increased for NH4+ and PO43−. During the riparian vegetative period, NO3− and PO43− increased along the reach while NH4+ showed no clear pattern. These longitudinal trends were partially related to riparian forest features and groundwater inputs, especially for NO3− and PO43−. Our study

  6. A professional development scheme for non-native speaking teachers of English from the Arab world: an action research study

    OpenAIRE

    Rabi, Sally A

    2013-01-01

    Following an action research framework, my research investigates professional development for English Language teachers in the Arab World, who are non-native\\ud speakers of English themselves.\\ud \\ud The thesis has five chapters: Literature Review, Critical Contexts, Methodology of the Study, Data Analysis and Presentation, and finally the Discussion and Findings of the\\ud research. The Literature Review covers works relevant to the area of the study in relation to existing teacher practices,...

  7. Recognition of spoken words by native and non-native listeners: Talker-, listener-, and item-related factors

    Science.gov (United States)

    Bradlow, Ann R.; Pisoni, David B.

    2012-01-01

    In order to gain insight into the interplay between the talker-, listener-, and item-related factors that influence speech perception, a large multi-talker database of digitally recorded spoken words was developed, and was then submitted to intelligibility tests with multiple listeners. Ten talkers produced two lists of words at three speaking rates. One list contained lexically “easy” words (words with few phonetically similar sounding “neighbors” with which they could be confused), and the other list contained lexically “hard” (wordswords with many phonetically similar sounding “neighbors”). An analysis of the intelligibility data obtained with native speakers of English (experiment 1) showed a strong effect of lexical similarity. Easy words had higher intelligibility scores than hard words. A strong effect of speaking rate was also found whereby slow and medium rate words had higher intelligibility scores than fast rate words. Finally, a relationship was also observed between the various stimulus factors whereby the perceptual difficulties imposed by one factor, such as a hard word spoken at a fast rate, could be overcome by the advantage gained through the listener's experience and familiarity with the speech of a particular talker. In experiment 2, the investigation was extended to another listener population, namely, non-native listeners. Results showed that the ability to take advantage of surface phonetic information, such as a consistent talker across items, is a perceptual skill that transfers easily from first to second language perception. However, non-native listeners had particular difficulty with lexically hard words even when familiarity with the items was controlled, suggesting that non-native word recognition may be compromised when fine phonetic discrimination at the segmental level is required. Taken together, the results of this study provide insight into the signal-dependent and signal-independent factors that influence spoken

  8. STUDENTS WRITING EMAILS TO FACULTY: AN EXAMINATION OF E-POLITENESS AMONG NATIVE AND NON-NATIVE SPEAKERS OF ENGLISH

    Directory of Open Access Journals (Sweden)

    Sigrun Biesenbach-Lucas

    2007-02-01

    Full Text Available This study combines interlanguage pragmatics and speech act research with computer-mediated communication and examines how native and non-native speakers of English formulate low- and high-imposition requests to faculty. While some research claims that email, due to absence of non-verbal cues, encourages informal language, other research has claimed the opposite. However, email technology also allows writers to plan and revise messages before sending them, thus affording the opportunity to edit not only for grammar and mechanics, but also for pragmatic clarity and politeness.The study examines email requests sent by native and non-native English speaking graduate students to faculty at a major American university over a period of several semesters and applies Blum-Kulka, House, and Kasper’s (1989 speech act analysis framework – quantitatively to distinguish levels of directness, i.e. pragmatic clarity; and qualitatively to compare syntactic and lexical politeness devices, the request perspectives, and the specific linguistic request realization patterns preferred by native and non-native speakers. Results show that far more requests are realized through direct strategies as well as hints than conventionally indirect strategies typically found in comparative speech act studies. Politeness conventions in email, a text-only medium with little guidance in the academic institutional hierarchy, appear to be a work in progress, and native speakers demonstrate greater resources in creating e-polite messages to their professors than non-native speakers. A possible avenue for pedagogical intervention with regard to instruction in and acquisition of politeness routines in hierarchically upward email communication is presented.

