WorldWideScience

Sample records for non-mirror images response

  1. Image recognition and consistency of response

    Science.gov (United States)

    Haygood, Tamara M.; Ryan, John; Liu, Qing Mary A.; Bassett, Roland; Brennan, Patrick C.

    2012-02-01

    Purpose: To investigate the connection between conscious recognition of an image previously encountered in an experimental setting and consistency of response to the experimental question. Materials and Methods: Twenty-four radiologists viewed 40 frontal chest radiographs and gave their opinion as to the position of a central venous catheter. One-to-three days later they again viewed 40 frontal chest radiographs and again gave their opinion as to the position of the central venous catheter. Half of the radiographs in the second set were repeated images from the first set and half were new. The radiologists were asked of each image whether it had been included in the first set. For this study, we are evaluating only the 20 repeated images. We used the Kruskal-Wallis test and Fisher's exact test to determine the relationship between conscious recognition of a previously interpreted image and consistency in interpretation of the image. Results. There was no significant correlation between recognition of the image and consistency in response regarding the position of the central venous catheter. In fact, there was a trend in the opposite direction, with radiologists being slightly more likely to give a consistent response with respect to images they did not recognize than with respect to those they did recognize. Conclusion: Radiologists' recognition of previously-encountered images in an observer-performance study does not noticeably color their interpretation on the second encounter.

  2. Differentiating emotional responses to images and words

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk; Petersen, Michael Kai; Larsen, Jakob Eg

    responses are characterized by only small voltage changes that have typically been found in group studies involving multiple trials and large numbers of participants. Hypothesizing that spatial filtering might enhance retrieval, we apply independent component analysis (ICA) to cluster scalp maps and time...... series responses in a single subject based on only a few trials. Comparing our results against previous findings we identify multiple early and late ICA components that are similarly modulated by neutral, pleasant and unpleasant content in both images and words. Suggesting that we might be able to model...

  3. Clinical characteristics of mirror syndrome: a comparison of 10 cases of mirror syndrome with non-mirror syndrome fetal hydrops cases.

    Science.gov (United States)

    Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi

    2016-01-01

    To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.

  4. Image-Word Pairing-Congruity Effect on Affective Responses

    Science.gov (United States)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  5. Imaging tools to measure treatment response in gout.

    Science.gov (United States)

    Dalbeth, Nicola; Doyle, Anthony J

    2018-01-01

    Imaging tests are in clinical use for diagnosis, assessment of disease severity and as a marker of treatment response in people with gout. Various imaging tests have differing properties for assessing the three key disease domains in gout: urate deposition (including tophus burden), joint inflammation and structural joint damage. Dual-energy CT allows measurement of urate deposition and bone damage, and ultrasonography allows assessment of all three domains. Scoring systems have been described that allow radiological quantification of disease severity and these scoring systems may play a role in assessing the response to treatment in gout. This article reviews the properties of imaging tests, describes the available scoring systems for quantification of disease severity and discusses the challenges and controversies regarding the use of imaging tools to measure treatment response in gout. © The Author 2018. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Reflective and Non-conscious Responses to Exercise Images.

    Science.gov (United States)

    Cope, Kathryn; Vandelanotte, Corneel; Short, Camille E; Conroy, David E; Rhodes, Ryan E; Jackson, Ben; Dimmock, James A; Rebar, Amanda L

    2017-01-01

    Images portraying exercise are commonly used to promote exercise behavior and to measure automatic associations of exercise (e.g., via implicit association tests). The effectiveness of these promotion efforts and the validity of measurement techniques partially rely on the untested assumption that the images being used are perceived by the general public as portrayals of exercise that is pleasant and motivating. The aim of this study was to investigate how content of images impacted people's automatic and reflective evaluations of exercise images. Participants ( N = 90) completed a response time categorization task (similar to the implicit association test) to capture how automatically people perceived each image as relevant to Exercise or Not exercise . Participants also self-reported their evaluations of the images using visual analog scales with the anchors: Exercise / Not exercise, Does not motivate me to exercise / Motivates me to exercise, Pleasant / Unpleasant , and Energizing/Deactivating . People tended to more strongly automatically associate images with exercise if the images were of an outdoor setting, presented sport (as opposed to active labor or gym-based) activities, and included young (as opposed to middle-aged) adults. People tended to reflectively find images of young adults more motivating and relevant to exercise than images of older adults. The content of exercise images is an often overlooked source of systematic variability that may impact measurement validity and intervention effectiveness.

  7. Reflective and Non-conscious Responses to Exercise Images

    Directory of Open Access Journals (Sweden)

    Kathryn Cope

    2018-01-01

    Full Text Available Images portraying exercise are commonly used to promote exercise behavior and to measure automatic associations of exercise (e.g., via implicit association tests. The effectiveness of these promotion efforts and the validity of measurement techniques partially rely on the untested assumption that the images being used are perceived by the general public as portrayals of exercise that is pleasant and motivating. The aim of this study was to investigate how content of images impacted people's automatic and reflective evaluations of exercise images. Participants (N = 90 completed a response time categorization task (similar to the implicit association test to capture how automatically people perceived each image as relevant to Exercise or Not exercise. Participants also self-reported their evaluations of the images using visual analog scales with the anchors: Exercise/Not exercise, Does not motivate me to exercise/Motivates me to exercise, Pleasant/Unpleasant, and Energizing/Deactivating. People tended to more strongly automatically associate images with exercise if the images were of an outdoor setting, presented sport (as opposed to active labor or gym-based activities, and included young (as opposed to middle-aged adults. People tended to reflectively find images of young adults more motivating and relevant to exercise than images of older adults. The content of exercise images is an often overlooked source of systematic variability that may impact measurement validity and intervention effectiveness.

  8. HDR Image Quality Enhancement Based on Spatially Variant Retinal Response

    Directory of Open Access Journals (Sweden)

    Horiuchi Takahiko

    2010-01-01

    Full Text Available There is a growing demand for being able to display high dynamic range (HDR images on low dynamic range (LDR devices. Tone mapping is a process for enhancing HDR image quality on an LDR device by converting the tonal values of the original image from HDR to LDR. This paper proposes a new tone mapping algorithm for enhancing image quality by deriving a spatially-variant operator for imitating S-potential response in human retina, which efficiently improves local contrasts while conserving good global appearance. The proposed tone mapping operator is studied from a system construction point of view. It is found that the operator is regarded as a natural extension of the Retinex algorithm by adding a global adaptation process to the local adaptation. The feasibility of the proposed algorithm is examined in detail on experiments using standard HDR images and real HDR scene images, comparing with conventional tone mapping algorithms.

  9. PIRATE: pediatric imaging response assessment and targeting environment

    Science.gov (United States)

    Glenn, Russell; Zhang, Yong; Krasin, Matthew; Hua, Chiaho

    2010-02-01

    By combining the strengths of various imaging modalities, the multimodality imaging approach has potential to improve tumor staging, delineation of tumor boundaries, chemo-radiotherapy regime design, and treatment response assessment in cancer management. To address the urgent needs for efficient tools to analyze large-scale clinical trial data, we have developed an integrated multimodality, functional and anatomical imaging analysis software package for target definition and therapy response assessment in pediatric radiotherapy (RT) patients. Our software provides quantitative tools for automated image segmentation, region-of-interest (ROI) histogram analysis, spatial volume-of-interest (VOI) analysis, and voxel-wise correlation across modalities. To demonstrate the clinical applicability of this software, histogram analyses were performed on baseline and follow-up 18F-fluorodeoxyglucose (18F-FDG) PET images of nine patients with rhabdomyosarcoma enrolled in an institutional clinical trial at St. Jude Children's Research Hospital. In addition, we combined 18F-FDG PET, dynamic-contrast-enhanced (DCE) MR, and anatomical MR data to visualize the heterogeneity in tumor pathophysiology with the ultimate goal of adaptive targeting of regions with high tumor burden. Our software is able to simultaneously analyze multimodality images across multiple time points, which could greatly speed up the analysis of large-scale clinical trial data and validation of potential imaging biomarkers.

  10. Gallium 67 imaging in monitoring lymphoma response to treatment

    International Nuclear Information System (INIS)

    Israel, O.; Front, D.; Lam, M.; Ben-Haim, S.; Kleinhaus, U.; Ben-Shachar, M.; Robinson, E.; Kolodny, G.M.

    1988-01-01

    The value of gallium 67 (Ga) imaging in monitoring lymphoma response to treatment was assessed in 25 patients with Ga-avid tumors and compared to body computed tomography (CT), chest radiographs, and palpation of tumor infiltrated peripheral lymph nodes. Ga imaging was negative in 95% (20/21) of the patients who were clinically considered to be in remission and in whom treatment was stopped. The disease did not recur during a follow-up of 12 to 26 months in 15 patients. Six patients developed recurrence of the disease 3 to 12 months after treatment was stopped. In all six patients Ga imaging became positive again at the time of the appearance of active disease. In the group of patients in remission, CT was negative in 57% (11/19), chest x-rays in 55% (6/11) and peripheral lymph nodes were palpated in none of the patients (13/13). In four patients that did not achieve remission after treatment, Ga scans were positive. Ga imaging appears useful in monitoring lymphoma response to treatment. This is probably because Ga imaging monitors tumor cell viability, whereas body CT and chest radiographs show the tumor mass, which may consist of fibrotic or necrotic tissue

  11. Functional Store Image and Corporate Social Responsibility Image: A Congruity Analysis on Store Loyalty

    OpenAIRE

    Jamaliah Mohd. Yusof; Rosidah Musa; Sofiah Abd. Rahman

    2011-01-01

    With previous studies that examined the importance of functional store image and CSR, this study is aimed at examining their effects in the self-congruity model in influencing store loyalty. In particular, this study developed and tested a structural model in the context of retailing industry on the self-congruity theory. Whilst much of the self-congruity studies have incorporated functional store image, there has been lack of studies that examined social responsibility i...

  12. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    Science.gov (United States)

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  13. Evaluation of early imaging response criteria in glioblastoma multiforme

    International Nuclear Information System (INIS)

    Gladwish, Adam; Koh, Eng-Siew; Hoisak, Jeremy; Lockwood, Gina; Millar, Barbara-Ann; Mason, Warren; Yu, Eugene; Laperriere, Normand J; Ménard, Cynthia

    2011-01-01

    Early and accurate prediction of response to cancer treatment through imaging criteria is particularly important in rapidly progressive malignancies such as Glioblastoma Multiforme (GBM). We sought to assess the predictive value of structural imaging response criteria one month after concurrent chemotherapy and radiotherapy (RT) in patients with GBM. Thirty patients were enrolled from 2005 to 2007 (median follow-up 22 months). Tumor volumes were delineated at the boundary of abnormal contrast enhancement on T1-weighted images prior to and 1 month after RT. Clinical Progression [CP] occurred when clinical and/or radiological events led to a change in chemotherapy management. Early Radiologic Progression [ERP] was defined as the qualitative interpretation of radiological progression one month post-RT. Patients with ERP were determined pseudoprogressors if clinically stable for ≥6 months. Receiver-operator characteristics were calculated for RECIST and MacDonald criteria, along with alternative thresholds against 1 year CP-free survival and 2 year overall survival (OS). 13 patients (52%) were found to have ERP, of whom 5 (38.5%) were pseudoprogressors. Patients with ERP had a lower median OS (11.2 mo) than those without (not reached) (p < 0.001). True progressors fared worse than pseudoprogressors (median survival 7.2 mo vs. 19.0 mo, p < 0.001). Volume thresholds performed slightly better compared to area and diameter thresholds in ROC analysis. Responses of > 25% in volume or > 15% in area were most predictive of OS. We show that while a subjective interpretation of early radiological progression from baseline is generally associated with poor outcome, true progressors cannot be distinguished from pseudoprogressors. In contrast, the magnitude of early imaging volumetric response may be a predictive and quantitative metric of favorable outcome

  14. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  15. Idiopathic Chronic Parotitis: Imaging Findings and Sialendoscopic Response.

    Science.gov (United States)

    Heineman, Thomas E; Kacker, Ashutosh; Kutler, David I

    2015-01-01

    The purpose of this study was to correlate imaging and sialendoscopic findings to therapeutic response in patients with idiopathic chronic parotitis. We retrospectively reviewed 122 consecutive sialendoscopies performed in an academic medical center by two surgeons between 2008 and 2013. Forty-one (34%) and 54 (44%) patients were excluded on the basis of having parotid or submandibular sialolith, respectively. Nineteen cases were included in the study with idiopathic chronic parotitis. There was a median follow-up of 5 months. Computed tomography (CT) imaging had a sensitivity and specificity of 80.0 and 71.4%, respectively, for predicting abnormal findings on sialendoscopy, while magnetic resonance imaging (MRI) had 100% accuracy in a small set of cases. In glands with noticeable pathology present on preoperative imaging or sialendoscopy, 11 out of 12 glands (92%) treated experienced symptomatic improvement, while 3 out of 7 glands (43%) without pathology on imaging or endoscopy experienced symptomatic improvement (p = 0.038). Sialendoscopy for the treatment of idiopathic chronic parotid disease can improve pain and swelling with a higher frequency of success in patients with abnormalities noted on endoscopy. CT and MRI have a moderate degree of accuracy in predicting which patients will benefit from therapeutic sialendoscopy. © 2015 S. Karger AG, Basel.

  16. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  17. Nuclear medicine imaging to predict response to radiotherapy: a review

    International Nuclear Information System (INIS)

    Wiele, Christophe van de; Lahorte, Christophe; Oyen, Wim; Boerman, Otto; Goethals, Ingeborg; Slegers, Guido; Dierckx, Rudi Andre

    2003-01-01

    Purpose: To review available literature on positron emission tomography (PET) and single photon emission computerized tomography (SPECT) for the measurement of tumor metabolism, hypoxia, growth factor receptor expression, and apoptosis as predictors of response to radiotherapy. Methods and Materials: Medical literature databases (Pubmed, Medline) were screened for available literature and critically analyzed as to their scientific relevance. Results: Studies on 18 F-fluorodeoxyglucose PET as a predictor of response to radiotherapy in head-and-neck carcinoma are promising but need confirmation in larger series. 18 F-fluorothymine is stable in human plasma, and preliminary clinical data obtained with this marker of tumor cell proliferation are promising. For imaging tumor hypoxia, novel, more widely available radiopharmaceuticals with faster pharmacokinetics are mandatory. Imaging of ongoing apoptosis and growth factor expression is at a very early stage, but results obtained in other domains with radiolabeled peptides appear promising. Finally, for most of the tracers discussed, validation against a gold standard is needed. Conclusion: Optimization of the pharmacokinetics of relevant radiopharmaceuticals as well as validation against gold-standard tests in large patient series are mandatory if PET and SPECT are to be implemented in routine clinical practice for the purpose of predicting response to radiotherapy

  18. Standard practice for determining relative image quality response of industrial radiographic imaging systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This standard provides a practice whereby industrial radiographic imaging systems may be comparatively assessed using the concept of relative image quality response (RIQR). The RIQR method presented within this practice is based upon the use of equivalent penetrameter sensitivity (EPS) described within Practice E 1025 and subsection 5.2 of this practice. Figure 1 illustrates a relative image quality indicator (RIQI) that has four different steel plaque thicknesses (.015, .010, .008, and .005 in.) sequentially positioned (from top to bottom) on a ¾-in. thick steel plate. The four plaques contain a total of 14 different arrays of penetrameter-type hole sizes designed to render varied conditions of threshold visibility ranging from 1.92 % EPS (at the top) to .94 % EPS (at the bottom) when exposed to nominal 200 keV X-ray radiation. Each “EPS” array consists of 30 identical holes; thus, providing the user with a quantity of threshold sensitivity levels suitable for relative image qualitative response com...

  19. Vibration response imaging in idiopathic pulmonary fibrosis: a pilot study.

    Science.gov (United States)

    Liu, Qing-Xia; Guan, Wei-Jie; Xie, Yan-Qing; An, Jia-Ying; Jiang, Mei; Zhu, Zheng; Guo, E; Yu, Xin-Xin; Liu, Wen-Ting; Gao, Yi; Zheng, Jin-Ping

    2014-07-01

    Vibration response imaging (VRI) is a novel imaging technique and little is known about its characteristics and diagnostic value in idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the features of VRI in subjects with IPF. We enrolled 23 subjects with IPF (42-74 y old) and 28 healthy subjects (42-72 y old). Subjects with IPF were diagnosed by lung biopsy and underwent VRI, spirometry, lung diffusion testing, and chest x-ray or computed tomography, which entailed assessment of the value of VRI indices. The total VRI score correlated statistically with single-breath carbon monoxide diffusing capacity percent predicted (r = -0.30, P = .04), but not with FVC percent predicted, FEV1 percent predicted, and FEV1/FVC (r = -0.27, -0.22, and 0.19; all P > .05). Compared with healthy subjects (17.9%), 20 subjects with IPF (86.96%, P .05), except for the upper right and lower left lobes (P diagnostic value (sensitivity, 1.00; specificity, 0.82), followed by presence of abundant crackles (sensitivity, 0.70; specificity, 0.96). Total VRI score was not a sensitive indicator of IPF, owing to low assay sensitivity (0.70) and specificity (0.64). VRI may be helpful to discriminate between IPF subjects and healthy individuals. Maximum energy frame and abundant crackles might serve as a diagnostic tool for IPF. Copyright © 2014 by Daedalus Enterprises.

  20. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    Science.gov (United States)

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  1. Imaging response during therapy with radium-223 for castration-resistant prostate cancer with bone metastases

    DEFF Research Database (Denmark)

    Keizman, D; Fosboel, M O; Reichegger, H

    2017-01-01

    BACKGROUND: The imaging response to radium-223 therapy is at present poorly described. We aimed to describe the imaging response to radium-223 treatment. METHODS: We retrospectively evaluated the computed tomography (CT) and bone scintigraphy response of metastatic castration-resistant prostate c....../or radiological) may be noted during the first 3 months, and should not be confused with progression. Imaging by CT scan should be considered after three and six doses of radium-223 to rule out extraskeletal disease progression....

  2. Information retrieval based on single-pixel optical imaging with quick-response code

    Science.gov (United States)

    Xiao, Yin; Chen, Wen

    2018-04-01

    Quick-response (QR) code technique is combined with ghost imaging (GI) to recover original information with high quality. An image is first transformed into a QR code. Then the QR code is treated as an input image in the input plane of a ghost imaging setup. After measurements, traditional correlation algorithm of ghost imaging is utilized to reconstruct an image (QR code form) with low quality. With this low-quality image as an initial guess, a Gerchberg-Saxton-like algorithm is used to improve its contrast, which is actually a post processing. Taking advantage of high error correction capability of QR code, original information can be recovered with high quality. Compared to the previous method, our method can obtain a high-quality image with comparatively fewer measurements, which means that the time-consuming postprocessing procedure can be avoided to some extent. In addition, for conventional ghost imaging, the larger the image size is, the more measurements are needed. However, for our method, images with different sizes can be converted into QR code with the same small size by using a QR generator. Hence, for the larger-size images, the time required to recover original information with high quality will be dramatically reduced. Our method makes it easy to recover a color image in a ghost imaging setup, because it is not necessary to divide the color image into three channels and respectively recover them.

  3. Study of Fish Response Using Particle Image Velocimetry and High-Speed, High-Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Richmond, Marshall C.; Guensch, Gregory R.; Mueller, Robert P.

    2004-10-23

    Existing literature of previous particle image velocimetry (PIV) studies of fish swimming has been reviewed. Historically, most of the studies focused on the performance evaluation of freely swimming fish. Technological advances over the last decade, especially the development of digital particle image velocimetry (DPIV) technique, make possible more accurate, quantitative descriptions of the flow patterns adjacent to the fish and in the wake behind the fins and tail, which are imperative to decode the mechanisms of drag reduction and propulsive efficiency. For flows generated by different organisms, the related scales and flow regimes vary significantly. For small Reynolds numbers, viscosity dominates; for very high Reynolds numbers, inertia dominates, and three-dimensional complexity occurs. The majority of previous investigations dealt with the lower end of Reynolds number range. The fish of our interest, such as rainbow trout and spring and fall chinook salmon, fall into the middle range, in which neither viscosity nor inertia is negligible, and three-dimensionality has yet to dominate. Feasibility tests have proven the applicability of PIV to flows around fish. These tests have shown unsteady vortex shedding in the wake, high vorticity region and high stress region, with the highest in the pectoral area. This evident supports the observations by Nietzel et al. (2000) and Deng et al. (2004) that the operculum are most vulnerable to damage from the turbulent shear flow, because they are easily pried open, and the large vorticity and shear stress can lift and tear off scales, rupture or dislodge eyes, and damage gills. In addition, the unsteady behavior of the vortex shedding in the wake implies that injury to fish by the instantaneous flow structures would likely be much higher than the injury level estimated using the average values of the dynamics parameters. Based on existing literature, our technological capability, and relevance and practicability to

  4. MR imaging of metabolic white matter diseases: Therapeutic response

    International Nuclear Information System (INIS)

    Gebarski, S.S.; Allen, R.

    1987-01-01

    In metabolic diseases affecting the brain, MR imaging abnormalities include white-matter signal aberrations suggesting myelination delay, dysmyelination and demyelination, pathologic iron storage, and finally, loss of substance usually in a nonspecific pattern. The authors suggest that MR imaging may have therapeutic implications: (1) classic galactosemia - white-matter signal aberration became normal after dietary therapy; (2) phenylketonuria - age- and sex-matched treated and nontreated adolescents showed marked differences in brain volume, with the treated patient's volume nearly normal; (3) maple syrup urine disease - gross white-matter signal aberration became nearly normal after dietary therapy; and (4) hyperglycinemia - relentless progression of white-matter signal aberration and loss of brain substance despite therapy. These data suggest that brain MR imaging may provide a therapeutic index in certain metabolic diseases

  5. Negative Stimulus-Response Compatibility Observed with a Briefly Displayed Image of a Hand

    Science.gov (United States)

    Vainio, Lari

    2011-01-01

    Manual responses can be primed by viewing an image of a hand. The left-right identity of the viewed hand reflexively facilitates responses of the hand that corresponds to the identity. Previous research also suggests that when the response activation is triggered by an arrow, which is backward-masked and presented briefly, the activation manifests…

  6. Body enhancement : body images, vulnerability and moral responsibility

    NARCIS (Netherlands)

    den Dikken, A.

    2011-01-01

    The objective of this explorative study is to show that it is highly relevant to integrate cultural and personal body images into the ethical debate on human enhancement. The current debate has little attention for the motivations to make use of technology to alter the human body, such as cultural

  7. Generating color terrain images in an emergency response system

    International Nuclear Information System (INIS)

    Belles, R.D.

    1985-08-01

    The Atmospheric Release Advisory Capability (ARAC) provides real-time assessments of the consequences resulting from an atmospheric release of radioactive material. In support of this operation, a system has been created which integrates numerical models, data acquisition systems, data analysis techniques, and professional staff. Of particular importance is the rapid generation of graphical images of the terrain surface in the vicinity of the accident site. A terrain data base and an associated acquisition system have been developed that provide the required terrain data. This data is then used as input to a collection of graphics programs which create and display realistic color images of the terrain. The graphics system currently has the capability of generating color shaded relief images from both overhead and perspective viewpoints within minutes. These images serve to quickly familiarize ARAC assessors with the terrain near the release location, and thus permit them to make better informed decisions in modeling the behavior of the released material. 7 refs., 8 figs

  8. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    OpenAIRE

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-01-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we ...

  9. University Social Responsibility and Brand Image of Private Universities in Bangkok

    Science.gov (United States)

    Plungpongpan, Jirawan; Tiangsoongnern, Leela; Speece, Mark

    2016-01-01

    Purpose: The purpose of this paper is to examine the effects of university social responsibility (USR) on the brand image of private universities in Thailand. Brand image is important for entry into the consideration set as prospective students evaluate options for university study. USR activities may be implicit or explicit, i.e., actively…

  10. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.

    2015-01-01

    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off,

  11. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  12. Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

    Science.gov (United States)

    Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven

    2012-01-01

    The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921

  13. Contextual analysis of immunological response through whole-organ fluorescent imaging.

    Science.gov (United States)

    Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C

    2013-09-01

    As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.

  14. Analysis of image heterogeneity using 2D Minkowski functionals detects tumor responses to treatment.

    Science.gov (United States)

    Larkin, Timothy J; Canuto, Holly C; Kettunen, Mikko I; Booth, Thomas C; Hu, De-En; Krishnan, Anant S; Bohndiek, Sarah E; Neves, André A; McLachlan, Charles; Hobson, Michael P; Brindle, Kevin M

    2014-01-01

    The acquisition of ever increasing volumes of high resolution magnetic resonance imaging (MRI) data has created an urgent need to develop automated and objective image analysis algorithms that can assist in determining tumor margins, diagnosing tumor stage, and detecting treatment response. We have shown previously that Minkowski functionals, which are precise morphological and structural descriptors of image heterogeneity, can be used to enhance the detection, in T1 -weighted images, of a targeted Gd(3+) -chelate-based contrast agent for detecting tumor cell death. We have used Minkowski functionals here to characterize heterogeneity in T2 -weighted images acquired before and after drug treatment, and obtained without contrast agent administration. We show that Minkowski functionals can be used to characterize the changes in image heterogeneity that accompany treatment of tumors with a vascular disrupting agent, combretastatin A4-phosphate, and with a cytotoxic drug, etoposide. Parameterizing changes in the heterogeneity of T2 -weighted images can be used to detect early responses of tumors to drug treatment, even when there is no change in tumor size. The approach provides a quantitative and therefore objective assessment of treatment response that could be used with other types of MR image and also with other imaging modalities. Copyright © 2013 Wiley Periodicals, Inc.

  15. Effects of oxycodone on brain responses to emotional images.

    Science.gov (United States)

    Wardle, Margaret C; Fitzgerald, Daniel A; Angstadt, Michael; Rabinak, Christine A; de Wit, Harriet; Phan, K Luan

    2014-11-01

    Evidence from animal and human studies suggests that opiate drugs decrease emotional responses to negative stimuli and increase responses to positive stimuli. Such emotional effects may motivate misuse of oxycodone (OXY), a widely abused opiate. Yet, we know little about how OXY affects neural circuits underlying emotional processing in humans. We examined effects of OXY on brain activity during presentation of positive and negative visual emotional stimuli. We predicted that OXY would decrease amygdala activity to negative stimuli and increase ventral striatum (VS) activity to positive stimuli. Secondarily, we examined the effects of OXY on other emotional network regions on an exploratory basis. In a three-session study, healthy adults (N = 17) received placebo, 10 and 20 mg OXY under counterbalanced, double-blind conditions. At each session, participants completed subjective and cardiovascular measures and underwent functional MRI (fMRI) scanning while completing two emotional response tasks. Our emotional tasks reliably activated emotional network areas. OXY produced subjective effects but did not alter either behavioral responses to emotional stimuli or activity in our primary areas of interest. OXY did decrease right medial orbitofrontal cortex (MOFC) responses to happy faces. Contrary to our expectations, OXY did not affect behavioral or neural responses to emotional stimuli in our primary areas of interest. Further, the effects of OXY in the MOFC would be more consistent with a decrease in value for happy faces. This may indicate that healthy adults do not receive emotional benefits from opiates, or the pharmacological actions of OXY differ from other opiates.

  16. Imaging the inflammatory response to acute myocardial infarction in man using indium-111-labeled autologous platelets

    International Nuclear Information System (INIS)

    Davies, R.A.; Thakur, M.L.; Berger, H.J.; Wackers, F.J.T.; Gottschalk, A.; Zaret, B.L.

    1981-01-01

    The feasibility of imaging the inflammatory response to acute transmural myocardial infarction in man using indium-111 ( 111 In)-labeled autologous leukocytes was assessed in 36 patients. Indium-111 leukocytes were injected i.v. 18 to 112 hs after the onset of chest pain. Cardiac imaging was performed 24 hs later with a mobile gamma camera. Twenty-one patients had positive images and 15 had negative images. The percent of positive images increased as the interval between infarction and 111 In-leukocyte injection shortened; all patients injected within 24 hs of infarction had positive images. Patients with positive images were injected with 111 In leukocytes earlier after infarction and were younger than those with negative images. Several other parameters that could possibly have affected the imaging results were examined and were not significantly different in patients with positive and negative images. These included peak serum creatine kinase, location of infarction, incidence of pericarditis, use of antiinflammatory drugs or membrane-active antiarrhythmic drugs, peripheral leukocyte count, and cell labeling efficiency. The function of the labeled cells was similar in patients with positive and negative images. Six patients with acute infarction serving as controls and given free 111 In-oxine and six patients with stable coronary artery disease given 111 In-leukocytes all had negative cardiac images

  17. Metabolic imaging of tumor for diagnosis and response for therapy

    Science.gov (United States)

    Zagaynova, Elena; Shirmanova, Marina; Lukina, Maria; Dudenkova, Varvara; Ignatova, Nadezgda; Elagin, Vadim; Shlivko, Irena; Scheslavsky, Vladislav; Orlinskay, Natalia

    2018-02-01

    Nonlinear optical microscopy combined with fluorescence lifetime imaging is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a noninvasive investigation of the biological tissue with subcellular resolution. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. In this study features of tumor metabolism in different systems of organization (from cell culture to patient lesion) was showed. The observed differences in the relative contributions of free NAD(P)H and FAD testify to an increased a glycolytic metabolism in cancer cells compare to fibroblasts. In 3D spheroids, the cells of the proliferating zone had greater a1 and lower tm values than the cells of the quiescent zone, which likely is a consequence of their higher glycolytic rate. During the growth of colorectal cancer in the experimental mouse model, the contribution of the free component of NAD(P)H was increased. Dysplastic nevus and melanoma is characterized by raised contribution of free NADH compare to healthy skin. Therefore, melanoma cells had very short value of τ1.

  18. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  19. Near Real-Time Georeference of Umanned Aerial Vehicle Images for Post-Earthquake Response

    Science.gov (United States)

    Wang, S.; Wang, X.; Dou, A.; Yuan, X.; Ding, L.; Ding, X.

    2018-04-01

    The rapid collection of Unmanned Aerial Vehicle (UAV) remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL). The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  20. NEAR REAL-TIME GEOREFERENCE OF UMANNED AERIAL VEHICLE IMAGES FOR POST-EARTHQUAKE RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Wang

    2018-04-01

    Full Text Available The rapid collection of Unmanned Aerial Vehicle (UAV remote sensing images plays an important role in the fast submitting disaster information and the monitored serious damaged objects after the earthquake. However, for hundreds of UAV images collected in one flight sortie, the traditional data processing methods are image stitching and three-dimensional reconstruction, which take one to several hours, and affect the speed of disaster response. If the manual searching method is employed, we will spend much more time to select the images and the find images do not have spatial reference. Therefore, a near-real-time rapid georeference method for UAV remote sensing disaster data is proposed in this paper. The UAV images are achieved georeference combined with the position and attitude data collected by UAV flight control system, and the georeferenced data is organized by means of world file which is developed by ESRI. The C # language is adopted to compile the UAV images rapid georeference software, combined with Geospatial Data Abstraction Library (GDAL. The result shows that it can realize rapid georeference of remote sensing disaster images for up to one thousand UAV images within one minute, and meets the demand of rapid disaster response, which is of great value in disaster emergency application.

  1. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  2. Multi-modality imaging of tumor phenotype and response to therapy

    Science.gov (United States)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  3. Research of the system response of neutron double scatter imaging for MLEM reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M., E-mail: wyj2013@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China); Peng, B.D.; Sheng, L.; Li, K.N.; Zhang, X.P.; Li, Y.; Li, B.K.; Yuan, Y.; Wang, P.W.; Zhang, X.D.; Li, C.H. [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); State Key Laboratory of Intense Pulsed Radiation-Simulation and Effect, Xi’an 710024 (China)

    2015-03-01

    A Maximum Likelihood image reconstruction technique has been applied to neutron scatter imaging. The response function of the imaging system can be obtained by Monte Carlo simulation, which is very time-consuming if the number of image pixels and particles is large. In this work, to improve time efficiency, an analytical approach based on the probability of neutron interaction and transport in the detector is developed to calculate the system response function. The response function was applied to calculate the relative efficiency of the neutron scatter imaging system as a function of the incident neutron energy. The calculated results agreed with simulations by the MCNP5 software. Then the maximum likelihood expectation maximization (MLEM) reconstruction method with the system response function was used to reconstruct data simulated by Monte Carlo method. The results showed that there was good consistency between the reconstruction position and true position. Compared with back-projection reconstruction, the improvement in image quality was obvious, and the locations could be discerned easily for multiple radiation point sources.

  4. Neoadjuvant chemotherapy for breast cancer: correlation between the baseline MR imaging findings and responses to therapy

    International Nuclear Information System (INIS)

    Uematsu, Takayoshi; Yuen, Sachiko; Kasami, Masako

    2010-01-01

    To retrospectively evaluate the magnetic resonance (MR) imaging findings of breast cancer before neoadjuvant chemotherapy (NAC) and to compare findings of chemosensitive breast cancer with those of chemoresistant breast cancer. The MR imaging findings before NAC in 120 women undergoing NAC were reviewed. The MR imaging findings were compared with the pathological findings and responses. A complete response (pCR) and marked response were achieved in 12 and 35% of 120 breast cancers in 120 women respectively. Breast cancers with a pCR or marked response were classified as chemosensitive breast cancer. The remaining 64 breast cancers (53%) were classified as chemoresistant breast cancer. Large tumour size, a lesion without mass effect, and very high intratumoural signal intensity on T2-weighted MR images were significantly associated with chemoresistant breast cancer. Lesions with mass effect and washout enhancement pattern were significantly associated with chemosensitive breast cancer. Areas with very high intratumoural signal intensity on T2-weighted images corresponded pathologically to areas of intratumoural necrosis. Several MR imaging features of breast cancer before NAC can help predict the efficacy of NAC. (orig.)

  5. Neoadjuvant chemotherapy for breast cancer: correlation between the baseline MR imaging findings and responses to therapy

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Takayoshi; Yuen, Sachiko [Shizuoka Cancer Center Hospital, Breast Imaging and Breast Intervention Section, Naga-izumi, Shizuoka (Japan); Kasami, Masako [Shizuoka Cancer Center Hospital, Department of Pathology, Naga-izumi, Shizuoka (Japan)

    2010-10-15

    To retrospectively evaluate the magnetic resonance (MR) imaging findings of breast cancer before neoadjuvant chemotherapy (NAC) and to compare findings of chemosensitive breast cancer with those of chemoresistant breast cancer. The MR imaging findings before NAC in 120 women undergoing NAC were reviewed. The MR imaging findings were compared with the pathological findings and responses. A complete response (pCR) and marked response were achieved in 12 and 35% of 120 breast cancers in 120 women respectively. Breast cancers with a pCR or marked response were classified as chemosensitive breast cancer. The remaining 64 breast cancers (53%) were classified as chemoresistant breast cancer. Large tumour size, a lesion without mass effect, and very high intratumoural signal intensity on T2-weighted MR images were significantly associated with chemoresistant breast cancer. Lesions with mass effect and washout enhancement pattern were significantly associated with chemosensitive breast cancer. Areas with very high intratumoural signal intensity on T2-weighted images corresponded pathologically to areas of intratumoural necrosis. Several MR imaging features of breast cancer before NAC can help predict the efficacy of NAC. (orig.)

  6. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  7. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel.

    Science.gov (United States)

    Tokuda, Takashi; Takahashi, Masayuki; Uejima, Kazuhiro; Masuda, Keita; Kawamura, Toshikazu; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Okitsu, Teru; Takeuchi, Shoji; Ohta, Jun

    2014-11-01

    A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical filter on a flexible polyimide substrate. Feasibility of the glucose sensor was verified by both in vitro and in vivo experiments.

  9. ROLE OF IMAGE IN MARKETING PERFORMANCE ODEL SUPPORTED BY MARKETING COMMUNICATION AND COMPANY SOCIAL RESPONSIBILITY

    Directory of Open Access Journals (Sweden)

    Eddy Soeryanto Soegoto

    2016-05-01

    Full Text Available AbstractBanking industries have not been effective yet in implementing marketing communication and company social responsibility programs. The establishment of image has not been done effectively yet; accordingly marketing performance cannot be implemented as it is expected. This research was done in the banking industries at Bandung City with sample as much as 42 banking industries drawn using a random sampling method. Thaanalysis procedure used Structural Equation Modeling based on Partial Least Square. This study generates anew model different with the previous researches where marketing communication and company social respon-sibility programs do not affect directly on the banking industries’ marketing performance. Nevertheless the image affect the marketing performance moderately. In conclusion, banking industries’ marketing perfor-mance can be maximal when the marketing communication is implemented effectively and the company social responsibility is implemented conducively in order to shape positive image.

  10. Assessing paedophilia based on the haemodynamic brain response to face images

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo

    2016-01-01

    that human face processing is tuned to sexual age preferences. This observation prompted us to test whether paedophilia can be inferred based on the haemodynamic brain responses to adult and child faces. METHODS: Twenty-four men sexually attracted to prepubescent boys or girls (paedophiles) and 32 men......OBJECTIVES: Objective assessment of sexual preferences may be of relevance in the treatment and prognosis of child sexual offenders. Previous research has indicated that this can be achieved by pattern classification of brain responses to sexual child and adult images. Our recent research showed...... sexually attracted to men or women (teleiophiles) were exposed to images of child and adult, male and female faces during a functional magnetic resonance imaging (fMRI) session. RESULTS: A cross-validated, automatic pattern classification algorithm of brain responses to facial stimuli yielded four...

  11. Contrast-enhanced MR imaging monitoring of acute tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Ranney, D.F.; Cohen, J.M.; Antich, P.P.; Endman, W.A.; Kulkarni, P.; Weinreb, J.C.; Giovanella, B.

    1987-01-01

    Treatment responses of human malignant melanomas were monitored at millimeter resolution in athymic mice by injecting a new polymeric contrast agent, Gd-DTPA-dextran (0.1 mmol Gd/kg, intravenously). Proton MR imaging (0.35 T, spin-echo, repetition time = 0.5 second, echo time = 50 msec) was performed 30 hours after administering diphtheria toxin. Pre-contrast medium images revealed only homogeneous intermediate-intensity tumor masses. Post-contrast medium images of untreated (viable) tumors demonstrated 32% enhancement throughout the entire mass. Post-contrast medium images of toxin-treated tumors revealed marked enhancement (65%) of the histologically viable outer rims, lesser enhancement (38%) of heavily damaged subregions, and no enhancement of dead tumor. These acute, contrast medium-enhanced MR images accurately identified tumor subregions that survived for longer than one week

  12. MR Imaging in Monitoring and Predicting Treatment Response in Multiple Sclerosis.

    Science.gov (United States)

    Río, Jordi; Auger, Cristina; Rovira, Àlex

    2017-05-01

    MR imaging is the most sensitive tool for identifying lesions in patients with multiple sclerosis (MS). MR imaging has also acquired an essential role in the detection of complications arising from these treatments and in the assessment and prediction of efficacy. In the future, other radiological measures that have shown prognostic value may be incorporated within the models for predicting treatment response. This article examines the role of MR imaging as a prognostic tool in patients with MS and the recommendations that have been proposed in recent years to monitor patients who are treated with disease-modifying drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Viewing sexual images is associated with reduced physiological arousal response to gambling loss.

    Science.gov (United States)

    Lui, Ming; Hsu, Ming

    2018-01-01

    Erotic imagery is one highly salient emotional signal that exists everywhere in daily life. The impact of sexual stimuli on human decision-making, however, has rarely been investigated. This study examines the impact of sexual stimuli on financial decision-making under risk. In each trial, either a sexual or neutral image was presented in a picture categorization task before a gambling task. Thirty-four men made gambling decisions while their physiological arousal, measured by skin conductance responses (SCRs), was recorded. Behaviorally, the proportion of gambling decisions did not differ between the sexual and neutral image trials. Physiologically, participants had smaller arousal differences, measured in micro-siemen per dollar, between losses and gains in the sexual rather than in the neutral image trials. Moreover, participants' SCRs to losses relative to gains predicted the proportion of gambling decisions in the neutral image trials but not in the sexual image trials. The results were consistent with the hypothesis that the presence of emotionally salient sexual images reduces attentional and arousal-related responses to gambling losses. Our results are consistent with the theory of loss attention involving increased cognitive investment in losses compared to gains. The findings also have potential practical implications for our understanding of the specific roles of sexual images in human financial decision making in everyday life, such as gambling behaviors in the casino.

  14. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

    Science.gov (United States)

    Dong, Qiulei; Wang, Hong; Hu, Zhanyi

    2018-02-01

    Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low

  15. Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    Science.gov (United States)

    Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2011-01-01

    Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807

  16. Differential neural responses to food images in women with bulimia versus anorexia nervosa.

    Science.gov (United States)

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2011-01-01

    Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

  17. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    Science.gov (United States)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  18. The longitudinal reliability and responsiveness of the OMERACT Hand Osteoarthritis Magnetic Resonance Imaging Scoring System (HOAMRIS)

    DEFF Research Database (Denmark)

    Haugen, Ida K.; Eshed, Iris; Gandjbakhch, Frederique

    2015-01-01

    Objective. To evaluate the interreader reliability of change scores and the responsiveness of the OMERACT Hand Osteoarthritis (OA) Magnetic Resonance Image (MRI) Scoring System (HOAMRIS). Methods. Paired MRI (baseline and 5-yr followup) from 20 patients with hand OA were scored with known time se...

  19. Use of image analysis to assess color response on plants caused by herbicide application

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Duus, Joachim

    2013-01-01

    by herbicides. The range of color components of green and nongreen parts of the plants and soil in Hue, Saturation, and Brightness (HSB) color space were used for segmentation. The canopy color changes of barley, winter wheat, red fescue, and brome fescue caused by doses of a glyphosate and diflufenican mixture...... for the green and nongreen parts of the plants and soil were different. The relative potencies were not significantly different from one, indicating that visual and image analysis estimations were about the same. The comparison results suggest that image analysis can be used to assess color changes of plants......In herbicide-selectivity experiments, response can be measured by visual inspection, stand counts, plant mortality, and biomass. Some response types are relative to nontreated control. We developed a nondestructive method by analyzing digital color images to quantify color changes in leaves caused...

  20. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  1. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin; Hollingsworth, Alan B.; Qian, Wei

    2015-01-01

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy

  2. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin, E-mail: Bin.Zheng-1@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hollingsworth, Alan B. [Mercy Women’s Center, Mercy Health Center, Oklahoma City, Oklahoma 73120 (United States); Qian, Wei [Department of Electrical and Computer Engineering, University of Texas, El Paso, Texas 79968 (United States)

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  3. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Shaodan Li

    2017-11-01

    Full Text Available In this paper, we present a novel approach for automatically detecting buildings from multiple heterogeneous and uncalibrated very high-resolution (VHR satellite images for a rapid response to natural disasters. In the proposed method, a simple and efficient visual attention method is first used to extract built-up area candidates (BACs from each multispectral (MS satellite image. After this, morphological building indices (MBIs are extracted from all the masked panchromatic (PAN and MS images with BACs to characterize the structural features of buildings. Finally, buildings are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN images. The experimental results show that the proposed method is comparable to supervised classification methods in terms of recall, precision and F-value.

  4. Speed-accuracy trade-offs in computing spatial impulse responses for simulating medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    sampling frequency is unnecessary in the final signals, since the transducers used in medical ultrasound are band limited. Approaches to reduce the sampling frequency are, thus, needed to make efficient simulation programs. Field II uses time integration of the spatial impulse responses using a continuous......Medical ultrasound imaging can be simulated realistically using linear acoustics. One of the most powerful approaches is to employ spatial impulse responses. Hereby both emitted fields and pulse-echo responses from point scatterers can be determined. Also any kind of dynamic focusing...

  5. Role of imaging in the staging and response assessment of lymphoma

    DEFF Research Database (Denmark)

    Barrington, Sally F; Mikhaeel, N George; Kostakoglu, Lale

    2014-01-01

    emission tomography (PET)–computed tomography (CT). Progress in imaging is influencing trial design and affecting clinical practice. In particular, a five-point scale to grade response using PET-CT, which can be adapted to suit requirements for early- and late-response assessment with good interobserver....... CONCLUSION: This article comprises the consensus reached to update guidance on the use of PET-CT for staging and response assessment for [18F]fluorodeoxyglucose-avid lymphomas in clinical practice and late-phase trials....

  6. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    Science.gov (United States)

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    Science.gov (United States)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  8. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Axelsen, M.B.; Poggenborg, R.P.; Stoltenberg, M.

    2013-01-01

    intraarticular injection with 80 mg methylprednisolone. Using semi-automated image processing software, DCE-MRI parameters, including the initial rate of enhancement (IRE) and maximal enhancement (ME), were generated for three regions of interest (ROIs): ‘Whole slice’, ‘Quick ROI’, and ‘Precise ROI......Objectives: To investigate the responsiveness to treatment and the reliability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rheumatoid arthritis (RA) knee joints. Methods: DCE-MRI was performed in 12 clinically active RA knee joints before and 1, 7, 30, and 180 days after......’. The smallest detectable difference (SDD), the smallest detectable change (SDC), and intra- and inter-reader intraclass correlation coefficients (ICCs) were used to assess the reliability of DCE-MRI. Responsiveness to treatment was assessed by the standardized response mean (SRM). Results: In all patients...

  9. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  10. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  11. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  12. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    Science.gov (United States)

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  13. Modelling the perceptual similarity of facial expressions from image statistics and neural responses.

    Science.gov (United States)

    Sormaz, Mladen; Watson, David M; Smith, William A P; Young, Andrew W; Andrews, Timothy J

    2016-04-01

    The ability to perceive facial expressions of emotion is essential for effective social communication. We investigated how the perception of facial expression emerges from the image properties that convey this important social signal, and how neural responses in face-selective brain regions might track these properties. To do this, we measured the perceptual similarity between expressions of basic emotions, and investigated how this is reflected in image measures and in the neural response of different face-selective regions. We show that the perceptual similarity of different facial expressions (fear, anger, disgust, sadness, happiness) can be predicted by both surface and feature shape information in the image. Using block design fMRI, we found that the perceptual similarity of expressions could also be predicted from the patterns of neural response in the face-selective posterior superior temporal sulcus (STS), but not in the fusiform face area (FFA). These results show that the perception of facial expression is dependent on the shape and surface properties of the image and on the activity of specific face-selective regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix

    International Nuclear Information System (INIS)

    Park, Won-Kwang; Lesselier, Dominique

    2009-01-01

    The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method

  15. MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix

    Science.gov (United States)

    Park, Won-Kwang; Lesselier, Dominique

    2009-07-01

    The imaging of a thin inclusion, with dielectric and/or magnetic contrasts with respect to the embedding homogeneous medium, is investigated. A MUSIC-type algorithm operating at a single time-harmonic frequency is developed in order to map the inclusion (that is, to retrieve its supporting curve) from scattered field data collected within the multi-static response matrix. Numerical experiments carried out for several types of inclusions (dielectric and/or magnetic ones, straight or curved ones), mostly single inclusions and also two of them close by as a straightforward extension, illustrate the pros and cons of the proposed imaging method.

  16. Diagnosis of response and non-response to dry eye treatment using infrared thermography images

    Science.gov (United States)

    Acharya, U. Rajendra; Tan, Jen Hong; Vidya, S.; Yeo, Sharon; Too, Cheah Loon; Lim, Wei Jie Eugene; Chua, Kuang Chua; Tong, Louis

    2014-11-01

    The dry eye treatment outcome depends on the assessment of clinical relevance of the treatment effect. The potential approach to assess the clinical relevance of the treatment is to identify the symptoms responders and non-responders to the given treatments using the responder analysis. In our work, we have performed the responder analysis to assess the clinical relevance effect of the dry eye treatments namely, hot towel, EyeGiene®, and Blephasteam® twice daily and 12 min session of Lipiflow®. Thermography is performed at week 0 (baseline), at weeks 4 and 12 after treatment. The clinical parameters such as, change in the clinical irritations scores, tear break up time (TBUT), corneal staining and Schirmer's symptoms tests values are used to obtain the responders and non-responders groups. We have obtained the infrared thermography images of dry eye symptoms responders and non-responders to the three types of warming treatments. The energy, kurtosis, skewness, mean, standard deviation, and various entropies namely Shannon, Renyi and Kapoor are extracted from responders and non-responders thermograms. The extracted features are ranked based on t-values. These ranked features are fed to the various classifiers to get the highest performance using minimum features. We have used decision tree (DT), K nearest neighbour (KNN), Naves Bayesian (NB) and support vector machine (SVM) to classify the features into responder and non-responder classes. We have obtained an average accuracy of 99.88%, sensitivity of 99.7% and specificity of 100% using KNN classifier using ten-fold cross validation.

