WorldWideScience

Sample records for non-native fish species

  1. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    Science.gov (United States)

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  2. Non-native fishes in Florida freshwaters: a literature review and synthesis

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.

    2015-01-01

    Non-native fishes have been known from freshwater ecosystems of Florida since the 1950s, and dozens of species have established self-sustaining populations. Nonetheless, no synthesis of data collected on those species in Florida has been published until now. We searched the literature for peer-reviewed publications reporting original data for 42 species of non-native fishes in Florida that are currently established, were established in the past, or are sustained by human intervention. Since the 1950s, the number of non-native fish species increased steadily at a rate of roughly six new species per decade. Studies documented (in decreasing abundance): geographic location/range expansion, life- and natural-history characteristics (e.g., diet, habitat use), ecophysiology, community composition, population structure, behaviour, aquatic-plant management, and fisheries/aquaculture. Although there is a great deal of taxonomic uncertainty and confusion associated with many taxa, very few studies focused on clarifying taxonomic ambiguities of non-native fishes in the State. Most studies were descriptive; only 15 % were manipulative. Risk assessments, population-control studies and evaluations of effects of non-native fishes were rare topics for research, although they are highly valued by natural-resource managers. Though some authors equated lack of data with lack of effects, research is needed to confirm or deny conclusions. Much more is known regarding the effects of lionfish (Pterois spp.) on native fauna, despite its much shorter establishment time. Natural-resource managers need biological and ecological information to make policy decisions regarding non-native fishes. Given the near-absence of empirical data on effects of Florida non-native fishes, and the lengthy time-frames usually needed to collect such information, we provide suggestions for data collection in a manner that may be useful in the evaluation and prediction of non-native fish effects.

  3. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions

    Science.gov (United States)

    Lawson, Katelyn M.; Tuckett, Quenton M.; Ritch, Jared L.; Nico, Leo; Fuller, Pam; Matheson, Richard E.; Hill, Jeffrey E.

    2017-01-01

    The Tampa Bay region of Florida (USA) is a hot spot for non-native freshwater fishes. However, published information on most non-native fishes in the basin is not current. Systematic sampling efforts targeting non-native fishes in the region were conducted from 2013–2015 by the University of Florida Tropical Aquaculture Laboratory. Data from these recent surveys were analyzed, along with historic and new data from published and unpublished sources, to assess current fish distributions and determine status. We focus on five of the non-native species sampled: pike killifish Belonesox belizanus Kner, 1860, green swordtail Xiphophorus hellerii Heckel, 1848, southern platyfish Xiphophorus maculatus (Günther, 1866), Mayan cichlid Mayaheros urophthalmus (Günther, 1862), and Jack Dempsey Rocio octofasciata (Regan, 1903). All five were found to have reproducing populations in the basin, each showing broader distributions than previously indicated. Non-native populations of four of the species have persisted in the Tampa Bay region since at least the 1990s. In contrast, the presence of Mayan cichlid in the basin was not confirmed until 2004. Based on numbers, distributions, and years of persistence, these five species all maintain established populations. Pike killifish and Mayan cichlid are established and spreading throughout multiple habitat types, while green swordtail, southern platyfish, and Jack Dempsey are localized and found primarily in more marginal habitats (e.g., small ditches and first order tributary streams). Factors affecting continued existence and distributions likely include aquaculture, biotic resistance, and thermal and salinity tolerances. We also clarify non-native species status determination using a multi-agency collaborative approach, and reconcile differences in terminology usage and interpretation.

  4. Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors

    Science.gov (United States)

    Pajuelo, José G.; González, José A.; Triay-Portella, Raül; Martín, José A.; Ruiz-Díaz, Raquel; Lorenzo, José M.; Luque, Ángel

    2016-11-01

    This work documents the introduction of non-native fish species to the Canary Islands (central-eastern Atlantic) through oil rigs. Methodological approaches have included surveys by underwater visual censuses around and under oil platforms and along the docking area of rigs at the Port of Las Palmas. Eleven non-native fish species were registered. Paranthias furcifer, Abudefduf hoefleri, Acanthurus bahianus, Acanthurus chirurgus, and Acanthurus coeruleus are first recorded from the Canaries herein. Other three species could not be identified, although they have never been observed in the Canaries. Cephalopholis taeniops, Abudefduf saxatilis, and Acanthurus monroviae had been previously recorded. Native areas of these species coincide with the areas of origin and the scale of oil rigs with destination the Port of Las Palmas. The absence of native species in the censuses at rigs and their presence at rigs docking area, together with the observation of non-native species after the departure of platforms, reject the possibility that these non-native species were already present in the area introduced by another vector. C. taeniops, A. hoefleri, A. saxatilis, A. chirurgus, A. coeruleus and A. monroviae are clearly seafarer species. A. bahianus seems to be a potential seafarer species. P. furcifer is a castaway species. For the moment, the number of individuals of the non-native species in marine ecosystems of the Canaries seems to be low, and more investigation is needed for controlling these translocations.

  5. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  6. Long-term trends of native and non-native fish faunas in the American Southwest

    Directory of Open Access Journals (Sweden)

    Olden, J. D.

    2005-06-01

    Full Text Available Environmental degradation and the proliferation of non-native fish species threaten the endemic, and highly unique fish faunas of the American Southwest. The present study examines long-term trends (> 160 years of fish species distributions in the Lower Colorado River Basin and identifies those native species (n = 28 exhibiting the greatest rates of decline and those non-native species (n = 48 exhibiting the highest rates of spread. Among the fastest expanding invaders in the basin are red shiner (Cyprinella lutrensis, fathead minnow (Pimephales promelas, green sunfish (Lepomis cyanellus, largemouth bass (Micropterus salmoides, western mosquitofish (Gambussia affinis and channel catfish (Ictalurus punctatus; species considered to be the most invasive in terms of their negative impacts on native fish communities. Interestingly, non-native species that have been recently introduced (1950+ have generally spread at substantially lower rates as compared to species introduced prior to this time (especially from 1920 to 1950, likely reflecting reductions in human-aided spread of species. We found general agreement between patterns of species decline and extant distribution sizes and official listing status under the U.S. Endangered Species Act. ‘Endangered’ species have generally experienced greater declines and have smaller present-day distributions compared to ‘threatened’ species, which in turn have shown greater declines and smaller distributions than those species not currently listed. A number of notable exceptions did exist, however, and these may provide critical information to help guide the future listing of species (i.e., identification of candidates and the upgrading or downgrading of current listed species that are endemic to the Lower Colorado River Basin. The strong correlation between probability estimates of local extirpation and patterns of native species decline and present-day distributions suggest a possible proactive

  7. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species

    Directory of Open Access Journals (Sweden)

    E. N. Fragoso-Moura

    Full Text Available Abstract The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD. Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010 of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass and Pygocentrus nattereri (red piranha are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  8. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    Science.gov (United States)

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  9. Non-native species impacts on pond occupancy by an anuran

    Science.gov (United States)

    Adams, Michael J.; Pearl, Christopher A.; Galvan, Stephanie; McCreary, Brome

    2011-01-01

    Non-native fish and bullfrogs (Lithobates catesbeianus; Rana catesbeiana) are frequently cited as factors contributing to the decline of ranid frogs in the western United States (Bradford 2005). This hypothesis is supported by studies showing competition with or predation by these introduced species (Kupferberg 1997, Kiesecker and Blaustein 1998, Lawler et al. 1999, Knapp et al. 2001) and studies suggesting a deficit of native frogs at sites occupied by bullfrogs or game fish (Hammerson 1982, Schwalbe and Rosen 1988, Fisher and Shaffer 1996, Adams 1999). Conversely, other studies failed to find a negative association between native ranids and bullfrogs and point out that presence of non-native species correlates with habitat alterations that could also contribute to declines of native species (Hayes and Jennings 1986; Adams 1999, 2000; Pearl et al. 2005). A criticism of these studies is that they may not detect an effect of non-native species if the process of displacement is at an early stage. We are not aware of any studies that have monitored a set of native frog populations to determine if non-native species predict population losses. Our objective was to study site occupancy trends in relation to non-native species for northern red-legged frogs (Rana aurora) on federal lands in the southern Willamette Valley, Oregon. We conducted a 5-yr monitoring study to answer the following questions about the status and trends of the northern red-legged frog: 1) What is the rate of local extinction (how often is a site that is occupied in year t unoccupied in year t+1) and what factors predict variation in local extinction? and 2) What is the rate of colonization (how often is a site that is unoccupied in year t occupied in year t+1) and what factors predict variation in colonization? The factors we hypothesized for local extinction were: 1) bullfrog presence, 2) bullfrogs mediated by wetland vegetation, 3) non-native fish (Centrarchidae), 4) non-native fish mediated by

  10. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Science.gov (United States)

    Yam, Rita S. W.; Huang, Ko-Pu; Hsieh, Hwey-Lian; Lin, Hsing-Juh; Huang, Shou-Chung

    2015-01-01

    Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages) on ecosystem services (ES) based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%), but wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species) due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands. PMID:25860870

  11. An Ecosystem-Service Approach to Evaluate the Role of Non-Native Species in Urbanized Wetlands

    Directory of Open Access Journals (Sweden)

    Rita S. W. Yam

    2015-04-01

    Full Text Available Natural wetlands have been increasingly transformed into urbanized ecosystems commonly colonized by stress-tolerant non-native species. Although non-native species present numerous threats to natural ecosystems, some could provide important benefits to urbanized ecosystems. This study investigated the extent of colonization by non-native fish and bird species of three urbanized wetlands in subtropical Taiwan. Using literature data the role of each non-native species in the urbanized wetland was evaluated by their effect (benefits/damages on ecosystem services (ES based on their ecological traits. Our sites were seriously colonized by non-native fishes (39%–100%, but <3% by non-native birds. Although most non-native species could damage ES regulation (disease control and wastewater purification, some could be beneficial to the urbanized wetland ES. Our results indicated the importance of non-native fishes in supporting ES by serving as food source to fish-eating waterbirds (native, and migratory species due to their high abundance, particularly for Oreochromis spp. However, all non-native birds are regarded as “harmful” species causing important ecosystem disservices, and thus eradication of these bird-invaders from urban wetlands would be needed. This simple framework for role evaluation of non-native species represents a holistic and transferable approach to facilitate decision making on management priority of non-native species in urbanized wetlands.

  12. Ecological impacts of non-native species: Chapter 2

    Science.gov (United States)

    Pilliod, David S.; Griffiths, R.A.; Kuzmin, S.L.; Heatwole, Harold; Wilkinson, John W.

    2012-01-01

    Non-native species are considered one of the greatest threats to freshwater biodiversity worldwide (Drake et al. 1989; Allen and Flecker 1993; Dudgeon et al. 2005). Some of the first hypotheses proposed to explain global patterns of amphibian declines included the effects of non-native species (Barinaga 1990; Blaustein and Wake 1990; Wake and Morowitz 1991). Evidence for the impact of non-native species on amphibians stems (1) from correlative research that relates the distribution or abundance of a species to that of a putative non-native species, and (2) from experimental tests of the effects of a non-native species on survival, growth, development or behaviour of a target species (Kats and Ferrer 2003). Over the past two decades, research on the effects of non-native species on amphibians has mostly focused on introduced aquatic predators, particularly fish. Recent research has shifted to more complex ecological relationships such as influences of sub-lethal stressors (e.g. contaminants) on the effects of non-native species (Linder et al. 2003; Sih et al. 2004), non-native species as vectors of disease (Daszak et al. 2004; Garner et al. 2006), hybridization between non-natives and native congeners (Riley et al. 2003; Storfer et al. 2004), and the alteration of food-webs by non-native species (Nystrom et al. 2001). Other research has examined the interaction of non-native species in terms of facilitation (i.e. one non-native enabling another to become established or spread) or the synergistic effects of multiple non-native species on native amphibians, the so-called invasional meltdown hypothesis (Simerloff and Von Holle 1999). Although there is evidence that some non-native species may interact (Ricciardi 2001), there has yet to be convincing evidence that such interactions have led to an accelerated increase in the number of non-native species and cumulative impacts are still uncertain (Simberloff 2006). Applied research on the control, eradication, and

  13. Assessing the impact of non-native freshwater fishes on native species using relative weight

    Directory of Open Access Journals (Sweden)

    Giannetto D.

    2012-01-01

    Full Text Available The aim of the research was to test relative weight (Wr, a condition index which allows evaluation of fish well-being, as a tool to investigate the impact of the presence of non native species (NNS on the condition of the key native species (NS of the Tiber River basin (Italy: Barbustyberinus Bonaparte, Leuciscus cephalus (Linnaeus, Leuciscus lucumonis Bianco, Rutilus rubilio (Bonaparte and Telestes muticellus (Bonaparte. By means of Canonical Correlation Analysis, data from 130 sampling sites, distributed throughout Tiber River basin, were examined. Wr of NS was related to densities of NNS and to environmental variables. Moreover, the correlation between Wr of NS and density of NNS was investigated through linear regression analysis and covariance analysis. Preliminary results encourage the use of Wr as a tool to assess the relationship between NS and ecological factors (such as the presence of NNS and to explain the changes that occur along the longitudinal gradient of a river.

  14. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.

  15. DNA metabarcoding of fish larvae for detection of non-native fishes

    Science.gov (United States)

    Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy approaches to investigate potential efficiencies. Fish larvae present an interesting opportunity for non-native fish early detection because...

  16. Trophic interactions between native and introduced fish species in a littoral fish community.

    Science.gov (United States)

    Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A

    2014-11-01

    The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.

  17. Is 30 years enough time to niche segregation between a non-native and a native congeneric fish species? Evidences from stable isotopes

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Zaia Alves

    2015-12-01

    Full Text Available The invasion of non-native species that are phylogenetically similar to native species was observed in the Upper Paraná River following the construction of the Itaipu hydroelectric plant and subsequent removal of a natural geographic barrier (Sete Quedas Falls. Endemic fish species from the Lower Paraná River, such as the piranha Serrasalmus marginatus, successfully colonized the new environment. A few years later, S. marginatus had become the dominant species, while the prevalence of the congeneric species, Serrasalmus maculatus, had declined. Considering that the two piranha species naturally coexist in the Pantanal and that S. marginatus is a non-native species in the Upper Paraná River floodplain, we hypothesized that trophic niche overlap between Serrasalmus species only occurred in the Upper Paraná River floodplain due to short-term co-existence. The study area in which the isotopic niche overlap between S. maculatus and S. marginatus was evaluated consisted of two ponds located in different floodplains, the Pantanal and the Upper Paraná River. We used carbon and nitrogen stable isotope analysis to elucidate the differences in the energy intake by the native and non-native species. We used mixing models and calculated the isotopic niche area and niche overlap to infer the nature of the trophic interactions between the species in both habitats. According to the mixing model, the predominant source of carbon for both species was terrestrial. Nevertheless, in Upper Paraná River, the δ13C signature of the two species differed significantly and the non-native species had a greater niche width than the native species. In the Pantanal, there were no differences in δ13C, but the species differed with respect to δ 15N, and the niche widths were narrow for both species.Based on these results, it can be inferred that the species depend on different food sources. Piranhas obtain energy from distinct prey species, which probably consume

  18. Managing conflicts arising from fisheries enhancements based on non-native fishes in southern Africa.

    Science.gov (United States)

    Ellender, B R; Woodford, D J; Weyl, O L F; Cowx, I G

    2014-12-01

    Southern Africa has a long history of non-native fish introductions for the enhancement of recreational and commercial fisheries, due to a perceived lack of suitable native species. This has resulted in some important inland fisheries being based on non-native fishes. Regionally, these introductions are predominantly not benign, and non-native fishes are considered one of the main threats to aquatic biodiversity because they affect native biota through predation, competition, habitat alteration, disease transfer and hybridization. To achieve national policy objectives of economic development, food security and poverty eradication, countries are increasingly looking towards inland fisheries as vehicles for development. As a result, conflicts have developed between economic and conservation objectives. In South Africa, as is the case for other invasive biota, the control and management of non-native fishes is included in the National Environmental Management: Biodiversity Act. Implementation measures include import and movement controls and, more recently, non-native fish eradication in conservation priority areas. Management actions are, however, complicated because many non-native fishes are important components in recreational and subsistence fisheries that contribute towards regional economies and food security. In other southern African countries, little attention has focussed on issues and management of non-native fishes, and this is cause for concern. This paper provides an overview of introductions, impacts and fisheries in southern Africa with emphasis on existing and evolving legislation, conflicts, implementation strategies and the sometimes innovative approaches that have been used to prioritize conservation areas and manage non-native fishes. © 2014 The Fisheries Society of the British Isles.

  19. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  20. Kalispel Non-Native Fish Suppression Project 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wingert, Michele; Andersen, Todd [Kalispel Natural Resource Department

    2008-11-18

    Non-native salmonids are impacting native salmonid populations throughout the Pend Oreille Subbasin. Competition, hybridization, and predation by non-native fish have been identified as primary factors in the decline of some native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi) populations. In 2007, the Kalispel Natural Resource Department (KNRD) initiated the Kalispel Nonnative Fish Suppression Project. The goal of this project is to implement actions to suppress or eradicate non-native fish in areas where native populations are declining or have been extirpated. These projects have previously been identified as critical to recovering native bull trout and westslope cutthroat trout (WCT). Lower Graham Creek was invaded by non-native rainbow (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) after a small dam failed in 1991. By 2003, no genetically pure WCT remained in the lower 700 m of Graham Creek. Further invasion upstream is currently precluded by a relatively short section of steep, cascade-pool stepped channel section that will likely be breached in the near future. In 2008, a fish management structure (barrier) was constructed at the mouth of Graham Creek to preclude further invasion of non-native fish into Graham Creek. The construction of the barrier was preceded by intensive electrofishing in the lower 700 m to remove and relocate all captured fish. Westslope cutthroat trout have recently been extirpated in Cee Cee Ah Creek due to displacement by brook trout. We propose treating Cee Cee Ah Creek with a piscicide to eradicate brook trout. Once eradication is complete, cutthroat trout will be translocated from nearby watersheds. In 2004, the Washington Department of Fish and Wildlife (WDFW) proposed an antimycin treatment within the subbasin; the project encountered significant public opposition and was eventually abandoned. However, over the course of planning this 2004 project, little public

  1. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species.

    Science.gov (United States)

    Wang, Xiao-Nan; Liu, Zheng-Tao; Yan, Zhen-Guang; Zhang, Cong; Wang, Wei-Li; Zhou, Jun-Li; Pei, Shu-Wei

    2013-09-15

    Triclosan (TCS) is an antimicrobial agent which is used as a broad-spectrum bacteriostatic and found in personal care products, and due to this it is widely spread in the aquatic environment. However, there is no paper dealing with the aquatic life criteria of TCS, mainly result from the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 9 acute toxicity tests and 3 chronic toxicity tests using 9 Chinese native aquatic species from different taxonomic levels, and the aquatic life criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSD) between native and non-native species were compared. Among the tested species, demersal fish Misgurnus anguillicaudatus was the most sensitive species, and the fishes were more sensitive than the aquatic invertebrates of Annelid and insect, and the insect was the least sensitive species. The comparison showed that there was no significant difference between SSDs constructed from native and non-native taxa. Finally, a criterion maximum concentration of 0.009 mg/L and a criterion continuous concentration of 0.002 mg/L were developed based on different taxa, according to the U.S. Environmental Protection Agency guidelines. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    Science.gov (United States)

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  3. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  4. Density-dependent effects of non-native brown trout Salmo trutta on the species-area relationship in stream fish assemblages.

    Science.gov (United States)

    Hasegawa, K; Mori, T; Yamazaki, C

    2017-01-01

    The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.

  5. Vulnerability of freshwater native biodiversity to non-native ...

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  6. Do native brown trout and non-native brook trout interact reproductively?

    Science.gov (United States)

    Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.

    2008-07-01

    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.

  7. Predicting establishment of non-native fishes in Greece: identifying key features

    Directory of Open Access Journals (Sweden)

    Christos Gkenas

    2015-11-01

    Full Text Available Non-native fishes are known to cause economic damage to human society and are considered a major threat to biodiversity loss in freshwater ecosystems. The growing concern about these impacts has driven to an investigation of the biological traits that facilitate the establishment of non-native fish. However, invalid assessment in choosing the appropriate statistical model can lead researchers to ambiguous conclusions. Here, we present a comprehensive comparison of traditional and alternative statistical methods for predicting fish invasions using logistic regression, classification trees, multicorrespondence analysis and random forest analysis to determine characteristics of successful and failed non-native fishes in Hellenic Peninsula through establishment. We defined fifteen categorical predictor variables with biological relevance and measures of human interest. Our study showed that accuracy differed according to the model and the number of factors considered. Among all the models tested, random forest and logistic regression performed best, although all approaches predicted non-native fish establishment with moderate to excellent results. Detailed evaluation among the models corresponded with differences in variables importance, with three biological variables (parental care, distance from nearest native source and maximum size and two variables of human interest (prior invasion success and propagule pressure being important in predicting establishment. The analyzed statistical methods presented have a high predictive power and can be used as a risk assessment tool to prevent future freshwater fish invasions in this region with an imperiled fish fauna.

  8. Native freshwater species get out of the way: Prussian carp (Carassius gibelio) impacts both fish and benthic invertebrate communities in North America.

    Science.gov (United States)

    Ruppert, Jonathan L W; Docherty, Cassandra; Neufeld, Kenton; Hamilton, Kyle; MacPherson, Laura; Poesch, Mark S

    2017-10-01

    Prussian carp ( Carassius gibelio ) are one of the most noxious non-native species in Eurasia. Recently, Prussian carp, a non-native freshwater fish species, were genetically confirmed in Alberta, Canada and have been rapidly expanding their range in North America since establishment. Given their rapid range expansion, there is an increasing need to determine how Prussian carp may impact native species. We assessed the severity of the Prussian carp invasion by (i) determining their impact on fish communities, (ii) assessing their impact on benthic invertebrate communities, (iii) evaluating if Prussian carp alter abiotic conditions, and (iv) identifying where we find higher abundances of Prussian carp. When Prussian carp were established, we found significant changes to the fish community. Correspondingly, the degree of impact to benthic invertebrate communities was related to the stage of invasion (none, early or recent), where changes in fish communities were significantly concordant with changes in benthic invertebrate communities. Finally, we found that higher abundances of Prussian carp were significantly associated with lower abundances of a majority of native fish species. Altogether, using three lines of evidence, we determine that Prussian carp can have wide-ranging impacts on freshwater ecosystems in North America, pressing the need for management intervention.

  9. Non-native fishes of the central Indian River Lagoon

    Science.gov (United States)

    Schofield, Pamela J.; Loftus, William F.; Reaver, Kristen M.

    2018-01-01

    We provide a comprehensive review of the status of non-native fishes in the central Indian River Lagoon (from Cape Canaveral to Grant-Valkaria, east of I-95) through literature review and field surveys. Historical records exist for 17 taxa (15 species, one hybrid, one species complex). We found historical records for one additional species, and collected one species in our field survey that had never been recorded in the region before (and which we eradicated). Thus, we evaluate 19 total taxa herein. Of these, we documented range expansion of four salt-tolerant cichlid species, extirpation of six species that were previously recorded from the area and eradication of three species. There was no noticeable change in geographic range for one widespread species and the records for one species are doubtful and may be erroneous. Currently, there is not enough information to evaluate geographic ranges for four species although at least one of those is established.

  10. Reproduction of the non-native fish Lepomis gibbosus (Perciformes: Centrarchidae in Brazil

    Directory of Open Access Journals (Sweden)

    Rangel E. Santos

    2012-09-01

    Full Text Available Minas Gerais is the fourth largest Brazilian state, and has an estimate of 354 native fish species. However, these fish species may be threatened, as this state has the highest rank of fish introductions reported for Brazil and South America. As one from the total of 85 non-native species detected, Lepomis gibbosus was introduced in the 60s to serve both as foragefish and to improve sport fishing. In this study, we evaluated the establishment of L. gibbosus in a shallow lake in the city of Ouro Preto, Doce River basin, state of Minas Gerais, Southeastern Brazil. We collected fish with fishing rods every two months from March 2002-February 2003. Fragments of gonads from a total of 226 females and 226 males were obtained and processed following standard histological techniques; then 5-7μm thickness sections were taken and stained in hematoxylin-eosin. Besides, for each specimen, the biometric measurements included the standard length (SL and body weight (BW; and the sex ratio was obtained. The reproductive cycle stages were confirmed by the distribution of oocytes and spermatogenic cells. The type of spawning was determined by the frequency distribution of the reproductive cycle stages and ovarian histology. Based on the microscopic characteristics of the gonads, the following stages of the reproductive cycle were determined: one=Rest, two=Mature, three=Spawned for females or Spent for males; males and females in reproduction were found throughout the study period. Post-spawned ovaries containing oocytes in stages one (initial perinucleolar, two (advanced perinucleolar, three (pre-vitellogenic, four (vitellogenic and post-ovulatory follicles indicated fractionated-type spawning in this species. The smallest breeding male and female measured were 4.6 and 4.9cm standard length, respectively, suggesting stunting. The sex ratio did not vary between males and females along the year and bimonthly, being 1:1. Moreover, L. gibbosus appears to be at stage

  11. [Dietary composition and food competition of six main fish species in rocky reef habitat off Gouqi Island].

    Science.gov (United States)

    Wang, Kai; Zhang, Shou-Yu; Wang, Zhen-Hua; Zhao, Jing; Xu, Min; Lin, Jun

    2012-02-01

    Based on the monthly investigation data of fish resources in the rocky reef habitat off Gouqi Island from March 2009 to February 2010, this paper studied the dietary composition of three native fish species (Sebasticus marmoratus, Hexagrammos otakii and Hexagrammos agrammus) and three non-native fish species (Lateolabrax japonica, Nibea albiflora and Larimichthys polyactis). The analysis of gut content indicated that the main prey items of these six dominant fish species were Caprellidae, Gammaridea, juvenile S. marmoratus, Engraulis japonicas and Acetes chinensis and the dietary composition of each of the 6 fish species had obvious seasonal variation. There was an intense food competition between native species H. otakii and H. agrammus in autumn, between non-native species N. albiflora and L. polyactis in summer, between non-native species N. albiflora and native species S. marmoratus in autumn, and between non-native species N. albiflora and native species H. otakii in winter. It was suggested the non-native species N. albiflora was the key species in the food competition among the six dominant fish species in this rocky reef habitat, and thus the feeding behaviors of these six fish species could have definite effects on the resource capacity of juvenile S. marmoratus.

  12. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    Directory of Open Access Journals (Sweden)

    Maria S Smith

    2013-11-01

    Full Text Available We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons.

  13. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    Science.gov (United States)

    Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, ...

  14. Small size today, aquarium dumping tomorrow: sales of juvenile non-native large fish as an important threat in Brazil

    Directory of Open Access Journals (Sweden)

    André L. B. Magalhães

    2017-12-01

    Full Text Available ABSTRACT Informal sales of large-bodied non-native aquarium fishes (known as “tankbusters” is increasing among Brazilian hobbyists. In this study, we surveyed this non-regulated trade on Facebook® from May 2012 to September 2016, systematically collecting information about the fishes available for trading: species, family, common/scientific names, native range, juvenile length, behavior, number of specimens available in five geographical regions from Brazil. We also assessed the invasion risk of the most frequently sold species using the Fish Invasiveness Screening Test (FIST. We found 93 taxa belonging to 35 families. Cichlidae was the dominant family, and most species were native to South America. All species are sold at very small sizes (< 10.0 cm, and most display aggressive behavior. The hybrid Amphilophus trimaculatus × Amphilophus citrinellus, Astronotus ocellatus, Uaru amphiacanthoides, Osteoglossum bicirrhosum, Cichla piquiti, Pangasianodon hypophthalmus, Datnioides microlepis and Cichla kelberi were the main species available. The southeast region showed the greatest trading activity. Based on biological traits, the FIST indicated that Arapaima gigas, C. kelberi and C. temensis are high-risk species in terms of biological invasions via aquarium dumping. We suggest management strategies such as trade regulations, monitoring, euthanasia and educational programs to prevent further introductions via aquarium dumping.

  15. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental...

  16. Non-native Species in Floodplain Secondary Forests in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Rasidah Hashim

    2010-01-01

    Full Text Available There is an increasing concern of alien species invading our tropical ecosystems because anthropogenic land use can create conditions in which non-native species thrive. This study is an assessment of bioinvasion using a quantitative survey of non-native plant species in floodplain secondary forests in Peninsular Malaysia. The study area is known to have a long cultivation and settlement history that provides ample time for non-native species introduction. The survey results showed that introduced species constituted 23% of all the identified species, with seven species unique to riparian forest strips and eleven species unique to abandoned paddy fields and the remaining five species being shared between the two secondary forest types. There existed some habitat preferences amongst the species implying both secondary forests were potentially susceptible to bioinvasion. Fourteen species are also invasive elsewhere (PIER invasives whereas fifteen species have acquired local uses such for traditional medicine and food products. The presence of these non-native species could alter native plant succession trajectory, and eventually leads to native species impoverishment if the exotics managed to outcompete the native species. As such, the findings of this study have a far-reaching application for the national biodiversity conservation efforts because it provides the required information on bioinvasion.

  17. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    2011-03-01

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.Os lagos do Vale do médio rio Doce (MG têm sofrido impactos devido à introdução de espécies invasoras de peixes, principalmente de espécies piscívoras como a piranha Pygocentrus nattereri e o tucunaré Cichla kelberi. Peixes foram coletados em seis amostragens bimestrais durante um ano. O presente trabalho demonstrou que a composição das assembleias de peixes nativos está significativamente relacionada à presença e ao tipo de espécies não nativas. A distribuição de espécies entre os lagos pode ser explicada por diferenças no tamanho corporal: espécies nativas de

  18. Prey utilisation and trophic overlap between the non native mosquitofish and a native fish in two Mediterranean rivers

    Directory of Open Access Journals (Sweden)

    E. KALOGIANNI

    2014-04-01

    Full Text Available Non native freshwater fish species have been long implicated in the decline of native Mediterranean ichthyofauna, through hybridization, disease transmission, competition for food and habitat, predation and/or ecosystem alteration; our knowledge, however, on the underlying mechanisms of these ecological impacts remains very limited. To explore the potential for trophic competition between the widespread Eastern mosquitofish Gambusia holbrooki and its co-occurring native toothcarp Valencia letourneuxi we compared resource use, feeding strategies, trophic selectivities and diet niche overlap. For this purpose, we studied two populations of the two species from a freshwater and a brackish habitat respectively, characterized by different food resource availabilities. In both habitats, the mosquitofish consumed a greater diversity of invertebrates and preyed on terrestrial invertebrates more frequently than the native toothcarp. Furthermore, in the less diverse and less rich brackish habitat, the non native relied heavily on plant material to balance a decrease in animal prey consumption and modified its individual feeding strategy, whereas these adaptive changes were not apparent in the native species. Their diet overlapped, indicating trophic competition, but this overlap was affected by resource availability variation; in the freshwater habitat, there was limited overlap in their diet, whereas in the brackish habitat, their diets and prey selectivities converged and there was high overlap in resource use, indicative of intense interspecific trophic competition. Overall, it appears that the underlying mechanism of the putative negative impacts of the mosquitofish on the declining Corfu toothcarp is mainly trophic competition, regulated by resource variability, though there is also evidence of larvae predation by the mosquitofish.

  19. Dispersal and selection mediate hybridization between a native and invasive species

    Science.gov (United States)

    Kovach, Ryan P.; Muhlfeld, Clint C.; Boyer, Matthew C.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2015-01-01

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age—relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) ¼ 0.60; s.e. ¼ 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. .

  20. Environmental niche separation between native and non-native benthic invertebrate species: Case study of the northern Baltic Sea.

    Science.gov (United States)

    Jänes, Holger; Herkül, Kristjan; Kotta, Jonne

    2017-10-01

    Knowledge and understanding of geographic distributions of species is crucial for many aspects in ecology, conservation, policy making and management. In order to reach such an understanding, it is important to know abiotic variables that impact and drive distributions of native and non-native species. We used an existing long-term macrobenthos database for species presence-absence information and biomass estimates at different environmental gradients in the northern Baltic Sea. Region specific abiotic variables (e.g. salinity, depth) were derived from previously constructed bathymetric and hydrodynamic models. Multidimensional ordination techniques were then applied to investigate potential niche space separation between all native and non-native invertebrates in the northern Baltic Sea. Such an approach allowed to obtain data rich and robust estimates of the current native and non-native species distributions and outline important abiotic parameters influencing the observed pattern. The results showed clear niche space separation between native and non-native species. Non-native species were situated in an environmental space characterized by reduced salinity, high temperatures, high proportion of soft seabed and decreased depth and wave exposure whereas native species displayed an opposite pattern. Different placement of native and non-native species along the studied environmental niche space is likely to be explained by the differences in their evolutionary history, human mediated activities and geological youth of the Baltic Sea. The results of this study can provide early warnings and effectively outline coastal areas in the northern Baltic Sea that are prone to further range expansion of non-native species as climate change is expected to significantly reduce salinity and increase temperature in wide coastal areas, both supporting the disappearance of native and appearance of non-native species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    Science.gov (United States)

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  2. Positive and Negative Impacts of Non-Native Bee Species around the World.

    Science.gov (United States)

    Russo, Laura

    2016-11-28

    Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile . The best studied genera are Apis and Bombus , and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  3. Positive and Negative Impacts of Non-Native Bee Species around the World

    Directory of Open Access Journals (Sweden)

    Laura Russo

    2016-11-01

    Full Text Available Though they are relatively understudied, non-native bees are ubiquitous and have enormous potential economic and environmental impacts. These impacts may be positive or negative, and are often unquantified. In this manuscript, I review literature on the known distribution and environmental and economic impacts of 80 species of introduced bees. The potential negative impacts of non-native bees include competition with native bees for nesting sites or floral resources, pollination of invasive weeds, co-invasion with pathogens and parasites, genetic introgression, damage to buildings, affecting the pollination of native plant species, and changing the structure of native pollination networks. The potential positive impacts of non-native bees include agricultural pollination, availability for scientific research, rescue of native species, and resilience to human-mediated disturbance and climate change. Most non-native bee species are accidentally introduced and nest in stems, twigs, and cavities in wood. In terms of number of species, the best represented families are Megachilidae and Apidae, and the best represented genus is Megachile. The best studied genera are Apis and Bombus, and most of the species in these genera were deliberately introduced for agricultural pollination. Thus, we know little about the majority of non-native bees, accidentally introduced or spreading beyond their native ranges.

  4. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  5. Germination responses of an invasive species in native and non-native ranges

    Science.gov (United States)

    Jose L. Hierro; Ozkan Eren; Liana Khetsuriani; Alecu Diaconu; Katalin Torok; Daniel Montesinos; Krikor Andonian; David Kikodze; Levan Janoian; Diego Villarreal; Maria Estanga-Mollica; Ragan M. Callaway

    2009-01-01

    Studying germination in the native and non-native range of a species can provide unique insights into processes of range expansion and adaptation; however, traits related to germination have rarely been compared between native and nonnative populations. In a series of common garden experiments, we explored whether differences in the seasonality of precipitation,...

  6. Ectomycorrhizal fungal communities of native and non-native Pinus and Quercus species in a common garden of 35-year-old trees.

    Science.gov (United States)

    Trocha, Lidia K; Kałucka, Izabela; Stasińska, Małgorzata; Nowak, Witold; Dabert, Mirosława; Leski, Tomasz; Rudawska, Maria; Oleksyn, Jacek

    2012-02-01

    Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.

  7. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  8. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  9. Exploring public perception of non-native species from a visions of nature perspective.

    Science.gov (United States)

    Verbrugge, Laura N H; Van den Born, Riyan J G; Lenders, H J Rob

    2013-12-01

    Not much is known about lay public perceptions of non-native species and their underlying values. Public awareness and engagement, however, are important aspects in invasive species management. In this study, we examined the relations between the lay public's visions of nature, their knowledge about non-native species, and their perceptions of non-native species and invasive species management with a survey administered in the Netherlands. Within this framework, we identified three measures for perception of non-native species: perceived risk, control and engagement. In general, respondents scored moderate values for perceived risk and personal engagement. However, in case of potential ecological or human health risks, control measures were supported. Respondents' images of the human-nature relationship proved to be relevant in engagement in problems caused by invasive species and in recognizing the need for control, while images of nature appeared to be most important in perceiving risks to the environment. We also found that eradication of non-native species was predominantly opposed for species with a high cuddliness factor such as mammals and bird species. We conclude that lay public perceptions of non-native species have to be put in a wider context of visions of nature, and we discuss the implications for public support for invasive species management.

  10. Native Freshwater Fish and Mussel Species Richness

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for...

  11. Preliminary Insight into Winter Native Fish Assemblages in Guadiana Estuary Salt Marshes Coping with Environmental Variability and Non-Indigenous Fish Introduction

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves

    2017-10-01

    Full Text Available This work aims to undertake a preliminary characterization of winter fish assemblages in the salt marsh areas of Guadiana lower estuary (South-East Portugal and discusses the potential risks of habitat dominance by a non-indigenous species (NIS. To this effect, six field campaigns were carried out in four sampling sites during winter season targeting the collection of fish species. A total of 48 samples were collected. Individuals from seven different taxa (marine and estuarine were collected, although the assemblage was dominated by two estuarine species—the native Pomatoschistus sp. (goby and the NIS Fundulus heteroclitus (mummichog. Goby was the most abundant taxa in the majority of salt marsh habitats, except for one specific, marsh pool, where extreme environmental conditions were registered, namely high temperature and salinity. Such conditions may have boosted the intrusion of mummichog in this area. This species is well adapted to a wide range of abiotic factors enabling them to colonize habitats where no predators inhabit. Impacts of mummichog introduction in the Guadiana salt marsh area are still unpredictable since this is the first time they have been recorded in such high density. Nevertheless, in scenarios of increased anthropogenic pressure and, consequently, habitat degradation, there is a potential risk of mummichog spreading to other habitats and therefore competing for space and food resources with native species.

  12. Current status of non-native fish species in the St. Louis River estuary

    Science.gov (United States)

    The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...

  13. Native fruit traits may mediate dispersal competition between native and non-native plants

    Directory of Open Access Journals (Sweden)

    Clare Aslan

    2012-02-01

    Full Text Available Seed disperser preferences may mediate the impact of invasive, non-native plant species on their new ecological communities. Significant seed disperser preference for invasives over native species could facilitate the spread of the invasives while impeding native plant dispersal. Such competition for dispersers could negatively impact the fitness of some native plants. Here, we review published literature to identify circumstances under which preference for non-native fruits occurs. The importance of fruit attraction is underscored by several studies demonstrating that invasive, fleshy-fruited plant species are particularly attractive to regional frugivores. A small set of studies directly compare frugivore preference for native vs. invasive species, and we find that different designs and goals within such studies frequently yield contrasting results. When similar native and non-native plant species have been compared, frugivores have tended to show preference for the non-natives. This preference appears to stem from enhanced feeding efficiency or accessibility associated with the non-native fruits. On the other hand, studies examining preference within existing suites of co-occurring species, with no attempt to maximize fruit similarity, show mixed results, with frugivores in most cases acting opportunistically or preferring native species. A simple, exploratory meta-analysis finds significant preference for native species when these studies are examined as a group. We illustrate the contrasting findings typical of these two approaches with results from two small-scale aviary experiments we conducted to determine preference by frugivorous bird species in northern California. In these case studies, native birds preferred the native fruit species as long as it was dissimilar from non-native fruits, while non-native European starlings preferred non-native fruit. However, native birds showed slight, non-significant preference for non-native fruit

  14. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Curtis H. Flather; Pam L. Fuller; Bruce G. Peterjohn; John T. Kartesz; Lawrence L. Master

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following...

  15. Non-native species in the vascular flora of highlands and mountains of Iceland

    Directory of Open Access Journals (Sweden)

    Pawel Wasowicz

    2016-01-01

    Full Text Available The highlands and mountains of Iceland are one of the largest remaining wilderness areas in Europe. This study aimed to provide comprehensive and up-to-date data on non-native plant species in these areas and to answer the following questions: (1 How many non-native vascular plant species inhabit highland and mountainous environments in Iceland? (2 Do temporal trends in the immigration of alien species to Iceland differ between highland and lowland areas? (3 Does the incidence of alien species in the disturbed and undisturbed areas within Icelandic highlands differ? (4 Does the spread of non-native species in Iceland proceed from lowlands to highlands? and (5 Can we detect hot-spots in the distribution of non-native taxa within the highlands? Overall, 16 non-native vascular plant species were detected, including 11 casuals and 5 naturalized taxa (1 invasive. Results showed that temporal trends in alien species immigration to highland and lowland areas are similar, but it is clear that the process of colonization of highland areas is still in its initial phase. Non-native plants tended to occur close to man-made infrastructure and buildings including huts, shelters, roads etc. Analysis of spatio-temporal patterns showed that the spread within highland areas is a second step in non-native plant colonization in Iceland. Several statically significant hot spots of alien plant occurrences were identified using the Getis-Ord Gi* statistic and these were linked to human disturbance. This research suggests that human-mediated dispersal is the main driving force increasing the risk of invasion in Iceland’s highlands and mountain areas.

  16. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    Science.gov (United States)

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  17. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. An assessment of a proposal to eradicate non-native fish from ...

    African Journals Online (AJOL)

    African Journal of Aquatic Science ... A pilot project to evaluate the use of the piscicide rotenone to eradicate non-native fish from selected reaches in four rivers has been proposed by CapeNature, the conservation ... It is expected that the project will be successful while having minimal impact on other aquatic fauna.

  19. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes.

    Science.gov (United States)

    Peiffer, Friederike; Bejarano, Sonia; Palavicini de Witte, Giacomo; Wild, Christian

    2017-01-01

    The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month -1 ) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher -1 h -1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  20. Ongoing removals of invasive lionfish in Honduras and their effect on native Caribbean prey fishes

    Directory of Open Access Journals (Sweden)

    Friederike Peiffer

    2017-10-01

    Full Text Available The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras a local non-governmental organisation (i.e. Roatan Marine Park trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month−1 with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher−1 h−1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

  1. Satellite lakes as reservoirs of fish species diversity

    OpenAIRE

    Nkalubo, W.; Wandera, S.B.; Namulemo, G.

    2010-01-01

    Satellite lakes and rivers in the Victoria and Kyoga basins provide a sanctuary for endangered native fish species. The structural heterogeneity of macrophyte covering these lakes has made it possible for most of the biodiversity to be kept intact. The Kyoga minor lakes have the highest fish species diversity especially of the haplochromines. Most fish communities of these satellite lakes are composed of native species.

  2. Fleshy fruit removal and nutritional composition of winter-fruiting plants: a comparison of non-native invasive and native species

    Science.gov (United States)

    Cathryn H. Greenberg; Scott T. Walter

    2010-01-01

    Invasive, non-native plants threaten forest ecosystems by reducing native plant species richness and potentially altering ecosystem processes. Seed dispersal is critical for successful invasion and range expansion by non-native plants; dispersal is likely to be enhanced if they can successfully compete with native plants for disperser services. Fruit production by non-...

  3. Vulnerability of freshwater native biodiversity to non-native species invasions across the continental United States

    Science.gov (United States)

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analy...

  4. Show me the numbers: What data currently exist for non-native species in the USA?

    Science.gov (United States)

    Crall, Alycia W.; Meyerson, Laura A.; Stohlgren, Thomas J.; Jarnevich, Catherine S.; Newman, Gregory J.; Graham, James

    2006-01-01

    Non-native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non-native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non-native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non-native species in the US from county, state, multi-state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non-native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts.