  9. Student perceptions of native and non-native speaker language instructors: A comparison of ESL and Spanish

    Directory of Open Access Journals (Sweden)

    Laura Callahan

    2006-12-01

    Full Text Available The question of the native vs. non-native speaker status of second and foreign language instructors has been investigated chiefly from the perspective of the teacher. Anecdotal evidence suggests that students have strong opinions on the relative qualities of instruction by native and non-native speakers. Most research focuses on students of English as a foreign or second language. This paper reports on data gathered through a questionnaire administered to 55 university students: 31 students of Spanish as FL and 24 students of English as SL. Qualitative results show what strengths students believe each type of instructor has, and quantitative results confirm that any gap students may perceive between the abilities of native and non-native instructors is not so wide as one might expect based on popular notions of the issue. ESL students showed a stronger preference for native-speaker instructors overall, and were at variance with the SFL students' ratings of native-speaker instructors' performance on a number of aspects. There was a significant correlation in both groups between having a family member who is a native speaker of the target language and student preference for and self-identification with a native speaker as instructor. (English text

  10. The relationship between conceptual metaphors and classroom management language: reactions by native and non-native speakers of English

    Directory of Open Access Journals (Sweden)

    Graham Low

    2009-04-01

    Full Text Available The use of the target language to manage a class and organise its work represents one of the few genuinely communicative uses of the target language in many formal foreign-language or bilingual-education teaching situations. It is thus important that both teachers and learners understand and know how to use the key expressions involved. These tend to be highly metaphoric (Low, 2008 with one particularly productive conceptual metaphor involving the JOURNEY (or TRAVEL source domain seemingly standing out. There seems to have been little investigation to date into whether or not learners whose first language is not English actually understand the expressions involved in such classroom management language. Moreover, with the recent growing interest in the area of content-based learning, there is increasing pressure on language teachers, whose first language is not English, to use English as their classroom management language. Our first aim was to look at whether the acceptability judgements for classroom management expressions offered by non-native speaking teachers of English resembled those of native speakers, and whether these judgements reflected corpus findings regarding the frequency of usage in spoken English. To do this, we analysed native and non-native speaker responses to a short questionnaire. Our second aim was to look at how non-native speakers of English perceive the meanings of these expressions, comparing our findings to native speaker judgements and corpus results.

  11. Applying the collective impact approach to address non-native species: A case study of the Great Lakes Phragmites Collaborative

    Science.gov (United States)

    Braun, H. B.; Kowalski, Kurt P.; Hollins, K.

    2016-01-01

    To address the invasion of non-native Phragmites in the Great Lakes, researchers at the U.S. Geological Survey—Great Lakes Science Center partnered with the Great Lakes Commission in 2012 to establish the Great Lakes Phragmites Collaborative (GLPC). The GLPC is a regional-scale partnership established to improve collaboration among stakeholders and increase the effectiveness of non-native Phragmites management and research. Rather than forming a traditional partnership with a narrowly defined goal, the GLPC follows the principles of collective impact to engage stakeholders, guide progress, and align resources to address this complex, regional challenge. In this paper, the concept and tenets of collective impact are described, the GLPC is offered as a model for other natural resource-focused collective impact efforts, and steps for establishing collaboratives are presented. Capitalizing on the interactive collective impact approach, the GLPC is moving toward a broadly accepted common agenda around which agencies and individuals will be able to better align their actions and generate measureable progress in the regional campaign to protect healthy, diverse ecosystems from damage caused by non-native Phragmites.

  12. Kinetic network models of tryptophan mutations in β-hairpins reveal the importance of non-native interactions.

    Science.gov (United States)

    Razavi, Asghar M; Voelz, Vincent A

    2015-06-09

    We present an analysis of the most extensive explicit-solvent simulations of β-hairpins to date (9.4 ms in aggregate), with the aim of probing the effects of tryptophan mutations on folding. From molecular simulations of GB1 hairpin, trpzip4, trpzip5, and trpzip6 performed on Folding@home, Markov State Models (MSMs) were constructed using a unified set of metastable states, enabling objective comparison of folding mechanisms. MSM models display quantitative agreement with experimental structural observables and folding kinetics, and predict multimodal kinetics due to specific non-native kinetic traps, which be identified as on- or off-pathway from the network topology. We quantify kinetic frustration by several means, including the s-ensemble method to evaluate glasslike behavior. Free-energy profiles and transition state movement clearly show stabilization of non-native states as Trp mutations are introduced. Remarkably, we find that "β-capped" sequences (trpzip4 and trpzip5) are able to overcome this frustration and remain cooperative two-state folders with a large time-scale gap. These results suggest that, while β-capping motifs are robust, fold stabilization by tryptophan generally may require overcoming significant non-native kinetic traps, perhaps explaining their under-representation in natural proteins.

