WorldWideScience

Sample records for non-migratory myeloid cells

  1. Revolutionary non-migratory migrants

    OpenAIRE

    Jonker, M. R.

    2011-01-01

    In the migratory behaviour of the Barnacle Goose Branta leucopsis several changes have occurred over the past few decades. Barnacle geese breeding in Russia have delayed the commencement of spring migration with approximately one month since the 1980s, new populations have emerged in former stopover areas in the Baltic Sea region, and a non-migratory population has emerged in the wintering area in The Netherlands. This thesis aims to understand these changes. First, I studied the delay in com...

  2. Coordinated regulation of myeloid cells by tumours.

    Science.gov (United States)

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  3. Myeloid Cells in Infantile Hemangioma

    Science.gov (United States)

    Ritter, Matthew R.; Reinisch, John; Friedlander, Sheila Fallon; Friedlander, Martin

    2006-01-01

    Little is known about the pathogenesis of infantile hemangiomas despite the fact that they are relatively common tumors. These benign neoplasms occur in as many as 1 in 10 births, and although rarely life threatening, hemangiomas can pose serious concerns to the cosmetic and psychosocial development of the afflicted child. Ulceration, scarring, and disfigurement are significant problems as are encroachment of the ear and eye, which can threaten hearing and vision. The precise mechanisms controlling the rapid growth observed in the first months of life and the spontaneous involution that follows throughout the course of years remain unknown. In this report we demonstrate the presence of large numbers of hematopoietic cells of the myeloid lineage in proliferating hemangiomas and propose a mechanism for the observed evolution of these lesions that is triggered by hypoxia and involves the participation of myeloid cells. We report the results of experiments using myeloid markers (CD83, CD32, CD14, CD15) that unexpectedly co-labeled hemangioma endothelial cells, providing new evidence that these cells are distinct from normal endothelium. PMID:16436675

  4. Fusion of CCL21 non-migratory active breast epithelial and breast cancer cells give rise to CCL21 migratory active tumor hybrid cell lines.

    Directory of Open Access Journals (Sweden)

    Benjamin Berndt

    Full Text Available The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid cells.

  5. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  6. Metalloproteinases: a Functional Pathway for Myeloid Cells.

    Science.gov (United States)

    Chou, Jonathan; Chan, Matilda F; Werb, Zena

    2016-04-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.

  7. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  8. Myeloid suppressor cells in cancer and autoimmunity.

    Science.gov (United States)

    Sica, Antonio; Massarotti, Marco

    2017-07-17

    A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or

  9. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  10. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    Science.gov (United States)

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  11. Myeloid cells in tumour-immune interactions.

    Science.gov (United States)

    Kareva, Irina; Berezovskaya, Faina; Castillo-Chavez, Carlos

    2010-07-01

    Despite highly developed specific immune responses, tumour cells often manage to escape recognition by the immune system, continuing to grow uncontrollably. Experimental work suggests that mature myeloid cells may be central to the activation of the specific immune response. Recognition and subsequent control of tumour growth by the cells of the specific immune response depend on the balance between immature (ImC) and mature (MmC) myeloid cells in the body. However, tumour cells produce cytokines that inhibit ImC maturation, altering the balance between ImC and MmC. Hence, the focus of this manuscript is on the study of the potential role of this inhibiting mechanism on tumour growth dynamics. A conceptual predator-prey type model that incorporates the dynamics and interactions of tumour cells, CD8(+) T cells, ImC and MmC is proposed in order to address the role of this mechanism. The prey (tumour) has a defence mechanism (blocking the maturation of ImC) that prevents the predator (immune system) from recognizing it. The model, a four-dimensional nonlinear system of ordinary differential equations, is reduced to a two-dimensional system using time-scale arguments that are tied to the maturation rate of ImC. Analysis shows that the model is capable of supporting biologically reasonable patterns of behaviour depending on the initial conditions. A range of parameters, where healing without external influences can occur, is identified both qualitatively and quantitatively.

  12. Myeloid cells contribute to tumor lymphangiogenesis.

    Science.gov (United States)

    Zumsteg, Adrian; Baeriswyl, Vanessa; Imaizumi, Natsuko; Schwendener, Reto; Rüegg, Curzio; Christofori, Gerhard

    2009-09-17

    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  13. Myeloid cells contribute to tumor lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Adrian Zumsteg

    Full Text Available The formation of new blood vessels (angiogenesis and lymphatic vessels (lymphangiogenesis promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  14. Targeting the acute myeloid leukemia stem cells.

    Science.gov (United States)

    Krause, Alexandre; Luciana, M; Krause, Fontanari; Rego, Eduardo M

    2010-02-01

    The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.

  15. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia

    OpenAIRE

    Taussig, David C.; Pearce, Daniel J; Simpson, Catherine; Rohatiner, Ama Z; Lister, T. Andrew; Kelly, Gavin; Luongo, Jennifer L.; Danet-Desnoyers, Gwenn-aël H.; Bonnet, Dominique

    2005-01-01

    Human hematopoietic stem cells (HSCs) are generally regarded as being devoid of the markers expressed by differentiated blood cells, the lineage-specific antigens. However, recent work suggests that genes associated with the myeloid lineage are transcribed in mouse HSCs. Here, we explore whether myeloid genes are actually translated in human HSCs. We show that CD33, CD13, and CD123, well-established myeloid markers, are expressed on human long-term repopulating cells from cord blood and bone ...

  16. Therapeutic targeting of myeloid-derived suppressor cells.

    Science.gov (United States)

    Ugel, Stefano; Delpozzo, Federica; Desantis, Giacomo; Papalini, Francesca; Simonato, Francesca; Sonda, Nada; Zilio, Serena; Bronte, Vincenzo

    2009-08-01

    Myeloid-derived suppressor cells (MDSCs) represent a subset of myeloid cells that expand under pathological conditions, such as cancer development, acute and chronic infections, trauma, bone marrow transplantations, and some autoimmune diseases. MDSCs mediate a negative regulation of the immune response by affecting different T lymphocyte subsets. Potential mechanisms, which underlie this inhibitory activity range from those requiring direct cell-to-cell contact with others, more indirect, and mediated by the modification of the microenvironment. Pharmacological inhibition of MDSC suppressive pathways is a promising strategy to overcome disease-induced immune defects, which might be a key step in enhancing the effectiveness of immune-based therapies.

  17. Extramedullary Myeloid Cell Tumour Presenting As Leukaemia Cutis

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2002-01-01

    Full Text Available We herewith report a case of extramedullary myeloid cell tumour presenting as leukaemia cutis for its rarity. It occurred in a 50 year old male patient who presented to us with a 40 days history of painless raised solid skin swellings over the trunk. Histopathological examination of the skin biopsy and bone marrow biopsy showed features suggestive of non-Hodgkin’s lymphoma. Immunophenotyping on skin biopsy specimens and bone marrow biopsy found tumour cells expressing CD43 and Tdt but were negative for CD3 and CD20. These features were consistent with extramedullary myeloid cell tumour involving skin and subcutis (cutaneous manifestation of acute myeloid leukaemia.

  18. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  19. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

    Science.gov (United States)

    Gardner, Peter J.; Liyanage, Sidath E.; Cristante, Enrico; Sampson, Robert D.; Dick, Andrew D.; Ali, Robin R.; Bainbridge, James W.

    2017-01-01

    Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking. PMID:28112274

  20. File list: ALL.Bld.05.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX093161,SRX20...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Myeloid_Cells.bed ...

  1. File list: ALL.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX658425,SRX08...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Myeloid_Cells.bed ...

  2. File list: Oth.Bld.05.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX742697,SRX...021614,SRX021615,SRX021616,SRX742698,SRX742696,SRX021612,SRX021611,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Myeloid_Cells.bed ...

  3. File list: InP.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021617,SRX0...21613 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Myeloid_Cells.bed ...

  4. File list: InP.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021617,SRX0...21613 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Myeloid_Cells.bed ...

  5. File list: Oth.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021615,SRX021616,SRX742696,SRX742697,SRX742698,SRX742695,SRX021612,SRX021611 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Myeloid_Cells.bed ...

  6. File list: InP.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Myeloid_Cells mm9 Input control Blood Myeloid Cells SRX021613,SRX0...21617 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.10.AllAg.Myeloid_Cells.bed ...

  7. File list: Oth.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021616,SRX021615,SRX742697,SRX021612,SRX021611,SRX742698,SRX742696,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Myeloid_Cells.bed ...

  8. File list: ALL.Bld.10.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX203204,SRX09...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Myeloid_Cells.bed ...

  9. File list: Oth.Bld.20.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Myeloid_Cells mm9 TFs and others Blood Myeloid Cells SRX021614,SRX...021615,SRX021616,SRX021611,SRX021612,SRX742696,SRX742697,SRX742698,SRX742695 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Myeloid_Cells.bed ...

  10. File list: ALL.Bld.50.AllAg.Myeloid_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Myeloid_Cells mm9 All antigens Blood Myeloid Cells SRX093161,SRX08...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Myeloid_Cells.bed ...

  11. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  12. Roles Nrf2 Plays in Myeloid Cells and Related Disorders

    Directory of Open Access Journals (Sweden)

    Eri Kobayashi

    2013-01-01

    Full Text Available The Keap1-Nrf2 system protects animals from oxidative and electrophilic stresses. Nrf2 is a transcription factor that induces the expression of genes essential for detoxifying reactive oxygen species (ROS and cytotoxic electrophiles. Keap1 is a stress sensor protein that binds to and ubiquitinates Nrf2 under unstressed conditions, leading to the rapid proteasomal degradation of Nrf2. Upon exposure to stress, Keap1 is modified and inactivated, which allows Nrf2 to accumulate and activate the transcription of a battery of cytoprotective genes. Antioxidative and detoxification activities are important for many types of cells to avoid DNA damage and cell death. Accumulating lines of recent evidence suggest that Nrf2 is also required for the primary functions of myeloid cells, which include phagocytosis, inflammation regulation, and ROS generation for bactericidal activities. In fact, results from several mouse models have shown that Nrf2 expression in myeloid cells is required for the proper regulation of inflammation, antitumor immunity, and atherosclerosis. Moreover, several molecules generated upon inflammation activate Nrf2. Although ROS detoxification mediated by Nrf2 is assumed to be required for anti-inflammation, the entire picture of the Nrf2-mediated regulation of myeloid cell primary functions has yet to be elucidated. In this review, we describe the Nrf2 inducers characteristic of myeloid cells and the contributions of Nrf2 to diseases.

  13. CatacLysMic specificity when targeting myeloid cells?

    Science.gov (United States)

    Blank, Thomas; Prinz, Marco

    2016-06-01

    The antibacterial enzyme lysozyme M (LysM) encoded by the Lyz2 gene is broadly expressed in myeloblasts, macrophages, and neutrophils, and thus has been used for a long time as a cell-specific marker for myeloid cells in mice. In order to delete loxP-site flanked genes in myeloid cells, a Cre-recombinase (Cre) expressing mouse line was created by inserting Cre-coding sequence into the translational start site of the LysM gene. In this issue of the European Journal of Immunology [2016. 46: 1529-1532], Orthgiess et al. verify, with the help of tdTomato and YFP reporter mouse lines, LysM-driven recombination. Unexpectedly, the authors also describe major expression of the tdTomato reporter protein in brain neurons of the central nervous system (CNS), with only a very small percentage of gene recombination in myeloid cells of the brain, called microglia. These findings cause justified concerns regarding the efficient and specific targeting of microglia and peripheral myeloid cells using LysM-Cre mice and should stimulate thoughts on conclusions drawn from past experiments on the diseased CNS employing this Cre/loxP-deleter line. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Testing the Role of Myeloid Cell Glucose Flux in Inflammation and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishizawa

    2014-04-01

    Full Text Available Inflammatory activation of myeloid cells is accompanied by increased glycolysis, which is required for the surge in cytokine production. Although in vitro studies suggest that increased macrophage glucose metabolism is sufficient for cytokine induction, the proinflammatory effects of increased myeloid cell glucose flux in vivo and the impact on atherosclerosis, a major complication of diabetes, are unknown. We therefore tested the hypothesis that increased glucose uptake in myeloid cells stimulates cytokine production and atherosclerosis. Overexpression of the glucose transporter GLUT1 in myeloid cells caused increased glycolysis and flux through the pentose phosphate pathway but did not induce cytokines. Moreover, myeloid-cell-specific overexpression of GLUT1 in LDL receptor-deficient mice was ineffective in promoting atherosclerosis. Thus, increased glucose flux is insufficient for inflammatory myeloid cell activation and atherogenesis. If glucose promotes atherosclerosis by increasing cellular glucose flux, myeloid cells do not appear to be the key targets.

  15. Dendritic cell-based immunotherapy for myeloid leukemias.

    Science.gov (United States)

    Schürch, Christian M; Riether, Carsten; Ochsenbein, Adrian F

    2013-12-31

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

  16. Dendritic cell-based immunotherapy for myeloid leukemias

    Directory of Open Access Journals (Sweden)

    Christian Martijn Schürch

    2013-12-01

    Full Text Available Acute and chronic myeloid leukemia (AML, CML are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs. LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD, reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs, may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed and presented by mature dendritic cells (DCs. Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to malignant DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid

  17. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Science.gov (United States)

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C; Sellati, Timothy J; Harton, Jonathan A

    2016-03-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  18. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    Science.gov (United States)

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  19. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  20. Synchronous Occurrence of Chronic Myeloid Leukemia and Mantle Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Prajwol Pathak

    2017-01-01

    Full Text Available Chronic myeloid leukemia (CML and mantle cell lymphoma (MCL are hematologic malignancies that originate from different oligopotent progenitor stem cells, namely, common myeloid and lymphoid progenitor cells, respectively. Although blastic transformation of CML can occur in the lymphoid lineage and CML has been related to non-Hodgkin lymphoma on transformation, to our knowledge, de novo and synchronous occurrence of CML and MCL has not been reported. Herein, we report the first case of synchronous CML and MCL in an otherwise healthy 38-year-old man. Potential etiologies and pathological relationships between the two malignancies are explored, including the possibility that the downstream effects of BCR-ABL may link it to an overexpression of cyclin D1, which is inherent to the etiology of MCL.

  1. Myeloid-derived suppressor cell heterogeneity in human cancers.

    Science.gov (United States)

    Solito, Samantha; Marigo, Ilaria; Pinton, Laura; Damuzzo, Vera; Mandruzzato, Susanna; Bronte, Vincenzo

    2014-06-01

    The dynamic interplay between cancer and host immune system often affects the process of myelopoiesis. As a consequence, tumor-derived factors sustain the accumulation and functional differentiation of myeloid cells, including myeloid-derived suppressor cells (MDSCs), which can interfere with T cell-mediated responses. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important not only to determine the presence of all MDSC subsets in each cancer patient, but also which MDSC subsets have clinical relevance in each tumor environment. In this review, we describe the differences between MDSC populations expanded within different tumor contexts and evaluate the prognostic significance of MDSC expansion in peripheral blood and within tumor masses of neoplastic patients.

  2. Myeloid-derived suppressor cell heterogeneity and subset definition.

    Science.gov (United States)

    Peranzoni, Elisa; Zilio, Serena; Marigo, Ilaria; Dolcetti, Luigi; Zanovello, Paola; Mandruzzato, Susanna; Bronte, Vincenzo

    2010-04-01

    Myeloid derived suppressor cells (MDSCs) are defined in mice on the basis of CD11b and Gr-1 marker expression and the functional ability to inhibit T lymphocyte activation. Nevertheless the term 'heterogeneous' remains the first, informal feature commonly attributed to this population. It is clear that CD11b(+)Gr-1(+) cells are part of a myeloid macropopulation, which comprises at least two subsets of polymorphonuclear and monocytic cells with different immunosuppressive properties. While recent literature shows substantial agreement on the immunoregulatory property of the monocytic MDSC subset, there is still contrasting evidence on the role of the granulocytic fraction. Moreover, this dichotomy holds true for human MDSCs. We attempt here to summarize conflicting findings in the field and provide some possible, unifying explanations.

  3. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia.

    Science.gov (United States)

    Arya, Deepak; Sachithanandan, Sasikala P; Ross, Cecil; Palakodeti, Dasaradhi; Li, Shang; Krishna, Sudhir

    2017-01-12

    The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.

  4. Primary cerebellar extramedullary myeloid cell tumor mimicking oligodendroglioma.

    Science.gov (United States)

    Ho, D M; Wong, T T; Guo, W Y; Chang, K P; Yen, S H

    1997-10-01

    Extramedullary myeloid cell tumors (EMCTs) are tumors consisting of immature cells of the myeloid series that occur outside the bone marrow. Most of them are associated with acute myelogenous leukemia or other myeloproliferative disorders, and a small number occur as primary lesions, i.e., are not associated with hematological disorders. Occurrence inside the cranium is rare, and there has been only one case of primary EMCT involving the cerebellum reported in the literature. The case we report here is a blastic EMCT occurring in the cerebellum of a 3-year-old boy who had no signs of leukemia or any hematological disorder throughout the entire course. The cerebellar tumor was at first misdiagnosed as an "oligodendroglioma" because of the uniformity and "fried egg" artifact of the tumor cells. The tumor disappeared during chemotherapy consisting of 12 treatments. However, it recurred and metastasized to the cerebrospinal fluid (CSF) shortly after the therapy was completed. A diagnosis of EMCT was suspected because of the presence of immature myeloid cells in the CSF, and was confirmed by anti-myeloperoxidase and anti-lysozyme immunoreactivity of the cerebellar tumor. The patient succumbed 1 year and 3 months after the first presentation of the disease.

  5. Acute myeloid dendritic cell leukaemia with specific cutaneous involvement: a diagnostic challenge.

    Science.gov (United States)

    Ferran, M; Gallardo, F; Ferrer, A M; Salar, A; Pérez-Vila, E; Juanpere, N; Salgado, R; Espinet, B; Orfao, A; Florensa, L; Pujol, R M

    2008-05-01

    Myeloid or type 1 dendritic cell leukaemia is an exceedingly rare haematopoietic neoplasm characterized by a specific immunophenotypic profile close to plasmacytoid dendritic cell and acute myelogenous leukaemia. A 77-year-old man presenting specific cutaneous infiltration by myeloid dendritic cell leukaemia is reported. The clinical features as well as the cutaneous histopathological and immunohistochemical features led to the initial diagnosis of CD4+/CD56+ haematodermic neoplasm. However, extensive immunophenotypic studies performed from peripheral blood blasts disclosed that leukaemic cells expressed myeloid dendritic cell markers, confirming the diagnosis. The diagnostic difficulties of specific cutaneous involvement by myeloid dendritic cell leukaemia on the basis of routine histopathological and immunohistochemical features are highlighted.

  6. Allogeneic stem cell transplantation in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  7. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication

    OpenAIRE

    Rickmann, Mareike; Krauter, Juergen; Stamer, Kathrin; Heuser, Michael; Salguero, Gustavo; Mischak-Weissinger, Eva; Ganser, Arnold; Stripecke, Renata

    2011-01-01

    Abstract Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin?, HLA-DR+, CD11c+, CD86+) and plasmacytoid DC (pDC: Lin?, HL...

  8. Increase in myeloid-derived suppressor cells (MDSCs) associated with minimal residual disease (MRD) detection in adult acute myeloid leukemia.

    Science.gov (United States)

    Sun, Hui; Li, Yi; Zhang, Zhi-fen; Ju, Ying; Li, Li; Zhang, Bing-chang; Liu, Bin

    2015-11-01

    Myeloid-derived suppressor cells (MDSCs) are thought to help provide a cellular microenvironments in many solid tumors, in which transformed cells proliferate, acquire new mutations, and evade host immunosurveillance. In the present study, we found that MDSCs (CD33 + CD11b + HLA-DR(low/neg)) in bone marrow were significantly increased in adult acute myeloid leukemia (AML) patients. MDSCs levels in newly diagnosed AML patients correlated well with extramedullary infiltration and plasma D-dimer levels. Remission rates in the MDSCs > 1500 group and MDSCs phenotype. These cells appear to impact the clinical course and prognosis of AML. This data may provide potentially important targets for novel therapies.

  9. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.

    Science.gov (United States)

    Olakanmi, Oyebode; Kesavalu, Banurekha; Abdalla, Maher Y; Britigan, Bradley E

    2013-12-01

    The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.

  10. Tumor-Induced Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  11. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation.

    Science.gov (United States)

    Chistiakov, Dimitry A; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-06-01

    Myeloid dendritic cells (mDCs) comprise a heterogeneous population of professional antigen-presenting cells, which are responsible for capture, processing, and presentation of antigens on their surface to T cells. mDCs serve as a bridge linking adaptive and innate immune responses. To date, the development of DC lineage in bone marrow is better characterized in mice than in humans. DCs and macrophages share the common myeloid progenitor called macrophage-dendritic cell progenitor (MDP) that gives rise to monocytoid lineage and common DC progenitors (CDPs). CDP in turn gives rise to plasmacytoid DCs and predendritic cells (pre-mDCs) that are common precursor of myeloid CD11b+ and CD8α(+) DCs. The development and commitment of mDCs is regulated by several transcription and hematopoietic growth factors of which CCr7, Zbtb46, and Flt3 represent 'core' genes responsible for development and functional and phenotypic maintenance of mDCs. mDCs were shown to be involved in the pathogenesis of many autoimmune and inflammatory diseases including atherosclerosis. In atherogenesis, different subsets of mDCs could possess both proatherogenic (e.g. proinflammatory) and atheroprotective (e.g. anti-inflammatory and tolerogenic) activities. The proinflammatory role of mDCs is consisted in production of inflammatory molecules and priming proinflammatory subsets of effector T cells. In contrast, tolerogenic mDCs fight against inflammation through arrest of activity of proinflammatory T cells and macrophages and induction of immunosuppressive regulatory T cells. Microenvironmental conditions trigger differentiation of mDCs to acquire proinflammatory or regulatory properties.

  12. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  13. Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival.

    Science.gov (United States)

    McPeak, Melissa B; Youssef, Dima; Williams, Danielle A; Pritchett, Christopher; Yao, Zhi Q; McCall, Charles E; El Gazzar, Mohamed

    2017-04-01

    Myeloid progenitor-derived suppressor cells (MDSCs) arise from myeloid progenitors and suppress both innate and adaptive immunity. MDSCs expand during the later phases of sepsis in mice, promote immunosuppression, and reduce survival. Here, we report that the myeloid differentiation-related transcription factor nuclear factor I-A (NFI-A) controls MDSC expansion during sepsis and impacts survival. Unlike MDSCs, myeloid cells with conditional deletion of the Nfia gene normally differentiated into effector cells during sepsis, cleared infecting bacteria, and did not express immunosuppressive mediators. In contrast, ectopic expression of NFI-A in myeloid progenitors from NFI-A myeloid cell-deficient mice impeded myeloid cell maturation and promoted immune repressor function. Importantly, surviving septic mice with conditionally deficient NFI-A myeloid cells were able to respond to challenge with bacterial endotoxin by mounting an acute inflammatory response. Together, these results support the concept of NFI-A as a master molecular transcriptome switch that controls myeloid cell differentiation and maturation and that malfunction of this switch during sepsis promotes MDSC expansion that adversely impacts sepsis outcome. Copyright © 2017 American Society for Microbiology.

  14. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  15. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  16. Granulocytic subset of myeloid derived suppressor cells in rats with mammary carcinoma

    NARCIS (Netherlands)

    Dolen, Y.; Gunaydin, G.; Esendagli, G.; Guc, D.

    2015-01-01

    Limited knowledge is available on myeloid derived suppressor cells (MDSCs) of rat origin. We examined the myeloid cells from peripheral blood, bone marrow and spleens of healthy and mammary tumor bearing rats employing a novel immunophenotyping strategy with CD172a, HIS48, and Rp-1 antibodies. We ad

  17. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  18. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  19. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Metabolic regulation of suppressive myeloid cells in cancer.