  5. Will Tidal Wetland Restoration Enhance Populations of Native Fishes?

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands might enhance populations of native fishes in the San Francisco Estuary of California. The purpose of this paper is to: (1 review the currently available information regarding the importance of tidal wetlands to native fishes in the San Francisco Estuary, (2 construct conceptual models on the basis of available information, (3 identify key areas of scientific uncertainty, and (4 identify methods to improve conceptual models and reduce uncertainty. There are few quantitative data to suggest that restoration of tidal wetlands will substantially increase populations of native fishes. On a qualitative basis, there is some support for the idea that tidal wetland restoration will increase populations of some native fishes; however, the species deriving the most benefit from restoration might not be of great management concern at present. Invasion of the San Francisco Estuary by alien plants and animals appears to be a major factor in obscuring the expected link between tidal wetlands and native fishes. Large-scale adaptive management experiments (>100 hectares appear to be the best available option for determining whether tidal wetlands will provide significant benefit to native fishes. Even if these experiments are unsuccessful at increasing native fish populations, the restored wetlands should benefit native birds, plants, and other organisms.

  6. Fish farming of native species in Colombia: current situation and perspectives

    DEFF Research Database (Denmark)

    Cruz-Casallas, P. E.; Medina-Robles, V. M.; Velasco-Santamaria, Y. M.

    2011-01-01

    . The Colombian pisciculture is based on red Tilapia Oreochromis sp. (Linnaeus), Rainbow trout Oncorhynchus mykiss (Walbaum) and cachama blanca Piaractus brachypomus (Cuvier), which currently represent around 96% of the total national production. The remaining 4% comes from other farmed species such as bocachico......In Colombia and the rest of the world, the decrease in capture fisheries production has turned the aquaculture into an alternative source of protein for the populations food security as well as an important productive activity, generating employment and income for the rural communities...... Prochilodus magdalenae (Steindachner), carp Cyprinus carpio (Linnaeus) and yamu Brycon amazonicus (Spix & Agassiz). From the three main fish species, cachama blanca is the only native species, which has shown excellent performance in pond farming due to its rusticity, omnivorous habits, docility, meat quality...

  7. Systemic and intensifying drought induces collapse and replacement of native fishes: a time-series approach

    Science.gov (United States)

    Ruhi, A.; Olden, J. D.; Sabo, J. L.

    2015-12-01

    In the American Southwest, hydrologic drought has become a new normal as a result of increasing human appropriation of freshwater resources and increased aridity associated with global warming. Although drought has often been touted to threaten freshwater biodiversity, connecting drought to extinction risk of highly-imperiled faunas remains a challenge. Here we combine time-series methods from signal processing and econometrics to analyze a spatially comprehensive and long-term dataset to link discharge variation and community abundance of fish across the American Southwest. This novel time series framework identifies ongoing trends in daily discharge anomalies across the Southwest, quantifies the effect of the historical hydrologic drivers on fish community abundance, and allows us to simulate species trajectories and range-wide risk of decline (quasiextinction) under scenarios of future climate. Spectral anomalies are declining over the last 30 years in at least a quarter of the stream gaging stations across the American Southwest and these anomalies are robust predictors of historical abundance of native and non-native fishes. Quasiextinction probabilities are high (>50 %) for nearly ¾ of the native species across several large river basins in the same region; and the negative trend in annual anomalies increases quasiextinction risk for native but reduces this risk for non-native fishes. These findings suggest that ongoing drought is causing range-wide collapse and replacement of native fish faunas, and that this homogenization of western fish faunas will continue given the prevailing negative trend in discharge anomalies. Additionally, this combination of methods can be applied elsewhere as long as environmental and biological long-term time-series data are available. Collectively, these methods allow identifying the link between hydroclimatic forcing and ecological responses and thus may help anticipating the potential impacts of ongoing and future hydrologic

  8. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  9. Invasibility of Mediterranean-climate rivers by non-native fish: the importance of environmental drivers and human pressures.

    Directory of Open Access Journals (Sweden)

    Maria Ilhéu

    Full Text Available Invasive species are regarded as a biological pressure to natural aquatic communities. Understanding the factors promoting successful invasions is of great conceptual and practical importance. From a practical point of view, it should help to prevent future invasions and to mitigate the effects of recent invaders through early detection and prioritization of management measures. This study aims to identify the environmental determinants of fish invasions in Mediterranean-climate rivers and evaluate the relative importance of natural and human drivers. Fish communities were sampled in 182 undisturbed and 198 disturbed sites by human activities, belonging to 12 river types defined for continental Portugal within the implementation of the European Union's Water Framework Directive. Pumpkinseed sunfish, Lepomis gibbosus (L., and mosquitofish, Gambusia holbrooki (Girard, were the most abundant non-native species (NNS in the southern river types whereas the Iberian gudgeon, Gobio lozanoi Doadrio and Madeira, was the dominant NNS in the north/centre. Small northern mountain streams showed null or low frequency of occurrence and abundance of NNS, while southern lowland river types with medium and large drainage areas presented the highest values. The occurrence of NNS was significantly lower in undisturbed sites and the highest density of NNS was associated with high human pressure. Results from variance partitioning showed that natural environmental factors determine the distribution of the most abundant NNS while the increase in their abundance and success is explained mainly by human-induced disturbance factors. This study stresses the high vulnerability of the warm water lowland river types to non-native fish invasions, which is amplified by human-induced degradation.

  10. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Science.gov (United States)

    Preston, Todd M.

    2015-01-01

    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.

  11. Non-native tree species in urban areas of the city of Nitra

    International Nuclear Information System (INIS)

    Galis, M

    2014-01-01

    Non-native plant species are part of our environment. The introduction of these species is huge conditioned by anthropogenic activities, such as the urban environment is characterized by. During the field surveys of selected town Nitra (Chrenova, Mikova Ves, Zobor), we studied the frequency of non-native tree species in the contact zone. Overall, we found out the presence of 10 alien species, observed in this area. Our results show dominant presence of the species Rhus typhina, followed by the Robinia pseudoacacia and Ailanthus altissima. Individual plants were tied largely to the surrounding of built-up areas, often growns directly in front of houses, or as a part of urban green. (author)

  12. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Science.gov (United States)

    Moyle, Peter B; Kiernan, Joseph D; Crain, Patrick K; Quiñones, Rebecca M

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation

  13. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    Full Text Available Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1 current status of each species (baseline vulnerability to extinction and (2 likely future impacts of climate change (vulnerability to extinction. Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish

  14. Projecting invasion risk of non-native watersnakes (Nerodia fasciata and Nerodia sipedon in the western United States.

    Directory of Open Access Journals (Sweden)

    Jonathan P Rose

    Full Text Available Species distribution models (SDMs are increasingly used to project the potential distribution of introduced species outside their native range. Such studies rarely explicitly evaluate potential conflicts with native species should the range of introduced species expand. Two snake species native to eastern North America, Nerodia fasciata and Nerodia sipedon, have been introduced to California where they represent a new stressor to declining native amphibians, fish, and reptiles. To project the potential distributions of these non-native watersnakes in western North America, we built ensemble SDMs using MaxEnt, Boosted Regression Trees, and Random Forests and habitat and climatic variables. We then compared the overlap between the projected distribution of invasive watersnakes and the distributions of imperiled native amphibians, fish, and reptiles that can serve as prey or competitors for the invaders, to estimate the risk to native species posed by non-native watersnakes. Large areas of western North America were projected to be climatically suitable for both species of Nerodia according to our ensemble SDMs, including much of central California. The potential distributions of both N. fasciata and N. sipedon overlap extensively with the federally threatened Giant Gartersnake, Thamnophis gigas, which inhabits a similar ecological niche. N. fasciata also poses risk to the federally threatened California Tiger Salamander, Ambystoma californiense, whereas N. sipedon poses risk to some amphibians of conservation concern, including the Foothill Yellow-legged Frog, Rana boylii. We conclude that non-native watersnakes in California can likely inhabit ranges of several native species of conservation concern that are expected to suffer as prey or competing species for these invaders. Action should be taken now to eradicate or control these invasions before detrimental impacts on native species are widespread. Our methods can be applied broadly to quantify

  15. Alien fish species in reservoir systems in Turkey: a review

    OpenAIRE

    Deniz Innal

    2012-01-01

    Turkey’s natural river systems have been anthropogenically altered in the past century. Native fish communities of river systems have comeunder increasing pressure from water engineering projects, pollution, overfishing and the movements of alien fish species. Introduction ofalien fishes is one of the main threats to the survival and genetic integrity of native fishes around the world. In Turkey, alien freshwater fish are continuing to increase in number of species, abundance, and distributio...

  16. Detection of iron-depositing Pedomicrobium species in native biofilms from the Odertal National Park by a new, specific FISH probe.

    Science.gov (United States)

    Braun, Burga; Richert, Inga; Szewzyk, Ulrich

    2009-10-01

    Iron-depositing bacteria play an important role in technical water systems (water wells, distribution systems) due to their intense deposition of iron oxides and resulting clogging effects. Pedomicrobium is known as iron- and manganese-oxidizing and accumulating bacterium. The ability to detect and quantify members of this species in biofilm communities is therefore desirable. In this study the fluorescence in situ hybridization (FISH) method was used to detect Pedomicrobium in iron and manganese incrusted biofilms. Based on comparative sequence analysis, we designed and evaluated a specific oligonucleotide probe (Pedo 1250) complementary to the hypervariable region 8 of the 16S rRNA gene for Pedomicrobium. Probe specificities were tested against 3 different strains of Pedomicrobium and Sphingobium yanoikuyae as non-target organism. Using optimized conditions the probe hybridized with all tested strains of Pedomicrobium with an efficiency of 80%. The non-target organism showed no hybridization signals. The new FISH probe was applied successfully for the in situ detection of Pedomicrobium in different native, iron-depositing biofilms. The hybridization results of native bioflims using probe Pedo_1250 agreed with the results of the morphological structure of Pedomicrobium bioflims based on scanning electron microscopy.

  17. Experimental assessment of the effects of a Neotropical nocturnal piscivore on juvenile native and invasive fishes

    Directory of Open Access Journals (Sweden)

    Alejandra F. G. N. Santos

    Full Text Available We experimentally examined the predator-prey relationships between juvenile spotted sorubim Pseudoplastystoma corruscans and young-of-the-year invasive and native fish species of the Paraná River basin, Brazil. Three invasive (peacock bass Cichla piquiti, Nile tilapia Oreochromis niloticus, and channel catfish Ictalurus punctatus and two native (yellowtail tetra Astyanax altiparanae and streaked prochilod Prochilodus lineatus fish species were offered as prey to P. corruscans in 300 L aquaria with three habitat complexity treatments (0%, 50% and 100% structure-covered. Prey survival was variable through time and among species (C. piquiti < O. niloticus < A. altiparanae < P. lineatus < I. punctatus, depending largely on species-specific prey behavior but also on prey size and morphological defenses. Habitat complexity did not directly affect P. corruscans piscivory but some prey species changed their microhabitat use and shoaling behavior among habitat treatments in predator's presence. Pseudoplatystoma corruscans preyed preferentially on smaller individuals of those invasive species with weak morphological defensive features that persisted in a non-shoaling behavior. Overall, our results contrast with those in a companion experiment using a diurnal predator, suggesting that nocturnal piscivores preferentially prey on different (rather diurnal fish species and are less affected by habitat complexity. Our findings suggest that recovering the native populations of P. corruscans might help controling some fish species introduced to the Paraná River basin, particularly C. piquiti and O. niloticus, whose parental care is expected to be weak or null at night.

  18. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species.

    Science.gov (United States)

    Ahmad, Habib; Yousafzai, Ali Muhammad; Siraj, Muhammad; Ahmad, Rashid; Ahmad, Israr; Nadeem, Muhammad Shahid; Ahmad, Waqar; Akbar, Nazia; Muhammad, Khushi

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals including chromium, nickel, copper, zinc, cadmium, and lead were determined through atomic absorption spectrophotometer after tissue digestion by adopting standard procedures. Concentrations of these metals were recorded in muscles and liver of five native fish species, namely, Wallago attu, Aorichthys seenghala, Cyprinus carpio, Labeo dyocheilus, and Ompok bimaculatus. The concentrations of chromium, nickel, copper, zinc, and lead were higher in both of the tissues, whereas the concentration of cadmium was comparatively low. However, the concentration of metals was exceeding the RDA (Recommended Dietary Allowance of USA) limits. Hence, continuous fish consumption may create health problems for the consumers. The results of the present study are alarming and suggest implementing environmental laws and initiation of a biomonitoring program of the river.

  19. Fish species diversity and conservation in Beijing and adjacent areas

    OpenAIRE

    Chunguang Zhang; Yahui Zhao; Yingchun Xing; Ruilu Guo; Qing Zhang; Yun Feng; Enyuan Fan

    2011-01-01

    Based on field surveys between 2002 and 2010, and fish collections in the National Zoological Museum, Institute of Zoology, Chinese Academy of Sciences, a total of 93 wild fish species including 12 in-troduced species had been recorded in Beijing and adjacent areas. Eighty five of these species, including some migratory and estuarine fishes, are native to the region. Only 43 native wild species were collected in our field work from 2002 to 2010. Compared with the historical records, nearly 50...

  20. Alien fish species in reservoir systems in Turkey: a review

    Directory of Open Access Journals (Sweden)

    Deniz Innal

    2012-12-01

    Full Text Available Turkey’s natural river systems have been anthropogenically altered in the past century. Native fish communities of river systems have comeunder increasing pressure from water engineering projects, pollution, overfishing and the movements of alien fish species. Introduction ofalien fishes is one of the main threats to the survival and genetic integrity of native fishes around the world. In Turkey, alien freshwater fish are continuing to increase in number of species, abundance, and distribution. The present paper reviews fish stocking studies in Turkey’s reservoirs.

  1. Understanding the threats posed by non-native species: public vs. conservation managers.

    Directory of Open Access Journals (Sweden)

    Rodolphe E Gozlan

    Full Text Available Public perception is a key factor influencing current conservation policy. Therefore, it is important to determine the influence of the public, end-users and scientists on the prioritisation of conservation issues and the direct implications for policy makers. Here, we assessed public attitudes and the perception of conservation managers to five non-native species in the UK, with these supplemented by those of an ecosystem user, freshwater anglers. We found that threat perception was not influenced by the volume of scientific research or by the actual threats posed by the specific non-native species. Media interest also reflected public perception and vice versa. Anglers were most concerned with perceived threats to their recreational activities but their concerns did not correspond to the greatest demonstrated ecological threat. The perception of conservation managers was an amalgamation of public and angler opinions but was mismatched to quantified ecological risks of the species. As this suggests that invasive species management in the UK is vulnerable to a knowledge gap, researchers must consider the intrinsic characteristics of their study species to determine whether raising public perception will be effective. The case study of the topmouth gudgeon Pseudorasbora parva reveals that media pressure and political debate has greater capacity to ignite policy changes and impact studies on non-native species than scientific evidence alone.

  2. Local extinction and colonisation in native and exotic fish in relation to changes in land use

    OpenAIRE

    Kopp , Dorothée; Figuerola , Jordi; Compin , Arthur; Santoul , Frédéric; Céréghino , Régis

    2011-01-01

    International audience; Distribution patterns of many native and exotic fish species are well documented, yet little is known about the temporal dynamics of native and exotic diversity in relation to changes in land use. We hypothesised that colonisation rates would be higher for exotic fish species and that extinction rates would be higher for native species in large stream systems. We also predicted that cold-water species would be more impacted than thermally tolerant species. To test thes...

  3. Periphyton density is similar on native and non-native plant species

    NARCIS (Netherlands)

    Grutters, B.M.C.; Gross, Elisabeth M.; van Donk, E.; Bakker, E.S.

    2017-01-01

    Non-native plants increasingly dominate the vegetation in aquatic ecosystems and thrive in eutrophic conditions. In eutrophic conditions, submerged plants risk being overgrown by epiphytic algae; however, if non-native plants are less susceptible to periphyton than natives, this would contribute to

  4. Evaluating ecosystem services provided by non-native species: an experimental test in California grasslands.

    Science.gov (United States)

    Stein, Claudia; Hallett, Lauren M; Harpole, W Stanley; Suding, Katharine N

    2014-01-01

    The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.

  5. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America.

    Science.gov (United States)

    Lopes, Taise M; Bailly, Dayani; Almeida, Bia A; Santos, Natália C L; Gimenez, Barbara C G; Landgraf, Guilherme O; Sales, Paulo C L; Lima-Ribeiro, Matheus S; Cassemiro, Fernanda A S; Rangel, Thiago F; Diniz-Filho, José A F; Agostinho, Angelo A; Gomes, Luiz C

    2017-01-01

    Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.

  6. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America.

    Directory of Open Access Journals (Sweden)

    Taise M Lopes

    Full Text Available Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i the conservation of natural stocks of C. macropomum in the Amazon, and ii protecting native fish fauna in the climate refuges of the invaded regions.

  7. Checklist of non-indigenous fish species of the River Danube

    Directory of Open Access Journals (Sweden)

    Zorić Katarina

    2014-01-01

    Full Text Available Twenty non-indigenous fish species were recorded in the Danube River. The manner of their introduction, vectors, pathways, as well as invasive status are discussed. The major modes of introduction and translocation were found to be aquaculture and fish stocking. The main environmental consequences of the spread of alien fish are related to changes in the structure and functioning of the fish community and to the introduction of non-indigenous parasites. [Projekat Ministarstva nauke Republike Srbije, br. ON 173025, TR 37009 and III 43002 and European Commission 6th Framework Program: Integrated Project ALARM (contract GOCE-CT-2003-506675

  8. Invasive lionfish reduce native fish abundance on a regional scale

    Science.gov (United States)

    Ballew, Nicholas G.; Bacheler, Nathan M.; Kellison, G. Todd; Schueller, Amy M.

    2016-08-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990-2014). Our results suggest that 1) lionfish-impacted areas off of the southeastern United States are most prevalent off-shore near the continental shelf-break but are also common near-shore and 2) in impacted areas, lionfish have reduced tomtate (a native forage fish) abundance by 45% since the invasion began. Tomtate served as a model native fish species in our analysis, and as such, it is likely that the lionfish invasion has had similar impacts on other species, some of which may be of economic importance. Barring the development of a control strategy that reverses the lionfish invasion, the abundance of lionfish in the Atlantic, Caribbean, and Gulf of Mexico will likely remain at or above current levels. Consequently, the effect of lionfish on native fish abundance will likely continue for the foreseeable future.

  9. Synergistic impacts by an invasive amphipod and an invasive fish explain native gammarid extinction.

    Science.gov (United States)

    Beggel, S; Brandner, J; Cerwenka, A F; Geist, J

    2016-07-14

    Worldwide freshwater ecosystems are increasingly affected by invasive alien species. In particular, Ponto-Caspian gobiid fishes and amphipods are suspected to have pronounced effects on aquatic food webs. However, there is a lack of systematic studies mechanistically testing the potential synergistic effects of invasive species on native fauna. In this study we investigated the interrelations between the invasive amphipod Dikerogammarus villosus and the invasive fish species Neogobius melanostomus in their effects on the native amphipod Gammarus pulex. We hypothesized selective predation by the fish as a driver for displacement of native species resulting in potential extinction of G. pulex. The survival of G. pulex in the presence of N. melanostomus in relation to the presence of D. villosus and availability of shelter was analyzed in the context of behavioural differences between the amphipod species. Gammarus pulex had a significantly higher susceptibility to predation by N. melanostomus compared to D. villosus in all experiments, suggesting preferential predation by this fish on native gammarids. Furthermore, the presence of D. villosus significantly increased the vulnerability of G. pulex to fish predation. Habitat structure was an important factor for swimming activity of amphipods and their mortality, resulting in a threefold decrease in amphipods consumed with shelter habitat structures provided. Behavioral differences in swimming activity were additionally responsible for higher predation rates on G. pulex. Intraguild predation could be neglected within short experimental durations. The results of this study provide evidence for synergistic effects of the two invasive Ponto-Caspian species on the native amphipod as an underlying process of species displacements during invasion processes. Prey behaviour and monotonous habitat structures additionally contribute to the decline of the native gammarid fauna in the upper Danube River and elsewhere.

  10. Projected risk of population declines for native fish species in the Upper Mississippi River

    Science.gov (United States)

    Crimmins, S.M.; Boma, P.; Thogmartin, W.E.

    2015-01-01

    Conservationists are in need of objective metrics for prioritizing the management of habitats. For individual species, the threat of extinction is often used to prioritize what species are in need of conservation action. Using long-term monitoring data, we applied a Bayesian diffusion approximation to estimate quasi-extinction risk for 54 native fish species within six commercial navigation reaches along a 1350-km gradient of the upper Mississippi River system. We found a strong negative linear relationship between quasi-extinction risk and distance upstream. For some species, quasi-extinction estimates ranged from nearly zero in some reaches to one in others, suggesting substantial variability in threats facing individual river reaches. We found no evidence that species traits affected quasi-extinction risk across the entire system. Our results indicate that fishes within the upper Mississippi River system face localized threats that vary across river impact gradients. This suggests that conservation actions should be focused on local habitat scales but should also consider the additive effects on downstream conditions. We also emphasize the need for identification of proximate mechanisms behind observed and predicted population declines, as conservation actions will require mitigation of such mechanisms. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. Effectiveness of FISK, an invasiveness screening tool for non-native freshwater fishes, to perform risk identification assessments in the Iberian Peninsula.

    Science.gov (United States)

    Almeida, David; Ribeiro, Filipe; Leunda, Pedro M; Vilizzi, Lorenzo; Copp, Gordon H

    2013-08-01

    Risk assessments are crucial for identifying and mitigating impacts from biological invasions. The Fish Invasiveness Scoring Kit (FISK) is a risk identification (screening) tool for freshwater fishes consisting of two subject areas: biogeography/history and biology/ecology. According to the outcomes, species can be classified under particular risk categories. The aim of this study was to apply FISK to the Iberian Peninsula, a Mediterranean climate region highly important for freshwater fish conservation due to a high level of endemism. In total, 89 fish species were assessed by three independent assessors. Results from receiver operating characteristic analysis showed that FISK can discriminate reliably between noninvasive and invasive fishes for Iberia, with a threshold of 20.25, similar to those obtained in several regions around the world. Based on mean scores, no species was categorized as "low risk," 50 species as "medium risk," 17 as "moderately high risk," 11 as "high risk," and 11 as "very high risk." The highest scoring species was goldfish Carassius auratus. Mean certainty in response was above the category "mostly certain," ranging from tinfoil barb Barbonymus schwanenfeldii with the lowest certainty to eastern mosquitofish Gambusia holbrooki with the highest level. Pair-wise comparison showed significant differences between one assessor and the other two on mean certainty, with these two assessors showing a high coincidence rate for the species categorization. Overall, the results suggest that FISK is a useful and viable tool for assessing risks posed by non-native fish in the Iberian Peninsula and contributes to a "watch list" in this region. © 2013 Crown copyright This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  12. The Spread of Non-native Plant Species Collection of Cibodas Botanical Garden into Mt. Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Musyarofah Zuhri

    2013-05-01

    Full Text Available The role of botanic garden in spread of non-native plant species has concerned of international worldwide. This study aimed to study the extent of non-native plant species from Cibodas Botanical Garden (CBG which invades into natural rainforest. A line transect was made edge-to-interior with 1,600 m in distance from CBG boundary. Result showed that distance from CBG was not significant in correlation with non-native tree and treelet density. Furthermore, presence of existing CBG’s plant collection was not a single aspect which influenced presence and abundance. Three invasive species possibly was escape from CBG and it showed edge-to-interior in stems density, i.e. Cinchona pubescens, Calliandra calothyrsus and Cestrum aurantiacum. The patterns of non-native species were influenced by presence of ditch across transect, existence of human trail, and the other non-native species did not have general pattern of spread distribution. Overall, botanical gardens should minimize the risk of unintentional introduced plant by perform site-specific risk assessment.

  13. Non-native plant invasions of United States National parks

    Science.gov (United States)

    Allen, J.A.; Brown, C.S.; Stohlgren, T.J.

    2009-01-01

    The United States National Park Service was created to protect and make accessible to the public the nation's most precious natural resources and cultural features for present and future generations. However, this heritage is threatened by the invasion of non-native plants, animals, and pathogens. To evaluate the scope of invasions, the USNPS has inventoried non-native plant species in the 216 parks that have significant natural resources, documenting the identity of non-native species. We investigated relationships among non-native plant species richness, the number of threatened and endangered plant species, native species richness, latitude, elevation, park area and park corridors and vectors. Parks with many threatened and endangered plants and high native plant species richness also had high non-native plant species richness. Non-native plant species richness was correlated with number of visitors and kilometers of backcountry trails and rivers. In addition, this work reveals patterns that can be further explored empirically to understand the underlying mechanisms. ?? Springer Science+Business Media B.V. 2008.

  14. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity.

    Science.gov (United States)

    Porté, Annabel J; Lamarque, Laurent J; Lortie, Christopher J; Michalet, Richard; Delzon, Sylvain

    2011-11-24

    To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread in European resource

  15. When Anthropogenic River Disturbance Decreases Hybridisation between Non-Native and Endemic Cyprinids and Drives an Ecomorphological Displacement towards Juvenile State in Both Species.

    Directory of Open Access Journals (Sweden)

    Emmanuel Corse

    Full Text Available Understanding the impact of non-native species on native species is a major challenge in molecular ecology, particularly for genetically compatible fish species. Invasions are generally difficult to study because their effects may be confused with those of environmental or human disturbances. Colonized ecosystems are differently impacted by human activities, resulting in diverse responses and interactions between native and non-native species. We studied the dynamics between two Cyprinids species (invasive Chondrostoma nasus and endemic Parachondrostoma toxostoma and their hybrids in 16 populations (from allopatric to sympatric situations and from little to highly fragmented areas corresponding to 2,256 specimens. Each specimen was assigned to a particular species or to a hybrid pool using molecular identification (cytochrome b and 41 microsatellites. We carried out an ecomorphological analysis based on size, age, body shape, and diet (gut vacuity and molecular fecal contents. Our results contradicted our initial assumptions on the pattern of invasion and the rate of introgression. There was no sign of underperformance for the endemic species in areas where hybridisation occurred. In the unfragmented zone, the introduced species was found mostly downstream, with body shapes similar to those in allopatric populations while both species were found to be more insectivorous than the reference populations. However, high level of hybridisation was detected, suggesting interactions between the two species during spawning and/or the existence of hybrid swarm. In the disturbed zone, introgression was less frequent and slender body shape was associated with diatomivorous behaviour, smaller size (juvenile characteristics and greater gut vacuity. Results suggested that habitat degradation induced similar ecomorphological trait changes in the two species and their hybrids (i.e. a transition towards a pedomorphic state where the invasive species is more

  16. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    Science.gov (United States)

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  17. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA

    Science.gov (United States)

    Wang, Jianzhu; Chapman, Duane C.; Xu, Jun; Wang, Yang; Gu, Binhe

    2018-01-01

    Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.

  18. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  19. Diet of non-native northern snakehead (Channa argus) compared to three co-occurring predators in the lower Potomac River, USA

    Science.gov (United States)

    Ryan K. Saylor,; Nicolas W.R. Laointe,; Angermeier, Paul

    2012-01-01

    Introductions of large, non-native, carnivorous fishes continue to occur worldwide and represent a substantial management concern to global biodiversity. One of the most recent non-native fishes to successfully establish in North America is the northern snakehead (Channa argus), found in the lower Potomac River catchment. Dispersal of the northern snakehead throughout this system has been well documented since its original discovery in May 2004; however, little is known about the foraging habits of this species and its interactions with co-occurring predators. Here, we quantify northern snakehead diet in comparison with the diets of naturalised largemouth bass (Micropterus salmoides), and native American eel (Anguilla rostrata) and yellow perch (Perca flavescens) collected from tidal freshwaters bordering Virginia and Maryland near Fort Belvoir, Virginia. Over 97% of northern snakehead gut contents were fishes, with fundulid and centrarchid species consumed most frequently. Dietary overlap was biologically significant only between northern snakehead and largemouth bass. Aquatic invertebrates were >10 times more common in native predator diets, reducing dietary overlap with northern snakehead. Ontogenic shifts in adult northern snakehead diet were also detected, which may be explained by optimal foraging rather than true prey specificity. Northern snakehead may be occupying a novel niche based on a piscivorous diet, therefore limiting competition with resident predators in the lower Potomac River. Further research into interactions between largemouth bass and northern snakehead is needed to inform management decisions and understand the ecological impacts of this non-native species.

  20. Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Z. Elek

    2001-06-01

    Full Text Available The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old, young (15 yr after planting, middle-aged (30 yr after planting, old Norway spruce Picea abies plantation (50 yr after planting, and a native submontane beech forest (Fagetum sylvaticae as a control stand were compared.

    Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness.

    Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.

  1. Consumption of freshwater fish by recreational and native freshwater anglers in the upper St-Maurice (Quebec, Canada) and estimation of the intake of methylmercury in humans

    International Nuclear Information System (INIS)

    Loranger, S.; Houde, L.; Schetagne, R.

    1995-01-01

    Hydro-Quebec is planning to build two hydroelectric reservoirs in the upper Saint-Maurice River, which would flood about 80% of the surrounding area. The methylmercury (MeHg) content in freshwater fish will therefore tend to increase during the first few years. This development will have a direct impact on the amount of MeHg that the actual users of this river section are exposed to. The objective of this study is to assess the consumption of local fish of these target groups using a Monte-Carlo approach. This study is part of a larger research project aimed at assessing human exposure and the health risks related to MeHg contamination in local fish. The fish consumption rate for recreational freshwater anglers was calculated using the duration of the average annual fishing trip, the average number of catches per species, the average fish weight per species exceeding a specific length of fish usually caught, and the edible portion of fish consumed. This rate was calculated for the native communities based on the total number of meals per year per species, the average fish weight per species, and the edible portion. Based on these calculations, average intake for sport fishermen is estimated at 6.9 g/day (sd = 6.4). This value is 5 to 25 times lower on average than for other North American native communities. However, it must be pointed out that the food habits of the native population were very similar to those of non-native populations; less than 30% of the food comes from traditional sources

  2. Growth rate differences between resident native brook trout and non-native brown trout

    Science.gov (United States)

    Carlson, S.M.; Hendry, A.P.; Letcher, B.H.

    2007-01-01

    Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.

  3. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants

    NARCIS (Netherlands)

    Grutters, Bart M.C.; Saccomanno, Benedetta; Gross, Elisabeth M.; Van de Waal, Dedmer B.; van Donk, Ellen; Bakker, Elisabeth S.

    2017-01-01

    Secondary compounds can contribute to the success of non-native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary com- pounds of non-native plant species are stronger than those of

  4. Invasive non-native species of fish in upper Paraná river Basin, Brazil: variations of caloric content in Cichla kelberi

    Directory of Open Access Journals (Sweden)

    Luis Alberto Espínola

    Full Text Available The allocation of assimilated energy may be influenced by seasonal changes, growth, and reproductive cycle of fish, food consumption and environmental conditions. The objective of this research was to evaluate the energetic variations of Cichla kelberi in the upper Paraná River floodplain, analyzing the caloric content in muscles, gonadosomatic index (GSI, and the condition factor between assessed systems, sex, and stage of gonadal maturation. The results obtained in the present study permit assuring that this is a species that efficiently converts the resources of the environment into energy. Although presenting higher condition factor in the environment where there is a greater ease in getting food (Paraná subsystem, the energy identified in the muscles was the same in both subsystems. During the process of gonadal maturation there is optimization in energy accumulation in the muscles of females, before and after reproductive period, and somatic growth occurs significantly when the individual is not reproducing. Further detailed studies on ecological mechanisms influencing the success of the species, as the presence of competitors and preference for native preys, are needed to implement effective management measures aimed at preventing that the species proliferation in the environment is even more damaging to local biodiversity.

  5. Turbidity alters pre-mating social interactions between native and invasive stream fishes

    Science.gov (United States)

    Glotzbecker, Gregory J.; Ward, Jessica L.; Walters, David M.; Blum, Michael J.

    2015-01-01

    Environmental degradation can result in the loss of aquatic biodiversity if impairment promotes hybridisation between non-native and native species. Although aquatic biological invasions involving hybridisation have been attributed to elevated water turbidity, the extent to which impaired clarity influences reproductive isolation among non-native and native species is poorly understood.

  6. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas

    Science.gov (United States)

    R.A. Knapp; K.R. Matthews

    2000-01-01

    Abstract: One of the most puzzling aspects of the worldwide decline of amphibians is their disappearance from within protected areas. Because these areas are ostensibly undisturbed, habitat alterations are generally perceived as unlikely causes. The introduction of non-native fishes into protected areas, however, is a common practice throughout the world and may exert...

  7. Patterns in the Use of a Restored California Floodplain by Native and Alien Fishes

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    2007-07-01

    Full Text Available Fishes were sampled on the restored floodplain of the Cosumnes River in Central California in order to determine patterns of floodplain use. The floodplain was sampled for seven years (1998-2002, 2004-2005 during the winter-spring flooding season. The fishes fell into five groups: (1 floodplain spawners, (2 river spawners, (3 floodplain foragers, (4 floodplain pond fishes, and (5 inadvertent users. Eight of the 18 abundant species were natives, while the rest were aliens. There was a consistent pattern of floodplain use, modified by timing and extent of flooding. The first fishes to appear were floodplain foragers, inadvertent users, and juvenile Chinook salmon (river spawners. Next were floodplain spawners, principally Sacramento splittail and common carp. At the end of the season, in ponds of residual water, non-native annual fishes, mainly inland silverside and western mosquitofish, became abundant. Adult spawners left when inflow decreased; their juveniles persisted as long as flood pulses kept water levels up and temperatures low. Juvenile splittail and carp quickly grew large enough to dominate floodplain fish samples, along with smaller numbers of juvenile Sacramento sucker and pikeminnow (river spawners. Such juveniles left the Relatively few fishes that used the floodplain for spawning or rearing became stranded, except late season alien fishes. Most alien fishes had resident populations in adjacent river, sloughs, and ditches and were not dependent on the floodplain for persistence. This indicates that Central Valley floodplains managed to favor native fishes should have the following char- acteristics: (1 extensive early season flooding, (2 complete drainage by the end of the flooding season, (3 few areas with permanent water, (4 a mosaic of physical habitats, (5 regular annual flooding but with high variability in flood regime.

  8. Fish invasions in the world's river systems: when natural processes are blurred by human activities.

    Directory of Open Access Journals (Sweden)

    Fabien Leprieur

    2008-02-01

    Full Text Available Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the "human activity" hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the "biotic resistance" hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the "biotic acceptance" hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the "human activity" hypothesis. In contrast, our results do not provide support for either the "biotic acceptance" or the "biotic resistance" hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems

  9. Functional feeding traits as predictors of invasive success of alien freshwater fish species using a food-fish model.

    Directory of Open Access Journals (Sweden)

    Leopold A J Nagelkerke

    Full Text Available Invasions of Ponto-Caspian fish species into north-western European river basins accelerated since the opening of the Rhine-Main-Danube Canal in 1992. Since 2002, at least five Ponto-Caspian alien fish species have arrived in The Netherlands. Four species belong to the Gobiidae family (Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, and Proterorhinus semilunaris and one to the Cyprinidae family (Romanogobio belingi. These species are expected to be potentially deleterious for the populations of four native benthic fish species: Gobio gobio (Cyprinidae, Barbatula barbatula (Nemacheilidae, Cottus perifretum, and C. rhenanus (Cottidae. Invasion success may be dependent on competitive trophic interactions with native species, which are enabled and/or constrained by feeding-related morphological traits. Twenty-two functional feeding traits were measured in nine species (in total 90 specimens. These traits were quantitatively linked to the mechanical, chemical and behavioral properties of a range of aquatic resource categories, using a previously developed food-fish model (FFM. The FFM was used to predict the trophic profile (TP of each fish: the combined capacities to feed on each of the resource types. The most extreme TPs belonged to three alien species, indicating that they were most specialized among the studied species. Of these three, only P. kessleri overlapped with the two native Cottus species, indicating potential trophic competition. N. fluviatilis and R. belingi did not show any overlap, indicating that there is low trophic competition. The two remaining alien goby species (N. melanostomus and P. semilunaris had average TPs and could be considered generalist feeders. They overlapped with each other and with G. gobio and B. barbatula, indicating potential trophic competition. This study suggests that both generalist and specialist species can be successful invaders. Since the FFM predicts potential interactions between

  10. Functional feeding traits as predictors of invasive success of alien freshwater fish species using a food-fish model.

    Science.gov (United States)

    Nagelkerke, Leopold A J; van Onselen, Eline; van Kessel, Nils; Leuven, Rob S E W

    2018-01-01

    Invasions of Ponto-Caspian fish species into north-western European river basins accelerated since the opening of the Rhine-Main-Danube Canal in 1992. Since 2002, at least five Ponto-Caspian alien fish species have arrived in The Netherlands. Four species belong to the Gobiidae family (Neogobius fluviatilis, Neogobius melanostomus, Ponticola kessleri, and Proterorhinus semilunaris) and one to the Cyprinidae family (Romanogobio belingi). These species are expected to be potentially deleterious for the populations of four native benthic fish species: Gobio gobio (Cyprinidae), Barbatula barbatula (Nemacheilidae), Cottus perifretum, and C. rhenanus (Cottidae). Invasion success may be dependent on competitive trophic interactions with native species, which are enabled and/or constrained by feeding-related morphological traits. Twenty-two functional feeding traits were measured in nine species (in total 90 specimens). These traits were quantitatively linked to the mechanical, chemical and behavioral properties of a range of aquatic resource categories, using a previously developed food-fish model (FFM). The FFM was used to predict the trophic profile (TP) of each fish: the combined capacities to feed on each of the resource types. The most extreme TPs belonged to three alien species, indicating that they were most specialized among the studied species. Of these three, only P. kessleri overlapped with the two native Cottus species, indicating potential trophic competition. N. fluviatilis and R. belingi did not show any overlap, indicating that there is low trophic competition. The two remaining alien goby species (N. melanostomus and P. semilunaris) had average TPs and could be considered generalist feeders. They overlapped with each other and with G. gobio and B. barbatula, indicating potential trophic competition. This study suggests that both generalist and specialist species can be successful invaders. Since the FFM predicts potential interactions between species, it

  11. Microscopic examination of skin in native and nonnative fish from Lake Tahoe exposed to ultraviolet radiation and fluoranthene

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, Amanda K., E-mail: agevertz@geiconsultants.com [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States); GEI Consultants, Inc. , 4601 DTC Blvd, Suite 900, Denver 80237, Colorado (United States); Oris, James T., E-mail: orisjt@miamioh.edu [Miami University, Department of Zoology, 212 Pearson Hall, Oxford 45056, Ohio (United States)

    2014-02-15

    Highlights: •PAH cause photo-induced toxicity in aquatic organisms in the natural environment. •Montane lakes like Lake Tahoe receive PAH exposure from recreational watercraft. •These lakes are susceptible to invasion and establishment of non-native species. •Non-natives were less tolerant to photo-toxicity compared to native species. •Sensitivity differences were related to levels of oxidative damage in epidermis. -- Abstract: The presence of nonnative species in Lake Tahoe (CA/NV), USA has been an ongoing concern for many decades, and the management of these species calls for an understanding of their ability to cope with the Lake's stressors and for an understanding of their potential to out-compete and reduce the populations of native species. Decreasing levels of ultraviolet radiation (UVR) due to eutrophication and increasing levels of phototoxic polycyclic aromatic hydrocarbons (PAHs) due to recreational activities may combine to affect the relative ability of native versus nonnative fish species to survive in the lake. Following a series of toxicity tests which exposed larvae of the native Lahontan redside minnow (Richardsonius egregius) and the nonnative warm-water bluegill sunfish (Lepomis macrochirus) to UVR and FLU, the occurrence of skin damage and/or physiologic defense mechanisms were studied using multiple microscopic techniques. The native minnow appeared to exhibit fewer instances of skin damage and increased instances of cellular coping mechanisms. This study supports the results of previous work conducted by the authors, who determined that the native redside minnow is the more tolerant of the two species, and that setting and adhering to a water quality standard for UVR transparency may aid in preventing the spread of the less tolerant nonnative bluegill and similar warm-water species.

  12. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    Science.gov (United States)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  13. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    Science.gov (United States)

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  14. 78 FR 36237 - Proposed Information Collection; Federal Fish and Wildlife Permit Applications and Reports-Native...

    Science.gov (United States)

    2013-06-17

    ...--Native Endangered and Threatened Species AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice... requested in accordance with various Federal wildlife conservation laws, including: Endangered Species Act.... [[Page 36238

  15. Non-native fish introductions and the reversibility of amphibian declines in the Sierra Nevada

    Science.gov (United States)

    Roland A. Knapp

    2004-01-01

    Amphibians are declining worldwide for a variety of reasons, including habitat alteration, introduction of non-native species, disease, climate change, and environmental contaminants. Amphibians often play important roles in structuring ecosystems, and, as a result, amphibian population declines or extinctions are likely to affect other trophic levels (Matthews and...

  16. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  17. Non-native fish introductions in the Czech Republic – species inventory, facts and future perspectives

    Czech Academy of Sciences Publication Activity Database

    Musil, J.; Jurajda, Pavel; Adámek, Z.; Horký, P.; Slavík, O.

    2010-01-01

    Roč. 26, Suppl. 2 (2010), s. 38-45 ISSN 0175-8659. [International Conference and Workshop on Managing Alien Species for Sustainable Development of Aquaculture and Fisheries. Florence, 05.11.2008-07.11.2008] Institutional research plan: CEZ:AV0Z60930519 Keywords : freshwater fish * fisheries management * invasion success Subject RIV: EH - Ecology, Behaviour Impact factor: 0.945, year: 2010

  18. Invasion strategy and abiotic activity triggers for non-native gobiids of the River Rhine.

    Directory of Open Access Journals (Sweden)

    Jan Baer

    Full Text Available The 24 hour activity patterns of three non-native gobiids (round goby Neogobius melanostomus, Western tubenose goby Proterorhinus semilunaris and bighead goby Ponticola kessleri were assessed over 46 consecutive months between 2011 and 2014 from their occurrence in the cooling water intake of a nuclear power plant on the River Rhine, Germany. In total, 117717 gobiids were identified and classified. The occurrence of all three species varied strongly between sampling years, and species-specific activity triggers were identified. The activity of juveniles of all three gobiids species was positively temperature dependent while adult tubenose goby activity appeared to be negatively temperature dependent. Increasing fluvial discharge in the adjoining main river stimulated the activity of juvenile round goby but inhibited activity of adult tubenose goby. Except for adult bighead goby, activity was also structured by time of day, but with no uniform mean. Meteorological factors such as precipitation, air pressure and duration of sunshine hours had little or no influence on gobiid activity. On selected rare occasions, mainly at night, all three species exhibited pulsed swarming behaviour, with thousands of individuals recorded in the intake water. Round goby swarms exhibited both the highest intensity and the largest swarming individuals, suggesting a potential competitive advantage over tubenose and bighead goby. Electric fishing surveys in natural river stretches corroborated this observation. Negative effects on the native fish fauna were apparent only for the bullhead, Cottus gobio. The activity triggers identified offer a unique insight into the invasion mechanisms of these ecosystem-changing non-native gobiids.

  19. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    Science.gov (United States)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  20. 77 FR 63294 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-10-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Klallam Tribe and the Washington Department of Fish and Wildlife have submitted five Hatchery and Genetic... programs are currently operating, and all five hatchery programs raise fish native to the Elwha River basin...

  1. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  2. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  3. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona

    Science.gov (United States)

    Choudhury, A.; Hoffnagle, T.L.; Cole, Rebecca A.