  13. Dissociating Cortical Activity during Processing of Native and Non-Native Audiovisual Speech from Early to Late Infancy

    Directory of Open Access Journals (Sweden)

    Eswen Fava

    2014-08-01

    Full Text Available Initially, infants are capable of discriminating phonetic contrasts across the world’s languages. Starting between seven and ten months of age, they gradually lose this ability through a process of perceptual narrowing. Although traditionally investigated with isolated speech sounds, such narrowing occurs in a variety of perceptual domains (e.g., faces, visual speech. Thus far, tracking the developmental trajectory of this tuning process has been focused primarily on auditory speech alone, and generally using isolated sounds. But infants learn from speech produced by people talking to them, meaning they learn from a complex audiovisual signal. Here, we use near-infrared spectroscopy to measure blood concentration changes in the bilateral temporal cortices of infants in three different age groups: 3-to-6 months, 7-to-10 months, and 11-to-14-months. Critically, all three groups of infants were tested with continuous audiovisual speech in both their native and another, unfamiliar language. We found that at each age range, infants showed different patterns of cortical activity in response to the native and non-native stimuli. Infants in the youngest group showed bilateral cortical activity that was greater overall in response to non-native relative to native speech; the oldest group showed left lateralized activity in response to native relative to non-native speech. These results highlight perceptual tuning as a dynamic process that happens across modalities and at different levels of stimulus complexity.

  14. Arbuscular mycorrhizal colonization in black poplar roots after defoliation by a non-native and a native insect

    Directory of Open Access Journals (Sweden)

    Zampieri E

    2016-08-01

    Full Text Available A major goal in ecology is to understand how interactions among organisms influence ecosystem services. This work compares the effects of two Lepidoptera defoliators, one non-native (Hyphantria cunea and one native (Lymantria dispar to Europe, on the colonization of black poplar (the Populus nigra clone “Jean Pourtet” roots by an arbuscular mycorrhizal (AM symbiotic fungus (Funneliformis mosseae in a pot experiment. The effects of defoliation have also been assessed on the expression of fungal and plant genes playing a role during symbiosis. Both control and defoliated poplars have shown a low level of mycorrhization. Additionally, neither the non-native nor the native insect seem to strongly affect the AM colonization, at least at the time of observation (eight days from the end of the defoliation. Concerning the gene expression analysis, our results suggest that defoliation does not influence neither the expression of genes coding for a fungal and a plant phosphate transporter nor that of a gene coding for a fungal ATPase, and that there were no differences between defoliation carried out by the non-native and the native insect.

  15. Perception of native and non-native affricate-fricative contrasts: cross-language tests on adults and infants.

    Science.gov (United States)

    Tsao, Feng-Ming; Liu, Huei-Mei; Kuhl, Patricia K

    2006-10-01

    Previous studies have shown improved sensitivity to native-language contrasts and reduced sensitivity to non-native phonetic contrasts when comparing 6-8 and 10-12-month-old infants. This developmental pattern is interpreted as reflecting the onset of language-specific processing around the first birthday. However, generalization of this finding is limited by the fact that studies have yielded inconsistent results and that insufficient numbers of phonetic contrasts have been tested developmentally; this is especially true for native-language phonetic contrasts. Three experiments assessed the effects of language experience on affricate-fricative contrasts in a cross-language study of English and Mandarin adults and infants. Experiment 1 showed that English-speaking adults score lower than Mandarin-speaking adults on Mandarin alveolo-palatal affricate-fricative discrimination. Experiment 2 examined developmental change in the discrimination of this contrast in English- and Mandarin-leaning infants between 6 and 12 months of age. The results demonstrated that native-language performance significantly improved with age while performance on the non-native contrast decreased. Experiment 3 replicated the perceptual improvement for a native contrast: 6-8 and 10-12-month-old English-learning infants showed a performance increase at the older age. The results add to our knowledge of the developmental patterns of native and non-native phonetic perception.