  17. Prediction of Early Response to Chemotherapy in Lung Cancer by Using Diffusion-Weighted MR Imaging

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Purpose. To determine whether change of apparent diffusion coefficient (ADC value could predict early response to chemotherapy in lung cancer. Materials and Methods. Twenty-five patients with advanced non-small cell lung cancer underwent chest MR imaging including DWI before and at the end of the first cycle of chemotherapy. The tumor’s mean ADC value and diameters on MR images were calculated and compared. The grouping reference was based on serial CT scans according to Response Evaluation Criteria in Solid Tumors. Logistic regression was applied to assess treatment response prediction ability of ADC value and diameters. Results. The change of ADC value in partial response group was higher than that in stable disease group (P=0.004. ROC curve showed that ADC value could predict treatment response with 100% sensitivity, 64.71% specificity, 57.14% positive predictive value, 100% negative predictive value, and 82.7% accuracy. The area under the curve for combination of ADC value and longest diameter change was higher than any parameter alone (P≤0.01. Conclusions. The change of ADC value may be a sensitive indicator to predict early response to chemotherapy in lung cancer. Prediction ability could be improved by combining the change of ADC value and longest diameter.

  18. Pharmacogenetics and Imaging-Pharmacogenetics of Antidepressant Response: Towards Translational Strategies.

    Science.gov (United States)

    Lett, Tristram A; Walter, Henrik; Brandl, Eva J

    2016-12-01

    Genetic variation underlies both the response to antidepressant treatment and the occurrence of side effects. Over the past two decades, a number of pharmacogenetic variants, among these the SCL6A4, BDNF, FKBP5, GNB3, GRIK4, and ABCB1 genes, have come to the forefront in this regard. However, small effects sizes, mixed results in independent samples, and conflicting meta-analyses results led to inherent difficulties in the field of pharmacogenetics translating these findings into clinical practice. Nearly all antidepressant pharmacogenetic variants have potentially pleiotropic effects in which they are associated with major depressive disorder, intermediate phenotypes involved in emotional processes, and brain areas affected by antidepressant treatment. The purpose of this article is to provide a comprehensive review of the advances made in the field of pharmacogenetics of antidepressant efficacy and side effects, imaging findings of antidepressant response, and the latest results in the expanding field of imaging-pharmacogenetics studies. We suggest there is mounting evidence that genetic factors exert their impact on treatment response by influencing brain structural and functional changes during antidepressant treatment, and combining neuroimaging and genetic methods may be a more powerful way to detect biological mechanisms of response than either method alone. The most promising imaging-pharmacogenetics findings exist for the SCL6A4 gene, with converging associations with antidepressant response, frontolimbic predictors of affective symptoms, and normalization of frontolimbic activity following antidepressant treatment. More research is required before imaging-pharmacogenetics informed personalized medicine can be applied to antidepressant treatment; nevertheless, inroads have been made towards assessing genetic and neuroanatomical liability and potential clinical application.

  19. Subcutaneous fluid collection: An imaging marker for treatment response of infectious thoracolumbar spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Kakigi, Takahide, E-mail: tkakigi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sakai, Osamu, E-mail: osamu.sakai@bmc.org [Department of Radiology, Boston Medical Center, Boston University School of Medicine, FGH Building, 3rd Floor, 820 Harrison Avenue, Boston, MA 02118 (United States); Iwamoto, Yoshitaka, E-mail: iwacame@hotmail.co.jp [Department of General Internal Medicine, Rakuwakai Otowa Hospital, 2 Otowachoinji-cho, Yamashina-ku, Kyoto 607-8062 (Japan); Kubo, Soichi, E-mail: kubo-s@mbox.kyoto-inet.or.jp [Department of Radiology, Rakuwakai Otowa Hospital, 2 Otowachoinji-cho, Yamashina-ku, Kyoto 607-8062 (Japan); Yamamoto, Akira, E-mail: yakira@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Togashi, Kaori, E-mail: nmdioffice@kuhp.kyoto-ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2015-07-15

    Highlights: • No imaging marker for treatment response of spondylodiscitis (SD) has been proposed. • Volume changes of subcutaneous fluid collection (SFC) had significant correlation with changes of C-reactive protein (CRP). • SFC can be used as an imaging marker for treatment response of SD on magnetic resonance imaging (MRI). - Abstract: Purpose: To evaluate prevalence of subcutaneous fluid collection (SFC) in infectious thoracolumbar spondylodiscitis (SD) compared with control patients and to investigate correlation between volume changes of SFC and treatment response of SD. Materials and methods: This retrospective study was approved by our institutional review board. From April 2011 to March 2012, 49 patients (24 SD and 25 non-SD patients) were enrolled. Prevalence of SFC was evaluated respectively for SD and non-SD patients using magnetic resonance imaging (MRI) on the sagittal short tau inversion recovery (STIR) imaging or fat-saturated T2-weighted imaging (T2WI), and compared. In SD patients with SFC, correlation was investigated between SFC volume on the 1st MRI and initial clinical status. The same analysis was conducted also for SFC volume changes from the 1st to 2nd or last MRI. Results: SFC was found in 20 patients with SD (83.3%) and 3 non-SD patients (12%) with significant difference (p < .001). In 20 SD patients with SFC, 17 patients had follow-up MRI. For the 1st MRI, no significant correlation was found between volume of SFC and initial status of patients, including body weight, body mass index (BMI), white blood cell (WBC), and erythrocyte sedimentation rate (ESR). However, significant positive correlations were found between changes of C-reactive protein (CRP) and SFC volume from the 1st to 2nd as well as from the 1st to the last MRI (each p < .05). Conclusion: SD patients had significantly higher prevalence of SFC than non-SD patients. Volume changes of SFC had significant correlation with changes of CRP, which can be used as an imaging

  20. Subcutaneous fluid collection: An imaging marker for treatment response of infectious thoracolumbar spondylodiscitis

    International Nuclear Information System (INIS)

    Kakigi, Takahide; Okada, Tomohisa; Sakai, Osamu; Iwamoto, Yoshitaka; Kubo, Soichi; Yamamoto, Akira; Togashi, Kaori

    2015-01-01

    Highlights: • No imaging marker for treatment response of spondylodiscitis (SD) has been proposed. • Volume changes of subcutaneous fluid collection (SFC) had significant correlation with changes of C-reactive protein (CRP). • SFC can be used as an imaging marker for treatment response of SD on magnetic resonance imaging (MRI). - Abstract: Purpose: To evaluate prevalence of subcutaneous fluid collection (SFC) in infectious thoracolumbar spondylodiscitis (SD) compared with control patients and to investigate correlation between volume changes of SFC and treatment response of SD. Materials and methods: This retrospective study was approved by our institutional review board. From April 2011 to March 2012, 49 patients (24 SD and 25 non-SD patients) were enrolled. Prevalence of SFC was evaluated respectively for SD and non-SD patients using magnetic resonance imaging (MRI) on the sagittal short tau inversion recovery (STIR) imaging or fat-saturated T2-weighted imaging (T2WI), and compared. In SD patients with SFC, correlation was investigated between SFC volume on the 1st MRI and initial clinical status. The same analysis was conducted also for SFC volume changes from the 1st to 2nd or last MRI. Results: SFC was found in 20 patients with SD (83.3%) and 3 non-SD patients (12%) with significant difference (p < .001). In 20 SD patients with SFC, 17 patients had follow-up MRI. For the 1st MRI, no significant correlation was found between volume of SFC and initial status of patients, including body weight, body mass index (BMI), white blood cell (WBC), and erythrocyte sedimentation rate (ESR). However, significant positive correlations were found between changes of C-reactive protein (CRP) and SFC volume from the 1st to 2nd as well as from the 1st to the last MRI (each p < .05). Conclusion: SD patients had significantly higher prevalence of SFC than non-SD patients. Volume changes of SFC had significant correlation with changes of CRP, which can be used as an imaging

  1. Redox-responsive manganese dioxide nanoparticles for enhanced MR imaging and radiotherapy of lung cancer

    Science.gov (United States)

    Cho, Mi Hyeon; Choi, Eun-Seok; Kim, Sehee; Goh, Sung-Ho; Choi, Yongdoo

    2017-12-01

    In this study, we synthesized manganese dioxide nanoparticles (MnO2 NPs) stabilized with biocompatible polymers (polyvinylpyrrolidone and polyacrylic acid) and analyzed their effect on non-small cell lung cancer (NSCLC) cells with or without gefitinib resistance in vitro. MnO2 NPs showed glutathione (GSH)-responsive dissolution and subsequent enhancement in magnetic resonance (MR) imaging. Of note, treatment with MnO2 NPs induced significant cytotoxic effects on NSCLC cells, and additional dose-dependent therapeutic effects were obtained upon X-ray irradiation. Normal cells treated with MnO2 NPs were viable at the tested concentrations. In addition, increased therapeutic efficacy could be achieved when the cells were treated with MnO2 NPs in hypoxic conditions. Therefore, we conclude that the use of MnO2 NPs in MR imaging and combination radiotherapy may be an efficient strategy for the imaging and therapy of NSCLC.

  2. Assessing mesoscale material response under shock & isentropic compression via high-resolution line-imaging VISAR.

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Clint Allen; Furnish, Michael David; Podsednik, Jason W.; Reinhart, William Dodd; Trott, Wayne Merle; Mason, Joshua

    2003-10-01

    Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared two line-imaging VISAR systems capable of spatial resolution in the 10-20 micron range, at the Z and STAR facilities. We have applied this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in copper (two variations: 70 micron diameter hole in single-crystal copper) and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint. The instrument is capable of resolving details such as the volume and collapse history of a collapsing isolated pore.

  3. Corporate social responsibility in shaping the media image of the company

    Directory of Open Access Journals (Sweden)

    Magdalena Andrejczuk

    2010-06-01

    Full Text Available Enterprises frequently employ Corporate Social Responsibility (CSR to create a positive brand image in the media. To further good relations with stakeholders, companies create an image before their customers by their participation in public campaigns and information in advertisements employing elements of CSR. Discussing this practice, I will highlight aspects of this phenomenon in the context of consumer opinion about advertisements. Some examples of companies show that Cause Related Marketing (CRM and public campaigns are becoming more significant in the strategies of cause related companies. Enterprises at all costs want to buy their way into the favour of stakeholders, and through various marketing actions they try to build a strong brand and position in this way. In spite of the low evaluation of advertisements and the decline in confidence in them, enterprises aim to convince everyone that they are socially responsible companies.

  4. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    Directory of Open Access Journals (Sweden)

    Reinhard Meier

    Full Text Available Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40 is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13, Avastin (n = 6 or PBS (n = 12. Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09. In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001. There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively. The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.

  5. A case of timely satellite image acquisitions in support of coastal emergency environmental response management

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Lu, Zhong; Rangoonwala, Amina; Suzuoki, Yukihiro

    2009-01-01

    The synergistic application of optical and radar satellite imagery improves emergency response and advance coastal monitoring from the realm of “opportunistic” to that of “strategic.” As illustrated by the Hurricane Ike example, synthetic aperture radar imaging capabilities are clearly applicable for emergency response operations, but they are also relevant to emergency environmental management. Integrated with optical monitoring, the nearly real-time availability of synthetic aperture radar provides superior consistency in status and trends monitoring and enhanced information concerning causal forces of change that are critical to coastal resource sustainability, including flooding extent, depth, and frequency.

  6. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  7. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  8. Non-parametric Bayesian models of response function in dynamic image sequences

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ondřej; Šmídl, Václav

    2016-01-01

    Roč. 151, č. 1 (2016), s. 90-100 ISSN 1077-3142 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Response function * Blind source separation * Dynamic medical imaging * Probabilistic models * Bayesian methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.498, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/tichy-0456983.pdf

  9. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  10. Crisis strategies in BP's Deepwater Horizon response : An image repair and situational crisis communication study

    OpenAIRE

    Johansson, Mikael

    2017-01-01

    The BP Deepwater Horizon crisis in 2010 was one the largest catastrophes in the history of the oil industry. BP was sued over the disaster, and lost several billion dollars. This study examines the crisis response strategies and/or image repair strategies, which can be found in BP's press releases following the Deepwater Horizon crisis. In particular, the study looks closer at what established crisis communication strategies could be discerned in the material, and how they are used discursive...

  11. Role of Image in Marketing Performance Odel Supported by Marketing Communication and Company Social Responsibility

    OpenAIRE

    Soegoto, Eddy Soeryanto

    2016-01-01

    AbstractBanking industries have not been effective yet in implementing marketing communication and company social responsibility programs. The establishment of image has not been done effectively yet; accordingly marketing performance cannot be implemented as it is expected. This research was done in the banking industries at Bandung City with sample as much as 42 banking industries drawn using a random sampling method. Thaanalysis procedure used Structural Equation Modeling based on Partial ...

  12. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2000-01-01

    Full Text Available Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies [1 ]. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal [2], subcutaneous, and intravascular [3] cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeuticinduced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI, respectively. There was excellent correlation (r=0.91 between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951. These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.

  13. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  14. PET imaging of early response to the tyrosine kinase inhibitor ZD4190

    International Nuclear Information System (INIS)

    Yang, Min; Gao, Haokao; Yan, Yongjun; Sun, Xilin; Chen, Kai; Quan, Qimeng; Lang, Lixin; Kiesewetter, Dale; Niu, Gang; Chen, Xiaoyuan

    2011-01-01

    We evaluated noninvasive positron emission tomography (PET) imaging for monitoring tumor response to the VEGFR-2 tyrosine kinase (TK) inhibitor ZD4190 during cancer therapy. Orthotopic MDA-MB-435 tumor-bearing mice were treated with ZD4190 (100 mg/kg orally per day for three consecutive days). Tumor growth was monitored by caliper measurement. During the therapeutic period, longitudinal PET scans were acquired using 18 F-FDG, 18 F-FLT and 18 F-FPPRGD2 as imaging tracers to evaluate tumor glucose metabolism, tumor cell proliferation, and angiogenesis, respectively. Imaging metrics were validated by immunohistochemical analysis of Ki67, GLUT-1, F4/80, CD31, murine integrin β3, and human integrin αvβ3. Three consecutive daily oral administrations of 100 mg/kg of ZD4190 were effective in delaying MDA-MB-435 tumor growth. A significant difference in tumor volume was observed on day 7 between the treatment group and the control group (p 18 F-FPPRGD2 uptake was stable between days 0 and 7. In ZD4190-treated tumors, 18 F-FPPRGD2 uptake had decreased significantly relative to baseline by 26.74±8.12% (p 18 F-FLT had also decreased on both day 1 and day 3 after initiation of ZD4190 treatment. No significant change in 18 F-FDG uptake in ZD4190-treated tumors was observed, however, compared with the control group. All of the imaging findings were supported by ex vivo analysis of related biomarkers. The longitudinal imaging results demonstrated the usefulness of quantitative 18 F-FLT and 18 F-FPPRGD2 PET imaging in evaluating the early antiproliferative and antiangiogenic effects of ZD4190. The quantification data from the PET imaging were consistent with the pattern of initial growth inhibition with treatment, followed by tumor relapse after treatment cessation. (orig.)

  15. TU-C-12A-02: Development of a Multiparametric Statistical Response Map for Quantitative Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bosca, R [The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Mahajan, A; Brown, PD; Stafford, RJ [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Johnson, VE [Texas A' M University, College Station, TX (United States); Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States); Jackson, EF [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Quantitative imaging biomarkers (QIB) are becoming increasingly utilized in early phase clinical trials as a means of non-invasively assessing treatment response and associated response heterogeneity. The aim of this study was to develop a flexible multiparametric statistical framework to predict voxel-by-voxel response of several potential MRI QIBs. Methods: Patients with histologically proven glioblastomas (n=11) were treated with chemoradiation (with/without bevacizumab) and underwent one baseline and two mid-treatment (3–4wks) MRIs. Dynamic contrast-enhanced (3D FSPGR, 6.3sec/phase, 0.1 mmol/kg Gd-DTPA), dynamic susceptibility contrast (2D GRE-EPI, 1.5sec/phase, 0.2mmol/kg Gd-DTPA), and diffusion tensor (2D DW-EPI, b=0, 1200 s/mm{sup 2}, 27 directions) imaging acquisitions were obtained during each study. Mid-treatment and pre-treatment images were rigidly aligned, and regions of partial response (PR), stable disease (SD), and progressive disease (PD) were contoured in consensus by two experienced radiation oncologists. Voxels in these categories were used to train ordinal (PRimaging biomarkers, as well as treatment type. Leave-one-out cross-validation was performed at the patient level to assess model prediction accuracy. Results: Ordinal regression resulted in model prediction accuracies of 60% (PR), 0% (SD), 81% (PD), and 69% (overall), with coefficients of variation (COV) of 9.4%, 9.6%, and 23.6%, respectively. Logistic regression resulted in accuracies of 82.0% (PR/SD), 46.2% (PD), and 76.2% (overall) with COVs of 22.4%, 45.7%, and 23.8%, respectively. Conclusion: Despite limited patient numbers, this feasibility pilot study demonstrates that ordinal and logistic regression models potentially provide a flexible statistical framework for incorporating longitudinal multiparametric

  16. TU-C-12A-02: Development of a Multiparametric Statistical Response Map for Quantitative Imaging

    International Nuclear Information System (INIS)

    Bosca, R; Mahajan, A; Brown, PD; Stafford, RJ; Johnson, VE; Dong, L; Jackson, EF

    2014-01-01

    Purpose: Quantitative imaging biomarkers (QIB) are becoming increasingly utilized in early phase clinical trials as a means of non-invasively assessing treatment response and associated response heterogeneity. The aim of this study was to develop a flexible multiparametric statistical framework to predict voxel-by-voxel response of several potential MRI QIBs. Methods: Patients with histologically proven glioblastomas (n=11) were treated with chemoradiation (with/without bevacizumab) and underwent one baseline and two mid-treatment (3–4wks) MRIs. Dynamic contrast-enhanced (3D FSPGR, 6.3sec/phase, 0.1 mmol/kg Gd-DTPA), dynamic susceptibility contrast (2D GRE-EPI, 1.5sec/phase, 0.2mmol/kg Gd-DTPA), and diffusion tensor (2D DW-EPI, b=0, 1200 s/mm 2 , 27 directions) imaging acquisitions were obtained during each study. Mid-treatment and pre-treatment images were rigidly aligned, and regions of partial response (PR), stable disease (SD), and progressive disease (PD) were contoured in consensus by two experienced radiation oncologists. Voxels in these categories were used to train ordinal (PRimaging biomarkers, as well as treatment type. Leave-one-out cross-validation was performed at the patient level to assess model prediction accuracy. Results: Ordinal regression resulted in model prediction accuracies of 60% (PR), 0% (SD), 81% (PD), and 69% (overall), with coefficients of variation (COV) of 9.4%, 9.6%, and 23.6%, respectively. Logistic regression resulted in accuracies of 82.0% (PR/SD), 46.2% (PD), and 76.2% (overall) with COVs of 22.4%, 45.7%, and 23.8%, respectively. Conclusion: Despite limited patient numbers, this feasibility pilot study demonstrates that ordinal and logistic regression models potentially provide a flexible statistical framework for incorporating longitudinal multiparametric

  17. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    Directory of Open Access Journals (Sweden)

    Ahmed R

    2014-03-01

    Full Text Available Rafay Ahmed,1 Matthew J Oborski,2 Misun Hwang,1 Frank S Lieberman,3 James M Mountz11Department of Radiology, 2Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Neurology and Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies

  18. Diffusion of responsibility attenuates altruistic punishment: A functional magnetic resonance imaging effective connectivity study.

    Science.gov (United States)

    Feng, Chunliang; Deshpande, Gopikrishna; Liu, Chao; Gu, Ruolei; Luo, Yue-Jia; Krueger, Frank

    2016-02-01

    Humans altruistically punish violators of social norms to enforce cooperation and pro-social behaviors. However, such altruistic behaviors diminish when others are present, due to a diffusion of responsibility. We investigated the neural signatures underlying the modulations of diffusion of responsibility on altruistic punishment, conjoining a third-party punishment task with event-related functional magnetic resonance imaging and multivariate Granger causality mapping. In our study, participants acted as impartial third-party decision-makers and decided how to punish norm violations under two different social contexts: alone (i.e., full responsibility) or in the presence of putative other third-party decision makers (i.e., diffused responsibility). Our behavioral results demonstrated that the diffusion of responsibility served as a mediator of context-dependent punishment. In the presence of putative others, participants who felt less responsible also punished less severely in response to norm violations. Our neural results revealed that underlying this behavioral effect was a network of interconnected brain regions. For unfair relative to fair splits, the presence of others led to attenuated responses in brain regions implicated in signaling norm violations (e.g., AI) and to increased responses in brain regions implicated in calculating values of norm violations (e.g., vmPFC, precuneus) and mentalizing about others (dmPFC). The dmPFC acted as the driver of the punishment network, modulating target regions, such as AI, vmPFC, and precuneus, to adjust altruistic punishment behavior. Our results uncovered the neural basis of the influence of diffusion of responsibility on altruistic punishment and highlighted the role of the mentalizing network in this important phenomenon. Hum Brain Mapp 37:663-677, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Energy response of an imaging plate exposed to standard beta sources

    International Nuclear Information System (INIS)

    Gonzalez, A.L.; Li, H.; Mitch, M.; Tolk, N.; Duggan, D.M.

    2002-01-01

    Imaging plates (IPs) are a reusable media, which when exposed to ionizing radiation, store a latent image that can be read out with a red laser as photostimulated luminescence (PSL). They are widely used as a substitute for X-ray films for diagnostic studies. In diagnostic radiology this technology is known as computed radiography. In this work, the energy response of a commercial IP to beta-particle reference radiation fields used for calibrations at the National Institute of Standards and Technology was investigated. The absorbed dose in the active storage phosphor layer was calculated following the scaling procedure for depth dose for high Z materials with reference to water. It was found that the beta particles from Pm-147 and Kr-85 gave 68% and 24% higher PSL responses than that induced by Sr-90, respectively, which was caused by the different PSL detection efficiencies. In addition, normalized response curves of the IPs as a function of depth in polystyrene were measured and compared with the data measured using extrapolation chamber techniques. The difference between both sets of data resulted from the continuous energy change as the beta particle travels across the material, which leads to a different PSL response

  20. Predicted accommodative response from image quality in young eyes fitted with different dual-focus designs.

    Science.gov (United States)

    Faria-Ribeiro, Miguel; Amorim-de-Sousa, Ana; González-Méijome, José M

    2018-05-01

    To investigate the separated and combined influences of inner zone (IZ) diameter and effective add power of dual-focus contact lenses (CL) in the image quality at distance and near viewing, in a functional accommodating model eye. Computational wave-optics methods were used to define zonal bifocal pupil functions, representing the optic zones of nine dual-focus centre-distance CLs. The dual-focus pupil functions were defined having IZ diameters of 2.10 mm, 3.36 mm and 4.00 mm, with add powers of 1.5 D, 2.0 D and 2.5 D (dioptres), for each design, that resulted in a ratio of 64%/36% between the distance and treatment zone areas, bounded by a 6 mm entrance pupil. A through-focus routine was implemented in MATLAB to simulate the changes in image quality, calculated from the Visual Strehl ratio, as the eye with the dual-focus accommodates, from 0 to -3.00 D target vergences. Accommodative responses were defined as the changes in the defocus coefficient, combined with a change in fourth and sixth order spherical aberration, which produced a peak in image quality at each target vergence. Distance viewing image quality was marginally affected by IZ diameter but not by add power. Near image quality obtained when focussing the image formed by the near optics was only higher by a small amount compared to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.28 ± 0.02, 0.23 ± 0.02 and 0.22 ± 0.02, for the small, medium and larger IZ diameters, respectively. On the other hand, near image quality predicted by focussing the image formed by the distance optics was considerably lower relatively to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.15 ± 0.01, 0.38 ± 0.00 and 0.54 ± 0.01, for the small, medium and larger IZ diameters, respectively. During near viewing through dual-focus CLs, image quality depends on the diameter of the most inner zone of the CL, while add power

  1. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.

    Directory of Open Access Journals (Sweden)

    Petros-Pavlos Ypsilantis

    Full Text Available Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models.

  2. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Hougaard, Anders; Ahmadi, Khazar

    2017-01-01

    Objective: Migraine aura is sparsely studied due to the highly challenging task of capturing patients during aura. Cortical spreading depression (CSD) is likely the underlying phenomenon of aura. The possible correlation between the multifaceted phenomenology of aura symptoms and the effects of CSD...... on the brain has not been ascertained. Methods: Five migraine patients were studied during various forms of aura symptoms induced by hypoxia, sham hypoxia, or physical exercise with concurrent photostimulation. The blood oxygenation level–dependent (BOLD) functional magnetic resonance imaging (fMRI) signal...... response to visual stimulation was measured in retinotopic mapping–defined visual cortex areas V1 to V4. Results: We found reduced BOLD response in patients reporting scotoma and increased response in patients who only experienced positive symptoms. Furthermore, patients with bilateral visual symptoms had...

  3. Pilot test of a novel food response and attention training treatment for obesity: Brain imaging data suggest actions shape valuation

    NARCIS (Netherlands)

    Stice, E.; Yokum, S.; Veling, H.P.; Kemps, E.; Lawrence, N.S.

    2017-01-01

    Elevated brain reward and attention region response, and weaker inhibitory region response to high-calorie food images have been found to predict future weight gain. These findings suggest that an intervention that reduces reward and attention region response and increases inhibitory control region

  4. Autonomic and subjective responsivity to emotional images in people with dissociative seizures.

    Science.gov (United States)

    Pick, Susannah; Mellers, John D C; Goldstein, Laura H

    2018-06-01

    People with dissociative seizures (DS) report a range of difficulties in emotional functioning and exhibit altered responding to emotional facial expressions in experimental tasks. We extended this research by investigating subjective and autonomic reactivity (ratings of emotional valence, arousal and skin conductance responses [SCRs]) to general emotional images in 39 people with DS relative to 42 healthy control participants, whilst controlling for anxiety, depression, cognitive functioning and, where relevant, medication use. It was predicted that greater subjective negativity and arousal and increased SCRs in response to the affective pictures would be observed in the DS group. The DS group as a whole did not differ from controls in their subjective responses of valence and arousal. However, SCR amplitudes were greater in 'autonomic responders' with DS relative to 'autonomic responders' in the control group. A positive correlation was also observed between SCRs for highly arousing negative pictures and self-reported ictal autonomic arousal, in DS 'autonomic responders'. In the DS subgroup of autonomic 'non-responders', differences in subjective responses were observed for some conditions, compared to control 'non-responders'. The findings indicate unaffected subjective responses to emotional images in people with DS overall. However, within the group of people with DS, there may be subgroups characterized by differences in emotional responding. One subgroup (i.e., 'autonomic responders') exhibit heightened autonomic responses but intact subjective emotional experience, whilst another subgroup (i.e., 'autonomic non-responders') seem to experience greater subjective negativity and arousal for some emotional stimuli, despite less frequent autonomic reactions. The current results suggest that therapeutic interventions targeting awareness and regulation of physiological arousal and subjective emotional experience could be of value in some people with this disorder

  5. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients.

    Science.gov (United States)

    López-Solà, Marina; Pujol, Jesus; Wager, Tor D; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-11-01

    Fibromyalgia (FM) is a disorder characterized by chronic pain and enhanced responses to acute noxious events. However, the sensory systems affected in FM may extend beyond pain itself, as FM patients show reduced tolerance to non-nociceptive sensory stimulation. Characterizing the neural substrates of multisensory hypersensitivity in FM may thus provide important clues about the underlying pathophysiology of the disorder. The aim of this study was to characterize brain responses to non-nociceptive sensory stimulation in FM patients and their relationship to subjective sensory sensitivity and clinical pain severity. Functional magnetic resonance imaging (MRI) was used to assess brain response to auditory, visual, and tactile motor stimulation in 35 women with FM and 25 matched controls. Correlation and mediation analyses were performed to establish the relationship between brain responses and 3 types of outcomes: subjective hypersensitivity to daily sensory stimulation, spontaneous pain, and functional disability. Patients reported increased subjective sensitivity (increased unpleasantness) in response to multisensory stimulation in daily life. Functional MRI revealed that patients showed reduced task-evoked activation in primary/secondary visual and auditory areas and augmented responses in the insula and anterior lingual gyrus. Reduced responses in visual and auditory areas were correlated with subjective sensory hypersensitivity and clinical severity measures. FM patients showed strong attenuation of brain responses to nonpainful events in early sensory cortices, accompanied by an amplified response at later stages of sensory integration in the insula. These abnormalities are associated with core FM symptoms, suggesting that they may be part of the pathophysiology of the disease. Copyright © 2014 by the American College of Rheumatology.

  6. Real-time fluorescence imaging of the DNA damage repair response during mitosis.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-04-01

    The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.

  7. Quantification of sterol-specific response in human macrophages using automated imaged-based analysis.

    Science.gov (United States)

    Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E

    2017-12-13

    The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.

  8. Online detector response calculations for high-resolution PET image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem [Department of Radiation Oncology, Stanford University, Stanford, CA 94305 (United States); Levin, Craig, E-mail: cslevin@stanford.edu [Departments of Radiology, Physics and Electrical Engineering, and Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305 (United States)

    2011-07-07

    Positron emission tomography systems are best described by a linear shift-varying model. However, image reconstruction often assumes simplified shift-invariant models to the detriment of image quality and quantitative accuracy. We investigated a shift-varying model of the geometrical system response based on an analytical formulation. The model was incorporated within a list-mode, fully 3D iterative reconstruction process in which the system response coefficients are calculated online on a graphics processing unit (GPU). The implementation requires less than 512 Mb of GPU memory and can process two million events per minute (forward and backprojection). For small detector volume elements, the analytical model compared well to reference calculations. Images reconstructed with the shift-varying model achieved higher quality and quantitative accuracy than those that used a simpler shift-invariant model. For an 8 mm sphere in a warm background, the contrast recovery was 95.8% for the shift-varying model versus 85.9% for the shift-invariant model. In addition, the spatial resolution was more uniform across the field-of-view: for an array of 1.75 mm hot spheres in air, the variation in reconstructed sphere size was 0.5 mm RMS for the shift-invariant model, compared to 0.07 mm RMS for the shift-varying model.

  9. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    International Nuclear Information System (INIS)

    Lu, W; Wang, J; Zhang, H

    2015-01-01

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss or gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that

  10. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W; Wang, J; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss or gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that

  11. Magnetic resonance imaging in the evaluation of treatment response of lateral epicondylitis of the elbow

    International Nuclear Information System (INIS)

    Savnik, Anette; Jensen, Bente; Noerregaard, Jesper; Danneskiold-Samsoee, Bente; Bliddal, Henning; Egund, Niels

    2004-01-01

    The purpose of this study was to investigate the treatment response in lateral epicondylitis (tennis elbow) by MRI. Magnetic resonance imaging was obtained in 30 patients with clinical symptoms of lateral epicondylitis of the elbow using T1-, T2- and T2-weighted fat-saturated (FS) sequences. The patients were randomised to either i.m. corticosteroid injection (n=16) or immobilisation in a wrist splint (n=14). Magnetic resonance imaging of the elbow was performed on a 1.5-T MR system at baseline and after 6 weeks. The extensor carpi radialis (ECRB) tendon, the radial collateral ligament, lateral humerus epicondyle at tendon insertion site, joint fluid and signal intensity changes within brachio-radialis and anconeus muscles were evaluated on the MR unit's workstation before and after 6 weeks of treatment. The MRI was performed once in 22 healthy controls for comparison and all images evaluated by an investigator blinded to the clinical status of the subjects. The MR images showed thickening with separation of the ECRB tendon from the radial collateral ligament and abnormal signal change in 25 of the 30 patients on the T1-weighted sequences at inclusion. The signal intensity of the ECRB tendon was increased in 24 of the 30 patients with lateral epicondylitis of the elbow on the T2-weighted FS sequences. (orig.)

  12. Magnetic resonance imaging in the evaluation of treatment response of lateral epicondylitis of the elbow

    Energy Technology Data Exchange (ETDEWEB)

    Savnik, Anette [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Department of Radiology, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Hovmarksvej 39, 2920, Charlottenlund (Denmark); Jensen, Bente; Noerregaard, Jesper; Danneskiold-Samsoee, Bente; Bliddal, Henning [Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000, Frederiksberg (Denmark); Egund, Niels [Department of Radiology, Aarhus University Hospital, 8000, Aarhus C (Denmark)

    2004-06-01

    The purpose of this study was to investigate the treatment response in lateral epicondylitis (tennis elbow) by MRI. Magnetic resonance imaging was obtained in 30 patients with clinical symptoms of lateral epicondylitis of the elbow using T1-, T2- and T2-weighted fat-saturated (FS) sequences. The patients were randomised to either i.m. corticosteroid injection (n=16) or immobilisation in a wrist splint (n=14). Magnetic resonance imaging of the elbow was performed on a 1.5-T MR system at baseline and after 6 weeks. The extensor carpi radialis (ECRB) tendon, the radial collateral ligament, lateral humerus epicondyle at tendon insertion site, joint fluid and signal intensity changes within brachio-radialis and anconeus muscles were evaluated on the MR unit's workstation before and after 6 weeks of treatment. The MRI was performed once in 22 healthy controls for comparison and all images evaluated by an investigator blinded to the clinical status of the subjects. The MR images showed thickening with separation of the ECRB tendon from the radial collateral ligament and abnormal signal change in 25 of the 30 patients on the T1-weighted sequences at inclusion. The signal intensity of the ECRB tendon was increased in 24 of the 30 patients with lateral epicondylitis of the elbow on the T2-weighted FS sequences. (orig.)

  13. IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE

    Science.gov (United States)

    Hamrah, Pedram

    2014-01-01

    Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045

  14. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laubach, M.A., E-mail: mlaubach@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Hayward, J.P., E-mail: jhayward@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Zhang, X., E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Cates, J.W., E-mail: jcates7@vols.utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  15. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.

    Science.gov (United States)

    O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan

    2015-01-15

    Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.

  16. The fMRI analysis of brain activation in response to face image affected by background images

    International Nuclear Information System (INIS)

    Shimada, Takamasa; Fukami, Tadanori; Saito, Yoichi

    2011-01-01

    The stimuli of a face images expressing fear induce the activation in the medial temporal lobe was reported in previous studies. In particular, it was reported that face image expressing fear activated the amygdala and hippo-campus area of brain. In these studies, no background images were used with facial stimuli. However, normal day-to-day images always have a background. We investigated the effect of combining face images expressing fear and different background images. As a result, strong activation was detected in the amygdala and hippocampus area when the lightning background image was used. But strong activation was not detected when the fire background image was used. From the results of questionnaire rating the impression of possibility of experiencing the situation of shown images, it is thought that this difference of impression of possibility made the difference of empathy and caused the difference of brain activation. (author)

  17. Measuring the Contractile Response of Isolated Tissue Using an Image Sensor

    Directory of Open Access Journals (Sweden)

    David Díaz-Martín

    2015-04-01

    Full Text Available Isometric or isotonic transducers have traditionally been used to study the contractile/relaxation effects of drugs on isolated tissues. However, these mechanical sensors are expensive and delicate, and they are associated with certain disadvantages when performing experiments in the laboratory. In this paper, a method that uses an image sensor to measure the contractile effect of drugs on blood vessel rings and other luminal organs is presented. The new method is based on an image-processing algorithm, and it provides a fast, easy and non-expensive way to analyze the effects of such drugs. In our tests, we have obtained dose-response curves from rat aorta rings that are equivalent to those achieved with classical mechanic sensors.

  18. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  19. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    Science.gov (United States)

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  20. No-reference stereoscopic image quality measurement based on generalized local ternary patterns of binocular energy response

    International Nuclear Information System (INIS)

    Zhou, Wujie; Yu, Lu

    2015-01-01

    Perceptual no-reference (NR) quality measurement of stereoscopic images has become a challenging issue in three-dimensional (3D) imaging fields. In this article, we propose an efficient binocular quality-aware features extraction scheme, namely generalized local ternary patterns (GLTP) of binocular energy response, for general-purpose NR stereoscopic image quality measurement (SIQM). More specifically, we first construct the binocular energy response of a distorted stereoscopic image with different stimuli of amplitude and phase shifts. Then, the binocular quality-aware features are generated from the GLTP of the binocular energy response. Finally, these features are mapped to the subjective quality score of the distorted stereoscopic image by using support vector regression. Experiments on two publicly available 3D databases confirm the effectiveness of the proposed metric compared with the state-of-the-art full reference and NR metrics. (paper)

  1. Imaging HER2 in response to T-DM1 therapy in breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Massicano, Adriana Vidal; Aweda, Tolulope; Marqueznostra, Bernadette; El Sayed, Reeta; Beacham, Rebecca; Lapi, Suzanne [University Of Alabama, Birmingham, AL (United States)

    2017-07-01

    Full text: Introduction: Monoclonal antibodies (mAbs) have become broadly used for the treatment of cancer because they can be engineered to bind specifically to the target and therefore typically have less toxicity compared to broad spectrum chemotherapies (Jauw YWS, Menke-van der Houven van Oordt CW, Hoekstra OS, et al. Front Pharmacol 2016, 7:1-15). Ado-trastuzumab emtansine (TDM1) is a newly approved HER2 targeted therapy which consists of a cytotoxic agent (DM1) linked to trastuzumab and has shown promising results in patients with HER2 positive metastatic breast cancer (Barok MT, Köninki M, Isola K et al. Breast Cancer Res 2011, 13:1465-5411). Although {sup 18}F-FDG is considered the gold standard in the diagnosis and staging of various types of cancer, it is a relatively non-specific marker (Janjigian YY, Viola-Villegas N, Holland JP, Divilov V, Carlin SD et al. J Nucl Med 2013;54:936-43). Alternatively, {sup 89}Zr-Pertuzumab which binds to a different epitope than trastuzumab on the HER2 receptor has shown high selectively in imaging variations in HER2 expression in breast cancer xenograft models (Marquez BV, Ikotun OF, Zheleznyak A, Wright B et al. Mol Pharm 2014;11:3988-95). Therefore, in this work, we investigated the specificity of {sup 89}Zr-Pertuzumab compared to {sup 18}F-FDG to identify early response to ado-trastuzumab emtansine (T-DM1) in a breast cancer xenograft model. Methods: Pertuzumab was conjugated top-NCS-Bz-DFO at varying molar ratios and labeled with {sup 89}Zr in different conditions. The optimal conditions were used in further in vitro and in vivo studies. In vivo PET imaging was conducted in nude female mice implanted with 17β-estradiol pellets and inoculated with 1 x 107 BT-474 HER2 positive breast cancer cells. In order to acquire baseline images, mice were injected via tail-vein with 200 μCi of 18F-FDG and imaged after 1 hour. The following day, they were injected with 100 μCi of {sup 89}Zr-Pertuzumab (20 μCi/μg) imaged 5

  2. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    International Nuclear Information System (INIS)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-01-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28–83) provided informed consent. T 2 - and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm 2 /s) were acquired before, during (mean 12 days), and 6–8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs ( −3 mm 2 /s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p 23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC ≥1.4 × 10 −3 mm 2 /s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2–4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising tool for monitoring the response to CRT.

  3. Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy.

    Science.gov (United States)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T(2)- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm(2)/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Low pretreatment ADCs (23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC ≥1.4 × 10(-3)mm(2)/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Diffusion-weighted magnetic resonance imaging seems to be a promising tool for monitoring the response to CRT. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Leptin is associated with exaggerated brain reward and emotion responses to food images in adolescent obesity.

    Science.gov (United States)

    Jastreboff, Ania M; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A; Giannini, Cosimo; Savoye, Mary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia; Sinha, Rajita

    2014-11-01

    In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation's youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which promote food craving and high-calorie food (HCF) consumption. It is not known whether these metabolic changes affect neural responses in the adolescent brain during a crucial period for establishing healthy eating behaviors. Twenty-five obese (BMI 34.4 kg/m2, age 15.7 years) and fifteen lean (BMI 20.96 kg/m2, age 15.5 years) adolescents underwent functional MRI during exposure to HCF, low-calorie food (LCF), and nonfood (NF) visual stimuli 2 h after isocaloric meal consumption. Brain responses to HCF relative to NF cues increased in obese versus lean adolescents in striatal-limbic regions (i.e., putamen/caudate, insula, amygdala) (P < 0.05, family-wise error [FWE]), involved in motivation-reward and emotion processing. Higher endogenous leptin levels correlated with increased neural activation to HCF images in all subjects (P < 0.05, FWE). This significant association between higher circulating leptin and hyperresponsiveness of brain motivation-reward regions to HCF images suggests that dysfunctional leptin signaling may contribute to the risk of overconsumption of these foods, thus further predisposing adolescents to the development of obesity and T2D. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Vibration Response Imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia

    International Nuclear Information System (INIS)

    Bartziokas, Konstantinos; Daenas, Christos; Preau, Sebastien; Zygoulis, Paris; Triantaris, Apostolos; Kerenidi, Theodora; Makris, Demosthenes; Gourgoulianis, Konstantinos I; Daniil, Zoe

    2010-01-01

    We evaluated pulmonologists variability in the interpretation of Vibration response imaging (VRI) obtained from healthy subjects and patients hospitalized for community acquired pneumonia. The present is a prospective study conducted in a tertiary university hospital. Twenty healthy subjects and twenty three pneumonia cases were included in this study. Six pulmonologists blindly analyzed images of normal subjects and pneumonia cases and evaluated different aspects of VRI images related to the quality of data aquisition, synchronization of the progression of breath sound distribution and agreement between the maximal energy frame (MEF) of VRI (which is the maximal geographical area of lung vibrations produced at maximal inspiration) and chest radiography. For qualitative assessment of VRI images, the raters' evaluations were analyzed by degree of consistency and agreement. The average value for overall identical evaluations of twelve features of the VRI image evaluation, ranged from 87% to 95% per rater (94% to 97% in control cases and from 79% to 93% per rater in pneumonia cases). Inter-rater median (IQR) agreement was 91% (82-96). The level of agreement according to VRI feature evaluated was in most cases over 80%; intra-class correlation (ICC) obtained by using a model of subject/rater for the averaged features was overall 0.86 (0.92 in normal and 0.73 in pneumonia cases). Our findings suggest good agreement in the interpretation of VRI data between different raters. In this respect, VRI might be helpful as a radiation free diagnostic tool for the management of pneumonia

  6. Vibration Response Imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia

    Directory of Open Access Journals (Sweden)

    Makris Demosthenes

    2010-03-01

    Full Text Available Abstract Background We evaluated pulmonologists variability in the interpretation of Vibration response imaging (VRI obtained from healthy subjects and patients hospitalized for community acquired pneumonia. Methods The present is a prospective study conducted in a tertiary university hospital. Twenty healthy subjects and twenty three pneumonia cases were included in this study. Six pulmonologists blindly analyzed images of normal subjects and pneumonia cases and evaluated different aspects of VRI images related to the quality of data aquisition, synchronization of the progression of breath sound distribution and agreement between the maximal energy frame (MEF of VRI (which is the maximal geographical area of lung vibrations produced at maximal inspiration and chest radiography. For qualitative assessment of VRI images, the raters' evaluations were analyzed by degree of consistency and agreement. Results The average value for overall identical evaluations of twelve features of the VRI image evaluation, ranged from 87% to 95% per rater (94% to 97% in control cases and from 79% to 93% per rater in pneumonia cases. Inter-rater median (IQR agreement was 91% (82-96. The level of agreement according to VRI feature evaluated was in most cases over 80%; intra-class correlation (ICC obtained by using a model of subject/rater for the averaged features was overall 0.86 (0.92 in normal and 0.73 in pneumonia cases. Conclusions Our findings suggest good agreement in the interpretation of VRI data between different raters. In this respect, VRI might be helpful as a radiation free diagnostic tool for the management of pneumonia.

  7. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging.

    Science.gov (United States)

    Wollenweber, Tim; Roentgen, Philipp; Schäfer, Andreas; Schatka, Imke; Zwadlo, Caroline; Brunkhorst, Thomas; Berding, Georg; Bauersachs, Johann; Bengel, Frank M

    2014-09-01

    Myocardial infarction (MI) triggers a systemic inflammatory response which determines subsequent healing. Experimentally, cardiac positron emission tomography and magnetic resonance imaging have been used successfully to obtain mechanistic insights. We explored the translational potential in patients early after MI. Positron emission tomography/computed tomography and cardiac magnetic resonance were performed in 15 patients sources of inflammatory cells. Positron emission tomography and cardiac magnetic resonance multimodality characterization of the acutely infarcted, inflamed myocardium may provide multiparametric end points for clinical studies aiming at support of infarct healing. © 2014 American Heart Association, Inc.

  8. The effect of animated images on persuasion: The mediator role of hedonic responses and the moderator role of product category

    OpenAIRE

    Hussant-Zebian, Rola

    2004-01-01

    This paper aims to highlight the mediator role of hedonic responses in the relation between animated images and attitudinal responses. It has another objective which is to show off the moderator role of product category. To this purpose, we have manipulated two categories of advertising opposing computer animated to non-computer animated images. We have also seetwo product categories : a high involvement product and a low involvement one.

  9. Assessment of treatment response in nonalcoholic steatohepatitis using advanced magnetic resonance imaging measures

    Science.gov (United States)

    Lin, Steven C.; Heba, Elhamy; Bettencourt, Ricki; Lin, Grace Y.; Valasek, Mark A.; Lunde, Ottar; Hamilton, Gavin; Sirlin, Claude B.; Loomba, Rohit

    2017-01-01

    Background Magnetic resonance imaging derived measures of liver fat and volume are emerging as accurate, non-invasive imaging biomarkers in non-alcoholic steatohepatitis (NASH). Little is known about these measures in relation to histology longitudinally. Aims This study examines this relationship between MRI-derived proton-density fat-fraction (PDFF), total liver volume (TLV), total liver fat index (TLFI), vs. histology in a NASH trial. Methods This is a secondary analysis of a 24-week randomized, double-blind, placebo-controlled trial of 50 patients with biopsy-proven NASH randomized to oral ezetimibe 10mg daily (n=25) vs. placebo (n=25). Baseline and post-treatment anthropometrics, biochemical profiling, MRI, and biopsies were obtained. Results Baseline mean PDFF correlated strongly with TLFI (Spearman’s ρ=0.94, n=45, PMRI-PDFF vs. TLV indicates that 10% reduction in MRI-PDFF predicts 257 mL reduction in TLV. Conclusions MRI-PDFF and TLV strongly correlated with TLFI. Decreases in steatosis were associated with an improvement in hepatomegaly. Lower values of these measures reflect lower histologic-steatosis grades. MRI-derived measures of liver fat and volume may be used as dynamic and more responsive imaging biomarkers in a NASH trial than histology. ClinicalTrials.gov number, NCT01766713. PMID:28116801

  10. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    International Nuclear Information System (INIS)

    Vos, C.G.; Paul, M.A.; Dahele, M.; Soernsen de Koste, J.R. van; Senan, S.; Bahce, I.; Smit, E.F.; Thunnissen, E.; Hartemink, K.J.

    2014-01-01

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R 2 = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  11. High-Speed imaging of the plasma response to resonant magnetic perturbations in HBT-EP

    International Nuclear Information System (INIS)

    Angelini, Sarah M; Levesque, Jeffrey P; Mauel, Michael E; Navratil, Gerald A

    2015-01-01

    A Phantom v7.3 fast digital camera was used to study visible light fluctuations in the High Beta Tokamak–Extended Pulse (HBT–EP). This video data is the first to be used to analyze and understand the behavior of long wavelength kink perturbations in a wall-stabilized tokamak. The light was mostly comprised of Dα 656 nm light. Profiles of the plasma light at the midplane were hollow with a radial scale length of approximately 4 cm at the plasma edge. The fast camera was also used to measure the plasma’s response to applied helical magnetic perturbations. The programmed toroidal phase angle of the resonant magnetic perturbation (RMP) was directly inferred from the resulting images of the plasma response. The plasma response and the intensity of the RMP were compared under different conditions. The resulting amplitude correlations are consistent with previous measurements of the static response using an array of magnetic sensors. (paper)

  12. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    International Nuclear Information System (INIS)

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-01

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  13. Proton magnetic spectroscopic imaging of the child's brain: the response of tumors to treatment

    International Nuclear Information System (INIS)

    Tzika, A.A.; Young Poussaint, T.; Astrakas, L.G.; Barnes, P.D.; Goumnerova, L.; Scott, R.M.; Black, P.McL.; Anthony, D.C.; Billett, A.L.; Tarbell, N.J.