    2004-01-01

    A 2-yr, seasonal, parasitological study of 1,435 fish, belonging to 4 species of native fishes and 7 species of nonnative fishes from the lower Little Colorado River (LCR) and tributary creeks, Grand Canyon, Arizona, yielded 17 species of parasites. These comprised 1 myxozoan (Henneguya exilis), 2 copepods (Ergasilus arthrosis and Lernaea cyprinacea), 1 acarine (Oribatida gen. sp.), 1 piscicolid leech (Myzobdella lugubris), 4 monogeneans (Gyrodactylus hoffmani, Gyrodactylus sp., Dactylogyrus extensus, and Ligictaluridus floridanus), 4 nematodes (Contracaecum sp., Eustrongylides sp., Rhabdochona sp., and Truttaedacnitis truttae), 3 cestodes (Bothriocephalus acheilognathi, Corallobothrium fimbriatum, and Megathylacoides giganteum), and 2 trematodes (Ornithodiplostomum sp. and Posthodiplostomum sp.). Rhabdochona sp. was the only adult parasite native to the LCR. Infection intensities of Ornithodiplostomum sp. and B. acheilognathi were positively correlated with length of the humpback chub Gila cypha. Adult helminths showed a high degree of host specificity, except B. acheilognathi, which was recovered from all fish species examined but was most abundant in cyprinids. Abundance of B. acheilognathi in the humpback chub was highest in the fall and lowest in the summer in both reaches of the LCR. There was no major taxonomic difference in parasite assemblages between the 2 different reaches of the river (LC1 and LC2). Parasite community diversity was very similar in humpback chub, regardless of sampling site or time. The parasite fauna of the LCR is numerically dominated by B. acheilognathi and metacercariae of Ornithodiplostomum sp. The richest and most diverse component community occurred in a nonnative species, the channel catfish Ictalurus punctatus, but infracommunity species richness was highest in a native host, humpback chub.

  4. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    Science.gov (United States)

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  5. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.

    Science.gov (United States)

    Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

    2014-12-01

    With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. © 2014 Society for Conservation Biology.

  6. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    Science.gov (United States)

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2017-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  7. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    Science.gov (United States)

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2018-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  8. Seventy years of stream‐fish collections reveal invasions and native range contractions in an Appalachian (USA) watershed

    Science.gov (United States)

    Buckwalter, Joseph D.; Frimpong, Emmanuel A.; Angermeier, Paul L.; Barney, Jacob N.

    2018-01-01

    AimKnowledge of expanding and contracting ranges is critical for monitoring invasions and assessing conservation status, yet reliable data on distributional trends are lacking for most freshwater species. We developed a quantitative technique to detect the sign (expansion or contraction) and functional form of range‐size changes for freshwater species based on collections data, while accounting for possible biases due to variable collection effort. We applied this technique to quantify stream‐fish range expansions and contractions in a highly invaded river system.LocationUpper and middle New River (UMNR) basin, Appalachian Mountains, USA.MethodsWe compiled a 77‐year stream‐fish collections dataset partitioned into ten time periods. To account for variable collection effort among time periods, we aggregated the collections into 100 watersheds and expressed a species’ range size as detections per watershed (HUC) sampled (DPHS). We regressed DPHS against time by species and used an information‐theoretic approach to compare linear and nonlinear functional forms fitted to the data points and to classify each species as spreader, stable or decliner.ResultsWe analysed changes in range size for 74 UMNR fishes, including 35 native and 39 established introduced species. We classified the majority (51%) of introduced species as spreaders, compared to 31% of natives. An exponential functional form fits best for 84% of spreaders. Three natives were among the most rapid spreaders. All four decliners were New River natives.Main conclusionsOur DPHS‐based approach facilitated quantitative analyses of distributional trends for stream fishes based on collections data. Partitioning the dataset into multiple time periods allowed us to distinguish long‐term trends from population fluctuations and to examine nonlinear forms of spread. Our framework sets the stage for further study of drivers of stream‐fish invasions and declines in the UMNR and is widely transferable to

  9. Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient.

    Science.gov (United States)

    Haider, Sylvia; Kueffer, Christoph; Edwards, Peter J; Alexander, Jake M

    2012-09-01

    A non-native plant species spreading along an environmental gradient may need to adjust its growth to the prevailing conditions that it encounters by a combination of phenotypic plasticity and genetic adaptation. There have been several studies of how non-native species respond to changing environmental conditions along latitudinal gradients, but much less is known about elevational gradients. We conducted a climate chamber experiment to investigate plastic and genetically based growth responses of 13 herbaceous non-native plants along an elevational gradient from 100 to 2,000 m a.s.l. in Tenerife. Conditions in the field ranged from high anthropogenic disturbance but generally favourable temperatures for plant growth in the lower half of the gradient, to low disturbance but much cooler conditions in the upper half. We collected seed from low, mid and high elevations and grew them in climate chambers under the characteristic temperatures at these three elevations. Growth of all species was reduced under lower temperatures along both halves of the gradient. We found consistent genetically based differences in growth over the upper elevational gradient, with plants from high-elevation sites growing more slowly than those from mid-elevation ones, while the pattern in the lower part of the gradient was more mixed. Our data suggest that many non-native plants might respond to climate along elevational gradients by genetically based changes in key traits, especially at higher elevations where low temperatures probably impose a stronger selection pressure. At lower elevations, where anthropogenic influences are greater, higher gene flow and frequent disturbance might favour genotypes with broad ecological amplitudes. Thus the importance of evolutionary processes for invasion success is likely to be context-dependent.

  10. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss.

    Science.gov (United States)

    Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José

    2011-01-01

    Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.

  11. Colorful invasion in permissive Neotropical ecosystems: establishment of ornamental non-native poeciliids of the genera Poecilia/Xiphophorus (Cyprinodontiformes: Poeciliidae and management alternatives

    Directory of Open Access Journals (Sweden)

    André Lincoln Barroso Magalhães

    2017-03-01

    Full Text Available ABSTRACT Headwater creeks are environments susceptible to invasion by non-native fishes. We evaluated the reproduction of 22 populations of the non-native livebearers guppy Poecilia reticulata, black molly Poecilia sphenops, Yucatan molly Poecilia velifera, green swordtail Xiphophorus hellerii, southern platyfish Xiphophorus maculatus, and variable platyfish Xiphophorus variatus during an annual cycle in five headwater creeks located in the largest South American ornamental aquaculture center, Paraíba do Sul River basin, southeastern Brazil. With few exceptions, females of most species were found reproducing (stages 2, 3, 4 all year round in the creeks and gravid females of all species showed small sizes indicating stunting. Juveniles were frequent in all sites. The fecundity of the six poeciliids was always low in all periods. The sex ratio was biased for females in most species, both bimonthly as for the whole period. Water temperature, water level and rainfall were not significantly correlated with reproduction in any species. Therefore, most populations appeared well established. The pertinence of different management actions, such as devices to prevent fish escape, eradication with rotenone and research about negative effects on native species, is discussed in the light of current aquaculture practices in the region.

  12. What is the destiny of a threatened fish, Ptychobarbus chungtienensis, now that non-native weatherfishes have been introduced into Bita Lake, Shangri-La?

    Science.gov (United States)

    Jiang, Wan-Sheng; Qin, Tao; Wang, Wei-Ying; Zhao, Ya-Peng; Shu, Shu-Sen; Song, Wei-Hong; Chen, Xiao-Yong; Yang, Jun-Xing

    2016-09-18

    Biological invasion is a pervasive negative force of global change, especially in its effects on sensitive freshwater ecosystems. Even protected areas are usually not immune. Ptychobarbus chungtienensis is a threatened freshwater fish now almost confined to Bita Lake, in the Shangri-La region of Yunnan province, China. Its existence is threatened by the introduction of non-native weatherfishes (Misgurnus anguillicaudatus and Paramisgurnus dabryanus) by an unusual method known as 'prayer animal release'. Periodic surveys revealed the ratio of invasive weatherfishes to P. chungtienensis has been increasing since the former species was first recorded from the lake in August, 2009. Ptychobarbus chungtienensis shows low genetic diversity in the relict Lake Bita population. Weatherfishes, however, have highly successful survival strategies. The degree of dietary overlap between the species is alarming and perhaps critical if food is found to be a limiting factor.

  13. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys sp.) from Kerala, India

    Science.gov (United States)

    Kumar, A. Biju; Schofield, Pam; Raj, Smrithy; Satheesh, Sima

    2018-01-01

    Loricariid catfishes of the genus Pterygoplichthys are native to South America and have been introduced in many localities around the world. They are freshwater fishes, but may also use low-salinity habitats such as estuaries for feeding or dispersal. Here we report results of a field survey and salinity-tolerance experiments for a population of Pterygoplichthys sp. collected in Kerala, India. In both chronic and acute salinity-tolerance trials, fish were able to withstand salinities up to 12 ppt with no mortality; however, fish transferred to salinities > 12 ppt did not survive. The experimental results provide evidence that nonnative Pterygoplichthys sp. are able to tolerate mesohaline conditions for extended periods, and can easily invade the brackish water ecosystems of the state. Further, Pterygoplichthys sp. from Kerala have greater salinity tolerance than other congeners. These data are vital to predicting the invasion of non-native fishes such as Pterygoplichthys spp. into coastal systems in Kerala and worldwide. This is particularly important as estuarine ecosystems are under threat of global climate change and sea-level rise. In light of the results of the present study and considering the reports of negative impacts of the species in invaded water bodies, management authorities may consider controlling populations and/or instituting awareness programmes to prevent the spread of this nuisance aquatic invasive species in Kerala.

  14. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    Science.gov (United States)

    Clause, Julia; Forey, Estelle; Lortie, Christopher J.; Lambert, Adam M.; Barot, Sébastien

    2015-04-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant species are correlated, and ii) to test whether seed ingestion by these worms alters the soil seed bank by evaluating the composition of seeds in casts relative to uningested soil. Sampling locations were selected based on historical land-use practices, including presence or absence of tilling, and revegetation by seed using Phalaris aquatica. Only non-native earthworm species were found, dominated by the invasive European species Aporrectodea trapezoides. Earthworm abundance was significantly higher in the grassland blocks dominated by non-native plant species, and these sites had higher carbon and moisture contents. Earthworm abundance was also positively related to increased emergence of non-native seedlings, but had no effect on that of native seedlings. Plant species richness and total seedling emergence were higher in casts than in uningested soils. This study suggests that there is a potential effect of non-native earthworms in promoting non-native and likely invasive plant species within grasslands, due to seed-plant-earthworm interactions via soil modification or to seed ingestion by earthworms and subsequent cast effects on grassland dynamics. This study supports a growing body of literature for earthworms as ecosystem engineers but highlights the relative importance of considering non-native-native interactions with the associated plant community.

  15. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river

    Energy Technology Data Exchange (ETDEWEB)

    Maceda-Veiga, Alberto, E-mail: albertomaceda@gmail.com [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain); Monroy, Mario; Navarro, Elisenda [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain); Viscor, Ginés [Department of Animal Physiology (Faculty of Biology), University of Barcelona, E-08028 Barcelona (Spain); Sostoa, Adolfo de [Department of Animal Biology (Vertebrates) and Biodiversity Research Institute (IRBio), University of Barcelona, E-08028 Barcelona (Spain)

    2013-04-01

    The requirements of the Water Framework Directive suggest the need for further research to test and develop sensitive tools that will allow freshwater managers to detect impacts on fish communities. Diagnostic refinement often encompasses the use of lethal diagnostic tools that are incompatible with the conservation of native ichthyofauna. Here we determine the metal concentration and the pathological response of Squalius laietanus exposed to sewage discharges in the Ripoll river (north-eastern Spain), and compare these findings with our previous studies on Barbus meridionalis using lethal and non-lethal diagnostic tools. Metals concentrations (Zn, Cu, Pb, Hg, Fe, Cd and Ni) were determined in liver and muscle. A complete blood cell profile (haematocrit, haemoglobin, differential leukocyte count, erythrocytic nuclear abnormalities, erythrocytes in division and the development stage of erythrocytes) was used as a non-lethal diagnostic tool to determine early warning signs of disease in these two fish species. As the reference range for these haematological variables is lacking, liver histology, calculation of body condition (CF) and organosomatic indices (HSI and GSI) were employed to support the findings of the blood analyses. Compared to our previous results on B. meridionalis, S. laietanus appeared to have fewer pathological responses than B. meridionalis under the environmental conditions measured and the fish size range examined in this study. Both species showed a similar bioaccumulation pattern, but B. meridionalis stored high Hg and Cu concentrations in muscle and liver, respectively. Hg, Cu and Pb concentrations in fish tissues exceeded the thresholds of European and Spanish legislation. Our findings pinpoint the potential suitability of the blood variables determined in the health diagnoses of these species. Further research will be necessary to establish the natural variability of these and other haematological variables to convert haematology into a

  16. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river

    International Nuclear Information System (INIS)

    Maceda-Veiga, Alberto; Monroy, Mario; Navarro, Elisenda; Viscor, Ginés; Sostoa, Adolfo de

    2013-01-01

    The requirements of the Water Framework Directive suggest the need for further research to test and develop sensitive tools that will allow freshwater managers to detect impacts on fish communities. Diagnostic refinement often encompasses the use of lethal diagnostic tools that are incompatible with the conservation of native ichthyofauna. Here we determine the metal concentration and the pathological response of Squalius laietanus exposed to sewage discharges in the Ripoll river (north-eastern Spain), and compare these findings with our previous studies on Barbus meridionalis using lethal and non-lethal diagnostic tools. Metals concentrations (Zn, Cu, Pb, Hg, Fe, Cd and Ni) were determined in liver and muscle. A complete blood cell profile (haematocrit, haemoglobin, differential leukocyte count, erythrocytic nuclear abnormalities, erythrocytes in division and the development stage of erythrocytes) was used as a non-lethal diagnostic tool to determine early warning signs of disease in these two fish species. As the reference range for these haematological variables is lacking, liver histology, calculation of body condition (CF) and organosomatic indices (HSI and GSI) were employed to support the findings of the blood analyses. Compared to our previous results on B. meridionalis, S. laietanus appeared to have fewer pathological responses than B. meridionalis under the environmental conditions measured and the fish size range examined in this study. Both species showed a similar bioaccumulation pattern, but B. meridionalis stored high Hg and Cu concentrations in muscle and liver, respectively. Hg, Cu and Pb concentrations in fish tissues exceeded the thresholds of European and Spanish legislation. Our findings pinpoint the potential suitability of the blood variables determined in the health diagnoses of these species. Further research will be necessary to establish the natural variability of these and other haematological variables to convert haematology into a

  17. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids

    Science.gov (United States)

    Kotta, Jonne; Orav-Kotta, Helen; Herkül, Kristjan

    2010-10-01

    The North-American amphipod Gammarus tigrinus was observed for the first time in the northern Baltic Sea in 2003. The invasive amphipod has been particularly successful in some habitats (e.g. on pebbles) where it has become one of the most abundant gammarid species. We studied experimentally if the dominant fish Gasterosteus aculeatus preyed differentially on the exotic G. tigrinus and the native Gammarus salinus, if predation differed among habitats, and if one gammarid species facilitated predation on the other. The experiment demonstrated that (1) fish preyed more on the exotic G. tigrinus than the native G. salinus. (2) Predation did not differ among habitats. (3) Gammarus tigrinus facilitated the predation on G. salinus and this facilitation varied among habitats with significant effects on pebbles. Thus, the combined effect of habitat-specific fish predation and competition between gammarid amphipods is a possible explanation of the current range of G. tigrinus in the northern Baltic Sea. G. tigrinus seems to establish in habitats where it can significantly increase fish predation on the native gammarids.

  18. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  19. Invading species in the Eel River, California: Successes, failures, and relationships with resident species

    Science.gov (United States)

    Brown, L.R.; Moyle, P.B.

    1997-01-01

    We examined invasions of non-native fishes into the Eel River, California. At least 16 species of fish have been introduced into the drainage which originally supported 12-14 fish species. Our study was prompted by the unauthorized introduction in 1979 of Sacramento squawfish, Ptychocheilus grandis, a large predatory cyprinid. From 1986 to 1990, we conducted growth and diet studies of squaw fish, conducted intensive surveys of the distribution and habitat associations of both native and introduced species, and examined the nature of species-habitat and interspecies relationships. We found no evidence for increased growth or expanded feeding habits, compared to native populations, of Sacramento squawfish as they invaded the Eel River drainage. Ten of the introduced species were well established, with four species limited to a reservoir and six species established in streams. The success or failure of introductions of stream species appeared to be a function of the ability of a species to survive the fluctuating, highly seasonal, flow regime. The present mixture of native and exotic species has not formed stable fish assemblages but it seems likely that four habitat-associated assemblages will develop. The overall effect of the successful species introductions has been to assemble a group of species, with some exceptions, that are native to and occur together in many California streams. The assemblages now forming are similar to those found in other California streams. The assemblage characterized by squawfish and suckers is likely to be resistant to invasion, in the absence of human caused habitat modifications.

  20. Short-Term Response of Native Flora to the Removal of Non-Native Shrubs in Mixed-Hardwood Forests of Indiana, USA

    Directory of Open Access Journals (Sweden)

    Joshua M. Shields

    2015-05-01

    Full Text Available While negative impacts of invasive species on native communities are well documented, less is known about how these communities respond to the removal of established populations of invasive species. With regard to invasive shrubs, studies examining native community response to removal at scales greater than experimental plots are lacking. We examined short-term effects of removing Lonicera maackii (Amur honeysuckle and other non-native shrubs on native plant taxa in six mixed-hardwood forests. Each study site contained two 0.64 ha sample areas—an area where all non-native shrubs were removed and a reference area where no treatment was implemented. We sampled vegetation in the spring and summer before and after non-native shrubs were removed. Cover and diversity of native species, and densities of native woody seedlings, increased after shrub removal. However, we also observed significant increases in L. maackii seedling densities and Alliaria petiolata (garlic mustard cover in removal areas. Changes in reference areas were less pronounced and mostly non-significant. Our results suggest that removing non-native shrubs allows short-term recovery of native communities across a range of invasion intensities. However, successful restoration will likely depend on renewed competition with invasive species that re-colonize treatment areas, the influence of herbivores, and subsequent control efforts.

  1. Interactions between non-native armored suckermouth catfish (Loricariidae: Pterygoplichthys) and native Florida manatee (Trichechus manatus latirostris) in artesian springs

    Science.gov (United States)

    Nico, Leo G.; Loftus, William F.; Reid, James P.

    2009-01-01

    Non-native suckermouth armored catfishes (Loricariidae) of the genus Pterygoplichthys are now common throughout much of peninsular Florida. In this paper, we present preliminary observations on interactions between a Pterygoplichthys species, tentatively identified as P. disjunctivus (Weber, 1991), and endangered native Florida manatees, Trichechus manatus latirostris (Harlan, 1824), in artesian spring systems in Florida's St. Johns River drainage. The introduced catfish have become abundant in spring habitats, sites used by manatees as winter thermal refuges. In the spring runs, Pterygoplichthys regularly attaches to manatees and grazes the epibiota on their skin. On occasion, dozens of Pterygoplichthys congregate on individual manatees. Manatee responses varied widely; some did not react visibly to attached catfish whereas others appeared agitated and attempted to dislodge the fish. The costs and/or benefits of this interaction to manatees remain unclear.

  2. NIS occurrence - Non-native species impacts on threatened and endangered salmonids

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The objectives of this project: a) Identify the distribution of non-natives in the Columbia River Basin b) Highlight the impacts of non-natives on salmonids c)...

  3. Impact of Non-Native Birds on Native Ecosystems: A Global Analysis.

    Science.gov (United States)

    Martin-Albarracin, Valeria L; Amico, Guillermo C; Simberloff, Daniel; Nuñez, Martin A

    2015-01-01

    Introduction and naturalization of non-native species is one of the most important threats to global biodiversity. Birds have been widely introduced worldwide, but their impacts on populations, communities, and ecosystems have not received as much attention as those of other groups. This work is a global synthesis of the impact of nonnative birds on native ecosystems to determine (1) what groups, impacts, and locations have been best studied; (2) which taxonomic groups and which impacts have greatest effects on ecosystems, (3) how important are bird impacts at the community and ecosystem levels, and (4) what are the known benefits of nonnative birds to natural ecosystems. We conducted an extensive literature search that yielded 148 articles covering 39 species belonging to 18 families -18% of all known naturalized species. Studies were classified according to where they were conducted: Africa, Asia, Australasia, Europe, North America, South America, Islands of the Indian, of the Pacific, and of the Atlantic Ocean. Seven types of impact on native ecosystems were evaluated: competition, disease transmission, chemical, physical, or structural impact on ecosystem, grazing/ herbivory/ browsing, hybridization, predation, and interaction with other non-native species. Hybridization and disease transmission were the most important impacts, affecting the population and community levels. Ecosystem-level impacts, such as structural and chemical impacts were detected. Seven species were found to have positive impacts aside from negative ones. We provide suggestions for future studies focused on mechanisms of impact, regions, and understudied taxonomic groups.

  4. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Invasion versus isolation: Trade-offs in managing native salmonids with barriers to upstream movement

    Science.gov (United States)

    Kurt D. Fausch; Bruce E. Rieman; Jason B. Dunham; Michael K. Young; Douglas P. Peterson

    2009-01-01

    Conservation biologists often face the trade-off that increasing connectivity in fragmented landscapes to reduce extinction risk of native species can foster invasion by non-native species that enter via the corridors created, which can then increase extinction risk. This dilemma is acute for stream fishes, especially native salmonids, because their populations are...

  6. Fish consumption behavior and rates in native and non-native people in Saudi Arabia

    KAUST Repository

    Burger, Joanna

    2014-08-01

    Fish are a healthy source of protein and nutrients, but contaminants in fish may provide health risks. Determining the risk from contaminants in fish requires site-specific information on consumption patterns. We examine consumption rates for resident and expatriates in the Jeddah region of Saudi Arabia, by species of fish and fishing location. For Saudis, 3.7% of males and 4.3% of females do not eat fish; for expatriates, the percent not eating fish is 6.6% and 6.1% respectively. Most people eat fish at home (over 90%), and many eat fish at restaurants (65% and 48%, respectively for Saudis and expatriates). Fish eaten at home comes from local fish markets, followed by supermarkets. Saudis included fish in their diets at an average of 1.4±1.2 meals/week at home and 0.8±0.7 meals/week at restaurants, while expats ate 2.0±1.7 meals/week at home and 1.1±1.1 meals/week in restaurants. Overall, Saudis ate 2.2 fish meals/week, while expats ate 3.1 meals/week. Grouper (Epinephelus and Cephalopholis) were eaten by 72% and 60% respectively. Plectropomus pessuliferus was the second favorite for both groups and Hipposcarus harid and Lethrinus lentjan were in 3rd and 4th place in terms of consumption. Average meal size was 68. g for Saudis and 128. g for expatriates. These data can be used by health professionals, risk assessors, and environmental regulators to examine potential risk from contaminants in fish, and to compare consumption rates with other sites. © 2014 Elsevier Inc.

  7. Do non-native plant species affect the shape of productivity-diversity relationships?

    Science.gov (United States)

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  8. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  9. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants.

    Science.gov (United States)

    Golivets, Marina; Wallin, Kimberly F

    2018-05-01

    High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non-native plants. Yet our understanding of the strategies that non-natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non-mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non-native plants. Here, we analyse data from 192 peer-reviewed studies on pairwise plant competition within a Bayesian multilevel meta-analytic framework and show that non-native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non-native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non-native neighbour. In contrast to natives, non-native species were not more suppressed by hetero- vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non-natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non-native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success. © 2018 John Wiley & Sons Ltd/CNRS.

  10. The thermal regime and species composition of fish and invertebrates in Kelly Warm Spring, Grand Teton National Park, Wyoming

    Science.gov (United States)

    Harper, David; Farag, Aida

    2017-01-01

    We evaluated the thermal regime and relative abundance of native and nonnative fish and invertebrates within Kelly Warm Spring and Savage Ditch, Grand Teton National Park, Wyoming. Water temperatures within the system remained relatively warm year-round with mean temperatures >20 °C near the spring source and >5 °C approximately 2 km downstream of the source. A total of 7 nonnative species were collected: Convict/Zebra Cichlid (Cichlasoma nigrofasciatum), Green Swordtail (Xiphophorus hellerii), Tadpole Madtom (Noturus gyrinus), Guppy (Poecilia reticulata), Goldfish (Carassius auratus), red-rimmed melania snail (Melanoides tuberculata), and American bullfrog tadpoles (Lithobates catesbeianus). Nonnative fish (Zebra Cichlids and Green Swordtails), red-rimmed melania snails, and bullfrog tadpoles dominated the upper 2 km of the system. Abundance estimates of the Zebra Cichlid exceeded 12,000 fish/km immediately downstream of the spring source. Relative abundance of native species increased movingdownstream as water temperatures attenuated with distance from the thermally warmed spring source; however, nonnative species were captured 4 km downstream from the spring. Fish diseases were prevalent in both native and nonnative fish from the Kelly Warm Spring pond. Clinostomum marginatum, a trematode parasite, was found in native species samples, and the tapeworm Diphyllobothrium dendriticum was present in samples from nonnative species. Diphyllobothrium dendriticum is rare in Wyoming. Salmonella spp. were also found in some samples of nonnative species. These bacteria are associated with aquarium fish and aquaculture and are generally not found in the wild.

  11. Non-random co-occurrence of native and exotic plant species in Mediterranean grasslands

    Science.gov (United States)

    de Miguel, José M.; Martín-Forés, Irene; Acosta-Gallo, Belén; del Pozo, Alejandro; Ovalle, Carlos; Sánchez-Jardón, Laura; Castro, Isabel; Casado, Miguel A.

    2016-11-01

    Invasion by exotic species in Mediterranean grasslands has determined assembly patterns of native and introduced species, knowledge of which provides information on the ecological processes underlying these novel communities. We considered grasslands from Spain and Chile. For each country we considered the whole grassland community and we split species into two subsets: in Chile, species were classified as natives or colonizers (i.e. exotics); in Spain, species were classified as exclusives (present in Spain but not in Chile) or colonizers (Spanish natives and exotics into Chile). We used null models and co-occurrence indices calculated in each country for each one of 15 sites distributed along a precipitation gradient and subjected to similar silvopastoral exploitation. We compared values of species co-occurrence between countries and between species subsets (natives/colonizers in Chile; exclusives/colonizers in Spain) within each country and we characterised them according to climatic variables. We hypothesized that: a) the different coexistence time of the species in both regions should give rise to communities presenting a spatial pattern further from random in Spain than in Chile, b) the co-occurrence patterns in the grasslands are affected by mesoclimatic factors in both regions. The patterns of co-occurrence are similar in Spain and Chile, mostly showing a spatial pattern more segregated than expected by random. The colonizer species are more segregated in Spain than in Chile, possibly determined by the longer residence time of the species in the source area than in the invaded one. The segregation of species in Chile is related to water availability, being species less segregated in habitat with greater water deficit; in Spain no relationship with climatic variables was found. After an invasion process, our results suggest that the possible process of alteration of the original Chilean communities has not prevented the assembly between the native and

  12. Abundance, food habits, and breeding season of exotic T ilapia zillii and native O reochromis niloticus L. fish species in Lake Zwai , Ethiopia

    Directory of Open Access Journals (Sweden)

    Padanillay C. Prabu

    2008-05-01

    Full Text Available Relative abundance, diet and breeding season overlap in the reproduction of exotic Tilapia zillii and native Oreochromis niloticus in Lake Zwai were studied from samples collected over 12 months. Younger fish of both species collected were also evaluated for food composition.Food items from stomachs of both species were collected and analysed using the frequency of occurrence method. In terms of number, T. zillii dominated O. niloticus at the sampling sites. In both species, macrophytes, detritus, blue green algae, diatoms, green algae, Ceratium, Euglena,and Phacus constituted foods of plant origin, whereas chironomid larvae, Copepoda, Cladocera,Rotifera, Nematoda, fish eggs, and fish scales constituted foods of animal origin. Foods of the latter type such as Ephemeroptera and mollusks were also noted in the diet of adult T. zillii.Despite the extensive overlap in food habits of the two species, however, the food items were found in the diet of the species with different average percentage frequencies of occurrence. The level of gonad maturation and gonadosomatic index (GSI values showed that in Lake Zwai breeding was year-round for both T. zillii and O. niloticus, with a peak during April-September and February-August respectively, indicating extended breeding season overlap in reproduction. The two species were always found together in the catches from the sampling sites, which indicated some niche overlap between them.

  13. Invasive fish species in the largest lakes of Scotland, Northern Ireland, Wales and England: the collective U.K. experience

    OpenAIRE

    Winfield, I.J.; Fletcher, J.M.; James, J.B.

    2011-01-01

    An invasive species is defined as an alien (or introduced or non-native) species whose establishment and spread threaten ecosystems, habitats or species with harm. Such threats to UK lake fish communities have long been appreciated and this review assembles case histories, including new data, from the largest lakes of Scotland, Northern Ireland, Wales and England to examine the hypothesis that at least some of these introductions have become invasive. Loch Lomond in Scotland has experienced s...

  14. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Directory of Open Access Journals (Sweden)

    Joshua P Averett

    Full Text Available Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20 were evenly stratified by elevation (~70 m intervals along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for

  15. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    Science.gov (United States)

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid-elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low

  16. Non-Native & Native English Teachers

    Directory of Open Access Journals (Sweden)

    İrfan Tosuncuoglu

    2017-12-01

    Full Text Available In many countries the primary (mother tongue language is not English but there is a great demand for English language teachers all over the world. The demand in this field is try to be filled largely by non-native English speaking teachers who have learned English in the country or abroad, or from another non native English peaking teachers. In some countries, particularly those where English speaking is a a sign of status, the students prefer to learn English from a native English speaker. The perception is that a non-native English speaking teacher is a less authentic teacher than a native English speaker and their instruction is not satifactory in some ways. This paper will try to examine the literature to explore whether there is a difference in instructional effectiveness between NNESTs and native English teachers.

  17. Comparison of root-associated communities of native and non-native ectomycorrhizal hosts in an urban landscape.

    Science.gov (United States)

    Lothamer, K; Brown, S P; Mattox, J D; Jumpponen, A

    2014-05-01

    Non-native tree species are often used as ornamentals in urban landscapes. However, their root-associated fungal communities remain yet to be examined in detail. Here, we compared richness, diversity and community composition of ectomycorrhizosphere fungi in general and ectomycorrhizal (EcM) fungi in particular between a non-native Pinus nigra and a native Quercus macrocarpa across a growing season in urban parks using 454-pyrosequencing. Our data show that, while the ectomycorrhizosphere community richness and diversity did not differ between the two host, the EcM communities associated with the native host were often more species rich and included more exclusive members than those of the non-native hosts. In contrast, the ectomycorrhizosphere communities of the two hosts were compositionally clearly distinct in nonmetric multidimensional ordination analyses, whereas the EcM communities were only marginally so. Taken together, our data suggest EcM communities with broad host compatibilities and with a limited numbers of taxa with preference to the non-native host. Furthermore, many common fungi in the non-native Pinus were not EcM taxa, suggesting that the fungal communities of the non-native host may be enriched in non-mycorrhizal fungi at the cost of the EcM taxa. Finally, while our colonization estimates did not suggest a shortage in EcM inoculum for either host in urban parks, the differences in the fungi associated with the two hosts emphasize the importance of using native hosts in urban environments as a tool to conserve endemic fungal diversity and richness in man-made systems.

  18. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  19. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  20. The Public and Professionals Reason Similarly about the Management of Non-Native Invasive Species: A Quantitative Investigation of the Relationship between Beliefs and Attitudes

    Science.gov (United States)

    Fischer, Anke; Selge, Sebastian; van der Wal, René; Larson, Brendon M. H.

    2014-01-01

    Despite continued critique of the idea of clear boundaries between scientific and lay knowledge, the ‘deficit-model’ of public understanding of ecological issues still seems prevalent in discourses of biodiversity management. Prominent invasion biologists, for example, still argue that citizens need to be educated so that they accept scientists’ views on the management of non-native invasive species. We conducted a questionnaire-based survey with members of the public and professionals in invasive species management (n = 732) in Canada and the UK to investigate commonalities and differences in their perceptions of species and, more importantly, how these perceptions were connected to attitudes towards species management. Both native and non-native mammal and tree species were included. Professionals tended to have more extreme views than the public, especially in relation to nativeness and abundance of a species. In both groups, species that were perceived to be more abundant, non-native, unattractive or harmful to nature and the economy were more likely to be regarded as in need of management. While perceptions of species and attitudes towards management thus often differed between public and professionals, these perceptions were linked to attitudes in very similar ways across the two groups. This suggests that ways of reasoning about invasive species employed by professionals and the public might be more compatible with each other than commonly thought. We recommend that managers and local people engage in open discussion about each other’s beliefs and attitudes prior to an invasive species control programme. This could ultimately reduce conflict over invasive species control. PMID:25170957

  1. Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach.

    Science.gov (United States)

    Koch, Christiane; Jeschke, Jonathan M; Overbeck, Gerhard E; Kollmann, Johannes

    2016-09-01

    Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.

  2. Founding population size of an aquatic invasive species

    Science.gov (United States)

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  3. Factors mediating co-occurrence of an economically valuable introduced fish and its native frog prey.

    Science.gov (United States)

    Hartman, Rosemary; Pope, Karen; Lawler, Sharon

    2014-06-01

    Habitat characteristics mediate predator-prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co-occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co-occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co-occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue-effect dispersal from nearby populations may maintain co-occurrence, within-lake factors proved more important for predicting co-occurrence. Learning which factors allow co-occurrence between economically important introduced species and their native prey enables managers to make better-informed stocking decisions. © 2013 Society for Conservation Biology.

  4. A massive invasion of fish species after eliminating a natural barrier in the upper rio Paraná basin

    Directory of Open Access Journals (Sweden)

    Horácio Ferreira Júlio Júnior

    Full Text Available Based on long-term studies in the upper rio Paraná basin, in addition to a broad review of literature and other information, we were able to identify 33 species of native fishes in the lower rio Paraná basin that successfully colonized the upper rio Paraná after Itaipu impoundment, that flooded the natural geographic barrier constituted by the Sete Quedas Falls. These species belong to six Orders, encompassing two of Myliobatiformes, six of Characiformes, 17 of Siluriformes, six of Gymnotiformes, one of Perciformes, and one of Pleuronectiformes. Extensive remarks regarding each species, including their influence upon the native assemblage, in addition to comments on other non-indigenous species, are also provided. We conclude that, in spite of its widespread neglected by environmental impact studies, massive invasion of species is a real possibility when natural barriers are suppressed by reservoirs.

  5. Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host.

    Science.gov (United States)

    Meijer, Kim; Smit, Christian; Schilthuizen, Menno; Beukeboom, Leo W

    2016-05-01

    Many species have been introduced worldwide into areas outside their natural range. Often these non-native species are introduced without their natural enemies, which sometimes leads to uncontrolled population growth. It is rarely reported that an introduced species provides a new resource for a native species. The rose hips of the Japanese rose, Rosa rugosa, which has been introduced in large parts of Europe, are infested by the native monophagous tephritid fruit fly Rhagoletis alternata. We studied differences in fitness benefits between R. alternata larvae using R. rugosa as well as native Rosa species in the Netherlands. R. alternata pupae were larger and heavier when the larvae fed on rose hips of R. rugosa. Larvae feeding on R. rugosa were parasitized less frequently by parasitic wasps than were larvae feeding on native roses. The differences in parasitization are probably due to morphological differences between the native and non-native rose hips: the hypanthium of a R. rugosa hip is thicker and provides the larvae with the possibility to feed deeper into the hip, meaning that the parasitoids cannot reach them with their ovipositor and the larvae escape parasitization. Our study shows that native species switching to a novel non-native host can experience fitness benefits compared to the original native host.

  6. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  7. Status of native fishes in the western United States and issues for fire and fuels management

    Science.gov (United States)

    Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.

    2003-01-01

    Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better

  8. Occurrence and significance of atypical Aeromonas salmonicida in non-salmonid and salmonid fish species : A review

    DEFF Research Database (Denmark)

    Wiklund, T.; Dalsgaard, Inger

    1998-01-01

    , non-salmonids as well as salmonids, inhabiting fresh water, brackish water and marine environments in northern and central Europe, South Africa, North America, Japan and Australia. In non-salmonid fish species, infections with atypical strains often manifest themselves as superficial skin ulcerations...... information is available about the ecology, spread and survival of atypical strains in water. The commonly used therapeutic methods for the control of diseases in farmed fish caused by atypical A. salmonicida are generally effective against the atypical strains. Resistance to different antibiotics...

  9. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    OpenAIRE

    Clause, J.; Forey, E.; Lortie, C. J.; Lambert, A. M.; Barot, Sébastien

    2015-01-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant ...

  10. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  11. Bioaccumulation of PCB Contaminants in Five Fish Species in Utah Lake as Affected by Carp Removal

    Science.gov (United States)

    Sanjinez-Guzmán, V. A.; Cadet, E. L.; Crandall, T.; Chamberlain, T.; Rakotoarisaona, H.; Morris, P.

    2017-12-01

    State reports published by the Utah Department of Health (2005) and the Utah Department of Water Quality (2008) determined that there were elevated levels of PCBs (Polychlorinated biphenyls) that exceeded the EPA's cancer (0.02 𝑚𝑔 𝑘𝑔-1) and non-cancer screening levels (0.08 𝑚𝑔 𝑘𝑔-1) in two fish species from Utah Lake, the Common Carp (Cyprinus carpio) and the Channel Catfish (Ictalurus punctatus). Fish consumption advisories were issued for both of these fish species due to their health effects of PCBs. The Common Carp is a non-native predatory species that comprise 90% of the biomass in Utah Lake. As of September 2009, an extensive carp removal program was instituted by the Department of Natural Resources and began the removal of 75% of the carp population. The purpose of this study is to assess the impact of carp removal on PCB levels in five sport fish species consumed by Utah citizens. The fish being analyzed are the Common Carp (Cyprinus carpio), Channel Catfish (Ictalurus punctatus), Black Bullhead (Ameiurus melas), Walleye (Sander vitreus), and White Bass (Morone chrysops). One-hundred twenty (120) fish were collected from Utah Lake and subcategorized by their gender, tissue type (fillet and offal), weight, and size: small (under 33 cm), medium (33 cm - 43 cm), and large (greater than 43 cm). This was done in order to determine the variation of contaminant levels in each subcategory. PCB analysis was performed by Utility Testing Laboratory in Salt Lake City, Utah. Results show there has been a significant increase in PCB levels in all fish species in comparison with the state reports (2008). All fish species have exceeded the EPA cancer screening level, except for the fillet tissue of the White Bass species. In Common Carp fillet, and offal decreased concentrations of 11.80% and 23.72%, respectively. In Channel catfish: the PCB levels in the fillet increase by 87.93%, however, the offal levels

  12. Transcriptome discovery in non-model wild fish species for the development of quantitative transcript abundance assays

    Science.gov (United States)

    Hahn, Cassidy M.; Iwanowicz, Luke R.; Cornman, Robert S.; Mazik, Patricia M.; Blazer, Vicki S.

    2016-01-01

    Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest.

  13. Sperm quality and cryopreservation of Brazilian freshwater fish species: a review.

    Science.gov (United States)

    Viveiros, A T M; Godinho, H P

    2009-03-01

    The Brazilian freshwater fish diversity is the richest in the world. Only 0.7% of all Brazilian species have had any aspect of their sperm biology addressed up to this date. The majority of the fish species described in this review migrate during the spawning season (a phenomenon known as piracema). Urbanization, pollution, hydroelectric dams and deforestation are some of the causes of stock depletion or even local extinction of some of these species. The knowledge concerning sperm quality and minimum sperm:egg ratio is important to maximize the use of males without reducing hatching rates. Furthermore, sperm cryopreservation and gene banking can guarantee the conservation of genetic diversity and development of adequate breeding programs of native fish species. In this review, we present and evaluate the existing information on Brazilian fish species that have been subject to sperm quality and cryopreservation studies. The following parameters were evaluated: volume of extractable sperm, sperm motility, sperm concentration, freezing media, freezing methods, and post-thaw sperm quality. Although the existing protocols yield relatively high post-thaw motility and fertilization rates, the use of cryopreserved sperm in routine hatchery production is still limited in Brazil.

  14. Richness patterns in the parasite communities of exotic poeciliid fishes.

    Science.gov (United States)

    Dove, A D

    2000-06-01

    Three species of poeciliids (Gambusia holbrooki, Xiphophorus helleri and X. maculatus) and 15 species of ecologically similar native freshwater fishes (mainly eleotrids, ambassids, melanotaeniids and retropinnids) were examined for parasite richness to investigate parasite flux, qualitative differences, quantitative differences and the structuring factors in parasite communities in the 2 fish types in Queensland, Australia. Theory suggests that poeciliids would harbour depauperate parasite communities. Results supported this hypothesis; poeciliids harboured more species-poor parasite infracommunities and regional faunas than natives (P analysis of presence/absence data for poeciliids and the 6 most-sampled native fishes revealed that parasite communities of the 2 fish groups are qualitatively distinct; the proportion of parasite species with complex life-cycles was lower in poeciliids than in native species, and Myxosporea, Microspora, Coccidia and parasitic Crustacea were all absent from poeciliids. Limited exchange of parasite species has occurred between natives and poeciliids. Logistic ordinal regression analysis revealed that fish origin (exotic or native), environmental disturbance and host sex were all significant determinants of parasite community richness (P competitive advantage over native fishes because of their lack of parasites.

  15. Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats

    Science.gov (United States)

    As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...

  16. A survey of ichthyofauna of Lake Kanyaboli and other small waterbodies in Kenya: alternative refugia for endangered fish species

    OpenAIRE

    Maithya, J.

    1998-01-01

    In 1988, the World Conservation Union (WCU) Red Book of Endangered Species listed hundreds of endemic fishes of Lake Victoria under a single heading - "ENDANGERED". Most of the endemic native food fishes are either endangered or extinct. However, a survey of the fauna of Lake Kanyaboli, revealed that a few remaining samples of these native fishes are actually thriving. These include several unidentified Haplochromis spp., Oreochromis esculentus and Oreochromis variabilis. As a resul...

  17. Response of six non-native invasive plant species to wildfires in the northern Rocky Mountains, USA

    Science.gov (United States)

    Dennis E. Ferguson; Christine L. Craig

    2010-01-01

    This paper presents early results on the response of six non-native invasive plant species to eight wildfires on six National Forests (NFs) in the northern Rocky Mountains, USA. Stratified random sampling was used to choose 224 stands based on burn severity, habitat type series, slope steepness, stand height, and stand density. Data for this report are from 219 stands...

  18. The role of local adaptation in shaping fish-mussel coevolution

    DEFF Research Database (Denmark)

    Douda, Karel; Liu, Huan-Zhang; Yu, Dan

    2017-01-01

    impact on the persistence of local populations. Bivalves of the order Unionida (freshwater mussels) are a functionally important but declining group of affiliate species, which are dependent on freshwater fish to host their parasitic larvae. The role of local adaptations and host fish resistance......1. The survival of affiliate (dependent) species in a changing environment is determined by the interactions between the affiliate species and their available hosts. However, the patterns of spatial and temporal changes in host compatibility are often unknown despite host shifts having direct...... associated bitterling fishes was low in its native range (with ancient sympatry). In areas of recent sympatry (non-native S.woodiana range in Europe), S.woodiana glochidia were demonstrated to readily parasitise local, evolutionarily naive bitterling species at high density.4. The results of a population...

  19. Are native songbird populations affected by non-native plant invasion?

    Science.gov (United States)

    Amanda M. Conover; Christopher K. Williams; Vincent. D' Amico

    2011-01-01

    Development into forested areas is occurring rapidly across the United States, and many of the remnant forests within suburban landscapes are being fragmented into smaller patches, impacting the quality of this habitat for avian species. An ecological effect linked to forest fragmentation is the invasion of non-native plants into the ecosystem.

  20. Protocol for Monitoring Fish Assemblages in Pacific Northwest National Parks

    Science.gov (United States)

    Brenkman, Samuel J.; Connolly, Patrick J.