  16. The Acquisition of English Focus Marking by Non-Native Speakers

    Science.gov (United States)

    Baker, Rachel Elizabeth

    This dissertation examines Mandarin and Korean speakers' acquisition of English focus marking, which is realized by accenting particular words within a focused constituent. It is important for non-native speakers to learn how accent placement relates to focus in English because appropriate accent placement and realization makes a learner's English more native-like and easier to understand. Such knowledge may also improve their English comprehension skills. In this study, 20 native English speakers, 20 native Mandarin speakers, and 20 native Korean speakers participated in four experiments: (1) a production experiment, in which they were recorded reading the answers to questions, (2) a perception experiment, in which they were asked to determine which word in a recording was the last prominent word, (3) an understanding experiment, in which they were asked whether the answers in recorded question-answer pairs had context-appropriate prosody, and (4) an accent placement experiment, in which they were asked which word they would make prominent in a particular context. Finally, a new group of native English speakers listened to utterances produced in the production experiment, and determined whether the prosody of each utterance was appropriate for its context. The results of the five experiments support a novel predictive model for second language prosodic focus marking acquisition. This model holds that both transfer of linguistic features from a learner's native language (L1) and features of their second language (L2) affect learners' acquisition of prosodic focus marking. As a result, the model includes two complementary components: the Transfer Component and the L2 Challenge Component. The Transfer Component predicts that prosodic structures in the L2 will be more easily acquired by language learners that have similar structures in their L1 than those who do not, even if there are differences between the L1 and L2 in how the structures are realized. The L2

  17. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Heerdt, ter Gerard N.J.; Veen, Ciska G.F.; Putten, van der Wim H.; Bakker, Jan P.

    2017-01-01

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  18. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    Ter Heerdt, Gerard N.J.; Veen, Ciska G.F.; Van der Putten, Wim H.; Bakker, Jan P.

    Abstract Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in

  19. Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species

    NARCIS (Netherlands)

    ter Heerdt, Gerard N. J.; Veen, Ciska G.F.; van der Putten, Wim H.; Bakker, Jan P.

    Restoration of riparian plant communities on bare soil requires germination of seeds and establishment of seedlings. However, species that are present in the soil seed bank do not always establish in the vegetation. Temperature, moisture conditions and soil type could play a major role in the

  20. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  1. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    Science.gov (United States)

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  2. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  3. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    Science.gov (United States)

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  4. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  5. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape.

    Science.gov (United States)

    de la Peña-Cuéllar, Erika; Benítez-Malvido, Julieta; Avila-Cabadilla, Luis Daniel; Martínez-Ramos, Miguel; Estrada, Alejandro

    2015-02-01

    Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011-2013), mist-netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human-dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.

  6. Hydrological and Meteorological Disturbances in Rio Grande Riparian Ecosystems

    Science.gov (United States)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2012-12-01

    Invasive species and ecohydrological disturbances are imperiling native riparian ecosystems. Adaptable, resilient exotic competitors including tamarisk have colonized many waterways in the western US. Alteration of the natural flow regime due to water diversions is expected to be exacerbated by climate change in this region, confounding restoration efforts. Climate change may also increase the likelihood of other disturbances, including extreme weather events (drought, floods, temperatures). We investigate how hydrological and meteorological variability impact water use by tamarisk communities that have overtaken native riparian vegetation. We have collected more than a decade of complete growing season eddy covariance evapotranspiration (ET) and water table (WT) elevation data at two sites along the Rio Grande corridor of central New Mexico, USA. Conditions have ranged from extreme drought to exceedingly wet years with extensive overbank flooding, and from record setting warm to cold temperatures. Severe to extreme droughts persisted throughout 2002 and 2003. Abundant snowpacks and wetter conditions led to extensive flooding early in the 2005 and 2008 growing seasons. Along with a return to intense drought conditions, extreme temperatures struck New Mexico in 2011. A deep freeze in early February followed by an extraordinarily late, extended hard freeze at the onset of the growing season was then succeeded by the warmest summer in the state's 117 year record. We present how water use by the replacement communities responds to droughts, flooding, and extreme temperatures, all of which are expected to increase in frequency, and speculate how these disturbances will affect native riparian ecosystems.