    Science.gov (United States)

    Sica, Antonio; Strauss, Laura; Consonni, Francesca Maria; Travelli, Cristina; Genazzani, Armando; Porta, Chiara

    2017-06-01

    Cancer cells rewire their metabolism to promote growth, survival, proliferation and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate, which is observed even in the presence of completely functioning mitochondria. This effect is known as the 'Warburg Effect' and its intensive investigation in the last decade has partially established either its causes or its functions. It is now emerging that a major side effect of the Warburg Effect is immunosuppression, which limits the immunogenicity of cancer cells and therefore restricts the therapeutic efficacy of anticancer immunotherapy. Here we discuss how the metabolic communication between cancer and infiltrating myeloid cells contributes to cancer immune evasion and how the understanding of these mechanisms may improve current immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Oncogenic NRAS Primes Primary Acute Myeloid Leukemia Cells for Differentiation.

    Directory of Open Access Journals (Sweden)

    Cornelia Brendel

    Full Text Available RAS mutations are frequently found among acute myeloid leukemia patients (AML, generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1 in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC driven differentiation. Taken together, our findings show that AML with inv(16 and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.

  2. Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response.

    Science.gov (United States)

    Ilinskaya, Olga N; Zelenikhin, Pavel V; Petrushanko, Irina Yu; Mitkevich, Vladimir A; Prassolov, Vladimir S; Makarov, Alexander A

    2007-10-01

    Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-gamma in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit.

  3. The rate of spontaneous mutations in human myeloid cells

    Energy Technology Data Exchange (ETDEWEB)

    Araten, David J., E-mail: david.araten@nyumc.org [Division of Hematology, Department of Veterans Affairs New York Harbor Healthcare System (United States); Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Krejci, Ondrej [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); DiTata, Kimberly [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Wunderlich, Mark [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Sanders, Katie J.; Zamechek, Leah [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Mulloy, James C. [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2013-09-15

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10{sup −7} per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10{sup −7} (range ∼3.6–23 × 10{sup −7}) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.

  4. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  5. The Hematopoietic Differentiation and Production of Mature Myeloid Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Choi, Kyung-Dal; Vodyanik, Maxim; Slukvin, Igor I.

    2011-01-01

    Here we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin-CD34+CD43+CD45+ multipotent progenitors. The protocol is comprised of three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells, (ii) short-term expansion of multipotent myeloid progenitors with a high dose of GM-CSF, and ...

  6. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin(+)) and leukemia stem cell population (CD34(+)CD38(-)Lin(-/low)). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.

    Science.gov (United States)

    Parker, Katherine H; Horn, Lucas A; Ostrand-Rosenberg, Suzanne

    2016-09-01

    Myeloid-derived suppressor cells are immune-suppressive cells that are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. As myeloid-derived suppressor cells inhibit anti-tumor immunity and promote tumor progression, we are determining how their viability is regulated. Previous studies have established that the damage-associated molecular pattern molecule high-mobility group box protein 1 drives myeloid-derived suppressor cell accumulation and suppressive potency and is ubiquitously present in the tumor microenvironment. As high-mobility group box protein 1 also facilitates tumor cell survival by inducing autophagy, we sought to determine if high-mobility group box protein 1 regulates myeloid-derived suppressor cell survival through induction of autophagy. Inhibition of autophagy increased the quantity of apoptotic myeloid-derived suppressor cells, demonstrating that autophagy extends the survival and increases the viability of myeloid-derived suppressor cells. Inhibition of high-mobility group box protein 1 similarly increased the level of apoptotic myeloid-derived suppressor cells and reduced myeloid-derived suppressor cell autophagy, demonstrating that in addition to inducing the accumulation of myeloid-derived suppressor cells, high-mobility group box protein 1 sustains myeloid-derived suppressor cell viability. Circulating myeloid-derived suppressor cells have a default autophagic phenotype, and tumor-infiltrating myeloid-derived suppressor cells are more autophagic, consistent with the concept that inflammatory and hypoxic conditions within the microenvironment of solid tumors contribute to tumor progression by enhancing immune-suppressive myeloid-derived suppressor cells. Overall, these results demonstrate that in addition to previously recognized protumor effects, high-mobility group box protein 1 contributes to tumor progression by increasing myeloid-derived suppressor cell viability by

  8. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells.

    Science.gov (United States)

    Griffin, J D; Linch, D; Sabbath, K; Larcom, P; Schlossman, S F

    1984-01-01

    Anti-MY9 is an IgG2b murine monoclonal antibody selected for reactivity with immature normal human myeloid cells. The MY9 antigen is expressed by blasts, promyelocytes and myelocytes in the bone marrow, and by monocytes in the peripheral blood. Erythrocytes, lymphocytes and platelets are MY9 negative. All myeloid colony-forming cells (CFU-GM), a fraction of erythroid burst-forming cells (BFU-E) and multipotent progenitors (CFU-GEMM) are MY9 positive. This antigen is further expressed by the leukemic cells of a majority of patients with AML and myeloid CML-BC. Leukemic stem cells (leukemic colony-forming cells, L-CFC) from most patients tested were also MY9 positive. In contrast, MY9 was not detected on lymphocytic leukemias. Anti-MY9 may be a valuable reagent for the purification of hematopoietic colony-forming cells and for the diagnosis of myeloid-lineage leukemias.

  9. Haemophilus ducreyi partially activates human myeloid dendritic cells.

    Science.gov (United States)

    Banks, Keith E; Humphreys, Tricia L; Li, Wei; Katz, Barry P; Wilkes, David S; Spinola, Stanley M

    2007-12-01

    Dendritic cells (DC) orchestrate innate and adaptive immune responses to bacteria. How Haemophilus ducreyi, which causes genital ulcers and regional lymphadenitis, interacts with DC is unknown. H. ducreyi evades uptake by polymorphonuclear leukocyte and macrophage-like cell lines by secreting LspA1 and LspA2. Many H. ducreyi strains express cytolethal distending toxin (CDT), and recombinant CDT causes apoptosis of DC in vitro. Here, we examined interactions between DC and H. ducreyi 35000HP, which produces LspA1, LspA2, and CDT. In human volunteers infected with 35000HP, the ratio of myeloid DC to plasmacytoid DC was 2.8:1 in lesions, compared to a ratio of 1:1 in peripheral blood. Using myeloid DC derived from monocytes as surrogates for lesional DC, we found that DC infected with 35000HP remained as viable as uninfected DC for up to 48 h. Gentamicin protection and confocal microscopy assays demonstrated that DC ingested and killed 35000HP, but killing was incomplete at 48 h. The expression of LspA1 and LspA2 did not inhibit the uptake of H. ducreyi, despite inactivating Src kinases. Infection of DC with live 35000HP caused less cell surface marker activation than infection with heat-killed 35000HP and lipopolysaccharide (LPS) and inhibited maturation by LPS. However, infection of DC with live bacteria caused the secretion of significantly higher levels of interleukin-6 and tumor necrosis factor alpha than infection with heat-killed bacteria and LPS. The survival of H. ducreyi in DC may provide a mechanism by which the organism traffics to lymph nodes. Partial activation of DC may abrogate the establishment of a full Th1 response and an environment that promotes phagocytosis.

  10. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    Science.gov (United States)

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  11. Engagement of SIRP alpha Inhibits Growth and Induces Programmed Cell Death in Acute Myeloid Leukemia Cells

    NARCIS (Netherlands)

    Irandoust, Mahban; Zarate, Julian Alvarez; Hubeek, Isabelle; van Beek, Ellen M.; Schornagel, Karin; Broekhuizen, Aart J. F.; Akyuz, Mercan; van de Loosdrecht, Arjan A.; Delwel, Ruud; Valk, Peter J.; Sonneveld, Edwin; Kearns, Pamela; Creutzig, Ursula; Reinhardt, Dirk; de Bont, Eveline S. J. M.; Coenen, Eva A.; van den Heuvel-Eibrink, Marry M.; Zwaan, C. Michel; Kaspers, Gertjan J. L.; Cloos, Jacqueline; van den Berg, Timo K.

    2013-01-01

    Background: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRP alpha) on macrophages. Although AML cells express SIRP alpha, its function has not been investigated in

  12. Engagement of SIRPα Inhibits Growth and Induces Programmed Cell Death in Acute Myeloid Leukemia Cells

    NARCIS (Netherlands)

    M. Irandoust (Mahban); J. Alvarez Zarate (Julian); I. Hubeek (I.); E.M. van der Beek (Eline); K. Schornagel (Karin); A.J.F. Broekhuizen (Aart J.); M. Akyuz (Mercan); A.A. van de Loosdrecht (Arjan); H.R. Delwel (Ruud); P.J.M. Valk (Peter); E. Sonneveld (Edwin); P. Kearns (Pamela); U. Creutzig; D. Reinhardt (Dirk); E.S.J.M. de Bont (Eveline); E.A. Coenen (Eva); M.M. van den Heuvel-Eibrink (Marry); C.M. Zwaan (Christian Michel); G.J. Kaspers (Gertjan); J. Cloos (Jacqueline); T.K. van den Berg (Timo)

    2013-01-01

    textabstractBackground: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated

  13. Potential role of curcumin and taurine combination therapy on human myeloid leukemic cells propagated in vitro.

    Science.gov (United States)

    El-Houseini, Motawa E; Refaei, Mohammed Osman; Amin, Ahmed Ibrahim; Abol-Ftouh, Mahmoud A

    2013-10-01

    Curcumin and taurine are natural products that have been used in this study evaluating their therapeutic effect on myeloid leukemic cells propagated in vitro. Sixty patients with myeloid leukemia and 30 healthy volunteers were enrolled in the study. All patient groups were admitted to the Medical Oncology Department of the National Cancer Institute, Cairo University. There were statistically significant differences between treated leukemic cells compared to normal mononuclear leukocytes in cell density, interferon-γ and immunophenotypic profile, mainly CD4+, CD8 + and CD25+. This work highlights the possibility of using curcumin and taurine as a potential useful therapy in the management of patients suffering from chronic and acute myeloid leukemias.

  14. Myeloid and T Cell-Derived TNF Protects against Central Nervous System Tuberculosis

    Science.gov (United States)

    Hsu, Nai-Jen; Francisco, Ngiambudulu M.; Keeton, Roanne; Allie, Nasiema; Quesniaux, Valérie F. J.; Ryffel, Bernhard; Jacobs, Muazzam

    2017-01-01

    Tuberculosis of the central nervous system (CNS-TB) is a devastating complication of tuberculosis, and tumor necrosis factor (TNF) is crucial for innate immunity and controlling the infection. TNF is produced by many cell types upon activation, in particularly the myeloid and T cells during neuroinflammation. Here we used mice with TNF ablation targeted to myeloid and T cell (MT-TNF−/−) to assess the contribution of myeloid and T cell-derived TNF in immune responses during CNS-TB. These mice exhibited impaired innate immunity and high susceptibility to cerebral Mycobacterium tuberculosis infection, a similar phenotype to complete TNF-deficient mice. Further, MT-TNF−/− mice were not able to control T cell responses and cytokine/chemokine production. Thus, our data suggested that collective TNF production by both myeloid and T cells are required to provide overall protective immunity against CNS-TB infection. PMID:28280495

  15. Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells.

    Science.gov (United States)

    Baker, Gregory J; Chockley, Peter; Zamler, Daniel; Castro, Maria G; Lowenstein, Pedro R

    2016-06-01

    Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1(-/-) and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1(+)/CD11b(+) myeloid cells and NK1.1(+) NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1(+) myeloid cells in RAG1(-/-) mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1(+)/CD11b(+) cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1(+)/CD11b(+) myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1(+)/CD11b(+) myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

  16. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia.

    Science.gov (United States)

    Geyh, S; Rodríguez-Paredes, M; Jäger, P; Khandanpour, C; Cadeddu, R-P; Gutekunst, J; Wilk, C M; Fenk, R; Zilkens, C; Hermsen, D; Germing, U; Kobbe, G; Lyko, F; Haas, R; Schroeder, T

    2016-03-01

    Hematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development. In addition, we found distinct alterations of hematopoiesis-regulating factors such as Kit-ligand and Jagged1 accompanied by a significantly diminished ability to support CD34+ hematopoietic stem and progenitor cells in long-term culture-initiating cells (LTC-ICs) assays. This deficient osteogenic differentiation and insufficient stromal support was reversible and correlated with disease status as indicated by Osteocalcin serum levels and LTC-IC frequencies returning to normal values at remission. In line with this, cultivation of healthy MSC in conditioned medium from four AML cell lines resulted in decreased proliferation and osteogenic differentiation. Taken together, AML-derived MSC are molecularly and functionally altered and contribute to hematopoietic insufficiency. Inverse correlation with disease status and adoption of an AML-like phenotype after exposure to leukemic conditions suggests an instructive role of leukemic cells on bone marrow microenvironment.

  17. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Wang; Qian Li; Wen-Gui Xu; Jian-Yu Xiao; Qing-Song Pang; Qing Yang; Yi-Zuo Zhang

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. Atfer one month, bone marrow biopsy and aspiration conifrmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. hTe patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia.

  18. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  19. Novel combination treatments targeting chronic myeloid leukemia stem cells.

    Science.gov (United States)

    Al Baghdadi, Tareq; Abonour, Rafat; Boswell, H Scott

    2012-04-01

    Chronic myeloid leukemia (CML) is currently considered incurable in most patients. Stem cell transplantation, an accepted curative option for which extensive experience has been gained, is limited by high morbidity and mortality rates, particularly in older patients. Tyrosine kinase inhibitors targeting BCR-ABL are widely used and induce remission in a high proportion of patients, but resistance and incomplete response to these agents portends eventual relapse and disease progression. Although BCR-ABL inhibitors eradicate most CML cells, they are largely ineffective against the reservoir of quiescent leukemic stem cells (LSCs). Thus a strong medical need exists for therapies that effectively eradicate LSCs and is currently a focus of extensive research. To date, evidence obtained from in vitro studies, animal models, and clinical CML specimens suggests that an effective approach may be to partner existing BCR-ABL inhibitors with compounds targeting key stem cell molecular effectors, including Wnt/β-catenin, hedgehog pathway components, histone deacetylase (HDAC), transforming growth factor-β (TGF-β), Janus kinase 2, promyelocytic leukemia protein, and arachidonate 5-lipoxygenase (ALOX5). Novel combinations may sensitize LSCs to BCR-ABL inhibitors, thereby overcoming resistance and creating the possibility of improving disease outcome beyond the current standard of care. Copyright © 2012. Published by Elsevier Inc.

  20. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    Science.gov (United States)

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  1. Correlation between myeloid-derived suppressor cells and gastric cancer begin with chronic gastritis

    Institute of Scientific and Technical Information of China (English)

    朱立宁

    2012-01-01

    Objective To investigate the correlation between the ratio change of circulating myeloid-derived suppressor cells(MDSCs) and cellular immune function in healthy volunteers,chronic gastritis patients,gastric intraepithelial neoplasia patients and gastric cancer patients

  2. Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab

    National Research Council Canada - National Science Library

    Gebhardt, Christoffer; Sevko, Alexandra; Jiang, Huanhuan; Lichtenberger, Ramtin; Reith, Maike; Tarnanidis, Kathrin; Holland-Letz, Tim; Umansky, Ludmila; Beckhove, Philipp; Sucker, Antje; Schadendorf, Dirk; Utikal, Jochen; Umansky, Viktor

    2015-01-01

    .... We performed an analysis of myeloid cells in the peripheral blood of 59 stage IV melanoma patients before the treatment and at different time points upon the therapy using a clinical laboratory...

  3. TISSUE FACTOR EXPRESSION BY MYELOID CELLS CONTRIBUTES TO PROTECTIVE IMMUNE RESPONSE AGAINST Mycobacterium tuberculosis INFECTION

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R.; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2015-01-01

    Tissue Factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TFΔ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2 like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. PMID:26471500

  4. Characterization of miRNomes in Acute and Chronic Myeloid Leukemia Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Qian Xiong; Jiangwei Yan; Songnian Hu; Xiangdong Fang; Yadong Yang; Hai Wang; Jie Li; Shaobin Wang; Yanming Li; Yaran Yang; Kan Cai; Xiuyan Ruan

    2014-01-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequenc-ing. mRNA expression profiles of these cell lines that were established previously in our lab facil-itated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppres-sors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expres-sion patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phag-ocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress dif-ferentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.

  5. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.

    Science.gov (United States)

    Sica, Antonio; Porta, Chiara; Amadori, Alberto; Pastò, Anna

    2017-08-01

    Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.

  6. Increased levels of circulating and tumor-infiltrating granulocytic myeloid cells in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Salman M Toor

    2016-12-01

    Full Text Available Increased levels of myeloid cells, especially myeloid-derived suppressor cells (MDSCs, have been reported to correlate with bad prognosis and reduced survival in cancer patients. However, limited data are available on their conclusive phenotypes and their correlation with clinical settings. The aim of this study was to investigate levels and phenotype of myeloid cells in peripheral blood and tumor microenvironment of colorectal cancer (CRC patients, compared to blood from healthy donors (HDs and paired, adjacent non-tumor colon tissue. Flow cytometric analysis was performed to examine the expression of different myeloid markers in fresh peripheral blood samples from CRC patients and HDs, and tissue-infiltrating immune cells from CRC patients. We found significantly higher levels of cells expressing myeloid markers and lacking the expression of MHC class II molecule HLA-DR in blood and tumor of CRC patients. Further analysis revealed that these cells were granulocytic and expressed Arginase 1 (ARG1, indicative of their suppressive phenotype. These expanded cells could be neutrophils or granulocytic MDSCs, and we refer to them as granulocytic myeloid cells (GMCs due to the phenotypical and functional overlap between these cell subsets. Interestingly, the expansion of peripheral GMCs correlated with higher stage and histological grade of cancer, thereby suggesting their role in cancer progression. Furthermore, an increase in CD33+CD11b+HLA-DR-CD14-CD15- immature myeloid cells (IMCs was also observed in CRC tumor tissue. Our work shows that GMCs are expanded in circulation and tumor microenvironment of CRC patients, which provides further insights for developing immunotherapeutic approaches targeting these cell subsets to enhance anti-tumor immune and clinical responses.

  7. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice.

    Science.gov (United States)

    Pan, Ting; Liu, Yufeng; Zhong, Li Mei; Shi, Mao Hua; Duan, Xiao Bing; Wu, Kang; Yang, Qiong; Liu, Chao; Wei, Jian Yang; Ma, Xing Ru; Shi, Kun; Zhang, Hui; Zhou, Jie

    2016-09-01

    Maternal immune system tolerance to the semiallogeneic fetus is essential for a successful pregnancy; however, the mechanisms underlying this immunotolerance have not been fully elucidated. Here, we demonstrate that myeloid-derived suppressor cells play an important role in maintaining feto-maternal tolerance. A significant expansion of granulocytic myeloid-derived suppressor cells was observed in multiple immune organs and decidual tissues from pregnant mice. Pregnancy-derived granulocytic myeloid-derived suppressor cells suppressed T cell responses in a reactive oxygen species-dependent manner and required direct cell-cell contact. Mechanistic studies showed that progesterone facilitated differentiation and activation of granulocytic myeloid-derived suppressor cells, mediated through STAT3 signaling. The STAT3 inhibitor JSI-124 and a specific short hairpin RNA completely abrogated the effects of progesterone on granulocytic myeloid-derived suppressor cells. More importantly, granulocytic myeloid-derived suppressor cell depletion dramatically enhanced the abortion rate in normal pregnant mice, whereas adoptive transfer of granulocytic myeloid-derived suppressor cells clearly reduced the abortion rate in the CBA/J X DBA/2J mouse model of spontaneous abortion. These observations collectively demonstrate that granulocytic myeloid-derived suppressor cells play an essential role in the maintenance of fetal immunotolerance in mice. Furthermore, our study supports the notion that in addition to their well-recognized roles under pathologic conditions, myeloid-derived suppressor cells perform important functions under certain physiologic circumstances. © Society for Leukocyte Biology.

  8. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.

    NARCIS (Netherlands)

    Lindau, D.S.U.; Gielen, P.R.; Kroesen, M.; Wesseling, P.; Adema, G.J.

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical repo

  9. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.;

    2008-01-01

    and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types...... is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion......Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes...

  10. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  11. What Is Chronic Myeloid Leukemia?

    Science.gov (United States)

    ... Chronic Myeloid Leukemia (CML) About Chronic Myeloid Leukemia What Is Chronic Myeloid Leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  12. Expression of maturation-specific nuclear antigens in differentiating human myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S.; Epstein, A.L.; Clevenger, C.V.; Huberman, E.

    1985-02-01

    The expression of three myeloid-specific nuclear antigens was studied by indirect immunofluorescence with murine monoclonal antibodies in human myeloid (HL-60, ML-2, KG-1, and B-II) leukemia cells treated with chemical inducers of cell differentiation. Treatment of the promyelocytic HL-60 cells with dimethyl sulfoxide or 1,25-dihydroxyvitamin DT induced the cells to acquire a phenotype that resembled that of granulocytes and monocytesmacrophages, respectively. These phenotypes were characterized by changes in cell growth, cell morphology, expression of specific cell surface antigens, and activities of lysozyme and nonspecific esterase enzymes. Induction of these differentiation markers in the HL-60 cells was associated with induction of the myeloid-specific nuclear antigens. The ML-2 cells, which are arrested at the myeloblast-promyelocyte stage, were also susceptible to the induction of cell differentiation and to changes in the expression of the nuclear antigens, but the degree of susceptibility was less than in the HL-60 cells. The less-differentiated KG-1 and B-II myeloid cells were either not responsive or responded only in a limited degree to the induction of cell differentiation or to changes in the expression of the nuclear antigens. The authors suggest that the reactivity of cells with monoclonal antibodies to specific nuclear antigens can be used as a maturational marker in cell differentiation studies. Furthermore, nuclear antigens expressed early in cellular differentiation may provide information about changes in regulatory elements in normal and malignant cells. 40 references, 2 figures, 1 table.

  13. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  14. Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Zeinab Abdullah

    Full Text Available The peroxisomal proliferator-activated receptor γ (PPARγ is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox. Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.

  15. Immunodetection of myeloid and plasmacytoid dendritic cells in mammary carcinomas of female dogs

    Directory of Open Access Journals (Sweden)

    Mayara C. Rosolem

    2015-11-01

    Full Text Available ABSTRACT: Dendritic cells have attracted great interest from researchers as they may be used as targets of tumor immune evasion mechanisms. The main objective of this study was to evaluate the relationship between the dendritic cells (DCs subpopulation in simple type mammary carcinomas in female dogs. Two groups of samples were used: the control group consisted of 18 samples of mammary tissue without changes and the tumor group with 26 simple type mammary carcinomas. In these groups, we evaluated the immunodetection of immature and mature myeloid DCs, plasmacytoid DCs and MHC-II. In mammary tumor, mature myeloid DCs predominated in the peritumoral region, while immature myeloid DCs and plasmacytoid DCs were evident in the intratumoral region. Immunostaining of MHC-II was visualized in mammary acini (control group, in tumor cells and inflammatory infiltration associated with tumors. The comparison between the control and tumor groups showed a statistically significant difference between immature myeloid DCs, mature myeloid DCs and plasmacytoid DCs. The immunodetection of MHC-II was not significant when comparing the groups. The predominance of immature DCs in the tumor group is possibly related to an inefficient immune response, promoting the development and survival of tumor cells. The presence of plasmacytoid DCs in the same group suggests a worse prognosis for female dogs with mammary tumors. Therefore, the ability of differentiation of canine dendritic cells could be influenced by neoplastic cells and by the tumor microenvironment.

  16. Central nervous system myeloid cells as drug targets: current status and translational challenges.

    Science.gov (United States)

    Biber, Knut; Möller, Thomas; Boddeke, Erik; Prinz, Marco

    2016-02-01

    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic.