    2008-01-01

    Rivers and streams that drain from Olympic, Mount Rainier, and North Cascades National Parks are among the most protected corridors in the lower 48 States, and represent some of the largest tracts of contiguous, undisturbed habitat throughout the range of several key fish species of the Pacific Northwest. These watersheds are of high regional importance as freshwater habitat sanctuaries for native fish, where habitat conditions are characterized as having little to no disturbance from development, channelization, impervious surfaces, roads, diversions, or hydroelectric projects. Fishery resources are of high ecological and cultural importance in Pacific Northwest National Parks, and significantly contribute to economically important recreational, commercial, and tribal fisheries. This protocol describes procedures to monitor trends in fish assemblages, fish abundance, and water temperature in eight rivers and five wadeable streams in Olympic National Park during summer months, and is based on 4 years of field testing. Fish assemblages link freshwater, marine, and terrestrial ecosystems. They also serve as focal resources of national parks and are excellent indicators of ecological conditions of rivers and streams. Despite the vital importance of native anadromous and resident fish populations, there is no existing monitoring program for fish assemblages in the North Coast and Cascades Network. Specific monitoring objectives of this protocol are to determine seasonal and annual trends in: (1) fish species composition, (2) timing of migration of adult fish, (3) relative abundance, (4) age and size structure, (5) extent of non-native and hatchery fish, and (6) water temperature. To detect seasonal and annual trends in fish assemblages in reference sites, we rely on repeated and consistent annual sampling at each monitoring site. The general rationale for the repeated sampling of reference sites is to ensure that we account for the high interannual variability in fish

  1. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    Science.gov (United States)

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  2. Modulation of legume defense signaling pathways by native and non-native pea aphid clones

    Directory of Open Access Journals (Sweden)

    Carlos Sanchez-Arcos

    2016-12-01

    Full Text Available The pea aphid (Acyrthosiphon pisum is a complex of at least 15 genetically different host races that are native to specific legume plants, but can all develop on the universal host plant Vicia faba. Despite much research it is still unclear why pea aphid host races (biotypes are able to colonize their native hosts while other host races are not. All aphids penetrate the plant and salivate into plant cells when they test plant suitability. Thus plants might react differently to the various pea aphid host races. To find out whether legume species vary in their defense responses to different pea aphid host races, we measured the amounts of salicylic acid (SA, the jasmonic acid-isoleucine conjugate (JA-Ile, other jasmonate precursors and derivatives, and abscisic acid (ABA in four different species (Medicago sativa, Trifolium pratense, Pisum sativum, V. faba after infestation by native and non-native pea aphid clones of various host races. Additionally, we assessed the performance of the clones on the four plant species. On M. sativa and T. pratense, non-native clones that were barely able to survive or reproduce, triggered a strong SA and JA-Ile response, whereas infestation with native clones led to lower levels of both phytohormones. On P. sativum, non-native clones, which survived or reproduced to a certain extent, induced fluctuating SA and JA-Ile levels, whereas the native clone triggered only a weak SA and JA-Ile response. On the universal host V. faba all aphid clones triggered only low SA levels initially, but induced clone-specific patterns of SA and JA-Ile later on. The levels of the active JA-Ile conjugate and of the other JA-pathway metabolites measured showed in many cases similar patterns, suggesting that the reduction in JA signaling was due to an effect upstream of OPDA. ABA levels were downregulated in all aphid clone-plant combinations and were therefore probably not decisive factors for aphid-plant compatibility. Our results

  3. A comparison of the recruitment success of introduced and native species under natural conditions.

    Directory of Open Access Journals (Sweden)

    Habacuc Flores-Moreno

    Full Text Available It is commonly accepted that introduced species have recruitment advantages over native species. However, this idea has not been widely tested, and those studies that have compared survival of introduced and native species have produced mixed results. We compiled data from the literature on survival through germination (seed to seedling survival, early seedling survival (survival through one week from seedling emergence and survival to adulthood (survival from germination to first reproduction under natural conditions for 285 native and 63 introduced species. Contrary to expectations, we found that introduced and native species do not significantly differ in survival through germination, early seedling survival, or survival from germination to first reproduction. These comparisons remained non-significant after accounting for seed mass, longevity and when including a random effect for site. Results remained consistent after excluding naturalized species from the introduced species data set, after performing phylogenetic independent contrasts, and after accounting for the effect of life form (woody/non-woody. Although introduced species sometimes do have advantages over native species (for example, through enemy release, or greater phenotypic plasticity, our findings suggest that the overall advantage conferred by these factors is either counterbalanced by advantages of native species (such as superior adaptation to local conditions or is simply too small to be detected at a broad scale.

  4. Status and management of non-native plant invasion in three of the largest national parks in the United States

    Directory of Open Access Journals (Sweden)

    Scott Abella

    2015-06-01

    Full Text Available Globally, invasion by non-native plants threatens resources that nature reserves are designated to protect. We assessed the status of non-native plant invasion on 1,662, 0.1-ha plots in Death Valley National Park, Mojave National Preserve, and Lake Mead National Recreation Area. These parks comprise 2.5 million ha, 23% of the national park land in the contiguous USA. At least one non-native species inhabited 82% of plots. Thirty-one percent of plots contained one non-native species, 30% two, 17% three, and 4% four to ten non-native species. Red brome (Bromus rubens, an ‘ecosystem engineer’ that alters fire regimes, was most widespread, infesting 60% of plots. By identifying frequency of species through this assessment, early detection and treatment can target infrequent species or minimally invaded sites, while containment strategies could focus on established invaders. We further compared two existing systems for prioritizing species for management and found that a third of species on plots had no rankings available. Moreover, rankings did not always agree between ranking systems for species that were ranked. Presence of multiple non-native species complicates treatment, and while we found that 40% of plots contained both forb and grass invaders, exploiting accelerated phenology of non-natives (compared to native annuals might help manage multi-species invasions. Large sizes of these parks and scale of invasion are formidable challenges for management. Yet, precisely because of their size, these reserves represent opportunities to conserve large landscapes of native species by managing non-native plant invasions.

  5. Ecological disequilibrium drives insect pest and pathogen accumulation in non-native trees.

    Science.gov (United States)

    Crous, Casparus J; Burgess, Treena I; Le Roux, Johannes J; Richardson, David M; Slippers, Bernard; Wingfield, Michael J

    2016-12-23

    Non-native trees have become dominant components of many landscapes, including urban ecosystems, commercial forestry plantations, fruit orchards, and as invasives in natural ecosystems. Often, these trees have been separated from their natural enemies (i.e. insects and pathogens) leading to ecological disequilibrium, that is, the immediate breakdown of historically co-evolved interactions once introduced into novel environments. Long-established, non-native tree plantations provide useful experiments to explore the dimensions of such ecological disequilibria. We quantify the status quo of non-native insect pests and pathogens catching up with their tree hosts (planted Acacia, Eucalyptus and Pinus species) in South Africa, and examine which native South African enemy species utilise these trees as hosts. Interestingly, pines, with no confamilial relatives in South Africa and the longest residence time (almost two centuries), have acquired only one highly polyphagous native pathogen. This is in contrast to acacias and eucalypts, both with many native and confamilial relatives in South Africa that have acquired more native pathogens. These patterns support the known role of phylogenetic relatedness of non-native and native floras in influencing the likelihood of pathogen shifts between them. This relationship, however, does not seem to hold for native insects. Native insects appear far more likely to expand their feeding habits onto non-native tree hosts than are native pathogens, although they are generally less damaging. The ecological disequilibrium conditions of non-native trees are deeply rooted in the eco-evolutionary experience of the host plant, co-evolved natural enemies, and native organisms from the introduced range. We should expect considerable spatial and temporal variation in ecological disequilibrium conditions among non-native taxa, which can be significantly influenced by biosecurity and management practices. Published by Oxford University Press on

  6. A non-native prey mediates the effects of a shared predator on an ecosystem service.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria. The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.

  7. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast.

    Science.gov (United States)

    Kominoski, John S; Ruhí, Albert; Hagler, Megan M; Petersen, Kelly; Sabo, John L; Sinha, Tushar; Sankarasubramanian, Arumugam; Olden, Julian D

    2018-03-01

    Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure "expected" streamflow) at the sub-basin scale over the past half-century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n = 95 Upper CR, n = 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n = 46, ACF n = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be

  8. Core-satellite species hypothesis and native versus exotic species in secondary succession

    Science.gov (United States)

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  9. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    Science.gov (United States)

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  10. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    Directory of Open Access Journals (Sweden)

    Justin S Strong

    Full Text Available The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator. This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland.

  11. Optimising invasive fish management in the context of invasive species legislation in South Africa

    Directory of Open Access Journals (Sweden)

    Darragh J. Woodford

    2017-03-01

    Full Text Available Background: South Africa hosts a large number of non-native freshwater fishes that were introduced for various industries. Many of these species are now listed under the National Environmental Management: Biodiversity Act (NEM:BA Alien and Invasive Species (A&IS lists and regulations, though the practical options available to conservation agencies to effectively manage these fishes vary greatly among species and regions. Objectives & methods: We assessed the history and status of national legislation pertaining to invasive freshwater fishes, and the practical implications of the legislation for managing different species with contrasting distributions, impacts and utilisation value. Results: The smallmouth bass, despite being a potential conflict-generating species, is fairly straightforward to manage based on current legislation. Two species of trout, which remain absent from the NEM:BA A&IS lists because of ongoing consultation with stakeholders, continue to be managed in regions like the Western Cape province using existing provincial legislation. To maximise the limited capacity for management within conservation agencies, we proposed a decision-support tool that prioritises invasive fish populations that represent high environmental risk and low potential for conflict with stakeholders. Using three case studies, we demonstrated how the tool can be used to set management goals of ‘eradicate’, ‘manage against impacts and further spread’ and ‘continue to monitor population’ as the most pragmatic solutions given the state of an invasion, its socio-economic impact and the capacity of the responsible agency to act. Conclusion: By choosing a pragmatic management strategy, conservation agencies can maximise the effective deployment of limited resources, while minimising avoidable conflicts with stakeholders.

  12. Sub-indicator: Prey fish

    Science.gov (United States)

    Weidel, Brian C.; Dunlop, Erin

    2017-01-01

    Prey fish communities across the Great Lakes continue to change, although the direction and magnitude of those changes are not consistent across the lakes. The metrics used to categorize prey fish status in this and previous periods are based on elements that are common among each of the lake’s Fish Community Objectives and include diversity and the relative role of native species in the prey fish communities. The diversity index categorized three of lakes as ‘fair’, while Superior and Erie were ‘good’ (Table 1). The short term trend, from the previous period (2008-2010) to the current period (2011-2014) found diversity in Erie and Superior to be unchanging, but the other three lakes to be ‘deteriorating’, resulting in an overall trend categorization of ‘undetermined’ (Table 1). The long term diversity trend suggested Lakes Superior and Erie have the most diverse prey communities although the index for those prey fish have been quite variable over time (Figure 1). In Lake Huron, where non-native alewife have substantially declined, the diversity index has also declined. The continued dominance of alewife in Lake Ontario (96% of the prey fish biomass) resulted in the lowest diversity index value (Figure 1). The proportion of native species within the community was judged as ‘good’ in Lakes Superior and Huron, ‘fair’ in Michigan and Erie and ‘poor’ in Ontario (Table 2). The short term trend was improving in in all lakes except Michigan (‘deteriorating’) and Ontario (‘unchanging’), resulting in an overall short term trend of ‘undetermined’ (Table 2). Over the current period, Lake Superior consistently had the highest proportion native prey fish (87%) while Lake Ontario had the lowest (1%) (Figure 2). Lake Michigan’s percent native has declined as round goby increase and comprises a greater proportion of the community. Native prey fish make up 51% of Lake Erie, although basin-specific values differed (Figure 2). Most notably

  13. Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA

    OpenAIRE

    Mark C. Belk; Eric J. Billman; Craig Ellsworth; Brock R. McMillan

    2016-01-01

    Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator—brown trout (Salmo trutta). To determine the ch...

  14. Fish community of the river Tiber basin (Umbria-Italy: temporal changes and possible threats to native biodiversity

    Directory of Open Access Journals (Sweden)

    Carosi A.

    2015-01-01

    Full Text Available The introduction of exotic fish species in the river Tiber basin has probably caused a serious alteration of original faunal composition. The purpose of this research was to assess the changes occurred over time in the state of the fish communities with particular reference to the reduction of local communities of endemic species. The study area comprised 68 watercourses of the Umbrian portion of the River Tiber basin; the analyses were carried out using the data of the Regional Fish Map of 1st and 2nd level and the 1st update, respectively collected during the periods between the 1990–1996, 2000–2006 and 2007–2014, in 125 sampling stations. The results show a progressive alteration of the fish communities’ structure, as confirmed by the appearance in recent times of new alien species. A total of 40 species was found, only 14 native. The qualitative change of the fish communities appear to be closely related to the longitudinal gradient of the river. The results shows that particularly in the downstream reaches, the combined action of pollution and introduction of exotic species resulted in a gradual decrease in the indigenous component of fish communities. The information collected are the indispensable premise for taking the necessary strategies for conservation of endangered species.

  15. Transcriptome discovery in non-model wild fish species for the development of quantitative transcript abundance assays.

    Science.gov (United States)

    Hahn, Cassidy M; Iwanowicz, Luke R; Cornman, Robert S; Mazik, Patricia M; Blazer, Vicki S

    2016-12-01

    Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest. Published by Elsevier Inc.

  16. Confocal microscopy as a useful approach to describe gill rakers of Asian species of carp and native filter-feeding fishes of the upper Mississippi River system

    Science.gov (United States)

    Liza R. Walleser,; D.R. Howard,; Sandheinrich, Mark B.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    To better understand potential diet overlap among exotic Asian species of carp and native species of filter-feeding fishes of the upper Mississippi River system, microscopy was used to document morphological differences in the gill rakers. Analysing samples first with light microscopy and subsequently with confocal microscopy, the three-dimensional structure of gill rakers in Hypophthalmichthys molitrix,Hypophthalmichthys nobilis and Dorosoma cepedianum was more thoroughly described and illustrated than previous work with traditional microscopy techniques. The three-dimensional structure of gill rakers in Ictiobus cyprinellus was described and illustrated for the first time.

  17. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  18. Threats, conservation strategies, and prognosis for suckers (Catostomidae) in North America: insights from regional case studies of a diverse family of non-game fishes

    Science.gov (United States)

    Cooke, Steven J.; Bunt, Christopher M.; Hamilton, Steven J.; Jennings, Cecil A.; Pearson, Micheal P.; Cooperman, Michael S.; Markle, Douglas F.

    2005-01-01

    Catostomid fishes are a diverse family of 76+ freshwater species that are distributed across North America in many different habitats. This group of fish is facing a variety of impacts and conservation issues that are somewhat unique relative to more economically valuable and heavily managed fish species. Here, we present a brief series of case studies to highlight the threats such as migration barriers, flow regulation, environmental contamination, habitat degradation, exploitation and impacts from introduced (non-native) species that are facing catostomids in different regions. Collectively, the case studies reveal that individual species usually are not threatened by a single, isolated factor. Instead, species in general face numerous stressors that threaten multiple stages of their life history. Several factors have retarded sucker conservation including widespread inabilities of field workers to distinguish some species, lack of basic natural history and ecological knowledge of life history, and the misconception that suckers are tolerant of degraded conditions and are of little social or ecological value. Without a specific constituent group lobbying for conservation of non-game fishes, all such species, including members of the catostomid family, will continue to face serious risks because of neglect, ignorance, and misunderstanding. We suggest that conservation strategies should incorporate research and education/outreach components. Other conservation strategies that would be effective for protecting suckers include freshwater protected areas for critical habitat, restoration of degraded habitat, and design of catostomid-friendly fish bypass facilities. We believe that the plight of the catostomids is representative of the threats facing many other non-game freshwater fishes with diverse life-history strategies globally.

  19. Native Fish Sanctuary Project - Sanctuary Development Phase, 2007 Annual Report

    Science.gov (United States)

    Mueller, Gordon A.

    2007-01-01

    Notable progress was made in 2007 toward the development of native fish facilities in the Lower Colorado River Basin. More than a dozen facilities are, or soon will be, online to benefit native fish. When this study began in 2005 no self-supporting communities of either bonytail or razorback sucker existed. Razorback suckers were removed from Rock Tank in 1997 and the communities at High Levee Pond had been compromised by largemouth bass in 2004. This project reversed that trend with the establishment of the Davis Cove native fish community in 2005. Bonytail and razorback sucker successfully produced young in Davis Cove in 2006. Bonytail successfully produced young in Parker Dam Pond in 2007, representing the first successful sanctuary established solely for bonytail. This past year, Three Fingers Lake received 135 large razorback suckers, and Federal and State agencies have agreed to develop a cooperative management approach dedicating a portion of that lake toward grow-out and (or) the establishment of another sanctuary. Two ponds at River's Edge Golf Course in Needles, California, were renovated in June and soon will be stocked with bonytail. Similar activities are taking place at Mohave Community College, Cerbat Cliffs Golf Course, Cibola High Levee Pond, Office Cove, Emerald Canyon Golf Course, and Bulkhead Cove. Recruitment can be expected as fish become sexually mature at these facilities. Flood-plain facilities have the potential to support 6,000 adult razorback suckers and nearly 20,000 bonytail if native fish management is aggressively pursued. This sanctuary project has assisted agencies in developing 15 native fish communities by identifying specific resource objectives for those sites, listing and prioritizing research opportunities and needs, and strategizing on management approaches through the use of resource-management plans. Such documents have been developed for Davis Cove, Cibola High Levee Pond, Parker Dam Pond, and Three Fingers Lake. We

  20. [Historical presence of invasive fish in the biosphere reserve sierra de Huautla, Mexico].

    Science.gov (United States)

    Mejía-Mojica, Humberto; de Rodríguez-Romero, Felipe Jesús; Díaz-Pardo, Edmundo

    2012-06-01

    The effects of invasive species on native ecosystems are varied, and these have been linked to the disappearance or decline of native fauna, changes in community structure, modification of ecosystems and as vectors of new diseases and parasites. Besides, the development of trade in species for ornamental use has contributed significantly to the import and introduction of invasive fish in some important areas for biodiversity conservation in Mexico, but the presence of these species is poorly documented. In this study we analyzed the fish community in the Biosphere Reserve Sierra de Huautla by looking at diversity changes in the last 100 years. For this, we used databases of historical records and recent collections for five sites in the Amacuzac river, along the Biosphere Reserve area. We compared the values of similarity (Jaccard index) between five times series (1898-1901, 1945-1953, 1971-1980, 1994-1995 and 2008-2009), and we obtained values of similarity (Bray-Curtis) between the five sites analyzed. In our results we recognized a total of 19 species for the area, nine non-native and ten native, three of which were eliminated for the area. Similarity values between the early days and current records were very low (.27); the major changes in the composition of the fauna occurred in the past 20 years. The values of abundance, diversity and similarity among the sampling sites, indicate the dominance of non-native species. We discuss the role of the ornamental fish trade in the region as the leading cause of invasive introduction in the ecosystem and the possible negative effects that at least four non-native species have had on native fauna and the ecosystem (Oreochromis mossambicus, Amatitlania nigrofasciata, Pterygoplichthys disjunctivus and P pardalis). There is an urgent need of programs for registration, control and eradication of invasive species in the Sierra de Huautla Biosphere Reserve and biodiversity protection areas in Mexico.

  1. Reduction of herbivorous fish pressure can facilitate focal algal species forestation on artificial structures.

    Science.gov (United States)

    Gianni, Fabrizio; Bartolini, Fabrizio; Airoldi, Laura; Mangialajo, Luisa

    2018-07-01

    Coastal areas have been transformed worldwide by urbanization, so that artificial structures are now widespread. Current coastal development locally depletes many native marine species, while offering limited possibilities for their expansion. Eco-engineering interventions intend to identify ways to facilitate the presence of focal species and their associated functions on artificial habitats. An important but overlooked factor controlling restoration operations is overgrazing by herbivores. The aim of this study was to quantify the effects of different potential feeders on Cystoseira amentacea, a native canopy-forming alga of the Mediterranean infralittoral fringe, and test whether manipulation of grazing pressure can facilitate the human-guided installation of this focal species on coastal structures. Results of laboratory tests and field experiments revealed that Sarpa salpa, the only strictly native herbivorous fish in the Western Mediterranean Sea, can be a very effective grazer of C. amentacea in artificial habitats, up to as far as the infralittoral fringe, which is generally considered less accessible to fishes. S. salpa can limit the success of forestation operations in artificial novel habitats, causing up to 90% of Cystoseira loss after a few days. Other grazers, such as limpets and crabs, had only a moderate impact. Future engineering operations,intended to perform forestation of canopy-forming algae on artificial structures, should consider relevant biotic factors, such as fish overgrazing, identifying cost-effective techniques to limit their impact, as is the usual practice in restoration programmes on land. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Credibility of native and non-native speakers of English revisited: Do non-native listeners feel the same?

    OpenAIRE

    Hanzlíková, Dagmar; Skarnitzl, Radek

    2017-01-01

    This study reports on research stimulated by Lev-Ari and Keysar (2010) who showed that native listeners find statements delivered by foreign-accented speakers to be less true than those read by native speakers. Our objective was to replicate the study with non-native listeners to see whether this effect is also relevant in international communication contexts. The same set of statements from the original study was recorded by 6 native and 6 nonnative speakers of English. 121 non-native listen...

  3. NATIVE VS NON-NATIVE ENGLISH TEACHERS

    Directory of Open Access Journals (Sweden)

    Masrizal Masrizal

    2013-02-01

    Full Text Available Although the majority of English language teachers worldwide are non-native English speakers (NNS, no research was conducted on these teachers until recently. A pioneer research by Peter Medgyes in 1994 took quite a long time until the other researchers found their interests in this issue. There is a widespread stereotype that a native speaker (NS is by nature the best person to teach his/her foreign language. In regard to this assumption, we then see a very limited room and opportunities for a non native teacher to teach language that is not his/hers. The aim of this article is to analyze the differences among these teachers in order to prove that non-native teachers have equal advantages that should be taken into account. The writer expects that the result of this short article could be a valuable input to the area of teaching English as a foreign language in Indonesia.

  4. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Barriers, invasion, and conservation of native salmonids in coldwater streams [Box 18.2

    Science.gov (United States)

    Bruce Rieman; Michael Young; Kurt Fausch; Jason Dunham; Douglas Peterson

    2010-01-01

    Habitat loss and fragmentation are threats to persistence of many native fish populations. Invading nonnative species that may restrict or displace native species are also important. These two issues are particularly relevant for native salmonids that are often limited to remnant habitats in cold, headwater streams. On the surface, reversing threats to native fishes...

  6. Native and exotic fishes in a Patagonian reservoir with rainbow trout cage culture: spatial and trophic resource use

    Directory of Open Access Journals (Sweden)

    Nabaes Jodar Diego N.

    2017-01-01

    Full Text Available Although the interactions of exotic salmonids with native Patagonian fishes are well known, little is known about the ecology and impact of farmed fish escapees. Salmonid production in Argentina is largely concentrated in the Alicurá reservoir in north Patagonia, where fish community studies have been scarce. Here, we assess and compare the spatial distribution, body size–condition and diet of the different fish species in this reservoir. Strong vertical segregation was observed between exotic rainbow trout Oncorhynchus mykiss (both escapees and wild, dominating the littoral zone, and native Percichthys trucha which dominate the medium and deep strata. Low piscivory–benthivory and high zooplanktivory were observed for rainbow trout, both traits being uncommon at a regional scale. Escaped farmed rainbow trout (ERT diet included abundant indigestible items along with wild prey. Higher body condition of P. trucha close to farms, as well as the regionally unprecedented high incidence of Daphnia sp. in the guts of all the species suggest that farm nutrient discharges have had significant impacts. Finally, the high body condition of ERT, together with their wild food diet and the long dispersal distance observed, demonstrate post-escape success, drawing our attention to potential upstream dispersion affecting the biodiversity and fisheries of Patagonian rivers and lakes.

  7. Invasive predator tips the balance of symmetrical competition between native coral-reef fishes.

    Science.gov (United States)

    Kindinger, Tye L

    2018-04-01

    The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in

  8. A new species of Oochoristica (Cyclophyllidea: Linstowiidae) from non-native Mediterranean geckos, Hemidactylus turcicus (Sauria: Gekkonidae), from Texas, USA.

    Science.gov (United States)

    McAllister, Chris T; Bursey, Charles R

    2017-06-01

    A new species of cyclophyllidean tapeworm, Oochoristica harschi sp. nov. is described from 2 of 18 (11%) non-native Mediterranean geckos (Hemidactylus turcicus) collected in June 2016 from Tom Green County, Texas, USA The new species has few characteristics in common with 17 species of Oochoristica previously described from Nearctic reptiles. Of this group, O. harschi is most similar to O. macallisteri Bursey and Goldberg, 1996 from the side-blotched lizard, Uta stansburiana from Arizona and California, USA, in number of testes, 14-20 vs. 12-20. However, O. harschi has oval suckers and a long neck compared to the circular suckers and absent neck in O. macallisteri. On comparison with other species of Oochoristica, it was found O. chinensis Jensen, Schmidt and Kuntz, 1983 from the Sino-Japanese realm, O. iguanae Bursey and Goldberg, 1996 from the Neotropical realm, and O. maccoyi Bursey and Goldberg, 1966 from the Panamanian realm were most similar to the new species. However, O. harschi can be differentiated by possessing a much longer neck and a shorter cirrus pouch. It can be further differentiated from O. chinensis by possessing an ovoid vs. an irregular vitellarium, from O. iguanae by having a smaller strobilus (65 vs. 110 mm) as well as an ovoid vs. a triangular vitellarium, and from O. maccoyi by having significantly more proglottids (145 vs. 89) and a longer strobilus (65 vs. 20 mm). The new species is the fifth species of Oochoristica reported from non-native H. turcicus and the 18th species described from the Nearctic region.

  9. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  10. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River.

    Science.gov (United States)

    Horreo, Jose L; Abad, David; Dopico, Eduardo; Oberlin, Maud; Garcia-Vazquez, Eva

    2015-07-09

    The biological and anthropogenic (management) factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta) as a model species. The changes of users' opinion about stocking was studied employing social science methodology (surveys). The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks) and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks). Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science.

  11. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2015-07-01

    Full Text Available The biological and anthropogenic (management factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta as a model species. The changes of users’ opinion about stocking was studied employing social science methodology (surveys. The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks. Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science.

  12. Trace elements in two marine fish species during estuarine residency: Non-essential versus essential

    International Nuclear Information System (INIS)

    Mieiro, C.L.; Coelho, J.P.; Pacheco, M.; Duarte, A.C.; Pereira, M.E.

    2012-01-01

    Highlights: ► We assessed essential and non-essential trace elements loads in two marine fish. ► We found similarly low levels of Zn, Cr, and As in both sites and species. ► We compared recommended daily allowances with the estimated daily intake. ► Arsenic was higher than tolerable commercial levels and USA average daily intake. - Abstract: Trace element levels in fish are of particular interest, owing the potential risk to human health. In accordance, juveniles of Dicentrarchus labrax and of Liza aurata were sampled and arsenic, cadmium, chromium, selenium and zinc were determined in the muscle. The levels of trace elements in muscle demonstrated to be similar for both species and sites, with the exception of selenium levels at reference, which seemed to be higher in D. labrax. Moreover, apart from arsenic levels in muscle, all elements were in conformity with the existent regulatory guidelines for fish consumption. The dietary intake of each element was also calculated, with arsenic and selenium showing intakes above the recommended dietary allowances. Nevertheless, no arsenic speciation was carried out and thus no accurate risk evaluation could be established. Additionally, selenium levels never exceeded the dietary allowances more than five times, which are considered safe.

  13. Locking horns with Hawai‘i’s non-native ungulate issues

    Science.gov (United States)

    Hess, Steve

    2014-01-01

    Conservation and management interests for sustained-yield hunting of non-native ungulates in Hawai‘i have conflicted with the conservation of native biota for several decades. Hawaiian ecosystems evolved in the absence of large mammals and all currently hunted animals in Hawai‘i are non-native species. The best-studied aspects of Hawai‘i’s ungulates have dealt primarily with direct negative effects on native biota in natural areas, but there has been little research in population dynamics for sustained-yield management. Ungulates have been removed from approximately 750 km2 throughout the Hawaiian Islands to protect these natural areas, thereby reducing the amount of land area available for hunting activities and the maintenance of game populations. At the same time, unauthorized introductions of additional wild ungulate species between Hawaiian Islands have recently increased in frequency. The majority of hunting activities are of feral domestic livestock species for subsistence purposes, which typically do not generate sufficient revenue to offset costs of game management. Moreover, bag limits and seasons are generally not determined from biological criteria because harvest reporting is voluntary and game populations are rarely monitored. Consequently, ungulate populations cannot be managed for any particular level of abundance or other objectives. Research and monitoring which emphasize population dynamics and productivity would enable more precisely regulated sustained-yield game management programs and may reduce potential conflicts with the conservation of native biota.

  14. Northward invading non-native vascular plant species in and adjacent to Wood Buffalo National Park

    Energy Technology Data Exchange (ETDEWEB)

    Wein, R.W.; Wein, G.; Bahret, S.; Cody, W.J. (Alberta University, Edmonton, AB (Canada). Canadian Circumpolar Institute)

    A survey of the non-native vascular plant species in Wood Buffalo National Park, Canada's largest forested National Park, documented their presence and abundance in key locations. Most of the fifty-four species (nine new records) were found in disturbed sites including roadsides, settlements, farms, areas of altered hydrological regimes, recent bums, and intensive bison grazing. Species that have increased most in geographic area and abundance in recent years include [ital Agropyron repens], [ital Bromus inermis], [ital Chenopodium album], [ital Melilotus spp.], [ital Trifolium spp.], [ital Plantago major], [ital Achillea millefolium], [ital Crepis tectorum] and [ital Sonchus arvensis]. An additional 20 species, now common in the Peace River and Fort Vermilion areas, have the potential to invade the Park if plant communities are subjected to additional stress as northern climates are modified by the greenhouse effect and as other human-caused activities disturb the vegetation. It is recommended that permanent plots be located in key locations and monitored for species invasion and changing abundances as input to management plans.

  15. COMPARISON OF ANNUAL PRODUCTION ECOLOGY OF NATIVE EELGRASS ZOSTERA MARINA AND THE NON-NATIVE DWARF EELGRASS Z. JAPONICA IN YAQUINA BAY, OREGON

    Science.gov (United States)

    When non-native plant species invade a system they often change patterns of primary production. I evaluate the contribution of the seagrass Zostera marina and it's non-native congener Z. japonica to primary production in Yaquina Bay. Few measurements of Z. japonica production e...

  16. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  17. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  18. Non-native fish control below Glen Canyon Dam - Report from a structured decision-making project

    Science.gov (United States)

    Runge, Michael C.; Bean, Ellen; Smith, David; Kokos, Sonja

    2011-01-01

    This report describes the results of a structured decision-making project by the U.S. Geological Survey to provide substantive input to the Bureau of Reclamation (Reclamation) for use in the preparation of an Environmental Assessment concerning control of non-native fish below Glen Canyon Dam. A forum was created to allow the diverse cooperating agencies and Tribes to discuss, expand, and articulate their respective values; to develop and evaluate a broad set of potential control alternatives using the best available science; and to define individual preferences of each group on how to manage the inherent trade-offs in this non-native fish control problem. This project consisted of two face-to-face workshops, held in Mesa, Arizona, October 18-20 and November 8-10, 2010. At the first workshop, a diverse set of objectives was discussed, which represented the range of concerns of those agencies and Tribes present. A set of non-native fish control alternatives ('hybrid portfolios') was also developed. Over the 2-week period between the two workshops, four assessment teams worked to evaluate the control alternatives against the array of objectives. At the second workshop, the results of the assessment teams were presented. Multi-criteria decision analysis methods were used to examine the trade-offs inherent in the problem, and allowed the participating agencies and Tribes to express their individual judgments about how those trade-offs should best be managed in Reclamation`s selection of a preferred alternative. A broad array of objectives was identified and defined, and an effort was made to understand how these objectives are likely to be achieved by a variety of strategies. In general, the objectives reflected desired future conditions over 30 years. A rich set of alternative approaches was developed, and the complex structure of those alternatives was documented. Multi-criteria decision analysis methods allowed the evaluation of those alternatives against the array

  19. Diet of two species of fish family Cichlidae (Astronotus ocellatus and Cichla pinima introduced in the Paraguaçu River, Bahia

    Directory of Open Access Journals (Sweden)

    Luis Rogério Godinho dos Reis

    2014-12-01

    Full Text Available Analysis of the diet of introduced fish species allows us to understand their trophic position in the community, their level of predation, and possibly to identify the if and when they act as competitors and/or predators. This paper aims to describe the diet of the tucunaré, Cichla pinima, and of the apanhari, Astronotus ocellatus. Both species originated from the Amazon basin and were introduced into the Paraguaçu River. Ninety-two specimens were analyzed, and both species showed a diversified diet composed of 20 different food types. For C. pinima, fish (IAi = 35.2% Ephemeroptera insects (IAi = 31.7% and molluscs (IAi = 21.2% were the most important food types. Ephemeropteran insects were highly prevalent in the diet of A. ocellatus, corresponding to over 98% of IAi. The high prevalence of insects in the diet may be related to the high number of juveniles among the specimens analyzed. The presence of native fish in the stomach contents of tucunarés deserves particular attention, because the voracity of this fish can lead to extinction of native species.

  20. A review of ecological interactions between crayfish and fish, indigenous and introduced

    Directory of Open Access Journals (Sweden)

    Reynolds J.D.

    2011-05-01

    Full Text Available Crayfish (decapods and fish are both long-lived large members of freshwater communities, often functioning as keystone species. This paper reviews interactions between these, with emphasis on the European context. Native crayfish and fish are in ecological balance, which may involve mutual predation, competition and sometimes habitat disturbance. This balance is disrupted by range extensions and translocations of native fish or crayfish into exotic situations. Some fish and crayfish have been translocated globally, chiefly from North America to other continents. Non-indigenous crayfish species (NICS may impact on native fish, just as introduced fish impact on indigenous crayfish species (ICS. Competition between ICS and NICS may result in making the former susceptible to various mechanisms of interaction with fish, indigenous or introduced. In Europe, long-established NICS – signals, spiny-cheek and red swamp crayfish – may occur in greater densities than ICS; they are more tolerant and aggressive and show more interactions with fish. More recent introductions, still restricted in distribution, have not yet received enough study for their impacts to be assessed. Interactions between fish and crayfish in North and South America, Madagascar and Australasia are also explored. Mechanisms of interaction between fish and crayfish include mutual predation, competition for food and spatial resources, food-web alteration and habitat modification. Resultant changes in communities and ecosystems may be physical or biotal, and affect both ecosystem services and exploitation potential.

  1. Photoactivated toxicity of PAH to endangered fishes and standard laboratory test species

    International Nuclear Information System (INIS)

    Buckler, D.R.; Mount, D.R.; Tillitt, D.E.

    1994-01-01

    Polynuclear aromatic hydrocarbons (PAH) have been detected in water and sediment from the San Juan River Basin, located in the Four Corners area of the southwestern US. In addition to possessing extensive oil and gas deposits, the San Juan contains several threatened or endangered fish species such as Colorado squawfish and razorback suckers. Proposed expansion of oil and gas development in the basin has sparked concerns that potential increases in PAH loading may jeopardize these and other native fishes. In response, the authors conducted laboratory exposures of threatened and endangered species to various PAH both with and without accompanying exposure to UV light. As predicted from the literature, exposure to UV light caused a marked photo-activated toxicity response in all species; however, the sensitivity to PAH both with and without UV exposure varied among species and lifestages. Supplemental studies were conducted to evaluate the physiological mechanisms for variation in sensitivity between species and lifestage

  2. Parasites of ornamental fish commercialized in Macapá, Amapá State (Brazil

    Directory of Open Access Journals (Sweden)

    Érico de Melo Hoshino

    2018-02-01

    Full Text Available Abstract This study investigated the parasites fauna of four freshwater ornamental fish species in aquarium shops of Macapá, Amapá State, in addition to survey the commercialized fish species and sanitary conditions of aquarium shops. Different native and non-native ornamental fish species were found in aquarium shops, mainly Poecilidae. We examined 30 specimens of Xiphophorus maculatus, 30 Danio rerio, 30 Paracheirodon axelrodi, and 30 Corydoras ephippifer for parasites. Of the 120 fish examined, 22.5% were parasitized by one or more species and a total of 438 parasites were collected and identified. Parasites such as: Ichthyophthirius multifiliis, Monogenea, undermined Digenea metacercariae, Acanthostomum sp. metacercariae, Camallanus spp., Bothriocephalus acheilognathi and Echinorhynchus sp. infected the hosts examined. Endoparasites in the larval stage showed the greatest diversity and Camallanus spp. was found in all hosts species examined. Paracheirodon axelrodi (43.3% was the most parasitized host, while C. ephippifer (6.7% was the least parasitized. Despite the low ectoparasites level, six species of endoparasites was observed, demonstrating that prophylactic and quarantine procedures were not fully adequate. Therefore, failures in prophylactic procedures on any link in the production industry of ornamental fish may cause parasite transmission to ornamental fish captured in different environments and localities.

  3. Word Durations in Non-Native English

    Science.gov (United States)

    Baker, Rachel E.; Baese-Berk, Melissa; Bonnasse-Gahot, Laurent; Kim, Midam; Van Engen, Kristin J.; Bradlow, Ann R.

    2010-01-01

    In this study, we compare the effects of English lexical features on word duration for native and non-native English speakers and for non-native speakers with different L1s and a range of L2 experience. We also examine whether non-native word durations lead to judgments of a stronger foreign accent. We measured word durations in English paragraphs read by 12 American English (AE), 20 Korean, and 20 Chinese speakers. We also had AE listeners rate the `accentedness' of these non-native speakers. AE speech had shorter durations, greater within-speaker word duration variance, greater reduction of function words, and less between-speaker variance than non-native speech. However, both AE and non-native speakers showed sensitivity to lexical predictability by reducing second mentions and high frequency words. Non-native speakers with more native-like word durations, greater within-speaker word duration variance, and greater function word reduction were perceived as less accented. Overall, these findings identify word duration as an important and complex feature of foreign-accented English. PMID:21516172

  4. IMPACT OF JUTE RETTING ON NATIVE FISH DIVERSITY AND AQUATIC HEALTH OF ROADSIDE TRANSITORY WATER BODIES: AN ASSESSMENT IN EASTERN INDIA

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2015-09-01

    Full Text Available Roadside transitory water bodies being manmade depressions have a great ecological and socio-economic importance from years. The effects of agricultural runoffs, jute retting, macro-phytes infestations and inadequate rainfall in changed climate often degrade transitory water bodies’ environment while the biodiversity have impacted severely because of population pressure, over exploitation and indiscriminate use of fine meshed fishing gears as a whole. Physico-chemical and biological analysis with fish species composition, relative abundance, diversity indices like species richness, evenness and Shannon-Wiener index were carried out for pre-, during and post-jute retting season and for year mean as a whole to assess impact of jute retting on the roadside transitory water body’s environmental health and indigenous fish diversity at Sahebnagar village in Nadia District, India. All the physico-chemical parameters barring biochemical oxygen demand and water transparency remained more or less same or marginally got little changed during those three seasons. As much as 19 native fish species with varied relative abundances and dominances were identified. Jute retting impacted lower native fish diversity indices like Shannon-Wiener index values (1.94 to 2.68 clearly indicated poor to moderate pollution status of the transitory water body in that area during monsoon in particular and throughout the year in general. So we opined there should be some control over the intense jute retting in the road side transitory water bodies for sustainable management of these manmade resources.

  5. Native fish conservation areas: a vision for large-scale conservation of native fish communities

    Science.gov (United States)

    Jack E. Williams; Richard N. Williams; Russell F. Thurow; Leah Elwell; David P. Philipp; Fred A. Harris; Jeffrey L. Kershner; Patrick J. Martinez; Dirk Miller; Gordon H. Reeves; Christopher A. Frissell; James R. Sedell

    2011-01-01

    The status of freshwater fishes continues to decline despite substantial conservation efforts to reverse this trend and recover threatened and endangered aquatic species. Lack of success is partially due to working at smaller spatial scales and focusing on habitats and species that are already degraded. Protecting entire watersheds and aquatic communities, which we...

  6. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M A

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  7. Diversity, distribution, and conservation status of the native freshwater fishes of the Southern United States

    Science.gov (United States)

    Melvin L. Warren; Brooks M. Burr; Stephen J. Walsh; Henry L. Bart; Robert C. Cashner; David A. Etnier; Byron J. Freeman; Bernard R. Kuhajda; Richard L. Mayden; Henry W. Robison; Stephen T. Ross; Wayne C. Starnes

    2000-01-01

    The Southeastern Fishes Council Technical Advisory Committee reviewed the diversity, distribution, and status of all native freshwater and diadromous fishes across 51 major drainage units of the Southern United States. The Southern United States supports more native fishes than any area of comparable size on the North American continent north of Mexico, but also has a...

  8. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  9. Patterns of interactions of a large fish-parasite network in a tropical floodplain.

    Science.gov (United States)

    Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M

    2012-07-01

    1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability. © 2012 The Authors

  10. Predictions for an invaded world: A strategy to predict the distribution of native and non-indigenous species at multiple scales

    Science.gov (United States)

    Reusser, D.A.; Lee, H.

    2008-01-01

    Habitat models can be used to predict the distributions of marine and estuarine non-indigenous species (NIS) over several spatial scales. At an estuary scale, our goal is to predict the estuaries most likely to be invaded, but at a habitat scale, the goal is to predict the specific locations within an estuary that are most vulnerable to invasion. As an initial step in evaluating several habitat models, model performance for a suite of benthic species with reasonably well-known distributions on the Pacific coast of the US needs to be compared. We discuss the utility of non-parametric multiplicative regression (NPMR) for predicting habitat- and estuary-scale distributions of native and NIS. NPMR incorporates interactions among variables, allows qualitative and categorical variables, and utilizes data on absence as well as presence. Preliminary results indicate that NPMR generally performs well at both spatial scales and that distributions of NIS are predicted as well as those of native species. For most species, latitude was the single best predictor, although similar model performance could be obtained at both spatial scales with combinations of other habitat variables. Errors of commission were more frequent at a habitat scale, with omission and commission errors approximately equal at an estuary scale. ?? 2008 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.

  11. Ecological characterization of two species of exotic fish, pumpkinseed sunfish (Lepomis gibbosus and largemouth bass (Micropterus salmoides in the international Minho river

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lages

    2015-11-01

    Full Text Available The introduction of exotic species is considered the main cause for the decline of native species. The largemouth bass (Micropterus salmoides and pumpkinseed sunfish (Lepomis gibbosus are two native species from North America, introduced in Portugal to enhance sport fishing. However, their diet and great adaptability made them considered predatory and harmful. In order to understand the ecological impact of M. salmoides and L. gibbosus in the international section of the Minho River, three sampling sites were selected: two in Vila Nova de Cerveira and one in Lapela, at distance of the mouth of the river of 17 and 45 Km, respectively. The fish were gathered using fyke nets and trammel nets, electric fishing and fishing rod, with performed samplings since July 2014 until October 2015. For all fish caught the biometric data (weight, total and fork length, gonad and liver weight, sex, stomach contents analysis were registered as well as collection of otoliths and scales for age reading. Both species feed on small macroinvertebrates specially the juveniles while adults of largemouth bass and pumpkinseed sunfish prefer eat fish and gastropods, respectively. Because L. gibbosus is a recent introduction in the Minho river estuary its abundance increased a lot in the last two years and it was possible verify the increase of the fish population average length. With this work it is intended to evaluate the impact in the Minho River estuary of both exotic species studying the population structure, trophic webs and reproduction.

  12. Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem

    DEFF Research Database (Denmark)

    Stuble, Katharine L.; Kirkman, L. Katherine; Carroll, C. Ronald

    2011-01-01

    and cases in which non-native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta......), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce......, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants...

  13. Rapid development of microsatellite markers for the endangered fish Schizothorax biddulphi (Günther) using next generation sequencing and cross-species amplification.