    2001-01-01

    Our aim was to determine and/or predict response to treatment of brain tumors in children using proton magnetic resonance spectroscopic imaging (MRSI). We studied 24 patients aged 10 months to 24 years, using MRI and point-resolved spectroscopy (PRESS; TR 2000 TE 65 ms) with volume preselection and phase-encoding in two dimensions on a 1.5 T imager. Multiple logistic regression was used to establish independent predictors of active tumor growth. Biologically vital cell metabolites, such as N-acetyl aspartate and choline-containing compounds (Cho), were significantly different between tumor and control tissues (P<0.001). The eight brain tumors which responded to radiation or chemotherapy, exhibited lower Cho (P=0.05), higher total creatine (tCr) (P=0.02) and lower lactate and lipid (L) (P=0.04) than16 tumors which were not treated (except by surgery) or did not respond to treatment. The only significant independent predictor of active tumor growth was tCr (P<0.01). We suggest that tCr is useful in assessing response of brain tumors to treatment. (orig.)

  14. Clinical relevance of the ROC and free-response paradigms for comparing imaging system efficacies

    International Nuclear Information System (INIS)

    Chakraborty, D. P.

    2010-01-01

    Observer performance studies are widely used to assess medical imaging systems. Unlike technical/engineering measurements observer performance include the entire imaging chain and the radiologist. However, the widely used receiver operating characteristic (ROC) method ignores lesion localisation information. The free-response ROC (FROC) method uses the location information to appropriately reward or penalise correct or incorrect localizations, respectively. This paper describes a method for improving the clinical relevance of FROC studies. The method consists of assigning appropriate risk values to the different lesions that may be present on a single image. A high-risk lesion is one that is critical to detect and act upon, and is assigned a higher risk value than a low-risk lesion, one that is relatively innocuous. Instead of simply counting the number of lesions that are detected, as is done in conventional FROC analysis, a risk-weighted count is used. This has the advantage of rewarding detections of high-risk lesions commensurately more than detections of lower risk lesions. Simulations were used to demonstrate that the new method, termed case-based analysis, results in a higher figure of merit for an expert who detects more high-risk lesions than a naive observer who detects more low-risk lesions, even though both detect the same total number of lesions. Conventional free-response analysis is unable to distinguish between the two types of observers. This paper also comments on the issue of clinical relevance of ROC analysis vs. FROC for tasks that involve lesion localisation. (authors)

  15. Presence of a predator image in potential breeding sites and oviposition responses of a dengue vector.

    Science.gov (United States)

    Dieng, Hamady; Satho, Tomomitsu; Suradi, Nur Farrahana Binti; Hakim, Hafijah; Abang, Fatimah; Aliasan, Nur Ezzati; Miake, Fumio; Zuharah, Wan Fatma; Kassim, Nur Faeza A; Majid, Abdul Hafiz A; Fadzly, Nik; Vargas, Ronald E Morales; Morales, Noppawan P; Noweg, Gabriel Tonga

    2017-12-01

    In dengue vector control, attempts to minimize or replace the use of pesticides have mostly involved use of predators, but success has been severely impeded by difficulties associated with financial and environmental costs, predator mass production, and persistence in target habitats. Visual deterrents have been used successfully to control animal pests, in some cases in an effort to replace pesticide use. Despite evidence that visual signals are crucial in site choice for egg deposition by dengue vectors, and that female mosquitoes respond to artificial predation, the role of predator intimidation as it affects the oviposition behavior of dengue vectors remains largely unexplored. Here, we examined the oviposition responses of Aedes aegypti exposed to various mosquito predator pictures. Gravid females were presented with equal opportunities to oviposit in two cups with predator images [Toxorhynchites splendens-TXI, Goldfish (Carassius auratus)-small (SFI) and large (LFI) and Tx. splendens+Goldfish-TXFI] and two others without pictures. Differences in egg deposition were examined between sites with and without these images. When given a chance to oviposit in cups with and without TXI, Ae. aegypti females were similarly attracted to both sites. When provided an opportunity to oviposit in cups displaying pictures of fish (SFI or LFI) and blank cups, egg deposition rates were much lower in the fish picture sites. Females showed a preference for blank cups over TXFI for egg deposition. They also equally avoided cups with pictures of fish, regardless of the size of the picture. Our results indicate that the presence of images of goldfish and their association with Tx. larvae significantly reduced egg deposition by Ae. aegypti, and this was not the case with the predatory larvae alone. The observations that the images of natural predators can repel gravid females of a dengue vector provide novel possibilities to develop effective and inexpensive alternative tools to

  16. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chen [Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022 (China); Lee, Dong-Hoon; Zhang, Kai; Li, Wenxiao; Zhou, Jinyuan [Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287 (United States); Mangraviti, Antonella; Tyler, Betty [Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287 (United States); Su, Lin; Zhang, Yin; Zhang, Bin; Wong, John; Wang, Ken Kang-Hsin; Velarde, Esteban; Ding, Kai, E-mail: kding1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231 (United States)

    2015-08-15

    Purpose: Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. Methods: Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. Results: Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T{sub 2}, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = − 0.527, p < 0.05), time to peak (r = − 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = − 0.589, p < 0.01) and time to peak (r = − 0.543, p < 0.05). Conclusions: MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.

  17. Magnetic Resonance Imaging Identifies Differential Response to Pro-Oxidant Chemotherapy in a Xenograft Model

    Directory of Open Access Journals (Sweden)

    Terry H. Landowski

    2016-06-01

    Full Text Available Induction of oxidative stress is a key component of cancer therapy. Pro-oxidant drugs have been demonstrated to enhance the efficacy of radiotherapy and chemotherapy. An emerging concept is that therapeutic outcomes are dictated by the differential redox buffering reserve in subpopulations of malignant cells, indicating the need for noninvasive biomarkers of tumor redox that can be used for dose identification and response assessment in a longitudinal setting. Magnetic resonance imaging (MRI enhanced with the thiol-binding contrast agent Gd-LC6-SH, and hemodynamic response imaging (HRI in combination with hypercapnia and hyperoxia were investigated as biomarkers of the pharmacodynamics of the small molecule pro-oxidant imexon (IMX. Human multiple myeloma cell lines 8226/S and an IMX-resistant variant, 8226/IM10, were established as contralateral tumors in SCID mice. T1slope, an MRI measure of the washout rate of Gd-LC6-SH, was significantly lower post-IMX therapy in 8226/S tumors compared with vehicle controls, indicating treatment-related oxidization of the tumor microenvironment, which was confirmed by analysis of tumor tissue for thiols. T1slope and ex vivo assays for thiols both indicated a more reduced microenvironment in 8226/IM10 tumors following IMX therapy. HRI with hypercapnia challenge revealed IMX inhibition of vascular dilation in 8226/S tumors but not 8226/IM10 tumors, consistent with decreased immunohistochemical staining for smooth muscle actin in treated 8226/S tumors. MRI enhanced with Gd-LC6-SH, and HRI coupled with a hypercapnic challenge provide noninvasive biomarkers of tumor response to the redox modulator imexon.

  18. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  19. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    Science.gov (United States)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  20. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    Science.gov (United States)

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.

  1. Basic dose response of fluorescent screen-based portal imaging device

    International Nuclear Information System (INIS)

    Yeo, In Hwan; Yonannes, Yonas; Zhu, Yunping

    1999-01-01

    The purpose of this study is to investigate fundamental aspects of the dose response of fluorescent screen-based electronic portal imaging devices (EPIDs). We acquired scanned signal across portal planes as we varied the radiation that entered the EPID by changing the thickness and anatomy of the phantom as well as the air gap between the phantom and the EPID. In addition, we simulated the relative contribution of the scintillation light signal in the EPID system. We have shown that the dose profile across portal planes is a function of the air gap and phantom thickness. We have also found that depending on the density change within the phantom geometry, errors associated with dose response based on the EPID scan can be as high as 7%. We also found that scintillation light scattering within the EPID system is an important source of error. This study revealed and demonstrated fundamental characteristics of dose response of EPID, as relative to that of ion chambers. This study showed that EPID based on fluorescent screen cannot be an accurate dosimetry system

  2. ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2005-01-01

    The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue

  3. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Ten Haken, Randall K; Tsien, Christina I; Cao, Yue; Chenevert, Thomas

    2014-01-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  4. Texture analysis on MR images helps predicting non-response to NAC in breast cancer

    International Nuclear Information System (INIS)

    Michoux, N.; Van den Broeck, S.; Lacoste, L.; Fellah, L.; Galant, C.; Berlière, M.; Leconte, I.

    2015-01-01

    To assess the performance of a predictive model of non-response to neoadjuvant chemotherapy (NAC) in patients with breast cancer based on texture, kinetic, and BI-RADS parameters measured from dynamic MRI. Sixty-nine patients with invasive ductal carcinoma of the breast who underwent pre-treatment MRI were studied. Morphological parameters and biological markers were measured. Pathological complete response was defined as the absence of invasive and in situ cancer in breast and nodes. Pathological non-responders, partial and complete responders were identified. Dynamic imaging was performed at 1.5 T with a 3D axial T1W GRE fat-suppressed sequence. Visual texture, kinetic and BI-RADS parameters were measured in each lesion. ROC analysis and leave-one-out cross-validation were used to assess the performance of individual parameters, then the performance of multi-parametric models in predicting non-response to NAC. A model based on four pre-NAC parameters (inverse difference moment, GLN, LRHGE, wash-in) and k-means clustering as statistical classifier identified non-responders with 84 % sensitivity. BI-RADS mass/non-mass enhancement, biological markers and histological grade did not contribute significantly to the prediction. Pre-NAC texture and kinetic parameters help predicting non-benefit to NAC. Further testing including larger groups of patients with different tumor subtypes is needed to improve the generalization properties and validate the performance of the predictive model

  5. Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin.

    Science.gov (United States)

    Rupp, Heather A; James, Thomas W; Ketterson, Ellen D; Sengelaub, Dale R; Ditzen, Beate; Heiman, Julia R

    2014-01-01

    The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29 postpartum and 30 nulliparous women who received either oxytocin nasal spray or placebo before scanning. Pre- and post-exposure urinary cortisol levels were also measured. Postpartum women (placebo) demonstrated lower right amygdala activation in response to negative images, lower cortisol and lower negative photo arousal ratings to nulliparous women. Nulliparous women receiving oxytocin had lower right amygdala activation compared to placebo. Cortisol levels in the placebo group, and ratings of arousal across all women, were positively associated with right amygdala activation. Together, these findings demonstrate reductions in both amygdala activation and subjective negative arousal in untreated postpartum vs nulliparous women, supporting the hypothesis of an attenuated neural response to arousing stimuli in postpartum women. A causal role of oxytocin and the timing of potential effects require future investigation.

  6. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, Brunella, E-mail: bbarbaro@rm.unicatt.it [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Vecchio, Fabio M. [Department of Pathology, Catholic University School of Medicine, Rome (Italy); Rizzo, Gianluca [Department of Surgery, Catholic University School of Medicine, Rome (Italy); Gambacorta, Maria Antonietta [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy); Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi [Department of Surgery, Catholic University School of Medicine, Rome (Italy); Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University School of Medicine, Rome (Italy)

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising

  7. A new image reconstruction method for 3-D PET based upon pairs of near-missing lines of response

    Energy Technology Data Exchange (ETDEWEB)

    Kawatsu, Shoji [Department of Radiology, Kyoritu General Hospital, 4-33 Go-bancho, Atsuta-ku, Nagoya-shi, Aichi 456-8611 (Japan) and Department of Brain Science and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo Moriaka-cho, Obu-shi, Aichi 474-8522 (Japan)]. E-mail: b6rgw@fantasy.plala.or.jp; Ushiroya, Noboru [Department of General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 644-0023 (Japan)

    2007-02-01

    We formerly introduced a new image reconstruction method for three-dimensional positron emission tomography, which is based upon pairs of near-missing lines of response. This method uses an elementary geometric property of lines of response, namely that two lines of response which originate from radioactive isotopes located within a sufficiently small voxel, will lie within a few millimeters of each other. The effectiveness of this method was verified by performing a simulation using GATE software and a digital Hoffman phantom.

  8. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    Science.gov (United States)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  9. "Smart" gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation.

    Science.gov (United States)

    Song, Jaejung; Kim, Jeesu; Hwang, Sekyu; Jeon, Mansik; Jeong, Sanghwa; Kim, Chulhong; Kim, Sungjee

    2016-07-07

    'Smart' gold nanoparticles can respond to mild acidic environments, rapidly form aggregates, and shift the absorption to red and near-infrared. They were used as a photoacoustic imaging agent responsive to the cancer microenvironment, and have demonstrated the cancer-specific accumulation at the cellular level and an amplified signal which is twice higher than the control in vivo.

  10. Responses of rice to salinity and exogenous glycinebetaine by using positron emitting tracer imaging system

    International Nuclear Information System (INIS)

    Le Xuan Tham; Vo Huy Dang; Noriko, S.

    2002-01-01

    Effect of salinity stress (NaCl) and glycinebetaine on typical non-halophyte plants - rice (Oryza sativa L.) was examined for the growth, net photosynthesis and transpiration functions of seedlings. Using 22 Na, the inhibition of net uptake and translocation of sodium of seedlings stressed at 0.15% NaCl in solution and previously treated with exogenous glycinebetaine was observed by positron-emitting tracer imaging system, namely PETIS for diagnosis of early responses of plants to salt stress. Effects of exogenous glycinebetaine on rice plants stressed with salinity via osmotic protection and particularly stabilization of membrane permeability to inhibit Na uptake and translocation were discussed in connection with promising potentials of PETIS for researches on plants. (Author)

  11. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  12. Rectal Cancer: Mucinous Carcinoma on Magnetic Resonance Imaging Indicates Poor Response to Neoadjuvant Chemoradiation

    International Nuclear Information System (INIS)

    Oberholzer, Katja; Menig, Matthias; Kreft, Andreas; Schneider, Astrid; Junginger, Theodor; Heintz, Achim; Kreitner, Karl-Friedrich; Hötker, Andreas M.; Hansen, Torsten; Düber, Christoph; Schmidberger, Heinz

    2012-01-01

    Purpose: To assess response of locally advanced rectal carcinoma to chemoradiation with regard to mucinous status and local tumor invasion found at pretherapeutic magnetic resonance imaging (MRI). Methods and Materials: A total of 88 patients were included in this prospective study of patients with advanced mrT3 and mrT4 carcinomas. Carcinomas were categorized by MRI as mucinous (mucin proportion >50% within the tumor volume), and as nonmucinous. Patients received neoadjuvant chemoradiation consisting of 50.4 Gy (1.8 Gy/fraction) and 5-fluorouracil on Days 1 to 5 and Days 29 to 33. Therapy response was assessed by comparing pretherapeutic MRI with histopathology of surgical specimens (minimum distance between outer tumor edge and circumferential resection margin = CRM, T, and N category). Results: A mucinous carcinoma was found in 21 of 88 patients. Pretherapeutic mrCRM was 0 mm (median) in the mucinous and nonmucinous group. Of the 88 patients, 83 underwent surgery with tumor resection. The ypCRM (mm) at histopathology was significantly lower in mucinous carcinomas than in nonmucinous carcinomas (p ≤ 0.001). Positive resection margins (ypCRM ≤ 1 mm) were found more frequently in mucinous carcinomas than in nonmucinous ones (p ≤ 0.001). Treatment had less effect on local tumor stage in mucinous carcinomas than in nonmucinous carcinomas (for T downsizing, p = 0.012; for N downstaging, p = 0.007). Disease progression was observed only in patients with mucinous carcinomas (n = 5). Conclusion: Mucinous status at pretherapeutic MRI was associated with a noticeably worse response to chemoradiation and should be assessed by MRI in addition to local tumor staging to estimate response to treatment before it is initiated.

  13. Pilot test of a novel food response and attention training treatment for obesity: Brain imaging data suggest actions shape valuation.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja; Veling, Harm; Kemps, Eva; Lawrence, Natalia S

    2017-07-01

    Elevated brain reward and attention region response, and weaker inhibitory region response to high-calorie food images have been found to predict future weight gain. These findings suggest that an intervention that reduces reward and attention region response and increases inhibitory control region response to such foods might reduce overeating. We conducted a randomized pilot experiment that tested the hypothesis that a multi-faceted food response and attention training with personalized high- and low-calorie food images would produce changes in behavioral and neural responses to food images and body fat compared to a control training with non-food images among community-recruited overweight/obese adults. Compared to changes observed in controls, completing the intervention was associated with significant reductions in reward and attention region response to high-calorie food images (Mean Cohen's d = 1.54), behavioral evidence of learning, reductions in palatability ratings and monetary valuation of high-calorie foods (p = 0.009, d's = 0.92), and greater body fat loss over a 4-week period (p = 0.009, d = 0.90), though body fat effects were not significant by 6-month follow-up. Results suggest that this multifaceted response and attention training intervention was associated with reduced reward and attention region responsivity to food cues, and a reduction in body fat. Because this implicit training treatment is both easy and inexpensive to deliver, and does not require top-down executive control that is necessary for negative energy balance obesity treatment, it may prove useful in treating obesity if future studies can determine how to create more enduring effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Combining TerraSAR-X and Landsat Images for Emergency Response in Urban Environments

    Directory of Open Access Journals (Sweden)

    Shiran Havivi

    2018-05-01

    Full Text Available Rapid damage mapping following a disaster event, especially in an urban environment, is critical to ensure that the emergency response in the affected area is rapid and efficient. This work presents a new method for mapping damage assessment in urban environments. Based on combining SAR and optical data, the method is applicable as support during initial emergency planning and rescue operations. The study focuses on the urban areas affected by the Tohoku earthquake and subsequent tsunami event in Japan that occurred on 11 March 2011. High-resolution TerraSAR-X (TSX images of before and after the event, and a Landsat 5 image before the event were acquired. The affected areas were analyzed with the SAR data using only one interferometric SAR (InSAR coherence map. To increase the damage mapping accuracy, the normalized difference vegetation index (NDVI was applied. The generated map, with a grid size of 50 m, provides a quantitative assessment of the nature and distribution of the damage. The damage mapping shows detailed information about the affected area, with high overall accuracy (89%, and high Kappa coefficient (82% and, as expected, it shows total destruction along the coastline compared to the inland region.

  15. Analysis of physiological responses associated with emotional changes induced by viewing video images of dental treatments.

    Science.gov (United States)

    Sekiya, Taki; Miwa, Zenzo; Tsuchihashi, Natsumi; Uehara, Naoko; Sugimoto, Kumiko

    2015-03-30

    Since the understanding of emotional changes induced by dental treatments is important for dentists to provide a safe and comfortable dental treatment, we analyzed physiological responses during watching video images of dental treatments to search for the appropriate objective indices reflecting emotional changes. Fifteen healthy young adult subjects voluntarily participated in the present study. Electrocardiogram (ECG), electroencephalogram (EEG) and corrugator muscle electromyogram (EMG) were recorded and changes of them by viewing videos of dental treatments were analyzed. The subjective discomfort level was acquired by Visual Analog Scale method. Analyses of autonomic nervous activities from ECG and four emotional factors (anger/stress, joy/satisfaction, sadness/depression and relaxation) from EEG demonstrated that increases in sympathetic nervous activity reflecting stress increase and decreases in relaxation level were induced by the videos of infiltration anesthesia and cavity excavation, but not intraoral examination. The corrugator muscle activity was increased by all three images regardless of video contents. The subjective discomfort during watching infiltration anesthesia and cavity excavation was higher than intraoral examination, showing that sympathetic activities and relaxation factor of emotion changed in a manner consistent with subjective emotional changes. These results suggest that measurement of autonomic nervous activities estimated from ECG and emotional factors analyzed from EEG is useful for objective evaluation of subjective emotion.

  16. Model System for Live Imaging of Neuronal Responses to Injury and Repair

    Directory of Open Access Journals (Sweden)

    Mathieu Gravel

    2011-11-01

    Full Text Available Although it has been well established that induction of growth-associated protein-43 (GAP-43 during development coincides with axonal outgrowth and early synapse formation, the existence of neuronal plasticity and neurite outgrowth in the adult central nervous system after injuries is more controversial. To visualize the processes of neuronal injury and repair in living animals, we generated reporter mice for bioluminescence and fluorescence imaging bearing the luc (luciferase and gfp (green fluorescent protein reporter genes under the control of the murine GAP-43 promoter. Reporter functionality was first observed during the development of transgenic embryos. Using in vivo bioluminescence and fluorescence imaging, we visualized induction of the GAP-43 signals from live embryos starting at E10.5, as well as neuronal responses to brain and peripheral nerve injuries (the signals peaked at 14 days postinjury. Moreover, three-dimensional analysis of the GAP-43 bioluminescent signal confirmed that it originated from brain structures affected by ischemic injury. The analysis of fluorescence signal at cellular level revealed colocalization between endogenous protein and the GAP-43-driven gfp transgene. Taken together, our results suggest that the GAP-43-luc/gfp reporter mouse represents a valid model system for real-time analysis of neurite outgrowth and the capacity of the adult nervous system to regenerate after injuries.

  17. MALDI MS imaging investigation of the host response to visceral leishmaniasis.

    Science.gov (United States)

    Jaegger, C F; Negrão, F; Assis, D M; Belaz, K R A; Angolini, C F F; Fernandes, A M A P; Santos, V G; Pimentel, A; Abánades, D R; Giorgio, S; Eberlin, M N; Rocha, D F O

    2017-09-26

    Mass spectrometry imaging (MSI) of animal tissues has become an important tool for in situ molecular analyses and biomarker studies in several clinical areas, but there are few applications in parasitological studies. Leishmaniasis is a neglected tropical disease, and experimental mouse models have been essential to evaluate pathological and immunological processes and to develop diagnostic methods. Herein we have employed MALDI MSI to examine peptides and low molecular weight proteins (2 to 20 kDa) differentially expressed in the liver during visceral leishmaniasis in mice models. We analyzed liver sections of Balb/c mice infected with Leishmania infantum using the SCiLS Lab software for statistical analysis, which facilitated data interpretation and thus highlighted several key proteins and/or peptides. We proposed a decision tree classification for visceral leishmaniasis with distinct phases of the disease, which are named here as healthy, acute infection and chronic infection. Among others, the ion of m/z 4963 was the most important to identify acute infection and was tentatively identified as Thymosin β4. This peptide was previously established as a recovery factor in the human liver and might participate in the response of mice to Leishmania infection. This preliminary investigation shows the potential of MALDI MSI to complement classical compound selective imaging techniques and to explore new features not yet recognized by these approaches.

  18. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yuan Zheng; Ye Xiaodan; Dong Sheng; Xu Lichao; Xu Xueyuan; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Objective: To investigate the value of hepatocellular carcinoma pretreatment apparent diffusion coefficients (ADCs) and its ADCs changes after treatment in predicting and early monitoring the response after chemoembolization. Materials and methods: Twenty-five responding and nine nonresponding hepatocellular carcinoma lesions were prospectively evaluated with magnetic resonance diffusion-weighted imaging in 24 h before and in 48 h after chemoembolization. Quantitative ADC maps were calculated with images with b values of 0 and 500 s/mm 2 . Results: Nonresponding lesions had a significantly higher pretreatment mean ADC than did responding lesions (1.726 ± 0.323 x 10 -3 mm 2 /s vs.1.294 ± 0.185 10 -3 mm 2 /s, P ≤ 0.001). The results of receiver operator characteristic (ROC) analysis for identification of nonresponding lesions showed that threshold ADC value of 1.618 x 10 -3 mm 2 /s had 96.0% sensitivity and 77.8% specificity. After transarterial chemoembolization, responding lesions had a significant increase in %ADC values than did nonresponding lesions (32.63% vs. 5.24%, P = 0.025). The results of ROC analysis for identification of responding lesions showed that threshold %ADC value of 16.21% had 72% sensitivity and 100% specificity. No significant change was observed in normal liver parenchyma (P = 0.862) and spleen (P = 0.052). Conclusion: High pretreatment mean ADC value of hepatocellular carcinoma was predictive of poor response to chemoembolization. A significant increase in %ADC value was observed in lesions that responded to chemoembolization.

  19. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zheng, E-mail: yuanzheng0404@163.co [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Ye Xiaodan [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Department of Radiology, Affiliated Shanghai Chest Hospital, Shanghai Jiaotong University, 241 West Huai Hai Road, Shanghai 200030 (China); Dong Sheng, E-mail: dongsheng2828@hotmail.co [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China); Xu Lichao; Xu Xueyuan; Liu Shiyuan; Xiao Xiangsheng [Department of Radiology, Affiliated Changzheng Hospital, Second Military Medical University, 415 Feng Yang Road, Shanghai 200003 (China)

    2010-07-15

    Objective: To investigate the value of hepatocellular carcinoma pretreatment apparent diffusion coefficients (ADCs) and its ADCs changes after treatment in predicting and early monitoring the response after chemoembolization. Materials and methods: Twenty-five responding and nine nonresponding hepatocellular carcinoma lesions were prospectively evaluated with magnetic resonance diffusion-weighted imaging in 24 h before and in 48 h after chemoembolization. Quantitative ADC maps were calculated with images with b values of 0 and 500 s/mm{sup 2}. Results: Nonresponding lesions had a significantly higher pretreatment mean ADC than did responding lesions (1.726 {+-} 0.323 x 10{sup -3} mm{sup 2}/s vs.1.294 {+-} 0.185 10{sup -3} mm{sup 2}/s, P {<=} 0.001). The results of receiver operator characteristic (ROC) analysis for identification of nonresponding lesions showed that threshold ADC value of 1.618 x 10{sup -3} mm{sup 2}/s had 96.0% sensitivity and 77.8% specificity. After transarterial chemoembolization, responding lesions had a significant increase in %ADC values than did nonresponding lesions (32.63% vs. 5.24%, P = 0.025). The results of ROC analysis for identification of responding lesions showed that threshold %ADC value of 16.21% had 72% sensitivity and 100% specificity. No significant change was observed in normal liver parenchyma (P = 0.862) and spleen (P = 0.052). Conclusion: High pretreatment mean ADC value of hepatocellular carcinoma was predictive of poor response to chemoembolization. A significant increase in %ADC value was observed in lesions that responded to chemoembolization.

  20. MO-DE-303-03: Session on quantitative imaging for assessment of tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Bowen, S.

    2015-01-01

    This session will focus on quantitative imaging for assessment of tumor response to radiation therapy. This is a technically challenging method to translate to practice in radiation therapy. In the new era of precision medicine, however, delivering the right treatment, to the right patient, and at the right time, can positively impact treatment choices and patient outcomes. Quantitative imaging provides the spatial sensitivity required by radiation therapy for precision medicine that is not available by other means. In this Joint ESTRO -AAPM Symposium, three leading-edge investigators will present specific motivations for quantitative imaging biomarkers in radiation therapy of esophageal, head and neck, locally advanced non-small cell lung cancer, and hepatocellular carcinoma. Experiences with the use of dynamic contrast enhanced (DCE) MRI, diffusion- weighted (DW) MRI, PET/CT, and SPECT/CT will be presented. Issues covered will include: response prediction, dose-painting, timing between therapy and imaging, within-therapy biomarkers, confounding effects, normal tissue sparing, dose-response modeling, and association with clinical biomarkers and outcomes. Current information will be presented from investigational studies and clinical practice. Learning Objectives: Learn motivations for the use of quantitative imaging biomarkers for assessment of response to radiation therapy Review the potential areas of application in cancer therapy Examine the challenges for translation, including imaging confounds and paucity of evidence to date Compare exemplary examples of the current state of the art in DCE-MRI, DW-MRI, PET/CT and SPECT/CT imaging for assessment of response to radiation therapy Van der Heide: Research grants from the Dutch Cancer Society and the European Union (FP7) Bowen: RSNA Scholar grant

  1. MO-DE-303-03: Session on quantitative imaging for assessment of tumor response to radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, S. [University of Washington, School of Medicine: PET/CT and SPECT/CT for Lung and Liver Radiation Therapy Response Assessment of Tumor and Normal Tissue (United States)

    2015-06-15

    This session will focus on quantitative imaging for assessment of tumor response to radiation therapy. This is a technically challenging method to translate to practice in radiation therapy. In the new era of precision medicine, however, delivering the right treatment, to the right patient, and at the right time, can positively impact treatment choices and patient outcomes. Quantitative imaging provides the spatial sensitivity required by radiation therapy for precision medicine that is not available by other means. In this Joint ESTRO -AAPM Symposium, three leading-edge investigators will present specific motivations for quantitative imaging biomarkers in radiation therapy of esophageal, head and neck, locally advanced non-small cell lung cancer, and hepatocellular carcinoma. Experiences with the use of dynamic contrast enhanced (DCE) MRI, diffusion- weighted (DW) MRI, PET/CT, and SPECT/CT will be presented. Issues covered will include: response prediction, dose-painting, timing between therapy and imaging, within-therapy biomarkers, confounding effects, normal tissue sparing, dose-response modeling, and association with clinical biomarkers and outcomes. Current information will be presented from investigational studies and clinical practice. Learning Objectives: Learn motivations for the use of quantitative imaging biomarkers for assessment of response to radiation therapy Review the potential areas of application in cancer therapy Examine the challenges for translation, including imaging confounds and paucity of evidence to date Compare exemplary examples of the current state of the art in DCE-MRI, DW-MRI, PET/CT and SPECT/CT imaging for assessment of response to radiation therapy Van der Heide: Research grants from the Dutch Cancer Society and the European Union (FP7) Bowen: RSNA Scholar grant.

  2. SU-F-J-86: Method to Include Tissue Dose Response Effect in Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J; Liang, J; Chen, S; Qin, A; Yan, D [Beaumont Health Systeml, Royal Oak, MI (United States)

    2016-06-15

    Purpose: Organ changes shape and size during radiation treatment due to both mechanical stress and radiation dose response. However, the dose response induced deformation has not been considered in conventional deformable image registration (DIR). A novel DIR approach is proposed to include both tissue elasticity and radiation dose induced organ deformation. Methods: Assuming that organ sub-volume shrinkage was proportional to the radiation dose induced cell killing/absorption, the dose induced organ volume change was simulated applying virtual temperature on each sub-volume. Hence, both stress and heterogeneity temperature induced organ deformation. Thermal stress finite element method with organ surface boundary condition was used to solve deformation. Initial boundary correspondence on organ surface was created from conventional DIR. Boundary condition was updated by an iterative optimization scheme to minimize elastic deformation energy. The registration was validated on a numerical phantom. Treatment dose was constructed applying both the conventional DIR and the proposed method using daily CBCT image obtained from HN treatment. Results: Phantom study showed 2.7% maximal discrepancy with respect to the actual displacement. Compared with conventional DIR, subvolume displacement difference in a right parotid had the mean±SD (Min, Max) to be 1.1±0.9(−0.4∼4.8), −0.1±0.9(−2.9∼2.4) and −0.1±0.9(−3.4∼1.9)mm in RL/PA/SI directions respectively. Mean parotid dose and V30 constructed including the dose response induced shrinkage were 6.3% and 12.0% higher than those from the conventional DIR. Conclusion: Heterogeneous dose distribution in normal organ causes non-uniform sub-volume shrinkage. Sub-volume in high dose region has a larger shrinkage than the one in low dose region, therefore causing more sub-volumes to move into the high dose area during the treatment course. This leads to an unfavorable dose-volume relationship for the normal organ

  3. Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls.

    Science.gov (United States)

    Jensen, Chad D; Kirwan, C Brock

    2015-03-01

    Research conducted with adults suggests that successful weight losers demonstrate greater activation in brain regions associated with executive control in response to viewing high-energy foods. No previous studies have examined these associations in adolescents. Functional neuroimaging was used to assess brain response to food images among groups of overweight (OW), normal-weight (NW), and successful weight-losing (SWL) adolescents. Eleven SWL, 12 NW, and 11 OW participants underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. When viewing high-energy food images, SWLs demonstrated greater activation in the dorsolateral prefrontal cortex (DLPFC) compared with OW and NW controls. Compared with NW and SWL groups, OW individuals demonstrated greater activation in the ventral striatum and anterior cingulate in response to food images. Adolescent SWLs demonstrated greater neural activation in the DLPFC compared with OW/NW controls when viewing high-energy food stimuli, which may indicate enhanced executive control. OW individuals' brain responses to food stimuli may indicate greater reward incentive processes than either SWL or NW groups. © 2015 The Obesity Society.

  4. Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Redlich, Ronny; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Zaremba, Dario; Bürger, Christian; Münker, Sandra; Mühlmann, Lisa; Wahl, Patricia; Heindel, Walter; Arolt, Volker; Alferink, Judith; Zwanzger, Peter; Zavorotnyy, Maxim; Kugel, Harald; Dannlowski, Udo

    2016-06-01

    Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, biomarkers that accurately predict a response to ECT remain unidentified. To investigate whether certain factors identified by structural magnetic resonance imaging (MRI) techniques are able to predict ECT response. In this nonrandomized prospective study, gray matter structure was assessed twice at approximately 6 weeks apart using 3-T MRI and voxel-based morphometry. Patients were recruited through the inpatient service of the Department of Psychiatry, University of Muenster, from March 11, 2010, to March 27, 2015. Two patient groups with acute major depressive disorder were included. One group received an ECT series in addition to antidepressants (n = 24); a comparison sample was treated solely with antidepressants (n = 23). Both groups were compared with a sample of healthy control participants (n = 21). Binary pattern classification was used to predict ECT response by structural MRI that was performed before treatment. In addition, univariate analysis was conducted to predict reduction of the Hamilton Depression Rating Scale score by pretreatment gray matter volumes and to investigate ECT-related structural changes. One participant in the ECT sample was excluded from the analysis, leaving 67 participants (27 men and 40 women; mean [SD] age, 43.7 [10.6] years). The binary pattern classification yielded a successful prediction of ECT response, with accuracy rates of 78.3% (18 of 23 patients in the ECT sample) and sensitivity rates of 100% (13 of 13 who responded to ECT). Furthermore, a support vector regression yielded a significant prediction of relative reduction in the Hamilton Depression Rating Scale score. The principal findings of the univariate model indicated a positive association between pretreatment subgenual cingulate volume and individual ECT response (Montreal Neurological Institute [MNI] coordinates x = 8, y = 21, z = -18

  5. Affective and Autonomic Responses to Erotic Images: Evidence of Disgust-Based Mechanisms in Female Sexual Interest/Arousal Disorder.

    Science.gov (United States)

    DePesa, Natasha S; Cassisi, Jeffrey E

    2017-09-01

    Disgust has recently been implicated in the development and maintenance of female sexual dysfunction, yet most empirical studies have been conducted with a sexually healthy sample. The current study contributes to the literature by expanding the application of a disgust model of sexual functioning to a clinically relevant sample of women with low sexual desire/arousal and accompanying sexual distress. Young women (mean age = 19.12 years) with psychometrically defined sexual dysfunction (i.e., female sexual interest/arousal disorder [FSIAD] group) and a healthy control group were compared in their affective (i.e., facial electromyography [EMG] and self-report) and autonomic (i.e., heart rate and electrodermal activity) responses to disgusting, erotic, positive, and neutral images. Significant differences were predicted in responses to erotic images only. Specifically, it was hypothesized that the FSIAD group would display affective and autonomic responses consistent with a disgust response, while responses from the control group would align with a general appetitive response. Results largely supported study hypotheses. The FSIAD group displayed significantly greater negative facial affect, reported more subjective disgust, and recorded greater heart rate deceleration than the control group in response to erotic stimuli. Greater subjective disgust response corresponded with more sexual avoidance behavior. Planned follow-up analyses explored correlates of subjective disgust responses.

  6. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction.

    Science.gov (United States)

    Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J

    2015-10-01

    Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley

  7. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    -off and minimum image distortion among the satellites, using Landsat's specifications. Attitude-specific constraints such as power consumption, response time, and stability were factored into the optimality computations. The algorithm can integrate cloud cover predictions, specific ground and air assets and angular constraints.

  8. Influence of image slice thickness on rectal dose–response relationships following radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Olsson, C; Thor, M; Apte, A; Deasy, J O; Liu, M; Moissenko, V; Petersen, S E; Høyer, M

    2014-01-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose–response relationships. We investigated this for rectal bleeding using dose–volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman–Kutcher–Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose–response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice

  9. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    Science.gov (United States)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness

  10. Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization

    Science.gov (United States)

    Everitt, Sarah; Schimek-Jasch, Tanja; Li, X. Allen; Nestle, Ursula; Kong, Feng-Ming (Spring)

    2017-01-01

    This article reviews key imaging modalities for lung cancer patients treated with radiation therapy (RT) and considers their actual or potential contributions to critical decision-making. An international group of researchers with expertise in imaging in lung cancer patients treated with RT considered the relevant literature on modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). These perspectives were coordinated to summarize the current status of imaging in lung cancer and flag developments with future implications. Although there are no useful randomized trials of different imaging modalities in lung cancer, multiple prospective studies indicate that management decisions are frequently impacted by the use of complementary imaging modalities, leading both to more appropriate treatments and better outcomes. This is especially true of 18F-fluoro-deoxyglucose (FDG)-PET/CT which is widely accepted to be the standard imaging modality for staging of lung cancer patients, for selection for potentially curative RT and for treatment planning. PET is also more accurate than CT for predicting survival after RT. PET imaging during RT is also correlated with survival and makes response-adapted therapies possible. PET tracers other than FDG have potential for imaging important biological process in tumors, including hypoxia and proliferation. MRI has superior accuracy in soft tissue imaging and the MRI Linac is a rapidly developing technology with great potential for online monitoring and modification of treatment. The role of imaging in RT-treated lung cancer patients is evolving rapidly and will allow increasing personalization of therapy according to the biology of both the tumor and dose limiting normal tissues. PMID:29218270

  11. The Role of Diffusion-Weighted Imaging (DWI in Locoregional Therapy Outcome Prediction and Response Assessment for Hepatocellular Carcinoma (HCC: The New Era of Functional Imaging Biomarkers

    Directory of Open Access Journals (Sweden)

    Johannes M. Ludwig

    2015-11-01

    Full Text Available Reliable response criteria are critical for the evaluation of therapeutic response in hepatocellular carcinoma (HCC. Current response assessment is mainly based on: (1 changes in size, which is at times unreliable and lag behind the result of therapy; and (2 contrast enhancement, which can be difficult to quantify in the presence of benign post-procedural changes and in tumors presenting with a heterogeneous pattern of enhancement. Given these challenges, functional magnetic resonance imaging (MRI techniques, such as diffusion-weighted imaging (DWI have been recently investigated, aiding specificity to locoregional therapy response assessment and outcome prediction. Briefly, DWI quantifies diffusion of water occurring naturally at a cellular level (Brownian movement, which is restricted in multiple neoplasms because of high cellularity. Disruption of cellular integrity secondary to therapy results in increased water diffusion across the injured membranes. This review will provide an overview of the current literature on DWI therapy response assessment and outcome prediction in HCC following treatment with locoregional therapies.

  12. SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy

    International Nuclear Information System (INIS)

    Nolte, D; Turek, J; Childress, M; An, R; Merrill, D; Matei, D

    2014-01-01

    Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety of intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with

  13. SU-E-J-31: Biodynamic Imaging of Cancer Tissue and Response to Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nolte, D; Turek, J; Childress, M; An, R; Merrill, D [Purdue University, West Lafayette, IN (United States); Matei, D [Indiana University School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: To measure intracellular motions inside three-dimensional living cancer tissue samples to establish a novel set of biodynamic biomarkers that assess tissue proliferative activity and sensitivity or resistance to chemotherapy. Methods: Biodynamic imaging (BDI) uses digital holography with low-coherence low-intensity light illumination to construct 3D holograms from depths up to a millimeter deep inside cancer tissue models that include multicellular tumor spheroids and ex vivo cancer biopsies from canine non-Hodgkins lymphoma and epithelial ovarian cancer (EOC) mouse explants. Intracellular motions modulate the holographic intensity with frequencies related to the Doppler effect caused by the motions of a wide variety of intracellular components. These motions are affected by applied therapeutic agents, and BDI produces unique fingerprints of the action of specific drugs on the motions in specific cell types. In this study, chemotherapeutic agents (doxorubicin for canine lymphoma and oxoplatin for ovarian) are applied to the living tissue models and monitored over 10 hours by BDI. Results: Multicellular spheroids and patient biopsies are categorized as either sensitive or insensitive to applied therapeutics depending on the intracellular Doppler signatures of chemotherapy response. For both lymphoma and EOC there is strong specificity to the two types of sensitivities, with sensitive cell lines and biopsies exhibiting a global cessation of proliferation and strong suppression of metabolic activity, while insensitive cell lines and biopsies show moderate activation of Doppler frequencies associated with membrane processes and possible membrane trafficking. Conclusion: This work supports the hypothesis that biodynamic biomarkers from three-dimensional living tumor tissue, that includes tissue heterogeneity and measured within 24 hours of surgery, is predictive of near-term patient response to therapy. Future work will correlate biodynamic biomarkers with

  14. Doppler laser imaging predicts response to topical minoxidil in the treatment of female pattern hair loss.

    Science.gov (United States)

    McCoy, J; Kovacevic, M; Situm, M; Stanimirovic, A; Bolanca, Z; Goren, A

    2016-01-01

    Topical minoxidil is the only drug approved by the US FDA for the treatment of female pattern hair loss. Unfortunately, following 16 weeks of daily application, less than 40% of patients regrow hair. Several studies have demonstrated that sulfotransferase enzyme activity in plucked hair follicles predicts topical minoxidil response in female pattern hair loss patients. However, due to patients’ discomfort with the procedure, and the time required to perform the enzymatic assay it would be ideal to develop a rapid, non-invasive test for sulfotransferase enzyme activity. Minoxidil is a pro-drug converted to its active form, minoxidil sulfate, by sulfotransferase enzymes in the outer root sheath of hair. Minoxidil sulfate is the active form required for both the promotion of hair regrowth and the vasodilatory effects of minoxidil. We thus hypothesized that laser Doppler velocimetry measurement of scalp blood perfusion subsequent to the application of topical minoxidil would correlate with sulfotransferase enzyme activity in plucked hair follicles. In this study, plucked hair follicles from female pattern hair loss patients were analyzed for sulfotransferase enzyme activity. Additionally, laser Doppler velocimetry was used to measure the change in scalp perfusion at 15, 30, 45, and 60 minutes, after the application of minoxidil. In agreement with our hypothesis, we discovered a correlation (r=1.0) between the change in scalp perfusion within 60 minutes after topical minoxidil application and sulfotransferase enzyme activity in plucked hairs. To our knowledge, this is the first study demonstrating the feasibility of using laser Doppler imaging as a rapid, non-invasive diagnostic test to predict topical minoxidil response in the treatment of female pattern hair loss.

  15. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI

    Directory of Open Access Journals (Sweden)

    Balducci Anthony

    2012-06-01

    Full Text Available Abstract Background Non-invasive imaging of inflammation to measure the progression of autoimmune diseases, such as rheumatoid arthritis (RA, and to monitor responses to therapy is critically needed. V-Sense, a perfluorocarbon (PFC contrast agent that preferentially labels inflammatory cells, which are then recruited out of systemic circulation to sites of inflammation, enables detection by 19F MRI. With no 19F background in the host, detection is highly-specific and can act as a proxy biomarker of the degree of inflammation present. Methods Collagen-induced arthritis in rats, a model with many similarities to human RA, was used to study the ability of the PFC contrast agent to reveal the accumulation of inflammation over time using 19F MRI. Disease progression in the rat hind limbs was monitored by caliper measurements and 19F MRI on days 15, 22 and 29, including the height of clinically symptomatic disease. Naïve rats served as controls. The capacity of the PFC contrast agent and 19F MRI to assess the effectiveness of therapy was studied in a cohort of rats administered oral prednisolone on days 14 to 28. Results Quantification of 19F signal measured by MRI in affected limbs was linearly correlated with disease severity. In animals with progressive disease, increases in 19F signal reflected the ongoing recruitment of inflammatory cells to the site, while no increase in 19F signal was observed in animals receiving treatment which resulted in clinical resolution of disease. Conclusion These results indicate that 19F MRI may be used to quantitatively and qualitatively evaluate longitudinal responses to a therapeutic regimen, while additionally revealing the recruitment of monocytic cells involved in the inflammatory process to the anatomical site. This study may support the use of 19F MRI to clinically quantify and monitor the severity of inflammation, and to assess the effectiveness of treatments in RA and other diseases with an inflammatory

  16. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  17. Development of the assessment method for the idealized images of teams. Investigation on the teamwork in emergency response situation (1)

    International Nuclear Information System (INIS)

    Misawa, Ryo

    2013-01-01

    Since the occurrence of the Tohoku Pacific Earthquake and the nuclear disaster in 2011, the strengthening of emergency response training has been emphasized in Japanese electric industries. When disasters and accidents occur in a nuclear power plant, workers should collaborate with each other to mitigate possible hazards and to recovery from emergencies, as self-effort is not sufficient in these times. Effective teamwork is essential for the success of emergency response. However, the aspects of teamwork that are required in emergencies remain unclear. This study developed a questionnaire instrument to assess the idealized image of effective power plant operator teams in three different levels of emergencies. A pilot test of the instrument was conducted with 21 training instructors who are subject-matter experts in nuclear power plant operation. In the questionnaire, three hypothetical situations of differing emergency levels were presented: 'normal' (routine operation), 'abnormal' (trouble shooting and malfunction correction), 'emergency' (severe accident and disaster response). The idealized image of teams in each situation was also assessed in four aspects: 'decision-making', 'coordination', 'adaptation and adjustment', and 'command and control'. Questionnaire responses were summarized in a profile form to picture the idealized images, ant the profile scores in each situation were compared. Results suggested that, the idealized image of effective teams is different depending on the level of emergency. The Implications of results for training and future research directions are discussed. (author)

  18. Novel response function resolves by image deconvolution more details of surface nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2010-01-01

    and to imaging by in situ STM of electrocrystallization of copper on gold in electrolytes containing copper sulfate and sulfuric acid. It is suggested that the observed peaks of the recorded image do not represent atoms, but the atomic structure may be recovered by image deconvolution followed by calibration...

  19. FDG-PET imaging for the assessment of physiologic volume response during radiotherapy in cervix cancer

    International Nuclear Information System (INIS)

    Lin, Lilie L.; Yang Zhiyun; Mutic, Sasa; Miller, Tom R.; Grigsby, Perry W.

    2006-01-01

    Purpose: To evaluate the physiologic tumor volume response during treatment in cervical cancer using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). Patients and Methods: This was a prospective study of 32 patients. Physiologic tumor volume in cubic centimeters was determined from the FDG-PET images using the 40% threshold method. Results: The mean pretreatment tumor volume was 102 cm 3 . The mean volume by clinical Stages I, II, and III were 54, 79, and 176 cm 3 , respectively. After 19.8 Gy external irradiation to the pelvis, the reduction in tumor volume was 29% (72 cm 3 ). An additional 13 Gy from high-dose-rate (HDR) brachytherapy reduced the mean volume to 15.4 cm 3 , and this was subsequently reduced to 8.6 cm 3 with 13 Gy additional HDR brachytherapy (26 Gy, HDR). Four patients had physiologic FDG uptake in the cervix at 3 months after the completion of therapy. The mean time to the 50% reduction in physiologic tumor volume was 19.9 days and after combined external irradiation and HDR to 24.9 Gy. Conclusion: These results indicate that physiologic tumor volume determination by FDG-PET is feasible and that a 50% physiologic tumor volume reduction occurs within 20 days of starting therapy

  20. Molecular Imaging to Predict Response to Targeted Therapies in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ingrid Leguerney

    2017-01-01

    Full Text Available Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days. DCE-US and molecular MRI targeting αvβ3 were performed at baseline and 4 days after treatment initiation. PI, AUC, relaxation rate variations ΔR2⁎, and percentage of vessels area quantified on CD31-stained microvessels were compared. Significant decreases were observed for PI and AUC parameters measured by DCE-US for bevacizumab group as early as 4 days, whereas molecular αvβ3-targeted MRI was able to detect significant changes in both bevacizumab and everolimus groups. Percentage of CD31-stained microvessels was significantly correlated with DCE-US parameters, PI (R=0.87, p=0.0003 and AUC (R=0.81, p=0.0013. The percentage of vessel tissue area was significantly reduced (p<0.01 in both sunitinib and bevacizumab groups. We report an early detection of neoangiogenesis modification after induction of targeted therapies, using DCE-US or αvβ3-targeted MRI. We consider these outcomes should encourage clinical trial developments to further evaluate the potential of this molecular MRI technique.

  1. Geant4 simulation of the response of phosphor screens for X-ray imaging

    International Nuclear Information System (INIS)

    Pistrui-Maximean, S.A.; Freud, N.; Letang, J.M.; Koch, A.; Munier, B.; Walenta, A.H.; Montarou, G.; Babot, D.