  17. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  18. IGK with conserved IGΚV/IGΚJ repertoire is expressed in acute myeloid leukemia and promotes leukemic cell migration.

    Science.gov (United States)

    Wang, Chong; Xia, Miaoran; Sun, Xiaoping; He, Zhiqiao; Hu, Fanlei; Chen, Lei; Bueso-Ramos, Carlos E; Qiu, Xiaoyan; Yin, C Cameron

    2015-11-17

    We have previously reported that immunoglobulin heavy chain genes were expressed in myeloblasts and mature myeloid cells. In this study, we further demonstrated that rearranged Ig κ light chain was also frequently expressed in acute myeloid leukemia cell lines (6/6), primary myeloblasts from patients with acute myeloid leukemia (17/18), and mature monocytes (11/12) and neutrophils (3/12) from patients with non-hematopoietic neoplasms, but not or only rarely expressed in mature neutrophils (0/8) or monocytes (1/8) from healthy individuals. Interestingly, myeloblasts and mature monocytes/neutrophils shared several restricted IGKV and IGKJ gene usages but with different expression frequency. Surprisingly, almost all of the acute myeloid leukemia-derived IGKV showed somatic hypermutation; in contrast, mature myeloid cells-derived IGKV rarely had somatic hypermutation. More importantly, although IGK expression appeared not to affect cell proliferation, reduced IGK expression led to a decrease in cell migration in acute myeloid leukemia cell lines HL-60 and NB4, whereas increased IGK expression promoted their motility. In summary, IGK is expressed in myeloblasts and mature myeloid cells from patients with non-hematopoietic neoplasms, and is involved in cell migration. These results suggest that myeloid cells-derived IgK may have a role in leukemogenesis and may serve as a novel tumor marker for monitoring minimal residual disease and developing target therapy.

  19. Mannose-exposing myeloid leukemia cells detected by the sCAR-PPA fusion protein.

    Science.gov (United States)

    Li, Gong Chu; Li, Na; Zhang, Yan Hong; Li, Xin; Wang, Yi Gang; Liu, Xin Yuan; Qian, Wen Bin; Liu, Xiao Chuan

    2009-06-01

    Altered glycosylation may be a hallmark of malignant transformation and cancer progression. In the work described, a specific mannose-binding lectin, Pinellia pedatisecta agglutinin (PPA), was genetically fused with the extracellular domain of coxsackie-adenovirus receptor (CAR) to generate the soluble CAR (sCAR)-PPA fusion protein. The adenoviral transduction of acute myeloid leukemia (AML) cell lines Kasumi-1 and HL-60 was increased by sCAR-PPA, indicating that a fraction of AML cells exposing mannose residues was detected by PPA. However, sCAR-PPA did not increase the adenoviral infection of KG-1 cells, suggesting the mannose exposure of AML cells may be cell type specific. Furthermore, the infectious efficiency of Ad-EGFP in chronic myeloid leukemia cell line K562 was significantly increased by sCAR-PPA as well. We, herein, report that PPA recognized a fraction of myeloid leukemia cells showing mannose-exposing phenotype. The sCAR-PPA fusion protein combined with the adenoviral vector system may provide a useful tool for investigating myeloid leukemia cells exposing mannose residues and further elucidating the role of these cells in the leukemia development.

  20. A New Approach Targeting Myeloid-Derived Suppressor Cells for Therapy of Mammary Carcinoma

    Science.gov (United States)

    2011-03-01

    Nat Rev Immunol 9, 162-174 (2009). 7. Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. & Bronte , V. Tumor-induced tolerance and immune...in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68, 5439-5449 (2008). 10. Serafini, P., Borrello, I. & Bronte , V. Myeloid suppressor

  1. On the armament and appearances of human myeloid-derived suppressor cells.

    Science.gov (United States)

    Poschke, Isabel; Kiessling, Rolf

    2012-09-01

    Myeloid-derived suppressor cells (MDSC) have frequently been observed in patients with cancer. This heterogeneous population of myeloid cells can exert potent suppression of lymphocyte function and thereby poses a significant hurdle to natural or therapeutically induced anti-tumor immunity. On the other hand, the natural function of MDSC is not yet well understood and their role in infection, inflammation and autoimmune disease is still puzzling. Understanding MDSC biology will provide the tools necessary for therapeutic targeting of this population, but also permit exploitation of their strong tolerogenic function in the treatment of inflammatory conditions and the prevention of graft rejection.

  2. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  3. Human breast cancer cells share antigens with the myeloid monocyte lineage.

    OpenAIRE

    F. Calvo; Martin, P M; Jabrane, N.; de Cremoux, P; Magdelenat, H.

    1987-01-01

    We have examined the expression of several myeloid cell associated antigens, some of which are involved in myelomonocyte adhesion, in seven well characterized human breast cancer cell lines, since common properties of adhesiveness and migration are found in haemopoietic cells and epithelial cancer cells. Five of these cell lines were of metastatic origin and two were derived from primary breast carcinoma. Antigenic expression was evaluated by immunofluorescence (IF), flow cytometry (FCM), rad...

  4. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  5. Mononuclear cells in subcutaneous haemorrhage with special consideration of myeloid percursor cells.

    Science.gov (United States)

    Oehmichen, M; Windisch, A; Meissner, C

    2000-10-01

    Various hematogenous markers were used to differentiate and quantify the types of mononuclear cells present in subcutaneous haemorrhages. Fifty samples of subcutaneous bleeding with a survival time of a few minutes to more than 48 hours were studied. The various cell types were detected using the following stains: Naphthol AS-D chloracetate esterase for myeloid cells, including mast cells; (alpha1-antichymotrypsin for monocytes/macrophages; UCHL1 for T-lymphocytes; and L26 for B lymphocytes. The percentage of monocytes/macrophages was found to increase in dependence on survival time, whereas T-lymphocytes declined. Within minutes of injury neutrophilic granulocytes had emigrated into the surrounding tissue and mast cell degranulation had occurred within the haemorrhagic zone. Esterase-positive mononuclear cells, namely metamyelocytes, were detected within minutes after injury and were still present after survival times exceeding 48 hours; however, no dependence on survival time or cause of death was found. Although the increasing number of monocytes/ macrophages and T-lymphocytes was expected, the sometimes high percentage of myeloid precursor cells within the wound were surprising. Possible explanations for this phenomenon are discussed.

  6. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  7. Myeloid cell-derived HIF attenuates inflammation in UUO-induced kidney injury

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P.; Unger, Travis L.; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H.

    2012-01-01

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO2 plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type-specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, while activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with down-regulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in non-injured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury. PMID:22490864

  8. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  9. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    Science.gov (United States)

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.

  10. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells.

    Science.gov (United States)

    De Henau, Olivier; Rausch, Matthew; Winkler, David; Campesato, Luis Felipe; Liu, Cailian; Cymerman, Daniel Hirschhorn; Budhu, Sadna; Ghosh, Arnab; Pink, Melissa; Tchaicha, Jeremy; Douglas, Mark; Tibbitts, Thomas; Sharma, Sujata; Proctor, Jennifer; Kosmider, Nicole; White, Kerry; Stern, Howard; Soglia, John; Adams, Julian; Palombella, Vito J; McGovern, Karen; Kutok, Jeffery L; Wolchok, Jedd D; Merghoub, Taha

    2016-11-17

    Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.

  11. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology.

    Science.gov (United States)

    Husain, Zaheed; Seth, Pankaj; Sukhatme, Vikas P

    2013-11-01

    Many malignant cells produce increased amounts of lactate, which promotes the development of myeloid-derived suppressor cells (MDSCs). MDSCs, lactate, and a low pH in the tumor microenvironment inhibit the function of natural killer (NK) cells and T lymphocytes, hence allowing for disease progression. Ketogenic diets can deplete tumor-bearing animals from MDSCs and regulatory T cells, thereby improving their immunological profile.

  12. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    Science.gov (United States)

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  13. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly.

    Science.gov (United States)

    Serafini, Paolo

    2013-12-01

    Myeloid derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors, are recognized as a key element in tumor escape and progression. The importance of MDSCs in human malignancies has been demonstrated in recent years, and new approaches targeting their suppressive/tolerogenic action are currently being tested in both preclinical model and clinical trials. However, emerging evidence suggests that MDSCs may play a prominent role as regulator of the physiologic, the chronic, and the pathologic immune responses. This review will focus on the biology of MDSC in light of these new findings and the possible role of this myeloid population not only in the progression of the tumor but also in its initiation.

  14. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    R.M. Determann; M. Weisfelt; J. de Gans; A. van der Ende; M.J. Schultz; D. van de Beek

    2006-01-01

    Objective: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. Design: Retrospective study of diagnostic accuracy. Setting and patients: CSF was coll

  15. The expression of PML in chronic myeloid leukemia and effect on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    吴洁

    2013-01-01

    Objective To investigate whether PML is expressed differently in chronic myeloid leukemia (CML) patients and healthy controls,then explore the effect of PML on proliferation in leukemia cell lines K562.Methods Realtime PCR was used to detect the PML expression in

  16. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy

    NARCIS (Netherlands)

    Draghiciu, Oana; Lubbers, Joyce; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and ac

  17. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Science.gov (United States)

    Evans, Vanessa A; Kumar, Nitasha; Filali, Ali; Procopio, Francesco A; Yegorov, Oleg; Goulet, Jean-Philippe; Saleh, Suha; Haddad, Elias K; da Fonseca Pereira, Candida; Ellenberg, Paula C; Sekaly, Rafick-Pierre; Cameron, Paul U; Lewin, Sharon R

    2013-01-01

    Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.

  18. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Vanessa A Evans

    Full Text Available Latently infected resting CD4(+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+ T cells and syngeneic myeloid dendritic cells (mDC can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+ T cells. Gene expression in non-proliferating CD4(+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+ T cells, which is predominantly mediated through signalling during DC-T cell contact.

  19. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, Julie A.; Huang, Tao; Balazs, Mercedesz; Barbosa, James; Barck, Kai H.; Bravo, Brandon J.; Carano, Richard A.D.; Darrow, James; Davies, Douglas R.; DeForge, Laura E.; Diehl, Lauri; Ferrando, Ronald; Gallion, Steven L.; Giannetti, Anthony M.; Gribling, Peter; Hurez, Vincent; Hymowitz, Sarah G.; Jones, Randall; Kropf, Jeffrey E.; Lee, Wyne P.; Maciejewski, Patricia M.; Mitchell, Scott A.; Rong, Hong; Staker, Bart L.; Whitney, J. Andrew; Yeh, Sherry; Young, Wendy B.; Yu, Christine; Zhang, Juan; Reif, Karin; Currie, Kevin S. (CGI); (Emerald); (Genentech)

    2011-09-20

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes Fc{gamma}RIII-induced TNF{alpha}, IL-1{beta} and IL-6 production. Accordingly, in myeloid- and Fc{gamma}R-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.

  20. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Mahban Irandoust

    Full Text Available BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.

  1. Engagement of SIRPα Inhibits Growth and Induces Programmed Cell Death in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Hubeek, Isabelle; van Beek, Ellen M.; Schornagel, Karin; Broekhuizen, Aart J. F.; Akyuz, Mercan; van de Loosdrecht, Arjan A.; Delwel, Ruud; Valk, Peter J.; Sonneveld, Edwin; Kearns, Pamela; Creutzig, Ursula; Reinhardt, Dirk; de Bont, Eveline S. J. M.; Coenen, Eva A.; van den Heuvel-Eibrink, Marry M.; Zwaan, C. Michel; Kaspers, Gertjan J. L.; Cloos, Jacqueline; van den Berg, Timo K.

    2013-01-01

    Background Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML) cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα) on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. Design and Methods We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. Results By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0–M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. Conclusions Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML. PMID:23320069

  2. Blood myeloid and lymphoid dendritic cells reflect Th1/Th2 balance in sarcoidosis and extrinsic allergic alveolitis.

    Science.gov (United States)

    Buczkowski, Jarosław; Krawczyk, Paweł; Chocholska, Sylwia; Tabarkiewicz, Jacek; Kieszko, Robert; Michnar, Marek; Milanowski, Janusz; Roliński, Jacek

    2003-01-01

    Dendritic cells play a specific regulatory role in the immune system. In this paper, the significance of myeloid and lymphoid dendritic cells in sarcoidosis and extrinsic allergic alveolitis (EAA) was evaluated. Myeloid dendritic cells are connected with Th1 type of immunological response, whereas lymphoid ones--with Th2 type. The latest findings indicate that both diseases are characterized by serious disturbances of Th1/Th2 response to Th1 dominance. Our studies seem to confirm these suggestions. In the peripheral blood of patients with sarcoidosis as well as with EAA, myeloid dendritic cells outnumbered lymphoid ones.

  3. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Schuster, Mikkel B; Bereshchenko, Oksana

    2008-01-01

    Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p...... penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML....

  4. Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; Sachiko Ito; Naomi Nishio; Hengyi Xiao; Rong Zhang; Haruhiko Suzuki; Yayoi Okawa; Toyoaki Murohara; Ken-ichi Isobe

    2011-01-01

    If induced pluripotent stem (iPS) cells are to be used to treat damaged tissues or repair organs in elderly patients, it will be necessaryto establish iPS cells from their tissues. To determine the feasibility of using this technology with elderly patients, we asked if itwas indeed possible to establish iPS cells from the bone marrow (BM) of aged mice. BM cells from aged C57BL/6 mice carrying thegreen fluorescence protein (GFP) gene were cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for 4 days.Four factors (Oct3/4, Sox2, Klf4 and c-Myc) were introduced into the BM-derived myeloid (BM-M) cells. The efficiency of generating iPS cells from aged BM cultured in GM-CSF was low. However, we succeeded in obtaining BM-M-iPS cells from aged C57BL/6 mice,which carried GFP. Our BM-M-iPS cells expressed SSEA-1 and Pou5f1 and were positive for alkaline phosphatase staining. The iPScells did make teratoma with three germ layers following injection into syngeneic C57BL/6 mice, and can be differentiated to threegerm layers in vitro. By co-culturing with OP9, the BM-M-iPS cells can be differentiated to the myeloid lineage. The differentiated BM-M-iPS cells proliferated well in the presence of GM-CSF, and lost expression of Nanog and Pou5f1, at least in part, due to methylation of their promoters. On the contrary, Tnf and Il1b gene expression was upregulated and their promoters were hypornethylated.

  5. HEBAlt enhances the T-cell potential of fetal myeloid-biased precursors.

    Science.gov (United States)

    Braunstein, Marsela; Rajkumar, Paula; Claus, Carol L; Vaccarelli, Giovanna; Moore, Amanda J; Wang, Duncheng; Anderson, Michele K

    2010-12-01

    Hematopoiesis is controlled by the interplay between transcription factors and environmental signals. One of the primary determinants of the T-lineage choice is Delta-like (DL)-Notch signaling, which promotes T-cell development and inhibits B-cell development. We have found that the transcription factor HEBAlt is up-regulated in early hematopoietic precursors in response to DL-Notch signaling and that it can promote early T-cell development. Here, we identified a population of lineage-negative Sca-1⁻c-kit(+) (LK) cells in the mouse fetal liver that rapidly gave rise to myeloid cells and B cells but exhibited very little T-cell potential. However, forced expression of HEBAlt in these precursors restored their ability to develop into T cells. We also showed that Ikaros and Notch1 are up-regulated in response to HEBAlt over-expression and that activated Notch1 enhances the ability of LK cells to enter the T-cell lineage. Furthermore, the myeloid transcription factor C/EBPα is down-regulated in response to HEBAlt. We therefore propose that HEBAlt plays a role in the network that enforces the T-lineage fate and limits myeloid fate during hematopoiesis.

  6. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  7. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.

  8. Population trends of large non-migratory herbivores and livestock in the Masai Mara ecosystem, Kenya, between 1977 and 1997

    NARCIS (Netherlands)

    Ottichilo, W.K.; Leeuw, de J.; Skidmore, A.K.; Prins, H.H.T.

    2000-01-01

    The total of all non-migratory wildlife species in the Masai Mara ecosystem has declined by 58% in the last 20 years. This decline ranges from 49% in small brown antelopes to 72% in medium brown antelopes. In individual wildlife species, the decline ranges from 52% in Grant's gazelle to 88% in the w

  9. Population trends of large non-migratory herbivores and livestock in the Masai Mara ecosystem, Kenya, between 1977 and 1997

    NARCIS (Netherlands)

    Ottichilo, W.K.; Leeuw, de J.; Skidmore, A.K.; Prins, H.H.T.

    2000-01-01

    The total of all non-migratory wildlife species in the Masai Mara ecosystem has declined by 58% in the last 20 years. This decline ranges from 49% in small brown antelopes to 72% in medium brown antelopes. In individual wildlife species, the decline ranges from 52% in Grant's gazelle to 88% in the

  10. Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines.

    Science.gov (United States)

    Poschke, I; Mao, Y; Adamson, L; Salazar-Onfray, F; Masucci, G; Kiessling, R

    2012-06-01

    Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR-/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when 'pathological' frequencies of >50% CD14+HLA-DR- cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR- cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR- population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR- cells were present in the starting culture, their removal could be advisable.

  11. Alloreactive natural killer cells for the treatment of acute myeloid leukemia: from stem cell transplantation to adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Loredana eRuggeri

    2015-10-01

    Full Text Available Natural killer cells express activating and inhibitory receptors which recognize MHC class I alleles, termed Killer cell Immunoglobulin-like Receptors (KIRs. Preclinical and clinical data from haploidentical T-cell depleted stem cell transplantation have demonstrated that alloreactive KIR-L mismatched natural killer cells play a major role as effectors against acute myeloid leukemia. Outside the transplantation setting, several reports have proven the safety and feasibility of natural killer cell infusion in acute myeloid leukemia patients and, in some cases, provided evidence that transferred NK cells are functionally alloreactive and may have a role in disease control. Aim of the present work is to briefly summarize the most recent advances in the field by moving from the first preclinical and clinical demonstration of donor NK alloreactivity in the transplantation setting to the most recent attempts of exploiting the use of alloreactive NK cell infusion as a means of adoptive immunotherapy against acute myeloid leukemia. Altogether, these data highlight the pivotal role of NK cells for the development of novel immunological approaches in the clinical management of acute myeloid leukemia.

  12. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, Julie A; Huang, Tao; Balazs, Mercedesz; Barbosa, James; Barck, Kai H; Bravo, Brandon J; Carano, Richard A.D.; Darrow, James; Davies, Douglas R; DeForge, Laura E; Diehl, Lauri; Ferrando, Ronald; Gallion, Steven L; Giannetti, Anthony M; Gribling, Peter; Hurez, Vincent; Hymowitz, Sarah G; Jones, Randall; Kropf, Jeffrey E; Lee, Wyne P; Maciejewski, Patricia M; Mitchell, Scott A; Rong, Hong; Staker, Bart L; Whitney, J Andrew; Yeh, Sherry; Young, Wendy B; Yu, Christine; Zhang, Juan; Reif, Karin; Currie, Kevin S [CGI; (Emerald); (Genentech)

    2011-08-29

    Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor–dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1β and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell– or myeloid cell–driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.

  13. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy.

    Science.gov (United States)

    Wang, L D; Rao, T N; Rowe, R G; Nguyen, P T; Sullivan, J L; Pearson, D S; Doulatov, S; Wu, L; Lindsley, R C; Zhu, H; DeAngelo, D J; Daley, G Q; Wagers, A J

    2015-06-01

    Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

  14. MicroRNA-150 Expression Induces Myeloid Differentiation of Human Acute Leukemia Cells and Normal Hematopoietic Progenitors

    Science.gov (United States)

    Morris, Valerie A.; Zhang, Ailin; Yang, Taimei; Stirewalt, Derek L.; Ramamurthy, Ranjani; Meshinchi, Soheil; Oehler, Vivian G.

    2013-01-01

    In acute myeloid leukemia (AML) and blast crisis (BC) chronic myeloid leukemia (CML) normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA) signaling. High-throughput gene expression profiling (GEP) studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells. PMID:24086639

  15. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Valerie A Morris

    Full Text Available In acute myeloid leukemia (AML and blast crisis (BC chronic myeloid leukemia (CML normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA signaling. High-throughput gene expression profiling (GEP studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells.

  16. Myeloid derived suppressor cells and their role in tolerance induction in cancer.

    Science.gov (United States)

    Fujimura, Taku; Mahnke, Karsten; Enk, Alexander H

    2010-07-01

    Myeloid derived suppressor cells (MDSCs) comprise a phenotypically heterogeneous population of cells, which can be found in tumor-bearing mice and in patients with cancer. MDSCs play a central role in the induction of peripheral tolerance. Together with regulatory T cells (Tregs) they promote an immunosuppressive environment in tumor-bearing hosts. The phenotype of MDSCs differs in humans and mice, and the exact mechanisms of their suppressive function are still controversially discussed. In summary, MDSCs are a group of phenotypically heterogeneous cells of myeloid origin that have common biological activities. In this review, we discuss the definition of MDSCs, the proposed mechanisms of expansion and the recruitment and activation of MDSCs, as well as their biological activities in tumorbearing hosts to assess the potential therapeutic applications.

  17. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells.

    Science.gov (United States)

    Norde, Wieger J; Overes, Ingrid M; Maas, Frans; Fredrix, Hanny; Vos, Johanna C M; Kester, Michel G D; van der Voort, Robbert; Jedema, Inge; Falkenburg, J H Frederik; Schattenberg, Anton V; de Witte, Theo M; Dolstra, Harry

    2009-03-05

    CD8(+) T cells recognizing minor histocompatibility antigens (MiHAs) on leukemic stem and progenitor cells play a pivotal role in effective graft-versus-leukemia reactivity after allogeneic stem cell transplantation (SCT). Previously, we identified a hematopoiesis-restricted MiHA, designated LRH-1, which is presented by HLA-B7 and encoded by the P2X5 purinergic receptor gene. We found that P2X5 is significantly expressed in CD34(+) leukemic subpopulations from chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) patients. Here, we demonstrate that LRH-1-specific CD8(+) T-cell responses are frequently induced in myeloid leukemia patients following donor lymphocyte infusions. Patients with high percentages of circulating LRH-1-specific CD8(+) T cells had no or only mild graft-versus-host disease. Functional analysis showed that LRH-1-specific cytotoxic T lymphocytes (CTLs) isolated from 2 different patients efficiently target LRH-1-positive leukemic CD34(+) progenitor cells from both CML and AML patients, whereas mature CML cells are only marginally lysed due to down-regulation of P2X5. Furthermore, we observed that relative resistance to LRH-1 CTL-mediated cell death due to elevated levels of antiapoptotic XIAP could be overcome by IFN-gamma prestimulation and increased CTL-target ratios. These findings provide a rationale for use of LRH-1 as immunotherapeutic target antigen to treat residual or persisting myeloid malignancies after allogeneic SCT.

  18. Nanoparticle Systems Modulating Myeloid-Derived Suppressor Cells for Cancer Immunotherapy.

    Science.gov (United States)

    Wilkerson, Avia; Kim, Julian; Huang, Alex Y; Zhang, Mei

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are preferentially expanded in cancer. They arise from myeloid progenitor cells that do not differentiate into mature dendritic cells (DCs), granulocytes, or macrophages, and are rather thought to play a pivotal role in immune escape and cancer progression. MDSCs are characterized by the ability to suppress T cell proliferation and cytotoxicity, inhibit natural killer T (NKT) cell activation, and induce the differentiation and expansion of regulatory T cells (Treg). MDSC levels have been shown to correlate negatively with prognosis and overall survival of patients with cancers of various types and stages. The role of MDSCs in cancer progression represents a promising target for effective cancer immunotherapy. In this review, we discuss the mechanisms of MDSC functions, their influence on tumor progression and metastasis, and finally focus on up to date nanoparticle approaches that target and antagonize MDSCs in tumor-bearing hosts. The development of multifunctional nanoparticle systems for effective imaging, assessment and manipulation of MDSCs will represent strategic theranostic innovations that may improve cancer staging, therapeutic outcomes, and overall patient survival. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells.