    Science.gov (United States)

    Luo, Wei; Nie, Zhulan; Zhan, Fanbin; Wei, Jie; Wang, Weimin; Gao, Zexia

    2012-11-14

    Tarim schizothoracin (Schizothorax biddulphi) is an endemic fish species native to the Tarim River system of Xinjiang and has been classified as an extremely endangered freshwater fish species in China. Here, we used a next generation sequencing platform (ion torrent PGM™) to obtain a large number of microsatellites for S. biddulphi, for the first time. A total of 40577 contigs were assembled, which contained 1379 SSRs. In these SSRs, the number of dinucleotide repeats were the most frequent (77.08%) and AC repeats were the most frequently occurring microsatellite, followed by AG, AAT and AT. Fifty loci were randomly selected for primer development; of these, 38 loci were successfully amplified and 29 loci were polymorphic across panels of 30 individuals. The H(o) ranged from 0.15 to 0.83, and H(e) ranged from 0.15 to 0.85, with 3.5 alleles per locus on average. Cross-species utility indicated that 20 of these markers were successfully amplified in a related, also an endangered fish species, S. irregularis. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing microsatellite markers for non-model species and the developed microsatellite markers in this study would be useful in Schizothorax genetic analysis.

  14. Fish consumption behavior and rates in native and non-native people in Saudi Arabia

    KAUST Repository

    Burger, Joanna; Gochfeld, Michael; Batang, Zenon B.; Mannalamkunnath Alikunhi, Nabeel; Aljahdali, Ramzi; Al-Jebreen, Dalal Hamad; Aziz, Mohammed A M; Al-Suwailem, Abdulaziz M.

    2014-01-01

    eat fish at home (over 90%), and many eat fish at restaurants (65% and 48%, respectively for Saudis and expatriates). Fish eaten at home comes from local fish markets, followed by supermarkets. Saudis included fish in their diets at an average of 1

  15. Ecological characterization of two species of exotic fish, pumpkinseed sunfish (Lepomis gibbosus) and largemouth bass (Micropterus salmoides) in the international Minho river

    OpenAIRE

    Ana Cristina Lages; Carlos Antunes

    2015-01-01

    The introduction of exotic species is considered the main cause for the decline of native species. The largemouth bass (Micropterus salmoides) and pumpkinseed sunfish (Lepomis gibbosus) are two native species from North America, introduced in Portugal to enhance sport fishing. However, their diet and great adaptability made them considered predatory and harmful. In order to understand the ecological impact of M. salmoides and L. gibbosus in the international section of the Minho River, three ...

  16. Salinity and temperature tolerance of an emergent alien species, the Amazon fish Astronotus ocellatus

    Science.gov (United States)

    Gutierrel, Silvia M M; Schofield, Pam; Prodocimo, Viviane

    2016-01-01

    Astronotus ocellatus (oscar), is native to the Amazon basin and, although it has been introduced to many countries, little is known regarding its tolerances for salinity and temperature. In this report, we provide data on the tolerance of A. ocellatus to abrupt and gradual changes in salinity, its high and low temperature tolerance, and information on how salinity, temperature, and fish size interact to affect survival. Fish were able to survive abrupt transfer to salinities as high as 16 ppt with no mortality. When salinity change was gradual (2 ppt/day), fish in the warm-temperature experiment (28°C) survived longer than fish in the cool-temperature experiment (18°C). Larger fish survived longer than smaller ones at the higher salinities when the temperature was warm, but when the temperature was cool fish size had little effect on survival. In the temperature-tolerance experiments, fish survived from 9 to 41°C for short periods of time. Overall, the species showed a wide range of temperature and salinity tolerance. Thus, in spite of the tropical freshwater origin of this species, physiological stress is not likely to hinder its dispersal to brackish waters, especially when temperatures are warm.

  17. A description of the nearshore fish communities in the Huron-Erie Corridor using multiple gear types

    Science.gov (United States)

    Francis, James T.; Chiotti, Justin A.; Boase, James C.; Thomas, Mike V.; Manny, Bruce A.; Roseman, Edward F.

    2013-01-01

    Great Lakes coastal wetlands provide a critical habitat for many fish species throughout their life cycles. Once home to one of the largest wetland complexes in the Great Lakes, coastal wetlands in the Huron–Erie Corridor (HEC) have decreased dramatically since the early 1900s. We characterized the nearshore fish communities at three different wetland complexes in the HEC using electrofishing, seines, and fyke nets. Species richness was highest in the Detroit River (63), followed by the St. Clair Delta (56), and Western Lake Erie (47). The nearshore fish communities in the Detroit River and St. Clair Delta consisted primarily of shiners, bluntnose minnow, centrarchids, and brook silverside, while the Western Lake Erie sites consisted of high proportions of non-native taxa including common carp, gizzard shad, goldfish, and white perch. Species richness estimates using individual-based rarefaction curves were higher when using electrofishing data compared to fyke nets or seine hauls at each wetland. Twelve fish species were captured exclusively during electrofishing assessments, while one species was captured exclusively in fyke nets, and none exclusively during seine hauls. Western Lake Erie wetlands were more indicative of degraded systems with lower species richness, lower proportion of turbidity intolerant species, and increased abundance of non-native taxa. This work highlights the importance of coastal wetlands in the HEC by capturing 69 different fish species utilizing these wetlands to fulfill life history requirements and provides insight when selecting gears to sample nearshore littoral areas.

  18. Hawaii ESI: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reef, marine, estuarine, and native stream fish species in coastal Hawaii. Vector polygons in this data...

  19. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin.

    Science.gov (United States)

    Pugedo, Marina Lages; de Andrade Neto, Francisco Ricardo; Pessali, Tiago Casarim; Birindelli, José Luís Olivan; Carvalho, Daniel Cardoso

    2016-06-01

    Molecular identification through DNA barcoding has been proposed as a way to standardize a global biodiversity identification system using a partial sequence of the mitochondrial COI gene. We applied an integrative approach using DNA barcoding and traditional morphology-based bioassessment to identify fish from a neotropical region possessing low taxonomic knowledge: the Jequitinhonha River Basin (Southeastern Brazil). The Jequitinhonha River Basin (JRB) has a high rate of endemism and is considered an area of high priority for fish conservation, with estimates indicating the presence of around 110 native and non-indigenous species. DNA barcodes were obtained from 260 individuals belonging to 52 species distributed among 35 genera, 21 families and 6 orders, including threatened and rare species such as Rhamdia jequitinhonha and Steindachneridion amblyurum. The mean Kimura two-parameter genetic distances within species, genera and families were: 0.44, 12.16 and 20.58 %, respectively. Mean intraspecific genetic variation ranged from 0 to 11.43 %, and high values (>2 %) were recovered for five species. Species with a deep intraspecific distance, possibly flagging overlooked taxa, were detected within the genus Pimelodella. Fifteen species, only identified to the genus level, had unique BINs, with a nearest neighbor distance over 2 % and therefore, potential new candidate species supported by DNA barcoding. The integrative taxonomy approach using DNA barcoding and traditional taxonomy may be a remedy to taxonomy impediment, accelerating species identification by flagging potential new candidate species and to adequately conserve the megadiverse neotropical ichthyofauna.

  20. High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community.

    Science.gov (United States)

    Kimball, Sarah; Gremer, Jennifer R; Barron-Gafford, Greg A; Angert, Amy L; Huxman, Travis E; Venable, D Lawrence

    2014-01-01

    The success of non-native, invasive species may be due to release from natural enemies, superior competitive abilities, or both. In the Sonoran Desert, Erodium cicutarium has increased in abundance over the last 30 years. While native species in this flora exhibit a strong among-species trade-off between relative growth rate and water-use efficiency, E. cicutarium seems to have a higher relative growth rate for its water-use efficiency value relative to the pattern across native species. This novel trait combination could provide the non-native species with a competitive advantage in this water-limited environment. To test the hypothesis that E. cicutarium is able to achieve high growth rates due to release from native herbivores, we compared the effects of herbivory on E. cicutarium and its native congener, Erodium texanum. We also compared these two species across a range of environmental conditions, both in a common garden and in two distinct seasons in the field, using growth analysis, isotopic compositions and leaf-level gas exchange. Additionally, we compared the competitive abilities of the two Erodium species in a greenhouse experiment. We found no evidence of herbivory to either species. Physiological measurements in a common environment revealed that E. cicutarium was able to achieve high growth rates while simultaneously controlling leaf-level water loss. Non-native E. cicutarium responded to favourable conditions in the field with greater specific leaf area and leaf area ratio than native E. texanum. The non-native Erodium was a stronger competitor than its native congener in a greenhouse competition experiment. The ability to maintain relatively higher values of water-use efficiency:relative growth rate in comparison to the native flora may be what enables E. cictarium to outcompete native species in both wet and dry years, resulting in an increase in abundance in the highly variable Sonoran Desert.

  1. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  2. Introduced brown trout alter native acanthocephalan infections in native fish.

    Science.gov (United States)

    Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M

    2011-09-01

    1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  3. Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants

    NARCIS (Netherlands)

    Grutters, Bart; Pollux, B.J.A.; Verberk, W.C.E.P.; Bakker, E.S.

    2015-01-01

    Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known

  4. Habitat preferences of common native fishes in a tropical river in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Marcus Rodrigues da Costa

    Full Text Available We determined in this study the habitat preferences of seven native fish species in a regulated river in Southeastern Brazil. We tested the hypothesis that fishes differ in habitat preference and that they use stretches of the river differing in hydraulic characteristics and substrate type. We surveyed fishes in four 1-km long river stretches encompassing different habitat traits, where we also measured water depth, velocity, and substrate type. We investigated preference patterns of four Siluriformes (Loricariichthys castaneus, Hoplosternum littorale, Pimelodus maculatus, and Trachelyopterus striatulus and three Characiformes (Astyanax aff. bimaculatus, Oligosarcus hepsetus, and Hoplias malabaricus, representing approximately 70% of the total number of fishes and 64% of the total biomass. We classified fishes into four habitat guilds: (1 a slow-flowing water guild that occupied mud-sand substrate, composed of two Siluriformes in either shallow ( 8 m, L. castaneus waters; (2 a run-dwelling guild that occurs in deep backwaters with clay-mud substrate, composed of the Characiformes A. aff. bimaculatus and O. hepsetus; (3 a run-dwelling guild that occurs in sandy and shallow substrate, composed of T. striatulus; and (4 a fast-flowing guild that occurs primarily along shorelines with shallow mud bottoms, composed of H. malabaricus and P. maculatus. Our hypothesis was confirmed, as different habitat preferences by fishes appear to occur in this regulated river.

  5. Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.

    2011-07-01

    Protecting water resources for expanding human enterprise while conserving valued natural habitat is among the greatest challenges of the 21st century. Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of non-native plant species in riparian areas along streams, canals and rivers in geographically arid regions. This paper sets out to identify when and where non-native riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semiarid river systems. We develop an ecophysiological framework that focuses on two main criteria: (1) examination of the physiological traits that promote non-native species establishment and persistence across environmental gradients, and (2) assessment of where and to what extent hydrologic fluxes are potentially altered by the establishment of introduced species at varying scales from individual plants, to small river reaches, to entire river basins. We highlight three non-native plant species that currently dominate southwestern United States riparian forests. These include tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). As with other recent reviews, we suspect that in many cases the removal of these, and other non-native species will have little or no impact on either streamflow volume or groundwater levels. However, we identify potential exceptions where the expansion of non-native plant species could have significant impact on ecohydrologic processes associated with southwestern United States river systems. Future research needs are outlined that will ultimately assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given

  6. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    Science.gov (United States)

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  7. Factors influencing tropical island freshwater fishes:Species, status, and management implications in puerto rico [Factores que influencian a los peces tropicales de agua dulce: Especies, estado actual e implicaciones para el manejo en Puerto Rico

    Science.gov (United States)

    Wesley, Neal J.; Lilyestrom, Craig G.; Kwak, T.J.

    2009-01-01

    Anthropogenic effects including river regulation, watershed development, contamination, and fish introductions have substantially affected the majority of freshwater habitats in Europe and North America. This pattern of resource development and degradation is widespread in the tropics, and often little is known about the resources before they are lost. This article describes the freshwater resources of Puerto Rico and identifies factors that threaten conservation of native fishes. The fishes found in freshwater habitats of Puerto Rico represent a moderately diverse assemblage composed of 14 orders, 29 families, and 82 species. There are fewer than 10 species of native peripherally-freshwater fish that require a link to marine systems. Introductions of nonindigenous species have greatly expanded fish diversity in freshwater systems, and native estuarine and marine species (18 families) also commonly enter lowland rivers and brackish lagoons. Environmental alterations, including land use and development, stream channelization, pollution, and the impoundment of rivers, combined with nonnative species introductions threaten the health and sustainability of aquatic resources in Puerto Rico. Six principal areas for attention that are important influences on the current and future status of the freshwater fish resources of Puerto Rico are identified and discussed.

  8. Performance and lipid profiles of native chickens fed diet containing skipjack fish oil as by-product of fish canning factory

    Science.gov (United States)

    Leke, J. R.; Mandey, J. S.; Laihad, J. T.; Tinangon, R. M.; Tangkau, L.; Junus, C.

    2018-01-01

    The study was conducted to determine the use of fish oil as by-product of fish canning factory in diet on the performance and lipid profiles of native chickens. The experiment used 100 native chicken with an average initial body weight of 48,9 gram (sd + 9.9), was used in this study for 8 weeks experiment. These were arranged by a completely randomized design with 5 treatments, 5 replications and 4 hens in replication each. The diets were: R0 = 100% Based Diet (BD) + 0% Fish Oil (FO); R1 = 98.5% BD + 1.5% FO; R2 = 98% BD + 2% FO; R3 = 97.5% BD + 2.5% FO; R4 = 97 % BD + 3% FO. Feed and water were provided ad libitum. Variables were performance parameters and lipid profiles. Results showed that fish oil inclusion in diets were significantly increased feed intake, body weight gain, carcass percentage, liver, breast and thigh weight, and decreased blood cholesterol, carbohydrate and meat cholesterol, and also tended to decrease abdominal fat. However, there were no affected on feed conversion, water, protein, fat and ash of breast meat. It can be concluded that the use of fish oil in diet up to 3% could improved performance parameters of native chickens.

  9. Non-Native (Exotic) Snake Envenomations in the U.S., 2005–2011

    OpenAIRE

    Warrick, Brandon J.; Boyer, Leslie V.; Seifert, Steven A.

    2014-01-01

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33–40). Males comprised 79% and females 21%. The averag...

  10. Non-native educators in English language teaching

    CERN Document Server

    Braine, George

    2013-01-01

    The place of native and non-native speakers in the role of English teachers has probably been an issue ever since English was taught internationally. Although ESL and EFL literature is awash, in fact dependent upon, the scrutiny of non-native learners, interest in non-native academics and teachers is fairly new. Until recently, the voices of non-native speakers articulating their own concerns have been even rarer. This book is a response to this notable vacuum in the ELT literature, providing a forum for language educators from diverse geographical origins and language backgrounds. In addition to presenting autobiographical narratives, these authors argue sociopolitical issues and discuss implications for teacher education, all relating to the theme of non-native educators in ETL. All of the authors are non-native speakers of English. Some are long established professionals, whereas others are more recent initiates to the field. All but one received part of the higher education in North America, and all excep...

  11. Interspecific competition between alien and native congeneric species

    Science.gov (United States)

    Garcia-Serrano, H.; Sans, F. X.; Escarré, J.

    2007-01-01

    A good way to check hypotheses explaining the invasion of ecosystems by exotic plants is to compare alien and native congeneric species. To test the hypothesis that invasive alien plants are more competitive than natives, we designed a replacement series experiment to evaluate interspecific competition between three Senecio species representing the same bushy life form: two alien species ( S. inaequidens and S. pterophorus, both from South Africa) and a native species from the south-east of the Iberian Peninsula and Maghreb ( S. malacitanus). While S. inaequidens is widespread throughout western Europe and is expanding towards the south of Spanish-French border, the geographical distribution of the recently introduced S. pterophorus is still limited to north-eastern Spain. Plants from each species were grown in pure and in mixed cultures with one of their congeners, and water availability was manipulated to evaluate the effects of water stress on competitive abilities. Our results show that the alien S. inaequidens is the most competitive species for all water conditions. The native S. malacitanus is more competitive that the alien S. pterophorus in water stress conditions, but this situation is reversed when water availability is not limiting.

  12. Suppression of invasive topmouth gudgeon Pseudorasbora parva by native pike Esox lucius in ponds

    NARCIS (Netherlands)

    Lemmens, P.; Mergeay, J.; Vanhove, T.; De Meester, L.; Declerck, S.A.J.

    2015-01-01

    1. Asian topmouth gudgeon Pseudorasbora parva has been recognized as a highly invasive cyprinid fish species in Europe that can present risk to native fish communities. 2. The present study aimed to investigate whether a native piscivorous fish, pike Esox lucius, is able to reduce the establishment

  13. Fishes of the White River basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  14. Behavioral and physiological adaptations to high-flow velocities in chubs (Gila spp.) native to Southwestern USA.

    Science.gov (United States)

    Moran, Clinton J; Gerry, Shannon P; O'Neill, Matthew W; Rzucidlo, Caroline L; Gibb, Alice C

    2018-05-18

    Morphological streamlining is often associated with physiological advantages for steady swimming in fishes. Though most commonly studied in pelagic fishes, streamlining also occurs in fishes that occupy high-flow environments. Before the installation of dams and water diversions, bonytail (Cyprinidae, Gila elegans ), a fish endemic to the Colorado River (USA), regularly experienced massive, seasonal flooding events. Individuals of G. elegans display morphological characteristics that may facilitate swimming in high-flow conditions, including a narrow caudal peduncle and a high aspect ratio caudal fin. We tested the hypothesis that these features improve sustained swimming performance in bonytail by comparing locomotor performance in G. elegans with that of the closely related roundtail chub ( Gila robusta ) and two non-native species, rainbow trout ( Oncorhynchus mykiss ) and smallmouth bass ( Micropterus dolomieu ), using a Brett-style respirometer and locomotor step-tests. Gila elegans had the lowest estimated drag coefficient and the highest sustained swimming speeds relative to the other three species. There were no detectible differences in locomotor energetics during steady swimming among the four species. When challenged by high-velocity water flows, the second native species examined in this study, G. robusta , exploited the boundary effects in the flow tank by pitching forward and bracing the pelvic and pectoral fins against the acrylic tank bottom to 'hold station'. Because G. robusta can station hold to prevent being swept downstream during high flows and G. elegans can maintain swimming speeds greater than those of smallmouth bass and rainbow trout with comparable metabolic costs, we suggest that management agencies could use artificial flooding events to wash non-native competitors downstream and out of the Colorado River habitat. © 2018. Published by The Company of Biologists Ltd.

  15. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    Science.gov (United States)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  16. Studies on endangered and rare non-commercial fish species recorded in the Pomeranian Bay (southern Baltic Sea) in 2010-2013

    Science.gov (United States)

    Więcaszek, Beata; Sobecka, Ewa; Keszka, Sławomir; Stepanowska, Katarzyna; Dudko, Stanisław; Biernaczyk, Marcin; Wrzecionkowski, Konrad

    2015-12-01

    This paper presents the results of studies on endangered and rare non-commercial fish species ( Spinachia spinachia, Nerophis ophidion, Syngnathus typhle, Agonus cataphractus, Pholis gunnellus, Enchelyopus cimbrius, Cyclopterus lumpus) and one lamprey species ( Lampetra fluviatilis), recorded as bycatch during monitoring surveys in 2010-2013 in the Pomeranian Bay. Two species were observed for the first time in the Pomeranian Bay: A. cataphractus and E. cimbrius. Descriptions of parasite fauna are provided for C. lumpus and E. cimbrius, which were infected with four pathogenic species from Neomonada, Digenea, Nematoda, and Acanthocephala. Almost all parasite species were new in the hosts examined.

  17. Reanalysis and semantic persistence in native and non-native garden-path recovery.

    Science.gov (United States)

    Jacob, Gunnar; Felser, Claudia

    2016-01-01

    We report the results from an eye-movement monitoring study investigating how native and non-native speakers of English process temporarily ambiguous sentences such as While the gentleman was eating the burgers were still being reheated in the microwave, in which an initially plausible direct-object analysis is first ruled out by a syntactic disambiguation (were) and also later on by semantic information (being reheated). Both participant groups showed garden-path effects at the syntactic disambiguation, with native speakers showing significantly stronger effects of ambiguity than non-native speakers in later eye-movement measures but equally strong effects in first-pass reading times. Ambiguity effects at the semantic disambiguation and in participants' end-of-trial responses revealed that for both participant groups, the incorrect direct-object analysis was frequently maintained beyond the syntactic disambiguation. The non-native group showed weaker reanalysis effects at the syntactic disambiguation and was more likely to misinterpret the experimental sentences than the native group. Our results suggest that native language (L1) and non-native language (L2) parsing are similar with regard to sensitivity to syntactic and semantic error signals, but different with regard to processes of reanalysis.

  18. Defining fish community structure in Lake Winnipeg using stable isotopes (δ13C, δ15N, δ34S): Implications for monitoring ecological responses and trophodynamics of mercury and other trace elements

    International Nuclear Information System (INIS)

    Ofukany, Amy F.A.; Wassenaar, Leonard I.; Bond, Alexander L.; Hobson, Keith A.

    2014-01-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km 2 watershed and the arrival of non-native zooplankters and fishes. We measured δ 13 C, δ 15 N, and δ 34 S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ 13 C and δ 34 S, and lower δ 15 N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations. - Highlights: • Anthropogenic eutrophication and non-native species affect Lake Winnipeg’s ecosystem. • We measured stable isotopes and trace elements in 15 native fish species. • There was more evidence for growth dilution than biomagnification for most elements. • The trophic structures of the north and south basins were different. • These results will help determine the effects of recent arrival of zebra mussels

  19. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    Science.gov (United States)

    Rosen, Barry H.; St. Amand, Ann

    2015-09-14

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  20. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  1. Native Speakers' Perception of Non-Native English Speech

    Science.gov (United States)

    Jaber, Maysa; Hussein, Riyad F.

    2011-01-01

    This study is aimed at investigating the rating and intelligibility of different non-native varieties of English, namely French English, Japanese English and Jordanian English by native English speakers and their attitudes towards these foreign accents. To achieve the goals of this study, the researchers used a web-based questionnaire which…

  2. Hierarchical demographic approaches for assessing invasion dynamics of non-indigenous species: An example using northern snakehead (Channa argus)

    Science.gov (United States)

    Jiao, Y.; Lapointe, N.W.R.; Angermeier, P.L.; Murphy, B.R.

    2009-01-01

    Models of species' demographic features are commonly used to understand population dynamics and inform management tactics. Hierarchical demographic models are ideal for the assessment of non-indigenous species because our knowledge of non-indigenous populations is usually limited, data on demographic traits often come from a species' native range, these traits vary among populations, and traits are likely to vary considerably over time as species adapt to new environments. Hierarchical models readily incorporate this spatiotemporal variation in species' demographic traits by representing demographic parameters as multi-level hierarchies. As is done for traditional non-hierarchical matrix models, sensitivity and elasticity analyses are used to evaluate the contributions of different life stages and parameters to estimates of population growth rate. We applied a hierarchical model to northern snakehead (Channa argus), a fish currently invading the eastern United States. We used a Monte Carlo approach to simulate uncertainties in the sensitivity and elasticity analyses and to project future population persistence under selected management tactics. We gathered key biological information on northern snakehead natural mortality, maturity and recruitment in its native Asian environment. We compared the model performance with and without hierarchy of parameters. Our results suggest that ignoring the hierarchy of parameters in demographic models may result in poor estimates of population size and growth and may lead to erroneous management advice. In our case, the hierarchy used multi-level distributions to simulate the heterogeneity of demographic parameters across different locations or situations. The probability that the northern snakehead population will increase and harm the native fauna is considerable. Our elasticity and prognostic analyses showed that intensive control efforts immediately prior to spawning and/or juvenile-dispersal periods would be more effective

  3. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  4. Effects of invasive alien kahili ginger (Hedychium gardnerianum) on native plant species regeneration in a Hawaiian rainforest

    Science.gov (United States)

    Minden, V.; Jacobi, J.D.; Porembski, S.; Boehmer, H.J.

    2010-01-01

    Questions: Does the invasive alien Hedychium gardnerianum (1) replace native understory species, (2) suppress natural regeneration of native plant species, (3) increase the invasiveness of other non-native plants and (4) are native forests are able to recover after removal of H. gardnerianum. Location: A mature rainforest in Hawai'i Volcanoes National Park on the island of Hawai'i (about 1200 m. a.s.l.; precipitation approximately 2770mm yr-1). Study sites included natural plots without effects of alien plants, ginger plots with a H. gardnerianum-domimted herb layer and cleared plots treated with herbicide to remove alien plants. Methods: Counting mature trees, saplings and seedlings of native and alien plant species. Using nonparametric H-tests to compare impact of H. gardnerianum on the structure of different sites. Results: Results confirmed the hypothesis that H. gardnerianum has negative effects on natural forest dynamics. Lower numbers of native tree seedlings and saplings were found on ginger-dominated plots. Furthermore, H. gardnerianum did not show negative effects on the invasive alien tree species Psidium cattleianum. Conclusions: This study reveals that where dominance of H. gardnerianum persists, regeneration of the forest by native species will be inhibited. Furthermore, these areas might experience invasion by P. cattleianum, resulting in displacement of native canopy species in the future, leading to a change in forest structure and loss of other species dependent on natural rainforest, such as endemic birds. However, if H. gardnerianum is removed the native Hawaiian forest is likely to regenerate and regain its natural structure. ?? 2009 International Association for Vegetation Science.

  5. Native Seed Supply and the Restoration Species Pool.

    Science.gov (United States)

    Ladouceur, Emma; Jiménez-Alfaro, Borja; Marin, Maria; De Vitis, Marcello; Abbandonato, Holly; Iannetta, Pietro P M; Bonomi, Costantino; Pritchard, Hugh W

    2018-01-01

    Globally, annual expenditure on ecological restoration of degraded areas for habitat improvement and biodiversity conservation is approximately $18bn. Seed farming of native plant species is crucial to meet restoration goals, but may be stymied by the disconnection of academic research in seed science and the lack of effective policies that regulate native seed production/supply. To illustrate this problem, we identified 1,122 plant species important for European grasslands of conservation concern and found that only 32% have both fundamental seed germination data available and can be purchased as seed. The " restoration species pool," or set of species available in practice, acts as a significant biodiversity selection filter for species use in restoration projects. For improvement, we propose: (1) substantial expansion of research and development on native seed quality, viability, and production; (2) open-source knowledge transfer between sectors; and (3) creation of supportive policy intended to stimulate demand for biodiverse seed.

  6. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  7. Dna c-values of 20 invasive alien species and 3 native species in south china

    Directory of Open Access Journals (Sweden)

    Gong Ni

    2014-01-01

    Full Text Available Cultivated fields and forests in South China are experiencing serious damage due to invasive alien plants. We investigated the relation between DNA C-values and invasiveness. The DNA C-values of 23 species ranged from 0.39 pg to 3.37 pg. Herbs, perennials and native species had higher mean DNA C-values than shrubs, annuals and invasive alien species. DNA C-values decreased with increasing invasiveness. Paederia scandens, a harmful native species, has the lowest DNA C-value among the perennials, indicating that native species with low nuclear content may also possess an invasive potential.

  8. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  9. Hybridisation between native Oreochromis species and introduced ...

    African Journals Online (AJOL)

    The Nile tilapia Oreochromis niloticus has been introduced throughout Africa outside its native range for aquaculture purposes. Hybridisation between escaped O. niloticus and native Oreochromis species is of concern due to potential negative effects on wild genetic resources for conservation, aquaculture and capture ...

  10. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis in the UK.

    Directory of Open Access Journals (Sweden)

    E M Ann Rees

    Full Text Available Information about the socioeconomic drivers of Silurus glanis anglers in the UK were collected using questionnaires from a cross section of mixed cyprinid fisheries to elucidate human dimensions in angling and non-native fisheries management. Respondents were predominantly male (95%, 30-40 years of age with £500 per annum. The proportion of time spent angling for S. glanis was significantly related to angler motivations; fish size, challenge in catch, tranquil natural surroundings, escape from daily stress and to be alone were considered important drivers of increased time spent angling. Overall, poor awareness of: the risks and adverse ecological impacts associated with introduced S. glanis, non-native fisheries legislation, problems in use of unlimited ground bait and high fish stocking rates in angling lakes were evident, possibly related to inadequate training and information provided by angling organisations to anglers, as many stated that they were insufficiently informed.

  11. Defining fish community structure in Lake Winnipeg using stable isotopes (δ{sup 13}C, δ{sup 15}N, δ{sup 34}S): Implications for monitoring ecological responses and trophodynamics of mercury and other trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Ofukany, Amy F.A. [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3 (Canada); Wassenaar, Leonard I. [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada); Bond, Alexander L., E-mail: alex.bond@rspb.org.uk [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada); Hobson, Keith A. [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada)

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km{sup 2} watershed and the arrival of non-native zooplankters and fishes. We measured δ{sup 13}C, δ{sup 15}N, and δ{sup 34}S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ{sup 13}C and δ{sup 34}S, and lower δ{sup 15}N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations. - Highlights: • Anthropogenic eutrophication and non-native species affect Lake Winnipeg’s ecosystem. • We measured stable isotopes and trace elements in 15 native fish species. • There was more evidence for growth dilution than biomagnification for most elements. • The trophic structures of the north and south basins were different. • These results will help determine the effects of recent arrival of zebra mussels.

  12. Ornamental fish in pet stores in Greece: a threat to biodiversity?

    Directory of Open Access Journals (Sweden)

    I. PAPAVLASOPOULOU

    2013-12-01

    Full Text Available The aquarium trade has been recognized as an important pathway for the introduction of invasive species around the world. This study investigates the availability of ornamental fish species in ten large-size, centrally positioned aquarium stores that control a large share of imports and the Hellenic market chain, and aims to provide a provisional checklist on the aquarium fish trade in Greece. For each recorded species, additional data concerning various aspects (e.g. natural environment, native range, established as aliens, conservation status and threats to humans were collected from Fishbase, IUCN red list and the scientific literature. Overall, 326 fish species belonging to 64 families were reported according to the store labels. The majority of the species recorded were freshwater (66%, originating mainly from South America and Asia, while most of the marine species (26% had primarily an Indo-Pacific native distribution. Among the freshwater fishes, Cichlidae and Cyprinidae were the dominant families with 64 and 27 species, respectively, while the family Acanthuridae dominated within the marine fishes with ten species. The vast majority of both freshwater and marine species (>90% were tropical. Concerning the presence of alien species, 62 ornamental species have been established outside their natural range, with 22 of them positively confirmed as aliens in the European waters. Moreover, 25 species were listed in the critically endangered (CR, endangered (EN and vulnerable (VU categories of the IUCN red list. Even more surprisingly, for 192 species recorded, data were missing to assign their conservation status or had not been assessed at all. Finally, the majority of the species (84% were harmless to humans. However, 35 species (11% were recognised as potentially harmful (i.e. venomous, ciguatera poisoning, traumatogenic and two were found to be poisonous if consumed. In conclusion, the aquarium fish sector in Greece is practically

  13. Semantic and phonetic enhancements for speech-in-noise recognition by native and non-native listeners.

    Science.gov (United States)

    Bradlow, Ann R; Alexander, Jennifer A

    2007-04-01

    Previous research has shown that speech recognition differences between native and proficient non-native listeners emerge under suboptimal conditions. Current evidence has suggested that the key deficit that underlies this disproportionate effect of unfavorable listening conditions for non-native listeners is their less effective use of compensatory information at higher levels of processing to recover from information loss at the phoneme identification level. The present study investigated whether this non-native disadvantage could be overcome if enhancements at various levels of processing were presented in combination. Native and non-native listeners were presented with English sentences in which the final word varied in predictability and which were produced in either plain or clear speech. Results showed that, relative to the low-predictability-plain-speech baseline condition, non-native listener final word recognition improved only when both semantic and acoustic enhancements were available (high-predictability-clear-speech). In contrast, the native listeners benefited from each source of enhancement separately and in combination. These results suggests that native and non-native listeners apply similar strategies for speech-in-noise perception: The crucial difference is in the signal clarity required for contextual information to be effective, rather than in an inability of non-native listeners to take advantage of this contextual information per se.

  14. Accounting for Incomplete Species Detection in Fish Community Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University; Jager, Yetta [ORNL

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated species richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e.g. number of

  15. Determinants of success in native and non-native listening comprehension: an individual differences approach

    NARCIS (Netherlands)

    Andringa, S.; Olsthoorn, N.; van Beuningen, C.; Schoonen, R.; Hulstijn, J.

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation

  16. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization

    Directory of Open Access Journals (Sweden)

    Ramona-Elena Irimia

    2017-08-01

    Full Text Available Centaurea solstitialis L. (yellow starthistle, Asteraceae is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes, however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg, with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  17. Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization.

    Science.gov (United States)

    Irimia, Ramona-Elena; Montesinos, Daniel; Eren, Özkan; Lortie, Christopher J; French, Kristine; Cavieres, Lohengrin A; Sotes, Gastón J; Hierro, José L; Jorge, Andreia; Loureiro, João

    2017-01-01

    Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C . solstitialis had been reported to be diploid (2 n  = 2 x  = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C . solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C . solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level.

  18. Conservation and restoration of forest trees impacted by non-native pathogens: the role of genetics and tree improvement

    Science.gov (United States)

    R.A. Sniezko; L.A. Winn

    2017-01-01

    North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...

  19. Nepůvodní druhy sladkovodních ryb středomořského úmoří Balkánu

    OpenAIRE

    Balog, Štefan

    2016-01-01

    Mediterranean basin of the Balkan Peninsula is one of the hot-spots of biodiversity, with a high diversity of freshwater fishes and high degree of endemism. Introduction of non-native species greatly affects ecosystems and native species of fish. There were many reasons for introductions in the past. Aquaculture, sport fishing and ornamental fish belong to the most important reasons for introduction of non-native fish species. Altogether, 39 species belonging to 12 families were introduced in...

  20. Native and alien ichthyofauna in coastal fishery of Rhodes (eastern Mediterranean (2002-2010

    Directory of Open Access Journals (Sweden)

    Maria Corsini-Foka

    2015-11-01

    Full Text Available Rhodes Island (southeastern Aegean is located in a geographically crucial region subjected to biological invasions. Among the 108 alien species recorded, 30 are fish, all of Indo-Pacific/Red Sea origin introduced via Suez through Lessepsian migration (Corsini-Foka et al., 2015; Corsini-Foka and Kondylatos, In press; Kondylatos and Corsini-Foka, In press. In this oligotrophic area, fishery production is limited, due to the paucity of species of commercial interest and their low abundance, while adapted infrastructures for fish landing and marketing are absent. Coastal fishery has dominated during the last twenty years (ELSTAT, 2015. Within 2002-2010, the Hydrobiological Station of Rhodes conducted experimental boat seining surveys, using exclusively a professional 12m fishing boat, at 5-30 m depth, in the Gulf of Trianda (sandy mud, Posidonia meadows. The 94 carried out hauls (7-18 hauls/year, produced a total fish biomass of approximately 4400 Kg, recording 97 fish (86 native, 11 alien and 4 cephalopod species (3 native, 1 alien. Fish species ranged from 32 to 63/year, whereas aliens ranged from 5 to 8 species. Almost steadily present since 2002, were earlier colonizers such as Apogonichthyoides pharaonis, Siganus rivulatus, Siganus luridus, Stephanolepis diaspros and more recent ones as Pteragogus trispilus, Sphyraena chrysotaenia and Fistularia commersonii, while Lagocephalus sceleratus, firstly recorded in 2005, occurred regularly since 2007; the presence of Lagocephalus suezensis, Sphyraena flavicauda and Upeneus pori was scattered since their first records in 2004-2005. Alien fish commercially important are the Siganids, S. chrysotaenia and surprisingly F. commersonii. In terms of biomass per haul, alien fish ranged from 0 to 18.5 Kg, native from 1.5 to 182 Kg. Catches were dominated by Centracanthidae (Spicara spp. and Sparidae (Boops boops, sometimes by other native such as Oblada melanura, Diplodus spp., Chromis Chromis and others. The

  1. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  2. Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda)

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Hudcová, Iveta; Dávidová, Martina; Adámek, Zdeněk; Kašný, M.; Jurajda, Pavel

    2015-01-01

    Roč. 8, č. 1 (2015), s. 382 ISSN 1756-3305 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Bucephalus polymorphus * Complex life cycle * Goby * Infectivity * Intermediate host * Non-native species * Trematode Subject RIV: EH - Ecology, Behaviour Impact factor: 3.234, year: 2015

  3. Local fish extinction in a small tropical lake in Brazil

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    Full Text Available Lagoa Santa is a shallow permanent lake, located in Belo Horizonte metropolitan region, Brazil. In this study, the loss in fish diversity of the lake over the past 150 years is evaluated. Local extinction of almost 70% of the original fish fauna is described. Probably, the main causes of this richness loss were: obstruction of natural communication with rio das Velhas, non-native species introduction, change in the water level, organic pollution, and elimination of littoral and submerged vegetation.

  4. Economic impacts of non-native forest insects in the continental United States.

    Directory of Open Access Journals (Sweden)

    Juliann E Aukema

    Full Text Available Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.

  5. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    Science.gov (United States)

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional

  6. Fish fauna of the Brahmaputra River, Bangladesh: richness, threats and conservation needs

    Directory of Open Access Journals (Sweden)

    Shams Muhammad Galib

    2015-12-01

    Full Text Available The Brahmaputra River is one of the largest rivers in the world as well as in Bangladesh. The present study was carried out for a period of one year from January to December 2013 with a view to assessing the availability of fishes in the river with species emphasis on species richness, existing threats and conservation issues. Daytime and night sampling were carried out in three sites located along the upstream to downstream course of the river on a monthly basis. Three fishing gears including cast net, seine net and drag net and one fishing trap were employed to collect fishes. A total of 67 finfish species including 63 indigenous and 4 exotic/alien species have been recorded belonging to 46 genera, 24 families and 8 orders. Cypriniformes and Cyprinidae were the most dominating order (21 species family (15 species of native fishes. A small portion (2% of native fishes was globally threatened. Over one third of total species (38% were considered threatened to extinct species in Bangladesh. Population trend of over two third of total fish species was Declining in the river. Major threats were alien/invasive species, banned fishing gears and loss of habitats.

  7. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    Science.gov (United States)

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  8. Fisheries oceanography of northern pelagic fish species

    DEFF Research Database (Denmark)

    Tsoukali, Stavroula

    for marine organisms. One of the impacts will be the time that species start to spawn, and there is already evidence for earlier spawning in some North Sea fish species. A change like that may likely have a chain reaction, affecting larval stages and whether they will live in environments with high food...... of the species they consume now and increased availability of new species. In addition, there will likely be economic impacts on the local fishing communities. How species respond to climate change is a field of research that receives great attention because the responses will affect the management of fisheries......People are familiar with marine fish species and the great variety of different species that are available in the market, such as herring, cod and sole. What may not be well known is that every individual fish goes through a long, risky journey during its life before reaching maturity. Most...

  9. DEVELOPMENT OF TECHNOLOGY FOR FISH CANNED PATE'S COD-FISH SPECIES

    Directory of Open Access Journals (Sweden)

    A. A. Efremova

    2014-01-01

    Full Text Available Summary. Fish and seafood play an important role in a balanced diet. The most reliable method of preservation is the production of canned fish. Cod fishery considered traditional objects of the North Basin, which catches in recent years stored at a consistently high level. They are represented, mainly cod, haddock, pollack, whiting. Lately there has been a tendency to increase yield loaves (polar bib. The aim of this work - the development of technology - canned pate's cod fish species with the addition of plant materials. We used the adopted research microbiological, chemical and physical methods. The weight proportion of water, lipids, protein, mineral raw determined according to State standard 7636-85. Developed a technology - canned pate's cod fish species with the addition of plant materials. Optimized formulation is set to sterilization. Experimentally determined parameters of quality canned and given comprehensive assessment nutritional value of new products, organoleptic, physico-chemical, biochemical and microbiological tests showed that canned pates of Gadidae species of fish with vegetables, meet all safety requirements and are characterized, along with excellent consumer properties, high nutritional value. Based on the results of the research complex developed technical documentation for production of canned vegetables, pates of Gadidae species.

  10. Effects of hay management and native species sowing on grassland community structure, biomass, and restoration.

    Science.gov (United States)

    Foster, Bryan L; Kindscher, Kelly; Houseman, Greg R; Murphy, Cheryl A

    2009-10-01

    Prairie hay meadows are important reservoirs of grassland biodiversity in the tallgrass prairie regions of the central United States and are the object of increasing attention for conservation and restoration. In addition, there is growing interest in the potential use of such low-input, high-diversity (LIHD) native grasslands for biofuel production. The uplands of eastern Kansas, USA, which prior to European settlement were dominated by tallgrass prairie, are currently utilized for intensive agriculture or exist in a state of abandonment from agriculture. The dominant grasslands in the region are currently high-input, low-diversity (HILD) hay fields seeded to introduced C3 hay grasses. We present results from a long-term experiment conducted in a recently abandoned HILD hay field in eastern Kansas to evaluate effects of fertilization, haying, and native species sowing on community dynamics, biomass, and potential for restoration to native LIHD hay meadow. Fertilized plots maintained dominance by introduced grasses, maintained low diversity, and were largely resistant to colonization throughout the study. Non-fertilized plots exhibited rapid successional turnover, increased diversity, and increased abundance of C4 grasses over time. Haying led to modest changes in species composition and lessened the negative impact of fertilization on diversity. In non-fertilized plots, sowing increased representation by native species and increased diversity, successional turnover, and biomass production. Our results support the shifting limitations hypothesis of community organization and highlight the importance of species pools and seed limitations in constraining successional turnover, community structure, and ecosystem productivity under conditions of low fertility. Our findings also indicate that several biological and functional aspects of LIHD hay meadows can be restored from abandoned HILD hay fields by ceasing fertilization and reintroducing native species through

  11. News from the western European invasion front

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Invasive species are one of the main threats to aquatic biodiversity, being particularly serious in regions with high number of endemic and endangered fishes. Portugal has currently one of the highest numbers of non-native fishes per area in western Europe and the rate of species arrival is increasing. In this review, an updated status of non-native fishes is provided with recent trends of leading vectors and routes. Non-native fish component represents 31% of the freshwater fish diversity existing in the country, totaling 20 established species out of 28 introduced species. In the last decade, the non-native fish detection rate (a proxy of introduction rate has been one new species in every two years. Most of the non-native fishes in Portugal are mainly from Central Europe and North America and were illegally introduced for sports fisheries. However, some recent records are also linked with the ornamental trade, from Asia, indicating an increase of this vector in fish introductions. The international drainages exhibit the highest number of non-native fishes due to prevalent invasion routes from Spain, although direct introductions to national drainages in spatially limited areas suggest new invasion routes caused by higher propagule pressure of leading vectors (fisheries and ornamental trade. Management options are presented in order to tackle this growing threat, namely risk assessment, enforcement and environmental education. Only a comprehensive and integrated approach at an Iberian level could reduce the current rate of non-native species arrival to this region and help us to preserve the Iberian freshwater fishes for future generations.

  12. The online application of binding condition B in native and non-native pronoun resolution

    Directory of Open Access Journals (Sweden)

    Clare ePatterson

    2014-02-01

    Full Text Available Previous research has shown that anaphor resolution in a non-native language may be more vulnerable to interference from structurally inappropriate antecedents compared to native anaphor resolution. To test whether previous findings on reflexive anaphors generalise to non-reflexive pronouns, we carried out an eye-movement monitoring study investigating the application of binding condition B during native and non-native sentence processing. In two online reading experiments we examined when during processing local and/or non-local antecedents for pronouns were considered in different types of syntactic environment. Our results demonstrate that both native English speakers and native German-speaking learners of English showed online sensitivity to binding condition B in that they did not consider syntactically inappropriate antecedents. For pronouns thought to be exempt from condition B (so-called 'short-distance pronouns', the native readers showed a weak preference for the local antecedent during processing. The non-native readers, on the other hand, showed a preference for the matrix subject even where local coreference was permitted, and despite demonstrating awareness of short-distance pronouns' referential ambiguity in a complementary offline task. This indicates that non-native comprehenders are less sensitive during processing to structural cues that render pronouns exempt from condition B, and prefer to link a pronoun to a salient subject antecedent instead.

