WorldWideScience

Sample records for non-minimum phase system

  1. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    Science.gov (United States)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  2. Passivity Based Stabilization of Non-minimum Phase Nonlinear Systems

    Czech Academy of Sciences Publication Activity Database

    Travieso-Torres, J.C.; Duarte-Mermoud, M.A.; Zagalak, Petr

    2009-01-01

    Roč. 45, č. 3 (2009), s. 417-426 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * stabilisation * passivity * state feedback Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-passivity based stabilization of non-minimum phase nonlinear systems.pdf

  3. Robustification and Optimization in Repetitive Control For Minimum Phase and Non-Minimum Phase Systems

    Science.gov (United States)

    Prasitmeeboon, Pitcha

    repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.

  4. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.

    Science.gov (United States)

    Sun, Li; Li, Donghai; Gao, Zhiqiang; Yang, Zhao; Zhao, Shen

    2016-09-01

    Control of the non-minimum phase (NMP) system is challenging, especially in the presence of modelling uncertainties and external disturbances. To this end, this paper presents a combined feedforward and model-assisted Active Disturbance Rejection Control (MADRC) strategy. Based on the nominal model, the feedforward controller is used to produce a tracking performance that has minimum settling time subject to a prescribed undershoot constraint. On the other hand, the unknown disturbances and uncertain dynamics beyond the nominal model are compensated by MADRC. Since the conventional Extended State Observer (ESO) is not suitable for the NMP system, a model-assisted ESO (MESO) is proposed based on the nominal observable canonical form. The convergence of MESO is proved in time domain. The stability, steady-state characteristics and robustness of the closed-loop system are analyzed in frequency domain. The proposed strategy has only one tuning parameter, i.e., the bandwidth of MESO, which can be readily determined with a prescribed robustness level. Some comparative examples are given to show the efficacy of the proposed method. This paper depicts a promising prospect of the model-assisted ADRC in dealing with complex systems. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Dispersion theory and sum rules for the non-minimum phase problem in optical spectroscopy

    International Nuclear Information System (INIS)

    Peiponen, Kai-Erik

    2009-01-01

    Dispersion relations and sum rules for integer powers of an optical response function are given in the case of the non-minimum phase problem. These relations were obtained using the concept of the Hilbert transform and Blaschke product. The theory presented in this paper is useful both in basic and applied studies of non-minimum phase functions in optics, and also other fields of physics such as high energy physics.

  6. Solid phase stability of a double-minimum interaction potential system

    International Nuclear Information System (INIS)

    Suematsu, Ayumi; Yoshimori, Akira; Saiki, Masafumi; Matsui, Jun; Odagaki, Takashi

    2014-01-01

    We study phase stability of a system with double-minimum interaction potential in a wide range of parameters by a thermodynamic perturbation theory. The present double-minimum potential is the Lennard-Jones-Gauss potential, which has a Gaussian pocket as well as a standard Lennard-Jones minimum. As a function of the depth and position of the Gaussian pocket in the potential, we determine the coexistence pressure of crystals (fcc and bcc). We show that the fcc crystallizes even at zero pressure when the position of the Gaussian pocket is coincident with the first or third nearest neighbor site of the fcc crystal. The bcc crystal is more stable than the fcc crystal when the position of the Gaussian pocket is coincident with the second nearest neighbor sites of the bcc crystal. The stable crystal structure is determined by the position of the Gaussian pocket. These results show that we can control the stability of the solid phase by tuning the potential function

  7. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    Science.gov (United States)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  8. Fault diagnosis for non-minimum phase systems using ℋ∞ optimization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2001-01-01

    The analysis and design algorithms for residual generators for nonminimum phase systems are given. It is shown that the ℋ∞ optimization of residual generators applied directly to systems including nonminimum phase zeros can be very conservative. To remove this conservatism in the &Hscr...

  9. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie

    2017-05-01

    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  10. Speedup of minimum discontinuity phase unwrapping algorithm with a reference phase distribution

    Science.gov (United States)

    Liu, Yihang; Han, Yu; Li, Fengjiao; Zhang, Qican

    2018-06-01

    In three-dimensional (3D) shape measurement based on phase analysis, the phase analysis process usually produces a wrapped phase map ranging from - π to π with some 2 π discontinuities, and thus a phase unwrapping algorithm is necessary to recover the continuous and nature phase map from which 3D height distribution can be restored. Usually, the minimum discontinuity phase unwrapping algorithm can be used to solve many different kinds of phase unwrapping problems, but its main drawback is that it requires a large amount of computations and has low efficiency in searching for the improving loop within the phase's discontinuity area. To overcome this drawback, an improvement to speedup of the minimum discontinuity phase unwrapping algorithm by using the phase distribution on reference plane is proposed. In this improved algorithm, before the minimum discontinuity phase unwrapping algorithm is carried out to unwrap phase, an integer number K was calculated from the ratio of the wrapped phase to the nature phase on a reference plane. And then the jump counts of the unwrapped phase can be reduced by adding 2K π, so the efficiency of the minimum discontinuity phase unwrapping algorithm is significantly improved. Both simulated and experimental data results verify the feasibility of the proposed improved algorithm, and both of them clearly show that the algorithm works very well and has high efficiency.

  11. Design of Linear - and Minimum-phase FIR-equalizers

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen; Jensen, K.J.; Gaunholt, Hans

    1996-01-01

    an error function which is quadratic in the filtercoefficients. The advantage of the quadratic function is the ability to find the optimal coefficients solving a system of linear equations without iterations.The transformation to a minimum-phase equalizer is carried out by homomorphic deconvolution...

  12. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  13. Improved Minimum Entropy Filtering for Continuous Nonlinear Non-Gaussian Systems Using a Generalized Density Evolution Equation

    Directory of Open Access Journals (Sweden)

    Jinliang Xu

    2013-06-01

    Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.

  14. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  15. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Agricultural activities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. Agriculture activities eligible for an extended phase-in of the minimum...

  16. Use of geostatistics on broiler production for evaluation of different minimum ventilation systems during brooding phase

    Directory of Open Access Journals (Sweden)

    Thayla Morandi Ridolfi de Carvalho

    2012-01-01

    Full Text Available The objective of this research was to evaluate different minimum ventilation systems, in relation to air quality and thermal comfort using geostatistics in brooding phase. The minimum ventilation systems were: Blue House I: exhaust fans + curtain management (end of the building; Blue House II: exhaust fans + side curtain management; and Dark House: exhaust fans + flag. The climate variables evaluated were: dry bulb temperature, relative humidity, air velocity, carbon dioxide and ammonia concentration, during winter time, at 9 a.m., in 80 equidistant points in brooding area. Data were evaluated by geostatistic technique. The results indicate that Wider broiler houses (above 15.0 m width present the greatest ammonia and humidity concentration. Blue House II present the best results in relation to air quality. However, none of the studied broiler houses present an ideal thermal comfort.

  17. Synthesis of adaptive traffic control discrete neminimalno-phase system

    Directory of Open Access Journals (Sweden)

    В.М. Азарсков

    2007-01-01

    Full Text Available  An adaptive approach to synthesizing the digital tracking system with direct set-point coupling is extended under conditions when a plant is non-minimum phase. Some bounded set of belonging of servo drive unknown parameters vector is believed to be known. The object’s model non-singularity condition is established. The asymptotical properties of control system are studied. Simulation results are given.

  18. MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES

    Institute of Scientific and Technical Information of China (English)

    程乾生

    1990-01-01

    The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.

  19. Analyzing systemic risk using non-linear marginal expected shortfall and its minimum spanning tree

    Science.gov (United States)

    Song, Jae Wook; Ko, Bonggyun; Chang, Woojin

    2018-02-01

    The aim of this paper is to propose a new theoretical framework for analyzing the systemic risk using the marginal expected shortfall (MES) and its correlation-based minimum spanning tree (MST). At first, we develop two parametric models of MES with their closed-form solutions based on the Capital Asset Pricing Model. Our models are derived from the non-symmetric quadratic form, which allows them to consolidate the non-linear relationship between the stock and market returns. Secondly, we discover the evidences related to the utility of our models and the possible association in between the non-linear relationship and the emergence of severe systemic risk by considering the US financial system as a benchmark. In this context, the evolution of MES also can be regarded as a reasonable proxy of systemic risk. Lastly, we analyze the structural properties of the systemic risk using the MST based on the computed series of MES. The topology of MST conveys the presence of sectoral clustering and strong co-movements of systemic risk leaded by few hubs during the crisis. Specifically, we discover that the Depositories are the majority sector leading the connections during the Non-Crisis period, whereas the Broker-Dealers are majority during the Crisis period.

  20. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Industries eligible for minimum wage phase-in. 510.22... REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE FAIR LABOR STANDARDS ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in...

  1. 29 CFR 510.24 - Governmental entities eligible for minimum wage phase-in.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Governmental entities eligible for minimum wage phase-in..., DEPARTMENT OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE... eligible for minimum wage phase-in. (a) The Commonwealth government of Puerto Rico has been determined to...

  2. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems

    Science.gov (United States)

    Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.

  4. MINIMUM BRACING STIFFNESS FOR MULTI-COLUMN SYSTEMS: THEORY

    OpenAIRE

    ARISTIZÁBAL-OCHOA, J. DARÍO

    2011-01-01

    A method that determines the minimum bracing stiffness required by a multi-column elastic system to achieve non-sway buckling conditions is proposed. Equations that evaluate the required minimum stiffness of the lateral and torsional bracings and the corresponding “braced" critical buckling load for each column of the story level are derived using the modified stability functions. The following effects are included: 1) the types of end connections (rigid, semirigid, and simple); 2) the bluepr...

  5. Multi-Use Non-Intrusive Flow Characterization System (FCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  6. Minimum-phase distribution of cosmic source brightness

    International Nuclear Information System (INIS)

    Gal'chenko, A.A.; Malov, I.F.; Mogil'nitskaya, L.F.; Frolov, V.A.

    1984-01-01

    Minimum-phase distributions of brightness (profiles) for cosmic radio sources 3C 144 (the wave lambda=21 cm), 3C 338 (lambda=3.5 m), and 3C 353 (labda=31.3 cm and 3.5 m) are obtained. A real possibility for the profile recovery from module fragments of its Fourier-image is shown

  7. 29 CFR Appendix D to Part 510 - Municipalities Eligible for Minimum Wage Phase-In

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Municipalities Eligible for Minimum Wage Phase-In D... OF LABOR REGULATIONS IMPLEMENTATION OF THE MINIMUM WAGE PROVISIONS OF THE 1989 AMENDMENTS TO THE FAIR... Minimum Wage Phase-In This appendix contains a listing of the municipalities in Puerto Rico and the tier...

  8. Minimum critical mass systems

    International Nuclear Information System (INIS)

    Dam, H. van; Leege, P.F.A. de

    1987-01-01

    An analysis is presented of thermal systems with minimum critical mass, based on the use of materials with optimum neutron moderating and reflecting properties. The optimum fissile material distributions in the systems are obtained by calculations with standard computer codes, extended with a routine for flat fuel importance search. It is shown that in the minimum critical mass configuration a considerable part of the fuel is positioned in the reflector region. For 239 Pu a minimum critical mass of 87 g is found, which is the lowest value reported hitherto. (author)

  9. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  10. Computing the Minimum-Phase Filter using the QL-Factorization

    DEFF Research Database (Denmark)

    Hansen, Morten; Christensen, Lars P.B.; Winther, Ole

    2010-01-01

    We investigate the QL-factorization of a time-invariant convolutive filtering matrix and show that this factorization not only provides the finite length equivalent to the minimum-phase filter, but also gives the associated all-pass filter. The convergence properties are analyzed and we derive...

  11. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  12. Convergence of solutions of a non-local phase-field system

    Czech Academy of Sciences Publication Activity Database

    Londen, S.-O.; Petzeltová, Hana

    2011-01-01

    Roč. 4, č. 3 (2011), s. 653-670 ISSN 1937-1632 R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-local phase-field systems * separation property * convergence to equilibria Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5698

  13. Efficient Minimum-Phase Prefilter Computation Using Fast QL-Factorization

    DEFF Research Database (Denmark)

    Hansen, Morten; Christensen, Lars P.B.

    2009-01-01

    This paper presents a novel approach for computing both the minimum-phase filter and the associated all-pass filter in a computationally efficient way using the fast QL-factorization. A desirable property of this approach is that the complexity is independent on the size of the matrix which is QL...

  14. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  15. Method of statistical estimation of temperature minimums in binary systems

    International Nuclear Information System (INIS)

    Mireev, V.A.; Safonov, V.V.

    1985-01-01

    On the basis of statistical processing of literature data the technique for evaluation of temperature minima on liquidus curves in binary systems with common ion chloride systems being taken as an example, is developed. The systems are formed by 48 chlorides of 45 chemical elements including alkali, alkaline earth, rare earth and transition metals as well as Cd, In, Th. It is shown that calculation error in determining minimum melting points depends on topology of the phase diagram. The comparison of calculated and experimental data for several previously nonstudied systems is given

  16. Proportionate Minimum Error Entropy Algorithm for Sparse System Identification

    Directory of Open Access Journals (Sweden)

    Zongze Wu

    2015-08-01

    Full Text Available Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.

  17. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  18. Non-singular Brans–Dicke collapse in deformed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)

    2016-12-15

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  19. Non-singular Brans–Dicke collapse in deformed phase space

    International Nuclear Information System (INIS)

    Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.

    2016-01-01

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  20. Phase coherence among the Fourier modes and non-Gaussian characteristics in the Alfvén chaos system

    Science.gov (United States)

    Nariyuki, Yasuhiro; Sasaki, Makoto; Kasuya, Naohiro; Hada, Tohru; Yagi, Masatoshi

    2017-03-01

    Non-Gaussian characteristics in time series of the Alfvén chaos system are discussed. The phase coherence index, a measure defined by using the surrogate data method and the structure function, is used to evaluate the phase coherence among the Fourier modes. Through Monte Carlo significance testing, it is found that the phase coherence decays monotonically with increasing dissipative parameter and time scale. By applying the Mori projection operator method assuming the Markov process, a model equation for the time correlation function is derived from the generalized Langevin equation. As opposed to the result of the phase coherence analysis, it is concluded that the difference between the direct numerical simulation and the model equation becomes pronounced as the dissipative parameters are increased. This suggests that, even when the phase coherence index is not significant, the underlying physical system may be a non-Gaussian process.

  1. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  2. Causal Tracking Control of a Non-Minimum Phase HIL Transmission Test System

    OpenAIRE

    Wang, Pengfei

    2009-01-01

    The automotive industry has long relied on testing powertrain components in real vehicles, which causes the development process to be slow and expensive. Therefore, hardware in the loop (HIL) testing techniques are increasingly being adopted to develop electronic control units (ECU) for engine and other components of a vehicle. In this thesis, HIL testing system is developed to provide a laboratory testing environment for continuously variable transmissions (CVTs). Two induction motors were u...

  3. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  4. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  5. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    Science.gov (United States)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  6. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  7. Design of Phase II Non-inferiority Trials.

    Science.gov (United States)

    Jung, Sin-Ho

    2017-09-01

    With the development of inexpensive treatment regimens and less invasive surgical procedures, we are confronted with non-inferiority study objectives. A non-inferiority phase III trial requires a roughly four times larger sample size than that of a similar standard superiority trial. Because of the large required sample size, we often face feasibility issues to open a non-inferiority trial. Furthermore, due to lack of phase II non-inferiority trial design methods, we do not have an opportunity to investigate the efficacy of the experimental therapy through a phase II trial. As a result, we often fail to open a non-inferiority phase III trial and a large number of non-inferiority clinical questions still remain unanswered. In this paper, we want to develop some designs for non-inferiority randomized phase II trials with feasible sample sizes. At first, we review a design method for non-inferiority phase III trials. Subsequently, we propose three different designs for non-inferiority phase II trials that can be used under different settings. Each method is demonstrated with examples. Each of the proposed design methods is shown to require a reasonable sample size for non-inferiority phase II trials. The three different non-inferiority phase II trial designs are used under different settings, but require similar sample sizes that are typical for phase II trials.

  8. Laterally structured ripple and square phases with one and two dimensional thickness modulations in a model bilayer system.

    Science.gov (United States)

    Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G

    2014-10-14

    Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

  9. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  10. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  11. A non-equilibrium phase transition in a dissipative forest model

    International Nuclear Information System (INIS)

    Messer, Joachim A.

    2009-01-01

    The shape of the biostress force for a stressed Lotka-Volterra network is for the first time derived from Lindblad's dissipative dynamics. Numerical solutions for stressed prey-predator systems with limited resources show a threshold. A non-equilibrium phase transition to a phase with ecosystem dying after a few enforced oscillations (waldsterben phase) occurs.

  12. Ordered phase and non-equilibrium fluctuation in stock market

    Science.gov (United States)

    Maskawa, Jun-ichi

    2002-08-01

    We analyze the statistics of daily price change of stock market in the framework of a statistical physics model for the collective fluctuation of stock portfolio. In this model the time series of price changes are coded into the sequences of up and down spins, and the Hamiltonian of the system is expressed by spin-spin interactions as in spin glass models of disordered magnetic systems. Through the analysis of Dow-Jones industrial portfolio consisting of 30 stock issues by this model, we find a non-equilibrium fluctuation mode on the point slightly below the boundary between ordered and disordered phases. The remaining 29 modes are still in disordered phase and well described by Gibbs distribution. The variance of the fluctuation is outlined by the theoretical curve and peculiarly large in the non-equilibrium mode compared with those in the other modes remaining in ordinary phase.

  13. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  14. Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations

    Science.gov (United States)

    Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar

    2016-02-01

    The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time

  15. Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24

    Directory of Open Access Journals (Sweden)

    A. O. Akala

    2013-11-01

    Full Text Available GPS-TEC data were observed at the same local time at two equatorial stations on both longitudes: Lagos (6.52° N, 3.4° E, 3.04° S magnetic latitude, Nigeria; and Pucallpa (8.38° S, 74.57° W, 4.25° N magnetic latitude, Peru during the minimum (2009, 2010 and ascending (2011 phases of solar cycle 24. These data were grouped into daily, seasonal and solar activity sets. The day-to-day variations in vertical TEC (VTEC recorded the maximum during 14:00–16:00 LT and minimum during 04:00–06:00 LT at both longitudes. Seasonally, during solar minimum, maximum VTEC values were observed during March equinox and minimum during solstices. However, during the ascending phase of the solar activity, the maximum values were recorded during the December solstice and minimum during the June solstice. VTEC also increased with solar activity at both longitudes. On longitude by longitude comparison, the African GPS station generally recorded higher VTEC values than the American GPS station. Furthermore, harmonic analysis technique was used to extract the annual and semi-annual components of the amplitudes of the TEC series at both stations. The semi-annual variations dominated the TEC series over the African equatorial station, while the annual variations dominated those over the American equatorial station. The GPS-TEC-derived averages for non-storm days were compared with the corresponding values derived by the IRI-2007 with the NeQuick topside option. The NeQuick option of IRI-2007 showed better performance at the American sector than the African sector, but generally underestimating TEC during the early morning hours at both longitudes.

  16. Phases of dense matter with non-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pethick, C J [NORDITA, Copenhagen (Denmark); [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)

  17. Remark on Relations Between Different Non-integrable Phases

    International Nuclear Information System (INIS)

    Gu Zhiyu; Qian Shangwu

    2005-01-01

    There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.

  18. Detecting phase synchronization between coupled non-phase-coherent oscillators

    International Nuclear Information System (INIS)

    Follmann, Rosangela; Macau, Elbert E.N.; Rosa, Epaminondas

    2009-01-01

    We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series.

  19. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  20. Suitability of an MRMCE (multi-resolution minimum cross entropy) algorithm for online monitoring of a two-phase flow

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Huaxiang; Xin, Shan

    2011-01-01

    The flow regimes are important characteristics to describe two-phase flows, and measurement of two-phase flow parameters is becoming increasingly important in many industrial processes. Computerized tomography (CT) has been applied to two-phase/multi-phase flow measurement in recent years. Image reconstruction of CT often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive, especially for the case of online flow regime identification. In this paper, minimum cross entropy reconstruction based on multi-resolution processing (MRMCE) is presented for oil–gas two-phase flow regime identification. A regularized MCE solution is obtained using the simultaneous multiplicative algebraic reconstruction technique (SMART) at a coarse resolution level, where important information on the reconstructed image is contained. Then, the solution in the finest resolution is obtained by inverse fast wavelet transformation. Both computer simulation and static/dynamic experiments were carried out for typical flow regimes. Results obtained indicate that the proposed method can dramatically reduce the computational time and improve the quality of the reconstructed image with suitable decomposition levels compared with the single-resolution maximum likelihood expectation maximization (MLEM), alternating minimization (AM), Landweber, iterative least square technique (ILST) and minimum cross entropy (MCE) methods. Therefore, the MRMCE method is suitable for identification of dynamic two-phase flow regimes

  1. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    Science.gov (United States)

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  2. Non-Gaussian Systems Control Performance Assessment Based on Rational Entropy

    Directory of Open Access Journals (Sweden)

    Jinglin Zhou

    2018-05-01

    Full Text Available Control loop Performance Assessment (CPA plays an important role in system operations. Stochastic statistical CPA index, such as a minimum variance controller (MVC-based CPA index, is one of the most widely used CPA indices. In this paper, a new minimum entropy controller (MEC-based CPA method of linear non-Gaussian systems is proposed. In this method, probability density function (PDF and rational entropy (RE are respectively used to describe the characteristics and the uncertainty of random variables. To better estimate the performance benchmark, an improved EDA algorithm, which is used to estimate the system parameters and noise PDF, is given. The effectiveness of the proposed method is illustrated through case studies on an ARMAX system.

  3. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  4. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  5. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  6. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  7. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  8. Formation of quadrupolar phase in non-Heisenberg ferromagnets with half-integer spin

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Spirin, D.V.

    2005-01-01

    Possibility of realization of quadrupolar phase in non-Heisenberg ferromagnet with magnetic ion spin 32 is studied. It is shown that such phase state exists only in ferromagnets with high value of biquadratic exchange when external magnetic field is not applied. Phase diagram of the system is built

  9. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  10. Classical mechanics in non-commutative phase space

    International Nuclear Information System (INIS)

    Wei Gaofeng; Long Chaoyun; Long Zhengwen; Qin Shuijie

    2008-01-01

    In this paper the laws of motion of classical particles have been investigated in a non-commutative phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in non-commutative space if only the coordinates are non-commutative. (authors)

  11. Minimum Cost Nanosatellite Launch System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Delta Velocity Corporation proposes the development of a very low cost, highly responsive nanosat launch system. We propose to develop an integrated propulsion...

  12. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    Science.gov (United States)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  13. Spatial non-adiabatic passage using geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)

    2017-12-15

    Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)

  14. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  15. Pengoperasian Beban Listrik Fase Tunggal Terkendali Melalui Minimum System Berbasis Mikrokontroler Dan Sensor Voice Recognition (Vr)

    OpenAIRE

    Goeritno, Arief; Ginting, Sandy Ferdiansyah; Yatim, Rakhmad

    2017-01-01

    Minimum system berbasis mikrokontroler dan sensor voice recognition (VR) sebagai pengendali aktuator telah digunakan untuk pengoperasian beban listrik fase tunggal. Minimum system adalah suatu sistem yang tersusun melalui 2 (dua) tahapan, yaitu (a) diagram rangkaian dan bentuk fisis board dan (b) pengawatan terintegrasi terhadap minimum system pada sistem mikrokontroler ATmega16. Keberadaan sistem mikrokontroler pada minimum system perlu program tertanam melalui pemrograman berbasis bahasa ...

  16. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases

    Science.gov (United States)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.

    2016-03-01

    In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind

  17. Competing failure analysis in phased-mission systems with functional dependence in one of phases

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2012-01-01

    This paper proposes an algorithm for the reliability analysis of non-repairable phased-mission systems (PMS) subject to competing failure propagation and isolation effects. A failure originating from a system component which causes extensive damage to other system components is a propagated failure. When the propagated failure affects all the system components, causing the entire system failure, a propagated failure with global effect (PFGE) is said to occur. However, the failure propagation can be isolated in systems subject to functional dependence (FDEP) behavior, where the failure of a component (referred to as trigger component) causes some other components (referred to as dependent components) to become inaccessible or unusable (isolated from the system), and thus further failures from these dependent components have no effect on the system failure behavior. On the other hand, if any PFGE from dependent components occurs before the trigger failure, the failure propagation effect takes place, causing the overall system failure. In summary, there are two distinct consequences of a PFGE due to the competition between the failure isolation and failure propagation effects in the time domain. Existing works on such competing failures focus only on single-phase systems. However, many real-world systems are phased-mission systems (PMS), which involve multiple, consecutive and non-overlapping phases of operations or tasks. Consideration of competing failures for PMS is a challenging and difficult task because PMS exhibit dynamics in the system configuration and component behavior as well as statistical dependencies across phases for a given component. This paper proposes a combinatorial method to address the competing failure effects in the reliability analysis of binary non-repairable PMS. The proposed method is verified using a Markov-based method through a numerical example. Different from the Markov-based approach that is limited to exponential distribution, the

  18. Heralded Magnetism in Non-Hermitian Atomic Systems

    Directory of Open Access Journals (Sweden)

    Tony E. Lee

    2014-10-01

    Full Text Available Quantum phase transitions are usually studied in terms of Hermitian Hamiltonians. However, cold-atom experiments are intrinsically non-Hermitian because of spontaneous decay. Here, we show that non-Hermitian systems exhibit quantum phase transitions that are beyond the paradigm of Hermitian physics. We consider the non-Hermitian XY model, which can be implemented using three-level atoms with spontaneous decay. We exactly solve the model in one dimension and show that there is a quantum phase transition from short-range order to quasi-long-range order despite the absence of a continuous symmetry in the Hamiltonian. The ordered phase has a frustrated spin pattern. The critical exponent ν can be 1 or 1/2. Our results can be seen experimentally with trapped ions, cavity QED, and atoms in optical lattices.

  19. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  20. Study of nanometer-level precise phase-shift system used in electronic speckle shearography and phase-shift pattern interferometry

    Science.gov (United States)

    Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo

    2011-11-01

    The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.

  1. Continuous fractional-order Zero Phase Error Tracking Control.

    Science.gov (United States)

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. The New Phases due to Symmetry Protected Piecewise Berry Phases; Enhanced Pumping and Non-reciprocity in Trimer Lattices.

    Science.gov (United States)

    Liu, Xuele; Agarwal, G S

    2017-03-24

    Finding new phase of matter is a fundamental task in physics. Generally, various phases or states of matter (for instance solid/liquid/gas phases) have different symmetries, the phase transitions among them can be explained by Landau's symmetry breaking theory. The topological phases discovered in recent years show that different phases may have the same symmetry. The different topological phases are characterized by different integer values of the Berry phases. By studying one dimensional (1D) trimer lattices we report new phases beyond topological phases. The new phases that we find are characterized by piecewise continuous Berry phases with the discontinuity occurring at the transition point. With time-dependent changes in trimer lattices, we can generate two dimensional (2D) phases, which are characterized by the Berry phase of half period. This half-period Berry phase changes smoothly within one state of the system while changes discontinuously at the transition point. We further demonstrate the existence of adiabatic pumping for each phase and gain assisted enhanced pumping. The non reciprocity of the pumping process makes the system a good optical diode.

  3. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  4. Portable system for temperature monitoring in all phases of wine production.

    Science.gov (United States)

    Boquete, Luciano; Cambralla, Rafael; Rodríguez-Ascariz, J M; Miguel-Jiménez, J M; Cantos-Frontela, J J; Dongil, J

    2010-07-01

    This paper presents a low-cost and highly versatile temperature-monitoring system applicable to all phases of wine production, from grape cultivation through to delivery of bottled wine to the end customer. Monitoring is performed by a purpose-built electronic system comprising a digital memory that stores temperature data and a ZigBee communication system that transmits it to a Control Centre for processing and display. The system has been tested under laboratory conditions and in real-world operational applications. One of the system's advantages is that it can be applied to every phase of wine production. Moreover, with minimum modification, other variables of interest (pH, humidity, etc.) could also be monitored and the system could be applied to other similar sectors, such as olive-oil production. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    A mathematical model for suspension/colloid flow in porous media and non-monotonic deposition is proposed. It accounts for the migration of particles associated with the pore walls via the second energy minimum (surface associated phase). The surface associated phase migration is characterized...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information....... The numerical modeling results highly agree with the experimental observations, which proves the ability of the model to catch a non-monotonic deposition profile in practice. An additional equation describing a mobile population behaving differently from the injected population seems to be a sufficient...

  6. Phase transition signals of finite systems

    International Nuclear Information System (INIS)

    Duflot-Flandrois, Veronique

    2001-01-01

    Phase transitions are universal properties of interacting matter. They are well described if the considered system is infinite, by using standard thermodynamics. But in the case of small systems like atomic nuclei, this formalism cannot be applied anymore. Our aim is to propose a statistical mechanics approach in order to define the thermodynamical features of small open systems subject to non-saturating forces. We concentrate in particular on the definition and characterization for such systems of phase transitions belonging to the liquid gas universality class. Theoretical and experimental observables are defined to signal the occurrence and the order of this transition without any ambiguity. One of the most relevant and experimentally accessible observables consists in the study of kinetic energy fluctuations for a fixed value of the total deposited energy. In a first order phase transition such fluctuations become anomaly high and at the same time the size distribution appears to behave critically. All our results are obtained within numerical simulations of the lattice gas model with a nearest neighbors attractive interaction. Finally we check the influence of non-saturating forces, developing the specific example of the Coulomb interaction in the nucleus. Future improvements and perspectives at this work consist in the analysis of specific effects occurring in nuclei: isospin and quantum mechanics. (author) [fr

  7. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    Science.gov (United States)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  8. Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters

    Directory of Open Access Journals (Sweden)

    S. M. M. Shariatmadar

    2017-08-01

    Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.