    2006-01-01

    In order to predict and optimize the response of phosphor screens, it is important to understand the role played by the different physical processes inside the scintillator layer. A simulation model based on the Monte Carlo code Geant4 was developed to determine the Modulation Transfer Function (MTF) of phosphor screens for energies used in X-ray medical imaging and nondestructive testing applications. The visualization of the dose distribution inside the phosphor layer gives an insight into how the MTF is progressively degraded by X-ray and electron transport. The simulation model allows to study the influence of physical and technological parameters on the detector performances, as well as to design and optimize new detector configurations. Preliminary MTF measurements have been carried out and agreement with experimental data has been found in the case of a commercial screen (Kodak Lanex Fine) at an X-ray tube potential of 100 kV. Further validation with other screens (transparent or granular) at different energies is under way

  2. Geant4 simulation of the response of phosphor screens for X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pistrui-Maximean, S.A. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France)]. E-mail: simona.pistrui@insa-lyon.fr; Freud, N. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France); Letang, J.M. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France); Koch, A. [Thales Electron Devices, 38430 Moirans (France); Munier, B. [Thales Electron Devices, 38430 Moirans (France); Walenta, A.H. [Department of Detectors and Electronics, FB Physik, University of Siegen, 57068 Siegen (Germany); Montarou, G. [Corpuscular Physics Laboratory, Blaise Pascal University, 63177 Aubiere Cedex (France); Babot, D. [Laboratory of Nondestructive Testing using Ionizing Radiation, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint Exupery, 69621 Villeurbanne Cedex (France)

    2006-07-01

    In order to predict and optimize the response of phosphor screens, it is important to understand the role played by the different physical processes inside the scintillator layer. A simulation model based on the Monte Carlo code Geant4 was developed to determine the Modulation Transfer Function (MTF) of phosphor screens for energies used in X-ray medical imaging and nondestructive testing applications. The visualization of the dose distribution inside the phosphor layer gives an insight into how the MTF is progressively degraded by X-ray and electron transport. The simulation model allows to study the influence of physical and technological parameters on the detector performances, as well as to design and optimize new detector configurations. Preliminary MTF measurements have been carried out and agreement with experimental data has been found in the case of a commercial screen (Kodak Lanex Fine) at an X-ray tube potential of 100 kV. Further validation with other screens (transparent or granular) at different energies is under way.

  3. Assessment of regional ventilation distribution: comparison of vibration response imaging (VRI) with electrical impedance tomography (EIT).

    Science.gov (United States)

    Shi, Chang; Boehme, Stefan; Bentley, Alexander H; Hartmann, Erik K; Klein, Klaus U; Bodenstein, Marc; Baumgardner, James E; David, Matthias; Ullrich, Roman; Markstaller, Klaus

    2014-01-01

    Vibration response imaging (VRI) is a bedside technology to monitor ventilation by detecting lung sound vibrations. It is currently unknown whether VRI is able to accurately monitor the local distribution of ventilation within the lungs. We therefore compared VRI to electrical impedance tomography (EIT), an established technique used for the assessment of regional ventilation. Simultaneous EIT and VRI measurements were performed in the healthy and injured lungs (ALI; induced by saline lavage) at different PEEP levels (0, 5, 10, 15 mbar) in nine piglets. Vibration energy amplitude (VEA) by VRI, and amplitudes of relative impedance changes (rel.ΔZ) by EIT, were evaluated in seven regions of interest (ROIs). To assess the distribution of tidal volume (VT) by VRI and EIT, absolute values were normalized to the VT obtained by simultaneous spirometry measurements. Redistribution of ventilation by ALI and PEEP was detected by VRI and EIT. The linear correlation between pooled VT by VEA and rel.ΔZ was R(2) = 0.96. Bland-Altman analysis showed a bias of -1.07±24.71 ml and limits of agreement of -49.05 to +47.36 ml. Within the different ROIs, correlations of VT-distribution by EIT and VRI ranged between R(2) values of 0.29 and 0.96. ALI and PEEP did not alter the agreement of VT between VRI and EIT. Measurements of regional ventilation distribution by VRI are comparable to those obtained by EIT.

  4. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  5. Comparison of computerized digital and film-screen radiography: response to variation in imaging kVp

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, N J; Long, B; Dreesen, R G; Cohen, M D; Cory, D A [Riley Hospital for Children, Indiana Univ. School of Medicine, Indianapolis, IN (United States). Dept. of Radiology; Katz, B P; Kalasinski, L A [Regenstreif Inst., Indiana Univ. School of Medicine, Indianapolis, IN (United States). Dept. of Medicine

    1992-09-01

    A controlled prospective study, in an animal model chosen to simulate portable neonatal radiography, was performed to compare the response of the Philips Computed Radiography (CR) system and conventional 200 speed film-screen (FS) to variation in imaging kVp. Acceptable images were obtained on the CR system over a very wide kVp range. In contrast the FS system produced acceptable images over a narrow kVp range. This ability suggests that the CR system should eliminate the need for repeat examinations in cases where a suboptimal kVp setting would have resulted in an unacceptable FS image. CR technology should therefore be ideally suited to portable radiography especially in situations where selection of correct exposure factors is difficult as in the neonatal nursery. (orig.).

  6. Comparison of computerized digital and film-screen radiography: response to variation in imaging kVp

    International Nuclear Information System (INIS)

    Broderick, N.J.; Long, B.; Dreesen, R.G.; Cohen, M.D.; Cory, D.A.; Katz, B.P.; Kalasinski, L.A.

    1992-01-01

    A controlled prospective study, in an animal model chosen to simulate portable neonatal radiography, was performed to compare the response of the Philips Computed Radiography (CR) system and conventional 200 speed film-screen (FS) to variation in imaging kVp. Acceptable images were obtained on the CR system over a very wide kVp range. In contrast the FS system produced acceptable images over a narrow kVp range. This ability suggests that the CR system should eliminate the need for repeat examinations in cases where a suboptimal kVp setting would have resulted in an unacceptable FS image. CR technology should therefore be ideally suited to portable radiography especially in situations where selection of correct exposure factors is difficult as in the neonatal nursery. (orig.)

  7. The evolution of colour polymorphism in British winter-active Lepidoptera in response to search image use by avian predators.

    Science.gov (United States)

    Weir, Jamie Conor

    2018-05-10

    Phenotypic polymorphism in cryptic species is widespread. This may evolve in response to search image use by predators exerting negative frequency-dependent selection on intraspecific colour morphs, "apostatic selection". Evidence exists to indicate search image formation by predators and apostatic selection operating on wild prey populations, though not to demonstrate search image use directly resulting in apostatic selection. The present study attempted to address this deficiency, using British Lepidoptera active in winter as a model system. It has been proposed that the typically polymorphic wing colouration of these species represents an anti-search image adaptation against birds. To test (a) for search image driven apostatic selection, dimorphic populations of artificial moth-like models were established in woodland at varying relative morph frequencies and exposed to predation by natural populations of birds. In addition, to test (b) whether abundance and degree of polymorphism are correlated across British winter-active moths, as predicted where search image use drives apostatic selection, a series of phylogenetic comparative analyses were conducted. There was a positive relationship between artificial morph frequency and probability of predation, consistent with birds utilising search images and exerting apostatic selection. Abundance and degree of polymorphism were found to be positively correlated across British Lepidoptera active in winter, though not across all taxonomic groups analysed. This evidence is consistent with polymorphism in this group having evolved in response to search image driven apostatic selection and supports the viability of this mechanism as a means by which phenotypic and genetic variation may be maintained in natural populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  9. Molecular imaging of the transcription factor NF-κB, a primary regulator of stress response

    International Nuclear Information System (INIS)

    Carlsen, Harald; Alexander, George; Austenaa, Liv M.I.; Ebihara, Kanae; Blomhoff, Rune

    2004-01-01

    A wide range of environmental stress and human disorders involves inappropriate regulation of NF-κB, including cancers and numerous inflammatory conditions. We have developed transgenic mice that express luciferase under the control of NF-κB, enabling real-time non-invasive imaging of NF-κB activity in intact animals. We show that, in the absence of stimulation, strong, intrinsic luminescence is evident in lymph nodes in the neck region, thymus, and Peyer's patches. Treating mice with stressors, such as TNF-α, IL-1α, or lipopolysaccharide (LPS) increases the luminescence in a tissue-specific manner, with the strongest activity observable in the skin, lungs, spleen, Peyer's patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue exhibit less intense activities. Exposure of the skin to a low dose of UV-B radiation increases luminescence in the exposed areas. In ocular experiments, LPS- and TNF-α injected NF-κB-luciferase transgenic mice exhibit a 20-40-fold increase in lens NF-κB activity, similar to other LPS- and TNF-α-responsive organs. Peak NF-κB activity occurs 6 h after injection of TNF-α and 12 h after injection of LPS. Peak activities occur, respectively, 3 and 6 h later than that in other tissues. Mice exposed to 360 J/m 2 of UV-B exhibit a 16-fold increase in NF-κB activity 6 h after exposure, characteristically similar to TNF-α-exposed mice. Thus, in NF-κB-luciferase transgenic mice, NF-κB activity also occurs in lens epithelial tissue and is activated when the intact mouse is exposed to classical stressors. Furthermore, as revealed by real-time non-invasive imaging, induction of chronic inflammation resembling rheumatoid arthritis produces strong NF-κB activity in the affected joints. Finally, we have used the model to demonstrate NF-κB regulation by manipulating the Vitamin A status in mice. NF-κB activity is elevated in mice fed a Vitamin A deficient (VAD) diet, and suppressed by surplus doses of

  10. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    Science.gov (United States)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  11. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: Curcumin.

    Science.gov (United States)

    Baghbani, Fatemeh; Chegeni, Mahdieh; Moztarzadeh, Fathollah; Hadian-Ghazvini, Samaneh; Raz, Majid

    2017-05-01

    Ultrasound-responsive nanodroplets are a class of new emerging smart drug delivery systems which provide image-guided nano-therapy of various diseases, especially cancers. Here, we developed multifunctional smart curcumin-loaded chitosan/perfluorohexane nanodroplets for contrast-ultrasound imaging and on-demand drug delivery. The nanodroplets were synthesized via nanoemulsion process. The optimal formulation with the size of 101.2nm and 77.8% curcumin entrapment was chosen for release study and cytotoxicity evaluation. Sonication at the frequency of 1MHz, 2W/cm 2 for 4min triggered the release of 63.5% of curcumin from optimal formulation (Cur-NDs-2). Ultrasound aided release study indicated that the concentration of perfluorohexane and the degree of acoustic droplet vaporization play important role in ultrasound-active drug release. B-mode ultrasound imaging confirmed strong ultrasound contrast of chitosan nanodroplets even at low concentrations via droplet to bubble transition. Finally, cytotoxicity of the ultrasound-responsive nanodroplets in the presence of ultrasound was evaluated in-vitro on 4T1 human breast cancer cells. Cell growth inhibitory effects of curcumin-loaded nanodroplets significantly increased by ultrasound exposure. According to the obtained results, these ultrasound responsive curcumin-loaded chitosan/perfluorohexane nanodroplets have a great potential for imaged-guided cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Study on the dose response characteristics of a scanning liquid ion-chamber electronic portal imaging device

    CERN Document Server

    Ma Shao Gang; Song Yi Xin

    2002-01-01

    Objective: To study the dose response characteristics and the influence factors such as gantry angle, field size and acquisition mode on the dosimetric response curves, when using a scanning liquid ion-chamber electronic portal imaging device (EPID) for dose verification. Methods: All experiments were carried out on a Varian 600 C/D accelerator (6 MV X-ray) equipped with a Varian PortalVision sup T sup M MK2 type EPID. To obtain the dose response curve, the relationship between the incident radiation intensity to the detector and the pixel value output from the EPID were established. Firstly, the different dose rates of 6 MV X-rays were obtained by varying SSD. Secondly, three digital portal images were acquired for each dose rate using the EPID and averaged to avoid the influence of the dose rate fluctuations of the accelerator. The pixel values of all images were read using self-designed image analysis software, and and average for a region consisting of 11 x 11 pixels around the center was taken as the res...

  13. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  14. Functional imaging to monitor vascular and metabolic response in canine head and neck tumors during fractionated radiotherapy.

    Science.gov (United States)

    Rødal, Jan; Rusten, Espen; Søvik, Åste; Skogmo, Hege Kippenes; Malinen, Eirik

    2013-10-01

    Radiotherapy causes alterations in tumor biology, and non-invasive early assessment of such alterations may become useful for identifying treatment resistant disease. The purpose of the current work is to assess changes in vascular and metabolic features derived from functional imaging of canine head and neck tumors during fractionated radiotherapy. Material and methods. Three dogs with spontaneous head and neck tumors received intensity-modulated radiotherapy (IMRT). Contrast-enhanced cone beam computed tomography (CE-CBCT) at the treatment unit was performed at five treatment fractions. Dynamic (18)FDG-PET (D-PET) was performed prior to the start of radiotherapy, at mid-treatment and at 3-12 weeks after the completion of treatment. Tumor contrast enhancement in the CE-CBCT images was used as a surrogate for tumor vasculature. Vascular and metabolic tumor parameters were further obtained from the D-PET images. Changes in these tumor parameters were assessed, with emphasis on intra-tumoral distributions. Results. For all three patients, metabolic imaging parameters obtained from D-PET decreased from the pre- to the inter-therapy session. Correspondingly, for two of three patients, vascular imaging parameters obtained from both CE-CBCT and D-PET increased. Only one of the tumors showed a clear metabolic response after therapy. No systematic changes in the intra-tumor heterogeneity in the imaging parameters were found. Conclusion. Changes in vascular and metabolic parameters could be detected by the current functional imaging methods. Vascular tumor features from CE-CBCT and D-PET corresponded well. CE-CBCT is a potential method for easy response assessment when the patient is at the treatment unit.

  15. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies.

    Science.gov (United States)

    Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.

  16. Prediction of response to first-line chemotherapy with steamboat's imaging in lymphoma patients. A preliminary report

    International Nuclear Information System (INIS)

    Spyridonidis, T.; Apostolopoulos, D.; Giannakenas, C.; Xourgia, X.; Vasilakosa, P.; Frangos, S.; Matsouka, P.

    2004-01-01

    Full text: Sestamibi is a transport substrate for both Pgp and MRP, which are closely related to MDR (multidrug resistance), a significant factor for chemotherapy treatment failure in many cancer patients. Imaging with Tc99m-Sestamibi has been studied for predicting chemotherapy response mainly in breast and lung cancer. A few studies exist regarding lymphoma patients. In our study we included 24 consecutive lymphoma patients that were referred to our department for initial (before treatment) Ga-67 scan. All these patients were also imaged with Tc99m-Sestamibi in order to evaluate its prognostic value in predicting response to first-line chemotherapy. 20 mCi of Tc99m-Sestamibi was injected intravenously and planar images of the whole body were obtained at 15 min and 2 hours later. In 21/24 patients SPECT was performed in area of interest (most commonly in thorax) both in early and late imaging. Ratios of tumor average counts to background in early and late planar and SPECT images were calculated, also ratios of max tumor counts to background were calculated, as well as tumor washout rate. In all the estimations time decay correction was applied. A visual interpretation score was introduced for early uptake and another for Sestamibi retention in late images. Early uptake score was considered 0 in no or nearly no uptake, 1 in low uptake, 2 in moderate uptake, and 3 in high uptake. Tumor retention score was considered 0 in no retention (not or nearly not visible on late images), 1 in slight/moderate uptake (tumor better seen on early images), 2 in moderate uptake (tumor seen similar/somehow better in late images), 3 high retention (tumor definitely seen better on late images). Finally a total prognostic score (TPS) was derived by the sum of the two above-mentioned scores (uptake score plus retention score). The mean age of our patients was 48.8 ±13.9 years (range 17-80 years). 12 patients were men, and 12 women. There were 8 patients with HD and 16 with NHL. Three of

  17. How customers construct corporate social responsibility images: Testing the moderating role of demographic characteristics

    Directory of Open Access Journals (Sweden)

    Andrea Pérez

    2015-04-01

    Full Text Available This paper discusses the formation process of CSR images from a customer perspective. It analyses the influence of company-CSR coherence, motivational attribution and corporate credibility in the way customers evaluate CSR images in the banking industry. It also describes the impact of customer gender, age and educational level on the formation of CSR images. Results show that CSR images are based on customer perceptions of the company-CSR coherence, the attribution of altruistic motivations and corporate credibility when developing CSR initiatives. The findings also demonstrate that gender, age and educational level do not allow identifying differences in the way customers construct CSR images. Thus, they are not useful in segmenting customers for the design of better CSR and communication strategies.

  18. Gender related differences in response to "in favor of myself" wellness program to enhance positive self & body image among adolescents.

    Science.gov (United States)

    Golan, Moria; Hagay, Noa; Tamir, Snait

    2014-01-01

    Physical, neurological and psychological changes are often experienced differently by male and female adolescents. Positive self-esteem, emotional well-being, school achievements, and family connectedness are considered as protective factors against health-compromising behaviors. This study examines the gender differences in respect to the effect of a school-based interactive wellness program--"In Favor of Myself"--on self-image, body image, eating attitudes and behaviors of young adolescents. Two hundred and ten adolescents (mean age 13.5) participated in the intervention group, 55% were girls and 45% boys. Program consisted of eight 90-minutes structured sessions integrated into a regular school coping skills curriculum. The program focused on self-esteem, self-image, body image, media literacy and cognitive dissonance. The overall impact of the program and the study protocol were previously published. Overall, there are gender related differences in respect to body image and self-image in young adolescents in response to "In Favor of Myself". Compared to boys, girls reported at baseline higher self-esteem, being more contingent by appearance, and their self-image was more influenced by popularity, appearance, interpersonal communication and admired people. Furthermore girls presented greater gap between current body figure and perceived ideal figure. Not only were girls more dissatisfied with their body, but they were more active in attempts to become and/or remain "thin". At program termination, gender × time effect was detected in reduction of self-worth contingent by others, change in importance given to achievements at schools, parents' perceptions, as well as the impact of comparisons to friends and family members on self-image. Girls exhibited more gains than boys from 'In Favor of Myself' which raise the questions about how effective would be the program when delivered in mixed gender groups vs. mono-gender groups.

  19. Gender related differences in response to "in favor of myself" wellness program to enhance positive self & body image among adolescents.

    Directory of Open Access Journals (Sweden)

    Moria Golan

    Full Text Available BACKGROUND: Physical, neurological and psychological changes are often experienced differently by male and female adolescents. Positive self-esteem, emotional well-being, school achievements, and family connectedness are considered as protective factors against health-compromising behaviors. This study examines the gender differences in respect to the effect of a school-based interactive wellness program--"In Favor of Myself"--on self-image, body image, eating attitudes and behaviors of young adolescents. METHODS: Two hundred and ten adolescents (mean age 13.5 participated in the intervention group, 55% were girls and 45% boys. Program consisted of eight 90-minutes structured sessions integrated into a regular school coping skills curriculum. The program focused on self-esteem, self-image, body image, media literacy and cognitive dissonance. The overall impact of the program and the study protocol were previously published. RESULTS: Overall, there are gender related differences in respect to body image and self-image in young adolescents in response to "In Favor of Myself". Compared to boys, girls reported at baseline higher self-esteem, being more contingent by appearance, and their self-image was more influenced by popularity, appearance, interpersonal communication and admired people. Furthermore girls presented greater gap between current body figure and perceived ideal figure. Not only were girls more dissatisfied with their body, but they were more active in attempts to become and/or remain "thin". At program termination, gender × time effect was detected in reduction of self-worth contingent by others, change in importance given to achievements at schools, parents' perceptions, as well as the impact of comparisons to friends and family members on self-image. CONCLUSIONS: Girls exhibited more gains than boys from 'In Favor of Myself' which raise the questions about how effective would be the program when delivered in mixed gender groups

  20. No evidence for generalized increased postoperative responsiveness to pain: a combined behavioral and serial functional magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Kupers, Ron; Schneider, Fabien C G; Christensen, Rune

    2009-01-01

    area and to the lower forearm, a site remote from the surgical area. A group of eight age- and sex-matched control subjects underwent the same two-test procedure except that they were not submitted to an orthopedic surgical intervention. RESULTS: Subjective pain and brain responses to innocuous...... and noxious stimulation were not increased postoperatively. Actually, responses in primary and secondary somatosensory cortex for stimulation of the operated leg were significantly smaller after surgery. Brain responses in the control group did not differ significantly across the two sessions. CONCLUSION......BACKGROUND: Although it is generally accepted that increased pain responsiveness and central sensitization develop after major tissue injury, this claim has not been tested using brain imaging methods in a clinical pain setting. We tested this hypothesis using a postoperative pain model...

  1. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    Science.gov (United States)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  2. A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma.

    Science.gov (United States)

    Lausch, Anthony; Yeung, Timothy Pok-Chi; Chen, Jeff; Law, Elton; Wang, Yong; Urbini, Benedetta; Donelli, Filippo; Manco, Luigi; Fainardi, Enrico; Lee, Ting-Yim; Wong, Eugene

    2017-11-01

    Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast

  3. The Impact of “Omic” and Imaging Technologies on Assessing the Host Immune Response to Biodefence Agents

    Directory of Open Access Journals (Sweden)

    Julia A. Tree

    2014-01-01

    Full Text Available Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents.

  4. Radiation dose response simulation for biomechanical-based deformable image registration of head and neck cancer treatment

    International Nuclear Information System (INIS)

    Al-Mayah, Adil; Moseley, Joanne; Hunter, Shannon; Brock, Kristy

    2015-01-01

    Biomechanical-based deformable image registration is conducted on the head and neck region. Patient specific 3D finite element models consisting of parotid glands (PG), submandibular glands (SG), tumor, vertebrae (VB), mandible, and external body are used to register pre-treatment MRI to post-treatment MR images to model the dose response using image data of five patients. The images are registered using combinations of vertebrae and mandible alignments, and surface projection of the external body as boundary conditions. In addition, the dose response is simulated by applying a new loading technique in the form of a dose-induced shrinkage using the dose-volume relationship. The dose-induced load is applied as dose-induced shrinkage of the tumor and four salivary glands. The Dice Similarity Coefficient (DSC) is calculated for the four salivary glands, and tumor to calculate the volume overlap of the structures after deformable registration. A substantial improvement in the registration is found by including the dose-induced shrinkage. The greatest registration improvement is found in the four glands where the average DSC increases from 0.53, 0.55, 0.32, and 0.37 to 0.68, 0.68, 0.51, and 0.49 in the left PG, right PG, left SG, and right SG, respectively by using bony alignment of vertebrae and mandible (M), body (B) surface projection and dose (D) (VB+M+B+D). (paper)

  5. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    Science.gov (United States)

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  6. pH-Responsive Fe(III)-Gallic Acid Nanoparticles for In Vivo Photoacoustic-Imaging-Guided Photothermal Therapy.

    Science.gov (United States)

    Zeng, Jianfeng; Cheng, Ming; Wang, Yong; Wen, Ling; Chen, Ling; Li, Zhen; Wu, Yongyou; Gao, Mingyuan; Chai, Zhifang

    2016-04-06

    pH-responsive biocompatible Fe(III)-gallic acid nanoparticles with strong near-infrared absorbance are very stable in mild acidic conditions, but easily decomposed in neutral conditions, which enables the nanoparticles to be stable in a tumor and easily metabolized in other organs, thus providing a safe nanoplatform for in vivo photoacoustic imaging/photothermal therapy theranostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  8. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  9. The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination.

    Science.gov (United States)

    Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L

    2018-01-01

    An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.

  10. Elimination of ghost images in the response of PHASAR-demultiplexers

    NARCIS (Netherlands)

    Dam, van C.; Staring, A.A.M.; Jansen, E.J.; Binsma, J.J.M.; Dongen, van T.; Smit, M.K.; Verbeek, B.H.

    1997-01-01

    In this paper the occurrence of first-order modes in the performance of phased-array demultiplexers is investigated. It is found that they cause "ghost" images, which can be circumvented by optimising waveguide junctions

  11. Conversion Between Sine Wave and Square Wave Spatial Frequency Response of an Imaging System

    National Research Council Canada - National Science Library

    Nill, Norman B

    2001-01-01

    ...), is a primary image quality metric that is commonly measured with a sine wave target. The FBI certification program for commercial fingerprint capture devices, which MITRE actively supports, has an MTF requirement...

  12. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images.

    Science.gov (United States)

    Dzyubak, Oleksandr P; Ritman, Erik L

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries.

  13. Magnetic resonance imaging in spondyloarthritis--how to quantify findings and measure response

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Poggenborg, René Panduro; Axelsen, Mette Bjørndal

    2010-01-01

    Sensitive and reliable tools for monitoring disease activity and damage, and for prognostication, are essential in the management of patients with spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis. Magnetic resonance imaging (MRI) allows direct visualisation...

  14. Analisa Pengaruh Corporate Social Responsibility Terhadap Brand Image Dan Customer Loyalty Di Pop! Hotels Indonesia

    OpenAIRE

    Livia, Astrid; Gladys, Gladys

    2017-01-01

    Penelitian ini dilakukan untuk menganalisa pengaruh CSR terhadap brand image dan customer loyalty pada Pop! Hotels di Indonesia. Penelitian ini menggunakan pendekatan kuantitatif kausal dengan bantuan penyebaran kuesioner yang dibagikan kepada 200 responden yang pernah menginap di Pop! Hotels di Indonesia. Hasil penelitian menunjukkan bahwa CSR berpengaruh positif dan signifikan terhadap brand image dan customer loyalty. Selain itu CSR juga berpengaruh secara tidak langsung terhadap customer ...

  15. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    Science.gov (United States)

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-12-01

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  16. Using Flow Characteristics in Three-Dimensional Power Doppler Ultrasound Imaging to Predict Complete Responses in Patients Undergoing Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren

    2017-05-01

    Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.

  17. The effects of exercise on cigarette cravings and brain activation in response to smoking-related images.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Taylor, Adrian; Benattayallah, Abdelmalek; Hodgson, Tim

    2012-06-01

    Smokers show heightened activation toward smoking-related stimuli and experience increased cravings which can precipitate smoking cessation relapse. Exercise can be effective for modulating cigarette cravings and attenuating reactivity to smoking cues, but the mechanism by which these effects occur remains uncertain. The objective of the study was to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomised crossover design, overnight abstinent smokers (n = 20) underwent an exercise (10-min moderate-intensity stationary cycling) and passive control (seating for the same duration) treatment, following 15 h of nicotine abstinence. After each treatment, participants underwent functional magnetic resonance imaging (fMRI) brain scanning while viewing a random series of blocked smoking or neutral images. Self-reported cravings were assessed at baseline, mid-, and post-treatments. There was a significant interaction effect (treatment × time) for desire to smoke, F (2,32) = 12.5, p exercise at all time points compared with the control treatment. After both exercise and rest, significant areas of activation were found in areas of the limbic lobe and in areas associated with visual attention in response to smoking-related stimuli. Smokers showed increased activation to smoking images in areas associated with primary and secondary visual processing following rest, but not following a session of exercise. The study shows differing activation towards smoking images following exercise compared to a control treatment and may point to a neuro-cognitive process following exercise that mediates effects on cigarette cravings.

  18. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy

    Science.gov (United States)

    Wangerin, Kristen A.; Muzi, Mark; Peterson, Lanell M.; Linden, Hannah M.; Novakova, Alena; Mankoff, David A.; E Kinahan, Paul

    2017-05-01

    We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i   =  17%, SUV  =  13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i   =  0.54, SUV  =  0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC  dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p  PET imaging.

  19. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC. The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE and diffusion weighted (DW magnetic resonance imaging (MRI were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3 following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  20. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    Science.gov (United States)

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W; Martinez, Gary V; Cornnell, Heather H; Hart, Charles P; Baker, Amanda F; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  1. An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Wenke Huang

    2016-01-01

    Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.

  2. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  3. Response analysis for an approximate 3-D image reconstruction in cone-beam SPECT

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa

    1991-01-01

    Cone-beam single photon emission computed tomography (SPECT) offers the potential for a large increase in sensitivity as compared with parallel hole or fan-beam collimation. Three-dimensional image reconstruction was approximately accomplished by backprojecting filtered projections using a two-dimensional fan-beam algorithm. The cone-beam projection data were formed from mathematical phantoms as analytically derived line integrals of the density. In order to reduce the processing time, the filtered projections were backprojected into each plane parallel to the circle on which the focal point moved. Discrepancy of source position and degradation of resolution were investigated by computer simulation in three-dimensional image space. The results obtained suggest that, the nearer to the central plane or the axis of rotation, the less image degradation is performed. By introducing a parameter of angular difference between the focal point and a fixed point in the image space during rotation, degradation of the reconstructed image can be estimated for any cone-beam SPECT system. (author)

  4. Live-imaging in the CNS: New insights on oligodendrocytes, myelination, and their responses to inflammation.

    Science.gov (United States)

    Rassul, Sayed Muhammed; Neely, Robert K; Fulton, Daniel

    2016-11-01

    The formation and repair of myelin involves alterations in the molecular and physical properties of oligodendrocytes, and highly coordinated interactions with their target axons. Characterising the nature and timing of these events at the molecular and cellular levels illuminates the fundamental events underlying myelin formation, and provides opportunities for the development of therapies to replace myelin lost through traumatic injury and inflammation. The dynamic nature of these events requires that live-imaging methods be used to capture this information accurately and completely. Developments in imaging technologies, and model systems suitable for their application to myelination, have advanced the study of myelin formation, injury and repair. Similarly, new techniques for single molecule imaging, and novel imaging probes, are providing opportunities to resolve the dynamics of myelin proteins during myelination. Here, we explore these developments in the context of myelin formation and injury, identify unmet needs within the field where progress can be advanced through live-imaging approaches, identify technical challenges that are limiting this progress, and highlight practical applications for these approaches that could lead to therapies for the protection of oligodendrocytes and myelin from injury, and restore myelin lost through injury and disease. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Validity, reliability and responsiveness of the Body Image Quality of Life Inventory in patients treated for infective endocarditis

    DEFF Research Database (Denmark)

    Rasmussen, Trine Bernholdt; Konradsen, Hanne; Dixon, Jane

    2017-01-01

    been validated in this patient population. The purpose of this study was thus to assess the validity, reliability and responsiveness of the Danish Body Image Quality of Life Inventory (BIQLI-DA) on patients treated for IE. METHODS: We evaluated the psychometric properties of the BIQLI-DA on data......: The BIQLI-DA may be applicable in healthcare research as it seems to be valid, reliable and responsive; however, evidence should be strengthened through further exploration of instrument performance, particularly regarding responsiveness.......: Participants were seventy patients with a mean age of 58 years and of which 83% were men. Results indicated convergent construct validity by confirming hypothesised associations to potentially related constructs. The BIQLI-DA was found to be highly internally consistent with a Cronbach's alpha of 0...

  6. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions

    OpenAIRE

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From ...

  7. Adaptive technique for matching the spectral response in skin lesions' images

    International Nuclear Information System (INIS)

    Pavlova, P; Borisova, E; Avramov, L; Pavlova, E

    2015-01-01

    The suggested technique is a subsequent stage for data obtaining from diffuse reflectance spectra and images of diseased tissue with a final aim of skin cancer diagnostics. Our previous work allows us to extract patterns for some types of skin cancer, as a ratio between spectra, obtained from healthy and diseased tissue in the range of 380 – 780 nm region. The authenticity of the patterns depends on the tested point into the area of lesion, and the resulting diagnose could also be fixed with some probability. In this work, two adaptations are implemented to localize pixels of the image lesion, where the reflectance spectrum corresponds to pattern. First adapts the standard to the personal patient and second – translates the spectrum white point basis to the relative white point of the image. Since the reflectance spectra and the image pixels are regarding to different white points, a correction of the compared colours is needed. The latest is done using a standard method for chromatic adaptation. The technique follows the steps below: –Calculation the colorimetric XYZ parameters for the initial white point, fixed by reflectance spectrum from healthy tissue; –Calculation the XYZ parameters for the distant white point on the base of image of nondiseased tissue; –Transformation the XYZ parameters for the test-spectrum by obtained matrix; –Finding the RGB values of the XYZ parameters for the test-spectrum according sRGB; Finally, the pixels of the lesion's image, corresponding to colour from the test-spectrum and particular diagnostic pattern are marked with a specific colour

  8. ANALYSIS OF THE RADIOMETRIC RESPONSE OF ORANGE TREE CROWN IN HYPERSPECTRAL UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. N. Imai

    2017-10-01

    Full Text Available High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013 presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems – RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  9. A prospective study of shoulder pain in primary care: Prevalence of imaged pathology and response to guided diagnostic blocks

    Directory of Open Access Journals (Sweden)

    McNair Peter J

    2011-05-01

    Full Text Available Abstract Background The prevalence of imaged pathology in primary care has received little attention and the relevance of identified pathology to symptoms remains unclear. This paper reports the prevalence of imaged pathology and the association between pathology and response to diagnostic blocks into the subacromial bursa (SAB, acromioclavicular joint (ACJ and glenohumeral joint (GHJ. Methods Consecutive patients with shoulder pain recruited from primary care underwent standardised x-ray, diagnostic ultrasound scan and diagnostic injections of local anaesthetic into the SAB and ACJ. Subjects who reported less than 80% reduction in pain following either of these injections were referred for a magnetic resonance arthrogram (MRA and GHJ diagnostic block. Differences in proportions of positive and negative imaging findings in the anaesthetic response groups were assessed using Fishers test and odds ratios were calculated a for positive anaesthetic response (PAR to diagnostic blocks. Results In the 208 subjects recruited, the rotator cuff and SAB displayed the highest prevalence of pathology on both ultrasound (50% and 31% respectively and MRA (65% and 76% respectively. The prevalence of PAR following SAB injection was 34% and ACJ injection 14%. Of the 59% reporting a negative anaesthetic response (NAR for both of these injections, 16% demonstrated a PAR to GHJ injection. A full thickness tear of supraspinatus on ultrasound was associated with PAR to SAB injection (OR 5.02; p p p p ≤ 0.05. Conclusions Rotator cuff and SAB pathology were the most common findings on ultrasound and MRA. Evidence of a full thickness supraspinatus tear was associated with symptoms arising from the subacromial region, and a biceps tendon sheath effusion and an intact rotator cuff were associated with an intra-articular GHJ pain source. When combined with clinical information, these results may help guide diagnostic decision making in primary care.

  10. Multimodal Microvascular Imaging Reveals that Selective Inhibition of Class I PI3K Is Sufficient to Induce an Antivascular Response

    Directory of Open Access Journals (Sweden)

    Deepak Sampath

    2013-07-01

    Full Text Available The phosphatidylinositol 3-kinase (PI3K pathway is a central mediator of vascular endothelial growth factor (VEGF-driven angiogenesis. The discovery of small molecule inhibitors that selectively target PI3K or PI3K and mammalian target of rapamycin (mTOR provides an opportunity to pharmacologically determine the contribution of these key signaling nodes in VEGF-A-driven tumor angiogenesis in vivo. This study used an array of microvascular imaging techniques to monitor the antivascular effects of selective class I PI3K, mTOR, or dual PI3K/ mTOR inhibitors in colorectal and prostate cancer xenograft models. Micro-computed tomography (micro-CT angiography, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI, vessel size index (VSI MRI, and DCE ultrasound (DCE-U/S were employed to quantitatively evaluate the vascular (structural and physiological response to these inhibitors. GDC-0980, a dual PI3K/mTOR inhibitor, was found to reduce micro-CT angiography vascular density, while VSI MRI demonstrated a significant reduction in vessel density and an increase in mean vessel size, consistent with a loss of small functional vessels and a substantial antivascular response. DCE-MRI showed that GDC-0980 produces a strong functional response by decreasing the vascular permeability/perfusion-related parameter, Ktrans. Interestingly, comparable antivascular effects were observed for both GDC-980 and GNE-490 (a selective class I PI3K inhibitor. In addition, mTOR-selective inhibitors did not affect vascular density, suggesting that PI3K inhibition is sufficient to generate structural changes, characteristic of a robust antivascular response. This study supports the use of noninvasive microvascular imaging techniques (DCE-MRI, VSI MRI, DCE-U/S as pharmacodynamic assays to quantitatively measure the activity of PI3K and dual PI3K/mTOR inhibitors in vivo.

  11. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images

    OpenAIRE

    Dzyubak, Oleksandr P.; Ritman, Erik L.

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to ma...

  12. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing; Xu, Qing; Song, Jia-Cheng; Li, Yan; Dai, Xin; Zhang, Ling; Shi, Hai-Bin [First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Huang, Dong-Ya [First Affiliated Hospital of Nanjing Medical University, Department of General Surgery, Nanjing (China); Li, Yang [First Affiliated Hospital of Nanjing Medical University, Department of Pathology, Nanjing (China)

    2017-05-15

    To evaluate the feasibility and value of diffusion kurtosis (DK) imaging in assessing treatment response to neoadjuvant chemoradiotherapy (CRT) in patients with locally advanced rectal cancer (LARC). Forty-one patients were included. All patients underwent pre- and post-CRT DCE-MRI on a 3.0-Tesla MRI scanner. Imaging indices (D{sub app}, K{sub app} and ADC values) were measured. Change value (∇X) and change ratio (r ∇X) were calculated. Pathological tumour regression grade scores (Mandard) were the standard reference (good responders: pTRG 1-2; poor responders: pTRG 3-5). Diagnostic performance was compared using ROC analysis. For the pre-CRT measurements, pre-D{sub app-10th} was significantly lower in the good responder group than that of the poor responder group (p = 0.036). For assessing treatment response to neoadjuvant CRT, pre-D{sub app-10th} resulted in AUCs of 0.753 (p = 0.036) with a sensitivity of 66.67 % and a specificity of 77.78 %. The r ∇D{sub app} had a relatively high AUC (0.859) and high sensitivity (100 %) compared with other image indices. DKI is feasible for selecting good responders for neoadjuvant CRT for LARC. (orig.)

  13. Attempts to Image the Early Inflammatory Response during Infection with the Lymphatic Filarial Nematode Brugia pahangi in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Elmarie Myburgh

    Full Text Available Helminth parasites remain a major constraint upon human health and well-being in many parts of the world. Treatment of these infections relies upon a very small number of therapeutics, most of which were originally developed for use in animal health. A lack of high throughput screening systems, together with limitations of available animal models, has restricted the development of novel chemotherapeutics. This is particularly so for filarial nematodes, which are long-lived parasites with a complex cycle of development. In this paper, we describe attempts to visualise the immune response elicited by filarial parasites in infected mice using a non-invasive bioluminescence imaging reagent, luminol, our aim being to determine whether such a model could be developed to discriminate between live and dead worms for in vivo compound screening. We show that while imaging can detect the immune response elicited by early stages of infection with L3, it was unable to detect the presence of adult worms or, indeed, later stages of infection with L3, despite the presence of worms within the lymphatic system of infected animals. In the future, more specific reagents that detect secreted products of adult worms may be required for developing screens based upon live imaging of infected animals.

  14. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, C. de; Stafleu, A.; Osch, M.J.P. van; Grond, J. van der

    2005-01-01

    Background: Evidence exists that beverages do not trigger appropriate anticipatory physiologic responses, such as cephalic phase insulin release. Therefore, it is of interest to elucidate the food properties necessary for triggering adaptive responses. Previously, we found a prolonged dose-dependent

  15. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories

    NARCIS (Netherlands)

    Smeets, P.A.M.; Graaf, de C.; Stafleu, A.; Osch, M.J.P.; Grond, van der J.

    2005-01-01

    BACKGROUND: Evidence exists that beverages do not trigger appropriate anticipatory physiologic responses, such as cephalic phase insulin release. Therefore, it is of interest to elucidate the food properties necessary for triggering adaptive responses. Previously, we found a prolonged dose-dependent

  16. From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild

    NARCIS (Netherlands)

    Asthana, Akshay; Asthana, Ashish; Zafeiriou, Stefanos; Tzimiropoulos, Georgios; Cheng, Shiyang; Pantic, Maja

    2015-01-01

    We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important

  17. PET/CT imaging in response evaluation of patients with small cell lung cancer

    DEFF Research Database (Denmark)

    Fischer, Barbara M; Mortensen, Jann; Langer, Seppo W

    2006-01-01

    UNLABELLED: There is an increasing amount of evidence on the usability of PET in response evaluation of non-small cell lung cancer. However, data on SCLC is scarce and mainly retrospective. This prospective study assesses the use of PET (positron emission tomography) and PET/CT in response...... evaluation of patients with small cell lung cancer (SCLC). METHODS: Assignment of early and final response was compared between PET, PET/CT, and CT in 20 patients with SCLC. Final response as assigned by CT (RECIST) served as reference. RESULTS: At response evaluation after one cycle of chemotherapy major...... by PET/CT is feasible, but it is uncertain whether it adds further information to evaluation by RECIST, thus further studies and standardization of methods are needed....

  18. Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning.

    Science.gov (United States)

    Kobayashi, Hirofumi; Lei, Cheng; Wu, Yi; Mao, Ailin; Jiang, Yiyue; Guo, Baoshan; Ozeki, Yasuyuki; Goda, Keisuke

    2017-09-29

    In the last decade, high-content screening based on multivariate single-cell imaging has been proven effective in drug discovery to evaluate drug-induced phenotypic variations. Unfortunately, this method inherently requires fluorescent labeling which has several drawbacks. Here we present a label-free method for evaluating cellular drug responses only by high-throughput bright-field imaging with the aid of machine learning algorithms. Specifically, we performed high-throughput bright-field imaging of numerous drug-treated and -untreated cells (N = ~240,000) by optofluidic time-stretch microscopy with high throughput up to 10,000 cells/s and applied machine learning to the cell images to identify their morphological variations which are too subtle for human eyes to detect. Consequently, we achieved a high accuracy of 92% in distinguishing drug-treated and -untreated cells without the need for labeling. Furthermore, we also demonstrated that dose-dependent, drug-induced morphological change from different experiments can be inferred from the classification accuracy of a single classification model. Our work lays the groundwork for label-free drug screening in pharmaceutical science and industry.

  19. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma

    Science.gov (United States)

    Chamma, Emilie; Qiu, Jimmy; Lindvere-Teene, Liis; Blackmore, Kristina M.; Majeed, Safa; Weersink, Robert; Dickie, Colleen I.; Griffin, Anthony M.; Wunder, Jay S.; Ferguson, Peter C.; DaCosta, Ralph S.

    2015-07-01

    Standard clinical management of extremity soft tissue sarcomas includes surgery with radiation therapy. Wound complications (WCs) arising from treatment may occur due to bacterial infection and tissue breakdown. The ability to detect changes in these parameters during treatment may lead to earlier interventions that mitigate WCs. We describe the use of a new system composed of an autofluorescence imaging device and an optical three-dimensional tracking system to detect and coregister the presence of bacteria with radiation doses. The imaging device visualized erythema using white light and detected bacterial autofluorescence using 405-nm excitation light. Its position was tracked relative to the patient using IR reflective spheres and registration to the computed tomography coordinates. Image coregistration software was developed to spatially overlay radiation treatment plans and dose distributions on the white light and autofluorescence images of the surgical site. We describe the technology, its use in the operating room, and standard operating procedures, as well as demonstrate technical feasibility and safety intraoperatively. This new clinical tool may help identify patients at greater risk of developing WCs and investigate correlations between radiation dose, skin response, and changes in bacterial load as biomarkers associated with WCs.

  20. A novel method of estimating dose responses for polymer gels using texture analysis of scanning electron microscopy images.

    Directory of Open Access Journals (Sweden)

    Cheng-Ting Shih

    Full Text Available Polymer gels are regarded as a potential dosimeter for independent validation of absorbed doses in clinical radiotherapy. Several imaging modalities have been used to convert radiation-induced polymerization to absorbed doses from a macro-scale viewpoint. This study developed a novel dose conversion mechanism by texture analysis of scanning electron microscopy (SEM images. The modified N-isopropyl-acrylamide (NIPAM gels were prepared under normoxic conditions, and were administered radiation doses from 5 to 20 Gy. After freeze drying, the gel samples were sliced for SEM scanning with 50×, 500×, and 3500× magnifications. Four texture indices were calculated based on the gray level co-occurrence matrix (GLCM. The results showed that entropy and homogeneity were more suitable than contrast and energy as dose indices for higher linearity and sensitivity of the dose response curves. After parameter optimization, an R (2 value of 0.993 can be achieved for homogeneity using 500× magnified SEM images with 27 pixel offsets and no outlier exclusion. For dose verification, the percentage errors between the prescribed dose and the measured dose for 5, 10, 15, and 20 Gy were -7.60%, 5.80%, 2.53%, and -0.95%, respectively. We conclude that texture analysis can be applied to the SEM images of gel dosimeters to accurately convert micro-scale structural features to absorbed doses. The proposed method may extend the feasibility of applying gel dosimeters in the fields of diagnostic radiology and radiation protection.

  1. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable

  2. Evaluation of area strain response of dielectric elastomer actuator using image processing technique

    Science.gov (United States)

    Sahu, Raj K.; Sudarshan, Koyya; Patra, Karali; Bhaumik, Shovan

    2014-03-01

    Dielectric elastomer actuator (DEA) is a kind of soft actuators that can produce significantly large electric-field induced actuation strain and may be a basic unit of artificial muscles and robotic elements. Understanding strain development on a pre-stretched sample at different regimes of electrical field is essential for potential applications. In this paper, we report about ongoing work on determination of area strain using digital camera and image processing technique. The setup, developed in house consists of low cost digital camera, data acquisition and image processing algorithm. Samples have been prepared by biaxially stretched acrylic tape and supported between two cardboard frames. Carbon-grease has been pasted on the both sides of the sample, which will be compliant with electric field induced large deformation. Images have been grabbed before and after the application of high voltage. From incremental image area, strain has been calculated as a function of applied voltage on a pre-stretched dielectric elastomer (DE) sample. Area strain has been plotted with the applied voltage for different pre-stretched samples. Our study shows that the area strain exhibits nonlinear relationship with applied voltage. For same voltage higher area strain has been generated on a sample having higher pre-stretched value. Also our characterization matches well with previously published results which have been done with costly video extensometer. The study may be helpful for the designers to fabricate the biaxial pre-stretched planar actuator from similar kind of materials.

  3. Two-color interpolation of the absorption response for quantitative acousto-optic imaging

    DEFF Research Database (Denmark)

    Bocoum, Maimouna; Gennisson, Jean Luc; Venet, Caroline

    2018-01-01

    Diffuse optical tomography (DOT) is a reliable and widespread technique for monitoring qualitative changes in absorption inside highly scattering media. It has been shown, however, that acousto-optic (AO) imaging can provide significantly more qualitative information without the need for inversio...

  4. Educational Responses to Media Challenges to Self Esteem: Body Image Perceptions among Undergraduate Students.

    Science.gov (United States)

    Solomon, Mindy; Venuti, John; Hodges, Jilda; Iannuzzelli, Jena; Chambliss, Catherine

    College students confront a variety of challenges on a daily basis. Living up to the standards prescribed by the media and other social groups leaves some students feeling distraught and many feeling vulnerable. Feelings of failure and self-loathing often lead college students to become preoccupied with their self-image and actions, motivating…

  5. Radiomic biomarkers from PET/CT multi-modality fusion images for the prediction of immunotherapy response in advanced non-small cell lung cancer patients

    Science.gov (United States)

    Mu, Wei; Qi, Jin; Lu, Hong; Schabath, Matthew; Balagurunathan, Yoganand; Tunali, Ilke; Gillies, Robert James

    2018-02-01

    Purpose: Investigate the ability of using complementary information provided by the fusion of PET/CT images to predict immunotherapy response in non-small cell lung cancer (NSCLC) patients. Materials and methods: We collected 64 patients diagnosed with primary NSCLC treated with anti PD-1 checkpoint blockade. Using PET/CT images, fused images were created following multiple methodologies, resulting in up to 7 different images for the tumor region. Quantitative image features were extracted from the primary image (PET/CT) and the fused images, which included 195 from primary images and 1235 features from the fusion images. Three clinical characteristics were also analyzed. We then used support vector machine (SVM) classification models to identify discriminant features that predict immunotherapy response at baseline. Results: A SVM built with 87 fusion features and 13 primary PET/CT features on validation dataset had an accuracy and area under the ROC curve (AUROC) of 87.5% and 0.82, respectively, compared to a model built with 113 original PET/CT features on validation dataset 78.12% and 0.68. Conclusion: The fusion features shows better ability to predict immunotherapy response prediction compared to individual image features.

  6. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  7. Genetic and Computational Approaches for Studying Plant Development and Abiotic Stress Responses Using Image-Based Phenotyping

    Science.gov (United States)

    Campbell, M. T.; Walia, H.; Grondin, A.; Knecht, A.