    Science.gov (United States)

    Gabig, T G; Mantel, P L; Rosli, R; Crean, C D

    1994-11-25

    To identify genes mediating programmed cell death triggered by interleukin 3 (IL-3)-deprivation of myeloid cells, the IL-3-dependent murine myeloid cell line FDCP-1 was used to screen a mammalian cell expression library for cDNAs that would promote survival following withdrawal of IL-3. A unique 892-base pair cDNA was cloned that prevented the programmed cell death response following IL-3 deprivation by causing antisense suppression of an endogenous 2.4-kilobase (kb) mRNA. A 2.3-kb cDNA containing the identical 892-base pair over-lapping sequence was cloned that encoded a deduced 371-amino acid protein containing a single Kruppel-type zinc finger and a cluster of 4 cysteine/histidine-rich repeats resembling atypical zinc fingers. The 2.4-kb mRNA was found to be ubiquitously expressed in murine tissues and its abundance in FDCP-1 cells was not altered in response to IL-3 deprivation. Since expression of this 2.4-kb mRNA was a prerequisite for the apoptosis response following IL-3 deprivation, the gene encoding it was named requiem. Requiem is likely to encode a transcription factor required for the apoptosis response following survival factor withdrawal from myeloid cells.

  20. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    Science.gov (United States)

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  1. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    OpenAIRE

    Eriksson, Anna; Österroos, Albin; Hassan, Sadia Bashir; Gullbo, Joachim; Rickardson, Linda; Jarvius, Malin; Nygren, Peter; Fryknäs, Mårten; Höglund, Martin; Larsson, Rolf

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 mu M drug concentration. Only one of these compounds, quinacrine, showed low...

  2. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs

    OpenAIRE

    Sherger Matthew; Kisseberth William; London Cheryl; Olivo-Marston Susan; Papenfuss Tracey L

    2012-01-01

    Abstract Background Myeloid derived suppressor cells (MDSCs) are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines) and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investig...

  3. Induction in myeloid leukemic cells of genes that are expressed in different normal tissues

    OpenAIRE

    2005-01-01

    Using DNA microarray and cluster analysis of expressed genes in a cloned line (M1-t-p53) of myeloid leukemic cells, we have analyzed the expression of genes that are preferentially expressed in different normal tissues. Clustering of 547 highly expressed genes in these leukemic cells showed 38 genes preferentially expressed in normal hematopoietic tissues and 122 other genes preferentially expressed in different normal non-hematopoietic tissues including neuronal tissues, muscle, liver and te...

  4. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    Science.gov (United States)

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia.

  5. Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying B | Division of Cancer Prevention

    Science.gov (United States)

    DESCRIPTION (provided by applicant): Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying Biomarkers for Early Detection and Risk Assessment. This application addresses Program Announcement PA-09-197: Biomarkers for Early Detection of Hematopoietic Malignancies (R01). The overall aim of this project is to identify novel biomarkers that may be used to diagnose and treat patients with Langerhans Cell Histiocytosis (LCH). LCH occurs with similar frequency as other rare malignancies including Hodgkin's lymphoma and AML. |

  6. [Key molecular mechanisms associated with cell malignant transformation in acute myeloid leukemia].

    Science.gov (United States)

    Orlova, N N; Lebedev, T D; Spirin, P V; Prassolov, V S

    2016-01-01

    Cancer, along with cardiovascular disorders, is one of the most important problems of healthcare. Pathologies of the hematopoietic system are the most prevalent in patients under 30 years of age, including acute myeloid leukemia (AML), which is widespread and difficult to treat. The review considers the mechanisms that play a significant role in AML cell malignant transformation and shows the contributions of certain genes to both remission and resistance of AML cells to various treatments.

  7. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  8. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Science.gov (United States)

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  9. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  10. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function.

    Science.gov (United States)

    Sahakian, Eva; Powers, John J; Chen, Jie; Deng, Susan L; Cheng, Fengdong; Distler, Allison; Woods, David M; Rock-Klotz, Jennifer; Sodre, Andressa L; Youn, Je-In; Woan, Karrune V; Villagra, Alejandro; Gabrilovich, Dmitry; Sotomayor, Eduardo M; Pinilla-Ibarz, Javier

    2015-02-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.

  11. Treating Chronic Myeloid Leukemia by Phase

    Science.gov (United States)

    ... Myeloid Leukemia (CML) Treating Chronic Myeloid Leukemia Treating Chronic Myeloid Leukemia by Phase Treatment options for people ... a stem cell donor with matching tissue type. Chronic phase The standard treatment for chronic phase CML ...

  12. Cyanobacteria from terrestrial and marine sources contain apoptogens able to overcome chemoresistance in acute myeloid leukemia cells

    OpenAIRE

    2014-01-01

    In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemi...

  13. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells.

    Science.gov (United States)

    Chung, Jin-Sung; Tamura, Kyoichi; Akiyoshi, Hideo; Cruz, Ponciano D; Ariizumi, Kiyoshi

    2014-03-15

    Having discovered that the dendritic cell (DC)-associated heparan sulfate proteoglycan-dependent integrin ligand (DC-HIL) receptor on APCs inhibits T cell activation by binding to syndecan-4 (SD-4) on T cells, we hypothesized that the DC-HIL/SD-4 pathway may regulate autoimmune responses. Using experimental autoimmune encephalomyelitis (EAE) as a disease model, we noted an increase in SD-4(+) T cells in lymphoid organs of wild-type (WT) mice immunized for EAE. The autoimmune disease was also more severely induced (clinically, histologically, and immunophenotypically) in mice knocked out for SD-4 compared with WT cohorts. Moreover, infusion of SD-4(-/-) naive T cells during EAE induction into Rag2(-/-) mice also led to increased severity of EAE in these animals. Similar to SD-4 on T cells, DC-HIL expression was upregulated on myeloid cells during EAE induction, with CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) as the most expanded population and most potent T cell suppressor among the myeloid cells examined. The critical role of DC-HIL was supported by DC-HIL gene deletion or anti-DC-HIL treatment, which abrogated T cell suppressor activity of MDSCs, and also by DC-HIL activation inducing MDSC expression of IFN-γ, NO, and reactive oxygen species. Akin to SD-4(-/-) mice, DC-HIL(-/-) mice manifested exacerbated EAE. Adoptive transfer of MDSCs from EAE-affected WT mice into DC-HIL(-/-) mice reduced EAE severity to the level of EAE-immunized WT mice, an outcome that was precluded by depleting DC-HIL(+) cells from the infused MDSC preparation. Our findings indicate that the DC-HIL/SD-4 pathway regulates autoimmune responses by mediating the T cell suppressor function of MDSCs.

  14. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    Science.gov (United States)

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  15. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  16. Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Science.gov (United States)

    Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.

    2014-01-01

    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target. PMID:24370551

  17. Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology.

    Science.gov (United States)

    Sica, Antonio; Strauss, Laura

    2017-08-01

    Over the last decade, a heterogeneous population of immature myeloid cells with major regulatory functions has been described in cancer and other pathologic conditions and ultimately defined as MDSCs. Most of the early work on the origins and functions of MDSCs has been in murine and human tumor bearers in which MDSCs are known to be immunosuppressive and to result in both reduced immune surveillance and antitumor cytotoxicity. More recent studies, however, suggest that expansion of these immature myeloid cells may be linked to most, if not all, chronic and acute inflammatory processes. The universal expansion to inflammatory stimuli of MDSCs suggests that these cells may be more of a normal component of the inflammatory response (emergency myelopoiesis) than simply a pathologic response to a growing tumor. Instead of an adverse immunosuppressive response, expansion of these immature myeloid cell populations may result from a complex balance between increased immune surveillance and dampened adaptive immune responses that are common to many inflammatory responses. Within this scenario, new pathways of metabolic reprogramming are emerging as drivers of MDSC differentiation and functions in cancer and inflammatory disorders, crucially linking metabolic syndrome to inflammatory processes. © Society for Leukocyte Biology.

  18. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    Science.gov (United States)

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo.

  19. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects.

    Directory of Open Access Journals (Sweden)

    Dror Luger

    Full Text Available The role of myeloid derived suppressor cells (MDSCs in promoting tumorigenesis is well-established, and significant effort is being made to further characterize surface markers on MDSCs both for better diagnosis and as potential targets for therapy. Here we show that the B cell receptor adaptor molecule CD79a is unexpectedly expressed on immature bone marrow myeloid cells, and is upregulated on MDSCs generated in multiple different mouse models of metastatic but not non-metastatic cancer. CD79a on MDSCs is upregulated and activated in response to soluble factors secreted by tumor cells. Activation of CD79a on mouse MDSCs, by crosslinking with a specific antibody, maintained their immature phenotype (CD11b+Gr1+, enhanced their migration, increased their suppressive effect on T cell proliferation, and increased secretion of pro-tumorigenic cytokines such as IL-6 and CCL22. Furthermore, crosslinking CD79a on myeloid cells activated signaling through Syk, BLNK, ERK and STAT3 phosphorylation. In vivo, CD79+ myeloid cells showed enhanced ability to promote primary tumor growth and metastasis. Finally we demonstrate that CD79a is upregulated on circulating myeloid cells from lung cancer patients, and that CD79a+ myeloid cells infiltrate human breast tumors. We propose that CD79a plays a functional role in the tumor promoting effects of myeloid cells, and may represent a novel target for cancer therapy.

  20. Myeloid infection links epithelial and B cell tropisms of Murid Herpesvirus-4.

    Directory of Open Access Journals (Sweden)

    Bruno Frederico

    2012-09-01

    Full Text Available Gamma-herpesviruses persist in lymphocytes and cause disease by driving their proliferation. Lymphocyte infection is therefore a key pathogenetic event. Murid Herpesvirus-4 (MuHV-4 is a rhadinovirus that like the related Kaposi's Sarcoma-associated Herpesvirus persists in B cells in vivo yet infects them poorly in vitro. Here we used MuHV-4 to understand how virion tropism sets the path to lymphocyte colonization. Virions that were highly infectious in vivo showed a severe post-binding block to B cell infection. Host entry was accordingly an epithelial infection and B cell infection a secondary event. Macrophage infection by cell-free virions was also poor, but improved markedly when virion binding improved or when macrophages were co-cultured with infected fibroblasts. Under the same conditions B cell infection remained poor; it improved only when virions came from macrophages. This reflected better cell penetration and correlated with antigenic changes in the virion fusion complex. Macrophages were seen to contact acutely infected epithelial cells, and cre/lox-based virus tagging showed that almost all the virus recovered from lymphoid tissue had passed through lysM(+ and CD11c(+ myeloid cells. Thus MuHV-4 reached B cells in 3 distinct stages: incoming virions infected epithelial cells; infection then passed to myeloid cells; glycoprotein changes then allowed B cell infection. These data identify new complexity in rhadinovirus infection and potentially also new vulnerability to intervention.

  1. Myeloid infection links epithelial and B cell tropisms of Murid Herpesvirus-4.

    Science.gov (United States)

    Frederico, Bruno; Milho, Ricardo; May, Janet S; Gillet, Laurent; Stevenson, Philip G

    2012-09-01

    Gamma-herpesviruses persist in lymphocytes and cause disease by driving their proliferation. Lymphocyte infection is therefore a key pathogenetic event. Murid Herpesvirus-4 (MuHV-4) is a rhadinovirus that like the related Kaposi's Sarcoma-associated Herpesvirus persists in B cells in vivo yet infects them poorly in vitro. Here we used MuHV-4 to understand how virion tropism sets the path to lymphocyte colonization. Virions that were highly infectious in vivo showed a severe post-binding block to B cell infection. Host entry was accordingly an epithelial infection and B cell infection a secondary event. Macrophage infection by cell-free virions was also poor, but improved markedly when virion binding improved or when macrophages were co-cultured with infected fibroblasts. Under the same conditions B cell infection remained poor; it improved only when virions came from macrophages. This reflected better cell penetration and correlated with antigenic changes in the virion fusion complex. Macrophages were seen to contact acutely infected epithelial cells, and cre/lox-based virus tagging showed that almost all the virus recovered from lymphoid tissue had passed through lysM(+) and CD11c(+) myeloid cells. Thus MuHV-4 reached B cells in 3 distinct stages: incoming virions infected epithelial cells; infection then passed to myeloid cells; glycoprotein changes then allowed B cell infection. These data identify new complexity in rhadinovirus infection and potentially also new vulnerability to intervention.

  2. Small?molecule Hedgehog inhibitor attenuates the leukemia?initiation potential of acute myeloid leukemia cells

    OpenAIRE

    Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

    2016-01-01

    Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF?04449913 (PF?913) is a selective, small?molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof?of?concept and mechanism of action of PF?913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signali...

  3. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  4. The normal flora may contribute to the quantitative preponderance of myeloid cells under physiological conditions.

    Science.gov (United States)

    Liang, Shi; LiHua, Hu

    2011-01-01

    Under physiological conditions, the innate immune cells derived from myeloid lineage absolutely outnumber the lymphoid cells. At present, two theories are attributed to the maintenance of haemopoiesis: the asymmetric cell division and the bone marrow hematopoietic microenvironment or "niche". However, the former only explains the self-renewal of haemopoietic stem cell (HSC) and the start of haemopoietic differentiation but fails to address the inducers of cell fate decisions; the latter has to admit that the hematopoietic cytokines, despite their significance in the maintenance of haemopoiesis, have no specific effect on lineage commitment. Given these flaws, the advantageous mechanism of myeloid haemopoiesis has not yet been uncovered in the current theories. The discoveries that bacterial components (lipopolysaccharide, LPS) and intestinal decontamination affect the mobilization of HSC trigger the interest in normal flora, which together with their components may have an effect on haemopoiesis. In the experiments in dogs and mice, researchers documented that the generation of myeloid cells has undergone changes in the bone marrow and periphery when antibiotics are used to regulate the normal intestinal flora and the concentration of its components. However, the same changes are not involved in lymphoid cells. Therefore, we hypothesize that in human body normal flora and its components are a driving force to maintain myeloid haemopoiesis under physiological conditions. To account for the selectiveness in haemopoiesis, these facts should be taken into consideration, such as HSC and mesenchymal stem cells (MSC) functionally expressed pattern recognition receptors (PRR), and both of them can self-migrate or be recruited by normal flora or its components into periphery. Dynamically monitoring the myeloid haemopoiesis may provide an important complementary program that precludes the abuse of antibiotics, which prevents diseases triggered by the imbalance of normal

  5. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim;

    2005-01-01

    CCAAT/enhancer binding protein (C/EBP)alpha is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which......, accumulation of myeloblasts and promyelocytes, and expansion of myeloid progenitor populations--all characteristics of AML. Circulating myeloblasts and hepatic leukocyte infiltration were observed, but thrombocytopenia, anemia, and elevated leukocyte count--normally associated with AML-were absent...

  6. A20 (Tnfaip3 deficiency in myeloid cells protects against influenza A virus infection.

    Directory of Open Access Journals (Sweden)

    Jonathan Maelfait

    Full Text Available The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.

  7. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.

  8. Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation.

    Directory of Open Access Journals (Sweden)

    Shenghui Zhang

    Full Text Available Acute myeloid leukemia (AML is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.

  9. The Role of Myeloid-Derived Suppressor Cells in Immune Ontogeny

    Science.gov (United States)

    Gantt, Soren; Gervassi, Ana; Jaspan, Heather; Horton, Helen

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections. PMID:25165466

  10. The role of myeloid-derived suppressor cells in immune ontogeny

    Directory of Open Access Journals (Sweden)

    Soren eGantt

    2014-08-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow, and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.

  11. The role of myeloid-derived suppressor cells in immune ontogeny.

    Science.gov (United States)

    Gantt, Soren; Gervassi, Ana; Jaspan, Heather; Horton, Helen

    2014-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of granulocytic or monocytic cells that suppress innate as well as adaptive immune responses. In healthy adults, immature myeloid cells differentiate into macrophages, dendritic cells, and granulocytes in the bone marrow and MDSC are rarely detected in peripheral blood. However, in certain pathologies, in particular malignancies and chronic infection, differentiation of these cells is altered resulting in accumulation of circulating suppressive myeloid cells. MDSC express suppressive factors such as arginase-1, reactive oxygen species, and inducible nitric oxide synthase, which have the ability to inhibit T cell proliferation and cytoxicity, induce the expansion of regulatory T cells, and block natural killer cell activation. It is increasingly recognized that MDSC alter the immune response to several cancers, and perhaps chronic viral infections, in clinically important ways. In this review, we outline the potential contribution of MDSC to the generation of feto-maternal tolerance and to the ineffective immune responses to many infections and vaccines observed in early post-natal life. Granulocytic MDSC are present in large numbers in pregnant women and in cord blood, and wane rapidly during infancy. Furthermore, cord blood MDSC suppress in vitro T cell and NK responses, suggesting that they may play a significant role in human immune ontogeny. However, there are currently no data that demonstrate in vivo effects of MDSC on feto-maternal tolerance or immune ontogeny. Studies are ongoing to evaluate the functional importance of MDSC, including their effects on control of infection and response to vaccination in infancy. Importantly, several pharmacologic interventions have the potential to reverse MDSC function. Understanding the role of MDSC in infant ontogeny and their mechanisms of action could lead to interventions that reduce mortality due to early-life infections.

  12. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  13. Clinical activity of azacitidine in patients who relapse after allogeneic stem cell transplantation for acute myeloid leukemia

    DEFF Research Database (Denmark)

    Craddock, Charles; Labopin, Myriam; Robin, Marie

    2016-01-01

    Disease relapse is the most common cause of treatment failure after allogeneic stem cell transplantation for acute myeloid leukemia and myelodysplastic syndromes, yet treatment options for such patients remain extremely limited. Azacitidine is an important new therapy in high-risk myelodysplastic...... syndromes and acute myeloid leukemia but its role in patients who relapse post allograft has not been defined. We studied the tolerability and activity of azacitidine in 181 patients who relapsed after an allograft for acute myeloid leukemia (n=116) or myelodysplastic syndromes (n=65). Sixty-nine patients...... conclude that azacitidine represents an important new therapy in selected patients with acute myeloid leukemia/myelodysplastic syndromes who relapse after allogeneic stem cell transplantation. Prospective studies to confirm optimal treatment options in this challenging patient population are required....

  14. Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Coukos George

    2009-06-01

    Full Text Available Abstract Background Murine studies suggest that myeloid cells such as vascular leukocytes (VLC and Tie2+ monocytes play a critical role in tumor angiogenesis and vasculogenesis. Myeloid cells are a primary cause of resistance to anti-VEGF therapy. The elimination of these cells from the tumor microenvironment significantly restricts tumor growth in both spontaneous and xenograft murine tumor models. Thus animal studies indicate that myeloid cells are potential therapeutic targets for solid tumor therapy. Abundant VLC and Tie2+ monocytes have been reported in human cancer. Unfortunately, the importance of VLC in human cancer growth remains untested as there are no confirmed therapeutics to target human VLC. Methods We used FACS to analyze VLC in ovarian and non-ovarian tumors, and characterize the relationship of VLC and Tie2-monocytes. We performed qRT-PCR and FACS on human VLC to assess the expression of the CD52 antigen, the target of the immunotherapeutic Alemtuzumab. We assessed Alemtuzumab's ability to induce complement-mediated VLC killing in vitro and in human tumor ascites. Finally we assessed the impact of anti-CD52 immuno-toxin therapy on murine ovarian tumor growth. Results Human VLC are present in ovarian and non-ovarian tumors. The majority of VLC appear to be Tie2+ monocytes. VLC and Tie2+ monocytes express high levels of CD52, the target of the immunotherapeutic Alemtuzumab. Alemtuzumab potently induces complement-mediated lysis of VLC in vitro and ex-vivo in ovarian tumor ascites. Anti-CD52 immunotherapy targeting VLC restricts tumor angiogenesis and growth in murine ovarian cancer. Conclusion These studies confirm VLC/myeloid cells as therapeutic targets in ovarian cancer. Our data provide critical pre-clinical evidence supporting the use of Alemtuzumab in clinical trials to test its efficacy as an anti-myeloid cell antiangiogenic therapeutic in ovarian cancer. The identification of an FDA approved anti-VLC agent with a history

  15. Non-migratory breeding by isolated green sea turtles ( Chelonia mydas) in the Indian Ocean: biological and conservation implications

    Science.gov (United States)

    Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.

    2008-04-01

    Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  16. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    2010-02-01

    Full Text Available Immunotherapy using regulatory T cells (Treg has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD, allogeneic human DC conditioned with Tregs suppressed human T cell activation and completely abrogated posttransplant lethality. Tregs induced programmed death ligand-1 (PD-L1 expression on Treg-conditioned DC; subsequently, Treg-conditioned DC induced PD-L1 expression in vivo on effector T cells. PD-L1 blockade reversed Treg-conditioned DC function in vitro and in vivo, thereby demonstrating that human Tregs can promote immune suppression via DC modulation through PD-L1 up-regulation. This identification of a human Treg downstream cellular effector (DC and molecular mechanism (PD-L1 will facilitate the rational design of clinical trials to modulate alloreactivity.

  17. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation.

    OpenAIRE

    2009-01-01

    International audience; BACKGROUND: After successful treatment of malignant diseases, therapy-related myelodysplastic syndrome and acute myeloid leukemia have emerged as significant problems. DESIGN AND METHODS: The aim of this study was to investigate outcome and risk factors in patients with therapy-related myelodysplastic syndrome or acute myeloid leukemia who underwent allogeneic stem cell transplantation. Between 1981 and 2006, 461 patients with therapy-related myelodysplastic syndrome o...

  18. Gr-1+CD11b+ myeloid cells efficiently home to site of injury after intravenous administration and enhance diabetic wound healing by neoangiogenesis.

    Science.gov (United States)

    Tong, Xiaozhe; Lv, Gang; Huang, Jianhua; Min, Yongfen; Yang, Li; Lin, Pengnian Charles

    2014-06-01

    Vascularization is an important factor that affects diabetic wound healing. There is increasing evidence that myeloid cell lineages play a role in neovascularization. In this study, the efficiency of Gr-1+CD11b+ myeloid cells to home to the site of injury and enhance diabetic wound healing by neoangiogenesis after intravenous administration was investigated. Gr-1+CD11b+ myeloid cells were injected into tail vein after establishment of dorsal window chamber, hindlimb ischaemia and ear-punch injury in diabetic or non-diabetic mice. The Gr-1+CD11b+ myeloid cells efficiently homed to the site of injury after intravenous administration and increased neoangiogenesis. The chemokine receptor type 4 (CXCR4) is robustly expressed by Gr-1+CD11b+ myeloid cells. Inhibition of CXCR4 decreases the homing ability of Gr-1+CD11b+ myeloid cells to the site of injury, which indicates that the CXCR4/SDF-1 axis plays an important role in the homing of Gr-1+CD11b+ myeloid cells to the site of injury. In addition, Gr-1+CD11b+ myeloid cells were found to improve blood flow recovery of ischaemic limb and enhance wound healing in diabetic mice by neoangiogenesis after intravenous administration. Taken together, the results of this study suggest that Gr-1+CD11b+ myeloid cells may serve as a potential cell therapy for diabetic wound healing.

  19. MBA-induced differentiation of myeloid leukemic cell lines is associated with altered G1 cell cycle regulators and related genes

    Institute of Scientific and Technical Information of China (English)

    王钦红; 谢毅; 范华骅

    2004-01-01

    @@The proliferation and differentiation of hematopoietic cells can be regulated by a number of physiological agents including hexamethylene bisacetamide (HMBA). Clinically, HMBA has been used for the treatment of acute myeloid leukemia and myelodysplastic syndrome.1 However, the mechanism of the effect of HMBA on the differentiation of myeloid leukemic cells is largely unkown. Up to now, related reports have not been found. We used HL-60 and U937 cell lines to study the effect of HMBA on the differentiation of myeloid leukemic cells and to explore the possible mechanism.