  13. Assessing effects of stocked trout on nongame fish assemblages in southern Appalachian Mountain streams

    Science.gov (United States)

    Weaver, D.; Kwak, Thomas J.

    2013-01-01

    Fisheries managers are faced with the challenge of balancing the management of recreational fisheries with that of conserving native species and preserving ecological integrity. The negative effects that nonnative trout species exert on native trout are well documented and include alteration of competitive interactions, habitat use, and production. However, the effects that nonnative trout may exert on nongame fish assemblages are poorly understood. Our objectives were to quantify the effects of trout stocking on native nongame fish assemblages intensively on one newly stocked river, the North Toe River, North Carolina, and extensively on other southern Appalachian Mountain streams that are annually stocked with trout. In the intensive study, we adopted a before-after, control-impact (BACI) experimental design to detect short-term effects on the nongame fish assemblage and found no significant differences in fish density, species richness, species diversity, or fish microhabitat use associated with trout stocking. We observed differences in fish microhabitat use between years, however, which suggests there is a response to environmental changes, such as the flow regime, which influence available habitat. In the extensive study, we sampled paired stocked and unstocked stream reaches to detect long-term effects from trout stocking; however, we detected no differences in nongame fish density, species richness, species diversity, or population size structure between paired sites. Our results revealed high inherent system variation caused by natural and anthropogenic factors that appear to overwhelm any acute or chronic effect of stocked trout. Furthermore, hatchery-reared trout may be poor competitors in a natural setting and exert a minimal or undetectable impact on native fish assemblages in these streams. These findings provide quantitative results necessary to assist agencies in strategic planning and decision making associated with trout fisheries, stream

  14. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    Science.gov (United States)

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife

  15. Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways

    Science.gov (United States)

    Andrew M. Liebhold; Takehiko Yamanaka; Alain Roques; Sylvie Augustin; Steven L. Chown; Eckehard G. Brockerhoff; Petr Pysek

    2016-01-01

    Insects are among the world's most ecologically and economically important invasive species. Here we assemble inventories of native and nonnative species from 20 world regions and contrast relative numbers among these species assemblages. Multivariate ordination indicates that the distribution of species among insect orders is completely different between native...

  16. Determinants of Success in Native and Non-Native Listening Comprehension: An Individual Differences Approach

    Science.gov (United States)

    Andringa, Sible; Olsthoorn, Nomi; van Beuningen, Catherine; Schoonen, Rob; Hulstijn, Jan

    2012-01-01

    The goal of this study was to explain individual differences in both native and non-native listening comprehension; 121 native and 113 non-native speakers of Dutch were tested on various linguistic and nonlinguistic cognitive skills thought to underlie listening comprehension. Structural equation modeling was used to identify the predictors of…

  17. Non-native molluscan colonizers on deliberately placed shipwrecks in the Florida Keys, with description of a new species of potentially invasive worm-snail (Gastropoda: Vermetidae

    Directory of Open Access Journals (Sweden)

    Rüdiger Bieler

    2017-04-01

    Full Text Available Artificial reefs created by deliberately sinking ships off the coast of the Florida Keys island chain are providing new habitat for marine invertebrates. This newly developing fouling community includes the previously reported invasive orange tube coral Tubastraea coccinea and the non-native giant foam oyster Hyotissa hyotis. New SCUBA-based surveys involving five shipwrecks spanning the upper, middle, and lower Florida Keys, show T. coccinea now also established in the lower Keys and H. hyotis likewise extending to new sites. Two additional mollusks found on the artificial reefs, the amathinid gastropod Cyclothyca pacei and gryphaeid oyster Hyotissa mcgintyi, the latter also common in the natural reef areas, are discussed as potentially non-native. A new species of sessile, suspension-feeding, worm-snail, Thylacodes vandyensis Bieler, Rawlings & Collins n. sp. (Vermetidae, is described from the wreck of the USNS Vandenberg off Key West and discussed as potentially invasive. This new species is compared morphologically and by DNA barcode markers to other known members of the genus, and may be a recent arrival from the Pacific Ocean. Thylacodes vandyensis is polychromatic, with individuals varying in both overall head-foot coloration and mantle margin color pattern. Females brood stalked egg capsules attached to their shell within the confines of their mantle cavity, and give rise to crawl-away juveniles. Such direct-developing species have the demonstrated capacity for colonizing habitats isolated far from their native ranges and establishing rapidly growing founder populations. Vermetid gastropods are common components of the marine fouling community in warm temperate and tropical waters and, as such, have been tagged as potentially invasive or with a high potential to be invasive in the Pacific Ocean. As vermetids can influence coral growth/composition in the Pacific and have been reported serving as intermediate hosts for blood flukes of

  18. Chinese College Students' Views on Native English and Non-Native English in EFL Classrooms

    Science.gov (United States)

    Qian, Yang; Jingxia, Liu

    2016-01-01

    With the development of globalization, English is clearly spoken by many more non-native than native speakers, which raises the discussion of English varieties and the debate regarding the conformity to Standard English. Although a large number of studies have shown scholars' attitudes towards native English and non-native English, little research…

  19. A Study of Fish Lice (Argulus Sp.) Infection in Freshwater Food Fish

    OpenAIRE

    Aalberg K.; Koščová L.; Šmiga Ľ.; Košuth P.; Koščo J.; Oros M.; Barčák D.; Lazar P.

    2016-01-01

    Argulus sp., commonly referred to as fish lice, are crustacean ectoparasites of fishes. The hematophagous parasites attach to and feed off the integument of their hosts. Outbreaks of epizootics have been reported worldwide, causing mass mortalities and having serious economic implications for fish farms and culture efforts. Argulus fish lice may also serve as vectors of infectious diseases and as intermediate hosts of other parasites. Two native European species, A. foliaceus and A. coregoni,...

  20. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  1. Fish and aquatic organisms [Chapter 9

    Science.gov (United States)

    John N. Rinne

    2012-01-01

    The UVR of central Arizona, from its source at Sullivan Lake to the mouth of Sycamore Creek, 60 km (38 mi) downstream, is rare among the State’s rivers because it still retains some of its native fish fauna. In 1994, six of the native fishes that were historically recorded in this reach of the Verde still occurred, along with at least seven nonnative species, and many...

  2. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  3. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Directory of Open Access Journals (Sweden)

    Christopher M Ranger

    Full Text Available Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum and swamp white oak (Quercus bicolor. Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats

  4. Influence of limnological zones on the spatial distribution of fish assemblages in three Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Bárbara Becker

    2015-09-01

    Full Text Available Reservoirs can have both positive and negative effects on differing fish species depending on the species concerned and reservoir morphology, flow regime, and basin location.  We assessed the influence of limnological zones on the ichthyofauna of three large Neotropical reservoirs in two different river basins. We sampled fish through use of gill nets set at 40 systematically selected sites on each reservoir. We used satellite images, algae, and suspended solids concentrations to classify those sites as lacustrine or riverine. We observed significant differences in assemblage composition between riverine and lacustrine zones of each reservoir. We either tested if the same region (lacustrine or riverine showed the same patterns in different reservoirs. In São Simão, the riverine zone produced greater abundances of native species, long-distance migratory species, diversity, and richness, whereas the lacustrine zone supported greater total and non-native species abundances. Conversely, in Três Marias, the riverine zone supported greater total and non-native species abundances, whereas the others traits evaluated did not differ significantly between zones. Only lacustrine sites occurred in Volta Grande Reservoir. The same zones in the three reservoirs usually had significantly different patterns in the traits evaluated. The differences in spatial patterns observed between reservoirs could be explained partly by the differing morphologies (complex versus linear, the differential influence of tributaries of each reservoir and basin positions (presence or absence of upstream dams of the reservoirs.

  5. Species identification of smoked and gravad fish products by sodium dodecylsulphate polyacrylamide gel electrophoresis, urea isoelectric focusing and native isoelectric focusing : a collaborative study

    DEFF Research Database (Denmark)

    Mackie, I.; Craig, A.; Etienne, M.

    2000-01-01

    A collaborative study on the use of sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), urea-isoelectric focusing (urea-IEF) and native isoelectric focusing for the identification of species of smoked salmonids, gravad salmonids and smoked eels was carried out by eight laborator......A collaborative study on the use of sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE), urea-isoelectric focusing (urea-IEF) and native isoelectric focusing for the identification of species of smoked salmonids, gravad salmonids and smoked eels was carried out by eight...... laboratories. With SDS-PAGE, minor changes took place in the profiles of the processed salmonid species making it impossible or Very difficult to identify closely related species. With urea-IEF, there were fewer changes in the profiles due to processing and the system generally had greater species......-discriminating power for the processed salmonids than SDS-PAGE. The profiles of the eel species as obtained on SDS-PAGE or urea-IEF were not affected by smoking. Urea-IEF had greater species- discriminating power than SDS-PAGE for the eel species. Native IEF was useful in providing supplementary identification...

  6. Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England.

    Science.gov (United States)

    Gallinat, Amanda S; Russo, Luca; Melaas, Eli K; Willis, Charles G; Primack, Richard B

    2018-01-01

    Patterns of fruiting phenology in temperate ecosystems are poorly understood, despite the ecological importance of fruiting for animal nutrition and seed dispersal. Herbarium specimens represent an under-utilized resource for investigating geographical and climatic factors affecting fruiting times within species, patterns in fruiting times among species, and differences between native and non-native invasive species. We examined over 15,000 herbarium specimens, collected and housed across New England, and found 3159 specimens with ripe fruits, collected from 1849-2013. We examined patterns in fruiting phenology among 37 native and 18 invasive woody plant species common to New England. We compared fruiting dates between native and invasive species, and analyzed how fruiting phenology varies with temperature, space, and time. Spring temperature and year explained a small but significant amount of the variation in fruiting dates. Accounting for the moderate phylogenetic signal in fruiting phenology, invasive species fruited 26 days later on average than native species, with significantly greater standard deviations. Herbarium specimens can be used to detect patterns in fruiting times among species. However, the amount of intraspecific variation in fruiting times explained by temporal, geographic, and climatic predictors is small, due to a combination of low temporal resolution of fruiting specimens and the protracted nature of fruiting. Later fruiting times in invasive species, combined with delays in autumn bird migrations in New England, may increase the likelihood that migratory birds will consume and disperse invasive seeds in New England later into the year. © 2018 Botanical Society of America.

  7. Epistemologies in the Text of Children's Books: Native- and non-Native-authored books

    Science.gov (United States)

    Dehghani, Morteza; Bang, Megan; Medin, Douglas; Marin, Ananda; Leddon, Erin; Waxman, Sandra

    2013-09-01

    An examination of artifacts provides insights into the goals, practices, and orientations of the persons and cultures who created them. Here, we analyze storybook texts, artifacts that are a part of many children's lives. We examine the stories in books targeted for 4-8-year-old children, contrasting the texts generated by Native American authors versus popular non-Native authors. We focus specifically on the implicit and explicit 'epistemological orientations' associated with relations between human beings and the rest of nature. Native authors were significantly more likely than non-Native authors to describe humans and the rest of nature as psychologically close and embedded in relationships. This pattern converges well with evidence from a behavioral task in which we probed Native (from urban inter-tribal and rural communities) and non-Native children's and adults' attention to ecological relations. We discuss the implications of these differences for environmental cognition and science learning.

  8. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  9. PROSPECTS OF THE KLEBAN-BYK RESERVOIR USE AS A SPECIAL COMMODITY FISH FARM

    Directory of Open Access Journals (Sweden)

    Khrystenko D.S.

    2013-09-01

    Full Text Available The current state of fish fauna was analized for the Kleban-Byk reservoir (village Konstantinovka of Donetsk region under the influence of fishery activity of a special commodity fish farms. Reservoir aboriginal fish fauna consists of species with low fishery value. The native fish fauna can not provide the high productivity of reservoir with a rational use of feed resources. However, linear and weight growth of alien fish species confirms the high trophic status of the reservoir and its potential for aquaculture under regime of special commodity fish farm. We also established the absence of negative effects of continuous fishery activities of special commodity fish farms on the life conditions of native fish fauna representatives.

  10. DNA barcode-based molecular identification system for fish species.

    Science.gov (United States)

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  11. Thermal ecological physiology of native and invasive frog species: do invaders perform better?

    Science.gov (United States)

    Cortes, Pablo A; Puschel, Hans; Acuña, Paz; Bartheld, José L; Bozinovic, Francisco

    2016-01-01

    Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi . In particular, the maximal righting performance (μ MAX ), optimal temperature ( T O ), lower (CT min ) and upper critical thermal limits (CT max ), thermal breadth ( T br ) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μ max and AUC in X. laevis in comparison to C. gayi . On the contrary, the invasive species showed lower values of CT min in comparison to the native one. In contrast, CT max , T O and T br showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi . Although there were differences in CT min , the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.

  12. Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area.

    Science.gov (United States)

    Fernandez, Sara; Sandin, Miguel M; Beaulieu, Paul G; Clusa, Laura; Martinez, Jose L; Ardura, Alba; García-Vázquez, Eva

    2018-01-01

    Many fish species have been introduced in wild ecosystems around the world to provide food or leisure, deliberately or from farm escapes. Some of those introductions have had large ecological effects. The north American native rainbow trout ( Oncorhynchus mykiss Walbaum, 1792) is one of the most widely farmed fish species in the world. It was first introduced in Spain in the late 19th century for sport fishing (Elvira 1995) and nowadays is used there for both fishing and aquaculture. On the other hand, the European native brown trout ( Salmo trutta L.) is catalogued as vulnerable in Spain. Detecting native and invasive fish populations in ecosystem monitoring is crucial, but it may be difficult from conventional sampling methods such as electrofishing. These techniques encompass some mortality, thus are not adequate for some ecosystems as the case of protected areas. Environmental DNA (eDNA) analysis is a sensitive and non-invasive method that can be especially useful for rare and low-density species detection and inventory in water bodies. In this study we employed two eDNA based methods (qPCR and nested PCR-RFLP) to detect salmonid species from mountain streams within a protected area, The Biosphere Reserve and Natural Park of Redes (Upper Nalón Basin, Asturias, Northern Spain), where brown trout is the only native salmonid. We also measured some habitat variables to see how appropriate for salmonids the area is. The sampling area is located upstream impassable dams and contains one rainbow trout fish farm. Employing qPCR methodology, brown trout eDNA was detected in all the nine sampling sites surveyed, while nested PCR-RFLP method failed to detect it in two sampling points. Rainbow trout eDNA was detected with both techniques at all sites in the Nalón River' (n1, n2 and n3). Salmonid habitat units and water quality were high from the area studied. In this study, a high quantity of rainbow trout eDNA was found upstream and downstream of a fish farm located

  13. Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area

    Directory of Open Access Journals (Sweden)

    Sara Fernandez

    2018-03-01

    Full Text Available Background Many fish species have been introduced in wild ecosystems around the world to provide food or leisure, deliberately or from farm escapes. Some of those introductions have had large ecological effects. The north American native rainbow trout (Oncorhynchus mykiss Walbaum, 1792 is one of the most widely farmed fish species in the world. It was first introduced in Spain in the late 19th century for sport fishing (Elvira 1995 and nowadays is used there for both fishing and aquaculture. On the other hand, the European native brown trout (Salmo trutta L. is catalogued as vulnerable in Spain. Detecting native and invasive fish populations in ecosystem monitoring is crucial, but it may be difficult from conventional sampling methods such as electrofishing. These techniques encompass some mortality, thus are not adequate for some ecosystems as the case of protected areas. Environmental DNA (eDNA analysis is a sensitive and non-invasive method that can be especially useful for rare and low-density species detection and inventory in water bodies. Methods In this study we employed two eDNA based methods (qPCR and nested PCR-RFLP to detect salmonid species from mountain streams within a protected area, The Biosphere Reserve and Natural Park of Redes (Upper Nalón Basin, Asturias, Northern Spain, where brown trout is the only native salmonid. We also measured some habitat variables to see how appropriate for salmonids the area is. The sampling area is located upstream impassable dams and contains one rainbow trout fish farm. Results Employing qPCR methodology, brown trout eDNA was detected in all the nine sampling sites surveyed, while nested PCR-RFLP method failed to detect it in two sampling points. Rainbow trout eDNA was detected with both techniques at all sites in the Nalón River’ (n1, n2 and n3. Salmonid habitat units and water quality were high from the area studied. Discussion In this study, a high quantity of rainbow trout eDNA was found

  14. Invasive ornamental fish: a potential threat to aquatic biodiversity in peninsular India

    Directory of Open Access Journals (Sweden)

    J.D.M. Knight

    2010-02-01

    Full Text Available Alien fish find their way into newer habitats and ecosystems opportunistically. Once in a new habitat, these species try to occupy empty niches and compete with native species. An alien species becomes invasive wherever it has a competetive advantage over native species. Ecology of aquatic invasive alien species is rather poorly understood as most attention has been on invertebrates as that which spread through ballast water. Invasive alien species of fish that have taken advantage of the aquarium trade are emerging as the most important threats to fragile aquatic habitats. Regulations to this trade are rather weak and there is a general lack of data on the ecological impact of alien fish species despite the fact that a third of the world’s worst aquatic invasive species are aquarium or ornamental species.

  15. Predation by crustaceans on native and non-native Baltic clams

    NARCIS (Netherlands)

    Ejdung, G.; Flach, E.; Byrén, L.; Hummel, H.

    2009-01-01

    We studied the effect of crustacean predators on native/non-native Macoma balthica bivalves in aquarium experiments. North Sea M. balthica (NS Macoma) were recently observed in the southern Baltic Sea. They differ genetically and in terms of morphology, behaviour and evolutionary history from Baltic

  16. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  17. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  18. Chemokines in teleost fish species.

    Science.gov (United States)

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2012-08-01

    Full Text Available The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i Metrosideros polymorpha, a keystone native Hawaiian species; (ii Acacia koa, a native Hawaiian nitrogen fixer; (iii the highly invasive Psidium cattleianum; and (iv Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI. The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700–1,250 nm reflectance (0.4 > SI > 1.4. Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4. We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7 than in winter (SI < 0.7. The lowest separability was observed for March-July (SI < 0.3. This could be explained by the

  20. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  1. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    ). Native non-game fishes have rarely been monitored, but populations of species such as large-scale suckers (Catostomus macrocheilus), squawfish (Ptychocheilus umpquae), and Pacific lamprey (Lampetra tridentata) also are declining in some drainages (Oregon Department of Fish and Wildlife, unpublished data).

  2. Dna c-values of 20 invasive alien species and 3 native species in south china

    OpenAIRE

    Gong Ni; Wang Yu-Tao; Björn Lars Olof; Li Shao-Shan

    2014-01-01

    Cultivated fields and forests in South China are experiencing serious damage due to invasive alien plants. We investigated the relation between DNA C-values and invasiveness. The DNA C-values of 23 species ranged from 0.39 pg to 3.37 pg. Herbs, perennials and native species had higher mean DNA C-values than shrubs, annuals and invasive alien species. DNA C-values decreased with increasing invasiveness. Paederia scandens, a harmful native species, has the lo...

  3. Non-indigenous invertebrates, fish and macrophytes in Lake Garda (Italy

    Directory of Open Access Journals (Sweden)

    Cristina CAPPELLETTI

    2011-08-01

    Full Text Available As observed in many countries, lakes are involved in an important process of colonization by non-indigenous species (NIS. Since 1725, 37 species of non-indigenous fish, invertebrates and macrophytes have been recorded in Lake Garda, the largest Italian lake. This phenomenon is particularly important for invertebrates and macrophytes, as their pathways of introduction are accidental. Recently among the 100 Worst Invasive Alien Species in Europe, the invertebrates Corbicula fluminea, Dikerogammarus villosus and Procambarus clarkii, and the macrophytes Lagarosiphon major, Elodea nuttallii and Elodea canadensis have been recorded in Lake Garda. In order to define the present status of non-indigenous species in Lake Garda, published and unpublished data were reviewed.

  4. News from the western European invasion front

    OpenAIRE

    Filipe Ribeiro

    2015-01-01

    Invasive species are one of the main threats to aquatic biodiversity, being particularly serious in regions with high number of endemic and endangered fishes. Portugal has currently one of the highest numbers of non-native fishes per area in western Europe and the rate of species arrival is increasing. In this review, an updated status of non-native fishes is provided with recent trends of leading vectors and routes. Non-native fish component represents 31% of the freshwater fish diversity ex...

  5. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    Science.gov (United States)

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Fishes, mussels, crayfishes, and aquatic habitats of the Hoosier-Shawnee ecological assessment area

    Science.gov (United States)

    M. Burr Brooks; Justin T. Sipiorski; Matthew R. Thomas; Kevin S. Cummings; Christopher A. Taylor

    2004-01-01

    The Hoosier-Shawnee Ecological Assessment Area, part of the Coastal Plain and Interior Low Plateau physiographic provinces, includes 194 native fish species, 76 native mussel species, and 34 native crayfish species. Five of the subregions (e.g., Mississippi Embayment) that make up the assessment area were recently ranked as either globally or bioregionally outstanding...

  7. Mental health status in pregnancy among native and non-native Swedish-speaking women

    DEFF Research Database (Denmark)

    Wangel, Anne-Marie; Schei, Berit; Ryding, Elsa Lena

    2012-01-01

    OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics in South......OBJECTIVES: To describe mental health status in native and non-native Swedish-speaking pregnant women and explore risk factors of depression and posttraumatic stress (PTS) symptoms. DESIGN AND SETTING: A cross-sectional questionnaire study was conducted at midwife-based antenatal clinics...... in Southern Sweden. SAMPLE: A non-selected group of women in mid-pregnancy. METHODS: Participants completed a questionnaire covering background characteristics, social support, life events, mental health variables and the short Edinburgh Depression Scale. MAIN OUTCOME MEASURES: Depressive symptoms during...... the past week and PTS symptoms during the past year. RESULTS: Out of 1003 women, 21.4% reported another language than Swedish as their mother tongue and were defined as non-native. These women were more likely to be younger, have fewer years of education, potential financial problems, and lack of social...

  8. Early life of key fish species, capelin Mallotus villosus and Atlantic cod Gadus morhua, in West Greenland

    DEFF Research Database (Denmark)

    Malanski, Evandro

    for the fish larvae during the summer. The duration of the productive season is of great importance for the early life of fish. The present thesis investigates the diets of capelin and cod in the subarctic Kapisigdlit, as well as the feeding of non-commercial larval fish in the entire Godthåbsfjord system...... species were found in the area, and 3 main assemblages were identified according to their similarities, which are related to the hydrographic zones. Fish larvae may benefit from the estuarine circulation to distribute themselves from the spawning areas through the Godthåbsfjord. The diet of the larval...... fish species varied markedly along the fjord. Prey size preferences of fish larvae were positively correlated to their mouth sizes. American plaice and sandeel were probably do not compete for food with other fish species since these, contrary to other species, had high preference for microplankton...

  9. The ichthyofauna of upper rio Capivari: defining conservation strategies based on the composition and distribution of fish species

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    Full Text Available Although the rio Capivari basin is recognized as an area of great importance for the ichthyofauna, it lacks virtually every basic requirement for the definition of appropriate conservation strategies, since not even its species composition is known. The objective of this work is to determine the composition and distribution of fish species in the upper rio Capivari basin, relating them to the local physical features, and to evaluate the effectiveness of proposed conservations units, delimited based on areas of native vegetation remains, on the conservation of local ichthyofauna. During 2007, 50 different watercourses were sampled with gillnets, cast nets and kick nets. A total of 1308 individuals belonging to 41 species were captured. Degree of conservation, altitude and width were the parameters that best explained fish species richness. Considering the recently proposed boundaries for potential conservation units in the region only 15 or 20 out of 41 species would be found in the State Park and Environmental Protection Area respectively. In practice, the proposed conservation units would not be effective tools for fish conservation, since it would be located in mountainous areas of high altitude, of headwaters streams and where few species are found. In such context, the conservation of specific stretches of larger rivers is critical.

  10. Assessing historical fish community composition using surveys, historical collection data, and species distribution models.

    Science.gov (United States)

    Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  11. Suppression of invasive topmouth gudgeon Pseudorasbora parva by native pike Esox lucius in ponds

    OpenAIRE

    Lemmens, Pieter; Mergeay, Joachim; Vanhove, Tom; De Meester, Luc; Declerck, Steven A. J

    2015-01-01

    1. Asian topmouth gudgeon Pseudorasbora parva has been recognized as a highly invasive cyprinid fish species in Europe that can present risk to native fish communities. 2. The present study aimed to investigate whether a native piscivorous fish, pike Esox lucius, is able to reduce the establishment success and invasiveness of topmouth gudgeon Pseudorasbora parva in shallow ponds. We performed a large scale, replicated whole-pond experiment in which ponds were spontaneously colonized by to...

  12. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis

    Science.gov (United States)

    Kim, Y.-O.; Lee, E.J.

    2011-01-01

    One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic

  13. Temporal effects on host-parasite associations in four naturalized goby species living in sympatry

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Valová, Zdenka; Hudcová, Iveta; Michálková, Veronika; Šimková, A.; Borcherding, J.; Jurajda, Pavel

    2015-01-01

    Roč. 746, č. 1 (2015), s. 233-243 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Fish * Gobiidae * Non-native species * Parasite * Rhine Subject RIV: EG - Zoology Impact factor: 2.051, year: 2015

  14. A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid

    Science.gov (United States)

    Young, K.A.; Dunham, J.B.; Stephenson, J.F.; Terreau, A.; Thailly, A.F.; Gajardo, G.; de Leaniz, C. G.

    2010-01-01

    Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chilo?? in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chilo?? and elsewhere. ?? 2010 The Authors. Journal compilation ?? 2010 The Zoological Society of London.

  15. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts

    Science.gov (United States)

    Elizabeth E. Crone; Marilyn Marler; Dean E. Pearson

    2009-01-01

    Invasive species are one of the leading threats to biodiversity worldwide. Therefore, chemical herbicides are increasingly used to control invasive plants in natural and semi-natural areas. Little is known about the non-target impacts of these chemicals on native species. We conducted an experiment to test the demographic effects of the herbicide picloram on a native...

  16. Accumulation of /sup 210/Po in selected species of Baltic fish

    Energy Technology Data Exchange (ETDEWEB)

    Skwarzec, B

    1988-01-01

    Results are presented here for the /sup 210/Po contents of selected species of Baltic fish. It is shown that /sup 210/Po is non-uniformly distributed within these fish, the highest levels being found in the digestive organs, particularly within the intestine. It is found that the proportional contribution by the digestive organs to the total accumulation of /sup 210/Po is correlated with the degree of repletion of the stomach and that this decreases if food is lacking. Moreover, it is observed that fish represent an important source of supply of /sup 210/Po to humans.

  17. The Effects of Anthropogenic Structures on Habitat Connectivity and the Potential Spread of Non-Native Invertebrate Species in the Offshore Environment.

    Science.gov (United States)

    Simons, Rachel D; Page, Henry M; Zaleski, Susan; Miller, Robert; Dugan, Jenifer E; Schroeder, Donna M; Doheny, Brandon

    2016-01-01

    Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.

  18. 36 CFR 2.3 - Fishing.

    Science.gov (United States)

    2010-07-01

    ... impact populations of native species adversely, and park management plans do not call for elimination of... time of catching the person did not possess the legal limit of fish. (8) Fishing from motor road bridges, from or within 200 feet of a public raft or float designated for water sports, or within the...

  19. Offshore Fish Community: Ecological Interactions

    Science.gov (United States)

    The offshore (>80 m) fish community of Lake Superior is made up of predominately native species. The most prominent species are deepwater sculpin, kiyi, cisco, siscowet lake trout, burbot, and the exotic sea lamprey. Bloater and shortjaw cisco are also found in the offshore zone...

  20. Within-category variance and lexical tone discrimination in native and non-native speakers

    NARCIS (Netherlands)

    Hoffmann, C.W.G.; Sadakata, M.; Chen, A.; Desain, P.W.M.; McQueen, J.M.; Gussenhove, C.; Chen, Y.; Dediu, D.

    2014-01-01

    In this paper, we show how acoustic variance within lexical tones in disyllabic Mandarin Chinese pseudowords affects discrimination abilities in both native and non-native speakers of Mandarin Chinese. Within-category acoustic variance did not hinder native speakers in discriminating between lexical

  1. Forest landscape restoration: linkages with stream fishes of the southern United States

    Science.gov (United States)

    Melvin L. Warren

    2012-01-01

    With well over 600 native species, the southern United States supports one of the richest temperate freshwater fish faunas on Earth (Fig. 10.1 ). Unfortunately, an expert review revealed that 27% (188 taxa) of southern fishes are endangered, threatened, or vulnerable (Warren et al. 2000 ) and that 16–18% of native fishes are imperiled in 45 of 51 major southern river...

  2. Impact of the Sainte-Marguerite 3 hydroelectric reservoir on the mercury exposure of local fish consumers

    International Nuclear Information System (INIS)

    Schetagne, R.; Plante, M.; Castonguay, D.

    2010-01-01

    This study examined fish mercury levels in a freshwater impoundment flooded as part of the Sainte-Marguerite-3 hydroelectric generating station. The study compared mercury levels obtained before the area was flooded in 1997 with mercury exposure surveys obtained in 2006. Mercury levels in the fish have increased by factors ranging from 4 to 8. Total mercury concentrations have reached 0.78 μg per g in 400-mm lake whitefish and 1.85 μg per g in 700-mm northern pike. Non-native fishers consumed significantly more local fish on a monthly basis after the area was flooded. Native Innu fishers consumed less fish. Average hair mercury concentrations for non-native fish consumers remained unchanged, which mercury levels in native fish consumers decreased significantly.

  3. Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov [Washington State Department of Ecology, N. 4601 Monroe, Spokane, WA 99205-1295 (United States); Verst, Scott Van [Washington State Department of Health, Olympia, WA (United States); Rochette, Elizabeth A. [Washington State Department of Ecology, Richland, WA (United States)

    2010-02-15

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA

  4. Land, lake, and fish: Investigation of fish remains from Gesher Benot Ya'aqov (paleo-Lake Hula).

    Science.gov (United States)

    Zohar, Irit; Biton, Rebecca

    2011-04-01

    The question of whether or not pre-modern hominins were responsible for the accumulation of fish remains is discussed through analyses of remains recovered from two lacustrine facies (I-4 and I-5) from Area A of the Acheulian site of Gesher Benot Ya'aqov (GBY) in the Jordan Rift Valley, Israel. The fish remains provide the first glimpse into the naturally accumulated fish assemblage from the fluctuating shores of a lake that had been continually exploited by early hominins some 780,000 years ago. Preliminary analysis of the remains show that thirteen of the seventeen species native to Lake Hula were identified at GBY. These represent three of the five freshwater fish families native to the lake: Cyprinidae (carps), Cichlidae (tilapini, St. Peter's fish), and Clariidae (catfish). From a taphonomical perspective, a significant difference is found between the two lithofacies (Layers I-4 and I-5) in terms of species composition, richness, diversity, and skeleton completeness. It appears that the fish remains recovered from Layer I-4 (clay) are better preserved than those from Layer I-5 (coquina). In both lithofacies, Cyprinidae are highly abundant while Cichlidae and Clariidae are rare and under-represented, especially when compared to the Lake Hula fishery report from the 1950s. All of these identified species may have contributed significantly to the diet of GBY hominins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Facilitation of a native pest of rice, Stenotus rubrovittatus (Hemiptera: Miridae), by the non-native Lolium multiflorum (Cyperales: Poaceae) in an agricultural landscape.

    Science.gov (United States)

    Yoshioka, Akira; Takada, Mayura; Washitani, Izumi

    2011-10-01

    Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.

  6. Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    Science.gov (United States)

    Martin, Charles W.; Valentine, Marla M.; Valentine, John F.

    2010-01-01

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important. PMID:21200433

  7. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs.

    Directory of Open Access Journals (Sweden)

    Charles W Martin

    2010-12-01

    Full Text Available Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus, in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus. Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important.

  8. Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change

    Science.gov (United States)

    Al-Chokhachy, Robert K.; Alder, Jay R.; Hostetler, Steven W.; Gresswell, Robert E.; Shepard, Bradley

    2013-01-01

    We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid-21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high-elevation populations, we find considerable increases in fish body mass attributable both to warming of cold-water temperatures and to extended growing seasons. During peak July to August warming, mid-21st century temperatures will cause periods of increased thermal stress, rendering some low-elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (changes in total body mass by midcentury; we attribute this response to the fact that many low-elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non-native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non-native species, underscoring the importance of developing climate adaptation

  9. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  10. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  11. Hawaii ESI: FISHPT (Fish Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for native stream and anchialine pool fish species in coastal Hawaii. (Anchialine pools are small,...

  12. Field Guide to Nonindigenous Marine Fishes of Florida

    OpenAIRE

    Schofield, Pamela J.; Morris, Jr., James A.; Akins, Lad

    2009-01-01

    The purpose of this field guide is to provide information on nonindigenous (i.e., non-native) fishes that have been observed in Florida’s marine waters. Introductions of non-native marine fishes into Florida’s waters could be intentional or unintentional, and are likely from a variety of sources, including aquarium releases, escape from aquaculture, loss due to extreme weather events (e.g., flooding from hurricanes), and possibly transfer with ballast water or hull-fouling. Presently the lion...

  13. Growth form and distribution of introduced plants in their native and non-native ranges in Eastern Asia and North America

    Science.gov (United States)

    Robert E. Ricklefs; Qinfeng Guo; Hong Qian

    2008-01-01

    There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to...

  14. CAGE BREEDING OF WARM WATER FRESHWATER FISH SPECIES

    Directory of Open Access Journals (Sweden)

    Roman Safner

    2008-10-01

    Full Text Available In the 1970s, Croatia became actively involved in the contemporary trend of breeding fish in floating cages. In addition to various species of marine fishes, breeding was attempted with trout, carp, catfish, cisco and salmon. Of the above freshwater fish species, specific standards were established only for the cage breeding of rainbow trout. Cage breeding of the remaining species remained at the level of occasional attempts, with more of an experimental than a commercial character. The regular attempts to master this technique for cage breeding of warm water freshwater fish species were aimed at achieving the known benefits of such breeding, such as simplicity of implementing technological measures, easier establishment of the breeding system, simpler manipulation, the possibility of denser colonies per unit volume with a high level of production, easier adaptations to market conditions and fewer initial structural investments. Despite the many advantages, the main reasons for the lack of greater implementation of the cage breeding technology for warm water species of freshwater fish include problems in obtaining the appropriate category and quantity of healthy fry, the specificity and applicability of physical and chemical properties of the recipients and human error. In evaluating the advantages and disadvantages, the final decision on the justification of cage breeding for individual warm water freshwater species must be based on both biological and economic factors. Based on the knowledge of cage breeding acquired to date, the rule for virtually all intensive breeding systems is that it is only recommended for those species with high market demand and a high market price. The technology that demands nutrition with highly concentrated feed and other production expenditures is costly, and is therefore not profitable with less expensive fish species. Furthermore, production must be market oriented, i.e. the appropriate market research measures

  15. Functional differences between native and alien species: a global-scale comparison

    DEFF Research Database (Denmark)

    Ordonez Gloria, Alejandro

    2010-01-01

    1. A prevalent question in the study of plant invasions has been whether or not invasions can be explained on the basis of traits. Despite many attempts, a synthetic view of multi-trait differences between alien and native species is not yet available.2. We compiled a database of three ecologically...... important traits (specific leaf area, typical maximum canopy height, individual seed mass) for 4473 species sampled over 95 communities (3784 species measured in their native range, 689 species in their introduced range, 207 in both ranges).3. Considering each trait separately, co-occurring native and alien...... species significantly differed in their traits. These differences, although modest, were expressed in a combined 15% higher specific leaf area, 16% lower canopy height and 26% smaller seeds.4. Using three novel multi-trait metrics of functional diversity, aliens showed significantly smaller trait ranges...

  16. Homogenization patterns of the world's freshwater fish faunas.

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  17. Update on the distribution of the co-invasive Schyzocotyle acheilognathi (= Bothriocephalus acheilognathi), the Asian fish tapeworm, in freshwater fishes of Mexico.

    Science.gov (United States)

    Pérez-Ponce de León, G; Lagunas-Calvo, O; García-Prieto, L; Briosio-Aguilar, R; Aguilar-Aguilar, R

    2018-05-01

    The Asian fish tapeworm, Schyzocotyle acheilognathi (syn. Bothriocephalus acheilognathi) represents a threat to freshwater fish, mainly cyprinids, across the globe. This tapeworm possesses an extraordinary ability to adapt to different environmental conditions and, because of that, from its natural geographical origin in mainland Asia, it has colonized every continent except Antarctica. It is thought that this pathogenic tapeworm was first co-introduced into Mexico in 1965 from China, with the grass carp Ctenopharyngodon idella, although the first formal record of its presence was published in 1981. Over the past 35 years, the Asian fish tapeworm has invaded about 22% of the freshwater fish in Mexico. Because fish communities in Mexico are characterized by high species richness and levels of endemism, S. acheilognathi is considered as a co-introduced and co-invasive species. In this review, we update the geographic distribution and host spectrum of the Asian fish tapeworm in Mexico. Up until December 2016, the tapeworm had been recorded in 110 freshwater fish species (96 native and 14 introduced), included in 51 genera, 11 families and 4 orders; it was also widely distributed in all types of aquatic environments, and has been found in 214 localities. We present novel data from a survey aimed at establishing the distribution pattern of the tapeworm in native freshwater fishes of two rivers in north-central Mexico, and the genetic variation among individuals of this co-invasive species collected from different host species and localities. We discuss briefly the factors that have determined the remarkable invasive success of this parasite in freshwater systems in Mexico.

  18. Monogeneans in introduced and native cichlids in México: evidence for transfer.

    Science.gov (United States)

    Jiménez-García, M I; Vidal-Martínez, V M; López-Jiménez, S

    2001-08-01

    We examined 2 cichlid fish species native to México, Cichlasoma callolepis and C. fenestratum, and 2 introduced African cichlids, Oreochromis aureus and O. niloticus, from 3 localities in southeastern México for monogeneans. Six monogenean species infected the African cichlids: Cichlidogyrus haplochromii, C. dossoui, C. longicornis longicornis, C. sclerosus, C. tilapiae, and Enterogyrus malmbergi. We found all these parasite species, except C. haplochromii and C. dossoui, on the native C. fenestratum and C. callolepis. Prevalences of Cichlidogyrus spp. were 3-10% and abundances ranged from 0.03 +/- 0.2 to 0.1 +/- 0.3 for native cichlids. We only recovered a single E. malmbergi from 1 C. callolepis. We found Sciadicleithrum bravohollisae, a monogenean of native Cichlasoma spp., on the gills of the introduced O. aureus from Lake Catemaco (prevalence 3%, abundance 0.03 +/- 0.2). Although prevalence and abundance in atypical hosts were fairly low, the present findings provide evidence of monogenean transfer from African to American cichlids and vice versa. This is the first record of exotic monogeneans in the genus Cichlidogyrus and Enterogyrus infecting native American cichlid fish. It is also the first record from southeastern México of a native American monogenean infecting introduced African cichlids.

  19. Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species.

    Science.gov (United States)

    Anderson, Lucy G; Dunn, Alison M; Rosewarne, Paula J; Stebbing, Paul D

    Watersports equipment can act as a vector for the introduction and spread of invasive non native species (INNS) in freshwater environments. To support advice given to recreational water users under the UK Government's Check Clean Dry biosecurity campaign and ensure its effectiveness at killing a range of aquatic INNS, we conducted a survival experiment on seven INNS which pose a high risk to UK freshwaters. The efficacy of exposure to hot water (45 °C, 15 min) was tested as a method by which waters users could 'clean' their equipment and was compared to drying and a control group (no treatment). Hot water had caused 99 % mortality across all species 1 h after treatment and was more effective than drying at all time points (1 h: χ 2  = 117.24, p  clean equipment. We recommend that it is advocated in future biosecurity awareness campaigns.

  20. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  1. Higher dropout rate in non-native patients than in native patients in rehabilitation in The Netherlands

    NARCIS (Netherlands)

    Sloots, Maurits; Scheppers, Emmanuel F.; van de Weg, Frans B.; Bartels, Edien A.; Geertzen, Jan H.; Dekker, Joost; Dekker, Jaap

    Dropout from a rehabilitation programme often occurs in patients with chronic nonspecific low back pain of non-native origin. However, the exact dropout rate is not known. The objective of this study was to determine the difference in dropout rate between native and non-native patients with chronic

  2. Human Health Risk from Metals in Fish from Saudi Arabia: Consumption Patterns for Some Species Exceed Allowable Limits

    KAUST Repository

    Burger, Joanna

    2014-10-06

    ABSTRACT: Fish are a healthful source of protein, but contaminants in some fish pose a risk. While there are multiple risk assessments from Europe and North America, there are far fewer for other parts of the world. We examined the risks from mercury, arsenic, lead, and other metals in fish consumed by people in Jeddah area, Saudi Arabia, using site-specific data on consumption patterns and metal levels in fish. The U.S. Environmental Protection Agency\\'s Hazard Quotient (HQ) and cumulative Hazard Index (HI) for non-cancer endpoints and Carcinogenic Index for cancer were used to determine the health risk based on fish consumption rates. Of the 13 fish species examined, HQ was greater than 1 (indicating elevated risk) in two species for arsenic, and seven species for methylmercury. The cumulative HI for all metals was above 1 for all but three species of fish at the mean consumption rates. Generally, fish species with HI above 1 for one sampling location, had HI above 1 for all sampling locations. The implications of these findings are discussed in the light of strategies for reducing risk from fish consumption while encouraging dietary intakes of fish with low mercury and arsenic levels.

  3. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    Science.gov (United States)

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential.

  4. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  5. Invasive hybridization in a threatened species is accelerated by climate change

    Science.gov (United States)

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert K.; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-01-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world’s most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers—precipitation and temperature—and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  6. Invasive hybridization in a threatened species is accelerated by climate change

    Science.gov (United States)

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-07-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world's most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers--precipitation and temperature--and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  7. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert.

    Science.gov (United States)

    Ignace, Danielle D; Huxman, Travis E; Weltzin, Jake F; Williams, David G

    2007-06-01

    Arid and semi-arid ecosystems of the southwestern US are undergoing changes in vegetation composition and are predicted to experience shifts in climate. To understand implications of these current and predicted changes, we conducted a precipitation manipulation experiment on the Santa Rita Experimental Range in southeastern Arizona. The objectives of our study were to determine how soil surface and seasonal timing of rainfall events mediate the dynamics of leaf-level photosynthesis and plant water status of a native and non-native grass species in response to precipitation pulse events. We followed a simulated precipitation event (pulse) that occurred prior to the onset of the North American monsoon (in June) and at the peak of the monsoon (in August) for 2002 and 2003. We measured responses of pre-dawn water potential, photosynthetic rate, and stomatal conductance of native (Heteropogon contortus) and non-native (Eragrostis lehmanniana) C(4) bunchgrasses on sandy and clay-rich soil surfaces. Soil surface did not always amplify differences in plant response to a pulse event. A June pulse event lead to an increase in plant water status and photosynthesis. Whereas the August pulse did not lead to an increase in plant water status and photosynthesis, due to favorable soil moisture conditions facilitating high plant performance during this period. E. lehmanniana did not demonstrate heightened photosynthetic performance over the native species in response to pulses across both soil surfaces. Overall accumulated leaf-level CO(2) response to a pulse event was dependent on antecedent soil moisture during the August pulse event, but not during the June pulse event. This work highlights the need to understand how desert species respond to pulse events across contrasting soil surfaces in water-limited systems that are predicted to experience changes in climate.

  8. Otolith Length-Fish Length Relationships of Eleven US Arctic Fish Species and Their Application to Ice Seal Diet Studies

    Science.gov (United States)

    Walker, K. L.; Norcross, B.