  9. Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Koichi [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Department of Electrical Engineering, Gifu University (Japan); Wagner, Tomas; Frumar, Miloslav [Department of General and Inorganic Chemistry, University of Pardubice, Pardubice (Czech Republic); Kadlec, Filip; Kadlec, Christelle [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kasap, Safa [Department of Electrical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2013-12-21

    THz and DC losses in crystalline states of GeSbTe and AgInSbTe phase-change material systems are re-examined and discussed. Although a simple free carrier transport has been assumed so far in the GeSbTe (GST) system, it is shown through recent experimental results that a series sequence of intragrain and intergrain (tunneling) transport, as recently formulated in Shimakawa et al., “The origin of non-Drude terahertz conductivity in nanomaterials,” Appl. Phys. Lett. 100, 132102 (2012) may dominate the electronic transport in the commercially utilized GST system, producing a non-Drude THz conductivity. The extracted physical parameters such as the free-carrier density and mobility are significantly different from those obtained from the Drude law. These physical parameters are consistent with those obtained from the DC loss data, and provide further support for the model. Negative temperature coefficient of resistivity is found even in the metallic state, similar to amorphous metals, when the mean free path is short. It is shown that the concept of minimum metallic conductivity, often used in the metal-insulator transition, cannot be applied to electronic transport in these materials.

  10. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  11. Performance of a passive emergency heat removal system of advanced reactors in two-phase flow and with high concentration of non-condensable

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto

    2008-01-01

    The research and the development of passive emergency cooling systems are necessary for the new generation of thermo-nuclear systems. Some basic information on the operation of these systems require the research of some relative processes to the natural circulation, mainly in conditions of two-phase flow involving processes of condensation in the presence of non-condensable gases, because many found situations are new. The experimental facility called Bancada de Circulacao Natural (BCN) was used for the realization of tests with diverse concentrations of non-condensable and power levels. The non-condensable gas present in the circuit decreases the rate of heat transfer for the secondary of the heat exchanger, determining low efficiency of the heat exchanger. High concentration of non-condensable in the vapor condensation, determines negative pressure, and cause the inversion of the flow in the circuit. The initial concentration of non-condensable and the geometry of the circuit, in the inlet of the heat exchanger, determines the establishment of transitory with two-phase flow. The BCN was performed with the computational code of Analysis of Accidents and Thermal-Hydraulics RELAP5/MOD 3.3 and, the calculated values had been compared with the experimental data, presenting good agreement for small non-condensable concentrations. The values calculated for high concentrations of non-condensable had been satisfactory after the circuit to have reached the temperature of saturation in the electric heater. (author)

  12. Non-Pilot-Aided Sequential Monte Carlo Method to Joint Signal, Phase Noise, and Frequency Offset Estimation in Multicarrier Systems

    Directory of Open Access Journals (Sweden)

    Christelle Garnier

    2008-05-01

    Full Text Available We address the problem of phase noise (PHN and carrier frequency offset (CFO mitigation in multicarrier receivers. In multicarrier systems, phase distortions cause two effects: the common phase error (CPE and the intercarrier interference (ICI which severely degrade the accuracy of the symbol detection stage. Here, we propose a non-pilot-aided scheme to jointly estimate PHN, CFO, and multicarrier signal in time domain. Unlike existing methods, non-pilot-based estimation is performed without any decision-directed scheme. Our approach to the problem is based on Bayesian estimation using sequential Monte Carlo filtering commonly referred to as particle filtering. The particle filter is efficiently implemented by combining the principles of the Rao-Blackwellization technique and an approximate optimal importance function for phase distortion sampling. Moreover, in order to fully benefit from time-domain processing, we propose a multicarrier signal model which includes the redundancy information induced by the cyclic prefix, thus leading to a significant performance improvement. Simulation results are provided in terms of bit error rate (BER and mean square error (MSE to illustrate the efficiency and the robustness of the proposed algorithm.

  13. CFD-DEM Simulation of Minimum Fluidisation Velocity in Two Phase Medium

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-09-01

    Full Text Available In this work, CFD-DEM (computational fluid dynamics - discrete element method has been used to model the 2 phase flow composed of solid particle and gas in the fluidised bed. This technique uses the Eulerian and the Langrangian methods to solve fluid and particles respectively. Each particle is treated as a discrete entity whose motion is governed by Newton's laws of motion. The particle-particle and particle-wall interaction is modelled using the classical contact mechanics. The particles motion is coupled with the volume averaged equations of the fluid dynamics using drag law. In fluidised bed, particles start experiencing drag once the fluid is passing through. The solid particles response to it once drag experienced is just equal to the weight of the particles. At this moment pressure drop across the bed is just equal to the weight of particles divide by the cross-section area. This is the first regime of fluidization, also referred as ‘the regime of minimum fluidization’. In this study, phenomenon of minimum fluidization is studied using CFD-DEM simulation with 4 different sizes of particles 0.15 mm, 0.3 mm, 0.6 mm, and 1.2 mm diameters. The results are presented in the form of pressure drop across the bed with the fluid superficial velocity. The achieved results are found in good agreement with the experimental and theoretical data available in literature.

  14. Ternary alloy systems. Phase diagrams, crystallographic and thermodynamic data critically evaluated by MSIT registered. Subvol. C. Non-ferrous metal systems. Pt. 4: Selected nuclear materials and engineering systems

    International Nuclear Information System (INIS)

    Effenberg, Guenter; Ilyenko, Svitlana; Aldinger, Fritz; Bochvar, Nataliya; Cacciamani, Gabriele

    2007-01-01

    The present volume in the New Series of Landolt-Boernstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. The often conflicting literature data have been critically evaluated by Materials Science International Team, MSIT registered , a team working together since many years, and with expertise in a broad range of methods, materials and applications. All evaluation reports published here have undergone a thorough review process in which the reviewers had access to all the original data. The data for each ternary system are provided in a standard format which includes text, tables and diagrams. The topics presented are literature data, binary systems, solid phases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided. In the present volume IV/11C selected non-ferrous-metal systems are considered, especially selected nuclear materials and engineering systems in this Part 4. (orig.)

  15. Phase statistics in non-Gaussian scattering

    International Nuclear Information System (INIS)

    Watson, Stephen M; Jakeman, Eric; Ridley, Kevin D

    2006-01-01

    Amplitude weighting can improve the accuracy of frequency measurements in signals corrupted by multiplicative speckle noise. When the speckle field constitutes a circular complex Gaussian process, the optimal function of amplitude weighting is provided by the field intensity, corresponding to the intensity-weighted phase derivative statistic. In this paper, we investigate the phase derivative and intensity-weighted phase derivative returned from a two-dimensional random walk, which constitutes a generic scattering model capable of producing both Gaussian and non-Gaussian fluctuations. Analytical results are developed for the correlation properties of the intensity-weighted phase derivative, as well as limiting probability densities of the scattered field. Numerical simulation is used to generate further probability densities and determine optimal weighting criteria from non-Gaussian fields. The results are relevant to frequency retrieval in radiation scattered from random media

  16. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...

  17. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems.

    Science.gov (United States)

    Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo

    2017-04-01

    Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.

  18. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO{sub 2}F{sub 2} and H{sub 2}O) and hydrofluoric-acid-moderated uranium hexaflouride (UF{sub 6} and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % {sup 235}U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  19. Minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    A parametric calculational analysis has been performed in order to estimate the minimum mass of moderator required for criticality of homogeneous low-enriched uranium systems. The analysis was performed using a version of the SCALE-4.0 code system and the 27-group ENDF/B-IV cross-section library. Water-moderated uranyl fluoride (UO[sub 2]F[sub 2] and H[sub 2]O) and hydrofluoric-acid-moderated uranium hexaflouride (UF[sub 6] and HF) systems were considered in the analysis over enrichments of 1.4 to 5 wt % [sup 235]U. Estimates of the minimum critical volume, minimum critical mass of uranium, and the minimum mass of moderator required for criticality are presented. There was significant disagreement between the values generated in this study when compared with a similar undocumented study performed in 1983 using ANISN and the Knight-modified Hansen-Roach cross sections. An investigation into the cause of the disagreement was made, and the results are presented.

  20. Non-spherical micelles in an oil-in-water cubic phase

    DEFF Research Database (Denmark)

    Leaver, M.; Rajagopalan, V.; Ulf, O.

    2000-01-01

    phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate.......The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...

  1. How unprecedented a solar minimum was it?

    Science.gov (United States)

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  2. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  3. Method of non-interacting thermodynamic calculation of binary phase diagrams containing p disordered phases with variable composition and q phases with constant composition at (p, q) ≤ 10

    International Nuclear Information System (INIS)

    Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.

    1991-01-01

    Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given

  4. Phase equilibria, phases and compounds in the Ti-C system

    International Nuclear Information System (INIS)

    Gusev, Aleksandr I

    2002-01-01

    The results of experimental and theoretical investigations of the phase equilibria in the titanium-carbon system are generalised. The generalised thermodynamic characteristics of disordered titanium carbide TiC y , are reported. Peculiarities of the crystal structures of all the known and hypothetical compounds of titanium with carbon are considered in detail. The X-ray diffraction patterns which allow identification of all these compounds are presented. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichio metric carbide, TiC y , and for the existence of the molecular cluster-like compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) are discussed. The bibliography includes 142 references.

  5. Phase equilibria, phases and compounds in the Ti-C system

    International Nuclear Information System (INIS)

    Gusev, A.I.

    2002-01-01

    The results of experimental and theoretical investigations related to the phase equilibria in the titanium-carbon system are generalized. The generalized thermodynamic characteristics of the disordered titanium carbide TiC y are given. The crystal structure of all the discovered and hypothetical compounds of titanium with carbon are considered in detail. The x-ray diffraction patterns which allow one to identify all these compounds are given. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichiometric TiC y carbide and for the existence of the compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) of the molecule cluster type are discussed [ru

  6. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    Science.gov (United States)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  7. Minimum emittance of three-bend achromats

    International Nuclear Information System (INIS)

    Li Xiaoyu; Xu Gang

    2012-01-01

    The calculation of the minimum emittance of three-bend achromats (TBAs) made by Mathematical software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space. The minimum scaling factors of two kinds of widely used TBA lattices are obtained. Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor, when the TBA lattice achieves its minimum emittance. The procedure of analysis and the results can be widely used in achromats lattices, because the calculation is not restricted by the actual lattice. (authors)

  8. The impact of the minimum wage on health.

    Science.gov (United States)

    Andreyeva, Elena; Ukert, Benjamin

    2018-03-07

    This study evaluates the effect of minimum wage on risky health behaviors, healthcare access, and self-reported health. We use data from the 1993-2015 Behavioral Risk Factor Surveillance System, and employ a difference-in-differences strategy that utilizes time variation in new minimum wage laws across U.S. states. Results suggest that the minimum wage increases the probability of being obese and decreases daily fruit and vegetable intake, but also decreases days with functional limitations while having no impact on healthcare access. Subsample analyses reveal that the increase in weight and decrease in fruit and vegetable intake are driven by the older population, married, and whites. The improvement in self-reported health is especially strong among non-whites, females, and married.

  9. Theoretical investigations on two-phase flow instability in parallel channels under axial non-uniform heating

    International Nuclear Information System (INIS)

    Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong

    2014-01-01

    Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux

  10. Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography

    International Nuclear Information System (INIS)

    Kastner, Johann; Plank, Bernhard; Requena, Guillermo

    2012-01-01

    X-ray computed tomography (XCT) has become a very important tool for the non-destructive characterisation of materials. Continuous improvements in the quality and performance of X-ray tubes and detectors have led to cone-beam XCT systems that can now achieve spatial resolutions down to 1 μm and even below. Since not only the amplitude but also the phase of an X-ray beam is altered while passing through an object, phase contrast effects can occur even for polychromatic sources when the spatial coherence due to a small focal spot size is high enough. This can lead to significant improvements over conventional attenuation-based X-ray computed tomography. Phase contrast can increase by edge enhancement the visibility of small structures and of features which are only slightly different in attenuation. We report on the possibilities of polychromatic cone-beam phase contrast tomography for non-destructive characterisation of materials. A carbon fibre-reinforced polymer and the Al-alloys AlMg5Si7 and AlSi18 were investigated with high resolution cone-beam X-ray computed tomography with a polychromatic tube source. Under certain conditions strong phase contrast resulting in an upward and downward overshooting of the grey values across edges was observed. The phase effects are much stronger for the polymer than for the Al-alloys. The influence on the phase contrast of the parameters, including source-detector distance, focal spot size and tube acceleration voltage is presented. Maximum phase contrast was observed for a maximum distance between the source and the detector, for a low voltage and a minimum focal spot size at the X-ray source. The detectability of the different phases is improved by the edge enhancement and the resulting improvement of sharpness. Thus, a better segmentation of the carbon fibres in the fibre-reinforced polymer and of the Mg 2 Si-phase in the AlMg5Si7-alloy is achieved. Primary and eutectic Si cannot be detected by attenuation-based X

  11. Non-Noether conserved quantity for differential equations of motion in the phase space

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.

  12. On the non-equilibrium phase transition in evaporation–deposition models

    International Nuclear Information System (INIS)

    Connaughton, Colm; Zaboronski, Oleg; Rajesh, R

    2010-01-01

    We study a system of diffusing–aggregating particles with deposition and evaporation of monomers. By combining theoretical and numerical methods, we establish a clearer understanding of the non-equilibrium phase transition known to occur in such systems. The transition is between a growing phase in which the total mass increases for all time and a non-growing phase in which the total mass is bounded. In addition to deriving rigorous bounds on the position of the transition point, we show that the growing phase is in the same universality class as diffusion–aggregation models with deposition but no evaporation. In this regime, the flux of mass in mass space becomes asymptotically constant (as a function of mass) at large times. The magnitude of this flux depends on the evaporation rate but the fact that it is asymptotically constant does not. The associated constant flux relation exactly determines the scaling of the two-point mass correlation function with mass in all dimensions while higher order mass correlation functions exhibit nonlinear multi-scaling in dimension less than two. If the deposition rate is below some critical value, a different stationary state is reached at large times characterized by a global balance between evaporation and deposition with a scale-by-scale balance between the mass fluxes due to aggregation and evaporation. Both the mass distribution and the flux decay exponentially in this regime. Finally, we develop a scaling theory of the model near the critical point, which yields non-trivial scaling laws for the critical two-point mass correlation function with mass. These results are well supported by numerical measurements

  13. Designing minimum data sets of health smart card system

    Directory of Open Access Journals (Sweden)

    Mohtaram Nematollahi

    2014-10-01

    Full Text Available Introduction: Nowadays different countries benefit from health system based on health cards and projects related to smart cards. Lack of facilities which cover this technology is obvious in our society. This paper aims to design Minimum Data Sets of Health Smart Card System for Iran. Method: This research was an applied descriptive study. At first, we reviewed the same projects and guidelines of selected countries and the proposed model was designed in accordance to the country’s needs, taking people’s attitude about it by Delphi technique. A data analysis in study stage of MDS(Minimum Data Sets of Health Smart Card in the selective countries was done by comparative tables and determination of similarities and differences of the MDS. In the stage of gaining credit for model, it was accomplished with descriptive statistics to the extent of absolute and relative frequency through SPSS (version 16. Results: MDS of Health Smart Card for Iran is presented in the patient’s card and health provider’s card on basisof studiesin America, Australia, Turkey and Belgium and needs of our country and after doing Delphi technique with 94 percent agreement confirmed. Conclusion: Minimum Data Sets of Health Smart Card provides continuous care for patients and communication among providers. So, it causes a decrease in the complications of threatening diseases. Collection of MDS of diseases increases the quality of care assessment

  14. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    Science.gov (United States)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  15. Phase transition in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.

    2000-01-01

    In this paper we present a review of selected aspects of Phase transitions in finite systems applied in particular to the liquid-gas phase transition in nuclei. We show that the problem of the non existence of boundary conditions can be solved by introducing a statistical ensemble with an averaged constrained volume. In such an ensemble the microcanonical heat capacity becomes negative in the transition region. We show that the caloric curve explicitly depends on the considered transformation of the volume with the excitation energy and so does not bear direct informations on the characteristics of the phase transition. Conversely, partial energy fluctuations are demonstrated to be a direct measure of the equation of state. Since the heat capacity has a negative branch in the phase transition region, the presence of abnormally large kinetic energy fluctuations is a signal of the liquid gas phase transition. (author)

  16. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  17. Application of non-equilibrium thermodynamics to two-phase flows with a change of phase

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    1969-01-01

    In this report we use the methods of non-equilibrium thermodynamics in two-phase flows. This paper follows a prior one in which we have studied the conservation laws and derived the general equations of two-phase flow. In the first part the basic ideas of thermodynamics of irreversible systems are given. We follow the classical point of view. The second part is concerned with the derivation of a closed set of equations for the two phase elementary volume model. In this model we assume that the elementary volume contains two phases and that it is possible to define a volumetric local concentration. To obtain the entropy balance we can choose either the reversibility of the barycentric motion or the reversibility of each phase. We adopt the last assumption and our derivation is the same as this of I.Prigogine and P. Mazur about the hydrodynamics of liquid helium. The scope of this work is not to find a general solution to the problems of two phase flows but to obtain a new set of equations which may be used to explain some characteristic phenomena of two-phase flow such as wave propagation or critical states. (author) [fr

  18. Phase Behaviour Study of Swiftlet Nest Using Virgin Coconut Oil with Non-Ionic Surfactants

    International Nuclear Information System (INIS)

    Siti Salwa Abd Gani; Siti Zulaika Adisah; Siti Salwa Abd Gani

    2015-01-01

    Virgin coconut oil (VCO) is the oil that obtained from fresh and mature kernel of the coconut by mechanical or natural means with or without the application of heat, which does not lead to alteration of the nature of the oil. It have advantages such as strengthens the immune system because of its lauric acid content. It also has medium-chain fatty acids which heighten metabolism and energy, thus stimulating the thyroid. Swiftlet nest as an active ingredient need to be dispersed in a carrier system. Thus, ternary phase diagrams were constructed to find the suitable and stable system for it. The phase behavior of systems has been investigated by constructing ternary phase diagrams consisting of non-ionic surfactants/VCO:bird nest/water. The surfactants used were Sorbitan tri-oleate (Span 85), Sorbitan mono-oleate (Span 80), Sorbitan monolaurate (Span 20), Polyoxyethylene(20) sorbitan tri-oleate (Tween 85) and Polyoxyethylene (20) sorbitan mono-oleate (Tween 80). These systems include several phase regions such as homogeneous, isotropic, two-phase and three-phase regions. Different hydrophilic lipophilic balance (HLB) value of non-ionic surfactants exhibit different ternary diagram characteristics. A lower HLB shows a more oil-soluble and a more water-soluble surfactant (larger homogeneous and isotropic region in ternary phase diagrams) whereas high value of HLB shows the reverse of that result. The results show that the T85/VCO:bird nest/water system gave better performance than the other four individual surfactant systems. As a conclusion, high hydrophilic lipophilic balance (HLB) values of surfactant were found to be a good surfactant for the formulation of VCO:bird nest emulsion for cosmetic and pharmaceutical purposes. (author)

  19. Phase-change drywalls in a passive-solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W.; Tetlow, D. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-05-15

    Integration of phase-change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimising energy-consumption and CO{sub 2}-emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e., randomly mixed and laminated PCM drywalls) have been evaluated in a model passive-solar building. For a broader assessment, the effects of three phase-change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase-change zone was capable of increasing the minimum room temperature by about 17% more than the randomly mixed type. Even though there was some display of a non-isothermal phase-change process, the laminated system proved to be thermally more effective in terms of evolution and utilisation of latent heat. A further heat-transfer enhancement process is, however, required for the development of the laminated system. . (author)

  20. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  1. Mesoscopic non-coherence as phase diffusion

    International Nuclear Information System (INIS)

    Milman, Perola; Davidovich, Luiz; Castin, Yvan

    1997-01-01

    In this work, we approach to the question whether it is possible to describe the process of non-coherence in terms of phase diffusion ψ. We will show that this can be done, for an electromagnetic field mode in a cavity interacting with a continuum of modes outside the cavity, for any value of α, where |α> is an eigenstate of the lowering operator for the harmonic oscillator. The description in terms of phase diffusion will occurs however in context of continuous observation of the field exiting the cavity. In this sense, the non-coherence process description as a quantum phase diffusion corresponds to an realization of the evolution described by the master equation, in terms of a stochastic Schroedinger equation. We will demonstrate that the average on many realizations corresponds exactly to the result obtained from the master equation

  2. SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS

    Science.gov (United States)

    Wang, Haiyan; Castillo-Chavez, Carlos

    2014-01-01

    The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868

  3. Variation principle in calculating the flow of a two-phase mixture in the pipes of the cooling systems in high-rise buildings

    Science.gov (United States)

    Aksenov, Andrey; Malysheva, Anna

    2018-03-01

    The analytical solution of one of the urgent problems of modern hydromechanics and heat engineering about the distribution of gas and liquid phases along the channel cross-section, the thickness of the annular layer and their connection with the mass content of the gas phase in the gas-liquid flow is given in the paper.The analytical method is based on the fundamental laws of theoretical mechanics and thermophysics on the minimum of energy dissipation and the minimum rate of increase in the system entropy, which determine the stability of stationary states and processes. Obtained dependencies disclose the physical laws of the motion of two-phase media and can be used in hydraulic calculations during the design and operation of refrigeration and air conditioning systems.

  4. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  5. Quantum and thermal phase escape in extended Josephson systems

    International Nuclear Information System (INIS)

    Kemp, A.

    2006-01-01

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  6. Quantum and thermal phase escape in extended Josephson systems

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, A.

    2006-07-12

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  7. Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1992-01-01

    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.

  8. The Aharonov-Anandan phase of a classical dynamical system seen mathematically as a quantum dynamical system

    OpenAIRE

    Segre, Gavriel

    2005-01-01

    It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.

  9. Non-reversible evolution of quantum chaotic system. Kinetic description

    International Nuclear Information System (INIS)

    Chotorlishvili, L.; Skrinnikov, V.

    2008-01-01

    It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration

  10. Non-commutative phase space and its space-time symmetry

    International Nuclear Information System (INIS)

    Li Kang; Dulat Sayipjamal

    2010-01-01

    First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space. (authors)

  11. Physics of the Non-Abelian Coulomb Phase

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....

  12. Demonstration of the Kibble-Zurek mechanism in a non-equilibrium phase transition

    Science.gov (United States)

    Patil, Yogesh S.; Cheung, Hil F. H.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We describe the experimental realization of a driven-dissipative phase transition (DPT) in a mechanical parametric amplifier and demonstrate key signatures of a critical point in the system, where the susceptibilities and relaxation time scales diverge and coincide with the spontaneous breaking of symmetry and the emergence of macroscopic order. While these observations are reminiscent of equilibrium phase transitions, it is presently an open question whether such DPTs are amenable to the conventional Landau-Ginsburg-Wilson paradigm that relies on concepts of scale invariance and universality - Indeed, recent theoretical work has predicted that DPTs can exhibit phenomenology that departs from these conventional paradigms. By quenching the system past the critical point, we measure the dynamics of the emergent ordered phase and its departure from adiabaticity, and find that our measurements are in excellent agreement with the Kibble-Zurek hypothesis. In addition to validating the KZ mechanism in a DPT for the first time, we also uniquely show that the measured critical exponents accurately reflect the interplay between the intrinsic coherent dynamics and the environmental correlations, with a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We also discuss how the techniques of reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and exotic non-equilibrium states of matter.

  13. Minimum radwaste system to support commercial operation-what equipment can be deferred

    International Nuclear Information System (INIS)

    Marshall, R.W.; Tafazzoli, M.M.

    1984-01-01

    Because of cash flow problems being experienced by utilities as nuclear power stations approach completion, areas of the plant for which the completion of the construction effort could be deferred past commercial operation should be reviewed. The radwaste treatment systems are prime candidates for such a deferral because of the availability, either temporary or permanent, of alternative treatment methods for the waste streams expected to be produced. In order to identify the radwaste equipment, components and associated hardware in the radwaste building which could be deferred past commercial operation, a study was performed by Impell Corporation to evaluate the existing radwaste treatment system and determine the minimum system necessary to support commercial operation of a typical BWR. The study identified the minimum-installed radwaste treatment system which, in combination with portable temporary equipment, would accommodate the waste types and quantities likely to be produced in the first few years of operation. In addition, the minimum-installed system had to be licensable and excessive radiation exposures should not be incurred during the construction of the deferred portions of the system after commercial operation. From this study, it was concluded that a significant quantity of radwaste processing equipment and the associated piping, valves and instrumentation could be deferred. The estimated savings, in construction manhours (excluding field distributables) alone, was over 102,000 M-H

  14. Designing minimum data sets of health smart card system

    OpenAIRE

    Mohtaram Nematollahi

    2014-01-01

    Introduction: Nowadays different countries benefit from health system based on health cards and projects related to smart cards. Lack of facilities which cover this technology is obvious in our society. This paper aims to design Minimum Data Sets of Health Smart Card System for Iran. Method: This research was an applied descriptive study. At first, we reviewed the same projects and guidelines of selected countries and the proposed model was designed in accordance to the country’s ...

  15. Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AI Signal Research, Inc. proposes to develop a Non-Intrusive Vibration Measurement System (NI-VMS) for turbopumps which will provide effective on-board/off-board...

  16. Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ASRI proposes to develop an advanced and commercially viable Non-Intrusive Vibration Monitoring System (NI-VMS) which can provide effective on-line/off-line engine...

  17. 42 CFR 403.304 - Minimum requirements for State systems-discretionary approval.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Minimum requirements for State systems..., DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS SPECIAL PROGRAMS AND PROJECTS Recognition of State... the system meets the requirements in paragraphs (b) and (c) of this section and, if applicable...

  18. Variation principle in calculating the flow of a two-phase mixture in the pipes of the cooling systems in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Aksenov Andrey

    2018-01-01

    Full Text Available The analytical solution of one of the urgent problems of modern hydromechanics and heat engineering about the distribution of gas and liquid phases along the channel cross-section, the thickness of the annular layer and their connection with the mass content of the gas phase in the gas-liquid flow is given in the paper.The analytical method is based on the fundamental laws of theoretical mechanics and thermophysics on the minimum of energy dissipation and the minimum rate of increase in the system entropy, which determine the stability of stationary states and processes. Obtained dependencies disclose the physical laws of the motion of two-phase media and can be used in hydraulic calculations during the design and operation of refrigeration and air conditioning systems.

  19. Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

    Institute of Scientific and Technical Information of China (English)

    Chao Ji; Jing Wang; Liulin Cao; Qibing Jin

    2014-01-01

    Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.

  20. Minimum Wages and the Distribution of Family Incomes

    OpenAIRE

    Dube, Arindrajit

    2017-01-01

    Using the March Current Population Survey data from 1984 to 2013, I provide a comprehensive evaluation of how minimum wage policies influence the distribution of family incomes. I find robust evidence that higher minimum wages shift down the cumulative distribution of family incomes at the bottom, reducing the share of non-elderly individuals with incomes below 50, 75, 100, and 125 percent of the federal poverty threshold. The long run (3 or more years) minimum wage elasticity of the non-elde...

  1. A model for non-equilibrium, non-homogeneous two-phase critical flow

    International Nuclear Information System (INIS)

    Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun

    1999-01-01

    Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)

  2. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  3. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  4. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    Science.gov (United States)

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  5. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, Susila; Tang, Y.N.

    1994-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans. ((orig.))

  6. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, S.; Tang, Yong N.

    1995-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans

  7. A theory of compliance with minimum wage legislation

    OpenAIRE

    Jellal, Mohamed

    2012-01-01

    In this paper, we introduce firm heterogeneity in the context of a model of non-compliance with minimum wage legislation. The introduction of heterogeneity in the ease with which firms can be monitored for non compliance allows us to show that non-compliance will persist in sectors which are relatively difficult to monitor, despite the government implementing non stochastic monitoring. Moreover, we show that the incentive not to comply is an increasing function of the level of the minimum wag...

  8. CONSEQUENCES OF INCREASING THE MINIMUM WAGE IN UKRAINE TWICE

    Directory of Open Access Journals (Sweden)

    Volodymyr Boreiko

    2017-03-01

    Full Text Available In the article the views of scientists on the role of incomes of the poorest people in providing of economic development of the country and consequences of increasing the minimum wage in Ukraine twice are investigated; the dynamics of change in Ukraine minimum wage during a decade are analyzed and decline in living standards of population during this period is shown; measures, which should be taken for non-inflationary growth in incomes of the population, are grounded; it is disclosed that such measures should include unification of income tax for individuals and single social contribution and restoration of a progressive taxation of incomes of the working population. Key words: minimum wage, household income, the poorest part of the population, the economy of country, tax system.