    2017-12-01

    The development of abiotic stress tolerant crops (i.e. drought, salinity, or heat stress) requires the discovery of DNA sequence variants associated with stress tolerance-related traits. However, many traits underlying adaptation to abiotic stress involve a suite of physiological pathways that may be induced at different times throughout the duration of stress. Conventional single-point phenotyping approaches fail to fully capture these temporal responses, and thus downstream genetic analysis may only identify a subset of the genetic variants that are important for adaptation to sub-optimal environments. Although genomic resources for crops have advanced tremendously, the collection of phenotypic data for morphological and physiological traits is laborious and remains a significant bottleneck in bridging the phenotype-genotype gap. In recent years, the availability of automated, image-based phenotyping platforms has provided researchers with an opportunity to collect morphological and physiological traits non-destructively in a highly controlled environment. Moreover, these platforms allow abiotic stress responses to be recorded throughout the duration of the experiment, and have facilitated the use of function-valued traits for genetic analyses in major crops. We will present our approaches for addressing abiotic stress tolerance in cereals. This talk will focus on novel open-source software to process and extract biological meaningful data from images generated from these phenomics platforms. In addition, we will discuss the statistical approaches to model longitudinal phenotypes and dissect the genetic basis of dynamic responses to these abiotic stresses throughout development.

  8. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.

    Science.gov (United States)

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Stobart, Michael J; Looser, Zoe J; Saab, Aiman S; Weber, Bruno

    2018-01-01

    Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Appreciating the image of God in all humanity: Towards a pastoral response to skin lightening as image enhancement to exit dark skin

    Directory of Open Access Journals (Sweden)

    Noah K. Tenai

    2016-05-01

    Full Text Available The practice of skin lightening is prevalent amongst dark-skinned people globally. Various current studies that map this practice and that seek motivations behind the practice are examined. It is observed that through shrewd marketing, dark-skinned people are offered a promise of a better quality of life, obtained by a lighter skin, through the use of skin lighteners. In spite of the severe health risks involved, the promise is ostensibly irresistible to some dark-skinned persons. A pastoral response is offered that affirms the full personhood and complete humanity of dark-skinned people as fully human and whole in their dark skins. Keywords: Skin lightening, Dark skin, Image of God

  10. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey.

    Science.gov (United States)

    Graham, Michael M; Badawi, Ramsey D; Wahl, Richard L

    2011-02-01

    In 2005, 8 Imaging Response Assessment Teams (IRATs) were funded by the National Cancer Institute (NCI) as supplemental grants to existing NCI Cancer Centers. After discussion among the IRATs regarding the need for increased standardization of clinical and research PET/CT methodology, it became apparent that data acquisition and processing approaches differ considerably among centers. To determine the variability in detail, a survey of IRAT sites and IRAT affiliates was performed. A 34-question instrument evaluating patient preparation, scanner type, performance approach, display, and analysis was developed. Fifteen institutions, including the 8 original IRATs and 7 institutions that had developed affiliate IRATs, were surveyed. The major areas of variation were (18)F-FDG dose (259-740 MBq [7-20 mCi]) uptake time (45-90 min), sedation (never to frequently), handling of diabetic patients, imaging time (2-7 min/bed position), performance of diagnostic CT scans as a part of PET/CT, type of acquisition (2-dimensional vs. 3-dimensional), CT technique, duration of fasting (4 or 6 h), and (varying widely) acquisition, processing, display, and PACS software--with 4 sites stating that poor-quality images appear on PACS. There is considerable variability in the way PET/CT scans are performed at academic institutions that are part of the IRAT network. This variability likely makes it difficult to quantitatively compare studies performed at different centers. These data suggest that additional standardization in methodology will be required so that PET/CT studies, especially those performed quantitatively, are more comparable across sites.

  11. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    Science.gov (United States)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  12. Correlation of Computed Tomography Imaging Features With Pain Response in Patients With Spine Metastases After Radiation Therapy

    International Nuclear Information System (INIS)

    Mitera, Gunita; Probyn, Linda; Ford, Michael; Donovan, Andrea; Rubenstein, Joel; Finkelstein, Joel; Christakis, Monique; Zhang, Liying; Campos, Sarah; Culleton, Shaelyn; Nguyen, Janet; Sahgal, Arjun; Barnes, Elizabeth; Tsao, May; Danjoux, Cyril; Holden, Lori; Yee, Albert; Khan, Luluel; Chow, Edward

    2011-01-01

    Purpose: To correlate computed tomography (CT) imaging features of spinal metastases with pain relief after radiotherapy (RT). Methods and Materials: Thirty-three patients receiving computed tomography (CT)-simulated RT for spinal metastases in an outpatient palliative RT clinic from January 2007 to October 2008 were retrospectively reviewed. Forty spinal metastases were evaluated. Pain response was rated using the International Bone Metastases Consensus Working Party endpoints. Three musculoskeletal radiologists and two orthopaedic surgeons evaluated CT features, including osseous and soft tissue tumor extent, presence of a pathologic fracture, severity of vertebral height loss, and presence of kyphosis. Results: The mean patient age was 69 years; 24 were men and 9 were women. The mean worst pain score was 7/10, and the mean total daily oral morphine equivalent was 77.3 mg. Treatment doses included 8 Gy in one fraction (22/33), 20 Gy in five fractions (10/33), and 20 Gy in eight fractions (1/33). The CT imaging appearance of spinal metastases included vertebral body involvement (40/40), pedicle involvement (23/40), and lamina involvement (18/40). Soft tissue component (10/40) and nerve root compression (9/40) were less common. Pathologic fractures existed in 11/40 lesions, with resultant vertebral body height loss in 10/40 and kyphosis in 2/40 lesions. At months 1, 2, and 3 after RT, 18%, 69%, and 70% of patients experienced pain relief. Pain response was observed with various CT imaging features. Conclusions: Pain response after RT did not differ in patients with and without pathologic fracture, kyphosis, or any other CT features related to extent of tumor involvement. All patients with painful spinal metastases may benefit from palliative RT.

  13. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    International Nuclear Information System (INIS)

    Lo Dico, A.; Martelli, C.; Valtorta, S.; Belloli, S.; Raccagni, I.; Moresco, R.M.; Diceglie, C.; Gianelli, U.; Bosari, S.; Vaira, V.; Politi, L.S.; Lucignani, G.; Ottobrini, L.

    2015-01-01

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  14. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    Energy Technology Data Exchange (ETDEWEB)

    Lo Dico, A.; Martelli, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); Valtorta, S.; Belloli, S. [National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy); IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); Raccagni, I.; Moresco, R.M. [IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); University of Milano-Bicocca, Department of Health Sciences, Monza (Italy); Diceglie, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Doctorate School of Molecular Medicine, Milan (Italy); Gianelli, U.; Bosari, S. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Vaira, V. [Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Istituto Nazionale Genetica Molecolare ' ' Romeo ed Enrica Invernizzi' ' (INGM), Milan (Italy); Politi, L.S. [IRCCS San Raffaele Scientific Institute, Neuroradiology Department and Neuroradiology Research Group, Milan (Italy); Lucignani, G. [University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); San Paolo Hospital, Department of Diagnostic Services, Unit of Nuclear Medicine, Milan (Italy); Ottobrini, L. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy)

    2015-03-27

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  15. Diffusion-weighted magnetic resonance imaging: biomarker for treatment response in oncology

    Directory of Open Access Journals (Sweden)

    Maria Luiza Testa

    2013-06-01

    Full Text Available The authors report a case where a quantitative assessment of the apparent diffusion coefficient (ADC of liver metastasis in a patient undergoing chemotherapy has shown to be an effective early marker for predicting therapeutic response, anticipating changes in tumor size. A lesion with lower initial ADC value and early increase in such value in the course of the treatment tends to present a better therapeutic response.

  16. Response to 'Comments on 'Ionization chamber volume determination and quality assurance using micro-CT imaging''

    International Nuclear Information System (INIS)

    McNiven, Andrea L; Holdsworth, David W; Battista, Jerry J; Umoh, Joseph; Kron, Tomas

    2009-01-01

    Air ionization chamber dosimetry plays a crucial role in international dose calibration for the radiotherapy clinical environment. Micro-CT images of ion chambers can play an important role in quality assurance of these devices by detecting internal geometry, materials and defects non-invasively, as we demonstrated (McNiven et al 2008 Phys. Med. Biol. 53 5029-43). We also suggested that electric-field simulation based upon these accurate chamber-specific 3D images rather than manufacturer blueprints could be valuable in assessing ionometric sensitivity. As recently performed by Ross et al these electric field simulations play a vital role in understanding key components that contribute to the chamber sensitive volume and ionization calibration coefficients. (letter to the editor)

  17. Value of diffusion-weighted MR imaging in assessing response of neoadjuvant chemo and radiation therapy in locally advanced rectal cancer

    Directory of Open Access Journals (Sweden)

    Rania A. Marouf

    2015-09-01

    Conclusion: The use of additional DWI yields better diagnostic accuracy than does use of conventional MR imaging alone in the evaluation of complete response to neoadjuvant chemo radiotherapy in patients with locally advanced rectal cancer.

  18. Magnetic resonance imaging in spondyloarthritis--how to quantify findings and measure response

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Poggenborg, René Panduro; Axelsen, Mette Bjørndal

    2010-01-01

    Sensitive and reliable tools for monitoring disease activity and damage, and for prognostication, are essential in the management of patients with spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis. Magnetic resonance imaging (MRI) allows direct visualisation of inflammat...... and clinical practice. The present article reviews key aspects of the status and recent important advances in MRI in spondyloarthritis, focussing on available MRI tools for assessing activity and damage in peripheral and, particularly, axial joints....

  19. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    Science.gov (United States)

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Motivational Impact of Palatable Food Correlates With Functional Brain Responses to Food Images in Adolescents.

    Science.gov (United States)

    Jensen, Chad D; Duraccio, Kara M; Carbine, Kaylie A; Barnett, Kimberly A; Kirwan, C Brock

    2017-06-01

    To examine associations between motivational impact of palatable foods and neural activity in brain regions involved in inhibitory control among adolescents. Thirty-four adolescents aged 14-20 years underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. Participants completed the Power of Food Scale (PFS). Whole-brain analyses of variance tested for neural activation differences and correlations between brain activation and PFS scores were tested. We found an interaction between food type (high energy vs. low energy) and PFS scores in the right dorsolateral prefrontal cortex and right inferior parietal lobule. We also found that PFS scores correlated negatively with activation to high-energy foods in prefrontal cortical and parietal regions. These findings suggest that individuals with high motivation for high-energy foods also demonstrate lower neural activation in inhibition-related brain regions when viewing images of high-energy foods, indicating that they may have difficulty inhibiting consumption impulses. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum

    NARCIS (Netherlands)

    Fletcher, P.C.; Napolitano, A.; Skeggs, A.; Miller, S.R.; Delafont, B.; Cambridge, V.C.; de Wit, S.; Nathan, P.J.; Brooke, A.; O'Rahilly, S.; Farooqi, I.S.; Bullmore, E.T.

    2010-01-01

    We used functional magnetic resonance imaging to explore brain responses to food images in overweight humans, examining independently the impact of a prescan meal ("satiety") and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly

  2. Monitors display of radiological images: quality control and response of the observer; Monitores de visualizacion de imagenes radiologicas: control de calidad y respuesta del observador

    Energy Technology Data Exchange (ETDEWEB)

    Cesares Magaz, O.; Catalan Acosta, A.; Hernandez Armas, O. C.; Gonzalez Martin, A. E.; Hernandez Armas, J.

    2011-07-01

    This thesis is aimed to determine the possible change experienced by a human reader response to the qualification of a test image on a monitor diagnostic radiographic image when observed before and after calibration of the monitor following the provisions of the AAPM TG18 protocol. It also quantified the change experienced by the monitor as a result of the calibration, by measuring the luminance response as set out in the protocol.

  3. Pengaruh Brand Image, Corporate Social Responsibility, dan Kualitas Produk terhadap Keputusan Pembelian Produk The Body Shop Sun Plaza Medan dengan Harga sebagai Variabel Moderating

    OpenAIRE

    Evayanti, Sufratiwi

    2016-01-01

    147019086 The Body Shop is one of international company that offers beauty care and cosmetics products made from natural materials imported from various countries. One of factor that can make consumers decided to purchase The Body Shop?s products are the brand image, corporate social responsibility (CSR), quality of product, and product?s price. This study aims to determine and analyze the effect of brand image, corporate social responsibility, and quality of product on purchase decision p...

  4. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  5. From Pixels to Response Maps: Discriminative Image Filtering for Face Alignment in the Wild.

    Science.gov (United States)

    Asthana, Akshay; Zafeiriou, Stefanos; Tzimiropoulos, Georgios; Cheng, Shiyang; Pantic, Maja

    2015-06-01

    We propose a face alignment framework that relies on the texture model generated by the responses of discriminatively trained part-based filters. Unlike standard texture models built from pixel intensities or responses generated by generic filters (e.g. Gabor), our framework has two important advantages. First, by virtue of discriminative training, invariance to external variations (like identity, pose, illumination and expression) is achieved. Second, we show that the responses generated by discriminatively trained filters (or patch-experts) are sparse and can be modeled using a very small number of parameters. As a result, the optimization methods based on the proposed texture model can better cope with unseen variations. We illustrate this point by formulating both part-based and holistic approaches for generic face alignment and show that our framework outperforms the state-of-the-art on multiple "wild" databases. The code and dataset annotations are available for research purposes from http://ibug.doc.ic.ac.uk/resources.

  6. Analysis of factors responsible for the image in early stage emphysema and research concerning the diagnosis

    International Nuclear Information System (INIS)

    Nakanishi, Hirotaka

    1998-01-01

    To clarify the utility of the CT image to a clinical diagnosis of the early stage emphysema, the relation of CT value to the level of the lung destruction, the change in the lung density and pulmonary function was examined. Experimental pulmonary emphysema model in canine was produced by inhalation of aerosolized papain solution. In this model, the relationship between the destruction in lung tissues and the analysis of CT images was investigated. Changes in the alveolar surface area per unit lung volume well reflected those in mean CT value in the lung parenchyma. Also, it was clarified that the degree of the lung destruction in this model corresponded to that in patients with the early stage emphysema. Mean CT value in the area that formed lowest 5th percentile of the CT value histogram (mCT (5%ile)) was developed to analyze CT images in emphysema. To develop this study, changes of the mCT (5%ile) at the respiratory level from 5% to 95% inspiratory vital capacity (mCT (5%ile (5-95%VC))) was examined. In experimental studies, there was statistical significance between control and emphysema model. In clinical study using 14 patients with emphysema, the mCT (5%ile (5-95%VC)) reflected well the values of pulmonary function tests which indicated air flow limitation such as %pred. FEV 1.0 and MMF. The present studies demonstrated that it might be useful to detect the pathological and functional impairment in the early stage emphysema by using mCT (5%ile (5-95%VC)). (author)

  7. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-05-01

    Full Text Available Abstract Background Freezing tolerance is an important factor in the geographical distribution of plants and strongly influences crop yield. Many plants increase their freezing tolerance during exposure to low, nonfreezing temperatures in a process termed cold acclimation. There is considerable natural variation in the cold acclimation capacity of Arabidopsis that has been used to study the molecular basis of this trait. Accurate methods for the quantitation of freezing damage in leaves that include spatial information about the distribution of damage and the possibility to screen large populations of plants are necessary, but currently not available. In addition, currently used standard methods such as electrolyte leakage assays are very laborious and therefore not easily applicable for large-scale screening purposes. Results We have performed freezing experiments with the Arabidopsis accessions C24 and Tenela, which differ strongly in their freezing tolerance, both before and after cold acclimation. Freezing tolerance of detached leaves was investigated using the well established electrolyte leakage assay as a reference. Chlorophyll fluorescence imaging was used as an alternative method that provides spatial resolution of freezing damage over the leaf area. With both methods, LT50 values (i.e. temperature where 50% damage occurred could be derived as quantitative measures of leaf freezing tolerance. Both methods revealed the expected differences between acclimated and nonacclimated plants and between the two accessions and LT50 values were tightly correlated. However, electrolyte leakage assays consistently yielded higher LT50 values than chlorophyll fluorescence imaging. This was to a large part due to the incubation of leaves for electrolyte leakage measurements in distilled water, which apparently led to secondary damage, while this pre-incubation was not necessary for the chlorophyll fluorescence measurements. Conclusion Chlorophyll

  8. Effect of Imaging Parameter Thresholds on MRI Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes.

    Directory of Open Access Journals (Sweden)

    Wei-Ching Lo

    Full Text Available The purpose of this study is to evaluate the predictive performance of magnetic resonance imaging (MRI markers in breast cancer patients by subtype. Sixty-four patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy were enrolled in this study. Each patient received a dynamic contrast-enhanced (DCE-MRI at baseline, after 1 cycle of chemotherapy and before surgery. Functional tumor volume (FTV, the imaging marker measured by DCE-MRI, was computed at various thresholds of percent enhancement (PEt and signal-enhancement ratio (SERt. Final FTV before surgery and percent changes of FTVs at the early and final treatment time points were used to predict patients' recurrence-free survival. The full cohort and each subtype defined by the status of hormone receptor and human epidermal growth factor receptor 2 (HR+/HER2-, HER2+, triple negative were analyzed. Predictions were evaluated using the Cox proportional hazard model when PEt changed from 30% to 200% in steps of 10% and SERt changed from 0 to 2 in steps of 0.2. Predictions with high hazard ratios and low p-values were considered as strong. Different profiles of FTV as predictors for recurrence-free survival were observed in each breast cancer subtype and strong associations with survival were observed at different PEt/SERt combinations that resulted in different FTVs. Findings from this retrospective study suggest that the predictive performance of imaging markers based on FTV may be improved with enhancement thresholds being optimized separately for clinically-relevant subtypes defined by HR and HER2 receptor expression.

  9. Myocardial response to a triathlon in male athletes evaluated by Doppler tissue imaging and biochemical parameters

    DEFF Research Database (Denmark)

    Leetmaa, T H; Dam, A; Glintborg, D

    2008-01-01

    (cTnT) and pro-brain natriuretic peptide (pro-BNP)] and echocardiography. Conventional echocardiography techniques and new Doppler tissue imaging (DTI) modalities were applied before and immediately after the competition. Blood samples were drawn 1 week before, immediately after and 12-24 h post...... and systolic velocities decreased, thus suggesting reversible cardiac fatigue. When using cardiac markers and echocardiographic findings, a triathlon was found to have no significant negative effects on left ventricular function or myocardial tissue in male athletes....

  10. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  11. A novel computational approach of image analysis to quantify behavioural response to heat shock in Chironomus Ramosus larvae (Diptera: Chironomidae

    Directory of Open Access Journals (Sweden)

    Bimalendu B. Nath

    2015-07-01

    Full Text Available All living cells respond to temperature stress through coordinated cellular, biochemical and molecular events known as “heat shock response” and its genetic basis has been found to be evolutionarily conserved. Despite marked advances in stress research, this ubiquitous heat shock response has never been analysed quantitatively at the whole organismal level using behavioural correlates. We have investigated behavioural response to heat shock in a tropical midge Chironomus ramosus Chaudhuri, Das and Sublette. The filter-feeding aquatic Chironomus larvae exhibit characteristic undulatory movement. This innate pattern of movement was taken as a behavioural parameter in the present study. We have developed a novel computer-aided image analysis tool “Chiro” for the quantification of behavioural responses to heat shock. Behavioural responses were quantified by recording the number of undulations performed by each larva per unit time at a given ambient temperature. Quantitative analysis of undulation frequency was carried out and this innate behavioural pattern was found to be modulated as a function of ambient temperature. Midge larvae are known to be bioindicators of aquatic environments. Therefore, the “Chiro” technique can be tested using other potential biomonitoring organisms obtained from natural aquatic habitats using undulatory motion as a behavioural parameter.

  12. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

    Science.gov (United States)

    Ludovisi, Riccardo; Tauro, Flavia; Salvati, Riccardo; Khoury, Sacha; Mugnozza Scarascia, Giuseppe; Harfouche, Antoine

    2017-01-01

    Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F 2 partially inbred population (termed here 'POP6'), whose F 1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature ( T c ) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  13. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought

    Directory of Open Access Journals (Sweden)

    Riccardo Ludovisi

    2017-09-01

    Full Text Available Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’, whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought on a population of 4603 trees (503 genotypes hosted in two adjacent experimental plots (1.67 ha by conducting low-elevation (25 m flights with an aerial drone and capturing 7836 thermal infrared (TIR images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  14. Fluorescently Labeled Branched Polymers and Thermal Responsive Nanoparticles for Live Cell Imaging

    NARCIS (Netherlands)

    Zhou, D.; Ma, Y.; Poot, Andreas A.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by

  15. Brain Imaging of Human Sexual Response : Recent Developments and Future Directions

    NARCIS (Netherlands)

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    Purpose of Review: The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Recent Findings: Stable patterns of brain activation have been established for

  16. Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment

    Directory of Open Access Journals (Sweden)

    Jian Gong

    2013-06-01

    Full Text Available Imaging tumors and their response to treatment could be a valuable biomarker toward early assessment of therapy in patients with cancer. Phosphatidylserine (PS is confined to the inner leaflet of the plasma membrane in normal cells but is externalized on tumor vascular endothelial cells (ECs and tumor cells, and PS exposure is further enhanced in response to radiation and chemotherapy. In the present study, we evaluated the potential of a PS-targeting human F(ab'2 antibody fragment, PGN650, to detect exposure of PS in tumor-bearing mice. Tumor uptake of PGN650 was measured by near-infrared optical imaging in human tumor xenografts in immunodeficient mice. PGN650 specifically targeted tumors and was shown to target CD31-positive ECs and tumor cells. Tumor uptake of PGN650 was significantly higher in animals pretreated with docetaxel. The peak tumor to normal tissue (T/N ratio of probe was observed at 24 hours postinjection of probe, and tumor binding was detected for at least 120 hours. In repeat dose studies, PGN650 uptake in tumors was significantly higher following pretreatment with docetaxel compared to baseline uptake prior to treatment. PGN650 may be a useful probe to detect PS exposed in tumors and to monitor enhanced PS exposure to optimize therapeutic agents to treat tumors.

  17. Image-Guided Robotic Stereotactic Body Radiation Therapy for Liver Metastases: Is There a Dose Response Relationship?

    International Nuclear Information System (INIS)

    Vautravers-Dewas, Claire; Dewas, Sylvain; Bonodeau, Francois; Adenis, Antoine; Lacornerie, Thomas; Penel, Nicolas; Lartigau, Eric; Mirabel, Xavier

    2011-01-01

    Purpose: To evaluate the outcome, tolerance, and toxicity of stereotactic body radiotherapy, using image-guided robotic radiation delivery, for the treatment of patients with unresectable liver metastases. Methods and Material: Patients were treated with real-time respiratory tracking between July 2007 and April 2009. Their records were retrospectively reviewed. Metastases from colorectal carcinoma and other primaries were not necessarily confined to liver. Toxicity was evaluated using National Cancer Institute Common Criteria for Adverse Events version 3.0. Results: Forty-two patients with 62 metastases were treated with two dose levels of 40 Gy in four Dose per Fraction (23) and 45 Gy in three Dose per Fraction (13). Median follow-up was 14.3 months (range, 3-23 months). Actuarial local control for 1 and 2 years was 90% and 86%, respectively. At last follow-up, 41 (66%) complete responses and eight (13%) partial responses were observed. Five lesions were stable. Nine lesions (13%) were locally progressed. Overall survival was 94% at 1 year and 48% at 2 years. The most common toxicity was Grade 1 or 2 nausea. One patient experienced Grade 3 epidermitis. The dose level did not significantly contribute to the outcome, toxicity, or survival. Conclusion: Image-guided robotic stereotactic body radiation therapy is feasible, safe, and effective, with encouraging local control. It provides a strong alternative for patients who cannot undergo surgery.

  18. Acute exercise modulates cigarette cravings and brain activation in response to smoking-related images: an fMRI study.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Taylor, Adrian; Hodgson, Tim; Benattayallah, Abdelmalek

    2009-04-01

    Substances of misuse (such as nicotine) are associated with increases in activation within the mesocorticolimbic brain system, a system thought to mediate the rewarding effects of drugs of abuse. Pharmacological treatments have been designed to reduce cigarette cravings during temporary abstinence. Exercise has been found to be an effective tool for controlling cigarette cravings. The objective of this study is to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomized crossover design, regular smokers (n = 10) undertook an exercise (10 min moderate-intensity stationary cycling) and control (passive seating for same duration) session, following 15 h of nicotine abstinence. Following treatments, participants entered a functional Magnetic Resonance Imaging (fMRI) scanner. Subjects viewed a random series of smoking and neutral images for 3 s, with an average inter-stimulus-interval (ISI) of 10 s. Self-reported cravings were assessed at baseline, mid-, and post-treatments. A significant interaction effect (time by group) was found, with self-reported cravings lower during and following exercise. During control scanning, significant activation was recorded in areas associated with reward (caudate nucleus), motivation (orbitofrontal cortex) and visuo-spatial attention (parietal lobe, parahippocampal, and fusiform gyrus). Post-exercise scanning showed hypo-activation in these areas with a concomitant shift of activation towards areas identified in the 'brain default mode' (Broadmanns Area 10). The study confirms previous evidence that a single session of exercise can reduce cigarette cravings, and for the first time provides evidence of a shift in regional activation in response to smoking cues.

  19. Hyperpolarized 13C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring

    Directory of Open Access Journals (Sweden)

    Myriam M. Chaumeil

    2016-01-01

    Full Text Available Metabolic imaging of brain tumors using 13C Magnetic Resonance Spectroscopy (MRS of hyperpolarized [1-13C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-13C] lactate produced from [1-13C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-13C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1 mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA and monocarboxylate transporters 1 and 4 (MCT1, MCT4, three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of 13C MRS of hyperpolarized [1-13C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-13C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-13C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.

  20. The mouse cortical meninges are the site of immune responses to many different pathogens, and are accessible to intravital imaging.

    Science.gov (United States)

    Coles, Jonathan A; Stewart-Hutchinson, Phillip J; Myburgh, Elmarie; Brewer, James M

    2017-08-15

    A wide range of viral and microbial infections are known to cause meningitis, and there is evidence that the meninges are the gateway to pathogenic invasion of the brain parenchyma. Hence observation of these regions has wide application to understanding host-pathogen interactions. Interactions between pathogens and cells of the immune response can be modified by changes in their environment, such as suppression of the flow of blood and lymph, and, particularly in the case of the meninges, with their unsupported membranes, invasive dissection can alter the tissue architecture. For these reasons, intravital imaging through the unperforated skull is the method of choice. We give a protocol for a simple method of two-photon microscopy through the thinned cortical skull of the anesthetized mouse to enable real-time imaging with sub-micron resolution through the meninges and into the superficial brain parenchyma. In reporter mice in which selected cell types express fluorescent proteins, imaging after infection with fluorescent pathogens (lymphocytic choriomeningitis virus, Trypanosoma brucei or Plasmodium berghei) has shown strong recruitment to the cortical meninges of immune cells, including neutrophils, T cells, and putative dendritic cells and macrophages. Without special labeling, the boundaries between the dura mater, the leptomeninx, and the parenchyma are not directly visualized in intravital two-photon microscopy, but other landmarks and characteristics, which we illustrate, allow the researcher to identify the compartment being imaged. While most infectious meningitides are localized mainly in the dura mater, others involve recruitment of immune cells to the leptomeninx. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin

    OpenAIRE

    Rupp, Heather A.; James, Thomas W.; Ketterson, Ellen D.; Sengelaub, Dale R.; Ditzen, Beate; Heiman, Julia R.

    2012-01-01

    The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29...

  2. Response

    Science.gov (United States)

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  3. MR imaging response of cerebral metastases and peritumoral edema after Gamma Knife surgery

    International Nuclear Information System (INIS)

    Guo Qi; Wang Congyin; Zhang Xuening; Zheng Jingjing; Xu Desheng; Zhang Yipei

    2012-01-01

    Objective: To evaluation the treatment response of Gamma Knife surgery (GKS) for the control of cerebral metastases and peritumoral edema using standard MRI. Method: 42 consecutive patients with 75 metastatic lesions were recruited in this study (28 men, 14 women; mean age 60±12 years). Gadolinium enhancement T 1 WI scans were performed on one day before and three months after GKS. Treatment response was evaluated by calculating the changes of tumor volume and edema index before and after GKS. Results: Mean tumor volumes on the baseline and post treatment were 7.0 cm 3 and 3.3 cm 3 respectively. Mean peritumoral edema indexes were 9.9 and 4.3 respectively. Tumor growth control rate and peritumoral edema control rate were 91% and 85% respectively. Conclusion: GKS is effective for both brain metastasis and peritumoral edema, and the tumor volume influences GKS efficacy. Conventional MRI provides useful information to predict treatment response of GKS for cerebral metastasis. (authors)

  4. Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument

    Science.gov (United States)

    Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.

    2018-03-01

    ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.

  5. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment F-18-FDG PET/CT Imaging

    NARCIS (Netherlands)

    Beukinga, Roelof J.; Hulshoff, Jan B.; van Dijk, Lisanne V.; Muijs, Christina T.; Burgerhof, Johannes G. M.; Kats-Ugurlu, Gursah; Slart, Riemer H. J. A.; Slump, Cornelis H.; Mul, Veronique E. M.; Plukker, John Th. M.

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUVmax in F-18-FDG PET/ CT imaging. To improve the prediction of

  6. Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and Sonic hedgehog response

    Directory of Open Access Journals (Sweden)

    Piotrowska-Nitsche Karolina

    2012-05-01

    Full Text Available Abstract Background Primary cilia are microtubule-based sensory organelles that play important roles in developmental signaling pathways. Recent work demonstrated that, in cell culture, the daughter cell that inherits the older mother centriole generates a primary cilium and responds to external stimuli prior to its sister cell. This asynchrony in timing of cilia formation could be especially critical during development as cell divisions are required for both differentiation and maintenance of progenitor cell niches. Methods Here we integrate several fluorescent markers and use ex vivo live imaging of a single cell division within the mouse E8.5 neuroepithelium to reveal both the formation of a primary cilium and the transcriptional response to Sonic hedgehog in the daughter cells. Results We show that, upon cell division, cilia formation and the Sonic hedgehog response are asynchronous between the daughter cells. Conclusions Our results demonstrate that we can directly observe single cell divisions within the developing neuroepithelium and concomitantly monitor cilium formation or Sonic hedgehog response. We expect this method to be especially powerful in examining whether cellular behavior can lead to both differentiation and maintenance of cells in a progenitor niche.

  7. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    Science.gov (United States)

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  8. Evaluation of the response to preoperative chemotherapy with PET image in osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Dae Geun; Lee, Jong Seok; Kim, Sug Jun; Lee, Soo Yong

    1999-12-01

    F18 FDG PET scan has an advantage in evaluating the biologic status of the tumors. The purpose of this study is evaluate the role of PET scan in pre- and post chemotherapeutic osteosarcomas and correlate the findings with pathologic examination. Nine cases of osteosarcoma had biopsy and preoperative chemotherapy at our department. There were 4 distal femur, 4 proximal tibia and 1 distal ulna. All case had initial MRI and PET scan and these were repeated after 2 cycles of chemotherapy. Under PET image parameters such as VOI (volume of interest), total activity, degree of necrosis and T/N (tumor/normal tissue) ratio were analyzed. There was a significant correlation between the calculated necrosis in PET and observed one on pathologic specimen (r2=0.78, p<0.05). Cross correlation among identified variables revealed meaningful result between T/N ration and tumor necrosis (r2=0.45, p<0.05). As the T/N ratio decrease, so much more the tumor necrosis was. F18 FDG PET scan could get objective data such as volume, degree of necrosis and total activity and was also useful in estimating the contribution of chemotherapy in tumor necrosis over the innate necrosis before treatment.

  9. Evaluation of the response to preoperative chemotherapy with PET image in osteosarcoma

    International Nuclear Information System (INIS)

    Jeon, Dae Geun; Lee, Jong Seok; Kim, Sug Jun; Lee, Soo Yong

    1999-12-01

    F18 FDG PET scan has an advantage in evaluating the biologic status of the tumors. The purpose of this study is evaluate the role of PET scan in pre- and post chemotherapeutic osteosarcomas and correlate the findings with pathologic examination. Nine cases of osteosarcoma had biopsy and preoperative chemotherapy at our department. There were 4 distal femur, 4 proximal tibia and 1 distal ulna. All case had initial MRI and PET scan and these were repeated after 2 cycles of chemotherapy. Under PET image parameters such as VOI (volume of interest), total activity, degree of necrosis and T/N (tumor/normal tissue) ratio were analyzed. There was a significant correlation between the calculated necrosis in PET and observed one on pathologic specimen (r2=0.78, p<0.05). Cross correlation among identified variables revealed meaningful result between T/N ration and tumor necrosis (r2=0.45, p<0.05). As the T/N ratio decrease, so much more the tumor necrosis was. F18 FDG PET scan could get objective data such as volume, degree of necrosis and total activity and was also useful in estimating the contribution of chemotherapy in tumor necrosis over the innate necrosis before treatment

  10. The human sexual response cycle: brain imaging evidence linking sex to other pleasures.

    Science.gov (United States)

    Georgiadis, J R; Kringelbach, M L

    2012-07-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable to that involved in processing other rewarding stimuli. Sexual behavior clearly follows the established principles and phases for wanting, liking and satiety involved in the pleasure cycle of other rewards. The studies have uncovered the brain networks involved in sexual wanting or motivation/anticipation, as well as sexual liking or arousal/consummation, while there is very little data on sexual satiety or post-orgasmic refractory period. Human sexual behavior also interacts with other pleasures, most notably social interaction and high arousal states. We discuss the changes in the underlying brain networks supporting sexual behavior in the context of the pleasure cycle, the changes to this cycle over the individual's life-time and the interactions between them. Overall, it is clear from the data that the functional neuroanatomy of sex is very similar to that of other pleasures and that it is unlikely that there is anything special about the brain mechanisms and networks underlying sex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Microbubble responses to a similar mechanical index with different real-time perfusion imaging techniques.

    Science.gov (United States)

    Porter, Thomas R; Oberdorfer, Joseph; Rafter, Patrick; Lof, John; Xie, Feng

    2003-08-01

    The purpose of this study was to determine differences in contrast enhancement and microbubble destruction rates with current commercially available low-mechanical index (MI) real-time perfusion imaging modalities. A tissue-mimicking phantom was developed that had vessels at 3 cm (near field) and 9 cm (far field) from a real-time transducer. Perfluorocarbon-exposed sonicated dextrose albumin microbubbles (PESDA) were injected proximal to a mixing chamber, and then passed through these vessels while the region was insonified with either pulses of alternating polarity with pulse inversion Doppler (PID) or pulses of alternating amplitude by power modulation (PM) at MIs of 0.1, 0.2 and 0.3. Effluent microbubble concentration, contrast intensity and the slope of digital contrast intensity vs. time were measured. Our results demonstrated that microbubble destruction already occurs with PID at an MI of 0.1. Contrast intensity seen with PID was less than with PM. Therefore, differences in contrast enhancement and microbubble destruction rates occur at a similar MI setting when using different real-time pulse sequence schemes.

  12. Bone marrow response in treated patients with Gaucher disease: evaluation by T1-weighted magnetic resonance images and correlation with reduction in liver and spleen volume

    International Nuclear Information System (INIS)

    Terk, M.R.; Dardashti, S.; Liebman, H.A.

    2000-01-01

    Purpose. To determine whether T1-weighted magnetic resonance (MR) images can demonstrate response in the marrow of patients with type 1 Gaucher disease treated with enzyme replacement therapy (ERT) and to determine whether a relationship exists between liver and spleen volume reductions and visible marrow changes.Patients. Forty-two patients with type 1 Gaucher disease were evaluated on at least two occasions. Thirty-two patients received ERT. Of these patients, 15 had a baseline examination prior to the initiation of ERT. The remaining 10 patients did not receive ERT.Design. T1-weighted and gradient recalled echo (GRE) coronal images of the femurs and hips were obtained. Concurrently, liver and spleen volumes were determined using contiguous breath-hold axial gradient-echo images. T1-weighted images of the hips and femurs were evaluated to determine change or lack of change in the yellow marrow.Results. Of the 32 patients receiving ERT, 14 (44%) demonstrated increased signal on T1-weighted images suggesting an increase in the amount of yellow marrow. If only the 15 patients with a baseline examination were considered, the response rate to ERT was 67%. Using Student's t-test a highly significant correlation (P<0.005) was found between marrow response and reduction in liver and spleen volume.Conclusions. Marrow changes in patients receiving ERT can be detected by T1-weighted images. This response correlated with reductions in visceral volumes (P<0.0005). (orig.)

  13. Tumor responsive targeted multifunctional nanosystems for cancer imaging, chemo- and siRNA therapy

    Science.gov (United States)

    Savla, Ronak

    Cancer is one of the most insidious diseases. Compromising of over 100 different types and sharing the unifying factors of uncontrolled growth and metastasis, unmet clinical needs in terms of cancer diagnosis and treatment continue to exist. It is widely accepted that most forms of cancer are treatable or even curable if detected before widespread metastasis occurs. Nearly a quarter of deaths in the United States is the result of cancer and it only trails heart disease in terms of annual mortality. Surgery, chemotherapy, and radiation therapy are the primary treatment modalities for cancer. Research in these procedures has resulted in substantial benefits for cancer patients, but there is still room for an improvement. However, a time has been reached at which it appears that the benefits from these modalities have been reached the maximum. Therefore, it is vital to develop new strategies for the diagnosis and treatment of cancer. The field of nanotechnology is concerned with structures in the nanometer size range and holds the potential to drastically impact and improve the lives of patients suffering from cancer. Not only can nanotechnology improve current methods of diagnosis and treatment, it has a possibility of introducing newer and better modalities. The overall purpose of this work is to develop novel nanotechnology-based methodologies for the diagnosis and treatment of various forms of cancers. The first aim of the project is the development of a multifunctional targeted nanosystem for the delivery of siRNA to overcome drug resistance. The second aspect is the synthesis of a quantum dot-based delivery system that releases drug in response to pH changes. The third aim is the development of a targeted, tumor environment responsive magnetic resonance nanoparticle contrast agent coupled with a nanoparticle-based treatment.

  14. Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images

    Directory of Open Access Journals (Sweden)

    Vaughn R. Steele

    2013-07-01

    Full Text Available Background: Modulation of sexual desires is, in some cases, necessary to avoid inappropriate or illegal sexual behavior (downregulation of sexual desire or to engage with a romantic partner (upregulation of sexual desire. Some have suggested that those who have difficulty downregulating their sexual desires be diagnosed as having a sexual “addiction”. This diagnosis is thought to be associated with sexual urges that feel out of control, high-frequency sexual behavior, consequences due to those behaviors, and poor ability to reduce those behaviors. However, such symptoms also may be better understood as a non-pathological variation of high sexual desire. Hypersexuals are thought to be relatively sexual reward sensitized, but also to have high exposure to visual sexual stimuli. Thus, the direction of neural responsivity to sexual stimuli expected was unclear. If these individuals exhibit habituation, their P300 amplitude to sexual stimuli should be diminished; if they merely have high sexual desire, their P300 amplitude to sexual stimuli should be increased. Neural responsivity to sexual stimuli in a sample of hypersexuals could differentiate these two competing explanations of symptoms. Methods: Fifty-two (13 female individuals who self-identified as having problems regulating their viewing of visual sexual stimuli viewed emotional (pleasant sexual, pleasant-non-sexual, neutral, and unpleasant photographs while electroencephalography was collected. Results: Larger P300 amplitude differences to pleasant sexual stimuli, relative to neutral stimuli, was negatively related to measures of sexual desire, but not related to measures of hypersexuality. Conclusion: Implications for understanding hypersexuality as high desire, rather than disordered, are discussed.

  15. Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation.

    Science.gov (United States)

    Connolly, Niamh M C; Düssmann, Heiko; Anilkumar, Ujval; Huber, Heinrich J; Prehn, Jochen H M

    2014-07-30

    Excitotoxicity is a condition occurring during cerebral ischemia, seizures, and chronic neurodegeneration. It is characterized by overactivation of glutamate receptors, leading to excessive Ca(2+)/Na(+) influx into neurons, energetic stress, and subsequent neuronal injury. We and others have previously investigated neuronal populations to study how bioenergetic parameters determine neuronal injury; however, such experiments are often confounded by population-based heterogeneity and the contribution of effects of non-neuronal cells. Hence, we here characterized bioenergetics during transient excitotoxicity in rat and mouse primary neurons at the single-cell level using fluorescent sensors for intracellular glucose, ATP, and activation of the energy sensor AMP-activated protein kinase (AMPK). We identified ATP depletion and recovery to energetic homeostasis, along with AMPK activation, as surprisingly rapid and plastic responses in two excitotoxic injury paradigms. We observed rapid recovery of neuronal ATP levels also in the absence of extracellular glucose, or when glycolytic ATP production was inhibited, but found mitochondria to be critical for fast and complete energetic recovery. Using an injury model of oxygen and glucose deprivation, we identified a similarly rapid bioenergetics response, yet with incomplete ATP recovery and decreased AMPK activity. Interestingly, excitotoxicity also induced an accumulation of intracellular glucose, providing an additional source of energy during and after excitotoxicity-induced energy depletion. We identified this to originate from extracellular, AMPK-dependent glucose uptake and from intracellular glucose mobilization. Surprisingly, cells recovering their elevated glucose levels faster to baseline survived longer, indicating that the plasticity of neurons to adapt to bioenergetic challenges is a key indicator of neuronal viability. Copyright © 2014 the authors 0270-6474/14/3410192-14$15.00/0.

  16. Imaging the Antistaphylococcal Activity of CATH-2: Mechanism of Attack and Regulation of Inflammatory Response

    Science.gov (United States)

    Schneider, Viktoria A. F.; Coorens, Maarten; Tjeerdsma-van Bokhoven, Johanna L. M.; Posthuma, George; van Dijk, Albert; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT Chicken cathelicidin-2 (CATH-2) is a broad-spectrum antimicrobial host defense peptide (HDP) that may serve as a paradigm for the development of new antimicrobial agents. While previous studies have elucidated the mechanism by which CATH-2 kills Escherichia coli, its mode of action against Gram-positive bacteria remains to be determined. In this study, we explored the underlying antibacterial mechanism of CATH-2 against a methicillin-resistant strain of Staphylococcus aureus and the effect of CATH-2-mediated S. aureus killing on immune activation. Visualization of the antimicrobial activity of CATH-2 against S. aureus with live-imaging confocal microscopy demonstrated that CATH-2 directly binds the bacteria, which is followed by membrane permeabilization and cell shrinkage. Transmission electron microscopy (TEM) studies further showed that CATH-2 initiated pronounced morphological changes of the membrane (mesosome formation) and ribosomal structures (clustering) in a dose-dependent manner. Immunolabeling of these sections demonstrated that CATH-2 binds and passes the bacterial membrane at subminimal bactericidal concentrations (sub-MBCs). Furthermore, competition assays and isothermal titration calorimetry (ITC) analysis provided evidence that CATH-2 directly interacts with lipoteichoic acid and cardiolipin. Finally, stimulation of macrophages with S. aureus and CATH-2 showed that CATH-2 not only kills S. aureus but also has the potential to limit S. aureus-induced inflammation at or above the MBC. Taken together, it is concluded that at sub-MBCs, CATH-2 perturbs the bacterial membrane and subsequently enters the cell and binds intracellular S. aureus components, while at or above the MBC, CATH-2 causes disruption of membrane integrity and inhibits S. aureus-induced macrophage activation. IMPORTANCE Due to the high use of antibiotics in both human and veterinary settings, many bacteria have become resistant to those antibiotics that we so heavily

  17. Application of heavy-ion microbeam system at Kyoto University: Energy response for imaging plate by single ion irradiation

    International Nuclear Information System (INIS)

    Tosaki, M.; Nakamura, M.; Hirose, M.; Matsumoto, H.

    2011-01-01

    A heavy-ion microbeam system for cell irradiation has been developed using an accelerator at Kyoto University. We have successfully developed proton-, carbon-, fluorine- and silicon-beams in order to irradiate a micro-meter sized area with ion counting, especially single ion irradiation. In the heavy-ion microbeam system, an imaging plate (IP) was utilized for beam diagnostics on the irradiation. The IP is widely used for radiography studies in biology. However, there are a few studies on the low linear energy transfer (LET) by single ions, i.e., low-intensity exposure. Thus we have investigated the energy response for the IP, which can be utilized for microbeam diagnostics.

  18. Analysing data from observer studies in medical imaging research: An introductory guide to free-response techniques

    International Nuclear Information System (INIS)

    Thompson, J.D.; Manning, D.J.; Hogg, P.

    2014-01-01

    Observer performance methods maintain their place in radiology research, particularly in the assessment of the diagnostic accuracy of new and existing techniques, despite not being fully embraced by the wider audience in medical imaging. The receiver operating characteristic (ROC) paradigm has been widely used in research and the latest location sensitive methods allow an analysis that is closer to the clinical scenario. This paper discusses the underpinning theories behind observer performance assessment, exploring the potential sources of error and the development of the ROC method. The paper progresses by explaining the clinical relevance and statistical suitability of the free-response ROC (FROC) paradigm, and the methodological considerations for those wishing to perform an observer performance study

  19. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  20. Educational response in South Korea to recent advances in imaging modalities

    International Nuclear Information System (INIS)

    Kwon, Dal Gwan

    1986-01-01

    Along with the development of new equipment, the progress made in diagnostics utilizing X-ray images has made both qualitative and quantitative analyses possible. Accordingly, the need is being felt for scientific-technological stance to explore new avenues of development through combined use of various apparatus in the interests of improving the absolute quality of our technology. To do so, extention of the school system to 4 years would be essential, but this may have to be modified to better suit the reality of the individual countries involved. As the education of physicians is being carried on by physicians, so should the leadership in the education of radiological technologists remain in the hands of radiological technologists remain in the hands of radiological technologists. Testing technology and clinical services may be the areas where education based on experience may be effective, and productivity of education may be enhanced through emphasis on reverence for human life and love for fellow human beings, so that the overall efforts may be more oriented to cultivation of ability rather than to the success in the national examinations. The post graduate education must lack nothing in re-equipping radiological technologists with basic technology and scientific knowledge. In order to strike a balance between cultivation of reverence for human life on the one hand and development of scientific knowledge and technological expertise on the other in this age of highly developed science and technology, close ties among radiological technologists within smaller units of organization and spirit of mutual cooperation must be emphasized, and greater emphasis may be in order on making information science and total imagenology appear more affractive to the students by effectively linking basic sciences to applied sciences, and to this end, communication and team work among different academic organizations must be actively pursued

  1. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo.

    Directory of Open Access Journals (Sweden)

    Shengxiang Zhang

    2007-05-01

    Full Text Available In vivo two-photon microscopy was used to image in real time dendrites and their spines in a mouse photothrombotic stroke model that reduced somatosensory cortex blood flow in discrete regions of cortical functional maps. This approach allowed us to define relationships between blood flow, cortical structure, and function on scales not previously achieved with macroscopic imaging techniques. Acute ischemic damage to dendrites was triggered within 30 min when blood flow over >0.2 mm(2 of cortical surface was blocked. Rapid damage was not attributed to a subset of clotted or even leaking vessels (extravasation alone. Assessment of stroke borders revealed a remarkably sharp transition between intact and damaged synaptic circuitry that occurred over tens of mum and was defined by a transition between flowing and blocked vessels. Although dendritic spines were normally ~13 microm from small flowing vessels, we show that intact dendritic structure can be maintained (in areas without flowing vessels by blood flow from vessels that are on average 80 microm away. Functional imaging of intrinsic optical signals associated with activity-evoked hemodynamic responses in somatosensory cortex indicated that sensory-induced changes in signal were blocked in areas with damaged dendrites, but were present ~400 microm away from the border of dendritic damage. These results define the range of influence that blood flow can have on local cortical fine structure and function, as well as to demonstrate that peri-infarct tissues can be functional within the first few hours after stroke and well positioned to aid in poststroke recovery.

  2. Assessment of the responses to neoadjuvant chemotherapy of osteosarcoma by diffusion-weighted MR image: initial results

    International Nuclear Information System (INIS)

    Shu Min; Du Lianjun; Ding Xiaoyi; Lu Yong; Yan Ling; Jiang Hao; Chen Kemin

    2009-01-01

    Objective: To determine the utility of diffusion-weighted magnetic resonance imaging (MR DWI) in detecting tumor necrosis with histological correlation after neoadjuvant chemotherapy. Methods: Conventional MRI and DWI were obtained from 36 patients with histological proven osteosarcoma. Magnetic resonance examinations were performed in all patients before and after 4 cycles of preoperative neoadjuvant chemotherapy. Apparent diffusion coefficients (ADC) were calculated. The degree of tumor necrosis was assessed using the histological Huvos classification after chemotherapy. t-test was performed for testing changes in ADC value between the 2 groups. P value less than 0.05 were considered as a statistically significant difference. Results: The differences in ADC between viable [(1.06 ± 0.30)x10 -3 mm 2 /s] and necrotic [(2.39 ± 0.44)x10 -3 mm 2 /s] tumor were significant (t = 3.515, P -3 mm 2 /s to (2.27 ± 0.20)x10 -3 mm 2 s, the corresponding value in poor responses was increased from (1.45 ± 0.11)x10 -3 mm 2 /s to (1.83 ± 0.16)x10 -3 mm 2 /s. There was significant difference in changes of ADC values between good responses and poor responses (t = 4.981, P < 0.01). Conclusion: Diffusion-weighted MRI permits recognition of tumor necrosis induced by chemotherapy in osteosarcoma. DWI is correlated directly with tumor necrosis. They have potential utility in evaluating the preoperative chemotherapy response in patients with primary osteosarcoma. (authors)

  3. The dose-response relationship between cumulative lifting load and lumbar disk degeneration based on magnetic resonance imaging findings.