  7. Spatial and temporal analysis of the land cover in riparian buffer zones (Areas for Permanent Preservation in Sorocaba City, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Sergio Henrique Alves

    2009-08-01

    Full Text Available Considering the fundamental role that the riparian vegetation plays in relation to maintenance of the environmental health of a watershed and the necessity of restoring sectors of the buffer zone without natural vegetation, in this paper we investigated what land cover classes occur along the riparian buffer stripes considered Area for Permanent Preservation (APP in the Sorocaba municipality, SP in three periods: 1988, 1995 and 2003. Based on GIS technology and using the drainage network map, the APP stripes (riparian buffer zones map was generated, and this map was overlaid to the land cover map (1988, 1995 and 2003 to provide a land cover map specifically of the riparian buffer zones. The results show that 58.43% of the APPs have no land cover of native vegetation and therefore, need to be reforested, representing 5,400 hectares to be restored.

  8. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    Science.gov (United States)

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  9. Sediment dynamics in restored riparian forest with agricultural surroundings

    Science.gov (United States)

    Stucchi Boschi, Raquel; Cooper, Miguel; Alencar de Matos, Vitor; Ortega Gomes, Matheus; Ribeiro Rodrigues, Ricardo

    2017-04-01

    affected by erosive processes of great magnitude. The monitoring of the metal stakes started in January of 2016. The data of intensity and frequency of rainfall were collected from rain gauges installed in the areas. The results show great deposition in site B, dominated by sandy soil whereas in site A, a sheet erosion process is dominant. Site A is dominated by clay soils that are not susceptible to erosion processes. In site B, a small amount of deposition was observed inside a gully, which means that the sediments may be being carried to the water bodies. A large amount of sediment was observed in areas which present a spontaneous vegetation followed by a small track of forest. Strong events were responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.

  10. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  11. Historical land-cover/use in different slope and riparian buffer zones in watersheds of the state of São Paulo, Brazil Cobertura vegetal em diferentes usos do solo e declividades do terreno em bacias hidrográficas do estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre Marco da Silva

    2007-08-01

    Full Text Available Information about the land cover of a region it is a key information for several purposes. This paper aimed to elaborate land-cover maps using digital satellite images obtained in 1997 from seven watersheds (Piracicaba, Moji-Guaçu, Alto Paranapanema, Turvo Aguapeí, Peixe, and São José dos Dourados located in the State of São Paulo, southeastern Brazil. Additionaly, this study evaluated the relationship between land-cover and slopes of the terrain of the seven watersheds. A third objective was to estimate the percentage of riparian vegetation currently remaining along the streams in a 30-meter width buffer zone. Three research questions were posed: i What is the dominant land-cover of these watersheds? ii Is the riparian vegetation well preserved in the 30m width buffer zone? If not, iii what is the dominant land-cover in these areas and what would be the cost of recovering such areas? Pasture was the predominant land-cover, occurring in approximately 50% of the entire study area, while sugar cane (Saccharum officinarum (14% constituted the second most frequent land-cover. Approximately 50% of the area of the seven basins is considered flat (40% or smoothly rolling (10%. The terrain only becomes hillier in the Piracicaba and Alto Paranapanema basins, where a little less than 50% have slopes higher than 8%. The total riparian buffer strip zone occupied an area equivalent to approximately 6,200 km². From this total, only 25% is preserved. Pasture is the main land-cover of the riparian buffer strip zone.Informações sobre mudanças no uso e cobertura do solo são fundamentais para vários propósitos sociais, econômicos e ambientais. O principal objetivo deste estudo foi elaborar mapas de cobertura do solo usando imagens digitais obtidas por satélite no ano de 1997 nas seguintes bacias hidrográficas do Estado de São Paulo: Piracicaba, Moji-Guaçu, Alto Paranapanema, Turvo Aguapeí, Peixe, and São José dos Dourados. Adicionalmente, a

  12. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  13. PHYTOCOENOSES OF URBAN RIPARIAN FORESTS ON THE EXAMPLE OF THE LAS OSOBOWICKI FOREST (WROCŁAW

    Directory of Open Access Journals (Sweden)

    Ewa Stefańska-Krzaczek

    2014-10-01

    Full Text Available The Las Osobowicki forest is remnant riparian woodland of the Odra valley. Floristic data were collected from circular 100m2 plots (with a radius of 5.64m which were systematically chosen in forest communities. Four plant communities were determined within data set. They were represented Fagetalia order and Querco-Fagetea class. Flood prevention caused disappearance of riparian forest species, expansion of common hornbeam and Norway maple expansion and a decrease of species richness. However, spatial distribution of phytocoenoses proves the river influence on the vegetation.