  9. Non-cyclic phases for neutrino oscillations in quantum field theory

    International Nuclear Information System (INIS)

    Blasone, Massimo; Capolupo, Antonio; Celeghini, Enrico; Vitiello, Giuseppe

    2009-01-01

    We show the presence of non-cyclic phases for oscillating neutrinos in the context of quantum field theory. Such phases carry information about the non-perturbative vacuum structure associated with the field mixing. By subtracting the condensate contribution of the flavor vacuum, the previously studied quantum mechanics geometric phase is recovered.

  10. Beam envelope profile of non-centrosymmetric polygonal phase space

    International Nuclear Information System (INIS)

    Chen Yinbao; Xie Xi

    1984-01-01

    The general theory of beam envelope profile of non-centrosymmetric polygonal phase space is developed. By means of this theory the beam envelope profile of non-centrosymmetric polygonal phase space can be calculated directly. An example is carried out in detail to show the practical application of the theory

  11. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  12. Probing non-unitary CP violation effects in neutrino oscillation experiments

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    In the present work, we have considered minimal unitarity violation scheme to obtain the general expression for ν _{μ }→ ν _{τ } oscillation probability in vacuum and matter. For this channel, we have investigated the sensitivities of short baseline experiments to non-unitary parameters |ρ _{μ τ }| and ω _{μ τ } for normal as well as inverted hierarchical neutrino masses and θ _{23} being above or below maximality. We find that for normal hierarchy, the 3σ sensitivity of |ρ _{μ τ }| is maximum for non-unitary phase ω _{μ τ }=0 whereas it is minimum for ω _{μ τ }=± π . For inverted hierarchy, the sensitivity is minimum at ω _{μ τ }=0 and maximum for ω _{μ τ }=± π . We observe that the sensitivity to measure non-unitarity remains unaffected for unitary CP phase δ =0 or δ =π /2 . We have, also, explored wide spectrum of L/E ratio to investigate the possibilities to observe CP-violation due to unitary (δ ) and non-unitary (ω _{μ τ } ) phases. We find that the both phases can be disentangled, in principle, from each other for L/E<200 km/GeV.

  13. Phases, phase equilibria, and phase rules in low-dimensional systems

    International Nuclear Information System (INIS)

    Frolov, T.; Mishin, Y.

    2015-01-01

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality

  14. Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase

    Directory of Open Access Journals (Sweden)

    Naseva Olivera S.

    2002-01-01

    Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.

  15. 25 CFR 547.15 - What are the minimum technical standards for electronic data communications between system...

    Science.gov (United States)

    2010-04-01

    ... communications between system components? This section provides minimum standards for electronic data... 25 Indians 2 2010-04-01 2010-04-01 false What are the minimum technical standards for electronic data communications between system components? 547.15 Section 547.15 Indians NATIONAL INDIAN GAMING...

  16. Simulation of phase change drywalls in a passive solar building

    Energy Technology Data Exchange (ETDEWEB)

    Darkwa, K.; O' Callaghan, P.W. [School of the Built Environment, The Applied Energy and Environmental Engineering Group, Nottingham Trent University, Burton Street, Nottingham NG1 4BU (United Kingdom)

    2006-06-15

    Integration of phase change materials (PCMs) into building fabrics is considered to be one of the potential and effective ways of minimizing energy consumption and CO{sub 2} emissions in the building sector. In order to assess the thermal effectiveness of this concept, composite PCM drywall samples (i.e. randomly-mixed and laminated PCM drywalls) have been evaluated in a model passive solar building. For a broader assessment, effects of three phase change zones (narrow, intermediate and wide) of the PCM sample were considered. The results showed that the laminated PCM sample with a narrow phase change zone was capable of increasing the minimum room temperature by about 17% more than the randomly-mixed type. Even though there was some display of non-isothermal phase change process, the laminated system proved to be thermally more effective in terms of evolution and utilization of latent heat. Further heat transfer enhancement process is however required towards the development of the laminated system. [Author].

  17. Entropy analysis on non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  18. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  19. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  20. A two-phase theory for non-Newtonian suspensions

    Science.gov (United States)

    Varsakelis, Christos

    In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.

  1. Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004).

    Science.gov (United States)

    Ruers, T; Punt, C; Van Coevorden, F; Pierie, J P E N; Borel-Rinkes, I; Ledermann, J A; Poston, G; Bechstein, W; Lentz, M A; Mauer, M; Van Cutsem, E; Lutz, M P; Nordlinger, B

    2012-10-01

    This study investigates the possible benefits of radiofrequency ablation (RFA) in patients with non-resectable colorectal liver metastases. This phase II study, originally started as a phase III design, randomly assigned 119 patients with non-resectable colorectal liver metastases between systemic treatment (n = 59) or systemic treatment plus RFA ( ± resection) (n = 60). Primary objective was a 30-month overall survival (OS) rate >38% for the combined treatment group. The primary end point was met, 30-month OS rate was 61.7% [95% confidence interval (CI) 48.2-73.9] for combined treatment. However, 30-month OS for systemic treatment was 57.6% (95% CI 44.1-70.4), higher than anticipated. Median OS was 45.3 for combined treatment and 40.5 months for systemic treatment (P = 0.22). PFS rate at 3 years for combined treatment was 27.6% compared with 10.6% for systemic treatment only (hazard ratio = 0.63, 95% CI 0.42-0.95, P = 0.025). Median progression-free survival (PFS) was 16.8 months (95% CI 11.7-22.1) and 9.9 months (95% CI 9.3-13.7), respectively. This is the first randomized study on the efficacy of RFA. The study met the primary end point on 30-month OS; however, the results in the control arm were in the same range. RFA plus systemic treatment resulted in significant longer PFS. At present, the ultimate effect of RFA on OS remains uncertain.

  2. Stochastic variational approach to minimum uncertainty states

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, F.; Viola, L. [Dipartimento di Fisica, Padova Univ. (Italy)

    1995-05-21

    We introduce a new variational characterization of Gaussian diffusion processes as minimum uncertainty states. We then define a variational method constrained by kinematics of diffusions and Schroedinger dynamics to seek states of local minimum uncertainty for general non-harmonic potentials. (author)

  3. Minimum miscibility pressure estimation for a CO{sub 2}/n-decane system in porous media by X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu; Jiang, Lanlan; Tang, Lingyue; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Yang, Mingjun [Dalian University of Technology, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian (China)

    2015-07-15

    Accurate determination of gas-fluid miscibility conditions is important to optimize the displacement efficiency during CO{sub 2}-enhanced oil recovery. This paper presents a new technique to investigate the phase behavior and to estimate the minimum miscibility pressure (MMP) of a CO{sub 2}/n-decane system using an X-ray computerized tomography (CT) scanner. CT scans of the CO{sub 2}/n-decane system are taken at various pressures during the experiments. The image intensity values taken from the CT images have a linear relationship with the densities of the measured objects; therefore, we can estimate the miscible point of CO{sub 2} and n-decane because the difference between the intensity values for each phase decays to zero as the pressure increases toward the MMP. This paper provides experimental evidence for the validity of the new CT method by comparing the results with previous studies and presents an application of the method to investigate the MMP of the CO{sub 2}/n-decane system in porous media. Additionally, the influence of porous media on the equilibrium state when the CO{sub 2}/n-decane system is close to miscibility is discussed. (orig.)

  4. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    Science.gov (United States)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  5. Statistical physics of non-thermal phase transitions from foundations to applications

    CERN Document Server

    Abaimov, Sergey G

    2015-01-01

    Statistical physics can be used to better understand non-thermal complex systems—phenomena such as stock-market crashes, revolutions in society and in science, fractures in engineered materials and in the Earth’s crust, catastrophes, traffic jams, petroleum clusters, polymerization, self-organized criticality and many others exhibit behaviors resembling those of thermodynamic systems. In particular, many of these systems possess phase transitions identical to critical or spinodal phenomena in statistical physics. The application of the well-developed formalism of statistical physics to non-thermal complex systems may help to predict and prevent such catastrophes as earthquakes, snow-avalanches and landslides, failure of engineering structures, or economical crises. This book addresses the issue step-by-step, from phenomenological analogies between complex systems and statistical physics to more complex aspects, such as correlations, fluctuation-dissipation theorem, susceptibility, the concept of free ener...

  6. Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.; Bruining, J.

    2011-01-01

    This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition.

  7. Development of RF non-IQ sampling module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200MHz RF within 1% amplitude error stability. For supplying stable 200MHz RF to the RFQ, the low-level radio frequency (LLRF) should be controlled by control system. The helium RFQ LLRF control system adopted non- IQ sampling method to sample the analog input RF. Sampled input data will be calculated to get the I, Q values. These I, Q values will be used to monitor the amplitude and phase of the RF signal. In this paper, non-IQ sampling logic and amplitude and phase calculating logic of the FPGA will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, non-IQ sampling module and amplitude and phase computing module developed. In the future, PI gain module and frequency error computing module will be developed.

  8. Non-chiral, auxetic system of noncentrosymmetric molecules in two dimensions

    International Nuclear Information System (INIS)

    Wojciechowski, K.W.

    2002-12-01

    A two-dimensional model of tri-atomic molecules (which 'atoms' are distributed on vertices of equilateral triangles, and which are further referred to as cyclic trimers) is solved exactly in the static (zero-temperature) limit for the nearest-neighbor site-site interactions. It is shown that the cyclic trimers (noncentrosymmetric by the definition) can form a mechanically stable and elastically isotropic non-chiral phase of negative Poisson ratio. The properties of the system are illustrated by three examples of the atom-atom interaction potentials: (i) the purely repulsive (n-inverse-power) potential, (ii) the purely attractive (n-power) potential and (iii) the Lennard-Jones-like potential which shows both the repulsive and the attractive part. The analytic form of the dependence of the Poisson ratio on the interatomic potential is obtained. It is shown that the Poisson ratio depends, in a universal way, only on the trimer anisotropy parameter both (1) in the limit of n → ∞ for the cases (i) and (ii), as well as (2) at the zero external pressure for any potential with a doubly differentiable minimum, the case (iii) is an example. (author)

  9. Determination of Minimum Data Set (MSD) in Echocardiography Reporting System to Exchange with Iran's Electronic Health Record (EHR) System.

    Science.gov (United States)

    Mahmoudvand, Zahra; Kamkar, Mehran; Shahmoradi, Leila; Nejad, Ahmadreza Farzaneh

    2016-04-01

    Determination of minimum data set (MDS) in echocardiography reports is necessary for documentation and putting information in a standard way, and leads to the enhancement of electrocardiographic studies through having access to precise and perfect reports and also to the development of a standard database for electrocardiographic reports. to determine the minimum data set of echocardiography reporting system to exchange with Iran's electronic health record (EHR) system. First, a list of minimum data set was prepared after reviewing texts and studying cardiac patients' records. Then, to determine the content validity of the prepared MDS, the expert views of 10 cardiologists and 10 health information management (HIM) specialists were obtained; to estimate the reliability of the set, test-retest method was employed. Finally, the data were analyzed using SPSS software. The highest degree of consensus was found for the following MDSs: patient's name and family name (5), accepting doctor's name and family name, familial death records due to cardiac disorders, the image identification code, mitral valve, aortic valve, tricuspid valve, pulmonary valve, left ventricle, hole, atrium valve, Doppler examination of ventricular and atrial movement models and diagnoses with an average of. To prepare a model of echocardiography reporting system to exchange with EHR system, creation a standard data set is the vital point. Therefore, based on the research findings, the minimum reporting system data to exchange with Iran's electronic health record system include information on entity, management, medical record, carried-out acts, and the main content of the echocardiography report, which the planners of reporting system should consider.

  10. Phase space information in a non-linear quantum system containing a Kerr-like medium through Su(1, 1)-algebraic treatment

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-05-01

    Analytical description for a Su(2)-quantum system interacting with a damped Su(1, 1)-cavity, which is filled with a non-linear Kerr medium, is presented. The dynamics of non-classicality of Su(1, 1)-state is investigated via the negative part of the Wigner function. We show that the negative part depends on the unitary interaction and the Kerr-like medium and it can be disappeared by increasing the dissipation rate and the detuning parameter. The phase space information of the Husimi function and its Wehrl density is very sensitive not only to the coupling to the environment and the unitary interaction but also to the detuning as well as to the Kerr-like medium. The phase space information may be completely erased by increasing the coupling to the environment. The coherence loss of the Su(2)-state is investigated via the Husimi Wehrl entropy. If the effects of the detuning parameter or/and of the Kerr-like medium are combined with the damping effect, the damping effect of the coupling to the environment may be weaken, and the Wehrl entropy is delayed to reach its steady-state value. At the steady-state value, the phase space information and the coherence are quickly lost.

  11. Influence of magnetoelastic coupling on the phase transitions in two-dimensional non-Heisenberg magnetics with biquadratic interaction

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Klevets, Ph.N.; Kozhemyako, O.V.

    2003-01-01

    Influence of magnetoelastic (ME) interaction on the phase transitions in two-dimensional non-Heisenberg ferromagnets is investigated. It is shown that if the constant of Heisenberg exchange interaction is large, the ferromagnetic phase is implemented in a system. When the value of biquadratic exchange interaction increases there is a phase transition to the quadrupolar phase characterized by the tensor order parameters. Thus, ME interaction plays an essential role, not only stabilizing the long-range magnetic order in the system, but also determining the order of the phase transition

  12. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  13. MIMO FIR feedforward design for zero error tracking control

    NARCIS (Netherlands)

    Heertjes, M.F.; Bruijnen, D.J.H.

    2014-01-01

    This paper discusses a multi-input multi-output (MIMO) finite impulse response (FIR) feedforward design. The design is intended for systems that have (non-)minimum phase zeros in the plant description. The zeros of the plant (either minimum or non-minimum phase) are used in the shaping of the

  14. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-09-01

    Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.

  15. Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application

    International Nuclear Information System (INIS)

    Sarwar, J.; Mansoor, B.

    2016-01-01

    Highlights: • Thermal cycling of paraffin waxes phase change materials. • Differential Scanning Calorimetry and thermogravimetric study of the materials. • Characterization of the phase change materials via Temperature History Method. • Investigation of suitability of materials for indirect solar desalination system. • Paraffin waxes are suitable for non-membrane indirect solar desalination system. - Abstract: Phase change material as a thermal energy storage medium has been widely incorporated in various technologies like solar air/water heating, buildings, and desalination for efficient use and management of fluctuating solar energy. Temperature and thermal energy requirements dictate the selection of an appropriate phase change material for its application in various engineering systems. In this work, two phase change materials belonging to organic paraffin wax class have been characterized to obtain their thermophysical properties. The melting/solidification temperatures, latent heat of fusion and heat capacities of the phase change materials have been investigated using Differential Scanning Calorimetry, Thermogravimetric analysis and Temperature History Method. Thermal cycles up to 300 are performed to investigate melting and solidification reversibility as well as degradation over time. It is shown that the selected paraffin waxes have reversible phase change with no degradation of thermophysical properties over time. It is also shown that melting/solidification temperature and thermal energy storage capabilities make them suitable for their application as a thermal energy storage medium, in high temperature vapour compression, multi-stage flash and multi-effect distillation processes of non-membrane based indirect desalination systems.

  16. Design and Simulation of a Vapour Compression Refrigeration System Using Phase Change Material

    Directory of Open Access Journals (Sweden)

    Siddharth Raju

    2018-01-01

    Full Text Available The paper details the design and simulation of a solar powered vapour compression refrigeration system. The effect of a phase change material, in this case ice, on a vapour compression refrigeration system powered by solar panels is discussed. The battery and solar panels were sized to allow the system to function as an autonomous unit for a minimum of 12 hours. It was concluded that the presence of a phase change material in the refrigeration system caused a considerable increase in both the on and off time of the compressor. The ratio by which the on time increased was greater than the ratio by which the off time was increased. There was a 219% increase in the on time, a 139% increase in the compressor off time and a 3.5% increase in compressor work accompanied by a 5.5% reduction in COP. Thus, under conditions where there is enough load in the system to cause the initial on and off times of the compressor to be comparable, the presence of a phase change material may result in a greater on period than an off period for the compressor.

  17. Minimum emittance in TBA and MBA lattices

    Science.gov (United States)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  18. Minimum emittance in TBA and MBA lattices

    International Nuclear Information System (INIS)

    Xu Gang; Peng Yuemei

    2015-01-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 3 1/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design. (authors)

  19. Effect of interionic anisotropy on the phase states and spectra of a non-Heisenberg magnet with S = 1

    Energy Technology Data Exchange (ETDEWEB)

    Kosmachev, O. A.; Krivtsova, A. V.; Fridman, Yu. A., E-mail: yuriifridman@gmail.com [Vernadskii Crimea Federal University (Russian Federation)

    2016-02-15

    We study the effect of interionic anisotropy on the phase states of a non-Heisenberg ferromagnet with magnetic ion spin S = 1. It is shown that depending on the relation between the interionic anisotropy constants, uniaxial and angular ferromagnetic and nonmagnetic phases exist in the system. We analyze the dynamic properties of the system in the vicinity of orientational phase transitions, as well as a phase transition in the magnetic moment magnitude. It is shown that orientational phase transitions in ferromagnetic and nematic phases can be first- as well as second-order.

  20. Critical pressure of non-equilibrium two-phase critical flow

    Energy Technology Data Exchange (ETDEWEB)

    Minzer, U [Israel Electric Corp. Ltd., Haifa (Israel)

    1996-12-01

    Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author).

  1. Critical pressure of non-equilibrium two-phase critical flow

    International Nuclear Information System (INIS)

    Minzer, U.

    1996-01-01

    Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author)

  2. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  3. Field theory of absorbing phase transitions with a non-diffusive conserved field

    International Nuclear Information System (INIS)

    Pastor-Satorras, R.; Vespignani, A.

    2000-04-01

    We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class. (author)

  4. BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures

    International Nuclear Information System (INIS)

    Xing, Liudong; Levitin, Gregory

    2013-01-01

    Phased-mission systems (PMS) are systems in which multiple non-overlapping phases of operations (or tasks) are accomplished in sequence for a successful mission. Examples of PMS abound in applications such as aerospace, nuclear power, and airborne weapon systems. Reliability analysis of a PMS must consider statistical dependence across different phases as well as dynamics in system configuration, failure criteria, and component behavior. This paper proposes a binary decision diagrams (BDD) based method for the reliability evaluation of non-repairable binary-state PMS with common-cause failures (CCF). CCF are simultaneous failure of multiple system elements, which can be caused by some external factors (e.g., lightning strikes, sudden changes in environment) or by propagated failures originating from some elements within the system. Both the external and internal CCF is considered in this paper. The proposed method is combinatorial, exact, and is applicable to PMS with arbitrary system structures and component failure distributions. An example with different CCF scenarios is analyzed to illustrate the application and advantages of the proposed method. -- Highlights: ► Non-repairable phased-mission systems with common-cause failures are analyzed. ► Common-cause failures caused by internal or external factors are considered. ► A combinatorial algorithm based on binary decision diagrams is suggested

  5. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  6. A parametric LTR solution for discrete-time systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1989-01-01

    A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...... and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution...

  7. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  8. Non-equilibrium phase transition in a spreading process on a timeline

    International Nuclear Information System (INIS)

    Barato, Andre C; Hinrichsen, Haye

    2009-01-01

    We consider a non-equilibrium process on a timeline with discrete sites which evolves following a non-Markovian update rule in such a way that an active site at time t activates one or several sites in the future at time t+Δt. The time intervals Δt are distributed algebraically as (Δt) −1−κ , where 0<κ<1 is a control parameter. Depending on the activation rate, the system displays a non-equilibrium phase transition which may be interpreted as directed percolation transition driven by temporal Lévy flights in the limit of zero space dimensions. The critical properties are investigated by means of extensive numerical simulations and compared with field-theoretic predictions

  9. Two-phase systems. Fundamentals and industrial applications

    International Nuclear Information System (INIS)

    Woillez, Jacques

    2014-01-01

    Two-phase flows are omnipresent in industrial processes in different sectors with the behaviour and control of non-mixing mixtures of gas and liquids, of several liquids, of solids and fluids which are present in the production of raw materials, in the environment, in energy production, in chemistry, in pharmaceutical or food industry. The author presents the fundamentals elements which are needed to perform hardware predictive calculations and to understand typical phenomena associated with these flows. The chapters address fluids mechanics (movement equations, Bernoulli equation, load losses, turbulence, heat exchange coefficients, thermodynamics, compressible flows), two-phase systems (characteristic values, modes of appearance of two-phase flows, conduct flows, suspension mechanics, mass transfers, similarity, numerical simulation), the applications (energy production, agitation and mixing, phase separation, sprays), and peculiar phenomena (Marangoni effect, the tea cup effect, entry jets, water hammer effect, sound speed, two-phase pumping, fluidization)

  10. Field-induced phase transitions in antiferromagnetic systems

    International Nuclear Information System (INIS)

    Smeets, J.P.M.

    1984-05-01

    Neutron scattering experiments and magnetization measurements are carried out on cobalt bromide hexahydrate, of which 48% of the water molecules are replaced by deuterium oxide molecules. Results were compared with data obtained from non-deuterated cobalt bromide hexahydrate. Neutron scattering experiments showed the importance of the deuterium fraction. Interplay exists between the crystallographic system and the magnetic system, which is influenced by changing the deuterium fraction. Neutron scattering and magnetization experiments on partially deuterated RbFeCl 3 .2H 2 O and CsFeCl 3 .2H 2 O were performed to study the magnetic phase transitions in these quasi one-dimensional Ising compounds. The observed behaviour in the various phases can be described by the nucleation theory of chain reversals. (Auth.)

  11. Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System

    Science.gov (United States)

    Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000

  12. Determining the global minimum of Higgs potentials via Groebner bases - applied to the NMSSM

    International Nuclear Information System (INIS)

    Maniatis, M.; Manteuffel, A. von; Nachtmann, O.

    2007-01-01

    Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach to solve this system of equations. We apply the method to the NMSSM with CP-conserving as well as CP-violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of the parameter space. (orig.)

  13. Determining the global minimum of Higgs potentials via Groebner bases - applied to the NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Maniatis, M.; Manteuffel, A. von; Nachtmann, O. [Institut fuer Theoretische Physik, Heidelberg (Germany)

    2007-03-15

    Determining the global minimum of Higgs potentials with several Higgs fields like the next-to-minimal supersymmetric extension of the standard model (NMSSM) is a non-trivial task already at the tree level. The global minimum of a Higgs potential can be found from the set of all its stationary points defined by a multivariate polynomial system of equations. We introduce here the algebraic Groebner basis approach to solve this system of equations. We apply the method to the NMSSM with CP-conserving as well as CP-violating parameters. The results reveal an interesting stationary-point structure of the potential. Requiring the global minimum to give the electroweak symmetry breaking observed in Nature excludes large parts of the parameter space. (orig.)

  14. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    Science.gov (United States)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  15. Estimating disease prevalence from two-phase surveys with non-response at the second phase

    Science.gov (United States)

    Gao, Sujuan; Hui, Siu L.; Hall, Kathleen S.; Hendrie, Hugh C.

    2010-01-01

    SUMMARY In this paper we compare several methods for estimating population disease prevalence from data collected by two-phase sampling when there is non-response at the second phase. The traditional weighting type estimator requires the missing completely at random assumption and may yield biased estimates if the assumption does not hold. We review two approaches and propose one new approach to adjust for non-response assuming that the non-response depends on a set of covariates collected at the first phase: an adjusted weighting type estimator using estimated response probability from a response model; a modelling type estimator using predicted disease probability from a disease model; and a regression type estimator combining the adjusted weighting type estimator and the modelling type estimator. These estimators are illustrated using data from an Alzheimer’s disease study in two populations. Simulation results are presented to investigate the performances of the proposed estimators under various situations. PMID:10931514

  16. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  17. A Systematic and Numerically Efficient Procedure for Stable Dynamic Model Inversion of LTI Systems

    NARCIS (Netherlands)

    George, K.; Verhaegen, M.; Scherpen, J.M.A.

    1999-01-01

    Output tracking via the novel Stable Dynamic model Inversion (SDI) technique, applicable to non-minimum phase systems, and which naturally takes into account the presence of noise in target time histories, is considered here. We are motivated by the typical need to replicate time signals in the

  18. Minimum income protection in the Netherlands

    NARCIS (Netherlands)

    van Peijpe, T.

    2009-01-01

    This article offers an overview of the Dutch legal system of minimum income protection through collective bargaining, social security, and statutory minimum wages. In addition to collective agreements, the Dutch statutory minimum wage offers income protection to a small number of workers. Its

  19. Radiofrequency ablation combined with systemic treatment versus systemic treatment alone in patients with non-resectable colorectal liver metastases: a randomized EORTC Intergroup phase II study (EORTC 40004)

    Science.gov (United States)

    Ruers, T.; Punt, C.; Van Coevorden, F.; Pierie, J. P. E. N.; Borel-Rinkes, I.; Ledermann, J. A.; Poston, G.; Bechstein, W.; Lentz, M. A.; Mauer, M.; Van Cutsem, E.; Lutz, M. P.; Nordlinger, B.

    2012-01-01

    Background This study investigates the possible benefits of radiofrequency ablation (RFA) in patients with non-resectable colorectal liver metastases. Methods This phase II study, originally started as a phase III design, randomly assigned 119 patients with non-resectable colorectal liver metastases between systemic treatment (n = 59) or systemic treatment plus RFA ( ± resection) (n = 60). Primary objective was a 30-month overall survival (OS) rate >38% for the combined treatment group. Results The primary end point was met, 30-month OS rate was 61.7% [95% confidence interval (CI) 48.2–73.9] for combined treatment. However, 30-month OS for systemic treatment was 57.6% (95% CI 44.1–70.4), higher than anticipated. Median OS was 45.3 for combined treatment and 40.5 months for systemic treatment (P = 0.22). PFS rate at 3 years for combined treatment was 27.6% compared with 10.6% for systemic treatment only (hazard ratio = 0.63, 95% CI 0.42–0.95, P = 0.025). Median progression-free survival (PFS) was 16.8 months (95% CI 11.7–22.1) and 9.9 months (95% CI 9.3–13.7), respectively. Conclusions This is the first randomized study on the efficacy of RFA. The study met the primary end point on 30-month OS; however, the results in the control arm were in the same range. RFA plus systemic treatment resulted in significant longer PFS. At present, the ultimate effect of RFA on OS remains uncertain. PMID:22431703

  20. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS) with...

  1. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  2. Adaptive designs for dose-finding in non-cancer phase II trials: influence of early unexpected outcomes.

    Science.gov (United States)

    Resche-Rigon, Matthieu; Zohar, Sarah; Chevret, Sylvie

    2008-01-01

    In non-cancer phase II trials, dose-finding trials are usually carried out using fixed designs, in which several doses including a placebo are randomly distributed to patients. However, in certain vulnerable populations, such as neonates or infants, there is an heightened requirement for safety, precluding randomization. To estimate the minimum effective dose of a new drug from a non-cancer phase II trial, we propose the use of adaptive designs like the Continual Reassessment Method (CRM). This approach estimates the dose closest to some target response, and has been shown to be unbiased and efficient in cancer phase I trials. Based on a motivating example, we point out the individual influence of first outliers in this setting. A weighted version of the CRM is proposed as a theoretical benchmark to control for these outliers. Using simulations, we illustrate how this approach provides further insight into the behavior of the CRM. When dealing with low targets like a 10% failure rate, the CRM appears unable to rapidly overcome an early unexpected outcome. This behavior persisted despite changing the inference (Bayesian or likelihood), underlying dose-response model (though slightly improved using the power model), and the number of patients enrolled at each dose level. The choices for initial guesses of failure rates, the vague prior for the model parameter, and the log-log shape of weights can appear somewhat arbitrary. In phase II dose-finding studies in which failure targets are below 20%, the CRM appears quite sensitive to first unexpected outcomes. Using a power model for dose-response improves some behavior if the trial is started at the first dose level and includes at least three to five patients at the starting dose before applying the CRM allocation rule.

  3. Determination of Minimum Data Set (MSD) in Echocardiography Reporting System to Exchange with Iran’s Electronic Health Record (EHR) System

    Science.gov (United States)

    Mahmoudvand, Zahra; Kamkar, Mehran; Shahmoradi, Leila; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Determination of minimum data set (MDS) in echocardiography reports is necessary for documentation and putting information in a standard way, and leads to the enhancement of electrocardiographic studies through having access to precise and perfect reports and also to the development of a standard database for electrocardiographic reports. Aim: to determine the minimum data set of echocardiography reporting system to exchange with Iran’s electronic health record (EHR) system. Methods: First, a list of minimum data set was prepared after reviewing texts and studying cardiac patients’ records. Then, to determine the content validity of the prepared MDS, the expert views of 10 cardiologists and 10 health information management (HIM) specialists were obtained; to estimate the reliability of the set, test-retest method was employed. Finally, the data were analyzed using SPSS software. Results: The highest degree of consensus was found for the following MDSs: patient’s name and family name (5), accepting doctor’s name and family name, familial death records due to cardiac disorders, the image identification code, mitral valve, aortic valve, tricuspid valve, pulmonary valve, left ventricle, hole, atrium valve, Doppler examination of ventricular and atrial movement models and diagnoses with an average of. Conclusions: To prepare a model of echocardiography reporting system to exchange with EHR system, creation a standard data set is the vital point. Therefore, based on the research findings, the minimum reporting system data to exchange with Iran’s electronic health record system include information on entity, management, medical record, carried-out acts, and the main content of the echocardiography report, which the planners of reporting system should consider. PMID:27147803

  4. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    Science.gov (United States)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  5. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  6. Non-statistical behavior of coupled optical systems

    International Nuclear Information System (INIS)

    Perez, G.; Pando Lambruschini, C.; Sinha, S.; Cerdeira, H.A.