    2016-02-01

    The Arctic ecosystem has moved into the spotlight of scientific research in recent years due to increased climate change and oil and gas exploration. Arctic fishes and Arctic marine mammals represent key parts of this ecosystem, with fish being a common part of ice seal diets in the Arctic. Determining sizes of fish consumed by ice seals is difficult because otoliths are often the only part left of the fish after digestion. Otolith length is known to be positively related to fish length. By developing species-specific otolith-body morphometric relationships for Arctic marine fishes, fish length can be determined for fish prey found in seal stomachs. Fish were collected during ice free months in the Beaufort and Chukchi seas 2009 - 2014, and the most prevalent species captured were chosen for analysis. Otoliths from eleven fish species from seven families were measured. All species had strong linear relationships between otolith length and fish total length. Nine species had coefficient of determination values over 0.75, indicating that most of the variability in the otolith to fish length relationship was explained by the linear regression. These relationships will be applied to otoliths found in stomachs of three species of ice seals (spotted Phoca largha, ringed Pusa hispida, and bearded Erignathus barbatus) and used to estimate fish total length at time of consumption. Fish lengths can in turn be used to calculate fish weight, enabling further investigation into ice seal energetic demands. This application will aid in understanding how ice seals interact with fish communities in the US Arctic and directly contribute to diet comparisons among and within ice seal species. A better understanding of predator-prey interactions in the US Arctic will aid in predicting how ice seal and fish species will adapt to a changing Arctic.

  9. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  10. Re-examining the relationship between invasive lionfish and native grouper in the Caribbean.

    Science.gov (United States)

    Valdivia, Abel; Bruno, John F; Cox, Courtney E; Hackerott, Serena; Green, Stephanie J

    2014-01-01

    Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles) on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.

  11. Re-examining the relationship between invasive lionfish and native grouper in the Caribbean

    Directory of Open Access Journals (Sweden)

    Abel Valdivia

    2014-04-01

    Full Text Available Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.

  12. Non-native Listeners’ Recognition of High-Variability Speech Using PRESTO

    Science.gov (United States)

    Tamati, Terrin N.; Pisoni, David B.

    2015-01-01

    Background Natural variability in speech is a significant challenge to robust successful spoken word recognition. In everyday listening environments, listeners must quickly adapt and adjust to multiple sources of variability in both the signal and listening environments. High-variability speech may be particularly difficult to understand for non-native listeners, who have less experience with the second language (L2) phonological system and less detailed knowledge of sociolinguistic variation of the L2. Purpose The purpose of this study was to investigate the effects of high-variability sentences on non-native speech recognition and to explore the underlying sources of individual differences in speech recognition abilities of non-native listeners. Research Design Participants completed two sentence recognition tasks involving high-variability and low-variability sentences. They also completed a battery of behavioral tasks and self-report questionnaires designed to assess their indexical processing skills, vocabulary knowledge, and several core neurocognitive abilities. Study Sample Native speakers of Mandarin (n = 25) living in the United States recruited from the Indiana University community participated in the current study. A native comparison group consisted of scores obtained from native speakers of English (n = 21) in the Indiana University community taken from an earlier study. Data Collection and Analysis Speech recognition in high-variability listening conditions was assessed with a sentence recognition task using sentences from PRESTO (Perceptually Robust English Sentence Test Open-Set) mixed in 6-talker multitalker babble. Speech recognition in low-variability listening conditions was assessed using sentences from HINT (Hearing In Noise Test) mixed in 6-talker multitalker babble. Indexical processing skills were measured using a talker discrimination task, a gender discrimination task, and a forced-choice regional dialect categorization task. Vocabulary

  13. Species selective resistance of cardiac muscle voltage gated sodium channels: characterization of brevetoxin and ciguatoxin binding sites in rats and fish.

    Science.gov (United States)

    Dechraoui, Marie-Yasmine Bottein; Wacksman, Jeremy J; Ramsdell, John S

    2006-11-01

    Brevetoxins (PbTxs) and ciguatoxins (CTXs) are two suites of dinoflagellate derived marine polyether neurotoxins that target the voltage gated sodium channel (VGSC). PbTxs are commonly responsible for massive fish kills and unusual mortalities in marine mammals. CTXs, more often noted for human intoxication, are suspected causes of fish and marine mammal intoxication, although this has never been reported in the field. VGSCs, present in the membrane of all excitable cells including those found in skeletal muscle, nervous and heart tissues, are found as isoforms with differential expression within species and tissues. To investigate the tissue and species susceptibility to these biotoxins, we determined the relative affinity of PbTx-2 and -3 and P-CTX-1 to native VGSCs in the brain, heart, and skeletal muscle of rat and the marine teleost fish Centropristis striata by competitive binding in the presence of [(3)H]PbTx-3. No differences between rat and fish were observed in the binding of PbTxs and CTX to either brain or skeletal muscle. However, [(3)H]PbTx-3 showed substantial lower affinity to rat heart tissue while in the fish it bound with the same affinity to heart than to brain or skeletal muscle. These new insights into PbTxs and CTXs binding in fish and mammalian excitable tissues indicate a species related resistance of heart VGSC in the rat; yet, with comparable sensitivity between the species for brain and skeletal muscle.

  14. Student perceptions of native and non-native speaker language instructors: A comparison of ESL and Spanish

    Directory of Open Access Journals (Sweden)

    Laura Callahan

    2006-12-01

    Full Text Available The question of the native vs. non-native speaker status of second and foreign language instructors has been investigated chiefly from the perspective of the teacher. Anecdotal evidence suggests that students have strong opinions on the relative qualities of instruction by native and non-native speakers. Most research focuses on students of English as a foreign or second language. This paper reports on data gathered through a questionnaire administered to 55 university students: 31 students of Spanish as FL and 24 students of English as SL. Qualitative results show what strengths students believe each type of instructor has, and quantitative results confirm that any gap students may perceive between the abilities of native and non-native instructors is not so wide as one might expect based on popular notions of the issue. ESL students showed a stronger preference for native-speaker instructors overall, and were at variance with the SFL students' ratings of native-speaker instructors' performance on a number of aspects. There was a significant correlation in both groups between having a family member who is a native speaker of the target language and student preference for and self-identification with a native speaker as instructor. (English text

  15. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  16. Invasion versus isolation: trade-offs in managing native salmonids with barriers to upstream movement.

    Science.gov (United States)

    Fausch, Kurt D; Rieman, Bruce E; Dunham, Jason B; Young, Michael K; Peterson, Douglas P

    2009-08-01

    Conservation biologists often face the trade-off that increasing connectivity in fragmented landscapes to reduce extinction risk of native species can foster invasion by non-native species that enter via the corridors created, which can then increase extinction risk. This dilemma is acute for stream fishes, especially native salmonids, because their populations are frequently relegated to fragments of headwater habitat threatened by invasion from downstream by 3 cosmopolitan non-native salmonids. Managers often block these upstream invasions with movement barriers, but isolation of native salmonids in small headwater streams can increase the threat of local extinction. We propose a conceptual framework to address this worldwide problem that focuses on 4 main questions. First, are populations of conservation value present (considering evolutionary legacies, ecological functions, and socioeconomic benefits as distinct values)? Second, are populations vulnerable to invasion and displacement by non-native salmonids? Third, would these populations be threatened with local extinction if isolated with barriers? And, fourth, how should management be prioritized among multiple populations? We also developed a conceptual model of the joint trade-off of invasion and isolation threats that considers the opportunities for managers to make strategic decisions. We illustrated use of this framework in an analysis of the invasion-isolation trade-off for native cutthroat trout (Oncorhynchus clarkii) in 2 contrasting basins in western North America where invasion and isolation are either present and strong or farther away and apparently weak. These cases demonstrate that decisions to install or remove barriers to conserve native salmonids are often complex and depend on conservation values, environmental context (which influences the threat of invasion and isolation), and additional socioeconomic factors. Explicit analysis with tools such as those we propose can help managers make

  17. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion.

    Science.gov (United States)

    Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M

    2016-09-01

    Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion

  18. Relations between altered stramflow variability and fish assemblages in Eastern USA streams

    Science.gov (United States)

    Meador, Michael R.; Carlisle, Daren M.

    2012-01-01

    Although altered streamflow has been implicated as a major factor affecting fish assemblages, understanding the extent of streamflow alteration has required quantifying attributes of the natural flow regime. We used predictive models to quantify deviation from expected natural streamflow variability for streams in the eastern USA. Sites with >25% change in mean daily streamflow variability compared with what would be expected in a minimally disturbed environment were defined as having altered streamflow variability, based on the 10th and 90th percentiles of the distribution of streamflow variability at 1279 hydrological reference sites. We also used predictive models to assess fish assemblage condition and native species loss based on the proportion of expected native fish species that were observed. Of the 97 sites, 49 (50.5%) were classified as altered with reduced streamflow variability, whereas no sites had increased streamflow variability. Reduced streamflow variability was related to a 35% loss in native fish species, on average, and a >50% loss of species with a preference for riffle habitats. Conditional probability analysis indicated that the probability of fish assemblage impairment increased as the severity of altered streamflow variability increased. Reservoir storage capacity and wastewater discharges were important predictors of reduced streamflow variability as revealed by random forest analysis. Management and conservation of streams will require careful consideration of natural streamflow variation and potential factors contributing to altered streamflow within the entire watershed to limit the loss of critical stream habitats and fish species uniquely adapted to live in those habitats.

  19. Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.

    Directory of Open Access Journals (Sweden)

    Alex Brandmeyer

    Full Text Available Brain-computer interfaces (BCIs are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1 Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2 Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native. A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.

  20. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    Directory of Open Access Journals (Sweden)

    Gretchen J A Hansen

    Full Text Available Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance and "occasional" (rare occurrence and low abundance species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  1. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    Science.gov (United States)

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  2. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    Science.gov (United States)

    Scoppettone, G. Gary

    2013-01-01

    The Ash Meadows National Wildlife Refuge staff focuses on improving habitat for the highest incidence of endemic species for an area of its size in the continental United States. Attempts are being made to restore habitat to some semblance of its pre-anthropogenic undisturbed condition, and to provide habitat conditions to which native plant and animal species have evolved. Unfortunately, restoring the Ash Meadows’ Oases to its pre-anthropogenic undisturbed condition is almost impossible. First, there are constraints on water manipulation because there are private holdings within the refuge boundary; second, there has been at least one species extinction—the Ash Meadows pool fish (Empetrichthys merriami). It is also quite possible that thermal endemic invertebrate species were lost before ever being described. Perhaps the primary obstacle to restoring Ash Meadows to its pre-anthropogenic undisturbed conditions is the presence of invasive species. However, invasive species, such as red swamp crayfish (Procambarus clarki) and western mosquitofish (Gambusia affinis), are a primary driving force in restoring Ash Meadows’ spring systems, because under certain habitat conditions they can all but replace native species. Returning Ash Meadows’ physical landscape to some semblance of its pre-anthropogenic undisturbed condition through natural processes may take decades. Meanwhile, the natural dissolution of concrete and earthen irrigation channels threatens to allow cattail marshes to flourish instead of spring-brooks immediately downstream of spring discharge. This successional stage favors non-native crayfish and mosquitofish over the native Amargosa pupfish (Cyprinodon nevadensis). Thus, restoration is needed to control non-natives and to promote native species, and without such intervention the probability of native fish reduction or loss, is anticipated. The four studies in this report are intended to provide information for restoring native fish habitat and

  3. A phylogenetic perspective on the evolution of Mediterranean teleost fishes.

    Directory of Open Access Journals (Sweden)

    Christine N Meynard

    Full Text Available The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA supermatrix composed of four mitochondrial genes (12S ribosomal DNA, 16S ribosomal DNA, cytochrome c oxidase subunit I and cytochrome b and two nuclear genes (rhodopsin and recombination activating gene I, including 62% of Mediterranean teleost species plus 9 outgroups. Maximum likelihood and Bayesian phylogenetic and dating analyses were calibrated using 20 fossil constraints. An additional 124 species were grafted onto the chronogram according to their taxonomic affinity, checking for the effects of taxonomic coverage in subsequent diversification analyses. We then interpreted the time-line of teleost diversification in light of Mediterranean historical biogeography, distinguishing non-endemic natives, endemics and exotic species. Results show that the major Mediterranean orders are of Cretaceous origin, specifically ~100-80 Mya, and most Perciformes families originated 80-50 Mya. Two important clade origin events were detected. The first at 100-80 Mya, affected native and exotic species, and reflects a global diversification period at a time when the Mediterranean Sea did not yet exist. The second occurred during the last 50 Mya, and is noticeable among endemic and native species, but not among exotic species. This period corresponds to isolation of the Mediterranean from Indo-Pacific waters before the Messinian salinity crisis. The Mediterranean fish fauna illustrates well the assembly of regional faunas through origination and immigration, where dispersal and isolation have shaped the emergence of a biodiversity hotspot.

  4. Invasive lionfish reduce native fish abundance on a regional scale

    OpenAIRE

    Ballew, Nicholas G.; Bacheler, Nathan M.; Kellison, G. Todd; Schueller, Amy M.

    2016-01-01

    Invasive lionfish pose an unprecedented threat to biodiversity and fisheries throughout Atlantic waters off of the southeastern United States, the Caribbean, and the Gulf of Mexico. Here, we employ a spatially replicated Before-After-Control-Impact analysis with temporal pairing to quantify for the first time the impact of the lionfish invasion on native fish abundance across a broad regional scale and over the entire duration of the lionfish invasion (1990?2014). Our results suggest that 1) ...

  5. Targeting Abundant Fish Stocks while Avoiding Overfished Species: Video and Fishing Surveys to Inform Management after Long-Term Fishery Closures

    Science.gov (United States)

    2016-01-01

    Historically, it has been difficult to balance conservation goals and yield objectives when managing multispecies fisheries that include stocks with various vulnerabilities to fishing. As managers try to maximize yield in mixed-stock fisheries, exploitation rates can lead to less productive stocks becoming overfished. In the late 1990s, population declines of several U.S. West Coast groundfish species caused the U.S. Pacific Fishery Management Council to create coast-wide fishery closures, known as Rockfish Conservation Areas, to rebuild overfished species. The fishery closures and other management measures successfully reduced fishing mortality of these species, but constrained fishing opportunities on abundant stocks. Restrictive regulations also caused the unintended consequence of reducing fishery-dependent data available to assess population status of fished species. As stocks rebuild, managers are faced with the challenge of increasing fishing opportunities while minimizing fishing mortality on rebuilding species. We designed a camera system to evaluate fishes in coastal habitats and used experimental gear and fishing techniques paired with video surveys to determine if abundant species could be caught in rocky habitats with minimal catches of co-occurring rebuilding species. We fished a total of 58 days and completed 741 sets with vertical hook-and-line fishing gear. We also conducted 299 video surveys in the same locations where fishing occurred. Comparison of fishing and stereo-video surveys indicated that fishermen could fish with modified hook-and-line gear to catch abundant species while limiting bycatch of rebuilding species. As populations of overfished species continue to recover along the U.S. West Coast, it is important to improve data collection, and video and fishing surveys may be key to assessing species that occur in rocky habitats. PMID:28002499

  6. Fish-allergic patients may be able to eat fish.

    Science.gov (United States)

    Mourad, Ahmad A; Bahna, Sami L

    2015-03-01

    Reported fish allergy prevalence varies widely, with an estimated prevalence of 0.2% in the general population. Sensitization to fish can occur by ingestion, skin contact or inhalation. The manifestations can be IgE or non-IgE mediated. Several fish allergens have been identified, with parvalbumins being the major allergen in various species. Allergenicity varies among fish species and is affected by processing or preparation methods. Adverse reactions after eating fish are often claimed to be 'allergy' but could be a reaction to hidden food allergen, fish parasite, fish toxins or histamine in spoiled fish. Identifying such causes would allow free consumption of fish. Correct diagnosis of fish allergy, including the specific species, might provide the patient with safe alternatives. Patients have been generally advised for strict universal avoidance of fish. However, testing with various fish species or preparations might identify one or more forms that can be tolerated.

  7. POSSIBILITY OF STEM GAIN OF NATIVE EUXYLOPHOROUS SPECIES FROM THE CENTRAL REGION OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Rodrigo Borges de Mattos

    2010-08-01

    Full Text Available The present work was developed to observe and quantify the possibility of stem gain in five native euxylophorous species [Angico (Parapiptadenia rigida, Canjerana (Cabralea canjerana, Cedro (Cedrela fissilis, Grápia (Apuleia leiocarpa, and Louro (Cordia trichotoma] in non managed native forests of São João do Polêsine municipality, state of RS. There were studied 17 temporary plots of 10 x 100 m. In the trees of the five elected species for this study, that presented diameter at breast height (dbh larger than 5 cm, the total height, the commercial height and the potential commercial height of the stems were measured.  The stem gain was defined as the difference between the current and potential commercial height, in relation to current commercial height and was expressed in percentage. The average percentile of shaft gain for all the species was larger than 70%, while Louro showed a stem gain significantly smaller than the other species. By a regression analysis (stepwise procedure, mathematical models were selected to describe the stem gain of each species and all the species together. The results showed that there is a potenctial for value adding to the native forest formations of the area, not yet explored by silviculture practices.

  8. Differences in the Metacognitive Awareness of Reading Strategies among Native and Non-Native Readers.

    Science.gov (United States)

    Sheorey, R.; Mokhtari, K.

    2001-01-01

    Examines the differences in the reported use of reading strategies of native and non-native English speakers when reading academic materials. Participants were native English speaking and English-as-a-Second-Language college students who completed a survey of reading strategies aimed at discerning the strategies readers report using when coping…

  9. 76 FR 2663 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... and steelhead, and natural juvenile green sturgeon while carrying out a study measuring fish response... species, taking of length measurements), tissue sampling, release of moribund fish or fish carcasses back...

  10. Interference competition between an invasive parakeet and native bird species at feeding sites.

    Science.gov (United States)

    Le Louarn, Marine; Couillens, Bertrand; Deschamps-Cottin, Magali; Clergeau, Philippe

    2016-01-01

    Interference competition has proved to be a factor of successful establishment of invasive species. This type of competition may have a stronger impact when native species have temporal niche overlap with the invasive species. The ring-necked parakeet Psittacula krameri has been successfully introduced in many countries and its interspecific agonistic behavior has already been reported. The purpose of this study is to analyze the territorial and preemptive interference competition between the ring-necked parakeet and native bird species in a recently colonized area. We used an empirical approach by recording video sequences in gardens equipped with bird feeders in winter. Our results showed that the ring-necked parakeet was the most frequent species at the feeders. Several native species showed temporal niche overlap with the ring-necked parakeet, the highest overlap being with the starling Sturnus vulgaris . The starling was also the species most impacted by interference competition with the parakeet. Our study suggests that, by being most frequently present at the feeders, by demonstrating the most agonistic behavior and by hindering access to food of the other species, the ring-necked parakeet is a superior competitor and may compete with native bird species.

  11. 75 FR 2106 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-01-14

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in... steelhead not to exceed 2 percent of the total number of fish captured for each life stage and species...

  12. Genetic calibration of species diversity among North America's freshwater fishes.

    Science.gov (United States)

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  13. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953

  14. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.

    2018-01-01

    Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.

  15. Impact of fishing with Tephrosia candida (Fabaceae) on diversity and abundance of fish in the streams at the boundary of Sinharaja Man and Biosphere Forest Reserve, Sri Lanka.

    Science.gov (United States)

    Epa, Udaya Priyantha Kankanamge; Mohotti, Chamari Ruvandika Waniga Chinthamanie

    2016-09-01

    Local communities in some Asian, African and American countries, use plant toxins in fish poisoning for fishing activities; however, the effects of this practice on the particular wild fish assemblages is unknown. This study was conducted with the aim to investigate the effects of fish poisoning using Tephrosia candida, on freshwater fish diversity and abundance in streams at the boundary of the World Natural Heritage site, Sinharaja Forest Reserve, Sri Lanka. A total of seven field trips were undertaken on a bimonthly basis, from May 2013 to June 2014. We surveyed five streams with similar environmental and climatological conditions at the boundary of Sinharaja forest. We selected three streams with active fish poisoning practices as treatments, and two streams with no fish poisoning as controls. Physico-chemical parameters and flow rate of water in selected streams were also measured at bimonthly intervals. Fish were sampled by electrofishing and nets in three randomly selected confined locations (6 x 2 m stretch) along every stream. Fish species were identified, their abundances were recorded, and Shannon-Weiner diversity index was calculated for each stream. Streams were clustered based on the Bray-Curtis similarity matrix for fish composition and abundance. Physico-chemical parameters of water were not significantly different among streams (P > 0.05). A total of 15 fish species belonging to four different orders Cypriniformes, Cyprinodontiformes, Perciformes and Siluriformes were collected; nine species (60 %) were endemic, and six (40 %) were native species. From these, 13 fish species were recorded in streams with no poisoning, while five species were recorded in streams where poisoning was practiced. Four endemic and one native fish species were locally extinct in streams where fish poisoning was active. Fish abundance was significantly higher in control streams (32-39/m2) when compared to treatment streams (5-9/m2) (P fish poisoning with T. candida may

  16. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    Science.gov (United States)

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sensory quality criteria for five fish species

    DEFF Research Database (Denmark)

    Warm, Karin; Nielsen, Jette; Hyldig, Grethe

    2000-01-01

    Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation i...... variation and by presenting references, panel discussions and interpreting plots from multivariate data analysis. The developed profile can be used as a sensory wheel for these species, and with minor changes it may be adapted to similar species......Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation...

  18. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    Science.gov (United States)

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings.

  19. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  20. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  1. The roles of climate, phylogenetic relatedness, introduction effort, and reproductive traits in the establishment of non-native reptiles and amphibians.

    Science.gov (United States)

    van Wilgen, Nicola J; Richardson, David M

    2012-04-01

    We developed a method to predict the potential of non-native reptiles and amphibians (herpetofauna) to establish populations. This method may inform efforts to prevent the introduction of invasive non-native species. We used boosted regression trees to determine whether nine variables influence establishment success of introduced herpetofauna in California and Florida. We used an independent data set to assess model performance. Propagule pressure was the variable most strongly associated with establishment success. Species with short juvenile periods and species with phylogenetically more distant relatives in regional biotas were more likely to establish than species that start breeding later and those that have close relatives. Average climate match (the similarity of climate between native and non-native range) and life form were also important. Frogs and lizards were the taxonomic groups most likely to establish, whereas a much lower proportion of snakes and turtles established. We used results from our best model to compile a spreadsheet-based model for easy use and interpretation. Probability scores obtained from the spreadsheet model were strongly correlated with establishment success as were probabilities predicted for independent data by the boosted regression tree model. However, the error rate for predictions made with independent data was much higher than with cross validation using training data. This difference in predictive power does not preclude use of the model to assess the probability of establishment of herpetofauna because (1) the independent data had no information for two variables (meaning the full predictive capacity of the model could not be realized) and (2) the model structure is consistent with the recent literature on the primary determinants of establishment success for herpetofauna. It may still be difficult to predict the establishment probability of poorly studied taxa, but it is clear that non-native species (especially lizards

  2. Specific IgE to fish extracts does not predict allergy to specific species within an adult fish allergic population.

    Science.gov (United States)

    Schulkes, Karlijn Jg; Klemans, Rob Jb; Knigge, Lidy; de Bruin-Weller, Marjolein; Bruijnzeel-Koomen, Carla Afm; Marknell deWitt, Asa; Lidholm, Jonas; Knulst, André C

    2014-01-01

    Fish is an important cause of food allergy. Studies on fish allergy are scarce and in most cases limited to serological evaluation. Our objective was to study patterns of self-reported allergy and tolerance to different commonly consumed fish species and its correlation to IgE sensitization to the same species. Thirty-eight adult fish allergic patients completed a questionnaire regarding atopy, age of onset and symptoms to 13 commonly consumed fish species in the Netherlands (pangasius, cod, herring, eel, hake, pollock, mackerel, tilapia, salmon, sardine, tuna, plaice and swordfish). Specific IgE to these fish extracts were analyzed by ImmunoCAP. Median age of onset of fish allergy was 8.5 years. Severe reactions were reported by the majority of patients (n = 20 (53%) respiratory and of these 20 patients, 6 also had cardiovascular symptoms). After diagnosis, 66% of the patients had eliminated all fish from their diet. Allergy to all species ever tried was reported by 59%. In relation to species ever tried, cod (84%) and herring (79%) were the most frequently reported culprit species while hake (57%) and swordfish (55%) were the least frequent. A positive sIgE (value ≥ 0.35 kUA/L) to the culprit species ranged between 50% (swordfish) and 100% (hake). In tolerant patients, a negative sIgE (value allergy or tolerance was 82% and 25%, respectively. Sensitization to cod parvalbumin (Gad c 1) was present in 77% of all patients. Serological cross-reactivity between fish species is frequent, but in a significant proportion of patients, clinical relevance appears to be limited to only certain species. A well-taken history or food challenge is required for discrimination between allergy to the different fish species.

  3. Total mercury levels in commercial fish species from Italian fishery and aquaculture.

    Science.gov (United States)

    Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena

    2017-06-01

    Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.

  4. The reasons for successful spreading of the fishes from the genus Carassius

    Directory of Open Access Journals (Sweden)

    Lukáš Kalous

    2015-11-01

    Full Text Available Freshwater fishes of the genus Carassius are widespread throughout home Eurasia but also other continents (Kottelat and Feryhof, 2007. They represent important aquaculture fishes and include the world's most important pet fish, the goldfish (Rylková et al., 2010. On the other hand they are also the most successful invasive pests with a considerable ecological impact at many places (Ribeiro et al., 2015; Copp et al., 2005. High similarities in morphological taxa definitions and occurrence of species complexes have brought lot of confusion in their taxonomy, biogeography and introduction history (Kalous et al., 2012. We present a historical overview and outline past and present reasons that have led to their successful spreading. Our findings are based on phylogenetic, historical and social-economic data. Europe is inhabited by at least five mtDNA lineages of the genus Carassius, which correspond to four taxa and one undescribed species. In Europe there occur: Carassius carassius, feral populations of Carassius auratus, Carassius gibelio, Carassius langsdorfii and Carassius sp.. C. auratus and C. langsdorfii are not native to Europe C. carassius is native to Eastern, Central and Northern Europe (Kalous et al., 2012. The populations of C. gibelio in Eastern and Central Europe should be considered a result of natural postglacial range expansion but the whole Europe was also colonized by introduced Carassius biotypes of various genome combinations from East Asia in the 20th century (Rylková et al., 2013. The spreading of non-native fishes of the genus Carassius has been caused mainly by human activities comprising pet trade, aquaculture and recreational fisheries (Kalous et al., 2013; Kalous et al., 2015.

  5. Preliminary list of endangered fish species (Pisces, Elasmobranchii , Actinopterygii) in Brazil

    OpenAIRE

    Rosa, Ricardo S; Menezes, Naércio A

    1996-01-01

    The Brazilian fish fauna is still poorly known with respect to its diversity and conservation status, particularly of freshwater species. Human activities and population growth are rapidly impacting this fauna to an unchecked extent, so that many fish species are presently threatened. Also, some areas have been so critically altered that their fish fauna can no longer be properly inventoried. There is an urgent need to evaluate the conservation status of Brazilian fish species, since none are...

  6. Endangered Fish Species in Kansas: Historic vs Contemporary Distribution

    Science.gov (United States)

    Background/Question/Methods Kansas state has more freshwater fish species than other states in the west and northern US. Based on recent count, more than 140 fishes have been documented in Kansas rivers. And at least five are categorized as endangered species in Kansas (and thre...

  7. Investigation of biological condition of fish species in lower Ogun ...

    African Journals Online (AJOL)

    The study was carried out to investigate the biological condition of fish species in lower Ogun River wetlands. A total of 175 individual fish belonging to 10 species were collected from artisanal fishermen using different types of fishing gears. Two biological indices; condition factor “K” and growth exponent “b” obtained from ...

  8. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    Science.gov (United States)

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  9. 76 FR 14923 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-03-18

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... knowledge of species listed under the Endangered Species Act (ESA) and help guide management and... harvested groundfish species. The survey would collect data on 90+ fish species in the ocean to fulfill the...

  10. Non-native Speech Learning in Older Adults.

    Science.gov (United States)

    Ingvalson, Erin M; Nowicki, Casandra; Zong, Audrey; Wong, Patrick C M

    2017-01-01

    Though there is an extensive literature investigating the ability of younger adults to learn non-native phonology, including investigations into individual differences in younger adults' lexical tone learning, very little is known about older adults' ability to learn non-native phonology, including lexical tone. There are several reasons to suspect that older adults would use different learning mechanisms when learning lexical tone than younger adults, including poorer perception of dynamic pitch, greater reliance on working memory capacity in second language learning, and poorer category learning in older adulthood. The present study examined the relationships among older adults' baseline sensitivity for pitch patterns, working memory capacity, and declarative memory capacity with their ability to learn to associate tone with lexical meaning. In older adults, baseline pitch pattern sensitivity was not associated with generalization performance. Rather, older adults' learning performance was best predicted by declarative memory capacity. These data suggest that training paradigms will need to be modified to optimize older adults' non-native speech sound learning success.

  11. Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Science.gov (United States)

    Hansen, Michael J.; Madenjian, Charles P.; Slade, Jeffrey W.; Steeves, Todd B.; Almeida, Pedro R.; Quintella, Bernardo R.

    2016-01-01

    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.

  12. Predictive models for fish assemblages in eastern USA streams: implications for assessing biodiversity

    Science.gov (United States)

    Meador, Michael R.; Carlisle, Daren M.

    2009-01-01

    Management and conservation of aquatic systems require the ability to assess biological conditions and identify changes in biodiversity. Predictive models for fish assemblages were constructed to assess biological condition and changes in biodiversity for streams sampled in the eastern United States as part of the U.S. Geological Survey's National Water Quality Assessment Program. Separate predictive models were developed for northern and southern regions. Reference sites were designated using land cover and local professional judgment. Taxonomic completeness was quantified based on the ratio of the number of observed native fish species expected to occur to the number of expected native fish species. Models for both regions accurately predicted fish species composition at reference sites with relatively high precision and low bias. In general, species that occurred less frequently than expected (decreasers) tended to prefer riffle areas and larger substrates, such as gravel and cobble, whereas increaser species (occurring more frequently than expected) tended to prefer pools, backwater areas, and vegetated and sand substrates. In the north, the percentage of species identified as increasers and the percentage identified as decreasers were equal, whereas in the south nearly two-thirds of the species examined were identified as decreasers. Predictive models of fish species can provide a standardized indicator for consistent assessments of biological condition at varying spatial scales and critical information for an improved understanding of fish species that are potentially at risk of loss with changing water quality conditions.

  13. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys) in south-eastern Mexico: implications for invasion and dispersal

    Science.gov (United States)

    Capps, Krista A.; Nico, Leo G.; Mendoza-Carranza, Manuel; Arevalo-Frias, Wendi; Ropicki, Andrew J.; Heilpern, Sebastian A.; Rodiles-Hernandez, Rocio

    2011-01-01

    1. Salinity tolerance is one of several important physiological attributes that determine invasion success and the pattern of dispersal of introduced aquatic organisms. Introduced freshwater fishes able to tolerate elevated salinities have the potential to invade and exploit brackish-water (mixohaline) environments and use estuaries and coastal waters as 'bridges' for dispersing from one coastal river system to another. 2. Several members of the neotropical suckermouth armoured catfish genus Pterygoplichthys (Siluriformes: Loricariidae) have established non-native populations in inland waters of North and Central America, Asia and islands in the Caribbean, and Pacific and Indian oceans. Loricariids are generally considered to be strictly freshwater; but a few naturally occur in mesohaline habitats. 3.Catch and habitat data from 2004–2005 and 2009–2011 fish surveys in the Grijalva–Usumacinta River delta region (south-eastern Mexico) confirmed that introduced Pterygoplichthys populations established in upstream freshwater sites (where these catfish are abundant) have recently dispersed into downstream oligohaline and mesohaline estuarine habitats. During 2009–2011 surveys, these non-native catfish — tentatively identified as P. pardalis or its hybrids — were found in sites with salinities ranging from 1 to 8 ppt (mean 5.2 ppt). 4.Acute-salinity experiments were conducted with Pterygoplichthys (110–302 mm standard length, N=140) captured in the Grijalva–Usumacinta Basin to determine upper salinity tolerance levels. Tests demonstrated that individuals maintained in salinities of 0.2 ppt were able to survive abrupt (acute) exposure to salinities up to 10 ppt with little mortality over 10 days (240 h experimental endpoint). A few individuals survived abrupt exposure to 11 and 12 ppt for 20 or more hours, although none survived more than a few hours at 16 ppt or greater. 5.These field and experimental results provide quantitative evidence that non-native

  14. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  15. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  16. Homogenization patterns of the world’s freshwater fish faunas

    Science.gov (United States)

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  17. Factors affecting the quality of fish caught by Native Americans in the Zone 6 fishery 1991 through 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abernethy, C.S.

    1994-09-01

    A program to monitor the salmon and steelhead (Oncorhynchus spp.) fishery in the lower Columbia River (Zone 6 fishery) was initiated in 1991 to respond to questions and comments frequently made by Native Americans at public meetings. Native Americans were concerned that the quality of the Columbia River had deteriorated and that the poor environmental conditions had affected the health and quality of fish they relied on for subsistence, ceremonial, religious, and commercial purposes. They also feared that eating contaminated fish might endanger the health of their children and future generations. Operations at the Hanford Site were listed as one of many causes of the deteriorating environment. Fisheries pathologists concluded that most of the external symptoms on fish were related to bacterial infection of gill net abrasions and pre-spawning trauma, and were not caused by pollution or contamination of the Columbia River. The pathologists also stated that consumption of the fish posed no threat to human consumers.

  18. Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Ole A; Bastardie, Francois; Eigaard, Ole Ritzau

    2014-01-01

    Since the late 1980s, a deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) has been developing gradually in West Greenland. Deep-sea fish species are generally long-lived and characterized by late age of maturity, low fecundity, and slow growth, features that probably cause low....... During the period 1988–2011, population abundance and size composition changed as catch and effort in the Greenland halibut fishery increased. Two species showed a significant decrease in abundance, and four populations showed a significant reduction in mean weight of individuals (p , 0.05). Correlation...... analyses show that most of the observed trends in abundance are probably not related to increasing fishing effort for Greenland halibut. The analysis did, however, show that most of the observed decreases in mean weight were significantly correlated with fishing effort during the 24-year period...

  19. Indigenous fish species in the modern ichthyofauna of the Balkhash basin

    Directory of Open Access Journals (Sweden)

    Nadir Shamilevich Mamilov

    2015-11-01

    Full Text Available Indigenous fish fauna of the Balkhash basin was mostly formed in the postglacial period and consists of 10 species from Cyprinidae family, 5 from Balitoridae, and 1 from Percidae. More than 20 alien fish species were introduced here during XXth century that led to eradication of indigenous fishes from the Balkhash Lake and the Ili River. Our investigations of the fish fauna during last 25 years revealed permanent shortage of living area of indigenous fishes. Nowadays fish communities from only indigenous fish species exist in some remote and isolated water bodies. Areas of all indigenous fish species are become disconnected. Reduction of habitats goes relatively slow for naked osman Gymnodiptychus dybowskii (Kessler, 1874, spotted thicklip loach Triplophysa strauchii (Kessler, 1874, and gray loach Triplophysa dorsalis (Kessler, 1872. Drastic reductions of areas were revealed for Ili marinka Schizothorax pseudoaksaiensis Herzenstein 1889, Balkhash marinka Schizothorax argentatus Kessler 1874, Severtsov’s loach Triplophysa sewerzowii (G.Nikolskii, 1938, Seven River’s minnow Phoxinus brachyurus Berg 1912, Balkhsh minnow Rhynchocypris poljakowii Kessler 1879, and Balkhash perch Perca schrenkii Kessler 1874. Marinkas, osmans and perch often become victims of overfishing and poaching of local people. In that region water resources usually are used by wasteful way and loaded with pollutants. Many indigenous fish species are able to bear relatively high level of environment pollution. Hence, the main threats for indigenous fishes are introductions of trout and sander, habitats lose and unstable hydrological regimen.

  20. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    Science.gov (United States)

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  1. 76 FR 27016 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-05-10

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... increase knowledge of species listed under the Endangered Species Act (ESA) and help guide management and... during the species' upstream migration. Captured fish would be transported in a tanker truck and released...

  2. Migratory Fishes of South America: Biology, Fisheries, and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2004-01-01

    Jan 1, 2004 ... Fish species that migrate within the great rivers of South America support important local fisheries but are little known outside their native range. This book represents the first collection of the work of local scientific experts on these remarkable fish. The authors cover the Upper Paraná, Paraguay-Paraná, ...

  3. Species specific anaesthetics for fish anaesthesia and euthanasia.

    Science.gov (United States)

    Readman, Gareth D; Owen, Stewart F; Knowles, Toby G; Murrell, Joanna C

    2017-08-02

    There is a need to ensure that the care and welfare for fish maintained in the laboratory are to the highest standards. This extends to the use of anaesthetics for both scientific study, humane killing and euthanasia at end of life. An anaesthetic should not induce negative behaviours and fish should not seek to avoid the anaesthetic. Surprisingly little information is available to facilitate a humane choice of anaesthetic agent for fish despite over 100 years of use and the millions of fish currently held in thousands of laboratories worldwide. Using a chemotaxic choice chamber we found different species specific behavioural responses among four closely related fish species commonly held in the laboratory, exposed to three widely used anaesthetic agents. As previously found for zebrafish (Danio rerio), the use of MS-222 and benzocaine also appears to induce avoidance behaviours in medaka (Oryzias latipes); but etomidate could provide an alternative choice. Carp (Cyprinus carpio), although closely related to zebrafish showed avoidance behaviours to etomidate, but not benzocaine or MS-222; and rainbow trout (Oncorhynchus mykiss) showed no avoidance to the three agents tested. We were unable to ascertain avoidance responses in fathead minnows (Pimephales promelas) and suggest different test paradigms are required for that species.

  4. Non-natives: 141 scientists object

    NARCIS (Netherlands)

    Simberloff, D.; Van der Putten, W.H.

    2011-01-01

    Supplementary information to: Non-natives: 141 scientists object Full list of co-signatories to a Correspondence published in Nature 475, 36 (2011); doi: 10.1038/475036a. Daniel Simberloff University of Tennessee, Knoxville, Tennessee, USA. dsimberloff@utk.edu Jake Alexander Institute of Integrative

  5. INTERACTION BETWEEN NATIVE AND ALIEN SPECIES OF CRAYFISH IN AUSTRIA: CASE STUDIES

    Directory of Open Access Journals (Sweden)

    PÖCKL M.

    2002-07-01

    Full Text Available In Austria, three indigenous crayfish species occur: the noble crayfish (Astacus astacus, the stone crayfish (Austropotamobius torrentium, and the white-clawed crayfish (Austropotamobius pallipes. It is not known if Astacus leptodactylus is autochthonous in the very eastern part of Austria, near the border with Hungary and Slovakia. In other parts of Austria the Turkish crayfish has been transplanted into several gravel pits and ponds. Up to now, the red swamp crayfish (Procambarus clarkii is not known to occur in the wild, but can be bought alive in fish markets, restaurants, and the aquarium trade. The Nearctic spiny-cheek crayfish (Orconectes limosus and the signal crayfish (Pacifastacus leniusculus have been introduced since the 1970s by crayfish farmers because these species are resistant to the crayfish plague fungus (Aphanomyces astaci. There are just a few populations of O. limosus, and the species is not spreading actively. However, P. leniusculus is widespread all over Austria, and was illegally introduced from one water body to another. It can be characterized as an aggressive, invasive North American species, spreading actively and acting as a vector of the crayfish plague. Unfortunately the habitat requirements of the native noble crayfish and the alien signal crayfish are nearly the same. Case studies are given in the following chapters: the first group of examples refers to water bodies where the alien signal crayfish is most probably the cause of displacement of the indigenous noble crayfish: 1 Hintersee, 2 Irrsee (« Zeller See », 3 north-western Lower Austria (« Waldviertel », 4 Merzenstein (aquacultural enterprise, 5 Neufelder See. The second group of examples refers to water bodies where alien and indigenous species are able to coexist: a the confluence of the main course of the Danube River, the Ölhafen and the Neue Donau in the southeast part of Vienna, b the Schönauer Wasser, a backwater of the Danube River downstream

  6. Life-history variability of non-native centrarchids in regulated river systems of the lower River Guadiana drainage (south-west Iberian Peninsula).

    Science.gov (United States)

    Ribeiro, F; Collares-Pereira, M J

    2010-02-01

    Life-history variability of two non-native centrarchids, pumpkinseed Lepomis gibbosus and largemouth bass Micropterus salmoides, was evaluated in three stream stretches of the lower River Guadiana drainage (south-west Iberian Peninsula) with different degrees of regulated flows. Abundance, condition and population structure differed among populations for both species, but invasion success was lower in the least regulated river. Lepomis gibbosus were abundant and had multiple age classes in the three river sites, whereas M. salmoides were less abundant and mainly represented by young-of-the-year fish. Juvenile growth in L. gibbosus was similar in all three populations, though longevity was slightly greater in the population from the River Guadiana mainstream. Lepomis gibbosus exhibited a long reproductive season, but the duration of season, size at maturity and reproductive effort varied among populations. The life-history differences found demonstrate the importance of species adaptation to local conditions which might favour their invasion success. Lepomis gibbosus were more adaptable and resilient to local conditions, whereas M. salmoides seemed dependent on reservoirs and large rivers for maintenance of riverine populations.

  7. 78 FR 28806 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-05-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Resources (CDWR), Permit 17428 to the United States Fish and Wildlife Service (USFWS), and Permit 17777 to... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in...

  8. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  9. Liquid chromatographic determination of oxytetracycline in edible fish fillets from six species of fish

    Science.gov (United States)

    Meinertz, J.R.; Stehly, G.R.; Gingerich, W.H.

    1998-01-01

    The approved use of oxytetracycline (OTC) in U.S. Aquaculture is limited to specific diseases in salmonids and channel catfish. OTC may also be effective in controlling diseases in other fish species important to public aquaculture, but before approved use of OTC can be augmented, an analytical method for determining OTC in fillet tissue from multiple species of fish will be required to support residue depletion studies. The objective of this study was to develop and validate a liquid chromatographic (LC) method that is accurate, precise, and sensitive for OTC in edible fillets from multiple species of fish. Homogenized fillet tissues from walleye, Atlantic salmon, striped bass, white sturgeon, rainbow trout, and channel catfish were fortified with OTC at nominal concentrations of 10, 20, 100, 1000, and 5000 ng/g. In tissues fortified with OTC at 100, 1000, and 5000 ng/g, mean recoveries ranged from 83 to 90%, and relative standard deviations (RSDs) ranged from 0.9 to 5.8%. In all other tissues, mean recoveries ranged from 59 to 98%, and RSDs ranged from 3.3 to 20%. Method quantitation limits ranged from 6 to 22 ng/g for the 6 species. The LC parameters produced easily integratable OTC peaks without coelution of endogenous compounds. The method is accurate, precise, and sensitive for OTC in fillet tissue from 6 species of fish from 5 phylogenetically diverse groups.