    Science.gov (United States)

    Hung, Yu-Ju; Shih, Tiffany T-F; Chen, Bang-Bin; Hwang, Yaw-Huei; Ma, Li-Ping; Huang, Wen-Chuan; Liou, Saou-Hsing; Ho, Ing-Kang; Guo, Yue L

    2014-11-01

    Lumbar disk degeneration (LDD) has been related to heavy physical loading. However, the quantification of the exposure has been controversial, and the dose-response relationship with the LDD has not been established. The purpose of this study was to investigate the dose-response relationship between lifetime cumulative lifting load and LDD. This was a cross-sectional study. Every participant received assessments with a questionnaire, magnetic resonance imaging (MRI) of the lumbar spine, and estimation of lumbar disk compression load. The MRI assessments included assessment of disk dehydration, annulus tear, disk height narrowing, bulging, protrusion, extrusion, sequestration, degenerative and spondylolytic spondylolisthesis, foramina narrowing, and nerve root compression on each lumbar disk level. The compression load was predicted using a biomechanical software system. A total of 553 participants were recruited in this study and categorized into tertiles by cumulative lifting load (ie, lifting load. The best dose-response relationships were found at the L5-S1 disk level, in which high cumulative lifting load was associated with elevated odds ratios of 2.5 (95% confidence interval [95% CI]=1.5, 4.1) for dehydration and 4.1 (95% CI=1.9, 10.1) for disk height narrowing compared with low lifting load. Participants exposed to intermediate lifting load had an increased odds ratio of 2.1 (95% CI=1.3, 3.3) for bulging compared with low lifting load. The tests for trend were significant. There is no "gold standard" assessment tool for measuring the lumbar compression load. The results suggest a dose-response relationship between cumulative lifting load and LDD. © 2014 American Physical Therapy Association.

  4. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments.

    Science.gov (United States)

    Nwe, Kido; Huang, Ching-Hui; Tsourkas, Andrew

    2013-10-24

    Neoplastic lesions can create a hostile tumor microenvironment with low extracellular pH. It is commonly believed that these conditions can contribute to tumor progression as well as resistance to therapy. We report the development and characterization of a pH-responsive magnetic resonance imaging contrast agent for imaging the acidic tumor microenvironment. The preparation included the conjugation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 1-(2,5-dioxo-1-pyrrolidinyl) ester (DOTA-NHS) to the surface of a water-soluble glycol chitosan (GC) polymer, which contains pH-titrable primary amines, followed by gadolinium complexation (GC-NH2-GdDOTA). GC-NH2-GdDOTA had a chelate-to-polymer ratio of approximately1:24 and a molar relaxivity of 9.1 mM(-1) s(-1). GC-NH2-GdDOTA demonstrated pH-dependent cellular association in vitro compared to the control. It also generated a 2.4-fold enhancement in signal in tumor-bearing mice 2 h postinjection. These findings suggest that glycol chitosan coupled with contrast agents can provide important diagnostic information about the tumor microenvironment.

  5. Quantitative Multi-Parametric Magnetic Resonance Imaging of Tumor Response to Photodynamic Therapy.

    Directory of Open Access Journals (Sweden)

    Tom J L Schreurs

    Full Text Available The aim of this study was to characterize response to photodynamic therapy (PDT in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome.CT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2 of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2 and apparent diffusion coefficient (ADC were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE MRI was performed to estimate transfer constants (Ktrans and volume fractions of the extravascular extracellular space (ve using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining.The therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h.DCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are

  6. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response.

    Science.gov (United States)

    Chacko, Ann-Marie; Watanabe, Satoru; Herr, Keira J; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M F; Cheung, Yin Bun; Low, Jenny G H; Vasudevan, Subhash G

    2017-05-04

    Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection-associated inflammation biomarker for assessing treatment response during therapeutic intervention trials.

  7. WE-FG-BRA-04: A Portable Confocal Microscope to Image Live Cell Damage Response Induced by Therapeutic Radiation

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, C; Flint, D; Grosshans, D; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Sadetaporn, D [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Asaithamby, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To construct a custom and portable fluorescence confocal laser-scanning microscope (FCLSM) that can be placed in the path of therapeutic radiation beams to study real-time radiation-induced damage response in live cells. Methods: We designed and constructed a portable FCLSM with three laser diodes for excitation (405, 488, and 635 nm). An objective lens focuses the excitation light and collects fluorescence from the sample. A pair of galvanometer mirrors scans/collects the laser beam/fluorescence along the focal plane (x/y-directions). A stepper motor stage scans in the axial direction and positions the x/y of the image field. Barrier filters and dichroic mirrors are used to route the spectral emission bands to the appropriate photodetector. An avalanche photodiode collects near-infrared fluorescence; a photodiode collects back-reflected 635 nm light; and a photomultiplier tube collects green fluorescence in the range of eGFP/eYFP. A 200-µm diameter pinhole was used to implement the confocal geometry for near-infrared and red channels and a 150-µm diameter pinhole for the green channel. Data acquisition and system control were achieved using a high-throughput data acquisition card. In-house software developed in LabVIEW was used to control the hardware, collect data from the photodetectors and reconstruct the confocal images. Results: 6 frames/s can be acquired for a 25 µm{sup 2} (128×128 pixels) field of view, visualizing the entire volume of the cell nucleus (∼10 µm depth) in <10 s. To demonstrate the usefulness of our FCLSM, we imaged gold nanoshells in live cells, radiation-induced damage in fibrosarcoma cells expressing eGFP tagged to a DNA repair protein, and neurons expressing eGFP. The system can also image particle tracks in fluorescent nuclear track detectors. Conclusion: We developed a versatile and portable FCLSM that allows radiobiology studies in live cells exposed to therapeutic radiation. The FCLSM can be placed in any vertical beam

  8. WE-FG-BRA-04: A Portable Confocal Microscope to Image Live Cell Damage Response Induced by Therapeutic Radiation

    International Nuclear Information System (INIS)

    McFadden, C; Flint, D; Grosshans, D; Sawakuchi, G; Sadetaporn, D; Asaithamby, A

    2016-01-01

    Purpose: To construct a custom and portable fluorescence confocal laser-scanning microscope (FCLSM) that can be placed in the path of therapeutic radiation beams to study real-time radiation-induced damage response in live cells. Methods: We designed and constructed a portable FCLSM with three laser diodes for excitation (405, 488, and 635 nm). An objective lens focuses the excitation light and collects fluorescence from the sample. A pair of galvanometer mirrors scans/collects the laser beam/fluorescence along the focal plane (x/y-directions). A stepper motor stage scans in the axial direction and positions the x/y of the image field. Barrier filters and dichroic mirrors are used to route the spectral emission bands to the appropriate photodetector. An avalanche photodiode collects near-infrared fluorescence; a photodiode collects back-reflected 635 nm light; and a photomultiplier tube collects green fluorescence in the range of eGFP/eYFP. A 200-µm diameter pinhole was used to implement the confocal geometry for near-infrared and red channels and a 150-µm diameter pinhole for the green channel. Data acquisition and system control were achieved using a high-throughput data acquisition card. In-house software developed in LabVIEW was used to control the hardware, collect data from the photodetectors and reconstruct the confocal images. Results: 6 frames/s can be acquired for a 25 µm 2 (128×128 pixels) field of view, visualizing the entire volume of the cell nucleus (∼10 µm depth) in <10 s. To demonstrate the usefulness of our FCLSM, we imaged gold nanoshells in live cells, radiation-induced damage in fibrosarcoma cells expressing eGFP tagged to a DNA repair protein, and neurons expressing eGFP. The system can also image particle tracks in fluorescent nuclear track detectors. Conclusion: We developed a versatile and portable FCLSM that allows radiobiology studies in live cells exposed to therapeutic radiation. The FCLSM can be placed in any vertical beam line

  9. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    Directory of Open Access Journals (Sweden)

    Abhishek Mahajan

    2016-01-01

    Conclusion: Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.

  10. In vivo imaging of therapy response to a novel Pan-HER antibody mixture using FDG and FLT positron emission tomography

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Jensen, Mette M; Kristensen, Lotte K

    2015-01-01

    response obtained by targeting HER family members individually or simultaneously using the novel monoclonal antibody (mAb) mixture Pan-HER. EXPERIMENTAL DESIGN AND RESULTS: Mice with subcutaneous BxPC-3 pancreatic adenocarcinomas were divided into five groups receiving vehicle or mAb mixtures directed...... to Pan-HER therapy. FDG and FLT PET/CT imaging should be considered as imaging biomarkers in clinical evaluation of the Pan-HER mAb mixture....

  11. Investigating the prediction value of multiparametric magnetic resonance imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer

    International Nuclear Information System (INIS)

    Minarikova, Lenka; Bogner, Wolfgang; Zaric, Olgica; Trattnig, Siegfried; Gruber, Stephan; Pinker, Katja; Valkovic, Ladislav; Bago-Horvath, Zsuzsanna; Bartsch, Rupert; Helbich, Thomas H.

    2017-01-01

    To explore the predictive value of parameters derived from diffusion-weighted imaging (DWI) and contrast-enhanced (CE)-MRI at different time-points during neoadjuvant chemotherapy (NACT) in breast cancer. Institutional review board approval and written, informed consent from 42 breast cancer patients were obtained. The patients were investigated before and at three different time-points during neoadjuvant chemotherapy (NACT) using tumour diameter and volume from CE-MRI and ADC values obtained from drawn 2D and segmented 3D regions of interest. Prediction of pathologic complete response (pCR) was evaluated using the area under the curve (AUC) of receiver operating characteristic analysis. There was no significant difference between pathologic complete response and non-pCR in baseline size measures (p > 0.39). Diameter change was significantly different in pCR (p < 0.02) before the mid-therapy point. The best predictor was lesion diameter change observed before mid-therapy (AUC = 0.93). Segmented volume was not able to differentiate between pCR and non-pCR at any time-point. The ADC values from 3D-ROI were not significantly different from 2D data (p = 0.06). The best AUC (0.79) for pCR prediction using DWI was median ADC measured before mid-therapy of NACT. The results of this study should be considered in NACT monitoring planning, especially in MRI protocol designing and time point selection. (orig.)

  12. Investigating the prediction value of multiparametric magnetic resonance imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Minarikova, Lenka; Bogner, Wolfgang; Zaric, Olgica; Trattnig, Siegfried; Gruber, Stephan [Medical University of Vienna, High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Pinker, Katja [Medical University of Vienna, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Memorial Sloan-Kettering Cancer Center, Molecular Imaging and Therapy Service, New York, NY (United States); Valkovic, Ladislav [Medical University of Vienna, High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); University of Oxford, John Radcliffe Hospital, Oxford Centre for Clinical Magnetic Resonance Research, Oxford (United Kingdom); Bago-Horvath, Zsuzsanna [Medical University of Vienna, Department of Pathology, Comprehensive Cancer Center, Vienna (Austria); Bartsch, Rupert [Medical University of Vienna, Clinical Division of Oncology, Department of Medicine I, Vienna (Austria); Helbich, Thomas H. [Medical University of Vienna, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-05-15

    To explore the predictive value of parameters derived from diffusion-weighted imaging (DWI) and contrast-enhanced (CE)-MRI at different time-points during neoadjuvant chemotherapy (NACT) in breast cancer. Institutional review board approval and written, informed consent from 42 breast cancer patients were obtained. The patients were investigated before and at three different time-points during neoadjuvant chemotherapy (NACT) using tumour diameter and volume from CE-MRI and ADC values obtained from drawn 2D and segmented 3D regions of interest. Prediction of pathologic complete response (pCR) was evaluated using the area under the curve (AUC) of receiver operating characteristic analysis. There was no significant difference between pathologic complete response and non-pCR in baseline size measures (p > 0.39). Diameter change was significantly different in pCR (p < 0.02) before the mid-therapy point. The best predictor was lesion diameter change observed before mid-therapy (AUC = 0.93). Segmented volume was not able to differentiate between pCR and non-pCR at any time-point. The ADC values from 3D-ROI were not significantly different from 2D data (p = 0.06). The best AUC (0.79) for pCR prediction using DWI was median ADC measured before mid-therapy of NACT. The results of this study should be considered in NACT monitoring planning, especially in MRI protocol designing and time point selection. (orig.)

  13. Use of an automated digital images system for detecting plant status changes in response to climate change manipulations

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo

    2014-05-01

    climate manipulations: control (no manipulation), warming (overnight cover), and drought (interception of the periodic precipitation) treatments (36 shots x panorama (3 rows x 12 columns) with a degree of overlapping equal to 30%). On each panorama, ROIs (Regions of Interest) focusing major species of the shrubland ecosystem were identified. Then, image analysis was performed to obtain information on vegetation status (i.e. color signals and phenology). The color channel information (digital numbers; DNs) were extracted from the RAW file. The overall brightness (i.e., total RGB DN, green excess index) was also calculated. Finally, the RGB value was correlated with the pattern of phenological development. Preliminary results of this study show that the use of digital images are well-suited to identify phenological pattern of the Mediterranean species. Results of digital images analysis can be a valuable support for ecologists, environmental scientists, and land managers providing information useful to interpret phenological responses of plants to climate change, to validate satellite-based phenology data, and to provide input to adaption strategies plans to climate change.

  14. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay.

    Science.gov (United States)

    Chen, Qian; Liang, Chao; Sun, Xiaoqi; Chen, Jiawen; Yang, Zhijuan; Zhao, He; Feng, Liangzhu; Liu, Zhuang

    2017-05-23

    Abnormal H 2 O 2 levels are closely related to many diseases, including inflammation and cancers. Herein, we simultaneously load HRP and its substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), into liposomal nanoparticles, obtaining a Lipo@HRP&ABTS optical nanoprobe for in vivo H 2 O 2 -responsive chromogenic assay with great specificity and sensitivity. In the presence of H 2 O 2 , colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of H 2 O 2 down to submicromolar concentrations. Using Lipo@HRP&ABTS as an H 2 O 2 -responsive nanoprobe, we could accurately detect the inflammation processes induced by LPS or bacterial infection in which H 2 O 2 is generated. Meanwhile, upon systemic administration of this nanoprobe we realize in vivo photoacoustic imaging of small s.c. tumors (∼2 mm in size) as well as orthotopic brain gliomas, by detecting H 2 O 2 produced by tumor cells. Interestingly, local injection of Lipo@HRP&ABTS further enables differentiation of metastatic lymph nodes from those nonmetastatic ones, based on their difference in H 2 O 2 contents. Moreover, using the H 2 O 2 -dependent strong NIR absorbance of Lipo@HRP&ABTS, tumor-specific photothermal therapy is also achieved. This work thus develops a sensitive H 2 O 2 -responsive optical nanoprobe useful not only for in vivo detection of inflammation but also for tumor-specific theranostic applications.

  15. A multi-parametric imaging investigation of the response of C6 glioma xenografts to MLN0518 (tandutinib treatment.

    Directory of Open Access Journals (Sweden)

    Jessica K R Boult

    the challenges of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors.

  16. A multi-parametric imaging investigation of the response of C6 glioma xenografts to MLN0518 (tandutinib) treatment.

    Science.gov (United States)

    Boult, Jessica K R; Terkelsen, Jennifer; Walker-Samuel, Simon; Bradley, Daniel P; Robinson, Simon P

    2013-01-01

    of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors.

  17. Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps.

    Science.gov (United States)

    Lee, Su Hyun; Lee, Jeong Min; Kim, Kyung Won; Klotz, Ernst; Kim, Se Hyung; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2011-02-01

    to determine the value of dual-energy (DE) scanning with virtual noncontrast (VNC) images and iodine maps in the evaluation of therapeutic response to radiofrequency ablation (RFA) for hepatic tumors. a total of 75 patients with hepatic tumors and who underwent DE computed tomography (CT) after RFA, were enrolled in this study. Our DE CT protocol included precontrast, arterial, and portal phase scans. VNC images and iodine maps were created from 80 to 140 kVp images during the arterial and portal phases. VNC images were then compared with true, noncontrast (TNC) images, and iodine maps were compared with linearly blended images, both qualitatively and quantitatively. For the former comparison, image quality and acceptability of the VNC images as a replacement for TNC images were both rated. The CT numbers of the hepatic parenchyma, ablation zone, and image noise were measured. For the latter comparison, lesion conspicuity of the ablation zone and the additional benefit of integrating the iodine map into the routine protocol, were assessed. Contrast-to-noise ratios (CNR) of the ablation zone-to-liver and aorta-to-liver as well as the CT number differences between the center and the periphery of the ablation zone were calculated. The image quality of the VNC images was rated as good (mean grading score, 1.88) and the level of acceptance was 90% (68/75). The mean CT numbers of the hepatic parenchyma and ablation zone did not differ significantly between the TNC and the VNC images (P > 0.05). The lesion conspicuity of the ablation zone was rated as excellent or good in 97% of the iodine map (73/75), and the additional benefits of the iodine maps were positively rated as better to the same (mean 1.5). The CNR of the aorta-to-liver parenchyma was significantly higher on the iodine map (P = 0.002), and the CT number differences between the center and the periphery of the ablation zone were significantly lower on the iodine map (P VNC images can be an alternative to TNC

  18. Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging

    Science.gov (United States)

    Collura, Giorgio; Gallo, Salvatore; Tranchina, Luigi; Abbate, Boris Federico; Bartolotta, Antonio; d'Errico, Francesco; Marrale, Maurizio

    2018-01-01

    Fricke gel dosimeters produced with a matrix of Poly-vinyl alcohol (PVA) cross-linked with glutaraldehyde (GTA) were analyzed with magnetic resonance imaging (MRI). Previous studies based on spectrophotometry showed valuable dosimetric features of these gels in terms of X-ray sensitivity and diffusion of the ferric ions produced after irradiation. In this study, MRI was performed on the gels at 1.5 T with a clinical scanner in order to optimize the acquisition parameters and obtain high contrast between irradiated and non-irradiated samples. The PVA gels were found to offer good linearity in the range of 0-10 Gy and a stable signal for several hours after irradiation. The sensitivity was about 40% higher compared to gels produced with agarose as gelling agent. The effect of xylenol orange (XO) on the MRI signal was also investigated: gel dosimeters made without XO show higher sensitivity to x-rays than those made with XO. The dosimetric accuracy of the 3D gels was investigated by comparing their MRI response to percentage depth dose and transversal dose profile measurements made with an ionization chamber in a water phantom. The comparison of PVA-GTA gels with and without XO showed that the chelating agent reduces the MRI sensitivity of the gels. Depth-dose and transversal dose profiles acquired by PVA-GTA gels without XO are more accurate and consistent with the ionization chamber data. However, diffusion effects hinder accurate measurements in the steep dose gradient regions and they should be further reduced by modifying the gel matrix and/or by minimizing the delay between irradiation and imaging.

  19. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Inoue

    Full Text Available There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN. The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face and stranger-face images (i.e. images of an unfamiliar face in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years and 15 age- and intelligence quotient (IQ-matched female controls without AN (mean age, 13.1 years participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank. In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  20. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Science.gov (United States)

    Inoue, Takeshi; Sakuta, Yuiko; Shimamura, Keiichi; Ichikawa, Hiroko; Kobayashi, Megumi; Otani, Ryoko; Yamaguchi, Masami K; Kanazawa, So; Kakigi, Ryusuke; Sakuta, Ryoichi

    2015-01-01

    There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN). The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face) and stranger-face images (i.e. images of an unfamiliar face) in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS) to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years) and 15 age- and intelligence quotient (IQ)-matched female controls without AN (mean age, 13.1 years) participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank). In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb) significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  1. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In Vivo Imaging Biomarkers.

    Science.gov (United States)

    Niedzielski, Joshua S; Yang, Jinzhong; Mohan, Radhe; Titt, Uwe; Mirkovic, Dragan; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel R; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2017-11-15

    To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ 2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker. Copyright © 2017 Elsevier

  2. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    International Nuclear Information System (INIS)

    Tohme, Michel S; Qi Jinyi

    2009-01-01

    reconstruction with a MC-based sinogram blurring matrix, and one without a detector response model. The reconstruction time is unaffected by the new method since the blurring component takes a relatively small part of the overall reconstruction time. The proposed method can be applied to other PET scanners for human and animal imaging.

  3. Prognostic value of vasodilator response using rubidium-82 positron emission tomography myocardial perfusion imaging in patients with coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Arasaratnam, Punitha; Sadreddini, Masoud; Yam, Yeung; Kansal, Vinay; Beanlands, Rob S. [University of Ottawa Heart Institute, Canada, Department of Medicine (Cardiology), Ottawa, ON (Canada); Dorbala, Sharmila; Di Carli, Marcelo F. [Brigham and Women' s Hospital, Division of Cardiovascular Medicine and Division of Nuclear Medicine, Boston, MA (United States); Merhige, Michael E. [Niagara Falls Memorial Medical Center, Departments of Cardiology, Internal Medicine, and Nuclear Medicine, Buffalo, NY (United States); Williams, Brent A. [Geisinger Medical Center, Department of Center for Health Research, Danville, PA (United States); Veledar, Emir; Shaw, Leslee J. [Emory University School of Medicine, Department of Medicine, Atlanta, GA (United States); Min, James K. [Weill Cornell Medical College, Department of Radiology and Department of Imaging, New York, NY (United States); Chen, Li [University of Ottawa Heart Institute, Cardiovascular Research Methods Centre, Ottawa, ON (Canada); Ruddy, Terrence D.; Chow, Benjamin J.W. [University of Ottawa Heart Institute, Canada, Department of Medicine (Cardiology), Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); Germano, Guido; Berman, Daniel S. [Cedars-Sinai Medical Center, Department of Imaging, Los Angeles, CA (United States)

    2018-04-15

    Prognostic value of positron emission tomography (PET) myocardial perfusion imaging (MPI) is well established. There is paucity of data on how the prognostic value of PET relates to the hemodynamic response to vasodilator stress. We hypothesize that inadequate hemodynamic response will affect the prognostic value of PET MPI. Using a multicenter rubidium (Rb)-82 PET registry, 3406 patients who underwent a clinically indicated rest/stress PET MPI with a vasodilator agent were analyzed. Patients were categorized as, ''responders'' [increase in heart rate ≥ 10 beats per minute (bpm) and decrease in systolic blood pressure (SBP) ≥10 mmHg], ''partial responders'' (either a change in HR or SBP), and ''non-responders'' (no change in HR or SBP). Primary outcome was all-cause death (ACD), and secondary outcome was cardiac death (CD). Ischemic burden was measured using summed stress score (SSS) and % left ventricular (LV) ischemia. After a median follow-up of 1.68 years (interquartile range = 1.17- 2.55), there were 7.9% (n = 270) ACD and 2.6% (n = 54) CD. Responders with a normal PET MPI had an annualized event rate (AER) of 1.22% (SSS of 0-3) and 1.58% (% LV ischemia = 0). Partial and non-responders had higher AER with worsening levels of ischemic burden. In the presence of severe SSS ≥12 and LV ischemia of ≥10%, partial responders had an AER of 10.79% and 10.36%, compared to non-responders with an AER of 19.4% and 12.43%, respectively. Patient classification was improved when SSS was added to a model containing clinical variables (NRI: 42%, p < 0.001) and responder category was added (NRI: 61%, p < 0.001). The model including clinical variables, SSS and hemodynamic response has good discrimination ability (Harrell C statistics: 0.77 [0.74-0.80]). Hemodynamic response during a vasodilator Rb-82 PET MPI is predictive of ACD. Partial and non-responders may require additional risk stratification leading to

  4. (68)Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections.

    Science.gov (United States)

    Ahtinen, Helena; Kulkova, Julia; Lindholm, Laura; Eerola, Erkki; Hakanen, Antti J; Moritz, Niko; Söderström, Mirva; Saanijoki, Tiina; Jalkanen, Sirpa; Roivainen, Anne; Aro, Hannu T

    2014-01-01

    Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that (68)Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide ((68)Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET). Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, (68)Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter. In group 3, the tibias with implanted sterile catheters showed an increased local uptake of (68)Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). (68)Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The

  5. Use of intravoxel incoherent motion diffusion-weighted MR imaging for assessment of treatment response to invasive fungal infection in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chenggong; Xiong, Wei; Wu, Yuankui; Li, Caixia; Xu, Yikai [Southern Medical University, Department of Medical Imaging Center, Nanfang Hospital, Guangzhou (China); Xu, Jun; Wei, Qi; Feng, Ru; Liu, Qifa [Southern Medical University, Department of Hematology, Nanfang Hospital, Guangzhou (China); Chan, Queenie [Philips Healthcare, New Territories, Hon Kong (China)

    2017-01-15

    The purpose of this study was to determine whether intravoxel incoherent motion (IVIM) -derived parameters and apparent diffusion coefficient (ADC) could act as imaging biomarkers for predicting antifungal treatment response. Forty-six consecutive patients (mean age, 33.9 ± 13.0 y) with newly diagnosed invasive fungal infection (IFI) in the lung according to EORTC/MSG criteria were prospectively enrolled. All patients underwent diffusion-weighted magnetic resonance (MR) imaging at 3.0 T using 11 b values (0-1000 sec/mm{sup 2}). ADC, pseudodiffusion coefficient D*, perfusion fraction f, and the diffusion coefficient D were compared between patients with favourable (n=32) and unfavourable response (n=14). f values were significantly lower in the unfavourable response group (12.6%±4.4%) than in the favourable response group (30.2%±8.6%) (Z=4.989, P<0.001). However, the ADC, D, and D* were not significantly different between the two groups (P>0.05). Receiver operating characteristic curve analyses showed f to be a significant predictor for differentiation, with a sensitivity of 93.8% and a specificity of 92.9%. IVIM-MRI is potentially useful in the prediction of antifungal treatment response to patients with IFI in the lung. Our results indicate that a low perfusion fraction f may be a noninvasive imaging biomarker for unfavourable response. (orig.)

  6. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala and ventral striatum

    Science.gov (United States)

    Fletcher, PC; Napolitano, A; Skeggs, A; Miller, SR; Delafont, B; Cambridge, VC; de Wit, S; Nathan, PJ; Brooke, A; O’Rahilly, S; Farooqi, IS; Bullmore, ET

    2012-01-01

    We used fMRI to explore brain responses to food images in overweight humans, examining independently the impact of a pre-scan meal (“satiety”) and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly different responses to these manipulations in amygdala, hypothalamus and ventral striatum. Each region was specifically responsive to high calorie compared to low calorie food images. However, the ventral striatal response was attenuated by satiety (but unaffected by sibutramine) while the hypothalamic and amygdala responses were attenuated by drug but unaffected by satiety. Direct assessment of regional interactions confirmed the significance of this double dissociation. We explored the regional responses in greater detail by determining whether they were predictive of eating behaviour and weight change. We observed that across the different regions, the individual-specific magnitude of drug- and satiety-induced modulation was associated with both variables: the sibutramine-induced modulation of the hypothalamic response was correlated with the drug’s impact on both weight and subsequently-measured ad libitum eating. The satiety-induced modulation of striatal response also correlated with subsequent ad lib eating. These results suggest that hypothalamus and amygdala have roles in the control of food intake that are distinct from those of ventral striatum. Furthermore, they support a regionally-specific effect on brain function through which sibutramine exerts its clinical effect. PMID:20980590

  7. The Effect of Service Delivery Performance and Corporate Social Responsibility on Institutional Image and Competitive Advantage and its Implication on Customer Trust (A Survey of Private Hospitals in Solo Raya

    Directory of Open Access Journals (Sweden)

    Yadi Purwanto

    2010-12-01

    repairs service delivery performance, physical facilities, also personnel contact performance to increase corporate social responsibility, to increase institutional image and competitive advantage to increase customer trust.

  8. Pre-operative radiotherapy in soft tissue tumors: Assessment of response by static post-contrast MR imaging compared to histopathology

    International Nuclear Information System (INIS)

    Einarsdottir, H.; Wejde, J.; Bauer, H.C.F.

    2000-01-01

    To evaluate if static post-contrast MR imaging was adequate to assess tumor viability after pre-operative radiotherapy in soft tissue sarcoma. Post-contrast MR imaging of 36 soft tissue sarcomas performed 0 - 54 days (median 13 days) after pre-operative radiotherapy, were retrospectively reviewed and compared to post-operative histopathology reports. The contrast enhancement of the tumor was visually graded as minor, moderate or extensive. From the post-operative histopathology reports, three types of tumor response to radiotherapy were defined: Poor, intermediate or good. The size of the tumors before and after radiation was compared. Even if most viable tumors enhanced more than non-viable tumors, there was major overlapping and significant contrast enhancement could be seen in tumors where histopathological examination revealed no viable tumor tissue. Based on histopathology, there were 12 good responders; 8 of these showed minor, 3 moderate and 1 extensive contrast enhancement on MR imaging. Sixteen tumors had an intermediate response; 3 showed minor, 8 moderate and 5 extensive enhancement. Eight tumors had poor response; none showed minor enhancement, 3 moderate and 5 extensive enhancement. Both increase and Decrease in tumor size was seen in lesions with a good therapy response. Static post-contrast MR imaging cannot reliably assess tumor viability after pre-operative radiotherapy in soft tissue sarcoma. In tumors with no viable tumor tissue, moderate and extensive contrast enhancement can be seen

  9. Effects of registration error on parametric response map analysis: a simulation study using liver CT-perfusion images

    International Nuclear Information System (INIS)

    Lausch, A; Lee, T Y; Wong, E; Jensen, N K G; Chen, J; Lock, M

    2014-01-01

    Purpose: To investigate the effects of registration error (RE) on parametric response map (PRM) analysis of pre and post-radiotherapy (RT) functional images. Methods: Arterial blood flow maps (ABF) were generated from the CT-perfusion scans of 5 patients with hepatocellular carcinoma. ABF values within each patient map were modified to produce seven new ABF maps simulating 7 distinct post-RT functional change scenarios. Ground truth PRMs were generated for each patient by comparing the simulated and original ABF maps. Each simulated ABF map was then deformed by different magnitudes of realistic respiratory motion in order to simulate RE. PRMs were generated for each of the deformed maps and then compared to the ground truth PRMs to produce estimates of RE-induced misclassification. Main findings: The percentage of voxels misclassified as decreasing, no change, and increasing, increased with RE For all patients, increasing RE was observed to increase the number of high post-RT ABF voxels associated with low pre-RT ABF voxels and vice versa. 3 mm of average tumour RE resulted in 18-45% tumour voxel misclassification rates. Conclusions: RE induced misclassification posed challenges for PRM analysis in the liver where registration accuracy tends to be lower. Quantitative understanding of the sensitivity of the PRM method to registration error is required if PRMs are to be used to guide radiation therapy dose painting techniques.

  10. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  11. Synovial response to intraarticular injections of hyaluronate in frozen shoulder. A quantitative assessment with dynamic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tamai, Kazuya; Mashitori, Hirotaka; Ohno, Wataru; Hamada, Jun'ichiro; Sakai, Hiroya; Saotome, Koichi

    2004-01-01

    To clarify the response of frozen shoulder (FS) to intraarticular injections of high-molecular-weight sodium hyaluronate (HA), a mixture of 2.5 ml of HA and 1.5 ml of 1% lidocaine was injected into the glenohumeral joint of 11 patients with FS, 8 of whom received five weekly injections. The patients were assessed using the Japanese Orthopaedic Association shoulder score (JOA score) before the first injection, 1 week after the first injection, and 1 week after the final injection. Following each clinical evaluation, the patients underwent dynamic magnetic resonance imaging enhanced with Gd-DTPA, and the coefficient of enhancement (CE) in the glenohumeral synovium was calculated, with the examiners blinded to the clinical information. The JOA score tended to be greater and the CE smaller after injection than before injection. The changes in the CE following both single and repeated injections were negatively correlated with changes in the JOA score. Thus, clinical improvement in patients with FS was associated with a decrease in the CE. Because the CE depends on the degree of synovitis, the therapeutic effect of intraarticular HA injection for FS results, at least in part, from suppression of synovitis in the glenohumeral joint through an antiinflammatory effect. (author)

  12. Fast responsive fluorescence turn-on sensor for Cu2+ and its application in live cell imaging

    International Nuclear Information System (INIS)

    Wang Jiaoliang; Li Hao; Long Liping; Xiao Guqing; Xie Dan

    2012-01-01

    A new effective fluorescent sensor based on rhodamine was synthesized, which was induced by Cu 2+ in aqueous media to produce turn-on fluorescence. The new sensor 1 exhibited good selectivity for Cu 2+ over other heavy and transition metal (HTM) ions in H 2 O/CH 3 CN(7:3, v/v). Upon addition of Cu 2+ , a remarkable color change from colorless to pink was easily observed by the naked eye, and the dramatic fluorescence turn-on was corroborated. Furthermore, kinetic assay indicates that sensor 1 could be used for real-time tracking of Cu 2+ in cells and organisms. In addition, the turn-on fluorescent change upon the addition of Cu 2+ was also applied in bioimaging. - Highlights: ► A new effective fluorescent sensor based on rhodamine was developed to detect Cu 2+ . ► The sensor exhibited fast response, good selectivity at physiological pH condition. ► The sensor was an effective intracellular Cu 2+ ion imaging agent.

  13. Fast responsive fluorescence turn-on sensor for Cu{sup 2+} and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaoliang, E-mail: wangjiaoliang@126.com [College of Chemistry and Environment Engineering, Hunan City University, Yiyang 413000 (China); Li Hao; Long Liping; Xiao Guqing; Xie Dan [College of Chemistry and Environment Engineering, Hunan City University, Yiyang 413000 (China)

    2012-09-15

    A new effective fluorescent sensor based on rhodamine was synthesized, which was induced by Cu{sup 2+} in aqueous media to produce turn-on fluorescence. The new sensor 1 exhibited good selectivity for Cu{sup 2+} over other heavy and transition metal (HTM) ions in H{sub 2}O/CH{sub 3}CN(7:3, v/v). Upon addition of Cu{sup 2+}, a remarkable color change from colorless to pink was easily observed by the naked eye, and the dramatic fluorescence turn-on was corroborated. Furthermore, kinetic assay indicates that sensor 1 could be used for real-time tracking of Cu{sup 2+} in cells and organisms. In addition, the turn-on fluorescent change upon the addition of Cu{sup 2+} was also applied in bioimaging. - Highlights: Black-Right-Pointing-Pointer A new effective fluorescent sensor based on rhodamine was developed to detect Cu{sup 2+}. Black-Right-Pointing-Pointer The sensor exhibited fast response, good selectivity at physiological pH condition. Black-Right-Pointing-Pointer The sensor was an effective intracellular Cu{sup 2+} ion imaging agent.

  14. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy.

    Science.gov (United States)

    Feng, Qianhua; Zhang, Wanxia; Yang, Xuemei; Li, Yuzhen; Hao, Yongwei; Zhang, Hongling; Hou, Lin; Zhang, Zhenzhong

    2018-03-01

    Herein, a pH/ultrasound dual-responsive gas generator is reported, which is based on mesoporous calcium carbonate (MCC) nanoparticles by loading sonosensitizer (hematoporphyrin monomethyl ether (HMME)) and modifying surface hyaluronic acid (HA). After pinpointing tumor regions with prominent targeting efficiency, HMME/MCC-HA decomposes instantaneously under the cotriggering of tumoral inherent acidic condition and ultrasound (US) irradiation, concurrently accompanying with CO 2 generation and HMME release with spatial/temporal resolution. Afterward, the CO 2 bubbling and bursting effect under US stimulus results in cavitation-mediated irreversible cell necrosis, as well as the blood vessel destruction to further occlude the blood supply, providing a "bystander effect." Meanwhile, reactive oxygen species generated from HMME can target the apoptotic pathways for effective sonodynamic therapy. Thus, the combination of apoptosis/necrosis with multimechanisms consequently results in a remarkable antitumor therapeutic efficacy, simultaneously minimizing the side effects on major organs. Moreover, the echogenic property of CO 2 make the nanoplatform as a powerful ultrasound contrast agent to identify cancerous lesions. Based on the above findings, such all-in-one drug delivery platform of HMME/MCC-HA is utilized to provide the US imaging guidance for therapeutic inertial cavitation and sonodynamic therapy simultaneously, which highlights possibilities of advancing cancer theranostics in biomedical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Imaging response is highly predictive of survival of malignant glioma patients treated with standard or hyperfractionated RT and carmustine in RTOG 9006

    International Nuclear Information System (INIS)

    Curran, Walter J.; Scott, Charles B.; Yung, W.K. Alfred; Scarantino, Charles; Urtasun, Raul; Movsas, Benjamin; Jones, Christopher; Simpson, Joseph; Fischbach, A. Jennifer; Petito, Carol; Nelson, James

    1996-01-01

    Objectives: Limited information is available correlating response to initial therapy and survival outcome among malignant glioma patients. This analysis was conducted to determine the response rate of malignant glioma patients to either standard (STN) or hyperfractionated (HFX) RT and carmustine and to correlate the tumor response status with survival. Patients and Methods: From (11(90)) to (3(94)), 712 newly diagnosed malignant glioma patients were registered on RTOG 9006 and randomized between hyperfractionated RT of 72.0 Gy in 1.2 Gy twice-daily fractions and 60.0 Gy in 2.0 Gy daily fractions. All patients received 80 mg/m-2 of carmustine D 1-3 q 8 wks. As reported in the 1996 Proceedings of the Amer Soc Clin Oncol (Abstr no. 280), there was no survival benefit observed for the HFX regimen. 529 of the 686 eligible patients had pre-operative, post-operative, and post-RT contrast-enhanced MR and/or CT scans available for central review of tumor and peritumoral edema measurements. Response status was judged by applying standard response criteria to a comparison of tumor measurements on follow-up and post-operative films. Results: Of the 529 patients evaluated for imaging response, the complete and partial response rates were 14% and 20%, respectively. A significant correlation between response and survival was observed (P<0.0001). Variables which predicted for a better tumor response were anaplastic astrocytoma vs glioblastoma multiforme histology, better performance status, more extensive resection, and a more favorable Recursive Partitioning and Amalgamation class assignment (JNCI 85:704-710, 1993). Conclusion: The objective response rate for malignant glioma patients to RTOG 9006 therapy was 34%, and survival outcome is strongly correlated with tumor response status. These observations justify the testing of aggressive salvage strategies for patients without imaging evidence of response following initial therapy

  16. Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, G., E-mail: gsdunha@sandia.gov; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2016-11-15

    Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

  17. Imaging biomarkers to predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

    Science.gov (United States)

    Shah, Chirayu; Miller, Todd W.; Wyatt, Shelby K.; McKinley, Eliot T.; Olivares, Maria Graciela; Sanchez, Violeta; Nolting, Donald D.; Buck, Jason R.; Zhao, Ping; Ansari, M. Sib; Baldwin, Ronald M.; Gore, John C.; Schiff, Rachel; Arteaga, Carlos L.; Manning, H. Charles

    2010-01-01

    Purpose To evaluate non-invasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and non-responding tumor-bearing cohorts. Experimental Design Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin-V accumulation), glucose metabolism ([18F]FDG-PET), and proliferation ([18F]FLT-PET) were evaluated throughout a bi-weekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical (IHC) analysis of cleaved caspase-3, phosphorylated AKT (p-AKT) and Ki67. Results NIR700-Annexin-V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed, but not in non-responding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and IHC analysis. Conclusions Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2(+) tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not appear to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer. PMID:19584166

  18. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    International Nuclear Information System (INIS)

    Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S.L.; Shrivastava, S.K.; Desekar, Naresh; Thakur, M.H.

    2015-01-01

    vaginal vault/local recurrence following primary surgery for cervical cancer. With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future

  19. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    Science.gov (United States)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the LWD) data allowed us to characterize structural, petrophysical and mineralogical properties at fracture and

  20. Evaluation of Magnetic Resonance Imaging Responsiveness in Active Psoriatic Arthritis at Multiple Timepoints during the First 12 Weeks of Antitumor Necrosis Factor Therapy.

    Science.gov (United States)

    Feletar, Marie; Hall, Stephen; Bird, Paul

    2016-01-01

    To assess the responsiveness of high- and low-field extremity magnetic resonance imaging (MRI) variables at multiple timepoints in the first 12 weeks post-antitumor necrosis factor (anti-TNF) therapy initiation in patients with psoriatic arthritis (PsA) and active dactylitis. Twelve patients with active PsA and clinical evidence of dactylitis involving at least 1 digit were recruited. Patients underwent sequential high-field conventional (1.5 Tesla) and extremity low-field MRI (0.2 Tesla) of the affected hand or foot, pre- and postgadolinium at baseline (pre-TNF), 2 weeks (post-TNF), 6 weeks, and 12 weeks. A blinded observer scored all images on 2 occasions using the PsA MRI scoring system. Eleven patients completed the study, but only 6 patients completed all high-field and low-field MRI assessments. MRI scores demonstrated rapid response to TNF inhibition with score reduction in tenosynovitis, synovitis, and osteitis at 2 weeks. Intraobserver reliability was good to excellent for all variables. High-field MRI demonstrated greater sensitivity to tenosynovitis, synovitis, and osteitis and greater responsiveness to change posttreatment. Treatment responses were maintained to 12 weeks. This study demonstrates the use of MRI in detecting early response to biologic therapy. MRI variables of tenosynovitis, synovitis, and osteitis demonstrated responsiveness posttherapy with high-field scores more responsive to change than low-field scores.

  1. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience.

    Science.gov (United States)

    Patel, Uday B; Taylor, Fiona; Blomqvist, Lennart; George, Christopher; Evans, Hywel; Tekkis, Paris; Quirke, Philip; Sebag-Montefiore, David; Moran, Brendan; Heald, Richard; Guthrie, Ashley; Bees, Nicola; Swift, Ian; Pennert, Kjell; Brown, Gina

    2011-10-01

    To assess magnetic resonance imaging (MRI) and pathologic staging after neoadjuvant therapy for rectal cancer in a prospectively enrolled, multicenter study. In a prospective cohort study, 111 patients who had rectal cancer treated by neoadjuvant therapy were assessed for response by MRI and pathology staging by T, N and circumferential resection margin (CRM) status. Tumor regression grade (TRG) was also assessed by MRI. Overall survival (OS) was estimated by using the Kaplan-Meier product-limit method, and Cox proportional hazards models were used to determine associations between staging of good and poor responders on MRI or pathology and survival outcomes after controlling for patient characteristics. On multivariate analysis, the MRI-assessed TRG (mrTRG) hazard ratios (HRs) were independently significant for survival (HR, 4.40; 95% CI, 1.65 to 11.7) and disease-free survival (DFS; HR, 3.28; 95% CI, 1.22 to 8.80). Five-year survival for poor mrTRG was 27% versus 72% (P = .001), and DFS for poor mrTRG was 31% versus 64% (P = .007). Preoperative MRI-predicted CRM independently predicted local recurrence (LR; HR, 4.25; 95% CI, 1.45 to 12.51). Five-year survival for poor post-treatment pathologic T stage (ypT) was 39% versus 76% (P = .001); DFS for the same was 38% versus 84% (P = .001); and LR for the same was 27% versus 6% (P = .018). The 5-year survival for involved pCRM was 30% versus 59% (P = .001); DFS, 28 versus 62% (P = .02); and LR, 56% versus 10% (P = .001). Pathology node status did not predict outcomes. MRI assessment of TRG and CRM are imaging markers that predict survival outcomes for good and poor responders and provide an opportunity for the multidisciplinary team to offer additional treatment options before planning definitive surgery. Postoperative histopathology assessment of ypT and CRM but not post-treatment N status were important postsurgical predictors of outcome.

  2. Therapeutic response assessment of percutaneous radiofrequency ablation for hepatocellular carcinoma: Utility of contrast-enhanced agent detection imaging

    International Nuclear Information System (INIS)

    Kim, Chan Kyo; Choi, Dongil; Lim, Hyo K.; Kim, Seung Hoon; Lee, Won Jae; Kim, Min Ju; Lee, Ji Yeon; Jeon, Yong Hwan; Lee, Jongmee; Lee, Soon Jin; Lim, Jae Hoon

    2005-01-01

    Purpose: To assess the utility of contrast-enhanced agent detection imaging (ADI) in the assessment of the therapeutic response to percutaneous radiofrequency (RF) ablation in patients with hepatocellular carcinoma (HCC). Materials and methods: Ninety patients with a total of 97 nodular HCCs (mean, 2.1 ± 1.3 cm; range, 1.0-5.0 cm) treated with percutaneous RF ablation under the ultrasound guidance were evaluated with contrast-enhanced ADI after receiving an intravenous bolus injection of a microbubble contrast agent (SH U 508A). We obtained serial contrast-enhanced ADI images during the time period from 15 to 90 s after the initiation of the bolus contrast injection. All of the patients underwent a follow-up four-phase helical CT at 1 month after RF ablation, which was then repeated at 2-4 month intervals during a period of at least 12 months. The results of the contrast-enhanced ADI were compared with those of the follow-up CT in terms of the presence or absence of residual unablated tumor and local tumor progression in the treated lesions. Results: On contrast-enhanced ADI, technical success was obtained in 94 (97%) of the 97 HCCs, while residual unablated tumors were found in three HCCs (3%). Two of the three tumors that were suspicious (was not proven) for incomplete ablation were subjected to additional RF ablation. The remaining one enhancing lesion that was suspicious of a residual tumor on contrast-enhanced ADI was revealed to be reactive hyperemia at the 1-month follow-up CT. Therefore; the diagnostic concordance between the contrast-enhanced ADI and 1-month follow-up CT was 99%. Of the 94 ablated HCCs without residual tumors on both the contrast-enhanced ADI and 1-month follow-up CT after the initial RF ablation, five (5%) had CT findings of local tumor progression at a subsequent follow-up CT. Conclusion: Despite its limitations in predicting local tumor progression in the treated tumors, contrast-enhanced ADI is potentially useful for evaluating the

  3. Predictors of vulnerability to reduced body image satisfaction and psychological wellbeing in response to exposure to idealized female media images in adolescent girls.

    Science.gov (United States)

    Durkin, Sarah J; Paxton, Susan J

    2002-11-01

    Predictors of change in body satisfaction, depressed mood, anxiety and anger, were examined following exposure to idealized female advertising images in Grades 7 and 10 girls. Stable body dissatisfaction, physical appearance comparison tendency, internalization of thin ideal, self-esteem, depression, identity confusion and body mass index (BMI) were assessed. One week later, participants viewed magazine images, before and after which they completed assessments of state body satisfaction, state depression, state anxiety and state anger. Participants were randomly allocated to view either images of idealized females (experimental condition) or fashion accessories (control condition). For both grades, there was a significant decrease in state body satisfaction and a significant increase in state depression attributable to viewing the female images. In Grade 7 girls in the experimental condition, decrease in state body satisfaction was predicted by stable body dissatisfaction and BMI, while significant predictors of decreases in the measures of negative affect included internalization of the thin-ideal and appearance comparison. In Grade 10 girls, reduction in state body satisfaction and increase in state depression was predicted by internalization of the thin-ideal, appearance comparison and stable body dissatisfaction. These findings indicate the importance of individual differences in short-term reaction to viewing idealized media images. Copyright 2002 Elsevier Science Inc.

  4. Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment.