    1991-10-01

    We study globally coupled chaotic maps modeling an optical system, and find clear evidence of non-statistical behavior: the mean square deviation (MSD) of the mean field saturates with respect to increase in the number of elements coupled, after a critical value, and its distribution is clearly non-Gaussian. We also find that the power spectrum of the mean field displays well defined peaks, indicating a subtle coherence among different elements, even in the ''turbulent'' phase. This system is a physically realistic model that may be experimentally realizable. It is also a higher dimensional example (as each individual element is given by a complex map). Its study confirms that the phenomena observed in a wide class of coupled one-dimensional maps are present here as well. This gives more evidence to believe that such non-statistical behavior is probably generic in globally coupled systems. We also investigate the influence of parametric fluctuations on the MSD. (author). 10 refs, 7 figs, 1 tab

  7. Comparison of a wellpoint vacuum pump system to dual pump recovery system effectiveness for the extraction of light non-aqueous phase liquids

    International Nuclear Information System (INIS)

    Koll, C.S.; Palmerton, D.L. Jr.; Kunzel, R.G.

    1994-01-01

    The effectiveness of two light non-aqueous phase liquid (LNAPL) extraction systems is compared at a site in the Mid-New Jersey Atlantic Coastal Plains Region: an existing dual pump recovery system and a wellpoint vacuum pump system. Home heating oil was released to a shallow sand and gravel aquifer by a leaky underground distribution system in the early 1970s. Eight-inch-diameter dual pump recovery wells were used for the last nine years, to lower the water table and extract LNAPL at several spill sites located throughout a residential community of 1,500 homes. Several small LNAPL plumes still exist today with surface areas ranging from 400 ft 2 to over 28,000 ft 2 . LNAPL recovery peaked in 1985 using dual pump recovery systems, averaging 33 gallons per day (gpd). In 1987, four 24-inch wells were replaced by 11 8-inch-diameter recovery wells at six sites, and LNAPL recovery rates averaged 5 gpd. In recent years, the recovery of LNAPL has declined and when graphed, is asymptotic. In 1993, dual pump recovery of LNAPL averaged 0.3 gpd for all six sites

  8. The minimum yield in channeling

    International Nuclear Information System (INIS)

    Uguzzoni, A.; Gaertner, K.; Lulli, G.; Andersen, J.U.

    2000-01-01

    A first estimate of the minimum yield was obtained from Lindhard's theory, with the assumption of a statistical equilibrium in the transverse phase-space of channeled particles guided by a continuum axial potential. However, computer simulations have shown that this estimate should be corrected by a fairly large factor, C (approximately equal to 2.5), called the Barrett factor. We have shown earlier that the concept of a statistical equilibrium can be applied to understand this result, with the introduction of a constraint in phase-space due to planar channeling of axially channeled particles. Here we present an extended test of these ideas on the basis of computer simulation of the trajectories of 2 MeV α particles in Si. In particular, the gradual trend towards a full statistical equilibrium is studied. We also discuss the introduction of this modification of standard channeling theory into descriptions of the multiple scattering of channeled particles (dechanneling) by a master equation and show that the calculated minimum yields are in very good agreement with the results of a full computer simulation

  9. Non-Markovian effect on the geometric phase of a dissipative qubit

    International Nuclear Information System (INIS)

    Chen Juanjuan; Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-01-01

    We studied the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit, the lowest order correction to the geometric phase is derived analytically and the general case is calculated numerically. It was found that the correction to the geometric phase is significantly large if the spectral width is small, and in this case the non-Markovian dynamics has a significant impact on the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  10. Brane-antibrane systems at finite temperature and phase transition near the Hagedorn temperature

    International Nuclear Information System (INIS)

    Hotta, Kenji

    2002-01-01

    In order to study the thermodynamic properties of brane-antibrane systems, we compute the finite temperature effective potential of tachyon T in this system on the basis of boundary string field theory. At low temperature, the minimum of the potential shifts towards T=0 as the temperature increases. In the D9-anti-D9 case, the sign of the coefficient of vertical bar T vertical bar 2 term of the potential changes slightly below the Hagedorn temperature. This means that a phase transition occurs near the Hagedorn temperature. On the other hand, the coefficient is kept negative in the Dp-anti-Dp case with p≤8, and thus a phase transition does not occur. This leads us to the conclusion that only a D9-anti-D9 pair and no other (lower dimensional) brane-antibrane pairs are created near the Hagedorn temperature. We also discuss a phase transition in NS9B-anti-NS9B case as a model of the Hagedorn transition of closed strings. (author)

  11. Topological insulating phases of non-Abelian anyonic chains

    Energy Technology Data Exchange (ETDEWEB)

    DeGottardi, Wade

    2014-08-01

    Boundary conformal field theory is brought to bear on the study of topological insulating phases of non- Abelian anyonic chains. These phases display protected anyonic end modes. We consider spin-1/2 su(2)t chains at any level k, focusing on the most prominent examples: the case k = 2 describes Ising anyons (equivalent to Majorana fermions) and k = 3 corresponds to Fibonacci anyons. The method we develop is quite general and rests on a deep connection between boundary conformal field theory and topological symmetry. This method tightly constrains the nature of the topological insulating phases of these chains for general k. Emergent anyons which arise at domain walls are shown to have the same braiding properties as the physical quasiparticles. This suggests a "solid-stat.e" topological quantum computation scheme in which emergent anyons are braided by tuning the couplings of non-Abelian quasiparticles in a fixed network.

  12. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    Science.gov (United States)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  13. Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch

    International Nuclear Information System (INIS)

    Young, Robert M.; El-Hinnawy, Nabil; Borodulin, Pavel; Wagner, Brian P.; King, Matthew R.; Jones, Evan B.; Howell, Robert S.; Lee, Michael J.

    2014-01-01

    We show the finite element simulation of the melt/quench process in a phase change material (GeTe, germanium telluride) used for a radio frequency switch. The device is thermally activated by an independent NiCrSi (nickel chrome silicon) thin film heating element beneath a dielectric separating it electrically from the phase change layer. A comparison is made between the predicted and experimental minimum power to amorphize (MPA) for various thermal pulse powers and pulse time lengths. By including both the specific heat and latent heat of fusion for GeTe, we find that the MPA and the minimum power to crystallize follow the form of a hyperbola on the power time effect plot. We also find that the simulated time at which the entire center GeTe layer achieves melting accurately matches the MPA curve for pulse durations ranging from 75–1500 ns and pulse powers from 1.6–4 W

  14. Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch

    Energy Technology Data Exchange (ETDEWEB)

    Young, Robert M., E-mail: rm.young@ngc.com; El-Hinnawy, Nabil; Borodulin, Pavel; Wagner, Brian P.; King, Matthew R.; Jones, Evan B.; Howell, Robert S.; Lee, Michael J. [Northrop Grumman Corp., Electronic Systems, P.O. Box 1521, Baltimore, Maryland 21203 (United States)

    2014-08-07

    We show the finite element simulation of the melt/quench process in a phase change material (GeTe, germanium telluride) used for a radio frequency switch. The device is thermally activated by an independent NiCrSi (nickel chrome silicon) thin film heating element beneath a dielectric separating it electrically from the phase change layer. A comparison is made between the predicted and experimental minimum power to amorphize (MPA) for various thermal pulse powers and pulse time lengths. By including both the specific heat and latent heat of fusion for GeTe, we find that the MPA and the minimum power to crystallize follow the form of a hyperbola on the power time effect plot. We also find that the simulated time at which the entire center GeTe layer achieves melting accurately matches the MPA curve for pulse durations ranging from 75–1500 ns and pulse powers from 1.6–4 W.

  15. The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system

    Science.gov (United States)

    Yeon, Kyu Hwang; Um, Chung IN; George, T. F.

    1994-01-01

    The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.

  16. Phase Control in Nonlinear Systems

    Science.gov (United States)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  17. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  18. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  19. Photon detection system for ProtoDUNE dual phase

    CERN Document Server

    Cuesta, C. (on behalf of DUNE collaboration)

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kton underground liquid argon time-projection-chamber (LAr TPC) detector, for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. Photon detector systems embedded within the LAr TPC add precise timing capabilities for non-beam events. The ProtoDUNE dual phase detector will consist of a 6x6x6 m3 liquid argon time-projection chamber placed at CERN and the light readout will be formed by 8-inch cryogenic photomultipliers from Hamamatsu. The characterization of the 36 photomultipliers, the base design, and the light calibration system are described. In addition, preliminary results from a 3x1x1 m3 LAr double phase detector operating at CERN are presented.

  20. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  1. Para-equilibrium phase diagrams

    International Nuclear Information System (INIS)

    Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar

    2014-01-01

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  2. Improving boiler unit performance using an optimum robust minimum-order observer

    International Nuclear Information System (INIS)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz

    2011-01-01

    Research highlights: → Multivariable model of a boiler unit with uncertainty. → Design of a robust minimum-order observer. → Developing an optimal functional code in MATLAB environment. → Finding optimum region of observer-based controller poles. → Guarantee of robust performance in the presence of parametric uncertainties. - Abstract: To achieve a good performance of the utility boiler, dynamic variables such as drum pressure, steam temperature and water level of drum must be controlled. In this paper, a linear time invariant (LTI) model of a boiler system is considered in which the input variables are feed-water and fuel mass rates. Due to the inaccessibility of some state variables of boiler system, a minimum-order observer is designed based on Luenberger's model to gain an estimate state x-tilde of the true state x. Low cost of design and high accuracy of states estimation are the main advantages of the minimum-order observer; in comparison with previous designed full-order observers. By applying the observer on the closed-loop system, a regulator system is designed. Using an optimal functional code developed in MATLAB environment, desired observer poles are found such that suitable time response specifications of the boiler system are achieved and the gain and phase margin values are adjusted in an acceptable range. However, the real dynamic model may associate with parametric uncertainties. In that case, optimum region of poles of observer-based controller are found such that the robust performance of the boiler system against model uncertainties is guaranteed.

  3. Minimum Energy Control of 2D Positive Continuous-Discrete Linear Systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2014-09-01

    Full Text Available The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Necessary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero boundary conditions to given final state and minimizing the performance index for only one step (q = 1. A procedure for solving of the problem is proposed and illustrated by a numerical example.

  4. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    Load compensation for single phase system using series active filter. ... KK Mishra, R Gupta ... load varies from time to time, the non linear load ranging from voltage source type harmonic load (VSHL) dominant to current source type harmonic ...

  5. Design of intelligent comfort control system with human learning and minimum power control strategies

    International Nuclear Information System (INIS)

    Liang, J.; Du, R.

    2008-01-01

    This paper presents the design of an intelligent comfort control system by combining the human learning and minimum power control strategies for the heating, ventilating and air conditioning (HVAC) system. In the system, the predicted mean vote (PMV) is adopted as the control objective to improve indoor comfort level by considering six comfort related variables, whilst a direct neural network controller is designed to overcome the nonlinear feature of the PMV calculation for better performance. To achieve the highest comfort level for the specific user, a human learning strategy is designed to tune the user's comfort zone, and then, a VAV and minimum power control strategy is proposed to minimize the energy consumption further. In order to validate the system design, a series of computer simulations are performed based on a derived HVAC and thermal space model. The simulation results confirm the design of the intelligent comfort control system. In comparison to the conventional temperature controller, this system can provide a higher comfort level and better system performance, so it has great potential for HVAC applications in the future

  6. Anesthesiologists' perceptions of minimum acceptable work habits of nurse anesthetists.

    Science.gov (United States)

    Logvinov, Ilana I; Dexter, Franklin; Hindman, Bradley J; Brull, Sorin J

    2017-05-01

    Work habits are non-technical skills that are an important part of job performance. Although non-technical skills are usually evaluated on a relative basis (i.e., "grading on a curve"), validity of evaluation on an absolute basis (i.e., "minimum passing score") needs to be determined. Survey and observational study. None. None. The theme of "work habits" was assessed using a modification of Dannefer et al.'s 6-item scale, with scores ranging from 1 (lowest performance) to 5 (highest performance). E-mail invitations were sent to all consultant and fellow anesthesiologists at Mayo Clinic in Florida, Arizona, and Minnesota. Because work habits expectations can be generational, the survey was designed for adjustment based on all invited (responding or non-responding) anesthesiologists' year of graduation from residency. The overall mean±standard deviation of the score for anesthesiologists' minimum expectations of nurse anesthetists' work habits was 3.64±0.66 (N=48). Minimum acceptable scores were correlated with the year of graduation from anesthesia residency (linear regression P=0.004). Adjusting for survey non-response using all N=207 anesthesiologists, the mean of the minimum acceptable work habits adjusted for year of graduation was 3.69 (standard error 0.02). The minimum expectations for nurse anesthetists' work habits were compared with observational data obtained from the University of Iowa. Among 8940 individual nurse anesthetist work habits scores, only 2.6% were habits scores were significantly greater than the Mayo estimate (3.69) for the minimum expectations; all Phabits of nurse anesthetists within departments should not be compared with an appropriate minimum score (i.e., of 3.69). Instead, work habits scores should be analyzed based on relative reporting among anesthetists. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  8. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  9. Isolated/Non-Isolated Quad-Inverter Configuration for Multilevel Symmetrical/Asymmetrical Dual Six-Phase Star-Winding Converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Hontz, Michael R.; Khanna, Raghav

    2016-01-01

    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional ...... systems, electrical vehicles, AC tractions, and `More-Electric Aircraft' propulsion systems....... converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power...

  10. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  11. A HOS-based blind deconvolution algorithm for the improvement of time resolution of mixed phase low SNR seismic data

    International Nuclear Information System (INIS)

    Hani, Ahmad Fadzil M; Younis, M Shahzad; Halim, M Firdaus M

    2009-01-01

    A blind deconvolution technique using a modified higher order statistics (HOS)-based eigenvector algorithm (EVA) is presented in this paper. The main purpose of the technique is to enable the processing of low SNR short length seismograms. In our study, the seismogram is assumed to be the output of a mixed phase source wavelet (system) driven by a non-Gaussian input signal (due to earth) with additive Gaussian noise. Techniques based on second-order statistics are shown to fail when processing non-minimum phase seismic signals because they only rely on the autocorrelation function of the observed signal. In contrast, existing HOS-based blind deconvolution techniques are suitable in the processing of a non-minimum (mixed) phase system; however, most of them are unable to converge and show poor performance whenever noise dominates the actual signal, especially in the cases where the observed data are limited (few samples). The developed blind equalization technique is primarily based on the EVA for blind equalization, initially to deal with mixed phase non-Gaussian seismic signals. In order to deal with the dominant noise issue and small number of available samples, certain modifications are incorporated into the EVA. For determining the deconvolution filter, one of the modifications is to use more than one higher order cumulant slice in the EVA. This overcomes the possibility of non-convergence due to a low signal-to-noise ratio (SNR) of the observed signal. The other modification conditions the cumulant slice by increasing the power of eigenvalues of the cumulant slice, related to actual signal, and rejects the eigenvalues below the threshold representing the noise. This modification reduces the effect of the availability of a small number of samples and strong additive noise on the cumulant slices. These modifications are found to improve the overall deconvolution performance, with approximately a five-fold reduction in a mean square error (MSE) and a six

  12. Phase equilibrium, crystallization behavior and thermodynamic studies of (m-dinitrobenzene + vanillin) eutectic system

    International Nuclear Information System (INIS)

    Singh, Jayram; Singh, N.B.

    2015-01-01

    Graphical abstract: The phase diagram of (m-dinitrobenzene + vanillin) system. - Highlights: • (Thaw + melt) method has shown that (m-dinitrobenzene + vanillin) system forms simple eutectic type phase diagram. • Excess thermodynamic functions showed that eutectic mixture is non-ideal. • The flexural strength measurements have shown that in eutectic mixture, crystallization occurs in an ordered way. - Abstract: The phase diagram of (m-dinitrobenzene + vanillin) system has been studied by the thaw melt method and an eutectic type phase diagram was obtained. The linear velocities of crystallization of the parent components and the eutectic mixture were determined. The enthalpy of fusion of the components and the eutectic mixture were determined using the differential scanning calorimetric technique. Excess Gibbs energy, excess entropy, excess enthalpy of mixing, and interfacial energy have been calculated. FTIR spectroscopic studies and flexural strength measurements were also made. The results have shown that the eutectic is a non-ideal mixture of the two components. On the basis of Jackson’s roughness parameter, it is predicted that the eutectic has faceted morphology

  13. Enhancement of Iris Recognition System Based on Phase Only Correlation

    Directory of Open Access Journals (Sweden)

    Nuriza Pramita

    2011-08-01

    Full Text Available Iris recognition system is one of biometric based recognition/identification systems. Numerous techniques have been implemented to achieve a good recognition rate, including the ones based on Phase Only Correlation (POC. Significant and higher correlation peaks suggest that the system recognizes iris images of the same subject (person, while lower and unsignificant peaks correspond to recognition of those of difference subjects. Current POC methods have not investigated minimum iris point that can be used to achieve higher correlation peaks. This paper proposed a method that used only one-fourth of full normalized iris size to achieve higher (or at least the same recognition rate. Simulation on CASIA version 1.0 iris image database showed that averaged recognition rate of the proposed method achieved 67%, higher than that of using one-half (56% and full (53% iris point. Furthermore, all (100% POC peak values of the proposed method was higher than that of the method with full iris points.

  14. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part II: Numeric Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.

  15. Non-commutative representation for quantum systems on Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Raasakka, Matti Tapio

    2014-01-27

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase

  16. Non-commutative representation for quantum systems on Lie groups

    International Nuclear Information System (INIS)

    Raasakka, Matti Tapio

    2014-01-01

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path

  17. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    International Nuclear Information System (INIS)

    1995-08-01

    As a result of the U.S. Department of Energy's environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved

  18. On the phase diagram of non-spherical nanoparticles

    CERN Document Server

    Wautelet, M; Hecq, M

    2003-01-01

    The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.

  19. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  20. Solution of Large Systems of Linear Equations with Quadratic or Non-Quadratic Matrices and Deconvoiution of Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1967-12-15

    The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.

  1. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  2. Harbor porpoise clicks do not have conditionally minimum time bandwidth product

    DEFF Research Database (Denmark)

    Beedholm, Kristian

    2008-01-01

    The hypothesis that odontocete clicks have minimal time frequency product given their delay and center frequency values is tested by using an in-phase averaged porpoise click compared with a pure tone weighted with the same envelope. These signals have the same delay and the same center frequency...... values but the time bandwidth product of the artificial click is only 0.76 that of the original. Therefore signals with the same parameters exist that have a lower time bandwidth product. The observation that porpoise clicks are in fact minimum phase is confirmed for porpoise clicks and this property...... is argued to be incompatible with optimal reception, if auditory filters are also minimum phase....

  3. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  4. Improving boiler unit performance using an optimum robust minimum-order observer

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz [Energy and Control Centre of Excellence, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-03-15

    To achieve a good performance of the utility boiler, dynamic variables such as drum pressure, steam temperature and water level of drum must be controlled. In this paper, a linear time invariant (LTI) model of a boiler system is considered in which the input variables are feed-water and fuel mass rates. Due to the inaccessibility of some state variables of boiler system, a minimum-order observer is designed based on Luenberger's model to gain an estimate state x of the true state x. Low cost of design and high accuracy of states estimation are the main advantages of the minimum-order observer; in comparison with previous designed full-order observers. By applying the observer on the closed-loop system, a regulator system is designed. Using an optimal functional code developed in MATLAB environment, desired observer poles are found such that suitable time response specifications of the boiler system are achieved and the gain and phase margin values are adjusted in an acceptable range. However, the real dynamic model may associate with parametric uncertainties. In that case, optimum region of poles of observer-based controller are found such that the robust performance of the boiler system against model uncertainties is guaranteed. (author)

  5. Describing phase coexistence in systems with small phases

    International Nuclear Information System (INIS)

    Lovett, R

    2007-01-01

    Clusters of atoms can be studied in molecular beams and by computer simulation; 'liquid drops' provide elementary models for atomic nuclei and for the critical nuclei of nucleation theory. These clusters are often described in thermodynamic terms, but the behaviour of small clusters near a phase boundary is qualitatively different from the behaviour at a first order phase transition in idealized thermodynamics. In the idealized case the density and entropy show mathematically sharp discontinuities when the phase boundary is crossed. In large, but finite, systems, the phase boundaries become regions of state space wherein these properties vary rapidly but continuously. In small clusters with a large surface/volume ratio, however, the positive interfacial free energy makes it unlikely, even in states on phase boundaries, that a cluster will have a heterogeneous structure. What is actually seen in these states is a structure that fluctuates in time between homogeneous structures characteristic of the two sides of the phase boundary. That is, structural fluctuations are observed. Thermodynamics only predicts average properties; statistical mechanics is required to understand these fluctuations. Failure to distinguish thermodynamic properties and characterizations of fluctuations, particularly in the context of first order phase transitions, has led to suggestions that the classical rules for thermodynamic stability are violated in small systems and that classical thermodynamics provides an inconsistent description of these systems. Much of the confusion stems from taking statistical mechanical identifications of thermodynamic properties, explicitly developed for large systems, and applying them uncritically to small systems. There are no inconsistencies if thermodynamic properties are correctly identified and the distinction between thermodynamic properties and fluctuations is made clear

  6. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    Science.gov (United States)

    Grindle, Laurie; Hackenberg, Davis L.

    2016-01-01

    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  7. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  8. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    Science.gov (United States)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic

  9. Wet Process Induced Phase Transited Drug Delivery System as a ...

    African Journals Online (AJOL)

    A non-disintegrating, asymmetric membrane capsular system for a poorly water soluble drug, flurbiprofen, was developed and evaluated in vitro and in vivo. Asymmetric membrane capsules were made by phase inversion. The effect of varying osmotic pressure of the dissolution medium on drug release was studied.

  10. Economic evaluation of cereal cropping systems under semiarid conditions: minimum input, organic and conventional

    OpenAIRE

    Pardo,Gabriel; Aibar,Joaquín; Cavero,José; Zaragoza,Carlos

    2009-01-01

    Cropping systems like organic farming, selling products at a higher price and promoting environmental sustainability by reducing fertilizer and pesticides, can be more profitable than conventional systems. An economic evaluation of three cropping systems in a seven year period experiment was performed, using a common rotation (fallow-barley-vetch-durum wheat) in a semi-arid rainfed field of Spain. The minimum input system included mouldboard ploughing, cultivator preparation, sowing and harve...

  11. Minimum quality standards and international trade

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2011-01-01

    This paper investigates the impact of a non-discriminating minimum quality standard (MQS) on trade and welfare when the market is characterized by imperfect competition and asymmetric information. A simple partial equilibrium model of an international Cournot duopoly is presented in which a domes...... prefer different levels of regulation. As a result, international trade disputes are likely to arise even when regulation is non-discriminating....

  12. Non-periodic inspection optimization of multi-component and k-out-of-m systems

    International Nuclear Information System (INIS)

    Hajipour, Yassin; Taghipour, Sharareh

    2016-01-01

    This paper proposes a model to find the optimal non-periodic inspection interval over a finite planning horizon for two types of multi-component repairable systems. The first system contains hard-type and soft-type components, and the second system is a k-out-of-m system with m identical components. The failures of components in both systems follow a non-homogeneous Poisson process. A component can be a single part such as battery or line cord, or a subsystem, such as circuit breaker or charger in an infusion pump, which depending on their failures could be either replaced or minimally repaired according to their ages at failure. The systems are inspected at scheduled inspections or when an event of opportunistic inspection or a system failure occur. We develop a model to find the optimal inspection scheme for each system, which results in the minimum total expected cost over the system's lifecycle. We first develop a simulation model to obtain the total expected cost for a given non-periodic inspection scheme, and then integrate the simulation model with a genetic algorithm to obtain the optimal scheme more efficiently. - Highlights: • Non-periodic inspection optimization of two complex systems. • One system consists of soft-type and hard-type components. • The second system is a k-out-of-m system. • Integration of a simulation model and the genetic algorithm. • The model can be used when inspection is challenging or costly.

  13. Pre-analytic phase in molecular biology: criticism and non-compliance management

    Directory of Open Access Journals (Sweden)

    Catia Sias

    2010-06-01

    Full Text Available Introduction: During workflow in Laboratories the most delicate and important step is pre-analytic sample treatment because it involves more than one operator of the same structure and often different health services. In fact, the biological materials used for the diagnosis should be collected, sent and properly treated before the analytic phase. Correct methods for collecting and handling biological materials, including guidelines to users of laboratory services, improve performance of Laboratory testing activity. In the pre-analytic phase the operators check sample integrity, and prepare the sample for the subsequent analytic phase: in all these steps monitoring and control of “non- compliance” is crucial. Methods: During 2007-2008 we created a “non- compliance” check-list, to monitor errors which occurred in different sectors of the preanalytic phase, particularly in the nucleic acid extraction step. These “non-compliances” are analysed to identify and to remove errors, adopting preventive and corrective proceedings. Since 2008 we have been using DNA/RNA internal controls synthesized in our Laboratory. They can be amplified by the same primers and recognized by different probes. Results: Examination of the “non compliance” check-list for molecular biology investigations shows that the percentage of urine repeat samples decreased from 17% to 2% and the percentage of stool repeat samples from 27% to 2%. Regarding use of internal controls, they allow the assessment of inhibitory factors that can prevent gene amplification. Conclusions: Monitoring “non-compliance” cases and dividing them by typology allow us identifying the most frequent causes of incorrect sample handling, as a non optimal procedure of pre-treatment, thus improving the pre-analytic phase. Therefore by monitoring the preanalytic phase we can prevent the introduction of confounding factors that may negatively influence the accuracy of results and their

  14. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  15. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  16. User's manual of BISHOP. A Bi-Phase, Sodium-Hydrogen-Oxygen system, chemical equilibrium calculation program

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamaguchi, Akira

    2001-07-01

    In an event of sodium leakage in liquid metal fast breeder reactors, liquid sodium flows out of piping, and droplet combustion might occur under a certain environmental condition. The combustion heat and reaction products should be evaluated in the sodium fire analysis codes for investigating the influence of the sodium leak age and fire incident. In order to analyze the reaction heat and products, the multi-phase chemical equilibrium calculation program for a sodium, oxygen and hydrogen system has been developed. The developed numerical program is named BISHOP, which denotes 'Bi-Phase, Sodium-Hydrogen-Oxygen, Chemical Equilibrium Calculation Program'. The Gibbs free energy minimization method is used because of the following advantages. Chemical species are easily added and changed. A variety of thermodynamic states, such as isothermal and isentropic changes, can be dealt with in addition to constant temperature and pressure processes. In applying the free energy minimization method to solve the multi-phase sodium reaction system, three new numerical calculation techniques are developed. One is theoretical simplification of phase description in equation system, the other is to extend the Gibbs free energy minimization method to a multi-phase system, and the last is to establish the efficient search for the minimum value. The reaction heat and products at the equilibrium state can be evaluated from the initial conditions, such as temperature, pressure and reactants, using BISHOP. This report describes the thermochemical basis of chemical equilibrium calculations, the system of equations, simplification models, and the procedure to prepare input data and usage of BISHOP. (author)

  17. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  18. Output Tracking for Systems with Non-Hyperbolic and Near Non-Hyperbolic Internal Dynamics: Helicopter Hover Control

    Science.gov (United States)

    Devasia, Santosh

    1996-01-01

    A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.

  19. The effect of systemic antibiotics administered during the active phase of non-surgical periodontal therapy or after the healing phase: a systematic review.

    Science.gov (United States)

    Fritoli, Aretuza; Gonçalves, Cristiane; Faveri, Marcelo; Figueiredo, Luciene Cristina; Pérez-Chaparro, Paula Juliana; Fermiano, Daiane; Feres, Magda

    2015-01-01

    The aim of this systematic review was to compare the clinical effectiveness of systemic antibiotics administered in the active stage of periodontal treatment or after the healing phase. An electronic search was performed in the databases EMBASE, MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. A manual search of the reference list of selected studies and of review articles was also performed up to November 2013. Randomized Clinical Trials (RCT) that evaluated the systemic administration of antibiotics as adjuvants to scaling and root planning (SRP) at different phases of periodontal treatment were included. Systematic reviews and studies that evaluated subjects with systemic diseases and those that used subantimicrobial doses of antibiotics were excluded. The initial search identified 1,039 articles, of which seven were selected, and only one met the inclusion criteria. This study showed that subjects taking metronidazole and amoxicillin at the initial phase of treatment exhibited statistically significantly greater reduction in pocket depth and gain in clinical attachment level in initially deep sites (PD≥7 mm) than subjects taking antibiotics after healing (pantibiotic intake, at the healing phase. To date, only one short-term RCT has directly compared different moments of systemic antibiotics administration, as adjuncts to SRP, in the treatment of periodontitis. Although the results of this study suggested some benefits for antibiotics intake during the active phase of therapy, these findings need to be confirmed by larger placebo-controlled randomized clinical trials with longer follow-up periods.

  20. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  1. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  2. Non-isothermal effects on multi-phase flow in porous medium

    DEFF Research Database (Denmark)

    Singh, Ashok; Wang, W; Park, C. H.

    2010-01-01

    In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...

  3. Renormalization Group Reduction of Non Integrable Hamiltonian Systems

    International Nuclear Information System (INIS)

    Tzenov, Stephan I.