  10. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  11. Three dimensional marine seismic survey has no measurable effect on species richness or abundance of a coral reef associated fish community

    International Nuclear Information System (INIS)

    Miller, Ian; Cripps, Edward

    2013-01-01

    Highlights: • A marine seismic survey was conducted at Scott Reef, North Western Australia. • Effects of the survey on demersal fish were gauged using underwater visual census. • There was no detectable impact of the seismic survey on species abundance. • There was no detectable impact of the seismic survey on species richness. -- Abstract: Underwater visual census was used to determine the effect of a three dimensional seismic survey on the shallow water coral reef slope associated fish community at Scott Reef. A census of the fish community was conducted on six locations at Scott Reef both before and after the survey. The census included small site attached demersal species belonging to the family Pomacentridae and larger roving demersal species belonging to the non-Pomacentridae families. These data were combined with a decade of historical data to assess the impact of the seismic survey. Taking into account spatial, temporal, spatio-temporal and observer variability, modelling showed no significant effect of the seismic survey on the overall abundance or species richness of Pomacentridae or non-Pomacentridae. The six most abundant species were also analysed individually. In all cases no detectable effect of the seismic survey was found on the abundance of these fish species at Scott Reef

  12. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    Directory of Open Access Journals (Sweden)

    Alexandra J R Carthey

    Full Text Available The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris, we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  13. Non-native Chinese Foreign Language (CFL) Teachers: Identity and Discourse

    DEFF Research Database (Denmark)

    Zhang, Chun

    2014-01-01

    Abstract Native Chinese foreign language (CFL) teacher identity is an emerging subject of research interest in the teacher education. Yet, limited study has been done on the construction of Non-native CFL teachers in their home culture. Guided by a concept of teacher identity-in-discourse, the pa......Abstract Native Chinese foreign language (CFL) teacher identity is an emerging subject of research interest in the teacher education. Yet, limited study has been done on the construction of Non-native CFL teachers in their home culture. Guided by a concept of teacher identity...... teachers face tensions and challenges in constructing their identities as CFL teachers, and the tensions and challenges that arose from Danish teaching culture could influence the Non-native CFL teachers' contributions to CFL teaching in their home cultures. The findings further show that in order to cope...

  14. Zoogeography of the fishes from Indochinese Inland waters with an annotated check-list

    NARCIS (Netherlands)

    Kottelat, Maurice

    1989-01-01

    According to an unpublished bibliography of Indochinese freshwater fishes that I completed, 930 native fish species are known to occur in the inland waters of the Indochinese Peninsula, certainly making it one of the areas with the most diverse ichthyofauna. The study of this rich fish fauna is

  15. Phylogeny of Fish-Infecting Calyptospora species (Apicomplexa: Eimeriorina)

    Science.gov (United States)

    There are numerous species of apicomplexans that infect poikilothermic vertebrates such as fishes, and possess unique morphological features that provide insight into the evolution of this important phylum of parasites. Here the relationship of the fish-infecting Calyptospora spe...

  16. Non-native (exotic) snake envenomations in the U.S., 2005-2011.

    Science.gov (United States)

    Warrick, Brandon J; Boyer, Leslie V; Seifert, Steven A

    2014-09-29

    Non-native (exotic) snakes are a problematic source of envenomation worldwide. This manuscript describes the current demographics, outcomes and challenges of non-native snakebites in the United States (U.S.). We performed a retrospective case series of the National Poison Data System (NPDS) database between 2005 and 2011. There were 258 human exposures involving at least 61 unique exotic venomous species (average = 37 per year; range = 33-40). Males comprised 79% and females 21%. The average age was 33 years with 16% less than 20 years old. 70% of bites occurred in a private residence and 86% were treated at a healthcare facility. 35% of cases received antivenom and 10% were given antibiotics. This study is compared to our previous study (1994-2004) in which there was a substantial coding error rate. Software modifications significantly reduced coding errors. Identification and acquisition of appropriate antivenoms pose a number of logistical difficulties in the management of these envenomations. In the U.S., poison centers have valuable systems and clinical roles in the provision of expert consultation and in the management of these cases.

  17. Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea

    Science.gov (United States)

    Schofield, Pamela J.

    2009-01-01

    The Indo-Pacific lionfishes (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]: Family Scorpaenidae) are the first non-native marine fishes to establish in the Western North Atlantic. The chronology of the invasion is reported here using records from the US Geological Survey's Nonindigenous Aquatic Species database. Currently, lionfish are established off the Atlantic coast of the USA from the Florida Keys to Cape Hatteras (North Carolina), the Great Antilles, Bermuda, Bahamas, Cayman Islands and Turks and Caicos. The species have been reported from only one island in the Lesser Antilles (St. Croix), but it is not yet established there. Lionfish are established in Mexico, Honduras and Costa Rica. Reports have come from the Gulf of Mexico (Florida), Belize, Panama and Colombia; although lionfish are not considered established in these localities at this time (August 2009), invasion is likely imminent.

  18. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction.

    Science.gov (United States)

    Webb, Jena; Coomes, Oliver T; Mainville, Nicolas; Mergler, Donna

    2015-09-01

    Elevated mercury (Hg) concentrations in fish from Amazonia have been associated with gold-mining, hydroelectric dams and deforestation but few studies consider the role of petroleum extraction. Hg levels were determined in fish samples collected in three river basins in Ecuador and Peru with contrasting petroleum exploitation and land-use characteristics. The non-migratory, piscivorous species, Hoplias malabaricus, was used as a bioindicator. The rate of Hg increase with body weight for this species was significantly higher on the Corrientes River, near the site of a recent oil spill, than on the other two rivers. In the absence of substantial deforestation and other anthropogenic sources in the Corrientes River basin, this finding suggests that oil contamination in Andean Amazonia may have a significant impact on Hg levels in fish.

  19. 75 FR 16738 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-04-02

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... River fall Chinook salmon under the Endangered Species Act (ESA). The FMEP specifies the future... fish, sturgeon, carp, and other species.'' The FMEP describes the management of recreational fisheries...

  20. 76 FR 15946 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-03-22

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... research permit application request relating to salmonids listed under the Endangered Species Act (ESA... research activities. The purpose of the research program is to collect warmwater fish species to analyze...

  1. Motivating conservation: Learning to care for other species in a local ecological community

    Science.gov (United States)

    Laflamme, Michael

    Large-scale, sustainable biodiversity conservation must motivate action by local communities. I united theories and practices in biology and psychology to study the process by which people are motivated to care for other species, and to what extent caring results in helping. Participants (N = 1200), age 8--22, interacted with native fish and aquatic insects in their habitats during 21 field experiences through Lake County, Montana educational institutions. Native fish were chosen because they are familiar to local people, yet different from people in their morphology, biomechanics, and habitat. In Phase I, two activity models for conservation emerged: the Habitat approach linked concepts in ecology, reciprocation, and a moral orientation toward justice, while the Behavior approach linked concepts in behavior, kin selection, and a moral orientation toward caring. These two approaches were compared in Phase II through seven sets of experiences that varied only in point of view: toward the habitat or toward behavior. I found that through sustained contact between people and local fish in their habitats, in the field and in cold-water aquaria, people empathized with fish more than with habitats. They perceived fish states by interpreting their behavior, and created meaning by focusing on fish social interactions with their habitat, with other fish, and with people. They used the information gained from empathy to identify ongoing conservation needs and to design conservation plans. Attention to behavior increased perception of human impacts on fish; perception of relatedness with fish; similarity with the physiology, behavior, minds and lives of fish; desire for non-material benefits in return for helping fish; and cohesion within participant groups. These perceptions varied with age and gender. For example, women and children emphasized values of non-material returns for time invested. This study recommends a behavioral-ecology approach for motivating conservation and

  2. The Non-Native English Speaker Teachers in TESOL Movement

    Science.gov (United States)

    Kamhi-Stein, Lía D.

    2016-01-01

    It has been almost 20 years since what is known as the non-native English-speaking (NNES) professionals' movement--designed to increase the status of NNES professionals--started within the US-based TESOL International Association. However, still missing from the literature is an understanding of what a movement is, and why non-native English…

  3. Evaluating barriers to native seedling establishment in an invaded Hawaiian lowland wet forest

    Science.gov (United States)

    S. Cordell; R. Ostertag; B. Rowe; L. Sweinhart; L. Vasquez-Radonic; J. Michaud; T.C. Cole; J.R. Schulten

    2009-01-01

    Many tropical island forest ecosystems are dominated by non-native plant species and lack native species regeneration in the understorey. Comparison of replicated control and removal plots offers an opportunity to examine not only invasive species impacts but also the restoration potential of native species. In lowland Hawaiian wet forests little is known about native...

  4. STUDENTS WRITING EMAILS TO FACULTY: AN EXAMINATION OF E-POLITENESS AMONG NATIVE AND NON-NATIVE SPEAKERS OF ENGLISH

    Directory of Open Access Journals (Sweden)

    Sigrun Biesenbach-Lucas

    2007-02-01

    Full Text Available This study combines interlanguage pragmatics and speech act research with computer-mediated communication and examines how native and non-native speakers of English formulate low- and high-imposition requests to faculty. While some research claims that email, due to absence of non-verbal cues, encourages informal language, other research has claimed the opposite. However, email technology also allows writers to plan and revise messages before sending them, thus affording the opportunity to edit not only for grammar and mechanics, but also for pragmatic clarity and politeness.The study examines email requests sent by native and non-native English speaking graduate students to faculty at a major American university over a period of several semesters and applies Blum-Kulka, House, and Kasper’s (1989 speech act analysis framework – quantitatively to distinguish levels of directness, i.e. pragmatic clarity; and qualitatively to compare syntactic and lexical politeness devices, the request perspectives, and the specific linguistic request realization patterns preferred by native and non-native speakers. Results show that far more requests are realized through direct strategies as well as hints than conventionally indirect strategies typically found in comparative speech act studies. Politeness conventions in email, a text-only medium with little guidance in the academic institutional hierarchy, appear to be a work in progress, and native speakers demonstrate greater resources in creating e-polite messages to their professors than non-native speakers. A possible avenue for pedagogical intervention with regard to instruction in and acquisition of politeness routines in hierarchically upward email communication is presented.

  5. Ecohydrological Index, Native Fish, and Climate Trends and Relationships in the Kansas River Basin.

    Science.gov (United States)

    Sinnathamby, Sumathy; Douglas-Mankin, Kyle R; Muche, Muluken E; Hutchinson, Stacy L; Anandhi, Aavudai

    2018-01-01

    This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (pBasin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.

  6. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  7. Emotional communication in medical consultations with native and non-native patients applying two different methodological approaches.

    Science.gov (United States)

    Kale, Emine; Skjeldestad, Kristin; Finset, Arnstein

    2013-09-01

    To explore the potential agreement between two different methods to investigate emotional communication of native and non-native patients in medical consultations. The data consisted of 12 videotaped hospital consultations with six native and six non-native patients. The consultations were coded according to coding rules of the Verona Coding definitions of Emotional Sequences (VR-CoDES) and afterwards analyzed by discourse analysis (DA) by two co-workers who were blind to the results from VR-CoDES. The agreement between VR-CoDES and DA was high in consultations with many cues and concerns, both with native and non-native patients. In consultations with no (or one cue) according to VR-CoDES criteria the DA still indicated the presence of emotionally salient expressions and themes. In some consultations cues to underlying emotions are communicated so vaguely or veiled by language barriers that standard VR-CoDES coding may miss subtle cues. Many of these sub-threshold cues could potentially be coded as cues according to VR-CoDES main coding categories, if criteria for coding vague or ambiguous cues had been better specified. Combining different analytical frameworks on the same dataset provide us new insights on emotional communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Comprehending non-native speakers: theory and evidence for adjustment in manner of processing.

    Science.gov (United States)

    Lev-Ari, Shiri

    2014-01-01

    Non-native speakers have lower linguistic competence than native speakers, which renders their language less reliable in conveying their intentions. We suggest that expectations of lower competence lead listeners to adapt their manner of processing when they listen to non-native speakers. We propose that listeners use cognitive resources to adjust by increasing their reliance on top-down processes and extracting less information from the language of the non-native speaker. An eye-tracking study supports our proposal by showing that when following instructions by a non-native speaker, listeners make more contextually-induced interpretations. Those with relatively high working memory also increase their reliance on context to anticipate the speaker's upcoming reference, and are less likely to notice lexical errors in the non-native speech, indicating that they take less information from the speaker's language. These results contribute to our understanding of the flexibility in language processing and have implications for interactions between native and non-native speakers.

  9. 77 FR 27186 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-05-09

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Endangered Species Act (ESA) and to help guide management and conservation efforts. The applications may be... salmon, and LCR steelhead. The purpose of this research is to determine fish species presence and...

  10. 76 FR 57717 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-09-16

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS..., importing, and exporting of endangered and threatened species (50 CFR parts 222-226). Permits Permit 15926... will be captured by fyke net, identified to species, enumerated and measured. Dead or moribund fish...

  11. 77 FR 51763 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2012-08-27

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... INFORMATION: Authority The issuance of permits and permit modifications, as required by the Endangered Species... (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in This Notice This...

  12. Feedback in online course for non-native English-speaking students

    CERN Document Server

    Olesova, Larisa

    2013-01-01

    Feedback in Online Course for Non-Native English-Speaking Students is an investigation of the effectiveness of audio and text feedback provided in English in an online course for non-native English-speaking students. The study presents results showing how audio and text feedback can impact on non-native English-speaking students' higher-order learning as they participate in an asynchronous online course. It also discusses the results of how students perceive both types of the feedback provided. In addition, the study examines how the impact and perceptions differ when the instructor giving the

  13. Development of Solar Drying Model for Selected Cambodian Fish Species

    Science.gov (United States)

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  14. Reflecting on the dichotomy native-non native speakers in an EFL context

    OpenAIRE

    Mariño, Claudia

    2011-01-01

    This article provides a discussion based on constructs about the dichotomy betweennative and non-native speakers. Several models and examples are displayed about thespreading of the English language with the intention of understanding its developmentin the whole world and in Colombia, specifically. Then, some possible definitions aregiven to the term “native speaker” and its conceptualization is described as both realityand myth. One of the main reasons for writing this article is grounded on...

  15. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Science.gov (United States)

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  16. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Directory of Open Access Journals (Sweden)

    Jason Gibbs

    Full Text Available Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in

  17. 75 FR 78226 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-12-15

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... permits and permit modifications, as required by the Endangered Species Act of 1973 (16 U.S.C. 1531-1543... electrofisher and dipnet; sample fish for species identification, tags, marks and finclips, lengths and weights...

  18. Human impacts on functional and taxonomic homogenization of plateau fish assemblages in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Guohuan Su

    2015-07-01

    Full Text Available Human activities and the consequent extinctions of native species and invasions of non-native species have been changing the composition of species assemblages worldwide. These anthropogenic impacts alter not only the richness of assemblages but also the biological dissimilarity among them. However, much of the research effort to date has focused on changes in taxonomic dissimilarity (i.e. accounting for species composition whether assessments of functional dissimilarity (i.e. accounting for the diversity of biological traits are much more scarce, despite revealing important complimentary information by accounting for changes in the diversity of biological traits. Here, we assess the temporal (1950s against 2000s changes in both taxonomic and functional dissimilarities of freshwater fish assemblages across lakes from the Yunnan Plateau in China. The Jaccard index to quantify the changes in both taxonomic and functional dissimilarity. We then partitioned dissimilarity to extract its turnover component and measured the changes in the contribution of turnover to dissimilarity. We found that functional and taxonomic homogenization occurred simultaneously. However, patterns between these two processes differed for some lakes. Taxonomic and functional homogenizations were stronger when the historical level of taxonomic dissimilarity among assemblages was high. The impact of extinctions of native species and invasions of non-native species on homogenization was otherwise complex to disentangle with no significant effect of any of the studied environmental factors. In agreement with other studies, our study proved that change in taxonomic dissimilarity cannot be used to predict changes in functional dissimilarity and, as an indicator of ecosystem functioning, functional dissimilarity should be used together with taxonomic dissimilarity to attain a more holistic understanding of human impacts on natural ecosystems.

  19. Jointness through fishing days input in a multi-species fishery

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Carsten Lynge

    .g. translog, normalized quadratic). In this paper we argue that jointness in the latter, essentially separable fishery is caused by allocation of fishing days input among harvested species. We developed a structural model of a multi-species fishery where the allocation of fishing days input causes production...

  20. Total mercury concentration in common fish species of Lake Victoria ...

    African Journals Online (AJOL)

    Total mercury (THg) concentration was analysed in muscles of common fish species of Lake Victoria in the eastern and southern parts of the lake using cold vapour Atomic Absorption Spectrophotometric technique. Mercury concentration in all fish species was generally lower than the WHO maximum allowable ...

  1. Tropical fish community does not recover 45 years after predator introduction.

    Science.gov (United States)

    Sharpe, D M T; De León, L F; González, R; Torchin, M E

    2017-02-01

    Predation is considered to be an important factor structuring natural communities. However, it is often difficult to determine how it may influence long-term, broad-scale, diversity patterns, particularly in diverse tropical systems. Biological introductions can provide powerful insight to test the sustained consequences of predation in natural communities, if pre-introduction data are available. Half a century ago, Zaret and Paine demonstrated strong and immediate community-level effects following the introduction of a novel apex predator (peacock bass, Cichla monoculus) into Lake Gatun, Panama. To test for long-term changes associated with this predator introduction, we followed up on their classic study by replicating historical sampling methods and examining changes in the littoral fish community at two sites in Lake Gatun 45 years post-introduction. To broaden our inference, we complemented this temporal comparison with a spatial analysis, wherein we compared the fish communities from two lakes with and one lake without peacock bass. Comparisons with historical data revealed that the peacock bass remains the most abundant predator in Lake Gatun. Furthermore, the collapse of the littoral prey community observed immediately following the invasion has been sustained over the past 45 years. The mean abundance of native littoral fish is now 96% lower than it was prior to the introduction. Diversity (rarefied species richness) declined by 64% post-introduction, and some native species appear to have been locally extirpated. We observed a similar pattern across invaded and uninvaded lakes: the mean abundance of native fishes was 5-40 times lower in lakes with (Gatun, Alajuela) relative to the lake without peacock bass (Bayano). In particular, small-bodied native fishes (Characidae, Peociliidae), which are common prey of the peacock bass, were more than two orders of magnitude (307 times) less abundant in Gatun and one order of magnitude (28 times) less abundant in

  2. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  3. Invasive ecosystem engineer selects for different phenotypes of an associated native species.

    Science.gov (United States)

    Wright, Jeffrey T; Gribben, Paul E; Byers, James E; Monro, Keyne

    2012-06-01

    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.

  4. The distribution, composition and abundance of fish species in two ...

    African Journals Online (AJOL)

    Fish composition and abundance of two Gold mine reservoir were investigated between May, 2008 and May, 2009. Seven fish families comprising of twelve species of fish were caught during the period of study. The families of fish caught included Anabantidae, Channidae, Clariidae, Cichlidae, Melanopluridae, Mormyridae ...

  5. Biota monitoring under the Water Framework Directive: On tissue choice and fish species selection.

    Science.gov (United States)

    Fliedner, Annette; Rüdel, Heinz; Lohmann, Nina; Buchmeier, Georgia; Koschorreck, Jan

    2018-04-01

    The study addresses the topic of suitable matrices for chemical analysis in fish monitoring and discusses the effects of data normalization in the context of the European Water Framework Directive (WFD). Differences between species are considered by comparing three frequently monitored species of different trophic levels, i.e., chub (Squalius cephalus, n = 28), (bream, Abramis brama, n = 11), and perch (Perca fluviatilis, n = 19) sampled in the German Danube. The WFD priority substances dioxins, furans and dioxin-like polychlorinated biphenyls (PCDD/F + dl-PCB), polybrominated diphenyl ethers (PBDE), α-hexabromocyclododecane (α-HBCDD), hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) as well as non-dioxin-like (ndl)-PCB were analyzed separately in fillet and carcass and whole body concentrations were calculated. Hg was analyzed in individual fish fillets and carcasses, all other substances were determined in pool samples, which were compiled on the basis of fish size (3 chub pools, 1 bream pool, 2 perch pools). The data were normalized to 5% lipid weight (or 26% dry mass in the case of Hg and PFOS) for comparison between matrices and species. Hg concentrations were generally higher in fillet than in whole fish (mean whole fish-to-fillet ratio: 0.7) whereas all other substances were mostly higher in whole fish. In the case of lipophilic substances these differences leveled after lipid normalization. Significant correlations (p ≤ .05) were detected between Hg and fish weight and age. Hg concentrations varied least among younger fish. PCDD/F, dl-PCB, ndl-PCB, PBDE, α-HBCDD and HCB correlated significantly (p ≤ .05) with lipid concentrations. Fillet-to-whole fish conversion equations and/or conversion factors were derived for all substances except α-HCBDD. Although more data also for individual fish would be desirable the results are nevertheless a step on the way to translate fillet concentrations of priority

  6. [Species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China].

    Science.gov (United States)

    Zhang, Qian; Zhong, Jin-Xin

    2013-05-01

    Based on the related published papers, and by using Geographic Information System (ArcGIS 9.3), this paper analyzed the species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China. There were 83 threatened species living in the Province, belonging to 5 orders, 13 families, and 47 genera. Cypriniformes was absolutely dominant, with 64 species, followed by Siluriformes, with 16 species. Cyprinidae fishes had 51 species, accounting for 79.7% of Cypriniformes. The most species of Cyprinid fishes were of Barbinae (14 species), Cyprininae (10 species), and Cultrinae (10 species). The threatened fishes could be divided into two zoogeographical regions, i. e., Tibetan Plateau region and Oriental region, and their species composition and geographical distribution were resulted from the historical evolution adapted to the related environments. Whatever in rivers and in lakes, the Cyprinid fishes were both absolutely dominant, occupying 36.1% and 31.3% of the total, respectively. The Cyprinid fishes in rivers were mostly of endangered species, while those in lakes were mostly of vulnerable species. The factors affecting the threatened fishes in the Province were discussed from the two aspects of geodynamic evolution and present situation.

  7. Fish species composition, density-distribution patterns, and impingement during upwelling

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Sharma, R.K.

    1975-01-01

    The effects of cooling system intakes and discharges on Lake Michigan fishes are highly dependent on inshore species composition and spatial distribution which, in turn, are affected by natural hydrological conditions. Significant (5 to 10 C) short-term decreases in water temperature (due to upwelling) could cause cold shock in fish equilibrated to either ambient or plume temperatures; substantial changes in distribution due to avoidance or attraction responses; and resultant changes in susceptibility to impingement. The objectives of this study are to characterize the changes in fish species composition, density, and thermal distribution as a result of natural upwellings, and to relate these factors to intake and discharge effects. Day and night sampling was conducted in ambient (reference) and thermal plume waters near the Zion Nuclear Plant on four occasions between 17 July and 11 September 1975. Density-distribution patterns and species composition of fish were determined by means of gill nets, bottom trawls, seines, and a sonic fish locater

  8. Oral vaccination of fish: Lessons from humans and veterinary species.

    Science.gov (United States)

    Embregts, Carmen W E; Forlenza, Maria

    2016-11-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most

  10. 76 FR 51352 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2011-08-18

    ... Department of Fish and Wildlife (WDFW), for a direct take permit pursuant to the Endangered Species Act of... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Section 9 of the ESA and Federal regulations prohibit the ``taking'' of a species listed as endangered or...

  11. Relative Weighting of Semantic and Syntactic Cues in Native and Non-Native Listeners' Recognition of English Sentences.

    Science.gov (United States)

    Shi, Lu-Feng; Koenig, Laura L

    2016-01-01

    Non-native listeners do not recognize English sentences as effectively as native listeners, especially in noise. It is not entirely clear to what extent such group differences arise from differences in relative weight of semantic versus syntactic cues. This study quantified the use and weighting of these contextual cues via Boothroyd and Nittrouer's j and k factors. The j represents the probability of recognizing sentences with or without context, whereas the k represents the degree to which context improves recognition performance. Four groups of 13 normal-hearing young adult listeners participated. One group consisted of native English monolingual (EMN) listeners, whereas the other three consisted of non-native listeners contrasting in their language dominance and first language: English-dominant Russian-English, Russian-dominant Russian-English, and Spanish-dominant Spanish-English bilinguals. All listeners were presented three sets of four-word sentences: high-predictability sentences included both semantic and syntactic cues, low-predictability sentences included syntactic cues only, and zero-predictability sentences included neither semantic nor syntactic cues. Sentences were presented at 65 dB SPL binaurally in the presence of speech-spectrum noise at +3 dB SNR. Listeners orally repeated each sentence and recognition was calculated for individual words as well as the sentence as a whole. Comparable j values across groups for high-predictability, low-predictability, and zero-predictability sentences suggested that all listeners, native and non-native, utilized contextual cues to recognize English sentences. Analysis of the k factor indicated that non-native listeners took advantage of syntax as effectively as EMN listeners. However, only English-dominant bilinguals utilized semantics to the same extent as EMN listeners; semantics did not provide a significant benefit for the two non-English-dominant groups. When combined, semantics and syntax benefitted EMN

  12. Native Shellfish in Nearshore Ecosystems of Puget Sound

    Science.gov (United States)

    2006-04-01

    California Dungeness crabs (Cancer magister). California Fish and Game 63:43-51. Griffin, K. 1997. Commercial oyster cultivation and eelgrass...A.M. 2007. Great Blue Herons in Puget Sound. Puget Sound Nearshore Partnership Report No. 2007-06. Published by Seattle District, U.S. Army Corps of...non-native Pacific oyster, but more than $40 million is from native crabs , clams, and mussels. Recreationally, personal harvest of shellfish is a

  13. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  14. Drivers of redistribution of fishing and non-fishing effort after the implementation of a marine protected area network.

    Science.gov (United States)

    Cabral, Reniel B; Gaines, Steven D; Johnson, Brett A; Bell, Tom W; White, Crow

    2017-03-01

    Marine spatial planning (MSP) is increasingly utilized to sustainably manage ocean uses. Marine protected areas (MPAs), a form of spatial management in which parts of the ocean are regulated to fishing, are now a common tool in MSP for conserving marine biodiversity and managing fisheries. However, the use of MPAs in MSP often neglects, or simplifies, the redistribution of fishing and non-fishing activities inside and outside of MPAs following their implementation. This redistribution of effort can have important implications for effective MSP. Using long-term (14 yr) aerial surveys of boats at the California Channel Islands, we examined the spatial redistribution of fishing and non-fishing activities and their drivers following MPA establishment. Our data represent 6 yr of information before the implementation of an MPA network and 8 yr after implementation. Different types of boats responded in different ways to the closures, ranging from behaviors by commercial dive boats that support the hypothesis of fishing-the-line, to behaviors by urchin, sport fishing, and recreational boats that support the theory of ideal free distribution. Additionally, we found that boats engaged in recreational activities targeted areas that are sheltered from large waves and located near their home ports, while boats engaged in fishing activities also avoided high wave areas but were not constrained by the distance to their home ports. We did not observe the expected pattern of effort concentration near MPA borders for some boat types; this can be explained by the habitat preference of certain activities (for some activities, the desired habitat attributes are not inside the MPAs), species' biology (species such as urchins where the MPA benefit would likely come from larval export rather than adult spillover), or policy-infraction avoidance. The diversity of boat responses reveals variance from the usual simplified assumption that all extractive boats respond similarly to MPA

  15. Proteolytic activities in fillets of selected underutilized Australian fish species.

    Science.gov (United States)

    Ahmed, Z; Donkor, O; Street, W A; Vasiljevic, T

    2013-09-01

    The hydrolytic activity of major endogenous proteases, responsible for proteolysis of myofibrillar proteins during post-mortem storage, may be an indicator of the textural quality of fish which influences consumer purchasing behaviour and thus market value of the final product. Furthermore, it may also influence the type and bioactive properties of the peptides released during post-mortem proteolysis of myofibrillar proteins. This study compared the activities of cathepsins B, B+L, D, H and calpain-like enzymes in crude muscle extracted from 16 Australian underutilized fish species. Fish species had a significant effect on the activity of these enzymes with barracouta showing the highest cathepsins B, B+L, D and H activities. Activities of cathepsins B and B+L were higher than cathepsin H for all studied species. The more commercially important rock ling and tiger flathead demonstrated higher cathepsin B+L activity, whereas gemfish and eastern school whiting showed higher activity towards cathepsin B. Underutilized fish species showing higher endogenous protease activities may be suitable for fish sauce production, whereas those with lower protease activities for surimi processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Larvivorous fish for preventing malaria transmission

    Science.gov (United States)

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-01-01

    reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. Data collection and analysis Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. Main results We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density. For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These

  17. 75 FR 14134 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-03-24

    ... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... modifications, as required by the Endangered Species Act of 1973 (16 U.S.C. 1531 1543) (ESA), is based on a... trap and beach seine, anesthesize and sample fish for species identification, tags, marks and fin clips...

  18. 75 FR 33243 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2010-06-11

    ... and Threatened Species; Take of Anadromous Fish AGENCY: NOAA's National Marine Fisheries Service (NMFS... Endangered Species Act of 1973 (16 U.S.C. 1531-1543) (ESA), is based on a finding that such permits... NMFS regulations (50 CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in...

  19. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  20. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  1. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species.

    Science.gov (United States)

    Symanczik, Sarah; Courty, Pierre-Emmanuel; Boller, Thomas; Wiemken, Andres; Al-Yahya'ei, Mohamed N

    2015-11-01

    Field studies have revealed the impact of changing water regimes on the structure of arbuscular mycorrhizal fungal (AMF) communities, but it is not known what happens to the abundance of individual AMF species within the community when the water conditions in the rhizosphere change. The behavior of four AMF species isolated from the Arabian desert (Diversispora aurantia, Diversispora omaniana, Septoglomus africanum, and an undescribed Paraglomus species) was investigated when assembled in microcosms containing Sorghum bicolor as host plant, and treated with various water regimes. Furthermore, the impact of invasion of these assemblages by Rhizophagus irregularis, an AMF species widely used in commercial inocula, was studied. The abundance of each AMF species in sorghum roots was measured by determining the transcript numbers of their large ribosomal subunit (rLSU) by real-time PCR, using cDNA and species-specific primers. Plant biomass and length of AMF extraradical hyphae were also measured. The abundance of each AMF species within the sorghum roots was influenced by both the water regime and the introduction of R. irregularis. Under dry conditions, the introduction of R. irregularis reduced the total abundance of all native AMF species in roots and also led to a reduction in the amount of extraradical mycelium, as well as to a partial decrease in plant biomass. The results indicate that both water regime and the introduction of an invasive AMF species can strongly alter the structure of an AMF native assemblage with a consequent impact on the entire symbiotic mycorrhizal relationship.

  2. Salinity ranges of some southern African fish species occurring in ...

    African Journals Online (AJOL)

    The recorded salinity ranges of 96 fish species occurring in southern African estuaries are documented. Factors influen- cing the tolerance of fishes to low and high salinity regimes are discussed, with most species tolerant of low rather than high salinity conditions. This is important since most systems are subject to periodic ...

  3. Fish allergy in patients with parvalbumin-specific immunoglobulin E depends on parvalbumin content rather than molecular differences in the protein among fish species.

    Science.gov (United States)

    Kobayashi, Ayako; Kobayashi, Yukihiro; Shiomi, Kazuo

    2016-10-01

    Allergenic characteristics of purified parvalbumins from different fish species have not been thoroughly investigated. We revealed that purified parvalbumins from nine different fish species have identical IgE-reactivities and high cross-reactivities. We also showed that fish allergenicity is associated with the parvalbumin content of the fish species, rather than species-specific differences in the molecular characteristics of the individual parvalbumin proteins.

  4. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3–0.5 ppm, 3 species), medium (0.14–0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. PMID:21292311

  5. Warming impacts on fish species composition in the Kattegat-Belt Sea

    DEFF Research Database (Denmark)

    Bryndum, Karoline Minna; MacKenzie, Brian

    Sea temperatures have been rising in the waters near Denmark during the past 1-2 decades and are expected to affect marine populations, species, communities and foodwebs. Here we investigate whether and how the species richness and composition of the marine fish community in the Kattegat and Belt...... of the southern range limits of all species captured in the surveys shows that the mean southern latitudinal limit of the fish community has been decreasing and is also corrrelated with bottom temperatures; these patterns are consistent with immigration of fish from southerly zoogeographic regions. Warm...

  6. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    Science.gov (United States)

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  7. DNA barcoding for species assignment: the case of Mediterranean marine fishes.

    Directory of Open Access Journals (Sweden)

    Monica Landi

    Full Text Available DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity.A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1 a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2 the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS and 72% (GenBank of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%-18.74%, most of them of high commercial relevance, suggesting possible cryptic species.We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA samples of disparate quality and origin has major utility in several

  8. Characterization of the Cultivable Gut Microflora in Wild-Caught 
Mediterranean Fish Species.

    Science.gov (United States)

    Jammal, Ahmad; Bariche, Michel; Zu Dohna, Heinrich; Kambris, Zakaria

    2017-05-01

    Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic. We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish. The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.

  9. Native Prairie Adaptive Management: a multi region adaptive approach to invasive plant management on Fish and Wildlife Service owned native prairies

    Science.gov (United States)

    Gannon, Jill J.; Shaffer, Terry L.; Moore, Clinton T.

    2013-01-01

    that working together across a large landscape presented perhaps the best opportunity for halting and reversing the invasion of native grasslands by non-native cool-season grasses. Importantly, the NPAM system encapsulates the collective thinking and experience of tens if not hundreds of individuals who have battled this vexing problem for much of their careers. The NPAM initiative is rooted in principles of adaptive management, thereby affording the opportunity for grassland managers to pursue management objectives while acquiring information to reduce uncertainty and improve future management. The project introduced a number of technical innovations that will serve as templates for conservation efforts throughout and beyond the U.S. Fish and Wildlife Service. First, NPAM is an on-the-ground implementation of active adaptive management—possibly the first of its kind in conservation management—in which recommended management actions result from a prospective analysis of future learning (Williams, 1996). Second, by the use of dynamic optimization, NPAM demonstrates how decisions can be made that take into account possible future transitions of the system. Third, NPAM demonstrates how models of partial controllability are an effective means of accommodating unpredictable circumstances that cause a manager to follow a different course than was intended. Finally, the database developed for NPAM is an unparalleled system that enables the rapid integration of data from the field for the generation of ‘just-in-time’ management recommendations. In all, NPAM provides an example of how a science-management partnership can be forged to achieve large-scale conservation objectives.

  10. Evaluation of multiwalled carbon nanotubes toxicity in two fish species.

    Science.gov (United States)

    Cimbaluk, Giovani Valentin; Ramsdorf, Wanessa Algarte; Perussolo, Maiara Carolina; Santos, Hayanna Karla Felipe; Da Silva De Assis, Helena Cristina; Schnitzler, Mariane Cristina; Schnitzler, Danielle Caroline; Carneiro, Pedro Gontijo; Cestari, Marta Margarete

    2018-04-15

    Carbon Nanotubes are among the most promising materials for the technology industry. Their unique physical and chemical proprieties may reduce the production costs and improve the efficiency of a large range of products. However, the same characteristics that have made nanomaterials interesting for industry may be responsible for inducing toxic effects on the aquatic organisms. Since the carbon nanotubes toxicity is still a controversial issue, we performed tests of acute and subchronic exposure to a commercial sample of multiwalled carbon nanotubes in two fish species, an exotic model (Danio rerio) and a native one (Astyanax altiparanae). Using the alkaline version of the comet assay on erythrocytes and the piscine micronucleous, also performed on erythrocytes, it was verified that the tested carbon nanotubes sample did not generate apparent genotoxicity by means of single/double DNA strand break or clastogenic/aneugenic effects over any of the species, independently of the exposure period. Although, our findings indicate the possibility of the occurrence of CNTs-DNA crosslinks. Apparently, the sample tested induces oxidative stress after subchronic exposure as shown by activity of superoxide dismutase and catalase. The data obtained by the activity levels of acetylcholinesterase suggests acute neurotoxicity in Astyanax altiparanae and subchronic neurotoxicity in Danio rerio. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Life history strategies of fish species and biodiversity in eastern USA streams

    Science.gov (United States)

    Meador, Michael R.; Brown, Larry M.

    2015-01-01

    Predictive models have been used to determine fish species that occur less frequently than expected (decreasers) and those that occur more frequently than expected (increasers) in streams in the eastern U.S. Coupling life history traits with 51 decreaser and 38 increaser fish species provided the opportunity to examine potential mechanisms associated with predicted changes in fish species distributions in eastern streams. We assigned six life history traits – fecundity, longevity, maturation age, maximum total length, parental care, and spawning season duration – to each fish species. Decreaser species were significantly smaller in size and shorter-lived with reduced fecundity and shorter spawning seasons compared to increaser species. Cluster analysis of traits revealed correspondence with a life history model defining equilibrium (low fecundity, high parental care), opportunistic (early maturation, low parental care), and periodic (late maturation, high fecundity, low parental care) end-point strategies. Nearly 50 % of decreaser species were associated with an intermediate opportunistic-periodic strategy, suggesting that abiotic factors such as habitat specialization and streamflow alteration may serve as important influences on life history traits and strategies of decreaser species. In contrast, the percent of increaser species among life history strategy groups ranged from 21 to 32 %, suggesting that life history strategies of increaser species were more diverse than those of decreaser species. This study highlights the utility of linking life history theory to biodiversity to better understand mechanisms that contribute to fish species distributions in the eastern U.S.

  12. Unique structural modulation of a non-native substrate by cochaperone DnaJ.

    Science.gov (United States)

    Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli

    2013-02-12

    The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.

  13. Fish assemblages and diversity in three tributaries of the Irrawaddy River in China: changes, threats and conservation perspectives

    Directory of Open Access Journals (Sweden)

    Yang M.-L.

    2016-01-01

    Full Text Available Incompletely known fish assemblages and species diversity are substantial obstacles in fish conservation, particularly when their aquatic habitats are under threat due to rapid human-induced changes. Fish assemblages and diversity in three tributaries of the upper Irrawaddy River in China (the Dulong, Daying and Ruili rivers were examined based on field collections and literature resources. The newly compiled fish assemblage recorded 85 species (in 8 orders, 20 families and 51 genera distributed in the upper Irrawaddy. The fish compositions in the Daying (67 species, 44 genera, 19 families, 7 orders and Ruili rivers (65 species, 44 genera, 19 families, 8 orders were more similar to each other and more speciose than that in the Dulong River (14 species, 10 genera, 4 families, 3 orders. Two indices of taxonomic diversity (the average taxonomic distinctness (Δ+, and the variation in taxonomic distinctness (Λ+ were used to discriminate four collections spanning a ten-year period. A decrease in taxonomic diversity and an increase in unevenness of the fish assemblages were found in both the Daying River and Ruili rivers, which indicated that the impacts were accumulated gradually during this decade, when dams and the spread of non-native species were major threats. Comparatively speaking, the Dulong River is still in a near-natural state, and thus the fish community has experienced less disturbance. In situ conservation (nature reserves and tributary protection and ex situ conservation (artificial propagation and release should be combined and managed to promote fish conservation in the future.

  14. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges

    Directory of Open Access Journals (Sweden)

    Jeff Ollerton

    2012-10-01

    Full Text Available Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species. Using published and unpublished data we assessed the floral biology and pollination ecology of the South American native Nicotiana glauca (Solanaceae which has become a significant invasive of semi-arid parts of the world. In regions where specialised bird pollinators are available, for example hummingbirds in California and sunbirds in South Africa and Israel, N. glauca interacts with these local pollinators and sets seed by both out-crossing and selfing. In areas where there are no such birds, such as the Canary Islands and Greece, abundant viable seed is set by selfing, facilitated by the shorter stigma-anther distance compared to plants in native populations. Surprisingly, in these areas without pollinating birds, the considerable nectar resources are only rarely exploited by other flower visitors such as bees or butterflies, either legitimately or by nectar robbing. We conclude that Nicotiana glauca is a successful invasive species outside of its native range, despite its functionally specialised hummingbird pollination system, because it has evolved to become more frequently self pollinating in areas where it is introduced. Its invasion success is not predictable from what is known of its interactions with pollinators in its home range.

  15. Underappreciated species in ecology: "ugly fish" in the northwest Atlantic Ocean.

    Science.gov (United States)

    Link, Jason S

    2007-10-01

    Species shifts and replacements are common in ecological studies. Observations thereof serve as the impetus for many ecological endeavors. Many of the species now known to dominate ecosystem functioning were largely ignored until studies of those underappreciated species elucidated their critical roles. Recognizing the potential importance of underappreciated species has implications for functional redundancies in ecosystems and should alter our approach to long-term monitoring. One example of an applied ecological system containing species shifts, underappreciated species, and potential changes in functional redundancies is the topic of fisheries. The demersal component of many fish communities usually consists of high-profile and commercially valuable species that are targets of fisheries, plus a diverse group of lesser known species that have minimal commercial value and focus. Yet ecologically these traditionally nontargeted species are often a major biomass sink in marine ecosystems and can also be critical in the functioning of bentho-demersal food webs. I examined the biomass trajectories of several species of skates, cottids, lophiids, anarhichadids, zooarcids, and similar species in the northeast U.S. Atlantic ecosystem to determine whether their relative abundance has changed across the past four decades. Distribution and stomach contents of these species were also evaluated over time to further elucidate the relative importance of these species. Landings of these underappreciated bentho-demersal fish were also examined in comparison to those species that historically have been commercially targeted. Of particular emphasis was the evaluation of evidence for sequential stock depletion and the ramifications for functional redundancy for this ecosystem. Results indicate that some of these fish species are now the dominant piscivores, benthivores, and scavengers in this ecosystem. These formerly under-studied species generally have either maintained a

  16. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach.

    Science.gov (United States)

    Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C

    2016-11-01

    A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such

  17. 78 FR 23222 - Endangered and Threatened Species; Take of Anadromous Fish

    Science.gov (United States)

    2013-04-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC630 Endangered and Threatened Species; Take of Anadromous Fish AGENCY: NOAA's National Marine Fisheries Service (NMFS... CFR parts 222-226) governing listed fish and wildlife permits. Species Covered in This Notice This...

  18. Spatial Distribution of Reef Fish Species along the Southeast US Atlantic Coast Inferred from Underwater Video Survey Data.

    Directory of Open Access Journals (Sweden)

    Nathan M Bacheler

    Full Text Available Marine fish abundance and distribution often varies across spatial scales for a variety of reasons, and this variability has significant ecological and management consequences. We quantified the distribution of reef-associated fish species along the southeast United States Atlantic coast using underwater video survey samples (N = 4,855 in 2011-2014 to elucidate variability within species across space, depths, and habitats, as well as describe broad-scale patterns in species richness. Thirty-two species were seen at least 10 times on video, and the most commonly observed species were red porgy (Pagrus pagrus; 41.4% of videos, gray triggerfish (Balistes capriscus; 31.0%, black sea bass (Centropristis striata; 29.1%, vermilion snapper (Rhomboplites aurorubens; 27.7%, and red snapper (Lutjanus campechanus; 22.6%. Using generalized additive models, we found that most species were non-randomly distributed across space, depths, and habitats. Most rare species were observed along the continental shelf break, except for goliath grouper (Epinephelus itajara, which was found on the continental shelf in Florida and Georgia. We also observed higher numbers of species in shelf-break habitats from southern North Carolina to Georgia, and fewer in shallower water and at the northern and southern ends of the southeast United States Atlantic coast. Our study provides the first broad-scale description of the spatial distribution of reef fish in the region to be based on fishery-independent data, reinforces the utility of underwater video to survey reef fish, and can help improve the management of reef fish in the SEUS, for example, by improving indices of abundance.

  19. Dissociating Cortical Activity during Processing of Native and Non-Native Audiovisual Speech from Early to Late Infancy

    Directory of Open Access Journals (Sweden)

    Eswen Fava

    2014-08-01

    Full Text Available Initially, infants are capable of discriminating phonetic contrasts across the world’s languages. Starting between seven and ten months of age, they gradually lose this ability through a process of perceptual narrowing. Although traditionally investigated with isolated speech sounds, such narrowing occurs in a variety of perceptual domains (e.g., faces, visual speech. Thus far, tracking the developmental trajectory of this tuning process has been focused primarily on auditory speech alone, and generally using isolated sounds. But infants learn from speech produced by people talking to them, meaning they learn from a complex audiovisual signal. Here, we use near-infrared spectroscopy to measure blood concentration changes in the bilateral temporal cortices of infants in three different age groups: 3-to-6 months, 7-to-10 months, and 11-to-14-months. Critically, all three groups of infants were tested with continuous audiovisual speech in both their native and another, unfamiliar language. We found that at each age range, infants showed different patterns of cortical activity in response to the native and non-native stimuli. Infants in the youngest group showed bilateral cortical activity that was greater overall in response to non-native relative to native speech; the oldest group showed left lateralized activity in response to native relative to non-native speech. These results highlight perceptual tuning as a dynamic process that happens across modalities and at different levels of stimulus complexity.

  20. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    Science.gov (United States)

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.