  20. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection

    Science.gov (United States)

    Heim, Cortney E.; Vidlak, Debbie; Kielian, Tammy

    2015-01-01

    Staphylococcus aureus is known to establish biofilms on medical devices. We recently demonstrated that Ly6GhighLy6C+ myeloid-derived suppressor cells are critical for allowing S. aureus biofilms to subvert immune-mediated clearance; however, the mechanisms whereby myeloid-derived suppressor cells promote biofilm persistence remain unknown. Interleukin-10 expression was significantly increased in a mouse model of S. aureus orthopedic implant biofilm infection with kinetics that mirrored myeloid-derived suppressor cell recruitment. Because myeloid-derived suppressor cells produce interleukin-10, we explored whether it was involved in orchestrating the nonproductive immune response that facilitates biofilm formation. Analysis of interleukin-10–green fluorescent protein reporter mice revealed that Ly6GhighLy6C+ myeloid-derived suppressor cells were the main source of interleukin-10 during the first 2 wk of biofilm infection, whereas monocytes had negligible interleukin-10 expression until day 14. Myeloid-derived suppressor cell influx into implant-associated tissues was significantly reduced in interleukin-10 knockout mice at day 14 postinfection, concomitant with increased monocyte and macrophage infiltrates that displayed enhanced proinflammatory gene expression. Reduced myeloid-derived suppressor cell recruitment facilitated bacterial clearance, as revealed by significant decreases in S. aureus burdens in the knee joint, surrounding soft tissue, and femur of interleukin-10 knockout mice. Adoptive transfer of interleukin-10 wild-type myeloid-derived suppressor cells into S. aureus–infected interleukin-10 knockout mice restored the local biofilm-permissive environment, as evidenced by increased bacterial burdens and inhibition of monocyte proinflammatory activity. These effects were both interleukin-10-dependent and interleukin-10-independent because myeloid-derived suppressor cell–derived interleukin-10 was required for promoting biofilm growth and anti

  1. Mechanisms underlying parallel reductions in aerobic capacity in non-migratory threespine stickleback (Gasterosteus aculeatus) populations.

    Science.gov (United States)

    Dalziel, Anne C; Ou, Michelle; Schulte, Patricia M

    2012-03-01

    Non-migratory, stream-resident populations of threespine stickleback, Gasterosteus aculeatus, have a lower maximum oxygen consumption ((O(2),max)) than ancestral migratory marine populations. Here, we examined laboratory-bred stream-resident and marine crosses from two locations (West and Bonsall Creeks) to determine which steps in the oxygen transport and utilization cascade evolved in conjunction with, and thus have the potential to contribute to, these differences in (O(2),max). We found that West Creek stream-resident fish have larger muscle fibres (not measured in Bonsall fish), Bonsall Creek stream-resident fish have smaller ventricles, and both stream-resident populations have evolved smaller pectoral adductor and abductor muscles. However, many steps of the oxygen cascade did not evolve in stream-resident populations (gill surface area, hematocrit, mean cellular hemoglobin content and the activities of mitochondrial enzymes per gram ventricle and pectoral muscle), arguing against symmorphosis. We also studied F1 hybrids to determine which traits in the oxygen cascade have a genetic architecture similar to that of (O(2),max). In West Creek, (O(2),max), abductor and adductor size all showed dominance of marine alleles, whereas in Bonsall Creek, (O(2),max) and ventricle mass showed dominance of stream-resident alleles. We also found genetically based differences among marine populations in hematocrit, ventricle mass, pectoral muscle mass and pectoral muscle pyruvate kinase activity. Overall, reductions in pectoral muscle mass evolved in conjunction with reductions in (O(2),max) in both stream-resident populations, but the specific steps in the oxygen cascade that have a genetic basis similar to that of (O(2),max), and are thus predicted to have the largest impact on (O(2),max), differ among populations.

  2. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  3. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis

    Institute of Scientific and Technical Information of China (English)

    Linda; Hammerich; Frank; Tacke

    2015-01-01

    Myeloid derived suppressor cells(MDSC) are a heterogeneous population of immune cells that are potent suppressors of immune responses. MDSC emerge in various compartments in the body, such as blood, bonemarrow or spleen, especially in conditions of cancer, infections or inflammation. MDSC usually express CD11 b, CD33, and low levels of human leukocyte antigen-DR in humans or CD11 b and Gr1(Ly6C/G) in mice, and they can be further divided into granulocytic or monocytic MDSC. The liver is an important organ for MDSC induction and accumulation in hepatic as well as extrahepatic diseases. Different hepatic cells, especially hepatic stellate cells, as well as liver-derived soluble factors, including hepatocyte growth factor and acute phase proteins(SAA, KC), can promote the differentiation of MDSC from myeloid cells. Importantly, hepatic myeloid cells like neutrophils, monocytes and macrophages fulfill essential roles in acute and chronic liver diseases. Recent data from patients with liver diseases and animal models linked MDSC to the pathogenesis of hepatic inflammation, fibrosis and hepatocellular carcinoma(HCC). In settings of acute hepatitis, MDSC can limit immunogenic T cell responses and subsequent tissue injury. In patients with chronic hepatitis C, MDSC increase and may favor viral persistence. Animal models of chronic liver injury, however, have not yet conclusively clarified the involvement of MDSC for hepatic fibrosis. In human HCC and mouse models of liver cancer, MDSC are induced in the tumor environment and suppress anti-tumoral immune responses. Thus, the liver is a primary site of MDSC in vivo, and modulating MDSC functionality might represent a promising novel therapeutic target for liver diseases.

  4. Establishing the flow cytometric assessment of myeloid cells in kidney ischemia/reperfusion injury.

    Science.gov (United States)

    Williams, Timothy M; Wise, Andrea F; Alikhan, Maliha A; Layton, Daniel S; Ricardo, Sharon D

    2014-03-01

    Polychromatic flow cytometry is a powerful tool for assessing populations of cells in the kidney through times of homeostasis, disease and tissue remodeling. In particular, macrophages have been identified as having central roles in these three settings. However, because of the plasticity of myeloid cells it has been difficult to define a specific immunophenotype for these cells in the kidney. This study developed a gating strategy for identifying and assessing monocyte and macrophage subpopulations, along with neutrophils and epithelial cells in the healthy kidney and following ischemia/reperfusion (IR) injury in mice, using antibodies against CD45, CD11b, CD11c, Ly6C, Ly6G, F4/80, CSF-1R (CD115), MHC class II, mannose receptor (MR or CD206), an alternatively activated macrophage marker, and the epithelial cell adhesion marker (EpCAM or CD326). Backgating analysis and assessment of autofluorescence was used to extend the knowledge of various cell types and the changes that occur in the kidney at various time-points post-IR injury. In addition, the impact of enzymatic digestion of kidneys on cell surface markers and cell viability was assessed. Comparisons of kidney myeloid populations were also made with those in the spleen. These results provide a useful reference for future analyses of therapies aimed at modulating inflammation and enhancing endogenous remodeling following kidney injury.

  5. Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease.

    Science.gov (United States)

    Yilmaz, Atilla; Rowley, Anne; Schulte, Danica J; Doherty, Terence M; Schröder, Nicolas W J; Fishbein, Michael C; Kalelkar, Mitra; Cicha, Iwona; Schubert, Katja; Daniel, Werner G; Garlichs, Christoph D; Arditi, Moshe

    2007-08-01

    Emerging evidence implicating the participation of dendritic cells (DCs) and T cells in various vascular inflammatory diseases such as giant cell arteritis, Takayasu's arteritis, and atherosclerosis led us to hypothesize that they might also participate in the pathogenesis of coronary arteritis in Kawasaki disease (KD). Coronary artery specimens from 4 patients with KD and 6 control patients were obtained. Immunohistochemical and computer-assisted histomorphometric analyses were performed to detect all myeloid DCs (S-100(+), fascin(+)), all plasmacytoid DCs (CD123(+)) as well as specific DC subsets (mature myeloid DCs [CD83(+)], myeloid [BDCA-1(+)] and plasmacytoid DC precursors [BDCA-2(+)]), T cells (CD3(+)), and all antigen-presenting cells (HLA-DR(+)). Co-localization of DCs with T cells was assessed using double immunostaining. Significantly more myeloid DCs at a precursor, immature or mature stage were found in coronary lesions of KD patients than in controls. Myeloid DC precursors were distributed equally in the intima and adventitia. Mature myeloid DCs were particularly abundant in the adventitia. There was a significant correlation between mature DCs and HLA-DR expression. Double immunostaining demonstrated frequent contacts between myeloid DCs and T cells in the outer media and adventitia. Plasmacytoid DC precursors were rarely found in the adventitia. In conclusion, coronary artery lesions of KD patients contain increased numbers of mature myeloid DCs with high HLA-DR expression and frequent T cell contacts detected immunohistochemically. This suggests that mature arterial myeloid DCs might be activating T cells in situ and may be a significant factor in the pathogenesis of coronary arteritis in KD.

  6. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  7. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway.

    Science.gov (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A

    2013-03-01

    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  8. Characterization of the murine myeloid precursor cell line MuMac-E8.

    Science.gov (United States)

    Fricke, Stephan; Pfefferkorn, Cathleen; Wolf, Doris; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  9. Characterization of the murine myeloid precursor cell line MuMac-E8.

    Directory of Open Access Journals (Sweden)

    Stephan Fricke

    Full Text Available Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin, of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45, for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64, showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  10. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  11. Long term maintenance of myeloid leukemic stem cells cultured with unrelated human mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Sawa Ito

    2015-01-01

    Full Text Available Mesenchymal stromal cells (MSCs support the growth and differentiation of normal hematopoietic stem cells (HSCs. Here we studied the ability of MSCs to support the growth and survival of leukemic stem cells (LSCs in vitro. Primary leukemic blasts isolated from the peripheral blood of 8 patients with acute myeloid leukemia (AML were co-cultured with equal numbers of irradiated MSCs derived from unrelated donor bone marrow, with or without cytokines for up to 6 weeks. Four samples showed CD34+CD38− predominance, and four were predominantly CD34+CD38+. CD34+ CD38− predominant leukemia cells maintained the CD34+ CD38− phenotype and were viable for 6 weeks when co-cultured with MSCs compared to co-cultures with cytokines or medium only, which showed rapid differentiation and loss of the LSC phenotype. In contrast, CD34+ CD38+ predominant leukemic cells maintained the CD34+CD38+ phenotype when co-cultured with MSCs alone, but no culture conditions supported survival beyond 4 weeks. Cell cycle analysis showed that MSCs maintained a higher proportion of CD34+ blasts in G0 than leukemic cells cultured with cytokines. AML blasts maintained in culture with MSCs for up to 6 weeks engrafted NSG mice with the same efficiency as their non-cultured counterparts, and the original karyotype persisted after co-culture. Chemosensitivity and transwell assays suggest that MSCs provide pro-survival benefits to leukemic blasts through cell–cell contact. We conclude that MSCs support long-term maintenance of LSCs in vitro. This simple and inexpensive approach will facilitate basic investigation of LSCs and enable screening of novel therapeutic agents targeting LSCs.

  12. Circulating myeloid-derived suppressor cells in patients with pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Xiao-Dong Xu; Jun Hu; Min Wang; Feng Peng; Rui Tian; Xing-Jun Guo; Yu Xie; Ren-Yi Qin

    2016-01-01

    BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are heterogeneous cell types that suppress T-cell responses in cancer patients and animal models, some MDSC subpopula-tions are increased in patients with pancreatic cancer. The present study was to investigate a specific subset of MDSCs in patients with pancreatic cancer and the mechanism of MDSCs increase in these patients. METHODS: Myeloid cells from whole blood were collected from 37 patients with pancreatic cancer, 17 with cholangiocarcinoma, and 47 healthy controls. Four pancreatic cancer cell lines were co-culturedwithnormalperipheralbloodmononuclearcells(PBMCs) to test the effect of tumor cells on the conversion of PBMCs to MDSCs. Levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and arginase activity in the plasma of cancer patients were analyzed by enzyme-linked immunosorbent assay. RESULTS: CD14+/CD11b+/HLA-DR- MDSCs were increased in patients with pancreatic or bile duct cancer compared with those in healthy controls, and this increase was correlated with clinical cancer stage. Pancreatic cancer cell lines induced PBMCs to MDSCs in a dose-dependent manner. GM-CSF and arginase activity levels were significantly increased in the se-rum of patients with pancreatic cancer. CONCLUSIONS: MDSCsweretumorrelated:tumorcellsinduced PBMCs to MDSCs in a dose-dependent manner and circulating CD14+/CD11b+/HLA-DR- MDSCs in pancreatic cancer patients were positively correlated with tumor burden. MDSCs might be useful markers for pancreatic cancer detection and progression.

  13. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.

    Science.gov (United States)

    Bronte, Vincenzo; Brandau, Sven; Chen, Shu-Hsia; Colombo, Mario P; Frey, Alan B; Greten, Tim F; Mandruzzato, Susanna; Murray, Peter J; Ochoa, Augusto; Ostrand-Rosenberg, Suzanne; Rodriguez, Paulo C; Sica, Antonio; Umansky, Viktor; Vonderheide, Robert H; Gabrilovich, Dmitry I

    2016-07-06

    Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. In recent years, ample evidence supports key contributions of MDSC to tumour progression through both immune-mediated mechanisms and those not directly associated with immune suppression. MDSC are the subject of intensive research with >500 papers published in 2015 alone. However, the phenotypic, morphological and functional heterogeneity of these cells generates confusion in investigation and analysis of their roles in inflammatory responses. The purpose of this communication is to suggest characterization standards in the burgeoning field of MDSC research.

  14. Myeloid-derived suppressor cell role in tumor-related inflammation.

    Science.gov (United States)

    Dolcetti, Luigi; Marigo, Ilaria; Mantelli, Barbara; Peranzoni, Elisa; Zanovello, Paola; Bronte, Vincenzo

    2008-08-28

    Chronic inflammatory state can create a proper environment for neoplastic onset and sustain cancer growth. The inflammatory state that arises at the tumor edge could contribute to immune escape phenomena in many ways. Myeloid-derived suppressor cells (MDSCs), a cell population that contributes to tumor escape, immune tolerance, and suppression, respond to a variety of pro-inflammatory and anti-inflammatory stimuli, which drive their recruitment and activation. Understanding how the inflammatory milieu favours tumor escape through the accumulation of MDSCs could be very useful to improve the efficacy of cancer immunotherapy.

  15. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer

    Science.gov (United States)

    Zhang, Yaqing; Velez-Delgado, Ashley; Mathew, Esha; Li, Dongjun; Mendez, Flor M; Flannagan, Kevin; Rhim, Andrew D; Simeone, Diane M; Beatty, Gregory L; Pasca di Magliano, Marina

    2017-01-01

    Background Pancreatic cancer is characterised by the accumulation of a fibro-inflammatory stroma. Within this stromal reaction, myeloid cells are a predominant population. Distinct myeloid subsets have been correlated with tumour promotion and unmasking of anti-tumour immunity. Objective The goal of this study was to determine the effect of myeloid cell depletion on the onset and progression of pancreatic cancer and to understand the relationship between myeloid cells and T cell-mediated immunity within the pancreatic cancer microenvironment. Methods Primary mouse pancreatic cancer cells were transplanted into CD11b-diphtheria toxin receptor (DTR) mice. Alternatively, the iKras* mouse model of pancreatic cancer was crossed into CD11b-DTR mice. CD11b+ cells (mostly myeloid cell population) were depleted by diphtheria toxin treatment during tumour initiation or in established tumours. Results Depletion of myeloid cells prevented KrasG12D-driven pancreatic cancer initiation. In pre-established tumours, myeloid cell depletion arrested tumour growth and in some cases, induced tumour regressions that were dependent on CD8+ T cells. We found that myeloid cells inhibited CD8+ T-cell anti-tumour activity by inducing the expression of programmed cell death-ligand 1 (PD-L1) in tumour cells in an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinases (MAPK)-dependent manner. Conclusion Our results show that myeloid cells support immune evasion in pancreatic cancer through EGFR/MAPK-dependent regulation of PD-L1 expression on tumour cells. Derailing this crosstalk between myeloid cells and tumour cells is sufficient to restore anti-tumour immunity mediated by CD8+ T cells, a finding with implications for the design of immune therapies for pancreatic cancer. PMID:27402485

  16. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer.

    Science.gov (United States)

    Zhang, Yaqing; Velez-Delgado, Ashley; Mathew, Esha; Li, Dongjun; Mendez, Flor M; Flannagan, Kevin; Rhim, Andrew D; Simeone, Diane M; Beatty, Gregory L; Pasca di Magliano, Marina

    2017-01-01

    Pancreatic cancer is characterised by the accumulation of a fibro-inflammatory stroma. Within this stromal reaction, myeloid cells are a predominant population. Distinct myeloid subsets have been correlated with tumour promotion and unmasking of anti-tumour immunity. The goal of this study was to determine the effect of myeloid cell depletion on the onset and progression of pancreatic cancer and to understand the relationship between myeloid cells and T cell-mediated immunity within the pancreatic cancer microenvironment. Primary mouse pancreatic cancer cells were transplanted into CD11b-diphtheria toxin receptor (DTR) mice. Alternatively, the iKras* mouse model of pancreatic cancer was crossed into CD11b-DTR mice. CD11b(+) cells (mostly myeloid cell population) were depleted by diphtheria toxin treatment during tumour initiation or in established tumours. Depletion of myeloid cells prevented Kras(G12D)-driven pancreatic cancer initiation. In pre-established tumours, myeloid cell depletion arrested tumour growth and in some cases, induced tumour regressions that were dependent on CD8(+) T cells. We found that myeloid cells inhibited CD8(+) T-cell anti-tumour activity by inducing the expression of programmed cell death-ligand 1 (PD-L1) in tumour cells in an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinases (MAPK)-dependent manner. Our results show that myeloid cells support immune evasion in pancreatic cancer through EGFR/MAPK-dependent regulation of PD-L1 expression on tumour cells. Derailing this crosstalk between myeloid cells and tumour cells is sufficient to restore anti-tumour immunity mediated by CD8(+) T cells, a finding with implications for the design of immune therapies for pancreatic cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Phenotype and function of myeloid dendritic cells derived from African green monkey blood monocytes.

    Science.gov (United States)

    Mortara, Lorenzo; Ploquin, Mickaël J-Y; Faye, Abdourahmane; Scott-Algara, Daniel; Vaslin, Bruno; Butor, Cécile; Hosmalin, Anne; Barré-Sinoussi, Françoise; Diop, Ousmane M; Müller-Trutwin, Michaela C

    2006-01-20

    Myeloid dendritic cells probably play an important role in the immune response against HIV and SIV, and in the enhancement of CD4+ T cell infection. Here, we have investigated phenotypic and functional features of myeloid monocyte-derived DC (MDDC) from African green monkeys (AGMs). AGMs are natural hosts of SIV and exhibit no signs of abnormal T cell activation despite high SIV plasma viremia. We identified mAbs that cross-react specifically with homologous molecules expressed on AGM DC. We adapted a protocol to derive AGM MDDC by culture in the presence of GM-CSF and IL-4. The differentiated cells possessed a typical dendritic morphology and the majority were CD11c+ DC-SIGN+. AGM MDDC displayed a high expression of typical maturation markers, such as CD83, CD86 and DC-LAMP, and moderate immunostimulatory capacity, suggesting that the cells were in a semi-mature state. Stimulation resulted in further maturation, as shown by up-regulation of CD80 and decrease of endocytosis ability. However, neither increase of HLA-DR or CD40 expression nor enhanced immunostimulatory capacity was observed. The latter was associated with a low pro-inflammatory cytokine production during mixed lymphocyte reactions and a cytokine balance in favour of IL-10 in contrast to human MDDC. This is the first characterization of AGM MDDC. The tools described here are a crucial step for future studies in vivo or in vitro on the function of myeloid DC using the AGM animal model.

  18. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    Science.gov (United States)

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  19. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing.

    Science.gov (United States)

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A

    2014-06-01

    A β-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.

  20. Derivation of a myeloid cell-binding adenovirus for gene therapy of inflammation.

    Directory of Open Access Journals (Sweden)

    Michael O Alberti

    Full Text Available The gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5. Our primary strategy is based on deletion of the fiber knob domain, to eliminate broad tissue specificity through the human coxsackie-and-adenovirus receptor (hCAR, with seamless incorporation of ligands to re-direct Ad tropism to cell types that express the cognate receptors. Previously, our group and others have demonstrated successful implementation of this strategy in order to specifically target Ad to a number of surface molecules expressed on immortalized cell lines. Here, we utilized phage biopanning to identify a myeloid cell-binding peptide (MBP, with the sequence WTLDRGY, and demonstrated that MBP can be successfully incorporated into a knob-deleted Ad5. The resulting virus, Ad.MBP, results in specific binding to primary myeloid cell types, as well as significantly higher transduction of these target populations ex vivo, compared to unmodified Ad5. These data are the first step in demonstrating Ad targeting to cell types associated with inflammatory disease.

  1. Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells.

    Science.gov (United States)

    Vereecque, R; Saudemont, A; Quesnel, B

    2004-07-01

    Chemotherapeutic drugs kill cancer cells mainly by direct cytotoxicity, but they might also induce a stronger host immune response by causing the tumor to produce costimulatory cell surface molecules like CD80. We previously reported that in myeloid leukemic cells, gamma-irradiation induced CD80 expression. In this study, we show that cytosine arabinoside (Ara-C), even at low doses, induced CD80 expression in vitro in mouse DA1-3b leukemic cells, by a mechanism that involved reactive oxygen species. In vivo experiments in the mouse DA1-3b/C3H whole-animal acute myeloid leukemia (AML) model showed that injection of Ara-C induced expression of CD80 and CD86, and decreased expression of B7-H1, indicating that chemotherapy can modify costimulatory molecule expression in vivo, in a way not necessarily observed in vitro. Mouse leukemic cells exposed in vivo to Ara-C were more susceptible to specific cytotoxic lymphocyte (CTL)-mediated killing. Ara-C also induced CD80 or CD86 expression in 14 of 21 primary cultured human AML samples. In humans being treated for AML, induction chemotherapy increased CD86 expression in the leukemic cells. These findings indicate possible synergistic strategies between CTL-based immunotherapy and chemotherapy for treatment. They also suggest an additional mechanism by which chemotherapy can eradicate AML blasts.

  2. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    Science.gov (United States)

    2016-09-12

    Chimerism; Hematopoietic Cell Transplantation Recipient; Previously Treated Myelodysplastic Syndrome; RAEB-1; RAEB-2; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Modulatory Effects and Action Mechanisms of Tryptanthrin on Murine Myeloid Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Hoi-Ling Chan; Hon-Yan Yip; Nai-Ki Mak; Kwok-Nam Leung

    2009-01-01

    Leukemia is the disorder of hematopoietic cell development and is characterized by an uncoupling of cell proliferation and differentiation. There is a pressing need for the development of novel tactics for leukemia therapy as conventional treatments often have severe adverse side effects. Tryptanthrin (6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a naturally-occurring, weakly basic alkaloid isolated from the dried roots of medicinal indigo plants (Ban-Lan-Gen). It has been reported to have various biological and pharmacological activities, including anti-microbial, anti-inflammatory, immunomodulatory and anti-tumor effects. However, its modulatory effects and action mechanisms on myeloid cells remain poorly understood. In this study, tryptanthrin was shown to suppress the proliferation of the murine myeloid leukemia WEHI-3B JCS cells in a dose- and time-dependent manner. It also significantly reduced the growth of WEHI-3B JCS cells in vivo in syngeneic BALB/c mice. However, it exhibited no significant direct cytotoxicity on normal murine peritoneal macrophages. Flow cytometric analysis showed an obvious cell cycle arrest of the tryptanthrin-treated WEHI-3B JCS cells at the G0/G1 phase. The expression of cyclin D2,D3, Cdk 2, 4 and 6 genes in WEHI-3B JCS cells was found to be down-regulated at 24 h as measured by RT-PCR. Morphological and functional studies revealed that tryptanthrin could induce differentiation in WEHI-3B JCS cells, as shown by the increases in vacuolation, cellular granularity and NBT-reducing activity in tryptanthrin-treated cells. Collectively, our findings suggest that tryptanthrin might exert its anti-tumor effect on the murine myelomonocytic leukemia WEHI-3B JCS cells by causing cell cycle arrest and by triggering cell differentiation. Cellular & Molecular Immunology. 2009;6(5):335-342.