    2002-01-01

    Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail

  4. Competing failure analysis in phased-mission systems with multiple functional dependence groups

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Peng, Rui; Pan, Zhusheng

    2017-01-01

    A phased-mission system (PMS) involves multiple, consecutive, non-overlapping phases of operation. The system structure function and component failure behavior in a PMS can change from phase to phase, posing big challenges to the system reliability analysis. Further complicating the problem is the functional dependence (FDEP) behavior where the failure of certain component(s) causes other component(s) to become unusable or inaccessible or isolated. Previous studies have shown that FDEP can cause competitions between failure propagation and failure isolation in the time domain. While such competing failure effects have been well addressed in single-phase systems, only little work has focused on PMSs with a restrictive assumption that a single FDEP group exists in one phase of the mission. Many practical systems (e.g., computer systems and networks), however may involve multiple FDEP groups during the mission. Moreover, different FDEP groups can be dependent due to sharing some common components; they may appear in a single phase or multiple phases. This paper makes new contributions by modeling and analyzing reliability of PMSs subject to multiple FDEP groups through a Markov chain-based methodology. Propagated failures with both global and selective effects are considered. Four case studies are presented to demonstrate application of the proposed method. - Highlights: • Reliability of phased-mission systems subject to competing failure propagation and isolation effects is modeled. • Multiple independent or dependent functional dependence groups are considered. • Propagated failures with global effects and selective effects are studied. • Four case studies demonstrate generality and application of the proposed Markov-based method.

  5. Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.

    Science.gov (United States)

    Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W

    2017-09-28

    We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.

  6. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  7. Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems

    International Nuclear Information System (INIS)

    Struckmeier, Juergen

    2005-01-01

    We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1

  8. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  9. Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)

    2012-03-19

    We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.

  10. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  11. A Re-examination of the Effect of Masker Phase Curvature on Non-simultaneous Masking.

    Science.gov (United States)

    Carlyon, Robert P; Flanagan, Sheila; Deeks, John M

    2017-12-01

    Forward masking of a sinusoidal signal is determined not only by the masker's power spectrum but also by its phase spectrum. Specifically, when the phase spectrum is such that the output of an auditory filter centred on the signal has a highly modulated ("peaked") envelope, there is less masking than when that envelope is flat. This finding has been attributed to non-linearities, such as compression, reducing the average neural response to maskers that produce more peaked auditory filter outputs (Carlyon and Datta, J Acoust Soc Am 101:3636-3647, 1997). Here we evaluate an alternative explanation proposed by Wotcjzak and Oxenham (Wojtczak and Oxenham, J Assoc Res Otolaryngol 10:595-607, 2009). They reported a masker phase effect for 6-kHz signals when the masker components were at least an octave below the signal frequency. Wotcjzak and Oxenham argued that this effect was inconsistent with cochlear compression, and, because it did not occur at lower signal frequencies, was also inconsistent with more central compression. It was instead attributed to activation of the efferent system reducing the response to the subsequent probe. Here, experiment 1 replicated their main findings. Experiment 2 showed that the phase effect on off-frequency forward masking is similar at signal frequencies of 2 and 6 kHz, provided that one equates the number of components likely to interact within an auditory filter centred on the signal, thereby roughly equating the effect of masker phase on the peakiness of that filter output. Experiment 3 showed that for some subjects, masker phase also had a strong influence on off-frequency backward masking of the signal, and that the size of this effect correlated across subjects with that observed in forward masking. We conclude that the masker phase effect is mediated mainly by cochlear non-linearities, with a possible additional effect of more central compression. The data are not consistent with a role for the efferent system.

  12. The effect of systemic antibiotics administered during the active phase of non-surgical periodontal therapy or after the healing phase: a systematic review

    Directory of Open Access Journals (Sweden)

    Aretuza FRITOLI

    2015-06-01

    Full Text Available Objective The aim of this systematic review was to compare the clinical effectiveness of systemic antibiotics administered in the active stage of periodontal treatment or after the healing phase. Material and Methods An electronic search was performed in the databases EMBASE, MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA statement. A manual search of the reference list of selected studies and of review articles was also performed up to November 2013. Randomized Clinical Trials (RCT that evaluated the systemic administration of antibiotics as adjuvants to scaling and root planning (SRP at different phases of periodontal treatment were included. Systematic reviews and studies that evaluated subjects with systemic diseases and those that used subantimicrobial doses of antibiotics were excluded. Results The initial search identified 1,039 articles, of which seven were selected, and only one met the inclusion criteria. This study showed that subjects taking metronidazole and amoxicillin at the initial phase of treatment exhibited statistically significantly greater reduction in pocket depth and gain in clinical attachment level in initially deep sites (PD≥7 mm than subjects taking antibiotics after healing (p<0.05. This comparison was conducted 2 months after antibiotic intake, at the healing phase. Conclusion To date, only one short-term RCT has directly compared different moments of systemic antibiotics administration, as adjuncts to SRP, in the treatment of periodontitis. Although the results of this study suggested some benefits for antibiotics intake during the active phase of therapy, these findings need to be confirmed by larger placebo-controlled randomized clinical trials with longer follow-up periods.

  13. The effect of systemic antibiotics administered during the active phase of non-surgical periodontal therapy or after the healing phase: a systematic review

    Science.gov (United States)

    FRITOLI, Aretuza; GONÇALVES, Cristiane; FAVERI, Marcelo; FIGUEIREDO, Luciene Cristina; PÉREZ-CHAPARRO, Paula Juliana; FERMIANO, Daiane; FERES, Magda

    2015-01-01

    Objective The aim of this systematic review was to compare the clinical effectiveness of systemic antibiotics administered in the active stage of periodontal treatment or after the healing phase. Material and Methods An electronic search was performed in the databases EMBASE, MEDLINE and Cochrane Central Register of Controlled Trials (CENTRAL), in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. A manual search of the reference list of selected studies and of review articles was also performed up to November 2013. Randomized Clinical Trials (RCT) that evaluated the systemic administration of antibiotics as adjuvants to scaling and root planning (SRP) at different phases of periodontal treatment were included. Systematic reviews and studies that evaluated subjects with systemic diseases and those that used subantimicrobial doses of antibiotics were excluded. Results The initial search identified 1,039 articles, of which seven were selected, and only one met the inclusion criteria. This study showed that subjects taking metronidazole and amoxicillin at the initial phase of treatment exhibited statistically significantly greater reduction in pocket depth and gain in clinical attachment level in initially deep sites (PD≥7 mm) than subjects taking antibiotics after healing (pantibiotic intake, at the healing phase. Conclusion To date, only one short-term RCT has directly compared different moments of systemic antibiotics administration, as adjuncts to SRP, in the treatment of periodontitis. Although the results of this study suggested some benefits for antibiotics intake during the active phase of therapy, these findings need to be confirmed by larger placebo-controlled randomized clinical trials with longer follow-up periods. PMID:26221918

  14. Affinity partitioning of human antibodies in aqueous two-phase systems.

    Science.gov (United States)

    Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R

    2007-08-24

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.

  15. A Subjective Evaluation of the Minimum Audible Channel Separation in Binaural Reproduction Systems Through Loudspeakers

    DEFF Research Database (Denmark)

    Lacouture Parodi, Yesenia; Rubak, Per

    2010-01-01

    To evaluate the performance of crosstalk cancellation systems the channel separation is usually used as parameter.  However, no systematic evaluation of the minimum audible channel separation has been found in the literature known by the authors.  This paper describes a set of subjective experime......To evaluate the performance of crosstalk cancellation systems the channel separation is usually used as parameter.  However, no systematic evaluation of the minimum audible channel separation has been found in the literature known by the authors.  This paper describes a set of subjective...... simulated.  Results indicate that  in order to avoid lateralization the  channel separation should be below -15dB for most of the stimuli and around -20dB for broad-band noise....

  16. Minimum time control of a pair of two-level quantum systems with opposite drifts

    International Nuclear Information System (INIS)

    Romano, Raffaele; D’Alessandro, Domenico

    2016-01-01

    In this paper we solve two equivalent time optimal control problems. On one hand, we design the control field to implement in minimum time the SWAP (or equivalent) operator on a two-level system, assuming that it interacts with an additional, uncontrollable, two-level system. On the other hand, we synthesize the SWAP operator simultaneously, in minimum time, on a pair of two-level systems subject to opposite drifts. We assume that it is possible to perform three independent control actions, and that the total control strength is bounded. These controls either affect the dynamics of the target system, under the first perspective, or, simultaneously, the dynamics of both systems, in the second view. We obtain our results by using techniques of geometric control theory on Lie groups. In particular, we apply the Pontryagin maximum principle, and provide a complete characterization of singular and nonsingular extremals. Our analysis shows that the problem can be formulated as the motion of a material point in a central force, a well known system in classical mechanics. Although we focus on obtaining the SWAP operator, many of the ideas and techniques developed in this work apply to the time optimal implementation of an arbitrary unitary operator. (paper)

  17. 49 CFR 639.27 - Minimum criteria.

    Science.gov (United States)

    2010-10-01

    ... dollar value to any non-financial factors that are considered by using performance-based specifications..., DEPARTMENT OF TRANSPORTATION CAPITAL LEASES Cost-Effectiveness § 639.27 Minimum criteria. In making the... used where possible and appropriate: (a) Operation costs; (b) Reliability of service; (c) Maintenance...

  18. Non-Fourier heat conduction and phase transition in laser ablation of polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; Li, Jian; He, Zhaofu

    2017-11-01

    The phase transition in heat conduction of polytetrafluoroethylene-like polymers was investigated and applied in many fields of science and engineering. Considering more details including internal absorption of laser radiation, reflectivity of material and non-Fourier effect etc., the combined heat conduction and phase transition in laser ablation of polytetrafluoroethylene were modeled and investigated numerically. The thermal and mechanic issues in laser ablation were illustrated and analyzed. Especially, the phenomenon of temperature discontinuity formed in the combined phase transition and non-Fourier heat conduction was discussed. Comparisons of target temperature profiles between Fourier and non-Fourier heat conduction in melting process were implemented. It was indicated that the effect of non-Fourier plays an important role in the temperature evolvement. The effect of laser fluence was proven to be significant and the thermal wave propagation was independent on the laser intensity for the non-Fourier heat conduction. Besides, the effect of absorption coefficients on temperature evolvements was studied. For different ranges of absorption coefficients, different temperature evolvements can be achieved. The above numerical simulation provided insight into physical processes of combined non-Fourier heat conduction and phase transition in laser ablation.

  19. Anomalous magnetoelastic behaviour near morphotropic phase boundary in ferromagnetic Tb{sub 1-x}Nd{sub x}Co{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao; Chang, Tieyan; Chen, Kaiyun; Tian, Fanghua; Song, Xiaoping [School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Suchomel, Matthrew R.; Ren, Y. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-08-01

    In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimum magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.

  20. A minimum bit error-rate detector for amplify and forward relaying systems

    KAUST Repository

    Ahmed, Qasim Zeeshan; Alouini, Mohamed-Slim; Aissa, Sonia

    2012-01-01

    In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.

  1. A minimum bit error-rate detector for amplify and forward relaying systems

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2012-05-01

    In this paper, a new detector is being proposed for amplify-and-forward (AF) relaying system when communicating with the assistance of L number of relays. The major goal of this detector is to improve the bit error rate (BER) performance of the system. The complexity of the system is further reduced by implementing this detector adaptively. The proposed detector is free from channel estimation. Our results demonstrate that the proposed detector is capable of achieving a gain of more than 1-dB at a BER of 10 -5 as compared to the conventional minimum mean square error detector when communicating over a correlated Rayleigh fading channel. © 2012 IEEE.

  2. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Jong-In [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Vargas, Gracie [Center for Bioengineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wong, Brian J F [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Milner, Thomas E [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2005-05-07

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation.

  3. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    International Nuclear Information System (INIS)

    Youn, Jong-In; Vargas, Gracie; Wong, Brian J F; Milner, Thomas E

    2005-01-01

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation

  4. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    Quantification of interface properties such as two phase boundary area and triple phase boundary length is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell electrodes. Three-dimensional images of these microstructures can be obtained...... by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...... polygonization of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the method is analyzed by calculations on geometrical primitives...

  5. QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop

    Directory of Open Access Journals (Sweden)

    L. Kirasamuthranon

    2017-06-01

    Full Text Available Among M-phase shift keying (M-PSK schemes, quadrature phase-shift keying (QPSK is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.

  6. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  7. Phased Startup Initiative Phase 3 and 4 Test Procedure (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this test procedure is to safely operate the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) with specific fuel canisters, and show that canisters containing fuel can be retrieved from the canister queue, decapped in the Canister Decapper, and loaded into the Primary Clean Machine (PCM) for fuel cleaning; and that fuel can be sorted on the Process Table, then loaded back into fuel canisters and relocated in basin storage. An option is included to load selected elements into multi-canister overpack (MCO) Fuel Baskets. Additional Data are collected during this test, beyond that collected during production operations. These data support qualifying the cleaning performance of the PCM, assessing the quantity of scrap generated during the cleaning, and evaluating the impact of fuel retrieval operations on the Basin water quality. The additional data collected primarily consist of weighing fuel and scrap at selected points in the operation, as well as photographing fuel and scrap as it is processed. The time to perform operations is also monitored for comparison with design predictions. Water quality data are collected to establish a baseline to predict the effectiveness of equipment design for control of contamination and visibility during production operation. The scope of this test procedure is to validate the operation of FRS and IWTS components as a complete system. Fuel canisters shall be processed in accordance with this test procedure such that fuel inspection results are clearly attributed to a particular set of PCM operating parameters. The Phase 3 test sequence processes a minimum of six canisters. Twenty-four contingency canisters have been identified, and will be processed if additional performance data are required. The Phase 4 test sequence processes a minimum of 29 specific canisters. Twenty-nine contingency canisters have been identified for Phase 4 activities and will be processed to complete process validation, if

  8. A Snapshot of the Sun Near Solar Minimum: The Whole Heliosphere Interval

    Science.gov (United States)

    Thompson, Barbara J.; Gibson, Sarah E.; Schroeder, Peter C.; Webb, David F.; Arge, Charles N.; Bisi, Mario M.; de Toma, Giuliana; Emery, Barbara A.; Galvin, Antoinette B.; Haber, Deborah A.; hide

    2011-01-01

    We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar heliospheric planetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March 16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth's mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.

  9. A Theory of Compliance with Minimum Wage Law

    OpenAIRE

    Asongu Simplice; Jellal Mohamed

    2014-01-01

    Purpose – In this paper, we introduce firm heterogeneity in the context of a model of non-compliance with minimum wage legislation. Design/methodology/approach – Theoretical modeling under government compliance policy and wages & employment under non compliance. Findings – The introduction of heterogeneity in the ease with which firms can be monitored for non compliance allows us to show that non-compliance will persist in sectors which are relatively difficult to monitor, despite the governm...

  10. Appearance of minimum on the curve of cerium melting

    International Nuclear Information System (INIS)

    Boguslavskij, Yu.Ya.; Grigor'ev, S.B.

    1986-01-01

    It is shown by means of simple and obvious thermodynamical considerations that the reduced stability line continues up to the solid phase boundary. The existence of this line causes the appearance of minimum on the fcc cerium melting curve

  11. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Encouraged by Phase I accomplishments, the proposed Phase II program will significantly mature and align the development of a Space Qualified Non-Destructive...

  12. Non-Douglas-Kazakov phase transition of two-dimensional generalized Yang-Mills theories

    International Nuclear Information System (INIS)

    Khorrami, M.; Alimohammadi, M.

    2007-01-01

    In two-dimensional Yang-Mills and generalized Yang-Mills theories for large gauge groups, there is a dominant representation determining the thermodynamic limit of the system. This representation is characterized by a density, the value of which should everywhere be between zero and one. This density itself is determined by means of a saddle-point analysis. For some values of the parameter space, this density exceeds one in some places. So one should modify it to obtain an acceptable density. This leads to the well-known Douglas-Kazakov phase transition. In generalized Yang-Mills theories, there are also regions in the parameter space where somewhere this density becomes negative. Here too, one should modify the density so that it remains nonnegative. This leads to another phase transition, different from the Douglas-Kazakov one. Here the general structure of this phase transition is studied, and it is shown that the order of this transition is typically three. Using carefully-chosen parameters, however, it is possible to construct models with the order of the phase transition not equal to three. A class of these non-typical models is also studied. (orig.)

  13. Non-Darcy interfacial dynamics of air-water two-phase flow in rough fractures under drainage conditions.

    Science.gov (United States)

    Chang, Chun; Ju, Yang; Xie, Heping; Zhou, Quanlin; Gao, Feng

    2017-07-04

    Two-phase flow interfacial dynamics in rough fractures is fundamental to understanding fluid transport in fractured media. The Haines jump of non-Darcy flow in porous media has been investigated at pore scales, but its fundamental processes in rough fractures remain unclear. In this study, the micron-scale Haines jump of the air-water interface in rough fractures was investigated under drainage conditions, with the air-water interface tracked using dyed water and an imaging system. The results indicate that the interfacial velocities represent significant Haines jumps when the meniscus passes from a narrow "throat" to a wide "body", with jump velocities as high as five times the bulk drainage velocity. Locally, each velocity jump corresponds to a fracture aperture variation; statistically, the velocity variations follow an exponential function of the aperture variations at a length scale of ~100 µm to ~100 mm. This spatial-scale-invariant correlation may indicate that the high-speed local velocities during the Haines jump would not average out spatially for a bulk system. The results may help in understanding the origin of interface instabilities and the resulting non-uniform phase distribution, as well as the micron-scale essence of the spatial and temporal instability of two-phase flow in fractured media at the macroscopic scale.

  14. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  15. Non-Linear Detection for Joint Space-Frequency Block Coding and Spatial Multiplexing in OFDM-MIMO Systems

    DEFF Research Database (Denmark)

    Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank

    2005-01-01

    (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared......In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...

  16. Phase shift effects for fluid conveying pipes with non-ideal supports

    DEFF Research Database (Denmark)

    Dahl, Jonas; Thomsen, Jon Juel

    2008-01-01

    Vibrations of a fluid-conveying pipe with non-ideal supports are investigated with respect to phase shift effects. A numerical Galerkin approach is developed for this general problem, and the use of it exemplified with a investigation of phase shift effects from rotational damping at supports...

  17. Minimum emittance of isochronus rings for synchrotron light source

    CERN Document Server

    Shoji, Y

    1999-01-01

    Theoretically achievable minimum emittances of isochronus rings for synchrotron light source are calculated. The rings discussed in this paper consist of isochronus and achromatic bending cells, isochronus TBA (triple bend achromat) cells with negative dispersion, isochronus TBA cells with inverse bends or isochronus QBA (four bend achromat) cells. We show that the minimum emittances of these rings are roughly 2 or 3 times of those of the optimized non-isochronus rings.

  18. A new method of optimal capacitor switching based on minimum spanning tree theory in distribution systems

    Science.gov (United States)

    Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.

    2018-03-01

    According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.

  19. Beginning phase of career manager for non-formal education

    OpenAIRE

    Kostková, Blanka

    2015-01-01

    This thesis deals with the beginning phase of career manager for organization non- formal education. The work examines the process that precedes the onset school manager to executive positions primarily in terms of motivation, expectations and subsequent reality. It describes the initial phase of his work in a new role in life from the perspective of the management of school facilities and other activities associated with this process . The work is mapped to what extent the entrance to the Di...

  20. Modeling non-adiabatic photoexcited reaction dynamics in condensed phases

    International Nuclear Information System (INIS)

    Coker, D.F.

    2003-01-01

    Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites

  1. Four-cluster chimera state in non-locally coupled phase oscillator systems with an external potential

    International Nuclear Information System (INIS)

    Zhu Yun; Zheng Zhi-Gang; Yang Jun-Zhong

    2013-01-01

    Dynamics of a one-dimensional array of non-locally coupled Kuramoto phase oscillators with an external potential is studied. A four-cluster chimera state is observed for the moderate strength of the external potential. Different from the clustered chimera states studied before, the instantaneous frequencies of the oscillators in a synchronized cluster are different in the presence of the external potential. As the strength of the external potential increases, a bifurcation from the two-cluster chimera state to the four-cluster chimera states can be found. These phenomena are well predicted analytically with the help of the Ott—Antonsen ansatz. (general)

  2. Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage

    International Nuclear Information System (INIS)

    Xing Liudong; Amari, Suprasad V.; Wang Chaonan

    2012-01-01

    In this paper, an efficient method is proposed for the exact reliability evaluation of k-out-of-n systems with identical components subject to phased-mission requirements and imperfect fault coverage. The system involves multiple, consecutive, and non-overlapping phases of operation, where the k values and failure time distributions of system components can change from phase to phase. The proposed method considers statistical dependencies of component states across phases as well as dynamics in system configuration and success criteria. It also considers the time-varying and phase-dependent failure distributions and associated cumulative damage effects for the system components. The proposed method is based on the total probability law, conditional probabilities and an efficient recursive formula to compute the overall mission reliability with the consideration of imperfect fault coverage. The main advantages of this method are that both its computational time and memory requirements are linear in terms of the system size, and it has no limitation on the type of time-to-failure distributions for the system components. Three examples are presented to illustrate the application and advantages of the proposed method.

  3. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Science.gov (United States)

    2010-04-01

    ... applicable to Class II gaming systems? 547.7 Section 547.7 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED WITH THE PLAY... gaming systems? (a) General requirements. (1) The Class II gaming system shall operate in compliance with...

  4. Aliasing in the Complex Cepstrum of Linear-Phase Signals

    DEFF Research Database (Denmark)

    Bysted, Tommy Kristensen

    1997-01-01

    Assuming linear-phase of the associated time signal, this paper presents an approximated analytical description of the unavoidable aliasing in practical use of complex cepstrums. The linear-phase assumption covers two major applications of complex cepstrums which are linear- to minimum-phase FIR......-filter transformation and minimum-phase estimation from amplitude specifications. The description is made in the cepstrum domain, the Fourier transform of the complex cepstrum and in the frequency domain. Two examples are given, one for verification of the derived equations and one using the description to reduce...... aliasing in minimum-phase estimation...

  5. Measurement of Minimum Bias Observables with ATLAS

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  6. 12 CFR 615.5330 - Minimum surplus ratios.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Minimum surplus ratios. 615.5330 Section 615.5330 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM FUNDING AND FISCAL AFFAIRS, LOAN POLICIES AND OPERATIONS, AND FUNDING OPERATIONS Surplus and Collateral Requirements § 615.5330 Minimum...

  7. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  8. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-06-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  9. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-12-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  10. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  11. 25 CFR 547.9 - What are the minimum technical standards for Class II gaming system accounting functions?

    Science.gov (United States)

    2010-04-01

    ... gaming system accounting functions? 547.9 Section 547.9 Indians NATIONAL INDIAN GAMING COMMISSION... accounting functions? This section provides standards for accounting functions used in Class II gaming systems. (a) Required accounting data.The following minimum accounting data, however named, shall be...

  12. Thermodynamic Modelling of Phase Transformation in a Multi-Component System

    Science.gov (United States)

    Vala, J.

    2007-09-01

    Diffusion in multi-component alloys can be characterized by the vacancy mechanism for substitutional components, by the existence of sources and sinks for vacancies and by the motion of atoms of interstitial components. The description of diffusive and massive phase transformation of a multi-component system is based on the thermodynamic extremal principle by Onsager; the finite thickness of the interface between both phases is respected. The resulting system of partial differential equations of evolution with integral terms for unknown mole fractions (and additional variables in case of non-ideal sources and sinks for vacancies), can be analyzed using the method of lines and the finite difference technique (or, alternatively, the finite element one) together with the semi-analytic and numerical integration formulae and with certain iteration procedure, making use of the spectral properties of linear operators. The original software code for the numerical evaluation of solutions of such systems, written in MATLAB, offers a chance to simulate various real processes of diffusional phase transformation. Some results for the (nearly) steady-state real processes in substitutional alloys have been published yet. The aim of this paper is to demonstrate that the same approach can handle both substitutional and interstitial components even in case of a general system of evolution.

  13. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  14. Angular spectrum characters of high gain non-critical phase match optical parametric oscillators

    International Nuclear Information System (INIS)

    Liu Jian-Hui; Liu Qiang; Gong Ma-Li

    2011-01-01

    The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO 4 and the KTiOPO 4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Reference respiratory waveforms by minimum jerk model analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anetai, Yusuke, E-mail: anetai@radonc.med.osaka-u.ac.jp; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan); Ota, Seiichi [Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

    2015-09-15

    Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy

  16. Reference respiratory waveforms by minimum jerk model analysis

    International Nuclear Information System (INIS)

    Anetai, Yusuke; Sumida, Iori; Takahashi, Yutaka; Yagi, Masashi; Mizuno, Hirokazu; Ogawa, Kazuhiko; Ota, Seiichi

    2015-01-01

    Purpose: CyberKnife"® robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony"® mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife"®. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony"® mode, a tracking laser projection from CyberKnife"® was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory

  17. A Super Cooled, Non-toxic, Non-flammable Phase Change Material Thermal Pack for Portable Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept development and test of a water-based, advanced Phase Change Material (PCM) heat sink is proposed. Utilizing a novel material choice for both an...

  18. A proposal of comparative Maunder minimum cosmogenic isotope measurements

    International Nuclear Information System (INIS)

    Attolini, M.R.; Nanni, T.; Galli, M.; Povinec, P.

    1989-01-01

    There are at present contraddictory conclusions about solar activity and cosmogenic isotope production variation during Maunder Minimum. The interaction of solar wind with galactic cosmic rays, the dynamic behaviour of the Sun either as a system having an internal clock, and/or as a forced non linear system, are important aspects that can shed new light on solar physics, the Earth-Sun relationship and the climatic variation. An essential progress in the matter might be made by clarifying the cosmogenic isotope production during the mentioned interval. As it seems that during Maunder Minimum the Be10 production oscillates of about a factor of two, the authors have also to expect short scale enhanced variations in tree rings radiocarbon concentrations for the same interval. It is therefore highly desirable that for the same interval, that the authors would identify with 1640-1720 AD, detailed concentration measurements both of Be10 (in dated polar ice in addition to those of Beer et al.) and of tree ring radiocarbon, be made with cross-checking, in samples of different latitudes, longitudes and within short and large distance of the sea. The samples could be taken, as for example in samples from the central Mediterranean region, in the Baltic region and in other sites from central Europe and Asia

  19. The Effect of Minimum Wages on Adolescent Fertility: A Nationwide Analysis.

    Science.gov (United States)

    Bullinger, Lindsey Rose

    2017-03-01

    To investigate the effect of minimum wage laws on adolescent birth rates in the United States. I used a difference-in-differences approach and vital statistics data measured quarterly at the state level from 2003 to 2014. All models included state covariates, state and quarter-year fixed effects, and state-specific quarter-year nonlinear time trends, which provided plausibly causal estimates of the effect of minimum wage on adolescent birth rates. A $1 increase in minimum wage reduces adolescent birth rates by about 2%. The effects are driven by non-Hispanic White and Hispanic adolescents. Nationwide, increasing minimum wages by $1 would likely result in roughly 5000 fewer adolescent births annually.

  20. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  1. Radioactive and industrial waste water collection system study, Phase I

    International Nuclear Information System (INIS)

    1993-01-01

    Phase I of the Radioactive Liquid Waste (RLW) Collection System Study has been completed, and the deliverables for this portion of the study are enclosed. The deliverables include: The Work Break-down Structure (WBS) for Phase II; The Annotated Outline for the Collection Study Report; The Process Flow Diagrams (PFD) of the RLW collection system based on current literature and knowledge; The Configuration database; The Reference Index, listing all currently held documents of the RLW collection system; The Reference Drawing Index listing all currently held, potentially applicable, drawings reviewed during the PFD development; The Regulation Identification Document for RCRA and CWA; The Regulation Database for RCRA and CWA; The Regulation Review Log, including statements justifying the non-applicability of certain regulations; Regulation Library, including the photocopied regulations with highlighted text for RCRA and CWA; The summary of RTG's waste water treatment plant design experience and associated regulations on which RTG based the design of these treatment facilities; TA-50 Influent Database; Radioactive Liquid Waste Stream Characterization Database

  2. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  3. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2002-01-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  4. 25 CFR 547.6 - What are the minimum technical standards for enrolling and enabling Class II gaming system...

    Science.gov (United States)

    2010-04-01

    ... and enabling Class II gaming system components? 547.6 Section 547.6 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED... enabling Class II gaming system components? (a) General requirements. Class II gaming systems shall provide...

  5. Non-orthogonal transmission in multi-user systems with Grassmannian beamforming

    KAUST Repository

    Xia, Minghua

    2011-06-01

    Aiming to achieve the sum-rate capacity in multiuser multi-input multi-output (MIMO) channels with N t antennas implemented at the transmitter, opportunistic beamforming (OBF) generates N t orthonormal beams and serves N t users during each transmission, which results in high scheduling delay over the users, especially in densely populated wireless networks. Non-orthogonal OBF with more than N t transmit beams can be exploited to serve more users simultaneously and further decreases scheduling delay. However, the inter-beam interference will inevitably deteriorate the sum-rate. Therefore, there is a tradeoff between the sum-rate and the increasing number of transmit beams. In this context, the sum-rate of non-orthogonal OBF with N > N t beams are studied, where the transmitter is based on the Grassmannian beamforming. Our results show that non-orthogonal OBF is an interference-limited system. Moreover, when the inter-beam interference reaches its minimum for fixed N t and N, the sum-rate scales as N ln (N/N-N t) and it decreases monotonically with N for fixed N t. Numerical results corroborate the accuracy of our analyses. © 2011 IEEE.