    Science.gov (United States)

    Yamasaki, Fumiyuki; Kurisu, Kaoru; Aoki, Tomokazu; Yamanaka, Masami; Kajiwara, Yoshinori; Watanabe, Yosuke; Takayasu, Takeshi; Akiyama, Yuji; Sugiyama, Kazuhiko

    2012-10-01

    The diagnosis of pseudo-responses after bevacizumab treatment is difficult. Because diffusion-weighted imaging (DWI) is associated with cell density, it may facilitate the differentiation between true- and pseudo-responses. Furthermore, as high b-value DWI is even more sensitive to diffusion, it has been reported to be diagnostically useful in various clinical settings. Between September 2008 and May 2011, 10 patients (5 males, 5 females; age range 6-65 years) with recurrent glioma were treated with bevacizumab. All underwent pre- and post-treatment MRI including T2- or FLAIR imaging, post-gadolinium contrast T1-weighted imaging, and DWI with b-1000 and b-4000. Response rates were evaluated by MacDonald- and by response assessment in neuro-oncology working group (RANO) criteria. We also assessed the response rate by calculating the size of high intensity areas using high b-value diffusion-weighted criteria. Prognostic factors were evaluated using Kaplan-Meier survival curves (log-rank test). It was easier to identify pseudo-responses with RANO- than MacDonald criteria, however the reduction of edema by bevacizumab rendered the early diagnosis of tumor progression difficult by RANO criteria. In some patients with recurrent glioma treated with bevacizumab, high b-value diffusion-weighted criteria did, while MacDonald- and RANO criteria did not identify pseudo-responses at an early point after the start of therapy. High b-value DWI reflects cell density more accurately than regular b-value DWI. Our findings suggest that in patients with recurrent glioma, high b-value diffusion-weighted criteria are useful for the differentiation between pseudo- and true responses to treatment with bevacizumab. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment

    International Nuclear Information System (INIS)

    Yamasaki, Fumiyuki; Kurisu, Kaoru; Aoki, Tomokazu; Yamanaka, Masami; Kajiwara, Yoshinori; Watanabe, Yosuke; Takayasu, Takeshi; Akiyama, Yuji; Sugiyama, Kazuhiko

    2012-01-01

    Background: The diagnosis of pseudo-responses after bevacizumab treatment is difficult. Because diffusion-weighted imaging (DWI) is associated with cell density, it may facilitate the differentiation between true- and pseudo-responses. Furthermore, as high b-value DWI is even more sensitive to diffusion, it has been reported to be diagnostically useful in various clinical settings. Materials and methods: Between September 2008 and May 2011, 10 patients (5 males, 5 females; age range 6–65 years) with recurrent glioma were treated with bevacizumab. All underwent pre- and post-treatment MRI including T2- or FLAIR imaging, post-gadolinium contrast T1-weighted imaging, and DWI with b-1000 and b-4000. Response rates were evaluated by MacDonald- and by response assessment in neuro-oncology working group (RANO) criteria. We also assessed the response rate by calculating the size of high intensity areas using high b-value diffusion-weighted criteria. Prognostic factors were evaluated using Kaplan–Meier survival curves (log-rank test). Results: It was easier to identify pseudo-responses with RANO- than MacDonald criteria, however the reduction of edema by bevacizumab rendered the early diagnosis of tumor progression difficult by RANO criteria. In some patients with recurrent glioma treated with bevacizumab, high b-value diffusion-weighted criteria did, while MacDonald- and RANO criteria did not identify pseudo-responses at an early point after the start of therapy. Discussion and conclusion: High b-value DWI reflects cell density more accurately than regular b-value DWI. Our findings suggest that in patients with recurrent glioma, high b-value diffusion-weighted criteria are useful for the differentiation between pseudo- and true responses to treatment with bevacizumab

  6. Imaging angiogenesis.

    Science.gov (United States)

    Charnley, Natalie; Donaldson, Stephanie; Price, Pat

    2009-01-01

    There is a need for direct imaging of effects on tumor vasculature in assessment of response to antiangiogenic drugs and vascular disrupting agents. Imaging tumor vasculature depends on differences in permeability of vasculature of tumor and normal tissue, which cause changes in penetration of contrast agents. Angiogenesis imaging may be defined in terms of measurement of tumor perfusion and direct imaging of the molecules involved in angiogenesis. In addition, assessment of tumor hypoxia will give an indication of tumor vasculature. The range of imaging techniques available for these processes includes positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), perfusion computed tomography (CT), and ultrasound (US).

  7. Tumor dose-volume response in image-guided adaptive brachytherapy for cervical cancer: A meta-regression analysis.

    Science.gov (United States)

    Mazeron, Renaud; Castelnau-Marchand, Pauline; Escande, Alexandre; Rivin Del Campo, Eleonor; Maroun, Pierre; Lefkopoulos, Dimitri; Chargari, Cyrus; Haie-Meder, Christine

    2016-01-01

    Image-guided adaptive brachytherapy is a high precision technique that allows dose escalation and adaptation to tumor response. Two monocentric studies reported continuous dose-volume response relationships, however, burdened by large confidence intervals. The aim was to refine these estimations by performing a meta-regression analysis based on published series. Eligibility was limited to series reporting dosimetric parameters according to the Groupe Européen de Curiethérapie-European SocieTy for Radiation Oncology recommendations. The local control rates reported at 2-3 years were confronted to the mean D90 clinical target volume (CTV) in 2-Gy equivalent using the probit model. The impact of each series on the relationships was pondered according to the number of patients reported. An exhaustive literature search retrieved 13 series reporting on 1299 patients. D90 high-risk CTV ranged from 70.9 to 93.1 Gy. The probit model showed a significant correlation between the D90 and the probability of achieving local control (p < 0.0001). The D90 associated to a 90% probability of achieving local control was 81.4 Gy (78.3-83.8 Gy). The planning aim of 90 Gy corresponded to a 95.0% probability (92.8-96.3%). For the intermediate-risk CTV, less data were available, with 873 patients from eight institutions. Reported mean D90 intermediate-risk CTV ranged from 61.7 to 69.1 Gy. A significant dose-volume effect was observed (p = 0.009). The D90 of 60 Gy was associated to a 79.4% (60.2-86.0%) local control probability. Based on published data from a high number of patients, significant dose-volume effect relationships were confirmed and refined between the D90 of both CTV and the probability of achieving local control. Further studies based on individual data are required to develop nomograms including nondosimetric prognostic criteria. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. Collateral circulation on perfusion-computed tomography-source images predicts the response to stroke intravenous thrombolysis.

    Science.gov (United States)

    Calleja, A I; Cortijo, E; García-Bermejo, P; Gómez, R D; Pérez-Fernández, S; Del Monte, J M; Muñoz, M F; Fernández-Herranz, R; Arenillas, J F

    2013-05-01

    Perfusion-computed tomography-source images (PCT-SI) may allow a dynamic assessment of leptomeningeal collateral arteries (LMC) filling and emptying in middle cerebral artery (MCA) ischaemic stroke. We described a regional LMC scale on PCT-SI and hypothesized that a higher collateral score would predict a better response to intravenous (iv) thrombolysis. We studied consecutive ischaemic stroke patients with an acute MCA occlusion documented by transcranial Doppler/transcranial color-coded duplex, treated with iv thrombolysis who underwent PCT prior to treatment. Readers evaluated PCT-SI in a blinded fashion to assess LMC within the hypoperfused MCA territory. LMC scored as follows: 0, absence of vessels; 1, collateral supply filling ≤ 50%; 2, between> 50% and < 100%; 3, equal or more prominent when compared with the unaffected hemisphere. The scale was divided into good (scores 2-3) vs. poor (scores 0-1) collaterals. The predetermined primary end-point was a good 3-month functional outcome, while early neurological recovery, transcranial duplex-assessed 24-h MCA recanalization, 24-h hypodensity volume and hemorrhagic transformation were considered secondary end-points. Fifty-four patients were included (55.5% women, median NIHSS 10), and 4-13-23-14 patients had LMC score (LMCs) of 0-1-2-3, respectively. The probability of a good long-term outcome augmented gradually with increasing LMCs: (0) 0%; (1) 15.4%; (2) 65.2%; (3) 64.3%, P = 0.004. Good-LMCs was independently associated with a good outcome [OR 21.02 (95% CI 2.23-197.75), P = 0.008]. Patients with good LMCs had better early neurological recovery (P = 0.001), smaller hypodensity volumes (P < 0.001) and a clear trend towards a higher recanalization rate. A higher degree of LMC assessed by PCT-SI predicts good response to iv thrombolysis in MCA ischaemic stroke patients. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  9. The Image Gently in Dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children

    OpenAIRE

    White, SC; Scarfe, WC; Schulze, RKW; Lurie, AG; Douglass, JM; Farman, AG; Law, CS; Levin, MD; Sauer, RA; Valachovic, RW; Zeller, GG; Goske, MJ

    2014-01-01

    © 2014 Published by Elsevier Inc. The Image Gently in Dentistry campaign to be launched in September 2014 is a specific initiative of the Alliance for Radiation Safety in Pediatric Imaging, supported by organized dentistry and dental education as well as many dental specialty organizations. The objective of the campaign is to change practice by increasing awareness of the opportunities to improve radiation protection when imaging children in dental practices. Six practical steps are provided ...

  10. Imaging active lymphocytic infiltration in coeliac disease with iodine-123-interleukin-2 and the response to diet

    International Nuclear Information System (INIS)

    Signore, A.; Chianelli, M.; Annovazzi, A.; Rossi, M.; Greco, M.; Ronga, G.; Picarelli, A.; Maiuri, L.; Britton, K.E.

    2000-01-01

    Coeliac disease is diagnosed by the presence of specific antibodies and a jejunal biopsy showing mucosal atrophy and mononuclear cell infiltration. Mucosal cell-mediated immune response is considered the central event in the pathogenesis of coeliac disease, and untreated coeliac patients show specific features of T-cell activation in the small intestine. Here we describe the use of iodine-123-interleukin-2 scintigraphy in coeliac patients as a non-invasive tool for detection of lymphocytic infiltration in the small bowel and its use for therapy follow-up, and we demonstrate the specificity of binding of labelled-IL2 to activated lymphocytes by ex-vivo autoradiography of jejunal biopsies. 123 I-IL2 was administered i.v. [74 MBq (2 mCi)], and gamma camera images were acquired after 1 h. Ten patients were studied with 123 I-IL2 scintigraphy at diagnosis and seven were also investigated after 12-19 months of gluten-free diet. Results were expressed as target-to-background radioactivity ratios in six different bowel regions before and after the diet. At the time of diagnosis all patients showed a significantly higher bowel uptake of 123 I-IL2 than normal subjects (P 2 =0.66; P=0.008). Autoradiography of jejunal biopsies confirmed that labelled-IL2 only binds to activated T-lymphocytes infiltrating the gut mucosa. After 1 year of the diet, bowel uptake of 123 I-IL2 significantly decreased in five out of six regions (P 123 I-IL2 scintigraphy is a sensitive non-invasive technique for assessing in vivo the presence of activated mononuclear cells in the bowel of patients affected by coeliac disease. Unlike jejunal biopsy, this method provides information from the whole intestine and gives a non-invasive measure of the effectiveness of the gluten-free diet. (orig.)

  11. Intravital imaging of a massive lymphocyte response in the cortical dura of mice after peripheral infection by trypanosomes.

    Directory of Open Access Journals (Sweden)

    Jonathan A Coles

    2015-04-01

    Full Text Available Peripheral infection by Trypanosoma brucei, the protozoan responsible for sleeping sickness, activates lymphocytes, and, at later stages, causes meningoencephalitis. We have videoed the cortical meninges and superficial parenchyma of C56BL/6 reporter mice infected with T.b.brucei. By use of a two-photon microscope to image through the thinned skull, the integrity of the tissues was maintained. We observed a 47-fold increase in CD2+ T cells in the meninges by 12 days post infection (dpi. CD11c+ dendritic cells also increased, and extravascular trypanosomes, made visible either by expression of a fluorescent protein, or by intravenous injection of furamidine, appeared. The likelihood that invasion will spread from the meninges to the parenchyma will depend strongly on whether the trypanosomes are below the arachnoid membrane, or above it, in the dura. Making use of optical signals from the skull bone, blood vessels and dural cells, we conclude that up to 40 dpi, the extravascular trypanosomes were essentially confined to the dura, as were the great majority of the T cells. Inhibition of T cell activation by intraperitoneal injection of abatacept reduced the numbers of meningeal T cells at 12 dpi and their mean speed fell from 11.64 ± 0.34 μm/min (mean ± SEM to 5.2 ± 1.2 μm/min (p = 0.007. The T cells occasionally made contact lasting tens of minutes with dendritic cells, indicative of antigen presentation. The population and motility of the trypanosomes tended to decline after about 30 dpi. We suggest that the lymphocyte infiltration of the meninges may later contribute to encephalitis, but have no evidence that the dural trypanosomes invade the parenchyma.

  12. Osteogenic sarcoma : imaging advances

    International Nuclear Information System (INIS)

    Gooding, C.A.

    1995-01-01

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.)

  13. Osteogenic sarcoma : imaging advances

    Energy Technology Data Exchange (ETDEWEB)

    Gooding, C A [California Univ., San Francisco, CA (United States)

    1996-12-31

    The contents are classification of osteosarcoma, radiographic appearance, radionuclide imaging, PET - positron emission tomography scanning, arteriography, computed tomography, MRI imaging, response of chemotherapy (43 refs.).

  14. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    Science.gov (United States)

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P textural analysis can provide nonresponder, partial-responder, and complete-responder patient identification with higher sensitivity (76%-92%) than any SUV measurement. Textural features of tumor metabolic distribution extracted from baseline (18)F-FDG PET images allow for the best stratification of esophageal carcinoma patients in the context of therapy-response prediction.

  15. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    Energy Technology Data Exchange (ETDEWEB)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg [Helmholtz-Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, PET Center, Dresden (Germany)

    2015-05-18

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  16. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    International Nuclear Information System (INIS)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg

    2015-01-01

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  17. Gender Related Differences in Response to “In Favor of Myself” Wellness Program to Enhance Positive Self & Body Image among Adolescents

    Science.gov (United States)

    Golan, Moria; Hagay, Noa; Tamir, Snait

    2014-01-01

    Background Physical, neurological and psychological changes are often experienced differently by male and female adolescents. Positive self-esteem, emotional well-being, school achievements, and family connectedness are considered as protective factors against health-compromising behaviors. This study examines the gender differences in respect to the effect of a school-based interactive wellness program – “In Favor of Myself” – on self-image, body image, eating attitudes and behaviors of young adolescents. Methods Two hundred and ten adolescents (mean age 13.5) participated in the intervention group, 55% were girls and 45% boys. Program consisted of eight 90-minutes structured sessions integrated into a regular school coping skills curriculum. The program focused on self-esteem, self-image, body image, media literacy and cognitive dissonance. The overall impact of the program and the study protocol were previously published. Results Overall, there are gender related differences in respect to body image and self-image in young adolescents in response to “In Favor of Myself”. Compared to boys, girls reported at baseline higher self-esteem, being more contingent by appearance, and their self-image was more influenced by popularity, appearance, interpersonal communication and admired people. Furthermore girls presented greater gap between current body figure and perceived ideal figure. Not only were girls more dissatisfied with their body, but they were more active in attempts to become and/or remain “thin”. At program termination, gender × time effect was detected in reduction of self-worth contingent by others, change in importance given to achievements at schools, parents' perceptions, as well as the impact of comparisons to friends and family members on self-image. Conclusions Girls exhibited more gains than boys from ‘In Favor of Myself’ which raise the questions about how effective would be the program when delivered in mixed gender groups vs

  18. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    Science.gov (United States)

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  19. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  20. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  1. Dayside magnetospheric and ionospheric responses to a foreshock transient on June 25, 2008: 2. 2-D evolution based on dayside auroral imaging

    OpenAIRE

    Wang, Boyi; Nishimura, Yukitoshi; Hietala, Heli; Shen, Xiao-Chen; Shi, Quanqi; Zhang, Hui; Lyons, Larry; Zou, Ying; Angelopoulos, Vassilis; Ebihara, Yusuke; Weatherwax, Allan

    2018-01-01

    The foreshock region involves localized and transient structures such as foreshock cavities and hot flow anomalies due to solar wind-bow shock interactions, and foreshock transients have been shown to lead to magnetospheric and ionospheric responses. In this paper, the interaction between a foreshock transient and the magnetosphere-ionosphere system is investigated using dayside aurora imagers revealing structures and propagation in greater detail than previously possible. A foreshock transie...

  2. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  3. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  4. Imaging active lymphocytic infiltration in coeliac disease with iodine-123-interleukin-2 and the response to diet

    Energy Technology Data Exchange (ETDEWEB)

    Signore, A.; Chianelli, M.; Annovazzi, A.; Rossi, M.; Greco, M.; Ronga, G.; Picarelli, A. [Nuclear Medicine Unit (Nu.M.E.D. Group) and Gastroenterology Unit, Department of Clinical Sciences, University of Rome ' ' La Sapienza' ' (Italy); Maiuri, L. [Inst. of Paediatrics, Children' s Hospital Posilipon, University ' ' Federico II' ' , Naples (Italy); Britton, K.E. [Dept. of Nuclear Medicine, St. Bartholomew' s Hospital, London (United Kingdom)

    2000-01-01

    Coeliac disease is diagnosed by the presence of specific antibodies and a jejunal biopsy showing mucosal atrophy and mononuclear cell infiltration. Mucosal cell-mediated immune response is considered the central event in the pathogenesis of coeliac disease, and untreated coeliac patients show specific features of T-cell activation in the small intestine. Here we describe the use of iodine-123-interleukin-2 scintigraphy in coeliac patients as a non-invasive tool for detection of lymphocytic infiltration in the small bowel and its use for therapy follow-up, and we demonstrate the specificity of binding of labelled-IL2 to activated lymphocytes by ex-vivo autoradiography of jejunal biopsies. {sup 123}I-IL2 was administered i.v. [74 MBq (2 mCi)], and gamma camera images were acquired after 1 h. Ten patients were studied with {sup 123}I-IL2 scintigraphy at diagnosis and seven were also investigated after 12-19 months of gluten-free diet. Results were expressed as target-to-background radioactivity ratios in six different bowel regions before and after the diet. At the time of diagnosis all patients showed a significantly higher bowel uptake of {sup 123}I-IL2 than normal subjects (P<0.003 in all regions). A significant correlation was found between jejunal radioactivity and the number of IL2R+ve lymphocytes per millimetre of jejunal mucosa as detected by immunostaining of jejunal biopsy (r{sup 2}=0.66; P=0.008). Autoradiography of jejunal biopsies confirmed that labelled-IL2 only binds to activated T-lymphocytes infiltrating the gut mucosa. After 1 year of the diet, bowel uptake of {sup 123}I-IL2 significantly decreased in five out of six regions (P<0.03), although two patients still had a positive IL2 scintigraphy in one region. We conclude that {sup 123}I-IL2 scintigraphy is a sensitive non-invasive technique for assessing in vivo the presence of activated mononuclear cells in the bowel of patients affected by coeliac disease. Unlike jejunal biopsy, this method provides

  5. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    Science.gov (United States)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  6. The assessment of breast cancer response to neoadjuvant chemotherapy: comparison of magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Park, Jeong Seon; Moon, Woo Kyung; Lyou, Chae Yeon; Cho, Nariya; Kang, Keon Wook; Chung, June-Key

    2011-01-01

    Background: Neoadjuvant chemotherapy for locally advanced breast cancer is a widely accepted treatment. For assessment of the tumor response after chemotherapy, both magnetic resonance imaging (MRI) and 18 F-fluorodeoxyglucose positron emission tomography (PET) are promising methods. Purpose: To retrospectively compare MRI and PET in the assessment of tumor response to neoadjuvant chemotherapy for primary breast cancer with the pathologic response as the reference standard. Material and Methods: Between August 2006 and May 2008, 32 women with breast cancer underwent concurrent MRI and PET before and after neoadjuvant chemotherapy. For response assessment, we calculated the changes in the maximum diameters of the tumor (ΔDmax) on MRI, and the changes in the standard uptake values (ΔSUV) on PET. The correlation between the ΔDmax and ΔSUV was analyzed using Pearson's correlation coefficient. The correspondence rates between each imaging modality and pathologic assessment were calculated. For prediction of the pathologic complete response (pCR), the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were analyzed using the McNemar test. Results: The pathologic assessment of tumor response to neoadjuvant chemotherapy identified eight complete responses (25.0%), 10 partial responses (31.2%), and 14 non-responses (43.8%). The change in size on MRI was moderately correlated with the change in SUV on PET (r = 0.574, p = 0.001). The correspondence rate of response assessment was 75.0% (24/32) between MRI and pathologic response and 53.1% (17/32) between PET and pathologic response. For the pCR, specificity (95.8% vs. 62.5%) and PPV (83.3% vs. 47.1%) were statistically higher on MRI than PET (p < 0.05), while sensitivity (100.0% vs. 62.5%) and NPV (100.0% vs. 88.5%) on PET tended to be higher than MRI. Conclusion: Before and after neoadjuvant chemotherapy for breast cancer, the ΔDmax of MRI correlated moderately with the

  7. Image, Image, Image

    Science.gov (United States)

    Howell, Robert T.

    2004-01-01

    With all the talk today about accountability, budget cuts, and the closing of programs in public education, teachers cannot overlook the importance of image in the field of industrial technology. It is very easy for administrators to cut ITE (industrial technology education) programs to save school money--money they might shift to teaching the…

  8. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    International Nuclear Information System (INIS)

    Zhang, Xuezhu; Thiessen, Jonathan D; Goertzen, Andrew L; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr

    2013-01-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  9. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Kang, Eun Bi [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Mazrad, Zihnil Adha Islamy [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Lee, Gibaek [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); In, Insik [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of)

    2017-02-01

    Here, we report a pH- and thermo-responsive fluorescent nanomaterial of functionalized reduced graphene oxide (rGO) with cross-linked polymer produced via catechol-boronate diol binding mechanism. When conjugated with the hydrophobic dye boron dipyrromethane (BODIPY), this material can act as a dual-responsive nanoplatform for cells imaging. 2-Chloro-3′,4′-dihydroxyacetophenone (CCDP)-quaternized-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [C-PDN] was cross-linked with BODIPY and 4-chlorophenyl boronic acid (BA)-quaternized-poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [BB-PPDN]. The GO was then reduced by the catechol group in the cross-linked polymer to synthesize rGO nanoparticles, which able to stabilize the quenching mechanism. This nanoplatform exhibits intense fluorescence at acidic pH and low fluorescence at physiological pH. Confocal laser scanning microscopy (CLSM) images shows bright fluorescence at lysosomal pH and total quench at physiological pH. Therefore, we have successfully developed a promising sensitive bio-imaging probe for identifying cancer cells. - Graphical abstract: [BB-PPDN]-[C-PDN]/rGO nanoparticles with boronic acid-catechol cis-diol binding mechanism toward change in pH demonstrated good biocompatibility and effective quenching for cancer cell detection. - Highlights: • Dual responsive (pH- and thermo) fluorescent nano probe was proposed for cells imaging. • The mechanism was based on cis-diol binding mechanism of boronic acid and catechol. • Reduced graphene oxide was used as quencher on nano-platform. • Detection was controlled dependent on pH based on diol compound of boron chemistry.

  10. Intravital imaging of the immune responses during liver-stage malaria infection: An improved approach for fixing the liver.

    Science.gov (United States)

    Akbari, Masoud; Kimura, Kazumi; Houts, James T; Yui, Katsuyuki

    2016-10-01

    The host-parasite relationship is one of the main themes of modern parasitology. Recent revolutions in science, including the development of various fluorescent proteins/probes and two-photon microscopy, have made it possible to directly visualize and study the mechanisms underlying the interaction between the host and pathogen. Here, we describe our method of preparing and setting-up the liver for our experimental approach of using intravital imaging to examine the interaction between Plasmodium berghei ANKA and antigen-specific CD8 + T cells during the liver-stage of the infection in four dimensions. Since the liver is positioned near the diaphragm, neutralization of respiratory movements is critical during the imaging process. In addition, blood circulation and temperature can be affected by the surgical exposure due to the anatomy and tissue structure of the liver. To control respiration, we recommend anesthesia with isoflurane inhalation at 1% during the surgery. In addition, our protocol introduces a cushion of gauze around the liver to avoid external pressure on the liver during intravital imaging using an inverted microscope, which makes it possible to image the liver tissue for long periods with minimal reduction in the blood circulation and with minimal displacement and tissue damage. The key point of this method is to reduce respiratory movements and external pressure on the liver tissue during intravital imaging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kye Jin; Kim, Ho Sung; Park, Ji Eun; Shim, Woo Hyun; Kim, Sang Joon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Smith, Seth A. [Vanderbilt University Institute of Imaging Science, Vanderbilt University, Department of Radiology and Radiological Sciences, Nashville, TN (United States)

    2016-12-15

    To determine the added value of amide proton transfer (APT) imaging to conventional and perfusion MRI for differentiating tumour progression (TP) from the treatment-related effect (TE) in patients with post-treatment glioblastomas. Sixty-five consecutive patients with enlarging contrast-enhancing lesions following concurrent chemoradiotherapy were assessed using contrast-enhanced T1-weighted MRI (CE-T1WI), 90th percentile histogram parameters of normalized cerebral blood volume (nCBV90) and APT asymmetry value (APT90). Diagnostic performance was determined using the area under the receiver operating characteristic curve (AUC) and cross validations. There were statistically significant differences in the mean APT90 between the TP and the TE groups (3.87-4.01 % vs. 1.38-1.41 %; P <.001). Compared with CE-T1WI alone, the addition of APT90 to CE-T1WI significantly improved cross-validated AUC from 0.58-0.74 to 0.89-0.91 for differentiating TP from TE. The combination of CE-T1WI, nCBV90 and APT90 resulted in greater diagnostic accuracy for differentiating TP from TE than the combination of CE-T1WI and nCBV90 (cross-validated AUC, 0.95-0.97 vs. 0.84-0.91). The inter-reader agreement between the expert and trainee was excellent for the measurements of APT90 (intraclass correlation coefficient, 0.94). Adding APT imaging to conventional and perfusion MRI improves the diagnostic performance for differentiating TP from TE. (orig.)

  12. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release

    Science.gov (United States)

    Zhang, Shengjian; Qian, Xiaoqing; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2015-04-01

    The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports on a generic construction strategy to achieve a multiple stimuli-responsive theranostic system for cancer simply by optimizing the chemical compositions of inorganic nanoplatforms to avoid the tedious and complicated synthetic procedure for traditional organic or organic/inorganic nanosystems. Based on the ``breaking up'' nature of manganese oxides and specific features of the carbonaceous framework to interact with aromatic drug molecules, manganese oxide nanoparticles were elaborately integrated into hollow mesoporous carbon nanocapsules by a simple in situ framework redox strategy to realize concurrent pH-sensitive T1-weighted magnetic resonance imaging (MRI) and pH-/HIFU-responsive on-demand drug release. The ultrasensitive disease-triggered MRI performance has been successfully demonstrated by a 52.5-fold increase of longitudinal relaxivity (r1 = 10.5 mM-1 s-1) and on nude mice 4T1 xenograft. The pH- and HIFU-triggered doxorubicin release and enhanced therapeutic outcome against multidrug resistance of cancer cells were systematically confirmed. In particular, the fabricated inorganic composite nanocapsules were found to feature unique biological behaviours, such as antimetastasis effect, extremely low hemolysis against red blood cells and high in vivo histocompatibility. This report on the successful construction of a pure inorganic nanosystem with multiple stimuli-responsivenesses may pave the way to new methods for the development of intelligent nanofamilies for cancer therapy.The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports

  13. TH-E-BRF-04: Characterizing the Response of Texture-Based CT Image Features for Quantification of Radiation-Induced Normal Lung Damage

    International Nuclear Information System (INIS)

    Krafft, S; Court, L; Briere, T; Martel, M

    2014-01-01

    Purpose: Radiation induced lung damage (RILD) is an important dose-limiting toxicity for patients treated with radiation therapy. Scoring systems for RILD are subjective and limit our ability to find robust predictors of toxicity. We investigate the dose and time-related response for texture-based lung CT image features that serve as potential quantitative measures of RILD. Methods: Pre- and post-RT diagnostic imaging studies were collected for retrospective analysis of 21 patients treated with photon or proton radiotherapy for NSCLC. Total lung and selected isodose contours (0–5, 5–15, 15–25Gy, etc.) were deformably registered from the treatment planning scan to the pre-RT and available follow-up CT studies for each patient. A CT image analysis framework was utilized to extract 3698 unique texture-based features (including co-occurrence and run length matrices) for each region of interest defined by the isodose contours and the total lung volume. Linear mixed models were fit to determine the relationship between feature change (relative to pre-RT), planned dose and time post-RT. Results: Seventy-three follow-up CT scans from 21 patients (median: 3 scans/patient) were analyzed to describe CT image feature change. At the p=0.05 level, dose affected feature change in 2706 (73.1%) of the available features. Similarly, time affected feature change in 408 (11.0%) of the available features. Both dose and time were significant predictors of feature change in a total of 231 (6.2%) of the extracted image features. Conclusion: Characterizing the dose and time-related response of a large number of texture-based CT image features is the first step toward identifying objective measures of lung toxicity necessary for assessment and prediction of RILD. There is evidence that numerous features are sensitive to both the radiation dose and time after RT. Beyond characterizing feature response, further investigation is warranted to determine the utility of these features as

  14. Novel Optical Methods for Identification, Imaging, and Preservation of the Cavernous Nerves Responsible for Penile Erections during Prostate Cancer Surgery

    Science.gov (United States)

    2009-03-01

    Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett., vol. 30, pp. 504-506...2005. 24. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed...tissue ap- eared as a fine lace -like pattern (Fig. 4). x Vivo Imaging of Human Prostatectomy pecimens he OCT imaging of human prostatectomy specimens

  15. Magnetic resonance imaging in breast cancer treated with neoadjuvant chemotherapy: radiologic-pathologic correlation of the response and disease-free survival depending on molecular subtype.

    Science.gov (United States)

    Cruz Ciria, S; Jiménez Aragón, F; García Mur, C; Esteban Cuesta, H; Gros Bañeres, B

    2014-01-01

    To evaluate the radiologic and pathologic responses to neoadjuvant chemotherapy and their correlation in the molecular subtypes of breast cancer and to analyze their impact in disease-free survival. We included 205 patients with breast cancer treated with neoadjuvant chemotherapy. We evaluated the radiologic response by comparing MRI images acquired before and after chemotherapy. The pathologic response was classified on the Miller and Payne scale. For each subtype (HER2+, TN, luminal A, luminal B HER2-, and luminal B HER2+), we used the χ(2) test, Student's t-test, ANOVA, and Kendall's Tau-b to evaluate the radiologic response and the pathologic response, the radiologic-pathologic correlation, and the disease-free survival. The subtypes HER2+ (62.1%) and TN (45.2%) had higher rates of complete radiologic response. The pathologic response was 65.5% in the HER2+ subtype, 38.1% in the TN subtype, 2.6% in the luminal A subtype, 8.2% in the luminal B HER2- subtype, and 31% in the luminal B HER2+ subtype. The rate of radiologic-pathologic correlation was significant in all subtypes, higher in TN and HER2 (Tau-b coefficients 0.805 and 0.717, respectively). Disease-free survival was higher in HER2+ (91.9±3.3 months) and lower in TN (69.5±6.3 months), with significant differences between the cases with poor and good radiologic responses (P=.040). Survival was greater in cases with good radiologic response, except in cases with luminal A subtype. MRI can be a useful tool that provides information about the evolution of breast cancer treated with neoadjuvant chemotherapy, which varies with the immunohistochemical subtype. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  16. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer

    International Nuclear Information System (INIS)

    Semple, Scott; Harry, Vanessa N. MRCOG.; Parkin, David E.; Gilbert, Fiona J.

    2009-01-01

    Purpose: To investigate the combination of pharmacokinetic and radiologic assessment of dynamic contrast-enhanced magnetic resonance imaging (MRI) as an early response indicator in women receiving chemoradiation for advanced cervical cancer. Methods and Materials: Twenty women with locally advanced cervical cancer were included in a prospective cohort study. Dynamic contrast-enhanced MRI was carried out before chemoradiation, after 2 weeks of therapy, and at the conclusion of therapy using a 1.5-T MRI scanner. Radiologic assessment of uptake parameters was obtained from resultant intensity curves. Pharmacokinetic analysis using a multicompartment model was also performed. General linear modeling was used to combine radiologic and pharmacokinetic parameters and correlated with eventual response as determined by change in MRI tumor size and conventional clinical response. A subgroup of 11 women underwent repeat pretherapy MRI to test pharmacokinetic reproducibility. Results: Pretherapy radiologic parameters and pharmacokinetic K trans correlated with response (p < 0.01). General linear modeling demonstrated that a combination of radiologic and pharmacokinetic assessments before therapy was able to predict more than 88% of variance of response. Reproducibility of pharmacokinetic modeling was confirmed. Conclusions: A combination of radiologic assessment with pharmacokinetic modeling applied to dynamic MRI before the start of chemoradiation improves the predictive power of either by more than 20%. The potential improvements in therapy response prediction using this type of combined analysis of dynamic contrast-enhanced MRI may aid in the development of more individualized, effective therapy regimens for this patient group.

  17. Imaging Tumor Response and Tumoral Heterogeneity in Non-Small Cell Lung Cancer Treated With Antiangiogenic Therapy: Comparison of the Prognostic Ability of RECIST 1.1, an Alternate Method (Crabb), and Image Heterogeneity Analysis.

    Science.gov (United States)

    Yip, Connie; Tacelli, Nunzia; Remy-Jardin, Martine; Scherpereel, Arnaud; Cortot, Alexis; Lafitte, Jean-Jacques; Wallyn, Frederic; Remy, Jacques; Bassett, Paul; Siddique, Musib; Cook, Gary J R; Landau, David B; Goh, Vicky

    2015-09-01

    We aimed to assess computed tomography (CT) intratumoral heterogeneity changes, and compared the prognostic ability of the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, an alternate response method (Crabb), and CT heterogeneity in non-small cell lung cancer treated with chemotherapy with and without bevacizumab. Forty patients treated with chemotherapy (group C) or chemotherapy and bevacizumab (group BC) underwent contrast-enhanced CT at baseline and after 1, 3, and 6 cycles of chemotherapy. Radiologic response was assessed using RECIST 1.1 and an alternate method. CT heterogeneity analysis generating global and locoregional parameters depicting tumor image spatial intensity characteristics was performed. Heterogeneity parameters between the 2 groups were compared using the Mann-Whitney U test. Associations between heterogeneity parameters and radiologic response with overall survival were assessed using Cox regression. Global and locoregional heterogeneity parameters changed with treatment, with increased tumor heterogeneity in group BC. Entropy [group C: median -0.2% (interquartile range -2.2, 1.7) vs. group BC: 0.7% (-0.7, 3.5), P=0.10] and busyness [-27.7% (-62.2, -5.0) vs. -11.5% (-29.1, 92.4), P=0.10] showed a greater reduction in group C, whereas uniformity [1.9% (-8.0, 9.8) vs. -5.0% (-13.9, 5.6), P=0.10] showed a relative increase after 1 cycle but did not reach statistical significance. Two (9%) and 1 (6%) additional responders were identified using the alternate method compared with RECIST in group C and group BC, respectively. Heterogeneity parameters were not significant prognostic factors. The alternate response method described by Crabb identified more responders compared with RECIST. However, both criteria and baseline imaging heterogeneity parameters were not prognostic of survival.

  18. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    International Nuclear Information System (INIS)

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-01-01

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm 2 and 50 J/cm 2 on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the longest breast

  19. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    International Nuclear Information System (INIS)

    Muruganandham, Manickam; Clerkin, Patrick P.; Smith, Brian J.; Anderson, Carryn M.; Morris, Ann; Capizzano, Aristides A.; Magnotta, Vincent; McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E.; Buatti, John M.

    2014-01-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  20. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Muruganandham, Manickam; Clerkin, Patrick P. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Smith, Brian J. [Department of Biostatistics, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Anderson, Carryn M.; Morris, Ann [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Capizzano, Aristides A.; Magnotta, Vincent [Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Buatti, John M., E-mail: john-buatti@uiowa.edu [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States)

    2014-09-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  1. 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy.

    Science.gov (United States)

    Muruganandham, Manickam; Clerkin, Patrick P; Smith, Brian J; Anderson, Carryn M; Morris, Ann; Capizzano, Aristides A; Magnotta, Vincent; McGuire, Sarah M; Smith, Mark C; Bayouth, John E; Buatti, John M

    2014-09-01

    To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of early progression. The potential impact for risk

  2. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  3. Spectroscopic analysis and in vitro imaging applications of a pH responsive AIE sensor with a two-input inhibit function.

    Science.gov (United States)

    Zhou, Zhan; Gu, Fenglong; Peng, Liang; Hu, Ying; Wang, Qianming

    2015-08-04

    A novel terpyridine derivative formed stable aggregates in aqueous media (DMSO/H2O = 1/99) with dramatically enhanced fluorescence compared to its organic solution. Moreover, the ultra-violet absorption spectra also demonstrated specific responses to the incorporation of water. The yellow emission at 557 nm changed to a solution with intense greenish luminescence only in the presence of protons and it conformed to a molecular logic gate with a two-input INHIBIT function. This molecular-based material could permeate into live cells and remain undissociated in the cytoplasm. The new aggregation induced emission (AIE) pH type bio-probe permitted easy collection of yellow luminescence images on a fluorescent microscope. As designed, it displayed striking green emission in organelles at low internal pH. This feature enabled the self-assembled structure to have a whole new function for the pH detection within the field of cell imaging.

  4. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles

    International Nuclear Information System (INIS)

    Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Noh, Young-Woock; Lim, Yong Taik; Sung, Moon Hee; Poo, Haryoung; Hong, Kwan Soo

    2011-01-01

    pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.

  5. Does a single session of electroconvulsive therapy alter the neural response to emotional faces in depression? A randomised sham-controlled functional magnetic resonance imaging study.

    Science.gov (United States)

    Miskowiak, Kamilla W; Kessing, Lars V; Ott, Caroline V; Macoveanu, Julian; Harmer, Catherine J; Jørgensen, Anders; Revsbech, Rasmus; Jensen, Hans M; Paulson, Olaf B; Siebner, Hartwig R; Jørgensen, Martin B

    2017-09-01

    Negative neurocognitive bias is a core feature of major depressive disorder that is reversed by pharmacological and psychological treatments. This double-blind functional magnetic resonance imaging study investigated for the first time whether electroconvulsive therapy modulates negative neurocognitive bias in major depressive disorder. Patients with major depressive disorder were randomised to one active ( n=15) or sham electroconvulsive therapy ( n=12). The following day they underwent whole-brain functional magnetic resonance imaging at 3T while viewing emotional faces and performed facial expression recognition and dot-probe tasks. A single electroconvulsive therapy session had no effect on amygdala response to emotional faces. Whole-brain analysis revealed no effects of electroconvulsive therapy versus sham therapy after family-wise error correction at the cluster level, using a cluster-forming threshold of Z>3.1 ( p2.3; pelectroconvulsive therapy-induced changes in parahippocampal and superior frontal responses to fearful versus happy faces as well as in fear-specific functional connectivity between amygdala and occipito-temporal regions. Across all patients, greater fear-specific amygdala - occipital coupling correlated with lower fear vigilance. Despite no statistically significant shift in neural response to faces after a single electroconvulsive therapy session, the observed trend changes after a single electroconvulsive therapy session point to an early shift in emotional processing that may contribute to antidepressant effects of electroconvulsive therapy.

  6. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer.

    Science.gov (United States)

    Choi, Moon Hyung; Oh, Soon Nam; Rha, Sung Eun; Choi, Joon-Il; Lee, Sung Hak; Jang, Hong Seok; Kim, Jun-Gi; Grimm, Robert; Son, Yohan

    2016-07-01

    To investigate the usefulness of apparent diffusion coefficient (ADC) values derived from histogram analysis of the whole rectal cancer as a quantitative parameter to evaluate pathologic complete response (pCR) on preoperative magnetic resonance imaging (MRI). We enrolled a total of 86 consecutive patients who had undergone surgery for rectal cancer after neoadjuvant chemoradiotherapy (CRT) at our institution between July 2012 and November 2014. Two radiologists who were blinded to the final pathological results reviewed post-CRT MRI to evaluate tumor stage. Quantitative image analysis was performed using T2 -weighted and diffusion-weighted images independently by two radiologists using dedicated software that performed histogram analysis to assess the distribution of ADC in the whole tumor. After surgery, 16 patients were confirmed to have achieved pCR (18.6%). All parameters from pre- and post-CRT ADC histogram showed good or excellent agreement between two readers. The minimum, 10th, 25th, 50th, and 75th percentile and mean ADC from post-CRT ADC histogram were significantly higher in the pCR group than in the non-pCR group for both readers. The 25th percentile value from ADC histogram in post-CRT MRI had the best diagnostic performance for detecting pCR, with an area under the receiver operating characteristic curve of 0.796. Low percentile values derived from the ADC histogram analysis of rectal cancer on MRI after CRT showed a significant difference between pCR and non-pCR groups, demonstrating the utility of the ADC value as a quantitative and objective marker to evaluate complete pathologic response to preoperative CRT in rectal cancer. J. Magn. Reson. Imaging 2016;44:212-220. © 2015 Wiley Periodicals, Inc.

  7. Diffusion-Weighted Magnetic Resonance Imaging Early After Chemoradiotherapy to Monitor Treatment Response in Head-and-Neck Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Vandecaveye, Vincent, E-mail: Vincent.Vandecaveye@uzleuven.be [Department of Radiology, University Hospitals Leuven (Belgium); Dirix, Piet [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); De Keyzer, Frederik; Op de Beeck, Katya [Department of Radiology, University Hospitals Leuven (Belgium); Vander Poorten, Vincent [Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven (Belgium); Hauben, Esther [Department of Pathology, University Hospitals Leuven (Belgium); Lambrecht, Maarten; Nuyts, Sandra [Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven (Belgium); Hermans, Robert [Department of Radiology, University Hospitals Leuven (Belgium)

    2012-03-01

    Purpose: To evaluate diffusion-weighted imaging (DWI) for assessment of treatment response in head and neck squamous cell carcinoma (HNSCC) three weeks after the end of chemoradiotherapy (CRT). Methods and Materials: Twenty-nine patients with HNSCC underwent magnetic resonance imaging (MRI) prior to and 3 weeks after CRT, including T{sub 2}-weighted and pre- and postcontrast T{sub 1}-weighted sequences and an echo-planar DWI sequence with six b values (0 to 1,000 s/mm{sup 2}), from which the apparent diffusion coefficient (ADC) was calculated. ADC changes 3 weeks posttreatment compared to baseline ( Increment ADC) between responding and nonresponding primary lesions and adenopathies were correlated with 2 years locoregional control and compared with a Mann-Whitney test. In a blinded manner, the Increment ADC was compared to conventional MRI 3 weeks post-CRT and the routinely implemented CT, on average 3 months post-CRT, which used size-related and morphological criteria. Positive and negative predictive values (PPV and NPV, respectively) were compared between the Increment ADC and anatomical imaging. Results: The Increment ADC of lesions with later tumor recurrence was significantly lower than lesions with complete remission for both primary lesions (-2.3% {+-} 0.3% vs. 80% {+-} 41%; p < 0.0001) and adenopathies (19.9% {+-} 32% vs. 63% {+-} 36%; p = 0.003). The Increment ADC showed a PPV of 89% and an NPV of 100% for primary lesions and a PPV of 70% and an NPV of 96% for adenopathies per neck side. DWI improved PPV and NPV compared to anatomical imaging. Conclusion: DWI with the Increment ADC 3 weeks after concluding CRT for HNSCC allows for early assessment of treatment response.

  8. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials.

    Science.gov (United States)

    Belhocine, Tarik Z; Blankenberg, Francis G; Kartachova, Marina S; Stitt, Larry W; Vanderheyden, Jean-Luc; Hoebers, Frank J P; Van de Wiele, Christophe

    2015-12-01

    (99m)Tc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative (99m)Tc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases. Included in this review were 17 clinical trials investigating quantitative (99m)Tc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95% CI) were calculated using Meta-Disc software version 1.4. Absolute quantification and/or relative quantification of (99m)Tc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of (99m)Tc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm(3). Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25% in

  9. Energy response of imaging plates to radiation beams from standard beta sources, ortho-voltage and cobalt-60 units and linear accelerators

    Science.gov (United States)

    Gonzalez, Albin Leonel

    The response to different types of radiation beams of commercial imaging plates used for diagnostic computed radiography has been investigated in this work. Imaging plates are designed with a phosphor layer which after been irradiated; information is stored in the form of photostimulable luminescence (PSL) centers. Initial measurements of the dose distribution of a radioactive stent with the imaging plates showed similar results to those with radiochromic films, but with much shorter exposure time due to their higher sensitivity. In order to investigate further their response, the imaging plates were irradiated with calibrated beams from: standard beta sources, orthovoltage and Co-60 units and therapy linear accelerator. Initially it was found that the energy to create the storage centers (generation efficiency) when irradiated with the three standard beta sources (225 keV to 2.28 MeV) was the same. For the rest of the calibrated beams an in house reader system was built in order to perform the bleaching of the plates with a He-Ne laser (632.8 nm) and to measure the absolute number of the emitted PSL photons (storage centers produced). Bleaching curves were then obtained for different exposure times for each beam. From the graph of the calculated area under the bleaching curves (total number of storage center) versus the absorbed dose to the phosphor layer it was possible to calculate the energy to create the storage centers (generation efficiency) for photon and electron beams. The dose to the phosphor layer was calculated in the case of the electron beams following a scaling procedure, while in the case of the photon beams Monte Carlo simulations were performed. For the photons beams the measurement of the generation efficiency energy of 126 +/- 8% eV per PSL storage center, coincide with measurements using a different approach (˜148 eV) by previous investigators. The generation efficiency for the electron beam was 807 +/- 3% eV, no reference was found in the

  10. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    International Nuclear Information System (INIS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-01-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100∼200 m, 600∼850 m and 1450∼1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole. (paper)

  11. Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy

    International Nuclear Information System (INIS)

    Nilsen, Line; Olsen, Dag Rune; Seierstad, Therese; Fangberget, Anne; Geier, Oliver

    2010-01-01

    Background. For patients with locally advanced breast cancer (LABC) undergoing neoadjuvant chemotherapy (NACT), the European Guidelines for Breast Imaging recommends magnetic resonance imaging (MRI) to be performed before start of NACT, when half of the NACT has been administered and prior to surgery. This is the first study addressing the value of flow-insensitive apparent diffusion coefficients (ADCs) obtained from diffusion-weighted (DW) MRI at the recommended time points for pretreatment prediction and monitoring of treatment response. Materials and methods. Twenty-five LABC patients were included in this prospective study. DW MRI was performed using single-shot spin-echo echo-planar imaging with b-values of 100, 250 and 800 s/mm 2 prior to NACT, after four cycles of NACT and at the conclusion of therapy using a 1.5 T MR scanner. ADC in the breast tumor was calculated from each assessment. The strength of correlation between pretreatment ADC, ADC changes and tumor volume changes were examined using Spearman's rho correlation test. Results. Mean pretreatment ADC was 1.11 ± 0.21 x 10 -3 mm 2 /s. After 4 cycles of NACT, ADC was significantly increased (1.39 ± 0.36 x 10 -3 mm 2 /s; p=0.018). There was no correlation between individual pretreatment breast tumor ADC and MR response measured after four cycles of NACT (p=0.816) or prior to surgery (p=0.620). Conclusion. Pretreatment tumor ADC does not predict treatment response for patients with LABC undergoing NACT. Furthermore, ADC increase observed mid-way in the course of NACT does not correlate with tumor volume changes.

  12. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    Science.gov (United States)

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  13. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    Science.gov (United States)

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion

  14. Images of Gorgonian Corals in the Gulf of Mexico taken from 2010-11-03 to 2010-12-14 in response to the Deepwater Horizon oil spill event (NODC Accession 0084636)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images of Gorgonian Corals were taken during two cruises in the Gulf of Mexico in response to the Deepwater Horizon oil spill event. The first cruise was aboard NOAA...

  15. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Sun, Wei

    2017-11-01

    Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    Science.gov (United States)

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  17. Live-cell calcium imaging of adherent and non-adherent GL261 cells reveals phenotype-dependent differences in drug responses.

    Science.gov (United States)

    Strong, Averey D; Daniels, Richard L

    2017-08-02

    The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. We demonstrate the use

  18. Sequential functional imaging with technetium-99m hexakis-2-methoxyisobutylisonitrile and indium-111 octreotide: can we predict the response to chemotherapy in small cell lung cancer?

    International Nuclear Information System (INIS)

    Moretti, J.L.; Caglar, M.; Boaziz, C.; Caillat-Vigneron, N.; Morere, J.F.

    1995-01-01

    A case of small cell lung carcinoma (SCLC) demonstrating uptake on functional indium-111 octreotide scintigraphy is presented. Technetium-99m hexakis-2-methoxyisobutylisonitrile (MIBI) scintigraphy clearly delineated an absence of radionuclide uptake at the tumour site. This suggested the presence of multidrug resistance-mediated P glycoprotein (Pgp) on tumour cells, which recognizes certain chemotherapeutic agents as well as MIBI as a substrate and avoids radionuclide concentration. Following three courses of chemotherapy, the patient failed to improve and eventually died. This case demonstrates the importance of functional images, which have the potential to predict the outcome in response to chemotherapy. (orig.)

  19. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  20. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis.