  4. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  5. Small-Molecule Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Uttarkar, Sagar; Piontek, Therese; Dukare, Sandeep; Schomburg, Caroline; Schlenke, Peter; Berdel, Wolfgang E; Müller-Tidow, Carsten; Schmidt, Thomas J; Klempnauer, Karl-Heinz

    2016-12-01

    The transcription factor c-Myb is essential for the proliferation of hematopoietic cells and has been implicated in the development of leukemia and other human cancers. Pharmacologic inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. By using a Myb reporter cell line, we have identified plumbagin and several naphthoquinones as potent low-molecular weight Myb inhibitors. We demonstrate that these compounds inhibit c-Myb by binding to the c-Myb transactivation domain and disrupting the cooperation of c-Myb with the coactivator p300, a major driver of Myb activity. Naphthoquinone-induced inhibition of c-Myb suppresses Myb target gene expression and induces the differentiation of the myeloid leukemia cell line HL60. We demonstrate that murine and human primary acute myeloid leukemia cells are more sensitive to naphthoquinone-induced inhibition of clonogenic proliferation than normal hematopoietic progenitor cells. Overall, our work demonstrates for the first time the potential of naphthoquinones as small-molecule Myb inhibitors that may have therapeutic potential for the treatment of leukemia and other tumors driven by deregulated Myb. Mol Cancer Ther; 15(12); 2905-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells.

    Science.gov (United States)

    Glauser, Daniel L; Milho, Ricardo; Frederico, Bruno; May, Janet S; Kratz, Anne-Sophie; Gillet, Laurent; Stevenson, Philip G

    2013-10-01

    Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many-but not all-herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.

  7. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation.

    Directory of Open Access Journals (Sweden)

    Luke Barron

    Full Text Available Th2-driven lung inflammation increases Arginase 1 (Arg1 expression in alternatively-activated macrophages (AAMs. AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.

  8. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines.

    Science.gov (United States)

    Vural, Filiz; Ozcan, Mehmet Ali; Ozsan, Güner Hayri; Ateş, Halil; Demirkan, Fatih; Pişkin, Ozden; Undar, Bülent

    2005-05-01

    The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines.

  9. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  10. Gr1(intCD11b+ myeloid-derived suppressor cells in Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Andrés Obregón-Henao

    Full Text Available BACKGROUND: Tuberculosis is one of the world's leading killers, stealing 1.4 million lives and causing 8.7 million new and relapsed infections in 2011. The only vaccine against tuberculosis is BCG which demonstrates variable efficacy in adults worldwide. Human infection with Mycobacterium tuberculosis results in the influx of inflammatory cells to the lung in an attempt to wall off bacilli by forming a granuloma. Gr1(intCD11b(+ cells are called myeloid-derived suppressor cells (MDSC and play a major role in regulation of inflammation in many pathological conditions. Although MDSC have been described primarily in cancer their function in tuberculosis remains unknown. During M. tuberculosis infection it is crucial to understand the function of cells involved in the regulation of inflammation during granuloma formation. Understanding their relative impact on the bacilli and other cellular phenotypes is necessary for future vaccine and drug design. METHODOLOGY/PRINCIPAL FINDINGS: We compared the bacterial burden, lung pathology and Gr1(intCD11b(+ myeloid-derived suppressor cell immune responses in M. tuberculosis infected NOS2-/-, RAG-/-, C3HeB/FeJ and C57/BL6 mice. Gr-1(+ cells could be found on the edges of necrotic lung lesions in NOS2-/-, RAG-/-, and C3HeB/FeJ, but were absent in wild-type mice. Both populations of Gr1(+CD11b(+ cells expressed high levels of arginase-1, and IL-17, additional markers of myeloid derived suppressor cells. We then sorted the Gr1(hi and Gr1(int populations from M. tuberculosis infected NOS-/- mice and placed the sorted both Gr1(int populations at different ratios with naïve or M. tuberculosis infected splenocytes and evaluated their ability to induce activation and proliferation of CD4+T cells. Our results showed that both Gr1(hi and Gr1(int cells were able to induce activation and proliferation of CD4+ T cells. However this response was reduced as the ratio of CD4(+ T to Gr1(+ cells increased. Our results

  11. Gr1intCD11b+ Myeloid-Derived Suppressor Cells in Mycobacterium tuberculosis Infection

    Science.gov (United States)

    Obregón-Henao, Andrés; Henao-Tamayo, Marcela; Orme, Ian M.; Ordway, Diane J.

    2013-01-01

    Background Tuberculosis is one of the world’s leading killers, stealing 1.4 million lives and causing 8.7 million new and relapsed infections in 2011. The only vaccine against tuberculosis is BCG which demonstrates variable efficacy in adults worldwide. Human infection with Mycobacterium tuberculosis results in the influx of inflammatory cells to the lung in an attempt to wall off bacilli by forming a granuloma. Gr1intCD11b+ cells are called myeloid-derived suppressor cells (MDSC) and play a major role in regulation of inflammation in many pathological conditions. Although MDSC have been described primarily in cancer their function in tuberculosis remains unknown. During M. tuberculosis infection it is crucial to understand the function of cells involved in the regulation of inflammation during granuloma formation. Understanding their relative impact on the bacilli and other cellular phenotypes is necessary for future vaccine and drug design. Methodology/Principal Findings We compared the bacterial burden, lung pathology and Gr1intCD11b+ myeloid-derived suppressor cell immune responses in M. tuberculosis infected NOS2-/-, RAG-/-, C3HeB/FeJ and C57/BL6 mice. Gr-1+ cells could be found on the edges of necrotic lung lesions in NOS2-/-, RAG-/-, and C3HeB/FeJ, but were absent in wild-type mice. Both populations of Gr1+CD11b+ cells expressed high levels of arginase-1, and IL-17, additional markers of myeloid derived suppressor cells. We then sorted the Gr1hi and Gr1int populations from M. tuberculosis infected NOS-/- mice and placed the sorted both Gr1int populations at different ratios with naïve or M. tuberculosis infected splenocytes and evaluated their ability to induce activation and proliferation of CD4+T cells. Our results showed that both Gr1hi and Gr1int cells were able to induce activation and proliferation of CD4+ T cells. However this response was reduced as the ratio of CD4+ T to Gr1+ cells increased. Our results illustrate a yet unrecognized interplay

  12. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    Science.gov (United States)

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  13. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms

    Directory of Open Access Journals (Sweden)

    Alistair M. Chalk

    2014-12-01

    Full Text Available The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014 in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457 provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  14. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    Science.gov (United States)

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs)

    Science.gov (United States)

    Mazza, Emilia Maria Cristina; Zoso, Alessia; Mandruzzato, Susanna; Bronte, Vincenzo; Serafini, Paolo; Inverardi, Luca; Bicciato, Silvio

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) have been shown to control self-reactive and anti-graft effector T-cells in autoimmunity and transplantation, but their therapeutic use is limited by their scarce availability in the peripheral blood of tumor-free donors. We isolated and characterized a novel population of myeloid suppressor cells, named fibrocytic MDSC (f-MDSC), which are differentiated from umbilical cord blood (UCB) precursors (Zoso et al., 2014). This MDSC subset promotes regulatory T-cell expansion and induces normoglycemia in a xenogeneic model of type 1 diabetes. Here we describe in details the experimental design and the bioinformatics analyses of the gene expression dataset used to investigate the molecular mechanisms at the base of MDSC tolerogenic and suppressive properties. We also provide an R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset. Raw and pre-processed data are available at Gene Expression Omnibus under accession GSE52376. PMID:26484135

  16. Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs

    Directory of Open Access Journals (Sweden)

    Emilia Maria Cristina Mazza

    2014-12-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs have been shown to control self-reactive and anti-graft effector T-cells in autoimmunity and transplantation, but their therapeutic use is limited by their scarce availability in the peripheral blood of tumor-free donors. We isolated and characterized a novel population of myeloid suppressor cells, named fibrocytic MDSC (f-MDSC, which are differentiated from umbilical cord blood (UCB precursors (Zoso et al., 2014. This MDSC subset promotes regulatory T-cell expansion and induces normoglycemia in a xenogeneic model of type 1 diabetes. Here we describe in details the experimental design and the bioinformatics analyses of the gene expression dataset used to investigate the molecular mechanisms at the base of MDSC tolerogenic and suppressive properties. We also provide an R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset. Raw and pre-processed data are available at Gene Expression Omnibus under accession GSE52376.

  17. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia.

    Science.gov (United States)

    Favreau, Amanda J; Vary, Calvin P H; Brooks, Peter C; Sathyanarayana, Pradeep

    2014-04-01

    Previously, we showed that discoidin domain receptor 1 (DDR1), a class of collagen-activated receptor tyrosine kinase (RTK) was highly upregulated on bone marrow (BM)-derived CD33+ leukemic blasts of acute myeloid leukemia (AML) patients. Herein as DDR1 is a class of collagen-activated RTK, we attempt to understand the role of native and remodeled collagen IV in BM microenvironment and its functional significance in leukemic cells. Exposure to denatured collagen IV significantly increased the migration and adhesion of K562 cells, which also resulted in increased activation of DDR1 and AKT. Further, levels of MMP9 were increased in conditioned media (CM) of denatured collagen IV exposed cells. Mass spectrometric liquid chromatography/tandem mass spectrometry QSTAR proteomic analysis revealed exclusive presence of Secretogranin 3 and InaD-like protein in the denatured collagen IV CM. Importantly, BM samples of AML patients exhibited increased levels of remodeled collagen IV compared to native as analyzed via anti-HUIV26 antibody. Taken together, for the first time, we demonstrate that remodeled collagen IV is a potent activator of DDR1 and AKT that also modulates both migration and adhesion of myeloid leukemia cells. Additionally, high levels of the HUIV26 cryptic collagen IV epitope are expressed in BM of AML patients. Further understanding of this phenomenon may lead to the development of therapeutic agents that directly modulate the BM microenvironment and attenuate leukemogenesis.

  18. Lysophospholipid acyltransferases and eicosanoid biosynthesis in zebrafish myeloid cells.

    Science.gov (United States)

    Zarini, Simona; Hankin, Joseph A; Murphy, Robert C; Gijón, Miguel A

    2014-10-01

    Eicosanoids derived from the enzymatic oxidation of arachidonic acid play important roles in a large number of physiological and pathological processes in humans. Many animal and cellular models have been used to investigate the intricate mechanisms regulating their biosynthesis and actions. Zebrafish is a widely used model to study the embryonic development of vertebrates. It expresses homologs of the key enzymes involved in eicosanoid production, and eicosanoids have been detected in extracts from adult or embryonic fish. In this study we prepared cell suspensions from kidney marrow, the main hematopoietic organ in fish. Upon stimulation with calcium ionophore, these cells produced eicosanoids including PGE2, LTB4, 5-HETE and, most abundantly, 12-HETE. They also produced small amounts of LTB5 derived from eicosapentaenoic acid. These eicosanoids were also produced in kidney marrow cells stimulated with ATP, and this production was greatly enhanced by preincubation with thimerosal, an inhibitor of arachidonate reacylation into phospholipids. Microsomes from these cells exhibited acyltransferase activities consistent with expression of MBOAT5/LPCAT3 and MBOAT7/LPIAT1, the main arachidonoyl-CoA:lysophospholipid acyltransferases. In summary, this work introduces a new cellular model to study the regulation of eicosanoid production through a phospholipid deacylation-reacylation cycle from a well-established, versatile vertebrate model species.

  19. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  20. Evaluation of myeloid cells (tumor-associated tissue eosinophils and mast cells) infiltration in different grades of oral squamous cell carcinoma

    Science.gov (United States)

    Debta, Priyanka; Debta, Fakir Mohan; Chaudhary, Minal; Bussari, Smita

    2016-01-01

    Background: The multifunctional involvement and infiltration of myeloid cells (tumor-associated tissue eosinophils [TATE] and mast cells) can provide a unique opportunity to define relevant effectors functions that may represent novel, therapeutic options for modulation of tumor onset/growth. Aim: Our study aimed to evaluate infiltration of myeloid cells (TATE and Mast cells) infiltration in different grades (WHO grading) of oral squamous cell carcinoma (OSCC). Materials and Methods: Total 30 cases of OSCC were selected for this study. Hematoxylin and eosin stain and toluidine blue special stain, to evaluate TATE and the mast cells infiltration, were used. Three-year follow-up of OSCC cases was done. Result: Among 30 cases, 63.33% cases of OSCC showed TATE-positive and 36.66% cases showed TATE-negative. Regarding mast cells infiltration, 66.66% OSCC cases showed mast cells positive and 33.33% cases did not show significant mast cells infiltration. We found significant association of TATE and mast cells infiltration in OSCC cases. These myeloid cells infiltration significantly associated with age of patients but did not show any significant association with gender, site, and habit of cases. When we compared these cells infiltration with clinical stages and different histological grades of tumor, we found their infiltration is decreasing, from Stages 1 to Stage 3 of tumor and from well to poorly differentiated carcinoma. We have also found the less infiltration of these myeloid in recurrence cases of OSCC. Conclusion: As the infiltration of TATE and mast cells are correlated, along with evaluation of TATE, we should also evaluate the presence of mast cells infiltration in OSCC. The assessment of myeloid cells could become, in the future, useful for therapeutic approaches in this subset of the patient. PMID:27688609

  1. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Howard Li

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPARγ inhibits growth of cancer cells including non-small cell lung cancer (NSCLC. Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg, or control PPARγ(flox/flox mice. In both models, mice receiving PPARγ-Mac(neg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.

  2. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    Science.gov (United States)

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.

  3. Over-Expression of Catalase in Myeloid Cells Confers Acute Protection Following Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    E. Bernadette Cabigas

    2014-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2, has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.

  4. Activation of Myeloid-Derived Suppressor Cells in Bone Marrow

    Science.gov (United States)

    2013-12-01

    Curr Protoc Pharmacol 2010;Chapter 14:Unit14.15. 21. Jung Y, Shiozawa Y, Wang J, McGregor N, Dai J, Park SI, et al. Prevalence of prostate cancer... Wang J, Jung Y, et al. Proteoglycan 4, a novel immunomodulatory factor, regulates parathyroid hormone actions on hematopoietic cells. Am J Pathol...Nephrol 2000;11:1085–92. 36. Sabbota AL, Kim H-RC, Zhe X, Fridman R, Bonfil RD, Cher ML. Shedding of RANKL by tumor-associated MT1-MMP activates Src

  5. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis.

    Science.gov (United States)

    Wang, Zhihui; Liu, Jin-Qing; Liu, Zhenzhen; Shen, Rulong; Zhang, Guoqiang; Xu, Jianping; Basu, Sujit; Feng, Youmei; Bai, Xue-Feng

    2013-03-01

    IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35-producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b(+)Gr1(+) myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag-specific CD8(+) T cell activation, differentiation, and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.

  6. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  7. Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species

    Science.gov (United States)

    Singh, Anurag; Lelis, Felipe; Braig, Stefanie; Schäfer, Iris; Hartl, Dominik; Rieber, Nikolaus

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterized by their ability to suppress T-cell responses. Recently, we demonstrated that the human-pathogenic fungi Candida albicans and Aspergillus fumigatus induced a distinct subset of neutrophilic MDSCs. To dissect Candida-mediated MDSC induction in more depth, we studied the relative efficacy of different pathogenic non-albicans Candida species to induce and functionally modulate neutrophilic MDSCs, including C. glabrata, C. parapsilosis, C. dubliniensis, and C. krusei. Our data demonstrate that the extent of MDSC generation is largely dependent on the Candida species with MDSCs induced by C. krusei and C. glabrata showing a higher suppressive activity compared to MDSCs induced by C. albicans. In summary, these studies show that fungal MDSC induction is differentially regulated at the species level and differentially affects effector T-cell responses.

  8. Pseudomonas aeruginosa airway infection recruits and modulates neutrophilic myeloid-derived suppressor cells

    Directory of Open Access Journals (Sweden)

    Hasan Halit Öz

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (cystic fibrosis transmembrane conductance regulator, CFTR modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo.

  9. Retinoic acid induction of CD38 antigen expression on normal and leukemic human myeloid cells: relationship with cell differentiation.

    Science.gov (United States)

    Prus, Eugenia; Fibach, Eitan

    2003-04-01

    Differentiation in the hematopoietic system involves, among other changes, altered expression of antigens, including the CD34 and CD38 surface antigens. In normal hematopoiesis, the most immature stem cells have the CD34 + CD34 - phenotype. In acute myeloid leukemia (AML), although blasts from most patients are CD38 +, some are CD38 - . AML blasts are blocked at early stages of differentiation; in some leukemic cells this block can be overcome by a variety of agents, including retinoids, that induce maturation into macrophages and granulocytes both in vitro and in vivo. Retinoids can also induce CD38 expression. In the present study, we investigated the relationship between induction of CD38 expression and induction of myeloid differentiation by retinoic acid (RA) in normal and leukemic human hematopoietic cells. In the promyelocytic (PML) CD34 - cell lines, HL60 and CB-1, as well as in normal CD34 + CD34 - hematopietic progenitor cells RA induced both CD38 expression as well as morphological and functional myeloid differentiation that resulted in loss of self-renewal. In contrast, in the myeloblastic CD34 + leukemic cell lines, ML-1 and KG-1a, as well as in primary cultures of cells derived from CD34 + -AML (M0 and M1) patients, RA caused an increase in CD38 + that was not associated with significant differentiation. Yet, long exposure of ML-1, but not KG-1, cells to RA resulted in loss of self-renewal. The results suggest that while in normal hematopoietic cells and in PML CD34 - cells induction of CD38 antigen expression by RA results in terminal differentiation along the myeloid lineage, in early myeloblastic leukemic CD34 + cells, induction of CD38 and differentiation are not functionally related. Since, several lines of evidence suggest that the CD38 - cells are the targets of leukemic transformation, transition of these cellsinto CD38 + phenotype by RA or other drugs may have therapeutic effect, either alone or in conjunction with cytotoxic drugs, regardless

  10. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  11. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension.

    Science.gov (United States)

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A; Le, Thanh-Thuy T; Johnston, Richard A; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.

  12. Genotypic and functional diversity of phenotypically defined primitive hematopoietic cells in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Sloma, Ivan; Beer, Philip A; Saw, Kyi Min; Chan, Matthew; Leung, Donna; Raghuram, Kamini; Brimacombe, Cedric; Johnston, Bobby; Lambie, Karen; Forrest, Donna; Jiang, Xiaoyan; Eaves, Connie J

    2013-10-01

    Much progress has been made in the management of chronic-phase chronic myeloid leukemia (CP-CML), but there is a continuing imperative to develop curative treatments, predict patient responses to specific modalities, and anticipate disease relapse or progression. These needs underlie continuing interest in methods to detect and quantify the relevant leukemic cells in clinical samples with improved reliability and specificity. We report the results of comparing three methods to enumerate primitive CP-CML cells in the same samples: genotyping CD34(+)38(-) cells directly by fluorescence in situ hybridization, and measuring BCR-ABL1 transcript-genotyped colony-forming cell outputs in either 5-week long-term cultures (LTCs) containing non-engineered mouse fibroblasts or in 6-week LTCs containing mouse fibroblasts engineered to produce human Steel factor, granulocyte colony-stimulating factor, and IL-3. The results demonstrate that the first two methods significantly overestimate the prevalence of primitive CP-CML cells by comparison to the third. In additional studies, we found that CML-CD34(+) cells can repopulate the marrow and spleen of serially transplanted adult NOD/SCID-IL-2Rγ chain-null mice for more than 1 year with an almost exclusive myeloid differentiation in primary and secondary recipients and without evidence of disease progression. These findings underscore the importance of long-term functional in vitro and in vivo endpoints to identify and characterize CP-CML stem cells. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Real-time imaging of myeloid cells dynamics in ApcMin/+ intestinal tumors by spinning disk confocal microscopy.

    Science.gov (United States)

    Bonnans, Caroline; Lohela, Marja; Werb, Zena

    2014-10-06

    Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. Apc(Min/+) mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.

  14. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury.

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P; Unger, Travis L; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H

    2012-05-15

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.

  15. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  16. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  18. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis.

    Science.gov (United States)

    Boutté, Angela M; Friedman, David B; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P Charles

    2011-08-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼ 40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors.

  19. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells.

    Science.gov (United States)

    Jin, Un-Ho; Song, Kwon-Ho; Motomura, Muneo; Suzuki, Ikukatsu; Gu, Yeun-Hwa; Kang, Yun-Jeong; Moon, Tae-Chul; Kim, Cheorl-Ho

    2008-03-01

    Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 microg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2 alpha and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells.

  20. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors.

    NARCIS (Netherlands)

    Netea, M.G.; Azam, T.; Ferwerda, G.; Girardin, S.E.; Kim, S.H.; Dinarello, C.A.

    2006-01-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of a new family of myeloid receptors, encoded by a gene cluster linked to the MHC. Engagement of TREM-1 stimulates intracellular signals, resulting in activation of phagocytosis, neutrophil degranulation, and amplification of cyto

  1. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation.

    Science.gov (United States)

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R; Greipp, Patricia T

    2014-06-01

    The acquisition of the Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia (AML) after HCT that developed a BCR-ABL1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to AML to relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: A deletion 20q abnormality subsequently acquired a deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias.

  2. IFN-γ differentially regulates subsets of Gr-1(+)CD11b(+) myeloid cells in chronic inflammation.

    Science.gov (United States)

    Zhan, Xiaoxia; Fang, Yimin; Hu, Shengfeng; Wu, Yongjian; Yang, Kun; Liao, Chunxin; Zhang, Yuanqing; Huang, Xi; Wu, Minhao

    2015-08-01

    During chronic inflammation, prolonged over-reactive immune response may lead to tissue destruction, while immune suppression hinders tissue repair and pathogen elimination. Therefore, precise regulation of the immune response is needed to avoid immuno-pathology. Interferon-gamma (IFN-γ) is widely used in clinical treatment of inflammatory diseases. However, the underlying mechanism remains unclear. Here, we evaluated the role of IFN-γ on CD11b(+)Gr-1(+) myeloid cell differentiation and function, using a heat-killed Mycobacterium bovis BCG-induced chronic inflammation model. After challenge with heat-killed BCG, two subpopulations of CD11b(+)Gr-1(+) myeloid cells were generated in the mouse spleen. Phenotypical, morphological and functional analysis indicated that the CD11b(+)Gr-1(high) Ly6G(high) Ly6C(low) subset was neutrophil-like myeloid-derived inducer cells (N-MDICs), which promoted T cell activation, while the other subset was CD11b(+)Gr-1(low) Ly6G(neg) Ly6C(high) monocyte-like myeloid-derived suppressor cells (M-MDSCs) that displayed extensive suppressor function. IFN-γ treatment dampened N-MDICs-mediated T cell activation through up-regulating T cell suppressive mediators, reactive oxygen species (ROS) and arginase I. While for M-MDSCs, IFN-γ reduced their suppressing activity by decreasing the arginase activity. Our study provides evidence that IFN-γ balances the over-reactive vs compromised immune response through different regulation of distinct myeloid subsets, and therefore displays significant therapeutic potential for effective immuno-therapy of chronic inflammatory diseases.