  6. Phase transition in the non-degenerate Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1976-01-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  7. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    was observed. When the membrane-forming temperature was higher than the cloud point, membranes with a bi-continuous structure were acquired and showed a higher pure water permeation flux than that of membranes prepared with the non-solvent induced phase separation (NIPS) process. The pure water permeation flux...... and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process....

  8. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  9. Engineering reliability in design phase: An application to AP-600 reactor passive safety system

    International Nuclear Information System (INIS)

    Majumdr, D.; Siahpush, A.S.; Hills, S.W.

    1992-01-01

    A computerized reliability enhancement methodology is described that can be used at the engineering design phase to help the designer achieve a desired reliability of the system. It can take into account the limitation imposed by a constraint such as budget, space, or weight. If the desired reliability of the system is known, it can determine the minimum reliabilities of the components, or how many redundant components are needed to achieve the desired reliability. This methodology is applied to examine the Automatic Depressurization System (ADS) of the new passively safe AP-600 reactor. The safety goal of a nuclear reactor dictates a certain reliability level of its components. It is found that a series parallel valve configuration instead of the parallel-series configuration of the four valves in one stage would improve the reliability of the ADS. Other valve characteristics and arrangements are explored to examine different reliability options for the system

  10. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    Science.gov (United States)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  11. Aerospace Systems Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  12. Certain aspects of determining reserves of static stability of electricity systems in a minimum mode

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Popovic, D

    1982-01-01

    Results are described from analyzing static stability of the minimum modes for needs of planning electricity systems of Serbia (Socialist Federated Republic of Yugoslovia) up to 1985 with regard for development of the power transmission line network 400 kV, and introduction of turbogenerators of high output. Studies were made of the institute ''Nikola Tesla'' using computers for a digital computer using a mathematical model of multiple-machine electricity systems.

  13. Periodic orbits and non-integrability of Henon-Heiles systems

    International Nuclear Information System (INIS)

    Llibre, Jaume; Jimenez-Lara, Lidia

    2011-01-01

    We apply the averaging theory of second order to study the periodic orbits for a generalized Henon-Heiles system with two parameters, which contains the classical Henon-Heiles system. Two main results are shown. The first result provides sufficient conditions on the two parameters of these generalized systems, which guarantee that at any positive energy level, the Hamiltonian system has periodic orbits. These periodic orbits form in the whole phase space a continuous family of periodic orbits parameterized by the energy. The second result shows that for the non-integrable Henon-Heiles systems in the sense of Liouville-Arnol'd, which have the periodic orbits analytically found with averaging theory, cannot exist any second first integral of class C 1 . In particular, for any second first integral of class C 1 , we prove that the classical Henon-Heiles system and many generalizations of it are not integrable in the sense of Liouville-Arnol'd. Moreover, the tools we use for studying the periodic orbits and the non-Liouville-Arnol'd integrability can be applied to Hamiltonian systems with an arbitrary number of degrees of freedom.

  14. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    Science.gov (United States)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  15. Setting a minimum age for juvenile justice jurisdiction in California.

    Science.gov (United States)

    S Barnert, Elizabeth; S Abrams, Laura; Maxson, Cheryl; Gase, Lauren; Soung, Patricia; Carroll, Paul; Bath, Eraka

    2017-03-13

    Purpose Despite the existence of minimum age laws for juvenile justice jurisdiction in 18 US states, California has no explicit law that protects children (i.e. youth less than 12 years old) from being processed in the juvenile justice system. In the absence of a minimum age law, California lags behind other states and international practice and standards. The paper aims to discuss these issues. Design/methodology/approach In this policy brief, academics across the University of California campuses examine current evidence, theory, and policy related to the minimum age of juvenile justice jurisdiction. Findings Existing evidence suggests that children lack the cognitive maturity to comprehend or benefit from formal juvenile justice processing, and diverting children from the system altogether is likely to be more beneficial for the child and for public safety. Research limitations/implications Based on current evidence and theory, the authors argue that minimum age legislation that protects children from contact with the juvenile justice system and treats them as children in need of services and support, rather than as delinquents or criminals, is an important policy goal for California and for other national and international jurisdictions lacking a minimum age law. Originality/value California has no law specifying a minimum age for juvenile justice jurisdiction, meaning that young children of any age can be processed in the juvenile justice system. This policy brief provides a rationale for a minimum age law in California and other states and jurisdictions without one.

  16. A Survey of Phase Change Memory Systems

    Institute of Scientific and Technical Information of China (English)

    夏飞; 蒋德钧; 熊劲; 孙凝晖

    2015-01-01

    As the scaling of applications increases, the demand of main memory capacity increases in order to serve large working set. It is difficult for DRAM (dynamic random access memory) based memory system to satisfy the memory capacity requirement due to its limited scalability and high energy consumption. Compared to DRAM, PCM (phase change memory) has better scalability, lower energy leakage, and non-volatility. PCM memory systems have become a hot topic of academic and industrial research. However, PCM technology has the following three drawbacks: long write latency, limited write endurance, and high write energy, which raises challenges to its adoption in practice. This paper surveys architectural research work to optimize PCM memory systems. First, this paper introduces the background of PCM. Then, it surveys research efforts on PCM memory systems in performance optimization, lifetime improving, and energy saving in detail, respectively. This paper also compares and summarizes these techniques from multiple dimensions. Finally, it concludes these optimization techniques and discusses possible research directions of PCM memory systems in future.

  17. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  18. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  19. Sound dispersion in a spin-1 Ising system near the second-order phase transition point

    International Nuclear Information System (INIS)

    Erdem, Ryza; Keskin, Mustafa

    2003-01-01

    Sound dispersion relation is derived for a spin-1 Ising system and its behaviour near the second-order phase transition point or the critical point is analyzed. The method used is a combination of molecular field approximation and Onsager theory of irreversible thermodynamics. If we assume a linear coupling of sound wave with the order parameter fluctuations in the system, we find that the dispersion which is the relative sound velocity change with frequency behaves as ω 0 ε 0 , where ω is the sound frequency and ε the temperature distance from the critical point. In the ordered region, one also observes a frequency-dependent velocity or dispersion minimum which is shifted from the corresponding attenuation maxima. These phenomena are in good agreement with the calculations of sound velocity in other magnetic systems such as magnetic metals, magnetic insulators, and magnetic semiconductors

  20. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    SAROFIM, A F; LISAUSKAS, R; RILEY, D; EDDINGS, E G; BROUWER, J; KLEWICKI, J P; DAVIS, K A; BOCKELIE, M J; HEAP, M P; PERSHING, D

    1998-01-01

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers,"in-furnace NOx control," which includes: staged low-NOx burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of "in-furnace" NOx control, processes. 2) To devise new, or improve existing, approaches for maximum "in-furnace" NOx control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NOx burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NOx burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NOx burners. 3 Determine the limits on NO control by in-furnace NOx control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NOx burners and coal reburning systems. 6 Modify the char burnout model in REI's coal

  1. Minimum airflow reset of single-duct VAV terminal boxes

    Science.gov (United States)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and

  2. 25 CFR 547.12 - What are the minimum technical standards for downloading on a Class II gaming system?

    Science.gov (United States)

    2010-04-01

    ... on a Class II gaming system? 547.12 Section 547.12 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM TECHNICAL STANDARDS FOR GAMING EQUIPMENT USED WITH THE PLAY... gaming system? This section provides standards for downloading on a Class II gaming system. (a) Downloads...

  3. Channel Equalization and Phase Estimation for Reduced-Guard-Interval CO-OFDM Systems

    Science.gov (United States)

    Zhuge, Qunbi

    Reduced-guard-interval (RGI) coherent optical (CO) orthogonal frequency-division multiplexing (OFDM) is a potential candidate for next generation 100G beyond optical transports, attributed to its advantages such as high spectral efficiency and high tolerance to optical channel impairments. First of all, we review the coherent optical systems with an emphasis on CO-OFDM systems as well as the optical channel impairments and the general digital signal processing techniques to combat them. This work focuses on the channel equalization and phase estimation of RGI CO-OFDM systems. We first propose a novel equalization scheme based on the equalization structure of RGI CO-OFDM to reduce the cyclic prefix overhead to zero. Then we show that intra-channel nonlinearities should be considered when designing the training symbols for channel estimation. Afterwards, we propose and analyze the phenomenon of dispersion-enhanced phase noise (DEPN) caused by the interaction between the laser phase noise and the chromatic dispersion in RGI CO-OFDM transmissions. DEPN induces a non-negligible performance degradation and limits the tolerant laser linewidth. However, it can be compensated by the grouped maximum-likelihood phase estimation proposed in this work.

  4. Recent Immigrants as Labor Market Arbitrageurs: Evidence from the Minimum Wage*

    Science.gov (United States)

    Cadena, Brian C.

    2014-01-01

    This paper investigates the local labor supply effects of changes to the minimum wage by examining the response of low-skilled immigrants’ location decisions. Canonical models emphasize the importance of labor mobility when evaluating the employment effects of the minimum wage; yet few studies address this outcome directly. Low-skilled immigrant populations shift toward labor markets with stagnant minimum wages, and this result is robust to a number of alternative interpretations. This mobility provides behavior-based evidence in favor of a non-trivial negative employment effect of the minimum wage. Further, it reduces the estimated demand elasticity using teens; employment losses among native teens are substantially larger in states that have historically attracted few immigrant residents. PMID:24999288

  5. Recent Immigrants as Labor Market Arbitrageurs: Evidence from the Minimum Wage.

    Science.gov (United States)

    Cadena, Brian C

    2014-03-01

    This paper investigates the local labor supply effects of changes to the minimum wage by examining the response of low-skilled immigrants' location decisions. Canonical models emphasize the importance of labor mobility when evaluating the employment effects of the minimum wage; yet few studies address this outcome directly. Low-skilled immigrant populations shift toward labor markets with stagnant minimum wages, and this result is robust to a number of alternative interpretations. This mobility provides behavior-based evidence in favor of a non-trivial negative employment effect of the minimum wage. Further, it reduces the estimated demand elasticity using teens; employment losses among native teens are substantially larger in states that have historically attracted few immigrant residents.

  6. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  7. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)

  8. Determination of Minimum Air Clearances for a 420kV Novel Unibody Composite Cross-Arm

    DEFF Research Database (Denmark)

    Jahangiri, Tohid; Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2015-01-01

    One of the most important requirements of any overhead line tower is determining the air clearances between live parts and earthed parts such as phase conductor and tower structure. In contrast to traditional steel lattice towers, the recently introduced fully composite pylon is completely made....... This paper presents the insulation coordination studies to determine minimum required air clearances on the unibody cross-arm. The procedure and relevant equations to calculate minimum air clearances to avoid flashover between phases’ conductors as well as top phase conductor and shield wire are based...

  9. Influence of magnetic dipole and magnetoelastic interactions on the phase states of 2D non-Heisenberg ferromagnetic with complex exchange interactions

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Matunin, D.A.; Klevets, Ph.N.; Kosmachev, O.A.

    2009-01-01

    The phase states of the 2D non-Heisenberg ferromagnetic with anisotropic bilinear and biquadratic exchange interactions are investigated. The limiting cases of the system under consideration are the two-dimensional XY-model with biquadratic exchange interaction and the isotropic Heisenberg ferromagnetic. The account of the magnetic dipole interaction leads to the realization of spatially inhomogeneous quadrupolar phase. The stability regions of various phase transitions for different values of the material parameters are studied. The phase diagram is built. Besides, the temperature phase transitions are investigated. The influence of the magnetoelastic interaction on the formation of the long-range quadrupolar order is determined.

  10. Additional mailing phase for FIT after a medical offer phase: The best way to improve compliance with colorectal cancer screening in France.

    Science.gov (United States)

    Piette, Christine; Durand, Gérard; Bretagne, Jean-François; Faivre, Jean

    2017-03-01

    Compliance with colorectal cancer screening is critical to its effectiveness. The organisation of the mass screening programme in France has recently been modified with no evaluation of the consequences. To evaluate the impact of the way the screening test is delivered on compliance. During the first six months of the screening campaign (Ille-Vilaine, Brittany), general practitioners were asked to propose a faecal immunochemical test (FIT), OC-Sensor, to individuals at average risk for colorectal cancer (n=152,097). A subset of non-participants in the medical phase (n=13,071) was randomly chosen to receive a reminder that included the screening test or a simple postal reminder without the screening test. Compliance was 31% if the screening test was proposed during a medical consultation. In non-participants during the medical phase, it was 45% in those receiving both a reminder and the screening test and 28% amongst those receiving a simple reminder. An estimated overall participation rate of 54% can be expected if non-participants in the medical phase are sent a reminder together with the screening test. In France, a compliance rate above the minimum uptake rate of 45% recommended by European Union experts can be achieved if the FIT is mailed to non-participants after the medical free-offer phase. Copyright © 2016. Published by Elsevier Ltd.

  11. Flow Convergence Caused by a Salinity Minimum in a Tidal Channel

    Directory of Open Access Journals (Sweden)

    John C. Warner

    2006-12-01

    Full Text Available Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1 A simple one-dimensional (1D finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2 A three-dimensional (3D hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3 A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to

  12. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  13. The CEBAF fiber optic phase reference system

    International Nuclear Information System (INIS)

    Crawford, K.; Simrock, S.; Hovater, C.; Krycuk, A.

    1995-01-01

    The specified phase stability of the CEBAF RF distribution system is 2.9 degree rms per linac. Stability is achieved through the use of a temperature and pressure regulated coaxial drive line. Purpose of the fiber optic phase reference system is to monitor the relative phase at the beginning and ending of this drive line, between linacs, injector and separator to determine drift due to ambient temperature fluctuations. The system utilizes an Ortel 1310 nm single mode laser driving Sumitumo optical fiber to distribute a reference signal at 1497 MHz. Phase of this reference signal is compared to the 1427 MHz (LO) and the 70 MHz (IF) via a 360 degree phase detector. The detected information is then routed to the CEBAF control system for display with a specified resolution of ±0.2 degree over a 20 degree phase delta

  14. A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems

    International Nuclear Information System (INIS)

    Dittrich, R.; Schrefl, T.; Suess, D.; Scholz, W.; Forster, H.; Fidler, J.

    2002-01-01

    Minimum energy paths and energy barriers are calculated for complex micromagnetic systems. The method is based on the nudged elastic band method and uses finite-element techniques to represent granular structures. The method was found to be robust and fast for both simple test problems as well as for large systems such as patterned granular media. The method is used to estimate the energy barriers in CoCr-based perpendicular recording media

  15. Entransy in phase-change systems

    CERN Document Server

    Gu, Junjie

    2014-01-01

    Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.

  16. Development of Non-safety System Architecture and Evaluation of Components/Systems

    International Nuclear Information System (INIS)

    Oh, I. S.; Lee, C. K.; Kim, D. H.; Lee, J. W.; Lee, D. Y.; Park, W. M.; Hwang, I. K.; Hur, S.; Kim, J. T.; Park, J. C.; Lee, J. W.

    2007-10-01

    We describe in this report the works performed for a technical evaluation of the non-safety digital control system of the KNICS, the non-safety process control system of the KNICS, a communication load analysis for the MMIS (including both the non-safety and the safety systems) of the KNICS, the development of MMI and an implementation of the logic for the CVCS, and the works performed to support writing a proposal needed for bidding an I and C system based on the KNICS. The technical evaluation results were aimed to be used by the designers to detect parts needed to be corrected or to be newly inserted, and also by the developers during the development phase. The requirement specifications and the data requirement characteristics have been identified for each subsystem of the determined KNICS structure. For each communication node, the specifications related to the data transfer including the data capacity for interfaces, delay time for the data transfer, and the marginal availability of its performance capabilities have been analyzed to identify the amount of data transfer and hence to verify that both of the designed structures for the safety related communications network and for the digital communications network are appropriate. The results of the supporting work performed for writing the technical specifications related to each subsystem of the KNICS structure, are expected to be useful in writing a proposal for the expected Uljin new units 1 and 2, and in the I and C upgrade for any of the existing nuclear power plants under operation. Also included in this report are the descriptions on a design of the chemical volume control system (CVCS), on the supporting work performed to draw the logic diagrams for CVCS using the tool ISaGRAF, and on the generation of a set of system displays to be used as references

  17. Development of Non-safety System Architecture and Evaluation of Components/Systems

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I. S.; Lee, C. K.; Kim, D. H.; Lee, J. W.; Lee, D. Y.; Park, W. M.; Hwang, I. K.; Hur, S.; Kim, J. T.; Park, J. C.; Lee, J. W

    2007-10-15

    We describe in this report the works performed for a technical evaluation of the non-safety digital control system of the KNICS, the non-safety process control system of the KNICS, a communication load analysis for the MMIS (including both the non-safety and the safety systems) of the KNICS, the development of MMI and an implementation of the logic for the CVCS, and the works performed to support writing a proposal needed for bidding an I and C system based on the KNICS. The technical evaluation results were aimed to be used by the designers to detect parts needed to be corrected or to be newly inserted, and also by the developers during the development phase. The requirement specifications and the data requirement characteristics have been identified for each subsystem of the determined KNICS structure. For each communication node, the specifications related to the data transfer including the data capacity for interfaces, delay time for the data transfer, and the marginal availability of its performance capabilities have been analyzed to identify the amount of data transfer and hence to verify that both of the designed structures for the safety related communications network and for the digital communications network are appropriate. The results of the supporting work performed for writing the technical specifications related to each subsystem of the KNICS structure, are expected to be useful in writing a proposal for the expected Uljin new units 1 and 2, and in the I and C upgrade for any of the existing nuclear power plants under operation. Also included in this report are the descriptions on a design of the chemical volume control system (CVCS), on the supporting work performed to draw the logic diagrams for CVCS using the tool ISaGRAF, and on the generation of a set of system displays to be used as references.

  18. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  19. Setting a minimum age for juvenile justice jurisdiction in California

    Science.gov (United States)

    Barnert, Elizabeth S.; Abrams, Laura S.; Maxson, Cheryl; Gase, Lauren; Soung, Patricia; Carroll, Paul; Bath, Eraka

    2018-01-01

    Purpose Despite the existence of minimum age laws for juvenile justice jurisdiction in 18 US states, California has no explicit law that protects children (i.e. youth less than 12 years old) from being processed in the juvenile justice system. In the absence of a minimum age law, California lags behind other states and international practice and standards. The paper aims to discuss these issues. Design/methodology/approach In this policy brief, academics across the University of California campuses examine current evidence, theory, and policy related to the minimum age of juvenile justice jurisdiction. Findings Existing evidence suggests that children lack the cognitive maturity to comprehend or benefit from formal juvenile justice processing, and diverting children from the system altogether is likely to be more beneficial for the child and for public safety. Research limitations/implications Based on current evidence and theory, the authors argue that minimum age legislation that protects children from contact with the juvenile justice system and treats them as children in need of services and support, rather than as delinquents or criminals, is an important policy goal for California and for other national and international jurisdictions lacking a minimum age law. Originality/value California has no law specifying a minimum age for juvenile justice jurisdiction, meaning that young children of any age can be processed in the juvenile justice system. This policy brief provides a rationale for a minimum age law in California and other states and jurisdictions without one. Paper type Conceptual paper PMID:28299968

  20. Analytical phase diagrams for colloids and non-adsorbing polymer

    NARCIS (Netherlands)

    Fleer, G.J.; Tuinier, R.

    2008-01-01

    We review the free-volume theory (FVT) of Lekkerkerker et al. [Europhys. Lett. 20 (1992) 5591 for the phase behavior of colloids in the presence of non-adsorbing polymer and we extend this theory in several aspects: (i) We take the solvent into account as a separate component and show that the

  1. Meson phase space density from interferometry

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    1993-01-01

    The interferometric analysis of meson correlations a measure of the average phase space density of the mesons in the final state. The quantity is a useful indicator of the statistical properties of the systems, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects

  2. On some derived compounds of fluorides of Cerium III or IV: defined compounds and non stoichiometric phases

    International Nuclear Information System (INIS)

    Besse, Jean-Pierre

    1968-01-01

    This research study addresses the study of rare earth fluorides. It reports the preparation and study of new fluoro-cerates (IV) in order to complete the set of already known compounds (ammonium fluoro-cerate, and alkaline earth compounds), the study of binary CeF 3 binary systems, monovalent and divalent fluorides, and CeF 3 -NF 2 -N'F ternary systems, and the study of non stoichiometric phases in CeF 3 oxides, sulphides and selenides [fr

  3. Deterministic quantum controlled-PHASE gates based on non-Markovian environments

    Science.gov (United States)

    Zhang, Rui; Chen, Tian; Wang, Xiang-Bin

    2017-12-01

    We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.

  4. Nursing Minimum Data Set Based on EHR Archetypes Approach.

    Science.gov (United States)

    Spigolon, Dandara N; Moro, Cláudia M C

    2012-01-01

    The establishment of a Nursing Minimum Data Set (NMDS) can facilitate the use of health information systems. The adoption of these sets and represent them based on archetypes are a way of developing and support health systems. The objective of this paper is to describe the definition of a minimum data set for nursing in endometriosis represent with archetypes. The study was divided into two steps: Defining the Nursing Minimum Data Set to endometriosis, and Development archetypes related to the NMDS. The nursing data set to endometriosis was represented in the form of archetype, using the whole perception of the evaluation item, organs and senses. This form of representation is an important tool for semantic interoperability and knowledge representation for health information systems.

  5. On the Performance Analysis of Digital Communication Systems Perturbed by Non-Gaussian Noise and Interference

    KAUST Repository

    Soury, Hamza

    2016-06-29

    The Gaussian distribution is typically used to model the additive noise affecting communication systems. However, in many cases the noise cannot be modeled by a Gaussian distribution. In this thesis, we investigate the performance of different communication systems perturbed by non-Gaussian noise. Three families of noise are considered in this work, namely the generalized Gaussian noise, the Laplace noise/interference, and the impulsive noise that is modeled by an α-stable distribution. More specifically, in the first part of this thesis, the impact of an additive generalized Gaussian noise is studied by computing the average symbol error rate (SER) of one dimensional and two dimensional constellations in fading environment. We begin by the simple case of two symbols, i.e. binary phase shift keying (BPSK) constellation. From the results of this constellation, we extended the work to the average SER of an M pulse amplitude modulation (PAM). The first 2 − D constellation is the M quadrature amplitude modulation (QAM) (studied for two geometric shapes, namely square and rectangular), which is the combination of two orthogonal PAM signals (in-phase and quadrature phase PAM). In the second part, the system performance of a circular constellation, namely M phase shift keying (MPSK) is studied in conjunction with a Laplace noise with independent noise components. A closed form and an asymptotic expansion of the SER are derived for two detectors, maximum likelihood and minimum distance detectors. Next, we look at the intra cell interference of a full duplex cellular network which is shown to follow a Laplacian distribution with dependent, but uncorrelated, complex components. The densities of that interference are expressed in a closed form in order to obtain the SER of several communication systems (BPSK, PAM, QAM, and MPSK). Finally, we study the statistics of the α-stable distribution. Those statistics are expressed in closed form in terms of the Fox H function and

  6. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  7. Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

    2011-06-01

    Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The

  8. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    International Nuclear Information System (INIS)

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-01-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280 degrees C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data

  9. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D.W.H. [Univ. of British Columbia (Canada); Abdelmessih, A.H. [Univ. of Toronto, Ontario (Canada)

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  10. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  11. A method for determining optimum phasing of a multiphase propulsion system for a single-stage vehicle with linearized inert weight

    Science.gov (United States)

    Martin, J. A.

    1974-01-01

    A general analytical treatment is presented of a single-stage vehicle with multiple propulsion phases. A closed-form solution for the cost and for the performance and a derivation of the optimal phasing of the propulsion are included. Linearized variations in the inert weight elements are included, and the function to be minimized can be selected. The derivation of optimal phasing results in a set of nonlinear algebraic equations for optimal fuel volumes, for which a solution method is outlined. Three specific example cases are analyzed: minimum gross lift-off weight, minimum inert weight, and a minimized general function for a two-phase vehicle. The results for the two-phase vehicle are applied to the dual-fuel rocket. Comparisons with single-fuel vehicles indicate that dual-fuel vehicles can have lower inert weight either by development of a dual-fuel engine or by parallel burning of separate engines from lift-off.

  12. IDC Re-Engineering Phase 2 System Specification Document Version 1.5

    Energy Technology Data Exchange (ETDEWEB)

    Satpathi, Meara Allena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burns, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Re-Engineering Phase 2 project. This System Specification Document (SSD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data but does include requirements for the dissemination of radionuclide data and products.

  13. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  14. Central nervous system complications in non-Hodgkin-lymphomas and radiotherapy

    International Nuclear Information System (INIS)

    Liffers, R.

    1981-01-01

    261 case historys of malignant non-Hodgkin-lymphomas were analysed in the years from 1969 until 1978 in the 'Radiologische Universitaetsklinik Kiel'/West-Germany. 18 Patients got a central nervous complication of Non Hodgkin-Lymphoma earlier or later, a percentage of about 7. There were 7 cases of lymphoblastic lymphoma (LB), a percentage of 10 for this entity. In the group of immunoblastic lymphoma (IB) 6 cases of central nervous infiltration were detected, that is a ratio of 7.7 percent. 4 case histories M. Brill-Symmers (CC/CB) were complicated by central nervous dissemination, a percentage of 5.3. Patients with lymphoblastic lymphoma have the highest risk of central nervous complication. The beginning of central nervous dissemination in the single case histories is very different between the histological groups. Patients with lymphoblastic lymphoma suffered from central nervous complication in an early phase of history, in cases of M. Brill-Symmers central nervous infiltration can occur also in a late phase. The results may determine the discussion about stratifying of radiotherapy. Early radiotherapy including central nervous system may be discussed and investigated in special histological entities of malignant non-Hodgkin-lymphoma. (orig.) [de

  15. Reaction phases and diffusion paths in SiC/metal systems

    Energy Technology Data Exchange (ETDEWEB)

    Naka, M.; Fukai, T. [Osaka Univ., Osaka (Japan); Schuster, J.C. [Vienna Univ., Vienna (Austria)

    2004-07-01

    The interface structures between SiC and metal are reviewed at SiC/metal systems. Metal groups are divided to carbide forming metals and non-carbide forming metals. Carbide forming metals form metal carbide granular or zone at metal side, and metal silicide zone at SiC side. The further diffusion of Si and C from SiC causes the formation of T ternary phase depending metal. Non-carbide forming metals form silicide zone containing graphite or the layered structure of metal silicide and metal silicide containing graphite. The diffusion path between SiC and metal are formed along tie-lines connecting SiC and metal on the corresponding ternary Si-C-M system. The reactivity of metals is dominated by the forming ability of carbide or silicide. Te reactivity tendency of elements are discussed on the periodical table of elements, and Ti among elements shows the highest reactivity among carbide forming metals. For non-carbide forming metals the reactivity sequence of metals is Fe>Ni>Co. (orig.)

  16. Silk fibroin gelation via non-solvent induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Hawkins, N.; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, F.

    2016-01-01

    Roč. 4, č. 3 (2016), s. 460-473 ISSN 2047-4830 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : silk fibroin * non-solvent induced phase separation * desolvation Subject RIV: CE - Biochemistry Impact factor: 4.210, year: 2016

  17. Respiratory functions in asthmatic and normal women during different phases of menstrual cycle

    International Nuclear Information System (INIS)

    Arora, D.B.; Sandhu, P.K.; Dhillon, S.; Arora, A.

    2015-01-01

    Menstrual cycle is an integral part of life of women. There is widespread agreement that changes in the levels of oestrogen and progesterone associated with menstrual cycle also affect different systems of the body besides reproductive system. Levels of oestrogen and progesterone are maximum in the secretory phase and minimum just before the menstruation .Bronchial asthma is one of the commonest chronic respiratory diseases. Premenstrual worsening of asthma symptoms has been reported to affect 33-40% of asthmatic women. This exacerbation of asthma symptoms has been correlated with the oestrogen and progesterone levels. The association between menstrual cycle and lung functions in normal females has also been recognised. The pathophysiology of this process is still not proved. The purpose of our study was to confirm the probable effects of the female hormones on lung functions in normal and asthmatic women in different phases of menstrual cycle and to compare them. Methods: The study was done on 40 normal and 40 asthmatic females in the age group of 15-45 years. Pulmonary function tests were done in three phases of menstrual cycle i.e. follicular, secretory and menstrual in all the subjects. Results: The mean value of lung functions, i.e., FVC, FEV, PEFR, FEF25-75%, FEF 200-1200 were significantly lower in asthmatic females than normal ones (p<0.01) in all three phases. The lung functions of both asthmatic and non-asthmatic females in secretory phase were significantly higher than in menstrual phase (p<0.005). The PFTs in menstrual phase were even lower than the follicular phase (p<0.04). Conclusion: Respiratory parameters of both asthmatic and non-asthmatic women in reproductive age group show significant variation in different phases of menstrual cycle. The smooth muscle relaxant effect of progesterone and probably oestrogen might have contributed to it. The lung function parameters in asthmatics were of lower value compared to normal women. (author)

  18. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    Science.gov (United States)

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility ( 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of convergence with penlight and red filter, difference between distance and near

  19. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  20. Thermal equilibrium during the electroweak phase transition

    International Nuclear Information System (INIS)

    Tetradis, N.