  14. Riparian land-use and rehabilitation: impact on organic matter input and soil respiration.

    Science.gov (United States)

    Oelbermann, Maren; Raimbault, Beverly A; Gordon, A M

    2015-02-01

    Rehabilitated riparian zones in agricultural landscapes enhance environmental integrity and provide environmental services such as carbon (C) sequestration. This study quantified differences in organic matter input, soil biochemical characteristics, and soil respiration in a 25-year-old rehabilitated (RH), grass (GRS), and undisturbed natural forest (UNF) riparian zone. Input from herbaceous vegetation was significantly greater (P Soil bulk density was significantly greater (P soil chemical characteristics were significantly lower. Soil respiration rates were lowest (P Soil respiration rates were significantly different (P soil moisture (P soil temperature (P Soil potential microbial activity indicated a significantly different (P soil organic C and lower soil respiration rates.

  15. Imported Asian swamp eels (Synbranchidae: Monopterus) in North American live food markets: Potential vectors of non-native parasites

    Science.gov (United States)

    Nico, Leo G.; Sharp, Paul; Collins, Timothy M.

    2011-01-01

    Since the 1990s, possibly earlier, large numbers of Asian swamp eels (Synbranchidae: Monopterus spp.), some wild-caught, have been imported live from various countries in Asia and sold in ethnic food markets in cities throughout the USA and parts of Canada. Such markets are the likely introduction pathway of some, perhaps most, of the five known wild populations of Asian swamp eels present in the continental United States. This paper presents results of a pilot study intended to gather baseline data on the occurrence and abundance of internal macroparasites infecting swamp eels imported from Asia to North American retail food markets. These data are important in assessing the potential role that imported swamp eels may play as possible vectors of non-native parasites. Examination of the gastrointestinal tracts and associated tissues of 19 adult-sized swamp eels—identified as M. albus "Clade C"—imported from Vietnam and present in a U.S. retail food market revealed that 18 (95%) contained macroparasites. The 394 individual parasites recovered included a mix of nematodes, acanthocephalans, cestodes, digeneans, and pentastomes. The findings raise concern because of the likelihood that some parasites infecting market swamp eels imported from Asia are themselves Asian taxa, some possibly new to North America. The ecological risk is exacerbated because swamp eels sold in food markets are occasionally retained live by customers and a few reportedly released into the wild. For comparative purposes, M. albus "Clade C" swamp eels from a non-native population in Florida (USA) were also examined and most (84%) were found to be infected with internal macroparasites. The current level of analysis does not allow us to confirm whether these are non-native parasites.

  16. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    Science.gov (United States)

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely

  17. Coexistence of Native-Like and Non-Native Cytochrome c on Anionic Liposomes with Different Cardiolipin Content.

    Science.gov (United States)

    Pandiscia, Leah A; Schweitzer-Stenner, Reinhard

    2015-10-08

    We employed a combination of fluorescence, visible circular dichroism, and absorption spectroscopy to study the conformational changes of ferricytochrome c upon its binding to cardiolipin-containing small unilamellar vesicles. The measurements were performed as a function of the cardiolipin concentration, the cardiolipin content of the liposomes, and the NaCl concentration of the solvent. The data were analyzed with a novel model that combines a single binding step with a conformational equilibrium between native-like and non-native-like proteins bound to the membrane surface. The equilibrium between the two conformations, which themselves are comprised of structurally slightly different subconformations, shifts to the more non-native-like conformation with increasing cardiolipin concentration. For the binding isotherms described in this paper, we explicitly considered the enthalpic and entropic contributions of molecular crowding to protein binding at low lipid concentrations and high occupancy of the liposome surface. Increasing the CL content of liposomes increases the overall binding affinity but makes the conformational distribution much more susceptible to the influence of sodium and chloride ions, which shifts the equilibrium toward the more native-like state and directly inhibits binding, particularly to liposomes with 100% cardiolipin content. Spectroscopic evidence further suggests that a fraction of the non-native conformers adopts a pentacoordinated state similar to those obtained in class C peroxidases. On the basis of our results, we propose a hypothesis that describes the balance between facilitating and impeding forces controlling the peroxidase activity of cytochrome c in the inner membrane space of mitochondria.