  3. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  4. Indoleamine 2,3 Dioxygenase (IDO) as a Mediator of Myeloid Derived Suppressor Cell Function in Breast Cancer

    Science.gov (United States)

    2009-10-31

    Ronca, R., Serafini , P ., Zam boni, P., Restifo, N. P., and Zanovello, P. Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable...of activating or suppressing CD8(+) T cells. Blood, 96: 3838-3846, 2000. 6. Serafini , P., De Santo, C., Marigo, I. , Cingarlini, S., Dolcetti, L

  5. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells

    DEFF Research Database (Denmark)

    Kallin, Eric M; Rodríguez-Ubreva, Javier; Christensen, Jesper Aagaard

    2012-01-01

    The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is CEBPα-induced transdifferentiation of pre-B cells into macrophages. Here we found that CEBP...

  6. An Anti-EGFR IgA That Displays Improved Pharmacokinetics and Myeloid Effector Cell Engagement In Vivo

    NARCIS (Netherlands)

    Lohse, Stefan; Meyer, Saskia; Meulenbroek, Laura A P M; Jansen, J H Marco; Nederend, Maaike; Kretschmer, Anna; Klausz, Katja; Möginger, Uwe; Derer, Stefanie; Rösner, Thies; Kellner, Christian; Schewe, Denis; Sondermann, Peter; Tiwari, Sanjay; Kolarich, Daniel; Peipp, Matthias; Leusen, Jeanette H W; Valerius, Thomas

    2016-01-01

    Antibodies of IgA isotype effectively engage myeloid effector cells for cancer immunotherapy. Here, we describe preclinical studies with an Fc engineered IgA2m(1) antibody containing the variable regions of the EGFR antibody cetuximab. Compared with wild-type IgA2m(1), the engineered molecule lacked

  7. Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes.

    Directory of Open Access Journals (Sweden)

    Sara N Vallerie

    Full Text Available Type 1 diabetes mellitus (T1DM is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2 is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4 to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/- of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.

  8. Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Leung, Yuet-Kin; Ho, Shuk-mei; Choubey, Divaker

    2015-11-05

    Environmental factors contribute to the development of autoimmune diseases, including systemic lupus erythematosus (SLE), which exhibits a strong female bias (female-to-male ratio 9:1). However, the molecular mechanisms remain largely unknown. Because a feedforward loop between the female sex hormone estrogen (E2) and type I interferon (IFN-α/β)-signaling induces the expression of certain p200-family proteins (such as murine p202 and human IFI16) that regulate innate immune responses and modify lupus susceptibility, we investigated whether treatment of myeloid cells with bisphenol A (BPA), an environmental estrogen, could regulate the p200-family proteins and activate innate immune responses. We found that treatment of murine bone marrow-derived cells (BMCs) and human peripheral blood mononuclear cells with BPA induced the expression of ERα and IFN-β, activated the IFN-signaling, and stimulated the expression of the p202 and IFI16 proteins. Further, the treatment increased levels of the NLRP3 inflammasome and stimulated its activity. Accordingly, BPA-treatment of BMCs from non lupus-prone C57BL/6 and the lupus-prone (NZB×NZW)F1 mice activated the type I IFN-signaling, induced the expression of p202, and activated an inflammasome activity. Our study demonstrates that BPA-induced signaling in the murine and human myeloid cells stimulates the type I IFN-signaling that results in an induction of the p202 and IFI16 innate immune sensors for the cytosolic DNA and activates an inflammasome activity. These observations provide novel molecular insights into the role of environmental BPA exposures in potentiating the development of certain autoimmune diseases such as SLE.

  9. Asynchronous expression of myeloid antigens in leukemic cells in a PML/RARalpha transgenic mouse model

    Directory of Open Access Journals (Sweden)

    B.A.A. Santana

    2006-05-01

    Full Text Available Acute promyelocytic leukemia (APL is characterized by the expansion of blasts that resemble morphologically promyelocytes and harbor a chromosomal translocation involving the retinoic acid receptor a (RARa and the promyelocytic leukemia (PML genes on chromosomes 17 and 15, respectively. The expression of the PML/RARa fusion gene is essential for APL genesis. In fact, transgenic mice (TM expressing PML/RARa develop a form of leukemia that mimics the hematological findings of human APL. Leukemia is diagnosed after a long latency (approximately 12 months during which no hematological abnormality is detected in peripheral blood (pre-leukemic phase. In humans, immunophenotypic analysis of APL blasts revealed distinct features; however, the precise immunophenotype of leukemic cells in the TM model has not been established. Our aim was to characterize the expression of myeloid antigens by leukemic cells from hCG-PML/RARa TM. In this study, TM (N = 12 developed leukemia at the mean age of 13.1 months. Morphological analysis of bone marrow revealed an increase of the percentage of immature myeloid cells in leukemic TM compared to pre-leukemic TM and wild-type controls (48.63 ± 16.68, 10.83 ± 8.11, 7.4 ± 5.46%, respectively; P < 0.05. Flow cytometry analysis of bone marrow and spleen from leukemic TM identified the asynchronous co-expression of CD34, CD117, and CD11b. This abnormal phenotype was rarely detected prior to the diagnosis of leukemia and was present at similar frequencies in hematologically normal TM and wild-type controls of different ages. The present results demonstrate that, similarly to human APL, leukemic cells from hCG-PML/RARa TM present a specific immunophenotype.

  10. Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species.

    Science.gov (United States)

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2003-08-01

    It is well established that tumor growth is associated with accumulation of immature myeloid cells (ImC). They play an important role in tumor-associated immune suppression. ImC accumulate not only in tumor-bearing hosts but also in immunized, tumor-free hosts or hosts infected with bacterial pathogens. The kinetics of ImC in these mice is different. If in tumor-bearing mice, the number of ImC continues to increase with tumor progression in tumor-free mice after an initial spike, it decreases to the control level. Here, we have investigated the mechanisms of ImC accumulation in tumor-bearing hosts by comparing differentiation of ImC obtained from tumor-free and tumor-bearing mice. In the presence of appropriate growth factors, ImC isolated from tumor-free mice quickly differentiated in vitro into mature dendritic cells (DC), macrophages, and granulocytes. In contrast, differentiation of ImC from tumor-bearing mice was significantly delayed. Similar results were obtained in vivo after adoptive transfer of ImC into naïve, congeneic mice. ImC transferred into tumor-bearing recipients failed to differentiate into DC or macrophages. ImC from tumor-bearing mice had significantly higher levels of reactive oxygen species (ROS) than ImC obtained from tumor-free mice. Hydrogen peroxide (H(2)O(2)) but not superoxide radical anions was found to be the major part of this increased ROS production. In vitro experiments demonstrated that scavenging of H(2)O(2) with catalase induced differentiation of ImC from tumor-bearing mice into macrophages. Thus, this is a first demonstration that tumors may prevent differentiation of antigen-presenting cells by increasing the level of endogenous H(2)O(2) in immature myeloid cells.

  11. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    Science.gov (United States)

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  12. Complement regulates conventional DC-mediated NK-cell activation by inducing TGF-β1 in Gr-1+ myeloid cells.

    Science.gov (United States)

    Qing, Xiaoping; Koo, Gloria C; Salmon, Jane E

    2012-07-01

    Complement activation modulates DC-mediated T-cell activation, but whether complement affects DC-mediated priming of NK cells is unknown. Here, we demonstrated that conventional DCs (cDCs) from C3(-/-) and C5aR(-/-) mice are hyperresponsive to polyI:C, a TLR3 ligand, leading to enhanced NK-cell activation. We found that cDCs lack C5a receptor (C5aR) and do not respond to C5a directly. Depletion of Gr-1(+) myeloid cells augments polyI:C-induced cDC activation in WT but not in C3(-/-) or C5aR(-/-) mice, indicating that the effect of complement activation on cDCs is indirectly mediated through C5aR-expressing Gr-1(+) myeloid cells. We further demonstrated that the mechanism by which Gr-1(+) myeloid cells regulate the activity of cDCs involves C5a-dependent TGF-β1 production in Gr-1(+) myeloid cells. C5a enhances and blocking C5aR decreases TGF-β1 production in cultured bone marrow Gr-1(+) CD11b(+) cells. C5aR deficiency is associated with reduced circulating TGF-β1 levels, while depleting Gr-1(+) myeloid cells abrogates this difference between WT and C5aR(-/-) mice. Lastly, we showed that enhanced cDC-NK-cell activity in C3(-/-) mice led to delayed melanoma tumor growth. Thus, complement activation indirectly regulates cDC-NK-cell activation in response to inflammatory stimuli such as TLR3 by promoting TGF-β1 production in Gr-1(+) myeloid cells at steady state.

  13. Cytotoxic activity to acute myeloid leukemia cells by Antp-TPR hybrid peptide targeting Hsp90.

    Science.gov (United States)

    Horibe, Tomohisa; Kawamoto, Megumi; Kohno, Masayuki; Kawakami, Koji

    2012-07-01

    We previously reported that Antp-TPR hybrid peptide inhibited the interaction of Hsp90 with TPR2A and had selective cytotoxic activity discriminating between normal and cancer cells to induce cancer cell death. In this study, we investigated the cytotoxic activity of Antp-TPR peptide toward acute myeloid leukemia (AML) cells. It was demonstrated that Antp-TPR peptide induced AML cell death in cell lines such as U937, K562, THP-1, and HL-60 via activation of caspases 3 and 7, and disruption of mitochondrial membrane potential. Conversely, Antp-TPR peptide did not reduce the viability of normal cells including peripheral blood mononuclear cells (PBMCs), although both geldanamycin and 17-AAG, small-molecule inhibitors of Hsp90, mediated cytotoxicity to these normal cells at low concentrations. In addition, mutation analysis of TPR peptide demonstrated that the highly conserved amino acids Lys and Arg were critical to the cytotoxic activity. These results indicated that Antp-TPR hybrid peptide would provide potent and selective therapeutic options in the treatment of AML.

  14. FT-infrared spectroscopic studies of lymphoma, lymphoid, and myeloid leukemia cell lines

    Science.gov (United States)

    Babrah, Jaspreet; McCarthy, Keith P.; Lush, Richard; Rye, Adam D.; Bessant, Conrad; Stone, Nicholas

    2007-07-01

    This paper presents a novel method to characterise spectral differences that distinguish leukaemia and lymphoma cell lines. This is based on objective spectral measurements of major cellular biochemical constituents and multivariate spectral processing. Fourier transform infrared (FT-IR) maps of the lymphoma, lymphoid and myeloid leukaemia cell samples were obtained using a Perkin-Elmer Spotlight 300 FT-IR imaging spectrometer. Multivariate statistical techniques incorporating principal component analysis (PCA) and linear discriminant analysis (LDA) were used to construct a mathematical model. This model was validated for reproducibility. Multivariate statistical analysis of FTIR spectra collected for each cell sample permit a combination of unsupervised and supervised methods of distinguishing cell line types. This resulted in the clustering of cell line populations, indicating distinct bio-molecular differences. Major spectral differences were observed in the 4000 to 800 cm -1 spectral region. Bands in the averaged spectra for the cell line were assigned to the major biochemical constituents including; proteins, fatty acids, carbohydrates and nucleic acids. The combination of FT-IR spectroscopy and multivariate statistical analysis provides an important insight into the fundamental spectral differences between the cell lines, which differ according to the cellular biochemical composition. These spectral differences can serve as potential biomarkers for the differentiation of leukaemia and lymphoma cells. Consequently these differences could be used as the basis for developing a spectral method for the detection and identification of haematological malignancies.

  15. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    OpenAIRE

    Haixia Zhou; Yue Ge; Lili Sun; Wenjuan Ma; Jie Wu; Xiuyan Zhang; Xiaohui Hu; Eaves, Connie J; Depei Wu; Yun Zhao

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form o...

  16. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia.

    Science.gov (United States)

    Han, Yixiang; Ye, Aifang; Bi, Laixi; Wu, Jianbo; Yu, Kang; Zhang, Shenghui

    2014-08-01

    Although Th17 cells play crucial roles in the pathogenesis of many autoimmune and inflammatory disorders, their roles in malignancies are currently under debate. The role and mechanism of Th17 cells in patients with acute myeloid leukemia (AML) remain poorly understood. Here we demonstrated that the frequency of Th17 cells was significantly increased in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells from AML patients compared with healthy donors. Plasma levels of interleukin (IL)-17, IL-22, IL-23, IL-1β, IL-6, and transforming growth factor (TGF)-β1 were significantly increased in blood and bone marrow in AML patients compared with healthy donors. The in vitro experiments demonstrated that IL-1β, IL-6, IL-23, but not TGF-β1 promoted the generation and differentiation of Th17 cells from naive CD4(+) T cells in humans. IL-17A, a signature cytokine secreted by Th17 cells, induced the proliferation of IL-17 receptor (IL-17R)-positive AML cells via IL-17R, in which activation of PI3K/Akt and Jak/Stat3 signaling pathway may play important roles. In addition, combination of IL-17A and IL-22 significantly reduced the generation of Th1 cells and the production of interferon (IFN)-γ from healthy donor or AML patient peripheral blood mononuclear cells. Patients with high Th17 cell frequency had poor prognosis, whereas patients with high Th1 cell frequency had prolonged survival. Combined analysis of Th1 and Th17 cell frequencies improved the ability to predict patient outcomes. In conclusion, Th17 cells play a crucial role in the pathogenesis of AML and may be an important therapeutic target and prognostic predictor.

  17. CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma.

    Science.gov (United States)

    Umansky, Viktor; Blattner, Carolin; Gebhardt, Christoffer; Utikal, Jochen

    2017-08-01

    Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, leading to the accumulation of myeloid-derived suppressor cells (MDSCs). Using ret transgenic mouse melanoma model, we found a significant migration of MDSCs expressing C-C chemokine receptor (CCR)5 into primary tumors and metastatic lymph nodes, which was correlated with tumor progression. An increased CCR5 expression on MDSCs was associated with elevated concentrations of CCR5 ligands in melanoma microenvironment. In vitro experiments showed that the upregulation of CCR5 expression on CD11b(+)Gr1(+) immature myeloid cells was induced by CCR5 ligands, IL-6, GM-CSF, and other inflammatory factors. Furthermore, CCR5(+) MDSCs infiltrating melanoma lesions displayed a stronger immunosuppressive pattern than their CCR5(-) counterparts. Targeting CCR5/CCR5 ligand signaling via a fusion protein mCCR5-Ig, which selectively binds and neutralizes all three CCR5 ligands, increased the survival of tumor-bearing mice. This was associated with a reduced migration and immunosuppressive potential of tumor MDSCs. In melanoma patients, circulating CCR5(+) MDSCs were increased as compared to healthy donors. Like in melanoma-bearing mice, we observed an enrichment of these cells and CCR5 ligands in tumors as compared to the peripheral blood. Our findings define a critical role for CCR5 not only in the recruitment but also in the activation of MDSCs in tumor lesions, suggesting that novel strategies of melanoma treatment could be based on blocking CCR5/CCR5 ligand interactions.

  18. Isolated central nervous system relapse of chronic myeloid leukemia after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fuchs Mary

    2012-08-01

    Full Text Available Abstract Background This case report highlights the relevance of quantifying the BCR-ABL gene in cerebrospinal fluid of patients with suspected relapse of chronic myeloid leukemia in the central nervous system. Case presentation We report on a female patient with isolated central nervous system relapse of chronic myeloid leukemia (CML during peripheral remission after allogeneic hematopoietic stem cell transplantation. The patient showed a progressive cognitive decline as the main symptom. MRI revealed a hydrocephalus and an increase in cell count in the cerebrospinal fluid (CSF with around 50% immature blasts in the differential count. A highly elevated BCR-ABL/ ABL ratio was detected in the CSF, whilst the ratio for peripheral blood and bone marrow was not altered. On treatment of the malresorptive hydrocephalus with shunt surgery, the patient showed an initial cognitive improvement, followed by a secondary deterioration. At this time, the cranial MRI showed leukemic infiltration of lateral ventricles walls. Hence, intrathecal administration of cytarabine, methotrexate, and dexamethasone was initiated, which caused a significant decrease of cells in the CSF. Soon after, the patient demonstrated significant cognitive improvement with a good participation in daily activities. At a later time point, after the patient had lost the major molecular response of CML, therapy with dasatinib was initiated. In a further follow-up, the patient was neurologically and hematologically stable. Conclusions In patients with treated CML, the rare case of an isolated CNS blast crisis has to be taken into account if neurological symptoms evolve. The analysis of BCR-ABL in the CSF is a further option for the reliable detection of primary isolated relapse of CML in these patients.

  19. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Lu-ying; SHI Huan-zhong; LIANG Qiu-li; WU Yan-bin; QIN Xue-jun; CHEN Yi-qiang

    2008-01-01

    Background Tdggedng receptors expressed on myeloid cells(TREM)proteins are a family of cell surface receptors expressed broadly by cells of the myeloid lineage.The aim of this study was to investigate the clinical significance of soluble TREM-1(sTREM-1)in pleural effusions,and to determine the effects of pneumonia on pleural sTREM-1 concentrations.Methods PleuraI fluid was collected from 109 patients who presented to the respiratory institute (35 with malignant pleural effusion,31 with tuberculous pleural effusion,21 with bacteriaI pleural effusion,and 22 with transudate).The concentrations of sTREM-1,tumor necrosis factor-o(TNF-α)and interleukin-1β(IL-1β)were determined jn effusion and serum samples by enzyme Iinked immunosorbent assay(ELISA).Results The concentrations of sTREM-1 in bacterial pleural effusion were significantly higher than those in malignant.tuberculous,and transudative groups(all P<0.001).An sTREM-1 cutoff value of 768.1 ng/L had a sensitivity of 86%and a specificity of 93%.Pleural sTREM-1 Ievels were positively correlated with Ievels of TNF-α and IL-1β.Patients with complicating bacterial pneumonia did not have elevated concentration of STREM-1 jn pleural effusion when compared with patients without pneumonia.Conclusions Determination of pleural sTREM-1 may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.The occurrence of bacterial pneumonia did not affect pleural sTREM-1 concentrations.

  20. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance.

    Science.gov (United States)

    Liu, Qiaofei; Liao, Quan; Zhao, Yupei

    2016-02-01

    The mechanisms of distant metastasis of malignancies largely remain unknown. Circulating tumor cells (CTC) derived from the primary cancer initiate distant metastasis by entering and traversing the bloodstream. Current methods to detect CTC are based on the notion that CTC do not express the common leukocyte antigen CD45. However, these methods neglect the fact that CTC can directly adhere to platelets and immune cells and therefore appear to be CD45-positive. The potential effects of interactions between CTC and adhesive immune cells have been largely overlooked, despite the fact that most CTC are killed by immune effector cells and only those that evade immune surveillance result in clonal expansion and metastatic lesions. It is crucial to define the characteristics that allow a select CTC population to escape immune surveillance; particularly, it must be determined whether interactions between CTC and adhesive immune cells provide a protective effect on CTC survival. If interactions between CTC and adhesive immune cells offer a selective advantage to those CTC cells, the next consideration is which characteristics of a CTC-immune cell population allow sufficient protection to facilitate immune evasion. Myeloid-derived suppressor cells (MDSC) are a large heterogeneous population of immature myeloid cells that accumulate during cancer progression to induce extensively systemic and local immunosuppression, a phenomenon that has been demonstrated to facilitate cancer distant metastasis. We hypothesize, therefore, that CTC populations interacting with adhesive immune cells will have different biological behavior than CTC populations alone. Further, we hypothesize that CTC can create a defensive shield consisting of adhesive MDSC, which allows evasion of immune surveillance and therefore facilitates distant metastatic lesions. This possibility highlights the importance of direct interactions between CTC and adhesive immune cells and suggests the potential target that

  1. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells.

    Science.gov (United States)

    Haruta, M; Tomita, Y; Yuno, A; Matsumura, K; Ikeda, T; Takamatsu, K; Haga, E; Koba, C; Nishimura, Y; Senju, S

    2013-05-01

    We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b(+) myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells 'iPS-ML', and the iPS-ML-derived APC 'ML-DC'. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8(+) T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8(+) T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

  2. Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    Full Text Available BACKGROUND: This study aimed to understand the role of myeloid cell clusters in uninvolved regional lymph nodes from early stage non-small cell lung cancer patients. METHODS: Uninvolved regional lymph node sections from 67 patients with stage I-III resected non-small cell lung cancer were immunostained to detect myeloid clusters, STAT3 activity and occult metastasis. Anthracosis intensity, myeloid cluster infiltration associated with anthracosis and pSTAT3 level were scored and correlated with patient survival. Multivariate Cox regression analysis was performed with prognostic variables. Human macrophages were used for in vitro nicotine treatment. RESULTS: CD68+ myeloid clusters associated with anthracosis and with an immunosuppressive and metastasis-promoting phenotype and elevated overall STAT3 activity were observed in uninvolved lymph nodes. In patients with a smoking history, myeloid cluster score significantly correlated with anthracosis intensity and pSTAT3 level (P<0.01. Nicotine activated STAT3 in macrophages in long-term culture. CD68+ myeloid clusters correlated and colocalized with occult metastasis. Myeloid cluster score was an independent prognostic factor (P = 0.049 and was associated with survival by Kaplan-Maier estimate in patients with a history of smoking (P = 0.055. The combination of myeloid cluster score with either lymph node stage or pSTAT3 level defined two populations with a significant difference in survival (P = 0.024 and P = 0.004, respectively. CONCLUSIONS: Myeloid clusters facilitate a pro-metastatic microenvironment in uninvolved regional lymph nodes and associate with occult metastasis in early stage non-small cell lung cancer. Myeloid cluster score is an independent prognostic factor for survival in patients with a history of smoking, and may present a novel method to inform therapy choices in the adjuvant setting. Further validation studies are warranted.

  3. Instructive role of M-CSF on commitment of bipotent myeloid cells involves ERK-dependent positive and negative signaling.

    Science.gov (United States)

    Carras, Sylvain; Valayer, Alexandre; Moratal, Claudine; Weiss-Gayet, Michèle; Pages, Gilles; Morlé, François; Mouchiroud, Guy; Gobert, Stéphanie

    2016-02-01

    M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation.

  4. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  5. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells.

    Science.gov (United States)

    Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

    2016-10-01

    Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF-04449913 (PF-913) is a selective, small-molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof-of-concept and mechanism of action of PF-913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signaling pathway in AML cells, and evaluated the in vitro and in vivo effects of the Smoothened inhibitor PF-913. In primary AML cells, activation of the Hedgehog signaling pathway was more pronounced in CD34(+) cells than CD34(-) cells. In vitro treatment with PF-913 induced a decrease in the quiescent cell population accompanied by minimal cell death. In vivo treatment with PF-913 attenuated the leukemia-initiation potential of AML cells in a serial transplantation mouse model, while limiting reduction of tumor burden in a primary xenotransplant system. Comprehensive gene set enrichment analysis revealed that PF-913 modulated self-renewal signatures and cell cycle progression. Furthermore, PF-913 sensitized AML cells to cytosine arabinoside, and abrogated resistance to cytosine arabinoside in AML cells cocultured with HS-5 stromal cells. These findings imply that pharmacologic inhibition of Hedgehog signaling attenuates the leukemia-initiation potential, and also enhanced AML therapy by sensitizing dormant leukemia stem cells to chemotherapy and overcoming resistance in the bone marrow microenvironment. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Expansion in vitro and cytotoxicity of dendritic cells from patients with chronic myeloid leukemia.