    1991-12-01

    The effective potential for the standard model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This is also imposes constraints on extensions of the standard model constructed in order to generate a strongly first order phase transition. (orig.)

  1. UBV photometry of dwarf novae in the brightness minimum

    International Nuclear Information System (INIS)

    Voloshina, I.B.; Lyutyj, V.M.

    1983-01-01

    Photoelectric one-night observations of the dwarf novae SS Cyg at minimum light evidence for the existence of eclipses in this system at the moments of conjuctions. The orbital inclination of the system is estimated to be i approximately 70 deg C. The components of this system are low-massive (white and red dwarf stars) and low-luminous objects. As the optical luminosity of the dwarf novae at the minimum light is dependent on the accretion disk and hot spot at its periphery, where the substance jet run out from a nondegenerated component falls, eclipses should be associated with the disk and hot spot. The white dwarf star contributes greatly to the luminosity at the minimum light, but its eclipses are possible only at i approximately 90 deg

  2. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  3. Freeform optics: a non-contact "test plate" for manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this NASA SBIR Phase I study is to determine the feasibility of measuring precision (fractional wave) freeform optics using non-contact areal (imaging)...

  4. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  5. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  6. The impact of the minimum wage on the wage distribution: Evidence from Turkey

    OpenAIRE

    Pelek, Selin

    2013-01-01

    In this paper, we investigate the effect of the minimum wage on the entire wage distribution. More specifically, we address the issue of wage inequality by taking into account the potential distributional outcomes of the minimum wage legislation. We decompose the wage differences and the changes in the wage inequality before and after the sizeable minimum wage increase in 2004 following the methodology introduced by DiNardo, Fortin and Lemieux (1996). We use a non-parametric reweighting appro...

  7. Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient

    Energy Technology Data Exchange (ETDEWEB)

    Danon, R.

    1958-12-15

    After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.

  8. Performance Improvement of Space Shift Keying MIMO Systems with Orthogonal Codebook-Based Phase-Rotation Precoding

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Ansi

    2017-01-01

    Full Text Available This paper considers codebook-based precoding for Space Shift Keying (SSK modulation MIMO system. Codebook-based precoding avoids the necessity for full knowledge of Channel State Information (CSI at the transmitter and alleviates the complexity of generating a CSI-optimized precoder. The receiver selects the codeword that maximizes the Minimum Euclidean Distance (MED of the received constellation and feeds back its index to the transmitter. In this paper, we first develop a new accurate closed-form Bit Error Rate (BER for SSK without precoding. Then, we investigate several phase-rotation codebooks with quantized set of phases and systematic structure. Namely, we investigate the Full-Combination, Walsh-Hadamard, Quasi-Orthogonal Sequences, and Orthogonal Array Testing codebooks. In addition, since the size of the Full-Combination codebook may be large, we develop an iterative search method for fast selection of its best codeword. The proposed codebooks significantly improve the BER performance in Rayleigh and Nakagami fading channels, even at high spatial correlation among transmit antennas and CSI estimation error. Moreover, we show that only four phases {+1,+j,-1,-j} are sufficient and further phase granularity does yield significant gain. This avoids hardware multiplication during searching the codebook and applying the codeword.

  9. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  10. Phase tracking system for ultra narrow bandwidth applications

    NARCIS (Netherlands)

    Hill, M.T.; Cantoni, A.

    2002-01-01

    Recent advances make it possible to mitigate a number of drawbacks of conventional phase locked loops. These advances permit the design of phase tracking systems with much improved characteristics that are sought after in modern communication system applications. A new phase tracking system is

  11. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  12. Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation); Eskin, D.G. [Netherlands Institute for Metals Research, Rotterdamseweg 137, 2628AL Delft (Netherlands)]. E-mail: deskin@nimr.nl; Avxentieva, N.N. [Moscow Institute of Steel and Alloys, Leninsky prosp. 4, Moscow 119049 (Russian Federation)

    2005-10-15

    The evaluation of phase equilibria in quinary systems that constitute the commercially important Al-Cu-Fe-Mg-Ni-Si alloying system is performed in the compositional range of casting alloys by means of metallography, electron probe microanalysis, X-ray diffractometry, differential scanning calorimetry, and by the analysis of phase equilibria in the constituent systems of lesser dimensionality. Suggested phase equilibria are illustrated by bi-, mono- and invariant solidification reactions, polythermal diagrams of solidification, distributions of phase fields in the solid state, and isothermal and polythermal sections. Phase composition of as-cast alloys is analyzed in terms of non-equilibrium solidification. It is shown that the increase in copper concentration in piston Al-Si alloys results in the decrease in the equilibrium solidus from 540 to 505 deg C. Under non-equilibrium solidification conditions, piston alloys finish solidification at {approx}505 deg C. Iron is bound in the quaternary Al{sub 8}FeMg{sub 3}Si{sub 6} phase in low-iron alloys and in the ternary Al{sub 9}FeNi and Al{sub 5}FeSi phases in high-iron alloys.

  13. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  14. Phase unwrapping in digital holography based on non-subsampled contourlet transform

    Science.gov (United States)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-01-01

    In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.

  15. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  16. Replication Variance Estimation under Two-phase Sampling in the Presence of Non-response

    Directory of Open Access Journals (Sweden)

    Muqaddas Javed

    2014-09-01

    Full Text Available Kim and Yu (2011 discussed replication variance estimator for two-phase stratified sampling. In this paper estimators for mean have been proposed in two-phase stratified sampling for different situation of existence of non-response at first phase and second phase. The expressions of variances of these estimators have been derived. Furthermore, replication-based jackknife variance estimators of these variances have also been derived. Simulation study has been conducted to investigate the performance of the suggested estimators.

  17. Field aligned current study during the solar declining- extreme minimum of 23 solar cycle

    Science.gov (United States)

    Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam

    Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.

  18. Advances in simulating non-congruent phase transitions of hyperstoichiometric uranium dioxide fuel

    International Nuclear Information System (INIS)

    Welland, M.J.; Thompson, W.T.; Lewis, B.J.

    2007-01-01

    A model is being developed to simulate UO 2 at very high temperatures incorporating the effects of non-congruent phase transitions. In particular, the melting transformation and the possible 'Λ-transition' is being investigated to help support the design and analysis of experimental work being conducted as part of nuclear safety research. This work includes the interpretation of the behaviour of operating CANDU fuel under upset conditions, where centerline melting may potentially occur (particularly if the fuel is oxidized). The model presented here numerically solves a system of coupled nonlinear differential equations as derived from fundamental principles. The results of the model present here compare well against laser flash experiments in recently published literature. (author)

  19. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    Science.gov (United States)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  20. Non-equilibrium physics at a holographic chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nick; Kim, Keun-young [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Kavli Institute for Theoretical Physics China, Beijing (China); Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  1. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  2. Double exchange model on triangular lattice: Non-coplanar spin configuration and phase transition near quarter filling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: bugubird_zhang@hotmail.com [Department of Physics, Renmin University of China, Beijing 100872 (China); Zhang, Jian [3M Company, 3M Corporate Headquarters, 3M Center, St. Paul, MN 55144-1000 (United States); Zhang, Qi-Li [Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Zhou, Jiang-Tao [College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Shangguan, M.H. [Department of Physics, Renmin University of China, Beijing 100872 (China)

    2013-05-15

    Unconventional anomalous Hall effect in frustrated pyrochlore oxides is originated from spin chirality of non-coplanar localized spins, which can also be induced by the competition between ferromagnetic (FM) double exchange interaction J{sub H} and antiferromagnetic superexchange interaction J{sub AF}. Here truncated polynomial expansion method and Monte Carlo simulation are adopted to investigate the above model on two-dimensional triangular lattice. We discuss the influence of the range of FM-type spin–spin correlation and strong electron–spin correlation on the truncation error of spin–spin correlation near quarter filling. Two peaks of the probability distribution of spin–spin correlation in non-coplanar spin configuration clearly show that non-coplanar spin configuration is an intermediate phase between FM and 120° spin phase. Near quarter filling, there is a phase transition from FM into non-coplanar and further into 120° spin phase when J{sub AF} continually increases. Finally the effect of temperature on the magnetic structure is discussed.

  3. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  4. Beam-transport study of an isocentric rotating ion gantry with minimum number of quadrupoles

    International Nuclear Information System (INIS)

    Pavlovic, Marius; Griesmayer, Erich; Seemann, Rolf

    2005-01-01

    A beam-transport study of an isocentric gantry for ion therapy is presented. The gantry is designed with the number of quadrupoles down to the theoretical minimum, which is the feature published for the first time in this paper. This feature has been achieved without compromising the ion-optical functions of the beam-transport system that is capable of handling non-symmetric beams (beams with different emittances in vertical and horizontal plane), pencil-beam scanning, double-achromatic optics and beam-size control. Ion-optical properties of the beam-transport system are described, discussed and illustrated by computer simulations performed by the TRANSPORT-code

  5. Berry phase in entangled systems

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Hasegawa, Y.; Hiesmayr, B.C.; Durstberger, C.

    2005-01-01

    Full text: The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the 'spin-echo' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a CHSH-Bell inequality. Furthermore, we suggest an experimental realization of our setup within neutron interferometry. It is possible to create entanglement between different degrees of freedom (spin and spatial degree of freedom) for a single neutron. The influence of the geometrical phase on the entangled neutron state is tested experimentally which is work in progress. (author)

  6. Etude theorique des phases de densite inhomogene dans les systemes a effet Hall quantique

    OpenAIRE

    GOERBIG , Mark Oliver

    2004-01-01

    Thèse en cotutelle : Fribourg et Paris-Sud XI; The issue of this thesis is the study of the different electron-solid and quantum-liquid phases, which are found in two-dimensional electron systems under a perpendicular magnetic field. The formation of these phases is due to the strong Coulomb repulsion between the electrons of a partially filled Landau level. The energy calculations of the thesis allow one to understand recent experimental investigations, which have revealed a non-monotonic be...

  7. Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)

    International Nuclear Information System (INIS)

    Grosse, H.; Kuehnelt, H.

    1981-01-01

    The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)

  8. Measurement of Minimum Bias Observables with the ATLAS detector

    CERN Document Server

    Kvita, Jiri; The ATLAS collaboration

    2017-01-01

    The modelling of Minimum Bias (MB) is a crucial ingredient to learn about the description of soft QCD processes. It has also a significant relevance for the simulation of the environment at the LHC with many concurrent pp interactions (“pileup”). The ATLAS collaboration has provided new measurements of the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center of mass energies of 8 TeV and 13 TeV. The measurements cover a wide spectrum using charged particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities.

  9. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...... that resembles biological processes. In particular we study a network of Winfree oscillators, for which we present a statistical analysis of various simulated networks, where we conclude on the coupling structure: the direction of feedback in the phase processes and proportional coupling strength between...... individual components of the system. We show that we can correctly classify the network structure for such a system by cointegration analysis, for various types of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a set of EEG recordings and discuss the current...

  10. Comparative evaluation of 2.3 mm locking plate system vs conventional 2.0 mm non locking plate system for mandibular condyle fracture fixation: a seven year retrospective study.

    Science.gov (United States)

    Zhang, J; Wang, X; Wu, R-H; Zhuang, Q-W; Gu, Q P; Meng, J

    2015-01-01

    This retrospective study evaluated the efficacy of a 2.3 mm locking plate/screw system compared with a 2.0-mm non-locking plate/screw system in fixation of isolated non comminuted mandibular condyle fractures. Surgical records of 101 patients who received either a 2.3 mm locking plate (group A, n = 51) or 2.0 mm non locking plate (group B, n = 50) were analyzed. All patients were followed up to a minimum of 6 months postoperatively and evaluated for hardware related complications, occlusal stability, need for and duration of MMF and mandibular functional results. Four complications occurred in the locking group and eighteen in the non locking group with complication rates equalling 8% and 36% respectively. When comparing the overall results according to plates used, the χ2 test showed a statistically significant difference between the locking and non locking plates (p Mandibular condyle fractures treated with a 2.3 mm locking plate exhibited stable osteosynthesis, were associated with minimal complications and resulted in acceptable mandibular range of motion compared with a 2.0 mm non locking plate.

  11. Control system design for the constellation acquisition phase of the LISA mission

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, Francesca; Gath, Peter F, E-mail: francesca.cirillo@astrium.eads.ne, E-mail: peter.gath@astrium.eads.ne [Astrium GmbH Satellites, 88039 Friedrichshafen (Germany)

    2009-03-01

    The objective of the constellation acquisition phase for the LISA mission is to establish the three laser links between the three spacecraft of the LISA constellation so that the interferometric measurements for the science experiment can commence. The laser beam acquisition for LISA is extremely challenging given the 5 million km distance between the spacecraft, the inherent limits of the attitude sensors accuracy, the orbit determination accuracy issues and the time required to phase-lock the incoming and outgoing laser signals. This paper presents the design of the control system for the acquisition phase of the LISA constellation: the acquisition operational procedure is outlined, guidance laws are defined together with the Gyro Mode attitude control principle, which implements a Kalman filter for disturbances rejection purposes. Constellation-wide non-linear simulations demonstrate that the LISA constellation acquisition phase is feasible by means of the proposed control strategy.

  12. Control system design for the constellation acquisition phase of the LISA mission

    International Nuclear Information System (INIS)

    Cirillo, Francesca; Gath, Peter F

    2009-01-01

    The objective of the constellation acquisition phase for the LISA mission is to establish the three laser links between the three spacecraft of the LISA constellation so that the interferometric measurements for the science experiment can commence. The laser beam acquisition for LISA is extremely challenging given the 5 million km distance between the spacecraft, the inherent limits of the attitude sensors accuracy, the orbit determination accuracy issues and the time required to phase-lock the incoming and outgoing laser signals. This paper presents the design of the control system for the acquisition phase of the LISA constellation: the acquisition operational procedure is outlined, guidance laws are defined together with the Gyro Mode attitude control principle, which implements a Kalman filter for disturbances rejection purposes. Constellation-wide non-linear simulations demonstrate that the LISA constellation acquisition phase is feasible by means of the proposed control strategy.

  13. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  14. Pressurized fluidized bed combustion second-generation system research and development. Technical progress for Phase 2 and Phase 3, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, A.; Horazak, D.; Newby, R.; Rehmat, A.; White, J.

    1998-10-01

    When DOE funds were exhausted in March 1995, all Phase 2 activities were placed on hold. In February 1996 a detailed cost estimate was submitted to the DOE for completing the two remaining Phase 2 Multi Annular Swirl Burner (MASB) topping combustor test burns; in August 1996 release was received from METC to proceed with these tests. The first test (Test Campaign No.3) will be conducted to: (1) test the MASB at proposed demonstration plant full to minimum loading operating conditions; (2) identify the lower oxygen limit of the MASB; and (3) demonstrate natural gas to carbonizer fuel gas switching. The Livingston Phase 3 Pilot Plant was last operated under contract DE-AC21-86MC21023 in September 1995 for seven days in an integrated carbonizer-CPFBC configuration. In May, 1996, the pilot plant was transferred to Contract DE-AC22-95PC95143 to allow testing in support of the High Performance Power Systems (HIPPS) Program. The HIPPS Program required modifications to the pilot plant and the following changes were incorporated: (1) installation of a dense phase transport system for loading pulverized coal into the feed system lock hopper directly from a pneumatic transport truck; (2) removal of the char transfer pipe between the char collecting hopper and the CPFBC to allow carbonizer only operation; (3) installation of a lock hopper directly under the char collecting hopper to facilitate char removal from the process, the hopper vent gases exhaust to the carbonizer baghouse filter and the depressured char is transferred via nitrogen to the CPFBC baghouse for dumping into drums; (4) removal of the carbonizer cyclone and top of bed overflow drain line; all material elutriated from the carbonizer bed will thus be removed by the 22-element Westinghouse ceramic candle filter; (5) replacement of the carbonizer continuous bottom bed drain (screw feeder) with a batch-type drain removal system; and (6) installation of a mass spectrometer that draws sample gas via a steam jacketed

  15. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  16. Modeling minimum temperature using adaptive neuro-fuzzy inference system based on spectral analysis of climate indices: A case study in Iran

    Directory of Open Access Journals (Sweden)

    Hojatollah Daneshmand

    2015-01-01

    Full Text Available Nowadays, a lot of attention is paid to the application of intelligent systems in predicting natural phenomena. Artificial neural network systems, fuzzy logic, and adaptive neuro-fuzzy inference are used in this field. Daily minimum temperature of the meteorology station of the city of Mashhad, in northeast of Iran, in a 42-year statistical period, 1966-2008, has been received from the Iranian meteorological organization. Adaptive neuro-fuzzy inference system is used for modeling and forecasting the monthly minimum temperature. To find appropriate inputs, three approaches, i.e. spectral analysis, correlation coefficient, and the knowledge of experts,are used. By applying fast Fourier transform to the parameter of monthly minimum temperature and climate indices, and by using correlation coefficient and the knowledge of experts, 3 indices, Nino 1 + 2, NP, and PNA, are selected as model inputs. A hybrid training algorithm is used to train the system. According to simulation results, a correlation coefficient of 0.987 between the observed values and the predicted values, as well as amean absolute percentage deviations of 27.6% indicate an acceptable estimation of the model.

  17. Fault Estimation for Fuzzy Delay Systems: A Minimum Norm Least Squares Solution Approach.

    Science.gov (United States)

    Huang, Sheng-Juan; Yang, Guang-Hong

    2017-09-01

    This paper mainly focuses on the problem of fault estimation for a class of Takagi-Sugeno fuzzy systems with state delays. A minimum norm least squares solution (MNLSS) approach is first introduced to establish a fault estimation compensator, which is able to optimize the fault estimator. Compared with most of the existing fault estimation methods, the MNLSS-based fault estimation method can effectively decrease the effect of state errors on the accuracy of fault estimation. Finally, three examples are given to illustrate the effectiveness and merits of the proposed method.

  18. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  19. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  20. Nonlinear observer based phase synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Meng Juan; Wang Xingyuan

    2007-01-01

    This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme

  1. Two-Phase Microfluidic Systems for High Throughput Quantification of Agglutination Assays

    KAUST Repository

    Castro, David

    2018-04-01

    Lab-on-Chip, the miniaturization of the chemical and analytical lab, is an endeavor that seems to come out of science fiction yet is slowly becoming a reality. It is a multidisciplinary field that combines different areas of science and engineering. Within these areas, microfluidics is a specialized field that deals with the behavior, control and manipulation of small volumes of fluids. Agglutination assays are rapid, single-step, low-cost immunoassays that use microspheres to detect a wide variety molecules and pathogens by using a specific antigen-antibody interaction. Agglutination assays are particularly suitable for the miniaturization and automation that two-phase microfluidics can offer, a combination that can help tackle the ever pressing need of high-throughput screening for blood banks, epidemiology, food banks diagnosis of infectious diseases. In this thesis, we present a two-phase microfluidic system capable of incubating and quantifying agglutination assays. The microfluidic channel is a simple fabrication solution, using laboratory tubing. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5-10 fold improvement over traditional agglutination assays. It has a user-friendly interface that that does not require droplet generators, in which a pipette is used to continuously insert assays on-demand, with no down-time in between experiments at 360 assays/h. System parameters are explored, using the streptavidin-biotin interaction as a model assay, with a minimum detection limit of 50 ng/mL using optical image analysis. We compare optical image analysis and light scattering as quantification methods, and demonstrate the first light scattering quantification of agglutination assays in a two-phase ow format. The application can be potentially applied to other biomarkers, which we demonstrate using C-reactive protein (CRP) assays. Using our system, we can take a commercially available CRP qualitative slide

  2. Quantum phase transitions in multi-impurity and lattice Kondo systems

    International Nuclear Information System (INIS)

    Nejati, Ammar

    2017-01-01

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  3. Quantum phase transitions in multi-impurity and lattice Kondo systems

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, Ammar

    2017-01-16

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  4. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  5. Orbit Determination for a Microsatellite Rendezvous with a Non-Cooperative Target

    National Research Council Canada - National Science Library

    Foster, Brian

    2003-01-01

    This study investigated the minimum requirements to establish a satellite tracking system architecture for a hostile "parasitic microsatellite" to rendezvous with a larger, non-cooperative target satellite...

  6. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  7. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    Science.gov (United States)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  8. Modelling Ecosystem Dynamics of the Oxygen Minimum Zones in the Angola Gyre and the Northern Benguela Upwelling System.

    Science.gov (United States)

    Schmidt, M.; Eggert, A.

    2016-02-01

    The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by

  9. Analysis and Design of Launch Vehicle Flight Control Systems

    Science.gov (United States)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  10. THE 2003 -2007 MINIMUM, MAXIMUM AND MEDIUM DISCHARGE ANALYSIS OF THE LATORIŢA-LOTRU WATER SYSTEM

    Directory of Open Access Journals (Sweden)

    Simona-Elena MIHĂESCU

    2010-06-01

    Full Text Available The 2003 -2007 minimum, maximum and medium discharge analysis of the Latoriţa-Lotru water system From a functional point of view, the Lotru and Latoriţa make up a water system by the junction of the two high hydro energetic potential water flows. The Lotru springs from the Parâng Massif with a spring quota of over 1900m and an outfall quota of 298m, which makes for an altitude difference of 1602m; it is the affluent of the Olt River, has a course length of 76 km and a minimum discharge of 20m3/s. Its reception hollow is of 1024 km2. Latoriţa springs from the Latoriţa Mountains, it is a small river with an average discharge of 2.7m3/s and is an affluent of the Lotru. Together, the two make up a high hydro energetic potential system, valorized in the system of lakes which serve the Ciunget Hydro-Electric Power Plant. Galbenu and Petrimanu are two reservoirs built on the Latoriţa River and on the Lotru, we have Vidra reservoir, Balindru, Mălaia and Brădişor. The discharge analysis of these rivers is very important in view of a good risk management, especially consisting in floods and high level waters, even in the case of artificial water flows such as the Latoriţa-Lotru water system.

  11. Software development minimum guidance system. Algorithm and specifications of realizing special hardware processor data prefilter program

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Govorun, N.N.; Tkhang, T.L.; Shigaev, V.N.

    1982-01-01

    Software development minimum guidance system for measuring pictures of bubble chamber on the base of a scanner (HPD) and special hardware processor (SHP) is described. The algorithm of selective filter is proposed. The local software structure and functional specifications of its major parts are described. Some examples of processing picture from HBC-1 (JINR) are also presented

  12. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  13. Analysis of the interplay of quantum phases and nonlinearity applied to dimers with anharmonic interactions

    International Nuclear Information System (INIS)

    Raghavan, S.

    1997-06-01

    We extend our analysis of the effects of the interplay of quantum phases and nonlinearity to address saturation effects in small quantum systems. We find that initial phases dramatically control the dependence of self-trapping on initial asymmetry of quasiparticle population and can compete or act with nonlinearity as well as saturation effects. We find that there is a minimum finite saturation value in order to obtain self-trapping that crucially depends on the initial quasiparticle phases and present a detailed phase-diagram in terms of the control parameters of the system: nonlinearity and saturation. (author). 14 refs, 3 figs

  14. Associations between minimum wage policy and access to health care: evidence from the Behavioral Risk Factor Surveillance System, 1996-2007.

    Science.gov (United States)

    McCarrier, Kelly P; Zimmerman, Frederick J; Ralston, James D; Martin, Diane P

    2011-02-01

    We examined whether minimum wage policy is associated with access to medical care among low-skilled workers in the United States. We used multilevel logistic regression to analyze a data set consisting of individual-level indicators of uninsurance and unmet medical need from the Behavioral Risk Factor Surveillance System and state-level ecological controls from the US Census, Bureau of Labor Statistics, and several other sources in all 50 states and the District of Columbia between 1996 and 2007. Higher state-level minimum wage rates were associated with significantly reduced odds of reporting unmet medical need after control for the ecological covariates, substate region fixed effects, and individual demographic and health characteristics (odds ratio = 0.853; 95% confidence interval = 0.750, 0.971). Minimum wage rates were not significantly associated with being uninsured. Higher minimum wages may be associated with a reduced likelihood of experiencing unmet medical need among low-skilled workers, and do not appear to be associated with uninsurance. These findings appear to refute the suggestion that minimum wage laws have detrimental effects on access to health care, as opponents of the policies have suggested.

  15. Radiommunoassay for triiodothyronine in serum. Development of the solid phase technic and comparison with two liquid phase RIA systems: the polyethylene glycol (PEG) and double antibody methods

    International Nuclear Information System (INIS)

    Hamada, M.M.

    1985-01-01

    A solid phase radioimmunoassay (RIA) system for triiodothyronine (T 3 ) was established by immobilizing triiodothyronine antibodies on the inner wall of reaction tubes. The antibody-coated tubes were made via reaction of antibody with glutaraldeyde residue pre coated on the inner wall of the tubes by alkaline self-polimerization. The quality of the coated tubes was tested through its performance in RIA methodology, by analysing the following RIA parameters: minimum detectable dose (MMD), nonspecific binding (NSB), X 50%, slope of the standard curve, intra and inter assay precision, accuracy of the method and figure of merit. The quality and characteristics of the reagents used in the RIA were analysed. (M.A.C.) [pt

  16. Applications of the automatic ultrasonic testing system ALOK combined with a phased array system

    International Nuclear Information System (INIS)

    Stanger, H.K.; Kappes, W.; Licht, R.; Bohn, H.; Barbian, O.A.

    1987-01-01

    The combination of the automatic testing system ALOK with a controlled probe in the form of a phased array device is a possibility to meet the high requirements on the test method with regard to the statements of the test as well as the requirements on the reduction of operation and preparation times. The system's applications are not limited to the testing of reactors in nuclear technology (basic tests and recurring tests of the RPV and other primary circuit components); they are also of great importance in the non-nuclear sector e.g. the testing of pipelines, of reactors in the chemical field and of offshore structures as well as tests of components in the field of production. The modularity of the system permits an adaptation to the particular testing task with the possibility of using different manipulation and hardware systems. (orig./DG) [de

  17. A phase one AR/C system design

    Science.gov (United States)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  18. Experimental Study of Nonlinear Phase Noise and its Impact on WDM Systems with DP-256QAM

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson

    2016-01-01

    A probabilistic method for mitigating the phase noise component of the non-linear interference in WDM systems with Raman amplification is experimentally demonstrated. The achieved gains increase with distance and are comparable to the gains of single-channel digital back-propagation....

  19. Risk control and the minimum significant risk

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    Risk management implies that the risk manager can, by his actions, exercise at least a modicum of control over the risk in question. In the terminology of control theory, a management action is a control signal imposed as feedback on the system to bring about a desired change in the state of the system. In the terminology of risk management, an action is taken to bring a predicted risk to lower values. Even if it is assumed that the management action taken is 100% effective and that the projected risk reduction is infinitely well known, there is a lower limit to the desired effects that can be achieved. It is based on the fact that all risks, such as the incidence of cancer, exhibit a degree of variability due to a number of extraneous factors such as age at exposure, sex, location, and some lifestyle parameters such as smoking or the consumption of alcohol. If the control signal is much smaller than the variability of the risk, the signal is lost in the noise and control is lost. This defines a minimum controllable risk based on the variability of the risk over the population considered. This quantity is the counterpart of the minimum significant risk which is defined by the uncertainties of the risk model. Both the minimum controllable risk and the minimum significant risk are evaluated for radiation carcinogenesis and are shown to be of the same order of magnitude. For a realistic management action, the assumptions of perfectly effective action and perfect model prediction made above have to be dropped, resulting in an effective minimum controllable risk which is determined by both risk limits. Any action below that effective limit is futile, but it is also unethical due to the ethical requirement of doing more good than harm. Finally, some implications of the effective minimum controllable risk on the use of the ALARA principle and on the evaluation of remedial action goals are presented

  20. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  1. Differential rotation of the Sun and the Maunder minimum of solar activity

    International Nuclear Information System (INIS)

    Ikhsanov, R.N.; Vitinskij, Yu.I.

    1980-01-01

    Nature of differential rotation of the Sun is discussed. Investigation of long term changes in differential rotation separately for two phase of 11 year cycle of the Sun activity is carried out. Data on heliographic coordinates for every day of all groups of the Sun spots for the years preceding the epoch of the minimum of the 11 year cycle and the Sun groups for the years of maximum from ''Greenwich Photoheliographic Results'' for 1875-1954 are used as initial material. It is shown that differential rotation of the Sun changes in time from one 11 year cycle of the Sun activity to another. This change is connected with the power of 11 year cycle. During the maximum phase of 11 year cycle differentiality of the rotation increases in the cycles where the cycle maximum is higher. Before the minimum of 11 year cycle rotation differentiability is lower in the cycles for which activity maximum is higher in the next 11 year cycle. Equatorial rate of the Sun rotation increases with the decrease in the cycle power when the maximum Wolf number is less than 110. The mentioned regularities took place both during Maunder minimum and before its beginning [ru

  2. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2007-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  3. Do Minimum Wages Fight Poverty?

    OpenAIRE

    David Neumark; William Wascher

    1997-01-01

    The primary goal of a national minimum wage floor is to raise the incomes of poor or near-poor families with members in the work force. However, estimates of employment effects of minimum wages tell us little about whether minimum wages are can achieve this goal; even if the disemployment effects of minimum wages are modest, minimum wage increases could result in net income losses for poor families. We present evidence on the effects of minimum wages on family incomes from matched March CPS s...