  18. Projecting invasion risk of non-native watersnakes (Nerodia fasciata and Nerodia sipedon) in the western United States.

    Science.gov (United States)

    Rose, Jonathan P; Todd, Brian D

    2014-01-01

    Species distribution models (SDMs) are increasingly used to project the potential distribution of introduced species outside their native range. Such studies rarely explicitly evaluate potential conflicts with native species should the range of introduced species expand. Two snake species native to eastern North America, Nerodia fasciata and Nerodia sipedon, have been introduced to California where they represent a new stressor to declining native amphibians, fish, and reptiles. To project the potential distributions of these non-native watersnakes in western North America, we built ensemble SDMs using MaxEnt, Boosted Regression Trees, and Random Forests and habitat and climatic variables. We then compared the overlap between the projected distribution of invasive watersnakes and the distributions of imperiled native amphibians, fish, and reptiles that can serve as prey or competitors for the invaders, to estimate the risk to native species posed by non-native watersnakes. Large areas of western North America were projected to be climatically suitable for both species of Nerodia according to our ensemble SDMs, including much of central California. The potential distributions of both N. fasciata and N. sipedon overlap extensively with the federally threatened Giant Gartersnake, Thamnophis gigas, which inhabits a similar ecological niche. N. fasciata also poses risk to the federally threatened California Tiger Salamander, Ambystoma californiense, whereas N. sipedon poses risk to some amphibians of conservation concern, including the Foothill Yellow-legged Frog, Rana boylii. We conclude that non-native watersnakes in California can likely inhabit ranges of several native species of conservation concern that are expected to suffer as prey or competing species for these invaders. Action should be taken now to eradicate or control these invasions before detrimental impacts on native species are widespread. Our methods can be applied broadly to quantify the risk posed by

  19. Projecting invasion risk of non-native watersnakes (Nerodia fasciata and Nerodia sipedon in the western United States.

    Directory of Open Access Journals (Sweden)

    Jonathan P Rose

    Full Text Available Species distribution models (SDMs are increasingly used to project the potential distribution of introduced species outside their native range. Such studies rarely explicitly evaluate potential conflicts with native species should the range of introduced species expand. Two snake species native to eastern North America, Nerodia fasciata and Nerodia sipedon, have been introduced to California where they represent a new stressor to declining native amphibians, fish, and reptiles. To project the potential distributions of these non-native watersnakes in western North America, we built ensemble SDMs using MaxEnt, Boosted Regression Trees, and Random Forests and habitat and climatic variables. We then compared the overlap between the projected distribution of invasive watersnakes and the distributions of imperiled native amphibians, fish, and reptiles that can serve as prey or competitors for the invaders, to estimate the risk to native species posed by non-native watersnakes. Large areas of western North America were projected to be climatically suitable for both species of Nerodia according to our ensemble SDMs, including much of central California. The potential distributions of both N. fasciata and N. sipedon overlap extensively with the federally threatened Giant Gartersnake, Thamnophis gigas, which inhabits a similar ecological niche. N. fasciata also poses risk to the federally threatened California Tiger Salamander, Ambystoma californiense, whereas N. sipedon poses risk to some amphibians of conservation concern, including the Foothill Yellow-legged Frog, Rana boylii. We conclude that non-native watersnakes in California can likely inhabit ranges of several native species of conservation concern that are expected to suffer as prey or competing species for these invaders. Action should be taken now to eradicate or control these invasions before detrimental impacts on native species are widespread. Our methods can be applied broadly to quantify

  20. U.S. Airline Transport Pilot International Flight Language Experiences, Report 3: Language Experiences in Non-Native English-Speaking Airspace/Airports

    Science.gov (United States)

    2010-05-01

    MacKay, I., and Meador D. (2002). The production of English vowels by fluent early and late Italian- English bilinguals. Phonetica, 59:49- 71...U.S. Airline Transport Pilot International Flight Language Experiences, Report 3: Language Experiences in Non-Native English -Speaking Airspace...International Flight Language Experiences, Report 3: Language Experiences in Non-Native English -Speaking Airspace/Airports 6. Performing Organization Code