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J; Pandit, Prachi; Brewer, Kimberly D; Tee, Sui Seng; Cui, Lina; Tikhomirov, Grigory; Rutt, Brian; Rao, Jianghong

    2014-10-01

    Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo . Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1 ) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r 1 relaxivity-19.0 (post-activation) vs. 10.2 mM -1 s -1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T 1 -weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo .

  1. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation)

    Science.gov (United States)

    Abookasis, David; Volkov, Boris; Kofman, Itamar

    2017-02-01

    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  2. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  3. Dynamic contrast-enhanced MR imaging pharmacokinetic parameters as predictors of treatment response of brain metastases in patients with lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kuchcinski, Gregory; Duhal, Romain; Lalisse, Maxime; Dumont, Julien; Lopes, Renaud; Pruvo, Jean-Pierre; Leclerc, Xavier; Delmaire, Christine [University of Lille, CHU Lille, Department of Neuroradiology, Lille (France); Le Rhun, Emilie [University of Lille, CHU Lille, Department of Neurosurgery, Lille (France); Oscar Lambret Center, Department of Medical Oncology, Lille (France); Inserm U1192-PRISM-Laboratoire de Proteomique, Reponse Inflammatoire, Spectrometrie de Masse, Lille (France); Cortot, Alexis B. [University of Lille, CHU Lille, Department of Thoracic Oncology, Lille (France); Drumez, Elodie [University of Lille, CHU Lille, Department of Biostatistics, Lille (France)

    2017-09-15

    To determine the diagnostic accuracy of pharmacokinetic parameters measured by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting the response of brain metastases to antineoplastic therapy in patients with lung cancer. Forty-four consecutive patients with lung cancer, harbouring 123 newly diagnosed brain metastases prospectively underwent conventional 3-T MRI at baseline (within 1 month before treatment), during the early (7-10 weeks) and midterm (5-7 months) post-treatment period. An additional DCE MRI sequence was performed during baseline and early post-treatment MRI to evaluate baseline pharmacokinetic parameters (K{sup trans}, k{sub ep}, v{sub e}, v{sub p}) and their early variation (∇K{sup trans}, ∇k{sub ep}, ∇v{sub e}, ∇v{sub p}). The objective response was judged by the volume variation of each metastasis from baseline to midterm MRI. ROC curve analysis determined the best DCE MRI parameter to predict the objective response. Baseline DCE MRI parameters were not associated with the objective response. Early ∇K{sup trans}, ∇v{sub e} and ∇v{sub p} were significantly associated with the objective response (p = 0.02, p = 0.001 and p = 0.02, respectively). The best predictor of objective response was ∇v{sub e} with an area under the curve of 0.93 [95% CI = 0.87, 0.99]. DCE MRI and early ∇v{sub e} may be a useful tool to predict the objective response of brain metastases in patients with lung cancer. (orig.)

  4. A fast-response two-photon fluorescent probe for imaging endogenous H2O2 in living cells and tissues

    Science.gov (United States)

    Lu, Yanan; Shi, Xiaomin; Fan, Wenlong; Black, Cory A.; Lu, Zhengliang; Fan, Chunhua

    2018-02-01

    As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9 min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.

  5. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    in different occipital and extraoccipital cortical areas not explained by the boxcar regressor. The results suggest that the P1-N2 regressor is the best EEG-based regressor to model the visual paradigm, but when looking for additional effects like habituation or attention modulation that cannot be modeled......To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed....... The performance of different single-trial EEG regressors was compared in terms of predicting the measured blood oxygenation level dependent response. The EEG-based regressors were the amplitude and latency of the primary positive (P1) and negative (N2) peaks of the visual evoked potential, the combined P1-N2...

  6. Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy (NIRS

    Directory of Open Access Journals (Sweden)

    Masumi Wakita

    2010-06-01

    Full Text Available Near-infrared spectroscopy (NIRS has been used extensively for functional neuroimaging over the past decade, in part because it is considered a powerful tool for investigating brain function in human infants and young children, for whom other neuroimaging techniques are not suitable. In particular, several studies have measured hemodynamic responses in the occipital region in infants upon exposure to visual stimuli. In the present study, we used a multi-channel NIRS to measure neuronal activity in a macaque monkey who was trained to watch videos showing various circus animals performing acrobatic activities without fixing the head position of the monkey. Cortical activity from the occipital region was measured first by placing a probe comprising a 3x5 array of emitters and detectors (2 x 4 cm on the area (area 17, and the robustness and stability of the results were confirmed across sessions. Cortical responses were then measured from the dorsofrontal region. The oxygenated hemoglobin signals increased in area 9 and decreased in area 8b in response to viewing the videos. The results suggest that these regions are involved in cognitive processing of visually presented stimuli. The monkey showed positive responsiveness to the stimuli from the affective standpoint, but its attentional response to them was an inhibitory one.

  7. WE-FG-202-02: Exploration of High-Resolution Quantitative Ultrasonic Micro-Vascular Imaging for Early Assessment of Radiotherapy Tumor Response

    Energy Technology Data Exchange (ETDEWEB)

    Kasoji, S; Rivera, J; Dayton, P [University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, NC (United States); Buse, J [UNC School of Medicine, Chapel Hill, NC (United States); Chang, S [University of North Carolina- Chapel Hill/ North Carolina State University, Chapel Hill, NC (United States); UNC School of Medicine, Chapel Hill, NC (United States)

    2016-06-15

    Purpose: Currently, we cannot predict an individual patient’s response to a given radiotherapy which normally is not detected for weeks to months post-treatment. As a result, precious time is wasted for patients with unresponsive tumors who could have switched to an alternative treatment much earlier. Presently, no early treatment response detection method exists that is effective, low-cost, non-invasive, and safe. We hypothesize that changes in tumor microvasculature predict tumor response to radiotherapy earlier than tumor volume changes. Recent radiobiology research suggests tumors undergo vascular remodeling in response to radiation well before manifesting changes in tumor volume. We propose monitoring tumor microvasculature post-radiation using Acoustic Angiography (AA), a novel ultrasound imaging modality developed and patented in-house. In this study, we investigate whether changes in tumor microvasculature, measured using AA, can be an early indicator of high-dose radiotherapy success, compared to changes in tumor volume. Methods: Fibrosarcoma xenograft tumor tissue was subcutaneously implanted into rodent flanks (N=10). Animal tumors (N=8) were irradiated with a single treatment of 15Gy using a clinical LINAC at 100SSD and 2×2cm field size. Two untreated rats were left as tumor controls. AA imaging was performed immediately posttreatment and every third day thereafter for 30 days, or until tumors disappeared. Tumor volumes and vascular densities were measured from anatomical b-mode ultrasound and AA images, respectively. Results: Statistical differences in vascular density between treatment responders and non-responders were observed on Day 10 (p=0.005), whereas statistical differences in tumor volume were not observed until Day 19 (p=0.02). Conclusions: Tumor vascularity differences may be observed substantially earlier than differences in tumor size. In addition, significant early increases in vascular density were observed in non-responding tumors

  8. Detecting early response to cyclophosphamide treatment of RIF-1 tumors using selective multiple quantum spectroscopy (SelMQC) and dynamic contrast enhanced imaging.

    Science.gov (United States)

    Poptani, Harish; Bansal, Navin; Graham, Robert A; Mancuso, Anthony; Nelson, David S; Glickson, Jerry D

    2003-04-01

    The purpose of this study was to develop a reliable, noninvasive method for early detection of tumor response to therapy that would facilitate optimization of treatment regimens to the needs of the individual patient. In the present study, the effects of cyclophosphamide (Cp, a widely used alkylating agent) were monitored in a murine radiation induced fibrosarcoma (RIF-1) using in vivo (1)H NMR spectroscopy and imaging to evaluate the potential of these techniques towards early detection of treatment response. Steady-state lactate levels and Gd-DTPA uptake kinetics were measured using selective multiple quantum coherence (Sel-MQC) transfer spectroscopy and dynamic contrast enhanced imaging, respectively in RIF-1 tumors before, 24 and 72 h after 300 mg/kg of Cp administration. High-resolution (1)H NMR spectra of perchloric acid extracts of the tumor were correlated with lactate and glucose concentrations determined enzymatically. In vivo NMR experiments showed a decrease in steady-state lactate to water ratios (5.4 +/- 1.6 to 0.6 +/- 0.5, p < 0.05) and an increase in Gd-DTPA uptake kinetics following treatment response. The data indicate that decreases in lactate result from decreased glycolytic metabolism and an increase in tumor perfusion/permeability. Perchloric acid extracts confirmed the lower lactate levels seen in vivo in treated tumors and also indicated a higher glycerophosphocholine/phosphocholine (GPC/PC) integrated intensity ratio (1.39 +/- 0.09 vs 0.97 +/- 0.04, p < 0.01), indicative of increased membrane degradation following Cp treatment. Steady-state lactate levels provide metabolic information that correlates with changes in tumor physiology measured by Gd-DTPA uptake kinetics with high spatial and temporal resolution. Both of these parameters may be useful for monitoring early tumor response to therapy. Copyright 2003 John Wiley & Sons, Ltd.

  9. Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Piludu, Francesca; Vidiri, Antonello [Regina Elena National Cancer Institute, Radiology and Diagnostic Imaging Department, Rome (Italy); Marzi, Simona [Regina Elena National Cancer Institute, Medical Physics Laboratory, Rome (Italy); Pace, Andrea; Villani, Veronica [Regina Elena National Cancer Institute, Neurology Division, Rome (Italy); Fabi, Alessandra [Regina Elena National Cancer Institute, Oncology Department, Rome (Italy); Carapella, Carmine Maria [Regina Elena National Cancer Institute, Oncologic Surgery Department, Rome (Italy); Terrenato, Irene [Regina Elena National Cancer Institute, Biostatistics-Scientific Direction, Rome (Italy); Antenucci, Anna [Regina Elena National Cancer Institute, Clinical Pathology, Rome (Italy)

    2015-12-15

    The aim of this study is to investigate whether early changes in tumor volume and perfusion measurements derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may predict response to antiangiogenic therapy in recurrent high-grade gliomas. Twenty-seven patients who received bevacizumab every 3 weeks were enrolled in the study. For each patient, three MRI scans were performed: at baseline, after the first dose, and after the fourth dose of bevacizumab. The entire tumor volume (V{sub tot}), as well as contrast-enhanced and noncontrast-enhanced tumor subvolumes (V{sub CE-T1} and V{sub NON-CE-T1}, respectively) were outlined using post-contrast T1-weighted images as a guide for the tumor location. Histogram analysis of normalized IAUGC (nIAUGC) and transfer constant K{sup trans} maps were performed. Each patient was classified as a responder patient if he/she had a partial response or a stable disease or as a nonresponder patient if he/she had progressive disease. Responding patients showed a larger reduction in V{sub NON-CE-T1} after a single dose, compared to nonresponding patients. Tumor subvolumes with increased values of nIAUGC and K{sup trans}, after a single dose, significantly differed between responders and nonresponders. The radiological response was found to be significantly associated to the clinical outcome. After a single dose, V{sub tot} was predictive of overall survival (OS), while V{sub CE-T1} showed a tendency of correlation with OS. Tumor subvolumes with increased nIAUGC and K{sup trans} showed the potential for improving the diagnostic accuracy of DCE. Early assessments of the entire tumor volume, including necrotic areas, may provide complementary information of tumor behavior in response to anti-VEGF therapies and is worth further investigation. (orig.)

  10. Brain response to images of food varying in energy density is associated with body composition in 7- to 10-year-old children: Results of an exploratory study.

    Science.gov (United States)

    Fearnbach, S Nicole; English, Laural K; Lasschuijt, Marlou; Wilson, Stephen J; Savage, Jennifer S; Fisher, Jennifer O; Rolls, Barbara J; Keller, Kathleen L

    2016-08-01

    Energy balance is regulated by a multifaceted system of physiological signals that influence energy intake and expenditure. Therefore, variability in the brain's response to food may be partially explained by differences in levels of metabolically active tissues throughout the body, including fat-free mass (FFM) and fat mass (FM). The purpose of this study was to test the hypothesis that children's body composition would be related to their brain response to food images varying in energy density (ED), a measure of energy content per weight of food. Functional magnetic resonance imaging (fMRI) was used to measure brain response to High (>1.5kcal/g) and Low (vs. Low ED) in a priori defined brain regions of interest previously implicated in energy homeostasis and reward processing. Pearson's correlations were then calculated between activation in these regions for various contrasts (High ED-Low ED, High ED-Control, Low ED-Control) and child body composition (FFM index, FM index, % body fat). Relative to Low ED foods, High ED foods elicited greater BOLD activation in the left thalamus. In the right substantia nigra, BOLD activation for the contrast of High ED-Low ED foods was positively associated with child FFM. There were no significant results for the High ED-Control or Low ED-Control contrasts. Our findings support literature on FFM as an appetitive driver, such that greater amounts of lean mass were associated with greater activation for High ED foods in an area of the brain associated with dopamine signaling and reward (substantia nigra). These results confirm our hypothesis that brain response to foods varying in energy content is related to measures of child body composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    Science.gov (United States)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  12. Anal carcinomas: the role of endoanal ultrasound and magnetic resonance imaging in staging, response evaluation and follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Jyoti; Shaw, Aidan; Griffin, Nyree [Guys and St. Thomas' Hospital, Department of Radiology, London (United Kingdom); Grant, Lee A. [Royal Marsden Hospital, Department of Radiology, London (United Kingdom); Schizas, Alexis M.P.; Datta, Vivek; Williams, Andrew B. [Guys and St. Thomas' Hospital, Department of General Surgery, London (United Kingdom)

    2011-04-15

    Anal carcinoma is an important but rare condition, managed in specialist centres. Both endoanal ultrasound and magnetic resonance imaging (MRI) can be used in the locoregional staging and follow-up of patients with anal cancer, and both may assist in treatment planning and prognosis. Recent guidelines published by the European Society for Medical Oncology have recommended MRI as the technique of choice for assessment of locoregional disease. This paper describes the techniques for both endoanal ultrasound and MRI, and compares the relative merits and disadvantages of each in the local assessment of anal carcinoma. (orig.)

  13. Evaluation of Vibration Response Imaging (VRI) Technique and Difference in VRI Indices Among Non-Smokers, Active Smokers, and Passive Smokers

    Science.gov (United States)

    Jiang, Hongying; Chen, Jichao; Cao, Jinying; Mu, Lan; Hu, Zhenyu; He, Jian

    2015-01-01

    Background Vibration response imaging (VRI) is a new technology for lung imaging. Active smokers and non-smokers show differences in VRI findings, but no data are available for passive smokers. The aim of this study was to evaluate the use of VRI and to assess the differences in VRI findings among non-smokers, active smokers, and passive smokers. Material/Methods Healthy subjects (n=165: 63 non-smokers, 56 active smokers, and 46 passive smokers) with normal lung function were enrolled. Medical history, physical examination, lung function test, and VRI were performed for all subjects. Correlation between smoking index and VRI scores (VRIS) were performed. Results VRI images showed progressive and regressive stages representing the inspiratory and expiratory phases bilaterally in a vertical and synchronized manner in non-smokers. Vibration energy curves with low expiratory phase and plateau were present in 6.35% and 3.17%, respectively, of healthy non-smokers, 41.07% and 28.60% of smokers, and 39.13% and 30.43% of passive smokers, respectively. The massive energy peak in the non-smokers, smokers, and passive-smokers was 1.77±0.27, 1.57±0.29, and 1.66±0.33, respectively (all Psmokers and smokers. VRI revealed that passive smoking can also harm the lungs. VRI could be used to visually persuade smokers to give up smoking. PMID:26212715

  14. Effects of chondroitin sulfate on brain response to painful stimulation in knee osteoarthritis patients. A randomized, double-blind, placebo-controlled functional magnetic resonance imaging study.

    Science.gov (United States)

    Monfort, Jordi; Pujol, Jesús; Contreras-Rodríguez, Oren; Llorente-Onaindia, Jone; López-Solà, Marina; Blanco-Hinojo, Laura; Vergés, Josep; Herrero, Marta; Sánchez, Laura; Ortiz, Hector; Montañés, Francisco; Deus, Joan; Benito, Pere

    2017-06-21

    Knee osteoarthritis is causing pain and functional disability. One of the inherent problems with efficacy assessment of pain medication was the lack of objective pain measurements, but functional magnetic resonance imaging (fMRI) has emerged as a useful means to objectify brain response to painful stimulation. We have investigated the effect of chondroitin sulfate (CS) on brain response to knee painful stimulation in patients with knee osteoarthritis using fMRI. Twenty-two patients received CS (800mg/day) and 27 patients placebo, and were assessed at baseline and after 4 months of treatment. Two fMRI tests were conducted in each session by applying painful pressure on the knee interline and on the patella surface. The outcome measurement was attenuation of the response evoked by knee painful stimulation in the brain. fMRI of patella pain showed significantly greater activation reduction under CS compared with placebo in the region of the mesencephalic periaquecductal gray. The CS group, additionally showed pre/post-treatment activation reduction in the cortical representation of the leg. No effects of CS were detected using the interline pressure test. fMRI was sensitive to objectify CS effects on brain response to painful pressure on patellofemoral cartilage, which is consistent with the known CS action on chondrocyte regeneration. The current work yields further support to the utility of fMRI to objectify treatment effects on osteoarthritis pain. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  15. Orientation and direction-of-motion response in the middle temporal visual area (MT of New World owl monkeys as revealed by intrinsic-signal optical imaging

    Directory of Open Access Journals (Sweden)

    Peter M Kaskan

    2010-07-01

    Full Text Available Intrinsic-signal optical imaging was used to evaluate relationships of domains of neurons in visual area MT selective for stimulus orientation and direction of motion. Maps of activation were elicited in MT of owl monkeys by gratings drifting back-and-forth, flashed stationary gratings and unidirectionally drifting fields of random dots. Drifting gratings, typically used to reveal orientation preference domains, contain a motion component that may be represented in MT. Consequently, this stimulus could activate groups of cells responsive to the motion of the grating, its orientation or a combination of both. Domains elicited from either moving or static gratings were remarkably similar, indicating that these groups of cells are responding to orientation, although they may also encode information about motion. To assess the relationship between domains defined by drifting oriented gratings and those responsive to direction of motion, the response to drifting fields of random dots was measured within domains defined from thresholded maps of activation elicited by the drifting gratings. The optical response elicited by drifting fields of random dots was maximal in a direction orthogonal to the map of orientation preference. Thus, neurons in domains selective for stimulus orientation are also selective for motion orthogonal to the preferred stimulus orientation.

  16. Molecular imaging of EGFR and CD44v6 for prediction and response monitoring of HSP90 inhibition in an in vivo squamous cell carcinoma model

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Diana; Mortensen, Anja C.; Stenerloew, Bo [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Selvaraju, Ram K.; Eriksson, Olof [Uppsala University, Preclinical PET Platform, Uppsala (Sweden); Nestor, Marika [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden); Uppsala University, Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala (Sweden)

    2016-05-15

    Heat shock protein 90 (HSP90) is essential for the activation and stabilization of numerous oncogenic client proteins. AT13387 is a novel HSP90 inhibitor promoting degradation of oncogenic proteins upon binding, and may also act as a radiosensitizer. For optimal treatment there is, however, the need for identification of biomarkers for patient stratification and therapeutic response monitoring, and to find suitable targets for combination treatments. The aim of this study was to assess the response of surface antigens commonly expressed in squamous cell carcinoma to AT13387 treatment, and to find suitable biomarkers for molecular imaging and radioimmunotherapy in combination with HSP90 inhibition. Cancer cell proliferation and radioimmunoassays were used to evaluate the effect of AT13387 on target antigen expression in vitro. Inhibitor effects were then assessed in vivo in mice-xenografts. Animals were treated with AT13387 (5 x 50 mg/kg), and were imaged with PET using either {sup 18}F-FDG or {sup 124}I-labelled tracers for EGFR and CD44v6, and this was followed by ex-vivo biodistribution analysis and immunohistochemical staining. AT13387 exposure resulted in high cytotoxicity and possible radiosensitization with IC{sub 50} values below 4 nM. Both in vitro and in vivo AT13387 effectively downregulated HSP90 client proteins. PET imaging with {sup 124}I-cetuximab showed a significant decrease of EGFR in AT13387-treated animals compared with untreated animals. In contrast, the squamous cell carcinoma-associated biomarker CD44v6, visualized with {sup 124}I-AbD19384 as well as {sup 18}F-FDG uptake, were not significantly altered by AT13387 treatment. We conclude that AT13387 downregulates HSP90 client proteins, and that molecular imaging of these proteins may be a suitable approach for assessing treatment response. Furthermore, radioimmunotherapy targeting CD44v6 in combination with AT13387 may potentiate the radioimmunotherapy outcome due to radiosensitizing effects of

  17. Spitting Image: Tick Saliva Assists the Causative Agent of Lyme Disease in Evading Host Skin's Innate Immune Response

    NARCIS (Netherlands)

    Hovius, Joppe W. R.

    2009-01-01

    Lyme disease is caused by the spirochete Borrelia burgdorferi and is transmitted through ticks. Inhibition of host skin's innate immune response might be instrumental to both tick feeding and B. burgdorferi transmission. The article by Marchal et al. describes how tick saliva suppresses B.

  18. Neoadjuvant chemotherapy in breast cancer-response evaluation and prediction of response to treatment using dynamic contrast-enhanced and diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Fangberget, A.; Holmen, M.M.; Nilsen, L.B.; Hole, K.H.; Engebraaten, O.; Naume, B.; Smith, H.J.; Olsen, D.R.; Seierstad, T.

    2011-01-01

    To explore the predictive value of MRI parameters and tumour characteristics before neoadjuvant chemotherapy (NAC) and to compare changes in tumour size and tumour apparent diffusion coefficient (ADC) during treatment, between patients who achieved pathological complete response (pCR) and those who did not. Approval by the Regional Ethics Committee and written informed consent were obtained. Thirty-one patients with invasive breast carcinoma scheduled for NAC were enrolled (mean age, 50.7; range, 37-72). Study design included MRI before treatment (Tp0), after four cycles of NAC (Tp1) and before surgery (Tp2). Data in pCR versus non-pCR groups were compared and cut-off values for pCR prediction were evaluated. Before NAC, HER2 overexpression was the single significant predictor of pCR (p = 0.006). At Tp1 ADC, tumour size and changes in tumour size were all significantly different in the pCR and non-pCR groups. Using 1.42 x 10 -3 mm 2 /s as the cut-off value for ADC, pCR was predicted with sensitivity and specificity of 88% and 80%, respectively. Using a cut-off value of 83% for tumour volume reduction, sensitivity and specificity for pCR were 91% and 80%. ADC, tumour size and tumour size reduction at Tp1 were strong independent predictors of pCR. (orig.)

  19. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    International Nuclear Information System (INIS)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine; Pradier, Olivier

    2011-01-01

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the 18 F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV mean , and total lesion glycolysis (TLG = TV x SUV mean ). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of concomitant

  20. Baseline {sup 18}F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, Mathieu; Visvikis, Dimitris; Cheze-le Rest, Catherine [CHU Morvan, LaTIM, INSERM U650, Brest (France); Pradier, Olivier [CHU Morvan, LaTIM, INSERM U650, Brest (France); CHU Morvan, Department of Radiotherapy, Brest (France)

    2011-09-15

    The objectives of this study were to investigate the predictive value of tumour measurements on 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) positron emission tomography (PET) pretreatment scan regarding therapy response in oesophageal cancer and to evaluate the impact of tumour delineation strategies. Fifty patients with oesophageal cancer treated with concomitant radiochemotherapy between 2004 and 2008 were retrospectively considered and classified as complete, partial or non-responders (including stable and progressive disease) according to Response Evaluation Criteria in Solid Tumors (RECIST). The classification of partial and complete responders was confirmed by biopsy. Tumours were delineated on the {sup 18}F-FDG pretreatment scan using an adaptive threshold and the automatic fuzzy locally adaptive Bayesian (FLAB) methodologies. Several parameters were then extracted: maximum and peak standardized uptake value (SUV), tumour longitudinal length (TL) and volume (TV), SUV{sub mean}, and total lesion glycolysis (TLG = TV x SUV{sub mean}). The correlation between each parameter and response was investigated using Kruskal-Wallis tests, and receiver-operating characteristic methodology was used to assess performance of the parameters to differentiate patients. Whereas commonly used parameters such as SUV measurements were not significant predictive factors of the response, parameters related to tumour functional spatial extent (TL, TV, TLG) allowed significant differentiation of all three groups of patients, independently of the delineation strategy, and could identify complete and non-responders with sensitivity above 75% and specificity above 85%. A systematic although not statistically significant trend was observed regarding the hierarchy of the delineation methodologies and the parameters considered, with slightly higher predictive value obtained with FLAB over adaptive thresholding, and TLG over TV and TL. TLG is a promising predictive factor of

  1. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone

    Science.gov (United States)

    Pancani, Tristano; Anderson, Katie L.; Porter, Nada M.; Thibault, Olivier

    2011-01-01

    Neuronal Ca2+ dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca2+ sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca2+ signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca2+ dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including FURA-2 and NADH imaging, provides results that are consistent with the idea that Ca2+ levels may rapidly alter glycolytic activity, and that downstream events beyond Ca2+ dysregulation with aging, may alter cellular metabolism in the brain. PMID:21978418

  2. Association between IL-6 production in synovial explants from rheumatoid arthritis patients and clinical and imaging response to biologic treatment: A pilot study.

    Directory of Open Access Journals (Sweden)

    Martin Andersen

    Full Text Available The need for biomarkers which can predict disease course and treatment response in rheumatoid arthritis (RA is evident. We explored whether clinical and imaging responses to biologic disease modifying anti-rheumatic drug treatment (bDMARD were associated with the individual's mediator production in explants obtained at baseline.RA Patients were evaluated by disease activity score 28 joint C-reactive protein (DAS 28-, colour Doppler ultrasound (CDUS and 3 Tesla RA magnetic resonance imaging scores (RAMRIS. Explants were established from synovectomies from a needle arthroscopic procedure prior to initiation of bDMARD. Explants were incubated with the bDMARD in question, and the productions of interleukin-6 (IL-6, monocyte chemo-attractive protein-1 (MCP-1 and macrophage inflammatory protein-1-beta (MIP-1b were measured by multiplex immunoassays. The changes in clinical and imaging variables following a minimum of 3 months bDMARD treatment were compared to the baseline explant results. Mixed models and Spearman's rank correlations were performed. P-values below 0.05 were considered statistically significant.16 patients were included. IL-6 production in bDMARD-treated explants was significantly higher among clinical non-responders compared to responders (P = 0.04, and a lack of suppression of IL-6 by the bDMARDS correlated to a high DAS-28 (ρ = 0.57, P = 0.03, CDUS (ρ = 0.53, P = 0.04 and bone marrow oedema (ρ = 0.56, P = 0.03 at follow-up. No clinical association was found with explant MCP-1 production. MIP-1b could not be assessed due to a large number of samples below the detection limit.Synovial explants appear to deliver a disease-relevant output testing which when carried out in advance of bDMARD treatment can potentially pave the road for a more patient tailored treatment approach with better treatment effects.

  3. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging--prospective assessment.

    Science.gov (United States)

    Tateishi, Ukihide; Miyake, Mototaka; Nagaoka, Tomoaki; Terauchi, Takashi; Kubota, Kazunori; Kinoshita, Takayuki; Daisaki, Hiromitsu; Macapinlac, Homer A

    2012-04-01

    To clarify whether fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging performed after two cycles of neoadjuvant chemotherapy (NAC) can be used to predict pathologic response in breast cancer. Institutional human research committee approval and written informed consent were obtained. Accuracy after two cycles of NAC for predicting pathologic complete response (pCR) was examined in 142 women (mean age, 57 years: range, 43-72 years) with histologically proved breast cancer between December 2005 and February 2009. Quantitative PET/CT and DCE MR imaging were performed at baseline and after two cycles of NAC. Parameters of PET/CT and of blood flow and microvascular permeability at DCE MR were compared with pathologic response. Patients were also evaluated after NAC by using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 based on DCE MR measurements and European Organization for Research and Treatment of Cancer (EORTC) criteria and PET Response Criteria in Solid Tumors (PERCIST) 1.0 based on PET/CT measurements. Multiple logistic regression analyses were performed to examine continuous variables at PET/CT and DCE MR to predict pCR, and diagnostic accuracies were compared with the McNemar test. Significant decrease from baseline of all parameters at PET/CT and DCE MR was observed after NAC. Therapeutic response was obtained in 24 patients (17%) with pCR and 118 (83%) without pCR. Sensitivity, specificity, and accuracy to predict pCR were 45.5%, 85.5%, and 82.4%, respectively, with RECIST and 70.4%, 95.7%, and 90.8%, respectively, with EORTC and PERCIST. Multiple logistic regression revealed three significant independent predictors of pCR: percentage maximum standardized uptake value (%SUV(max)) (odds ratio [OR], 1.22; 95% confidence interval [CI]: 1.11, 1.34; P PET/CT is superior to DCE MR for the prediction of pCR (%SUV(max) [90.1%] vs %κ

  4. Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform

    Science.gov (United States)

    Mohd Asaari, Mohd Shahrimie; Mishra, Puneet; Mertens, Stien; Dhondt, Stijn; Inzé, Dirk; Wuyts, Nathalie; Scheunders, Paul

    2018-04-01

    The potential of close-range hyperspectral imaging (HSI) as a tool for detecting early drought stress responses in plants grown in a high-throughput plant phenotyping platform (HTPPP) was explored. Reflectance spectra from leaves in close-range imaging are highly influenced by plant geometry and its specific alignment towards the imaging system. This induces high uninformative variability in the recorded signals, whereas the spectral signature informing on plant biological traits remains undisclosed. A linear reflectance model that describes the effect of the distance and orientation of each pixel of a plant with respect to the imaging system was applied. By solving this model for the linear coefficients, the spectra were corrected for the uninformative illumination effects. This approach, however, was constrained by the requirement of a reference spectrum, which was difficult to obtain. As an alternative, the standard normal variate (SNV) normalisation method was applied to reduce this uninformative variability. Once the envisioned illumination effects were eliminated, the remaining differences in plant spectra were assumed to be related to changes in plant traits. To distinguish the stress-related phenomena from regular growth dynamics, a spectral analysis procedure was developed based on clustering, a supervised band selection, and a direct calculation of a spectral similarity measure against a reference. To test the significance of the discrimination between healthy and stressed plants, a statistical test was conducted using a one-way analysis of variance (ANOVA) technique. The proposed analysis techniques was validated with HSI data of maize plants (Zea mays L.) acquired in a HTPPP for early detection of drought stress in maize plant. Results showed that the pre-processing of reflectance spectra with the SNV effectively reduces the variability due to the expected illumination effects. The proposed spectral analysis method on the normalized spectra successfully

  5. 3D-MR Spectroscopic Imaging at 3Tesla for Early Response Assessment of Glioblastoma Patients during External Beam Radiation Therapy

    Science.gov (United States)

    Muruganandham, Manickam; Clerkin, Patrick P; Smith, Brian J; Anderson, Carryn M; Morris, Ann; Capizzano, Aristides A; Magnotta, Vincent; McGuire, Sarah M; Smith, Mark C; Bayouth, John E; Buatti, John M

    2014-01-01

    Purpose To evaluate the utility of 3D-MR proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium enhanced MR images at simulation and at boost treatment planning after 17-20 fractions of radiotherapy. All patients received standard radiotherapy with temozolomide and follow-up with every two month MR scans. Progression free survival was defined using MacDonald criteria. MRSI images obtained at initial simulation were analyzed for choline / N-acetylaspartate ratios (Cho/NAA) on a voxel by voxel basis with abnormal activity defined as Cho/NAA ≥ 2. These images were compared on anatomically matched MRSI data collected after 3 weeks of radiotherapy. Changes in Cho/NAA between pre-therapy and 3rd week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results After 8.6 months (median follow-up), 50% of patients had progressed based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (p< 0.01). Patients with an increase in mean or median Cho/NAA values at the 3rd week RT scan had a significantly greater chance of early progression (p <0.01). An increased Cho/NAA at the 3rd week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval 1.10-6.71, p= 0.03). Most patients received the prescription dose of RT to the Cho/NAA ≥ 2 volume, which was where recurrence most often occurred. Conclusion Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of early progression. The potential impact for risk-adaptive therapy based on early spectroscopic findings is suggested. PMID:24986746

  6. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging

    Directory of Open Access Journals (Sweden)

    Grills Inga

    2007-05-01

    Full Text Available Abstract Background To correlate the metabolic changes with size changes for tumor response by concomitant PET-CT evaluation of lung cancers after radiotherapy. Methods 36 patients were studied pre- and post-radiotherapy with18FDG PET-CT scans at a median interval of 71 days. All of the patients were followed clinically and radiographically after a mean period of 342 days for assessment of local control or failure rates. Change in size (sum of maximum orthogonal diameters was correlated with that of maximum standard uptake value (SUV of the primary lung cancer before and after conventional radiotherapy. Results There was a significant reduction in both SUV and size of the primary cancer after radiotherapy (p Conclusion Correlating and incorporating metabolic change by PET into size change by concomitant CT is more sensitive in assessing therapeutic response than CT alone.

  7. Dynamic Contrast-Enhanced Ultrasound of Colorectal Liver Metastases as an Imaging Modality for Early Response Prediction to Chemotherapy

    DEFF Research Database (Denmark)

    Mogensen, Marie Benzon; Hansen, Martin Lundsgaard; Henriksen, Birthe Merete

    2017-01-01

    Our aim was to investigate whether dynamic contrast-enhanced ultrasound (DCE-US) can detect early changes in perfusion of colorectal liver metastases after initiation of chemotherapy. Newly diagnosed patients with colorectal cancer with liver metastases were enrolled in this explorative prospective...... study. Patients were treated with capecitabine or 5-fluorouracil-based chemotherapy with or without bevacizumab. DCE-US was performed before therapy (baseline) and again 10 days after initiation of treatment. Change in contrast-enhancement in one liver metastasis (indicator lesion) was measured....... Treatment response was evaluated with a computed tomography (CT) scan after three cycles of treatment and the initially observed DCE-US change of the indicator lesion was related to the observed CT response. Eighteen patients were included. Six did not complete three series of chemotherapy...

  8. A Virtual Clinical Trial of FDG-PET Imaging of Breast Cancer: Effect of Variability on Response Assessment1

    OpenAIRE

    Harrison, Robert L; Elston, Brian F; Doot, Robert K; Lewellen, Thomas K; Mankoff, David A; Kinahan, Paul E

    2014-01-01

    INTRODUCTION: There is growing interest in using positron emission tomography (PET) standardized uptake values (SUVs) to assess tumor response to therapy. However, many error sources compromise the ability to detect SUV changes. We explore relationships between these errors and overall SUV variability. METHODS: We used simulations in a virtual clinical trial framework to study impacts of error sources from scanning and analysis effects on assessment of SUV changes. We varied tumor diameter, s...

  9. CT halo sign as an imaging marker for response to adoptive cell therapy in metastatic melanoma with pulmonary metastases

    Energy Technology Data Exchange (ETDEWEB)

    Shrot, Shai; Apter, Sara [Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer (Israel); Schachter, Jacob; Shapira-Frommer, Ronnie [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Besser, Michal J. [Sheba Medical Center, The Ella Institute for Melanoma Research and Treatment, Tel Hashomer (Israel); Sackler School of Medicine, Tel Aviv University, Department of Clinical Microbiology and Immunology, Tel Aviv (Israel)

    2014-06-15

    The halo sign refers to a zone of ground-glass attenuation surrounding a pulmonary nodule. Pulmonary metastatic nodules exhibiting a halo sign are seen mainly in hypervascular tumours. We describe the appearance of a halo sign following treatment of adoptive transfer of autologous tumour-infiltrating lymphocytes (TIL) to melanoma patients with lung metastases. The study included 29 melanoma patients with pulmonary metastases who received TIL therapy. Pre- and post-treatment chest CTs were retrospectively reviewed for the presence of a halo sign and its correlation with therapeutic response. A pulmonary halo sign was not seen in any pre-treatment CT. It was observed in four of 12 patients who responded to the therapy but not in those who failed to respond. Significant differences were found between response ratio in patients in whom post-TIL halo sign appeared compared with those without the halo sign (p = 0.02). The appearance of a CT halo sign in melanoma with lung metastases following TIL therapy may indicate antitumoral effect and a good response to therapy. Our findings emphasize the importance of applying new assessment criteria for immunological anticancer therapies. (orig.)

  10. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses.

    Science.gov (United States)

    Burton, H; Sinclair, R J

    2000-11-01

    Clinical and neuroimaging observations of the cortical network implicated in tactile attention have identified foci in parietal somatosensory, posterior parietal, and superior frontal locations. Tasks involving intentional hand-arm movements activate similar or nearby parietal and frontal foci. Visual spatial attention tasks and deliberate visuomotor behavior also activate overlapping posterior parietal and frontal foci. Studies in the visual and somatosensory systems thus support a proposal that attention to the spatial location of an object engages cortical regions responsible for the same coordinate referents used for guiding purposeful motor behavior. Tactile attention also biases processing in the somatosensory cortex through amplification of responses to relevant features of selected stimuli. Psychophysical studies demonstrate retention gradients for tactile stimuli like those reported for visual and auditory stimuli, and suggest analogous neural mechanisms for working memory across modalities. Neuroimaging studies in humans using memory tasks, and anatomic studies in monkeys support the idea that tactile information relayed from the somatosensory cortex is directed ventrally through the insula to the frontal cortex for short-term retention and to structures of the medial temporal lobe for long-term encoding. At the level of single neurons, tactile (such as visual and auditory) short-term memory appears as a persistent response during delay intervals between sampled stimuli.

  11. Detection of diminished response to cold pressor test in smokers: assessment using phase-contrast cine magnetic resonance imaging of the coronary sinus.

    Science.gov (United States)

    Kato, Shingo; Kitagawa, Kakuya; Yoon, Yeonyee E; Nakajima, Hiroshi; Nagata, Motonori; Takase, Shinichi; Nakamori, Shiro; Ito, Masaaki; Sakuma, Hajime

    2014-04-01

    The purposes of this study were to evaluate the reproducibility for measuring the cold pressor test (CPT)-induced myocardial blood flow (MBF) alteration using phase-contrast (PC) cine MRI, and to determine if this approach could detect altered MBF response to CPT in smokers. After obtaining informed consent, ten healthy male non-smokers (mean age: 28±5 years) and ten age-matched male smokers (smoking duration ≥5 years, mean age: 28±3 years) were examined in this institutional review board approved study. Breath-hold PC cine MR images of the coronary sinus were obtained with a 3T MR imager with 32 channel coils at rest and during a CPT performed after immersing one foot in ice water. MBF was calculated as coronary sinus flow divided by the left ventricular (LV) mass which was given as a total LV myocardial volume measured on cine MRI multiplied by the specific gravity (1.05 g/mL). In non-smokers, MBF was 0.86±0.25 mL/min/g at rest, with a significant increase to 1.20±0.36 mL/min/g seen during CPT (percentage change of MBF (∆MBF (%)); 39.2%±14.4%, psmokers and non-smokers for resting MBF (0.85±0.32 mL/min/g, p=0.91). However, ∆MBF (%) in smokers was significantly reduced (-4.0±32.2% vs. 39.2±14.4%, p=0.011). PC cine MRI can be used to reproducibly quantify MBF response to CPT and to detect impaired flow response in smokers. This MR approach may be useful for monitoring the sequential change of coronary blood flow in various potentially pathologic conditions and for investigating its relationship with cardiovascular risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with {sup 64}Cu-DOTA-trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Gang; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Li, Zibo [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Keck School of Medicine, USC Molecular Imaging Center, Department of Radiology, Los Angeles, CA (United States)

    2009-09-15

    17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat-shock protein 90 (Hsp90) inhibitor, has been intensively investigated for cancer therapy and is undergoing clinical trials. Human epidermal growth factor receptor 2 (HER-2) is one of the client proteins of Hsp90 and its expression is decreased upon 17-DMAG treatment. In this study, we aimed to noninvasively monitor the HER-2 response to 17-DMAG treatment in xenografted mice. The sensitivity of human ovarian cancer SKOV-3 cells to 17-DMAG in vitro was measured by MTT assay. HER-2 expression in SKOV-3 cells was determined by flow cytometry. Nude mice bearing SKOV-3 tumors were treated with 17-DMAG and the therapeutic efficacy was evaluated by tumor size measurement. Both treated and control mice were imaged with microPET using {sup 64}Cu-DOTA-trastuzumab and {sup 18}F-FDG. Biodistribution studies and immunofluorescence staining were performed to validate the microPET results. SKOV-3 cells are sensitive to 17-DMAG treatment, in a dose-dependent manner, with an IC{sub 50} value of 24.72 nM after 72 h incubation. The tumor growth curve supported the inhibition effect of 17-DMAG on SKOV-3 tumors. Quantitative microPET imaging showed that {sup 64}Cu-DOTA-trastuzumab had prominent tumor accumulation in untreated SKOV-3 tumors, which was significantly reduced in 17-DMAG-treated tumors. There was no uptake difference detected by FDG PET. Immunofluorescence staining confirmed the significant reduction in tumor HER-2 level upon 17-DMAG treatment. The early response to anti-Hsp90 therapy was successfully monitored by quantitative PET using {sup 64}Cu-DOTA-trastuzumab. This approach may be valuable in monitoring the therapeutic response in HER-2-positive cancer patients under 17-DMAG treatment. (orig.)

  13. Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas.

    Science.gov (United States)

    Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier

    2012-04-01

    Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, -16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm(3)), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at -10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than -10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders.

  14. Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study.

    Directory of Open Access Journals (Sweden)

    Cheng-Sheng Wang

    Full Text Available OBJECTIVES: The purpose of our study is to investigate whether diffusion-weighted imaging (DWI is useful for monitoring the therapeutic response after neoadjuvant chemotherapy in osteosarcoma of long bones. MATERIALS AND METHODS: Conventional magnetic resonance imaging (MRI and DWI were obtained from 35 patients with histologically proven osteosarcomas. MR examinations were performed in all patients before and after 4 courses of preoperative neoadjuvant chemotherapy. Apparent diffusion coefficients (ADC were measured. The degree of tumor necrosis was assessed macroscopically and histologically by two experienced pathologists after operation. Student's t test was performed for testing changes in ADC value. Pearson's correlation coefficient was used to estimate the correlation between necrosis rate and post- neoadjuvant chemotherapy ADC values. P<0.05 was considered to denote a significant difference. RESULTS: The difference of the whole osteosarcoma between pre- neoadjuvant chemotherapy ADC value (1.24±0.17×10(-3 mm(2/s and post- (1.93±0.39×10(-3 mm(2/s was significant difference (P<0.01. Regarding in patients with good response, the post- neoadjuvant chemotherapy values were significantly higher than the pre- neoadjuvant chemotherapy values (P<0.01. The post- neoadjuvant chemotherapy ADC value in patients with good response was higher than that of poor response (t = 8.995, P<0.01. The differences in post- neoadjuvant chemotherapy ADC between viable (1.03±0.17×10(-3 mm(2/s and necrotic (2.38±0.25×10(-3 mm(2/s tumor was highly significant (t = 23.905, P<0.01. A positive correlation between necrosis rates and the whole tumor ADC values (r = 0.769, P<0.01 was noted, but necrosis rates were not correlated with the ADC values of necrotic (r = -0.191, P = 0.272 and viable tumor areas (r = 0.292, P = 0.089. CONCLUSIONS: DWI can identify residual viable tumor tissues and tumor necrosis induced by neoadjuvant

  15. Response evaluation of giant-cell tumor of bone treated by denosumab: Histogram and texture analysis of CT images.

    Science.gov (United States)

    Yi, Jisook; Lee, Young Han; Kim, Sang Kyum; Kim, Seung Hyun; Song, Ho-Taek; Shin, Kyoo-Ho; Suh, Jin-Suck

    2018-05-01

    This study aimed to compare computed tomography (CT) features, including tumor size and textural and histogram measurements, of giant-cell tumors of bone (GCTBs) before and after denosumab treatment and determine their applicability in monitoring GCTB response to denosumab treatment. This retrospective study included eight patients (male, 3; female, 5; mean age, 33.4 years) diagnosed with GCTB, who had received treatment by denosumab and had undergone pre- and post-treatment non-contrast CT between January 2010 and December 2016. This study was approved by the institutional review board. Pre- and post-treatment size, histogram, and textural parameters of GCTBs were compared by the Wilcoxon signed-rank test. Pathological findings of five patients who underwent surgery after denosumab treatment were evaluated for assessment of treatment response. Relative to the baseline values, the tumor size had decreased, while the mean attenuation, standard deviation, entropy (all, P = 0.017), and skewness (P = 0.036) of the GCTBs had significantly increased post-treatment. Although the difference was statistically insignificant, the tumors also exhibited increased kurtosis, contrast, and inverse difference moment (P = 0.123, 0.327, and 0.575, respectively) post-treatment. Histologic findings revealed new bone formation and complete depletion or decrease in the number of osteoclast-like giant cells. The histogram and textural parameters of GCTBs changed significantly after denosumab treatment. Knowledge of the tendency towards increased mean attenuation and heterogeneity but increased local homogeneity in post-treatment CT histogram and textural features of GCTBs might aid in treatment planning and tumor response evaluation during denosumab treatment. Copyright © 2018. Published by Elsevier B.V.

  16. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    Science.gov (United States)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  17. The assessment of local response using magnetic resonance imaging at 3- and 6-month post chemoradiotherapy in patients with anal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kochhar, Rohit [The Christie NHS Foundation Trust, Department of Radiology, Manchester (United Kingdom); The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom); Renehan, Andrew G. [The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester (United Kingdom); The Christie NHS Foundation Trust, Department of Surgery, Manchester (United Kingdom); Mullan, Damian; Carrington, Bernadette M. [The Christie NHS Foundation Trust, Department of Radiology, Manchester (United Kingdom); Chakrabarty, Bipasha [The Christie NHS Foundation Trust, Department of Histopathology, Manchester (United Kingdom); Saunders, Mark P. [The Christie NHS Foundation Trust, Department of Clinical Oncology, Manchester (United Kingdom)

    2017-02-15

    To assess the use of MRI-determined tumour regression grading (TRG) in local response assessment and detection of salvageable early local relapse after chemoradiotherapy (CRT) in patients with anal squamous cell carcinoma (ASCC). From a prospective database of patients with ASCC managed through a centralised multidisciplinary team, 74 patients who completed routine post-CRT 3- and 6-month MRIs (2009-2012) were reviewed. Two radiologists blinded to the outcomes consensus read and retrospectively assigned TRG scores [1 (complete response) to 5 (no response)] and related these to early local relapse (within 12 months) and disease-free survival (DFS). Seven patients had early local relapse. TRG 1/2 scores at 3 and 6 months had a 100 % negative predictive value; TRG 4/5 scores at 6 months had a 100 % positive predictive value. All seven patients underwent salvage R0 resections. We identified a novel 'tram-track' sign on MRI in over half of patients, with an NPV for early local relapse of 83 % at 6 months. No imaging characteristic or TRG score independently prognosticated for late relapse or 3-year DFS. Post-CRT 3- and 6-month MRI-determined TRG scores predicted salvageable R0 early local relapses in patients with ASCC, challenging current clinical guidelines. (orig.)

  18. Preclinical FLT-PET and FDG-PET imaging of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901

    International Nuclear Information System (INIS)

    Cullinane, Carleen; Waldeck, Kelly L.; Binns, David; Bogatyreva, Ekaterina; Bradley, Daniel P.; Jong, Ron de; McArthur, Grant A.; Hicks, Rodney J.

    2014-01-01

    Introduction: The Aurora kinases play a key role in mitosis and have recently been identified as attractive targets for therapeutic intervention in cancer. The aim of this study was therefore to investigate the utility of 3′-[ 18 F]fluoro-3′-deoxythymidine (FLT) and 2-deoxy-2-[ 18 F]fluoro-D-glucose (FDG) for assessment of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901. Methods: Balb/c nude mice bearing HCT116 colorectal xenografts were treated with up to 30 mg/kg TAK 901 or vehicle intravenously twice daily for two days on a weekly cycle. Tumor growth was monitored by calliper measurements and PET imaging was performed at baseline, day 4, 8, 11 and 15. Tumors were harvested at time points corresponding to days of PET imaging for analysis of ex vivo markers of cell proliferation and metabolism together with markers of Aurora B kinase inhibition including phospho-histone H3 (pHH3) and senescence associated β-galactosidase. Results: Tumor growth was inhibited by 60% on day 12 of 30 mg/kg TAK-901 therapy. FLT uptake was significantly reduced by day 4 of treatment and this corresponded with reduction in bromodeoxyuridine and pHH3 staining by immunohistochemistry. All biomarkers rebounded towards baseline levels by the commencement of the next treatmen