  4. On the stability of non-linear systems; Sur la stabilite des systemes non-lineaires

    Energy Technology Data Exchange (ETDEWEB)

    Guelman, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, services scientifiques

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [French] Dans ce travail, on etudie la stabilite absolue des systemes non lineaires utilisant la deuxieme methode de Liapounov en tenant compte des resultats acquis a partir des travaux de V.M. Popov. On fait d'abord un expose des resultats deja etablis, en particulier en ce qui concerne les criteres frequentiels de stabilite absolue pour le cas d'un systeme de commande automatique comportant une seule non linearite. On a prolonge ces resultats jusqu'a l'etablissement de l'existence d'une parabole limite. On fait ensuite une nouvelle utilisation des methodes etudiees, etablissant des criteres de stabilite absolue pour un systeme comportant un type different de non linearite. On etudie enfin les resultats obtenus, dans l'optique de la conjecture de Aizerman. (auteur)

  5. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  6. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  7. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  8. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  9. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

    CERN Document Server

    Lerner, Nicolas

    2010-01-01

    This book is devoted to the study of pseudo-differential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for nonselfadjoint operators. The first chapter is introductory and gives a presentation of classical classes of pseudo-differential operators. The second chapter is dealing with the general notion of metrics on the phase space. We expose some elements of the so-called Wick calculus and introduce g

  10. Minimum Bias Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00022031; The ATLAS collaboration

    2016-01-01

    Inclusive charged particle measurements at hadron colliders probe the low-energy nonperturbative region of QCD. Pseudorapidity distributions of charged-particles produced in pp collisions at 13 TeV have been measured by the CMS experiment. The ATLAS collaboration has measured the inclusive charged particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam current, recorded at a center-of-mass energy of 13 TeV. The measurements present the first detailed studies in inclusive phase spaces with a minimum transverse momentum of 100 MeV and 500 MeV. The distribution of electromagnetic and hadronic energy in the very forward phase-space has been measured with the CASTOR calorimeters located at a pseudorapidity of -5.2 to -6.6 in the very forward region of CMS. The energy distributions are very powerful benchmarks to study the performance of MPI in hadronic interactions models at 13 TeV collision energy. All measurements are compared with predictions of ...

  11. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  12. Microprobe measurements to determine phase boundaries and diffusion paths in ternary phase diagrams taking a Cu-Ni-Al system as an example

    International Nuclear Information System (INIS)

    Rudolph, G.

    1983-01-01

    With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)

  13. Development of phase lock loop system for synchronisation of a ...

    African Journals Online (AJOL)

    Phase locked loop (PLL) is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD) does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF) PLL method to obtain accurate phase information when ...

  14. Non linear photons: a non singular cosmological solution

    International Nuclear Information System (INIS)

    Alves, G.A.

    1986-01-01

    The validity of equivalence principle as principle of minimum coupling between field interactions, is discussed. The non minimum coupling between vector field and gravitational field, and some consequences of this coupling are analysed. Starting from spherical symmetry metric, the coupled field equations, obtaining exact solutions and interpreting these solutions, are solved. (M.C.K.) [pt

  15. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  16. Quality control of radiation counting systems and measurement of minimum detectable activity

    International Nuclear Information System (INIS)

    Song, Byoung Chul; Han, Sung Sim; Kim, Young Bok; Jee, Kwang Yong; Sohn, Se Chul

    2004-01-01

    Various radiation counters have been using to determine radioactivity of radwastes for disposal. A radiation counting system was set up using a radiation detector chosen in this study and its stability was investigated through the periodic determination of background and counting efficiencies in accordance with a quality control program to increase the confidence level. The average background level for the γ-spectrometer was 1.59 cps and the average counting level for the standard sample was 45248 dps within 20 confidence levels. The average alpha background level for the low background α/β counting system was 0.31 cpm and the efficiency for alpha counting was 34.38 %. The average beta background level for the α/β counting system was 1.30 cpm and the efficiency for beta counting was 46.5%. The background level in the region of 3H and 14C for the liquid scintillation counting system was 2.52 and 3.31 cpm and the efficiency for alpha counting was 58.5 and 95.6%, respectively. The minimum detectable activity for the γ-spectrometer was found to be 3.2 Bq/mL and 3.8 Bq/mL for the liquid scintillation counter, and 20.5 and 23.0 Bq/mL, respectively for the α and β counting system

  17. Phase synchronization of non-Abelian oscillators on small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Ming [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhao, Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: zhutou@ustc.edu; Zhu, Chen-Ping [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Bing-Hong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2007-02-26

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.

  18. Phase synchronization of non-Abelian oscillators on small-world networks

    International Nuclear Information System (INIS)

    Gu, Zhi-Ming; Zhao, Ming; Zhou, Tao; Zhu, Chen-Ping; Wang, Bing-Hong

    2007-01-01

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems

  19. Subjective well-being and minimum wages: Evidence from U.S. states.

    Science.gov (United States)

    Kuroki, Masanori

    2018-02-01

    This paper investigates whether increases in minimum wages are associated with higher life satisfaction by using monthly-level state minimum wages and individual-level data from the 2005-2010 Behavioral Risk Factor Surveillance System. The magnitude I find suggests that a 10% increase in the minimum wage is associated with a 0.03-point increase in life satisfaction for workers without a high school diploma, on a 4-point scale. Contrary to popular belief that higher minimum wages hurt business owners, I find little evidence that higher minimum wages lead to the loss of well-being among self-employed people. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.

  1. Phase and amplitude control system for Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Yoo, S.J.

    1983-01-01

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  2. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  3. Geometric Phases for Mixed States in Trapped Ions

    International Nuclear Information System (INIS)

    Lu Hongxia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover, special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  4. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  5. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  6. Using the minimum principle for the Helmholtz free energy in the analysis of the equilibria of a van der Waals fluid

    International Nuclear Information System (INIS)

    Ascoli, Sergio; Malvestuto, Vincenzo

    2004-01-01

    For a fluid system, obeying a state equation of the van der Waals type, the gas and the liquid phases can coexist in equilibrium, at a given temperature, only if the volume of the system is kept fixed. Thus, in order to study the two-phase equilibria of a fluid system, it seemed quite natural to choose the molar volume as the independent variable, and, consequently, the Helmholtz free energy as the proper thermodynamic potential for the application of the minimum principle. Specific computations are here carried out for a single van der Waals fluid, namely, pure water at 300 0 C. As a result, the present treatment indicates a simple and effective way to identify the whole range of molar volumes where the equilibrium preferred by the system is a two-phase equilibrium. This range results to be wider than the interval of strict instability of the van der Waals isotherm. Finally, it is pointed out that all the results, obtained here for the van der Waals state equation, can be extended to all the state equations of the same type

  7. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  8. System For Characterizing Three-Phase Brushless dc Motors

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1996-01-01

    System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.

  9. Asymptotic behaviour of the scattering phase for non-trapping metrics

    International Nuclear Information System (INIS)

    Popov, G.S.

    1982-01-01

    The asymptotic behaviour of the scattering phase is considered at infinity for an elliptic, self-adjoint, second order differential operator H, defined either in Rsup(n) or in an unbounded domain Ω contains Rsup(n) with Dirichlet or Neumann boundary conditions. The operator H has the form H=- δsub(g)+hD+V where δsub(g) is the Laplace-Beltrami operator related to a Riemann metric g in anti Ω. Provided a non-trapping hypothesis is fulfilled and H coincides with the Laplace operator δ in a neighbourhood of infinity, an asymptotic development of the scattering phase s(lambda) is obtained for lambda → infinity. The first coefficients in this development are found

  10. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations; Sur la stabilite, les solutions periodiques et la resolution de certaines categories d'equations et systemes d'equations differentielles couplees non lineaires apparaissant dans les oscillations betatroniques

    Energy Technology Data Exchange (ETDEWEB)

    Valat, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de trouver des solutions generales. Pour les

  11. Pharmacovigilance in India, Uganda and South Africa with Reference to WHO’s Minimum Requirements

    Directory of Open Access Journals (Sweden)

    Karen Maigetter

    2015-05-01

    Full Text Available Background Pharmacovigilance (PV data are crucial for ensuring safety and effectiveness of medicines after drugs have been granted marketing approval. This paper describes the PV systems of India, Uganda and South Africa based on literature and Key Informant (KI interviews and compares them with the World Health Organization’s (WHO’s minimum PV requirements for a Functional National PV System. Methods A documentary analysis of academic literature and policy reports was undertaken to assess the medicines regulatory systems and policies in the three countries. A gap analysis from the document review indicated a need for further research in PV. KI interviews covered topics on PV: structure and practices of the system; current regulatory policy; capacity limitations, staffing, funding and training; availability and reporting of data; and awareness and usage of the systems. Twenty interviews were conducted in India, 8 in Uganda and 11 in South Africa with government officials from the ministries of health, national regulatory authorities, pharmaceutical producers, Non-Governmental Organizations (NGOs, members of professional associations and academia. The findings from the literature and KI interviews were compared with WHO’s minimum requirements. Results All three countries were confronted with similar barriers: lack of sufficient funding, limited number of trained staff, inadequate training programs, unclear roles and poor coordination of activities. Although KI interviews represented viewpoints of the respondents, the findings confirmed the documentary analysis of the literature. Although South Africa has a legal requirement for PV, we found that the three countries uniformly lacked adequate capacity to monitor medicines and evaluate risks according to the minimum standards of the WHO. Conclusion A strong PV system is an important part of the overall medicine regulatory system and reflects on the stringency and competence of the regulatory

  12. Equalization Enhanced Phase Noise in Coherent Optical Systems with Digital Pre- and Post-Processing

    Directory of Open Access Journals (Sweden)

    Aditya Kakkar

    2016-03-01

    Full Text Available We present an extensive study of equalization enhanced phase noise (EEPN in coherent optical system for all practical electronic dispersion compensation configurations. It is shown that there are only eight practicable all-electronic impairment mitigation configurations. The non-linear and time variant analysis reveals that the existence and the cause of EEPN depend on the digital signal processing (DSP schemes. There are three schemes that in principle do not cause EEPN. Analysis further reveals the statistical equivalence of the remaining five system configurations resulting in EEPN. In three of them, EEPN is due to phase noise of the transmitting laser, while in the remaining two, EEPN is caused by the local oscillator. We provide a simple look-up table for the system designer to make an informative decision regarding practicable configuration choice and design.

  13. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    Science.gov (United States)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical

  14. On the equivalence between the minimum entropy generation rate and the maximum conversion rate for a reactive system

    International Nuclear Information System (INIS)

    Bispo, Heleno; Silva, Nilton; Brito, Romildo; Manzi, João

    2013-01-01

    Highlights: • Minimum entropy generation (MEG) principle improved the reaction performance. • MEG rate and the maximum conversion equivalence have been analyzed. • Temperature and residence time are used to the domain establishment of MEG. • Satisfying the temperature and residence time relationship results a optimal performance. - Abstract: The analysis of the equivalence between the minimum entropy generation (MEG) rate and the maximum conversion rate for a reactive system is the main purpose of this paper. While being used as a strategy of optimization, the minimum entropy production was applied to the production of propylene glycol in a Continuous Stirred-Tank Reactor (CSTR) with a view to determining the best operating conditions, and under such conditions, a high conversion rate was found. The effects of the key variables and restrictions on the validity domain of MEG were investigated, which raises issues that are included within a broad discussion. The results from simulations indicate that from the chemical reaction standpoint a maximum conversion rate can be considered as equivalent to MEG. Such a result can be clearly explained by examining the classical Maxwell–Boltzmann distribution, where the molecules of the reactive system under the condition of the MEG rate present a distribution of energy with reduced dispersion resulting in a better quality of collision between molecules with a higher conversion rate

  15. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng

    2010-11-30

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid–gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid–gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid–gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamicequations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid–solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative

  16. Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

    International Nuclear Information System (INIS)

    Fairus, M A; Mohamed, Z; Ahmad, M N

    2013-01-01

    Rotary inverted pendulum (RIP) system is a nonlinear, non-minimum phase, unstable and underactuated system. Controlling such system can be a challenge and is considered a benchmark in control theory problem. Prior to designing a controller, equations that represent the behaviour of the RIP system must be developed as accurately as possible without compromising the complexity of the equations. Through Takagi-Sugeno (T-S) fuzzy modeling technique, the nonlinear system model is then transformed into several local linear time-invariant models which are then blended together to reproduce, or approximate, the nonlinear system model within local region. A parallel distributed compensation (PDC) based fuzzy controller using linear quadratic regulator (LQR) technique is designed to control the RIP system. The results show that the designed controller able to balance the RIP system

  17. Direct determination of triplet phases and enantiomorphs of non-centrosymmetric structures. Pt. 2

    International Nuclear Information System (INIS)

    Huemmer, K.; Weckert, E.; Bondza, H.

    1989-01-01

    Direct measurements of triplet phase relationships for non-centrosymmetric light-atom organic structures with medium-size unit cells are reported. The phase information can be extracted from the three-beam profiles of a Renninger ψ-scan experiment. The measurements were carried out with a special ψ-circle diffractometer installed on a rotating Cu-anode generator. The incident-beam divergence is reduced to 0.02 0 . The experimental results confirm the theoretical considerations of paper I of this work. As triplet phases of ±90 0 can be distinguished, the absolute structure can be determined unambiguously. The measurements show that the triplet-phase-dependent interference effects may be superposed on phase-independent Umweganregung or Aufhellung effects. By a comparison of the ψ-scan profiles of two centrosymmetrically related three-beam cases, the triplet phases of which have opposite signs, it is possible to evaluate the phase-independent effects and to determine the value of the triplet phase with an accuracy of at least 90 0 . (orig.)

  18. A pedestrian dead-reckoning system that considers the heel-strike and toe-off phases when using a foot-mounted IMU

    Science.gov (United States)

    Ju, Hojin; Lee, Min Su; Park, So Young; Song, Jin Woo; Park, Chan Gook

    2016-01-01

    In this paper, we propose an advanced pedestrian dead-reckoning (PDR) algorithm that considers the heel-strike and toe-off phases. Generally, PDR systems that use a foot-mounted inertial measurement unit are based on an inertial navigation system with an extended Kalman filter (EKF). To reduce the influence of the bias and white noises in the gyroscope and accelerometer signals, a zero-velocity update is often adopted at the stance phase. However, transient and large acceleration, which cannot be measured by the accelerometer used in pedestrian navigation, occur momentarily in the heel-strike phase. The velocity information from integration of the acceleration is not reliable because the acceleration is not measured in the heel-strike phase. Therefore, the designed EKF does not correctly reflect the actual environment, because conventional algorithms do not take the non-measurable acceleration into consideration. In order to reflect the actual environment, we propose a PDR system that considers the non-measurable acceleration from the heel-strike impact. To improve the PDR system’s performance, the proposed algorithm uses a new velocity measurement obtained using the constraint between the surface and the foot during the toe-off phase. The experimental results show improved filter performance after comparison of the proposed algorithm and a conventional algorithm.

  19. A pedestrian dead-reckoning system that considers the heel-strike and toe-off phases when using a foot-mounted IMU

    International Nuclear Information System (INIS)

    Ju, Hojin; Lee, Min Su; Park, So Young; Park, Chan Gook; Song, Jin Woo

    2016-01-01

    In this paper, we propose an advanced pedestrian dead-reckoning (PDR) algorithm that considers the heel-strike and toe-off phases. Generally, PDR systems that use a foot-mounted inertial measurement unit are based on an inertial navigation system with an extended Kalman filter (EKF). To reduce the influence of the bias and white noises in the gyroscope and accelerometer signals, a zero-velocity update is often adopted at the stance phase. However, transient and large acceleration, which cannot be measured by the accelerometer used in pedestrian navigation, occur momentarily in the heel-strike phase. The velocity information from integration of the acceleration is not reliable because the acceleration is not measured in the heel-strike phase. Therefore, the designed EKF does not correctly reflect the actual environment, because conventional algorithms do not take the non-measurable acceleration into consideration. In order to reflect the actual environment, we propose a PDR system that considers the non-measurable acceleration from the heel-strike impact. To improve the PDR system’s performance, the proposed algorithm uses a new velocity measurement obtained using the constraint between the surface and the foot during the toe-off phase. The experimental results show improved filter performance after comparison of the proposed algorithm and a conventional algorithm. (paper)

  20. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  1. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Science.gov (United States)

    Chung, Jong-Kyun; Jee, Geonhwa; Lee, Chi-Na

    2011-12-01

    The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13' S, longitude 58° 47' W, corrected geomagnetic latitude 48° S) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the a! nnual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  2. Global Positioning System Total Electron Content Variation over King Sejong Station in Antarctic under the Solar Minimum Condition Between 2005 and 2009

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    2011-12-01

    Full Text Available The total electron content (TEC using global positioning system (GPS is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude 62°13′ S, longitude 58° 47′ W, corrected geomagnetic latitude 48° S in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February, the seasonal mean TEC values have the maximum of 26.2 ± 2.4 TEC unit (TECU in 2005 and the minimum of 16.5 ± 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006 to 1.4 TECU (2008-2009. However, on November 2010, it significantly increases to 22.3 ± 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August, the seasonal mean TEC slightly decreases from 13.7 ± 4.5 TECU in 2005 to 8.9 ± 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 ± 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT. The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.

  3. Phase equilibria and molecular interaction studies on (naphthols + vanillin) systems

    International Nuclear Information System (INIS)

    Gupta, Preeti; Agrawal, Tanvi; Das, Shiva Saran; Singh, Nakshatra Bahadur

    2012-01-01

    Highlights: ► Phase equilibria of (naphthol + vanillin) systems have been studied for the first time. ► Eutectic type phase diagrams are obtained. ► Eutectic mixtures show nonideal behaviour. ► There is a weak molecular interaction between the components in the eutectic mixtures. ► α-Naphthol–vanillin eutectic is more stable as compared to β-naphthol–vanillin. - Abstract: Phase equilibria between (α-naphthol + vanillin) and (β-naphthol + vanillin) systems have been studied by thaw-melt method and the results show the formation of simple eutectic mixtures. Crystallization velocities of components and eutectic mixtures were determined at different stages under cooling. With the help of differential scanning calorimeter (DSC), the enthalpy of fusion of components and eutectic mixtures was determined and from the values excess thermodynamic functions viz., excess Gibbs free energy (G E ), excess entropy (S E ), excess enthalpy (H E ) of hypo-, hyper- and eutectic mixtures were calculated. Flexural strength measurements were made in order to understand the non-ideal nature of eutectics. FT-IR spectral studies indicate the formation of hydrogen bond in the eutectic mixture. Anisotropic and isotropic microstructural studies of components, hypo-, hyper- and eutectic mixtures were made. Jackson’s roughness parameter was calculated and found to be greater than 2 suggesting the faceted morphology with irregular structures. The overall results have shown that there is a weak molecular interaction between the components in the eutectic mixtures and the (α-naphthol + vanillin) eutectic is more stable as compared to the (β-naphthol + vanillin) eutectic system.

  4. External non-white noise and nonequilibrium phase transitions

    International Nuclear Information System (INIS)

    Sancho, J.M.; San Miguel, M.

    1980-01-01

    Langevin equations with external non-white noise are considered. A Fokker Planck equation valid in general in first order of the correlation time tau of the noise is derived. In some cases its validity can be extended to any value of tau. The effect of a finite tau in the nonequilibrium phase transitions induced by the noise is analyzed, by means of such Fokker Planck equation, in general, for the Verhulst equation under two different kind of fluctuations, and for a genetic model. It is shown that new transitions can appear and that the threshold value of the parameter can be changed. (orig.)

  5. Investigation and thermodynamic calculation of phase diagram of CdI2-PbI2-NaI system

    International Nuclear Information System (INIS)

    Storonkin, A.V.; Vasil'kova, I.V.; Korobkov, S.V.

    1976-01-01

    Using the thermographic and X-ray phase analyses binary CdI 2 -PbI 2 , PI 2 -NaI, CdI 2 -NaI systems and a triple CdI 2 -PbI 2 -NaI system are investigated and their melting diagrams are plotted. A method of thermodynamic calculation has been proposed and tested of the shape of the eutectic lines for the system CdI 2 -PbI 2 -NaI, taking into account the non-ideality of the liquid phase. The method uses data obtained for the binary systems. The liquidus surface of the triple system has been constructed on the basis of the calculation. The results of the calculation of the triple eutectics are in good agreement with the experimental data

  6. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  7. Development of a Minimum Data Set (MDS) for C-Section Anesthesia Information Management System (AIMS).

    Science.gov (United States)

    Sheykhotayefeh, Mostafa; Safdari, Reza; Ghazisaeedi, Marjan; Khademi, Seyed Hossein; Seyed Farajolah, Seyedeh Sedigheh; Maserat, Elham; Jebraeily, Mohamad; Torabi, Vahid

    2017-04-01

    Caesarean section, also known as C-section, is a very common procedure in the world. Minimum data set (MDS) is defined as a set of data elements holding information regarding a series of target entities to provide a basis for planning, management, and performance evaluation. MDS has found a great use in health care information systems. Also, it can be considered as a basis for medical information management and has shown a great potential for contributing to the provision of high quality care and disease control measures. The principal aim of this research was to determine MDS and required capabilities for Anesthesia information management system (AIMS) in C-section in Iran. Data items collected from several selected AIMS were studied to establish an initial set of data. The population of this study composed of 115 anesthesiologists was asked to review the proposed data elements and score them in order of importance by using a five-point Likert scale. The items scored as important or highly important by at least 75% of the experts were included in the final list of minimum data set. Overall 8 classes of data (consisted of 81 key data elements) were determined as final set. Also, the most important required capabilities were related to airway management and hypertension and hypotension management. In the development of information system (IS) based on MDS and identification, because of the broad involvement of users, IS capabilities must focus on the users' needs to form a successful system. Therefore, it is essential to assess MDS watchfully by considering the planned uses of data. Also, IS should have essential capabilities to meet the needs of its users.

  8. Towards a mathematical foundation of minimum-variance theory

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom); Zhang Kewei [SMS, Sussex University, Brighton (United Kingdom); Wei Gang [Mathematical Department, Baptist University, Hong Kong (China)

    2002-08-30

    The minimum-variance theory which accounts for arm and eye movements with noise signal inputs was proposed by Harris and Wolpert (1998 Nature 394 780-4). Here we present a detailed theoretical analysis of the theory and analytical solutions of the theory are obtained. Furthermore, we propose a new version of the minimum-variance theory, which is more realistic for a biological system. For the new version we show numerically that the variance is considerably reduced. (author)

  9. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  10. Detailed design report for an operational phase panel-closure system

    International Nuclear Information System (INIS)

    1996-01-01

    Under contract to Westinghouse Electric Corporation (Westinghouse), Waste Isolation Division (WID), IT Corporation has prepared a detailed design of a panel-closure system for the Waste Isolation Pilot Plant (WIPP). Preparation of this detailed design of an operational-phase closure system is required to support a Resource Conservation and Recovery Act (RCRA) Part B permit application and a non-migration variance petition. This report describes the detailed design for a panel-closure system specific to the WIPP site. The recommended panel-closure system will adequately isolate the waste-emplacement panels for at least 35 years. This report provides detailed design and material engineering specifications for the construction, emplacement, and interface-grouting associated with a panel-closure system at the WIPP repository, which would ensure that an effective panel-closure system is in place for at least 35 years. The panel-closure system provides assurance that the limit for the migration of volatile organic compounds (VOC) will be met at the point of compliance, the WIPP site boundary. This assurance is obtained through the inherent flexibility of the panel-closure system

  11. Generalized ward identities for non-local transformation

    International Nuclear Information System (INIS)

    Li Ziping; Li Ruijie

    2002-01-01

    Based on the phase-space generating functional of Green function for a system with a singular higher-order Lagrangian, the generalized canonical Ward identities under the local and non-local transformation in phase space for such a system have been derived. Starting from the configuration-space generating functional for a gauge-invariant system, the generalized Ward identities were deduced under the local, non-local and global transformation, respectively. The applications to the non-Abelian Chern-Simons theories with higher derivatives were given. Some relationships among the proper vertices have been deduced, in which one does not need to carry out the integration over canonical momenta in phase-space generating functional. The Ward-Takahashi identities for BRS transformation are also obtained

  12. Associations Between Minimum Wage Policy and Access to Health Care: Evidence From the Behavioral Risk Factor Surveillance System, 1996–2007

    Science.gov (United States)

    Zimmerman, Frederick J.; Ralston, James D.; Martin, Diane P.

    2011-01-01

    Objectives. We examined whether minimum wage policy is associated with access to medical care among low-skilled workers in the United States. Methods. We used multilevel logistic regression to analyze a data set consisting of individual-level indicators of uninsurance and unmet medical need from the Behavioral Risk Factor Surveillance System and state-level ecological controls from the US Census, Bureau of Labor Statistics, and several other sources in all 50 states and the District of Columbia between 1996 and 2007. Results. Higher state-level minimum wage rates were associated with significantly reduced odds of reporting unmet medical need after control for the ecological covariates, substate region fixed effects, and individual demographic and health characteristics (odds ratio = 0.853; 95% confidence interval = 0.750, 0.971). Minimum wage rates were not significantly associated with being uninsured. Conclusions. Higher minimum wages may be associated with a reduced likelihood of experiencing unmet medical need among low-skilled workers, and do not appear to be associated with uninsurance. These findings appear to refute the suggestion that minimum wage laws have detrimental effects on access to health care, as opponents of the policies have suggested. PMID:21164102

  13. Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways

    Science.gov (United States)

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-01-01

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. PMID:25589789

  14. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  15. Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model

    International Nuclear Information System (INIS)

    Lee, Moon Soo; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard; Jeong, Hee-Moon

    2016-01-01

    Highlights: • Empirical mass transfer coefficient correlation is built based on Weber number. • Developed model is validated in terms of the e and DP. • A set of Pareto solutions is obtained from MOGA based OAAO method. • DP is improved up to 10,379 Pa with the same e of the baseline. • e is enhanced up to 0.782 with the same DP of the baseline case. - Abstract: A vapor compression cycle, which is typically utilized for the heat pump, air conditioning and refrigeration systems, has inherent thermodynamic losses associated with expansion and compression processes. To minimize these losses and improve the energy efficiency of the vapor compression cycle, an ejector can be applied. However, due to the occurrence of complex physics i.e., non-equilibrium flashing compressible flow in the nozzle with possible shock interactions, it has not been feasible to model or optimize the design of a two-phase ejector. In this study, a homogeneous, non-equilibrium, two-phase flow computational fluid dynamics (CFD) model in a commercial code is used with an in-house empirical correlation for the mass transfer coefficient and real gas properties to perform a geometric optimization of a two-phase ejector. The model is first validated with experimental data of an ejector with R600a as the working fluid. After that, the design parameters of the ejector are optimized using multi-objective genetic algorithm (MOGA) based online approximation-assisted optimization (OAAO) approaches to find the maximum performance.

  16. Phase diagrams of high-order critical phenomene and high-temperature equilibria in the H2O-HgI2-PbI2 system

    International Nuclear Information System (INIS)

    Valyashko, V.M.; Urusova, M.A.

    1996-01-01

    The paper studies the principal schemes of complete state diagram of volatile component-two non-volatile components three-component system with tricritical point and sequence of phase transformations at variation of temperature, pressure and composition of mixture. H 2 O-HgI 2 -PbI 2 system, solid phase dissolving process, stratification of solutions and critical phenomena under 200-400 deg C are studied experimentally. General nature of the system phase diagram and parameters of three-phase equilibrium critical point (tricritical point), that is, gas-liquid 1 -liquid 2 are determined. 17 refs., 8 figs., 3 tabs

  17. Design for minimum energy in interstellar communication

    Science.gov (United States)

    Messerschmitt, David G.

    2015-02-01

    Microwave digital communication at interstellar distances is the foundation of extraterrestrial civilization (SETI and METI) communication of information-bearing signals. Large distances demand large transmitted power and/or large antennas, while the propagation is transparent over a wide bandwidth. Recognizing a fundamental tradeoff, reduced energy delivered to the receiver at the expense of wide bandwidth (the opposite of terrestrial objectives) is advantageous. Wide bandwidth also results in simpler design and implementation, allowing circumvention of dispersion and scattering arising in the interstellar medium and motion effects and obviating any related processing. The minimum energy delivered to the receiver per bit of information is determined by cosmic microwave background alone. By mapping a single bit onto a carrier burst, the Morse code invented for the telegraph in 1836 comes closer to this minimum energy than approaches used in modern terrestrial radio. Rather than the terrestrial approach of adding phases and amplitudes increases information capacity while minimizing bandwidth, adding multiple time-frequency locations for carrier bursts increases capacity while minimizing energy per information bit. The resulting location code is simple and yet can approach the minimum energy as bandwidth is expanded. It is consistent with easy discovery, since carrier bursts are energetic and straightforward modifications to post-detection pattern recognition can identify burst patterns. Time and frequency coherence constraints leading to simple signal discovery are addressed, and observations of the interstellar medium by transmitter and receiver constrain the burst parameters and limit the search scope.

  18. Adaptative control with non-minimum phase system. Application to level control in PWR power plant steam generator

    International Nuclear Information System (INIS)

    Bihoreau, C.

    1981-03-01

    This thesis presents the proposal for a water control level method likely to improve performance, especially at low power. Particular problems are analyzed in detail. Finally, computerized simulations are presented; they confirm the algorithm performance [fr

  19. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  20. UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM

    International Nuclear Information System (INIS)

    Tripathy, S. C.; Jain, K.; Hill, F.; Leibacher, J. W.

    2010-01-01

    We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We also analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.