    Science.gov (United States)

    Ji, Lei; Xing, Pei-Ni; Wei, Xu-Cang; Wang, Tong; Li, Mei-Sheng; Zhang, Wang-Gang

    2005-04-01

    The study was aimed to investigate the extensive amplification and the cytotoxicity of dendritic cells (DC) derived from chronic myeloid leukemia cells. DC were cultured in two steps: firstly, extensive amplification in primary culture of CD34(+) or mononuclear cells isolated from CML patients' bone marrow and peripheral blood with rhFlt3-L and rhTPO for 7 days; secondly, inducing culture of DC with rhGM-CSF, rhTNF and rhIL-4 for 14 days. A system inducing DC directly were established for comparison. DC were identified by immunophenotype with flow cytometry, chromosome analysis by displaying G banding and electric microscopy analysis. The function of stimulating T cells proliferation and cytotoxicity of CML cells were confirmed through MTT assay. The results showed that after first extensive amplification in primary culture with rhFlt3-L and rhTPO for 7 days, CD34(+) cells had a total cell number with (77 +/- 5) fold expansion, and DC were (39 +/- 8)% of total cell respectively after induction culture of DC with rhGM-CSF, rhTNF and rhIL-4 for 14 days. Both the amplification of cell number and yield of DC were higher than the system without extensively culture (P < 0.01). Such DC could stimulate T cells to proliferate and kill leukemia cells finally. In conclusion, two-step culture method can obviously improve the cell number of DC required, that is better than inducing them directly. DC derived from CML cells induce the generation of anti-leukemia immunization.

  7. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    Science.gov (United States)

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  8. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Paul W Hollenbach

    Full Text Available BACKGROUND: The cytidine nucleoside analogs azacitidine (AZA and decitabine (DAC are used for the treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML. Few non-clinical studies have directly compared the mechanisms of action of these agents in a head-to-head fashion, and the agents are often viewed as mechanistically similar DNA hypomethylating agents. To better understand the similarities and differences in mechanisms of these drugs, we compared their in vitro effects on several end points in human AML cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Both drugs effected DNA methyltransferase 1 depletion, DNA hypomethylation, and DNA damage induction, with DAC showing equivalent activity at concentrations 2- to 10-fold lower than AZA. At concentrations above 1 microM, AZA had a greater effect than DAC on reducing cell viability. Both drugs increased the sub-G1 fraction and apoptosis markers, with AZA decreasing all cell cycle phases and DAC causing an increase in G2-M. Total protein synthesis was reduced only by AZA, and drug-modulated gene expression profiles were largely non-overlapping. CONCLUSIONS/SIGNIFICANCE: These data demonstrate shared mechanisms of action of AZA and DAC on DNA-mediated markers of activity, but distinctly different effects in their actions on cell viability, protein synthesis, cell cycle, and gene expression. The differential effects of AZA may be mediated by RNA incorporation, as the distribution of AZA in nucleic acid of KG-1a cells was 65:35, RNA:DNA.

  9. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice.

    Science.gov (United States)

    Wang, Yungang; Tian, Jie; Tang, Xinyi; Rui, Ke; Tian, Xinyu; Ma, Jie; Ma, Bin; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-03-29

    Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.

  10. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Del Pozzo Giovanna

    2009-06-01

    Full Text Available Abstract Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenolpropane is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.

  11. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

    Science.gov (United States)

    Takam Kamga, Paul; Bassi, Giulio; Cassaro, Adriana; Midolo, Martina; Di Trapani, Mariano; Gatti, Alessandro; Carusone, Roberta; Resci, Federica; Perbellini, Omar; Gottardi, Michele; Bonifacio, Massimiliano; Nwabo Kamdje, Armel Hervé; Ambrosetti, Achille; Krampera, Mauro

    2016-04-19

    Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.

  12. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    Science.gov (United States)

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; preceptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor gamma

  13. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    Science.gov (United States)

    2017-09-14

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Blasts Under 10 Percent of Bone Marrow Nucleated Cells; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Myelodysplastic Syndrome With Excess Blasts; Pancytopenia; Refractory Anemia; Secondary Acute Myeloid Leukemia

  14. Exogenous cardiolipin localizes to mitochondria and prevents TAZ knockdown-induced apoptosis in myeloid progenitor cells.

    Science.gov (United States)

    Ikon, Nikita; Su, Betty; Hsu, Fong-Fu; Forte, Trudy M; Ryan, Robert O

    2015-08-21

    The concentration and composition of cardiolipin (CL) in mitochondria are altered in age-related heart disease, Barth Syndrome, and other rare genetic disorders, resulting in mitochondrial dysfunction. To explore whether exogenous CL can be delivered to cells, CL was combined with apolipoprotein A-I to generate water-soluble, nanoscale complexes termed nanodisks (ND). Mass spectrometry of HL60 myeloid progenitor cell extracts revealed a 30-fold increase in cellular CL content following incubation with CL-ND. When CL-ND containing a fluorescent CL analogue was employed, confocal microscopy revealed CL localization to mitochondria. The ability of CL-ND to elicit a physiological response was examined in an HL60 cell culture model of Barth Syndrome neutropenia. siRNA knockdown of the phospholipid transacylase, tafazzin (TAZ), induced apoptosis in these cells. When TAZ knockdown cells were incubated with CL-ND, the apoptotic response was attenuated. Thus, CL-ND represent a potential intervention strategy for replenishment of CL in Barth Syndrome, age-related heart disease, and other disorders characterized by depletion of this key mitochondrial phospholipid.

  15. Myeloid-derived suppressor cells mediate tolerance induction in autoimmune disease.

    Science.gov (United States)

    Wegner, Anja; Verhagen, Johan; Wraith, David C

    2017-01-31

    In multiple sclerosis (MS) T cells aberrantly recognize self-peptides of the myelin sheath and attack the central nervous system (CNS). Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach to combat autoimmune disease, but the cellular mechanisms behind successful therapy remain poorly understood. Myeloid-derived suppressor cells (MDSCs) have been studied intensively in the field of cancer and to a lesser extent in autoimmunity. Because of their suppressive effect on the immune system in cancer, we hypothesized that the development of MDSCs and their interaction with CD4(+) T cells could be beneficial for antigen-specific immunotherapy. Hence, changes in the quantity, phenotype and function of MDSCs during tolerance induction in our model of MS were evaluated. We reveal, for the first time, an involvement of a subset of MDSCs, known as polymorphonuclear (PMN)-MDSCs, in the process of tolerance induction. PMN-MDSCs were shown to adopt a more suppressive phenotype during peptide immunotherapy and inhibit CD4(+) T-cell proliferation in a cell-contact-dependent manner, mediated by arginase-1. Moreover, increased numbers of tolerogenic PMN-MDSCs, such as observed over the course of peptide immunotherapy, were demonstrated to provide protection from disease in a model of experimental autoimmune encephalomyelitis.

  16. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

    Science.gov (United States)

    Edgington-Mitchell, Laura E; Rautela, Jai; Duivenvoorden, Hendrika M; Jayatilleke, Krishnath M; van der Linden, Wouter A; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S

    2015-09-29

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.

  17. Expression and the role of myeloid-derived suppressor cells in the peripheral blood in patients with chronic hepatitis B

    Institute of Scientific and Technical Information of China (English)

    陆丽蓉

    2014-01-01

    Objective To investigate the correlation between the frequency of myeloid-derived suppressor cells(MDSC)and the frequency of regulatory T cells(Treg)in the peripheral blood in patients with chronic hepatitis B(CHB)and its clinical significance.Methods A total of 45 CHB patients including 23 mild-to-moderate CHB patients,22severe CHB patients,and 15 healhy control cytometry

  18. HPV16-associated tumors control myeloid cell homeostasis in lymphoid organs, generating a suppressor environment for T cells.

    Science.gov (United States)

    Stone, Simone Cardozo; Rossetti, Renata Ariza Marques; Bolpetti, Aline; Boccardo, Enrique; Souza, Patricia Savio de Araujo; Lepique, Ana Paula

    2014-10-01

    Tumors are complex structures containing different types of cells and molecules. The importance of the tumor microenvironment in tumor progression, growth, and maintenance is well-established. However, tumor effects are not restricted to the tumor microenvironment. Molecules secreted by, as well as cells that migrate from tumors, may circulate and reach other tissues. This may cause a series of systemic effects, including modulation of immune responses, and in some cases, leukocytosis and metastasis promotion. Leukocytosis has been described as a poor prognostic factor in patients with cervical cancer. The main etiological factor for cervical cancer development is persistent infection with high oncogenic risk HPV. Our laboratory has been exploring the effects of high oncogenic risk, HPV-associated tumors on lymphoid organs of the host. In the present study, we observed an increase in myeloid cell proliferation and alteration in cell signaling in APCs in the spleen of tumor-bearing mice. In parallel, we characterized the cytokines secreted in the inflammatory and tumor cell compartments in the tumor microenvironment and in the spleen of tumor-bearing mice. We show evidence of constitutive activation of the IL-6/STAT3 signaling pathway in the tumor, including TAMs, and in APCs in the spleen. We also observed that IL-10 is a central molecule in the tolerance toward tumor antigens through control of NF-κB activation, costimulatory molecule expression, and T cell proliferation. These systemic effects over myeloid cells are robust and likely an important problem to be addressed when considering strategies to improve anti-tumor T cell responses.

  19. Misfolded N-CoR is linked to the ectopic reactivation of CD34/Flt3-based stem-cell phenotype in promyelocytic and monocytic acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Dawn Sijin Nin

    2015-10-01

    Full Text Available Nuclear receptor co-repressor (N-CoR is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC self-renewal and growth; and that de-repression of Flt3 by the misfolded N-CoR plays important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML. The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage, and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation towards cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34 based hematopoietic stem cell phenotypes. These finding

  20. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    Directory of Open Access Journals (Sweden)

    Germison Silva Lopes

    2014-07-01

    Full Text Available Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure.

  1. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  2. Allogeneic hematopoietic cell transplant for acute myeloid leukemia: Current state in 2013 and future directions.

    Science.gov (United States)

    Kanate, Abraham S; Pasquini, Marcelo C; Hari, Parameswaran N; Hamadani, Mehdi

    2014-04-26

    Acute myeloid leukemia (AML) represents a heterogeneous group of high-grade myeloid neoplasms of the elderly with variable outcomes. Though remission-induction is an important first step in the management of AML, additional treatment strategies are essential to ensure long-term disease-free survival. Recent pivotal advances in understanding the genetics and molecular biology of AML have allowed for a risk-adapted approach in its management based on relapse-risk. Allogeneic hematopoietic cell transplantation (allo-HCT) represents an effective therapeutic strategy in AML providing the possibility of cure with potent graft-versus-leukemia reactions, with a demonstrable survival advantage in younger patients with intermediate- or poor-risk cytogenetics. Herein we review the published data regarding the role of allo-HCT in adults with AML. We searched MEDLINE/PubMed and EMBASE/Ovid. In addition, we searched reference lists of relevant articles, conference proceedings and ongoing trial databases. We discuss the role of allo-HCT in AML patients stratified by cytogenetic- and molecular-risk in first complete remission, as well as allo-HCT as an option in relapsed/refractory AML. Besides the conventional sibling and unrelated donor allografts, we review the available data and recent advances for alternative donor sources such as haploidentical grafts and umbilical cord blood. We also discuss conditioning regimens, including reduced intensity conditioning which has broadened the applicability of allo-HCT. Finally we explore recent advances and future possibilities and directions of allo-HCT in AML. Practical therapeutic recommendations have been made where possible based on available data and expert opinion.

  3. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells.

    Science.gov (United States)

    Zhamanbayeva, Gulzhan T; Aralbayeva, Araylim N; Murzakhmetova, Maira K; Tuleukhanov, Sultan T; Danilenko, Michael

    2016-08-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    Directory of Open Access Journals (Sweden)

    Andrew E O Hughes

    2014-07-01

    Full Text Available Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  5. Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs. MPSSS is composed of glucose (75.0%, galactose (11.7%, mannose (7.8%, and xylose (0.4%. In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4(+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.

  6. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia

    Institute of Scientific and Technical Information of China (English)

    Jianbiao; Zhou; Wee-Joo; Chng

    2014-01-01

    Accumulating evidence support the notion that acute myeloid leukemia(AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells(LSC). Similar to their normal counterpart, hematopoietic stem cells(HSC), LSC possess selfrenewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normalHSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.

  7. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy.

    Science.gov (United States)

    Shahzad, Khurrum; Bock, Fabian; Dong, Wei; Wang, Hongjie; Kopf, Stefan; Kohli, Shrey; Al-Dabet, Moh'd Mohanad; Ranjan, Satish; Wolter, Juliane; Wacker, Christian; Biemann, Ronald; Stoyanov, Stoyan; Reymann, Klaus; Söderkvist, Peter; Groß, Olaf; Schwenger, Vedat; Pahernik, Sascha; Nawroth, Peter P; Gröne, Herman-Josef; Madhusudhan, Thati; Isermann, Berend

    2015-01-01

    Diabetic nephropathy is a growing health concern with characteristic sterile inflammation. As the underlying mechanisms of this inflammation remain poorly defined, specific therapies targeting sterile inflammation in diabetic nephropathy are lacking. Intriguingly, an association of diabetic nephropathy with inflammasome activation has recently been shown, but the pathophysiological relevance of this finding remains unknown. Within glomeruli, inflammasome activation was detected in endothelial cells and podocytes in diabetic humans and mice and in glucose-stressed glomerular endothelial cells and podocytes in vitro. Abolishing Nlrp3 or caspase-1 expression in bone marrow-derived cells fails to protect mice against diabetic nephropathy. Conversely, Nlrp3-deficient mice are protected against diabetic nephropathy despite transplantation of wild-type bone marrow. Pharmacological IL-1R antagonism prevented or even reversed diabetic nephropathy in mice. Mitochondrial reactive oxygen species (ROS) activate the Nlrp3 inflammasome in glucose or advanced glycation end product stressed podocytes. Inhibition of mitochondrial ROS prevents glomerular inflammasome activation and nephropathy in diabetic mice. Thus, mitochondrial ROS and Nlrp3-inflammasome activation in non-myeloid-derived cells aggravate diabetic nephropathy. Targeting the inflammasome may be a potential therapeutic approach to diabetic nephropathy.

  8. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal.

    Science.gov (United States)

    Pietras, Eric M; Mirantes-Barbeito, Cristina; Fong, Sarah; Loeffler, Dirk; Kovtonyuk, Larisa V; Zhang, SiYi; Lakshminarasimhan, Ranjani; Chin, Chih Peng; Techner, José-Marc; Will, Britta; Nerlov, Claus; Steidl, Ulrich; Manz, Markus G; Schroeder, Timm; Passegué, Emmanuelle

    2016-06-01

    Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions.

  9. Induction of apoptosis in human myeloid leukemia cells by remote exposure of resistive barrier cold plasma.

    Science.gov (United States)

    Thiyagarajan, Magesh; Anderson, Heather; Gonzales, Xavier F

    2014-03-01

    Cold atmospheric plasma (CAP), an ambient temperature ionized gas, is gaining extensive interest as a promising addition to anti-tumor therapy primarily due to the ability to generate and control delivery of electrons, ions, excited molecules, UV photons, and reactive species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) to a specific site. The heterogeneous composition of CAP offers the opportunity to mediate several signaling pathways that regulate tumor cells. Consequently, the array of CAP generated products has limited the identification of the mechanisms of action on tumor cells. The aim of this work is to assess the cell death response of human myeloid leukemia cells by remote exposure to CAP generated RNS by utilizing a novel resistive barrier discharge system that primarily produces RNS. The effect of variable treatments of CAP generated RNS was tested in THP-1 cell (human monocytic leukemia cell line), a model for hematological malignancy. The number of viable cells was evaluated with erythrosine-B staining, while apoptosis and necrosis was assessed by endonuclease cleavage observed by agarose gel electrophoresis and detection of cells with the exclusionary dye propidium iodide and fluorescently labeled annexin-V by flow cytometry and fluorescent microscopy. Our observations indicate that treatment dosage levels of 45 s of exposure to CAP emitted RNS-induced apoptotic cell death and for higher dosage conditions of ≥50 s of exposure to CAP induced necrosis. Overall the results suggest that CAP emitted RNS play a significant role in the anti-tumor potential of CAP.

  10. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  11. Analysis of splenic Gr-1int immature myeloid cells in tumor-bearing mice.

    Science.gov (United States)

    Yamamoto, Yoshiko; Ishigaki, Hirohito; Ishida, Hideaki; Itoh, Yasushi; Noda, Yoichi; Ogasawara, Kazumasa

    2008-01-01

    It is known that the number of ImC, expressing myeloid markers, CD11b and Gr-1, increase with tumor growth and ImC play a role in the escape of tumor cells from immunosurveillance in tumor-bearing mice and cancer patients. However, the mechanisms by which ImC suppress immune responses in tumor-bearing mice have not been completely elucidated. In the present study, we investigated the function of splenic ImC freshly isolated from tumor-bearing mice and splenic ImC differentiated in vitro by GM-CSF. Freshly isolated splenic ImC were divided into two groups depending on Gr-1 expression, Gr-1 high (Gr-1hi) and intermediate (Gr-1int). Freshly isolated splenic Gr-1int ImC, but not Gr-1hi ImC, from tumor-bearing mice reduced production of IFN-gamma in CD8+ T cells, but neither splenic Gr-1int ImC nor Gr-1hi ImC isolated from naive mice did. Both Gr-1int and Gr-1hi ImC differentiated in vitro by GM-CSF inhibited production of IFN-gamma in both CD8+ and CD4+ T cells. In addition, the differentiated Gr-1int ImC, one-third of which were CD11c+F4/80+ cells, and their culture supernatants suppressed proliferative responses of T cells stimulated by CD3 ligation, but the differentiated Gr-1hi ImC and their culture supernatants did not. These results suggest that Gr-1int ImC are altered to immune-suppressive cells in tumor circumstances and that they are differentiated by GM-CSF progressively into CD11c+F4/80+ cells with further suppressive activity against T cells.

  12. Impact of postremission consolidation chemotherapy on outcome after reduced-intensity conditioning allogeneic stem cell transplantation for patients with acute myeloid leukemia in first complete remission

    DEFF Research Database (Denmark)

    Yeshurun, Moshe; Labopin, Myriam; Blaise, Didier;

    2014-01-01

    The objective of the current study was to investigate the role of postremission consolidation chemotherapy before reduced-intensity conditioning (RIC) allogeneic stem cell transplantation (alloSCT) for patients with acute myeloid leukemia (AML) in first complete remission (CR1).......The objective of the current study was to investigate the role of postremission consolidation chemotherapy before reduced-intensity conditioning (RIC) allogeneic stem cell transplantation (alloSCT) for patients with acute myeloid leukemia (AML) in first complete remission (CR1)....

  13. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Koichi R. Katsumura

    2016-08-01

    Full Text Available The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS and acute myeloid leukemia (AML, and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.

  14. Triggering receptor expressed on myeloid cells-1: New player in antiviral immunity?

    Directory of Open Access Journals (Sweden)

    Kelsey eRoe

    2014-11-01

    Full Text Available The triggering receptor expressed on myeloid cells (TREM family of protein receptors is quickly emerging as a critical regulator of a diverse array of cellular functions including amplification of inflammation. Although the ligand(s for TREMs have not yet been fully identified, circumstantial evidence indicates that danger- and pathogen-associated molecular patterns (DAMPs and PAMPs can induce cytokine production via TREM-1 activation. The discovery of novel functions of TREMs such as regulation of T cell proliferation and activation of antigen presenting cells suggests a larger role of TREM proteins in modulation of host immune responses to microbial pathogens such as bacteria and fungi. However, the significance of TREM signaling in innate immunity to virus infections and underlying mechanisms remains largely unclear. The nature and intensity of innate immune responses, specifically production of type I Interferon and inflammatory cytokines is a crucial event in dictating recovery versus adverse outcome of virus infections. In this review, we highlight the emerging roles of TREM-1, including synergy with classical pathogen recognition receptors. Based on the literature using viral PAMPs and other infectious disease models, we further discuss how TREM-1 may influence host-virus interactions and viral pathogenesis. A deeper conceptual understanding of the mechanisms associated with pathogenic and/or protective functions of TREM-1 in antiviral immunity is essential to develop novel therapeutic strategies for the control of virus infection by modulating innate immune signaling.

  15. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    Science.gov (United States)

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  16. Reduced-intensity conditioning allogeneic hematopoietic-cell transplantation for older patients with acute myeloid leukemia.

    Science.gov (United States)

    Goyal, Gaurav; Gundabolu, Krishna; Vallabhajosyula, Saraschandra; Silberstein, Peter T; Bhatt, Vijaya Raj

    2016-06-01

    Elderly patients (>60 years) with acute myeloid leukemia have a poor prognosis with a chemotherapy-alone approach. Allogeneic hematopoietic-cell transplantation (HCT) can improve overall survival (OS). However, myeloablative regimens can have unacceptably high transplant-related mortality (TRM) in an unselected group of older patients. Reduced-intensity conditioning (RIC) or nonmyeloablative (NMA) conditioning regimens preserve the graft-versus-leukemia effects but reduce TRM. NMA regimens result in minimal cytopenia and may not require stem cell support for restoring hematopoiesis. RIC regimens, intermediate in intensity between NMA and myeloablative regimens, can cause prolonged myelosuppresion and usually require stem cell support. A few retrospective and prospective studies suggest a possibility of lower risk of relapse with myeloablative HCT in fit older patients with lower HCT comorbidity index; however, RIC and NMA HCTs have an important role in less-fit patients and those with significant comorbidities because of lower TRM. Whether early tapering of immunosuppression, monitoring of minimal residual disease, and post-transplant maintenance therapy can improve the outcomes of RIC and NMA HCT in elderly patients will require prospective trials.

  17. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    Science.gov (United States)

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  18. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.

    Science.gov (United States)

    Miraki-Moud, Farideh; Ghazaly, Essam; Ariza-McNaughton, Linda; Hodby, Katharine A; Clear, Andrew; Anjos-Afonso, Fernando; Liapis, Konstantinos; Grantham, Marianne; Sohrabi, Fareeda; Cavenagh, Jamie; Bomalaski, John S; Gribben, John G; Szlosarek, Peter W; Bonnet, Dominique; Taussig, David C

    2015-06-25

    The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials.

  19. Deficiency of the Sialyltransferase St3Gal4 Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest

    Science.gov (United States)

    Döring, Yvonne; Noels, Heidi; Mandl, Manuela; Kramp, Birgit; Neideck, Carlos; Lievens, Dirk; Drechsler, Maik; Megens, Remco T.A.; Tilstam, Pathricia V.; Langer, Marcella; Hartwig, Helene; Theelen, Wendy; Marth, Jamey D.; Sperandio, Markus; Soehnlein, Oliver; Weber, Christian

    2014-01-01

    Rationale Sialylation by α2,3-sialyltransferases has been shown to be a crucial glycosylation step in the generation of functional selectin ligands. Recent evidence suggests that sialylation also affects the binding of chemokines to their corresponding receptor. Objective Because the chemokine receptors for Ccl5 and Ccl2 are important in atherogenic recruitment of neutrophils and monocytes, we here investigated the role of α2,3-sialyltransferase IV (ST3Gal-IV) in Ccl5- and Ccl2-mediated myeloid cell arrest and further studied its relevance in a mouse model of atherosclerosis. Methods and Results St3Gal4-deficient myeloid cells showed a reduced binding of Ccl5 and an impaired Ccl5-triggered integrin activation. Correspondingly, Ccl5-induced arrest on tumor necrosis factor-α–stimulated endothelium was almost completely abrogated, as observed in flow chamber adhesion assays and during ex vivo perfusion or intravital microscopy of carotid arteries. Moreover, Ccl5-triggered neutrophil and monocyte extravasation into the peritoneal cavity was severely reduced in St3Gal4−/− mice. In contrast, St3Gal4 deficiency did not significantly affect Ccl2 binding and only marginally decreased Ccl2-induced flow arrest of myeloid cells. In agreement with the crucial role of leukocyte accumulation in atherogenesis, and the importance of Ccl5 chemokine receptors mediating myeloid cell recruitment to atherosclerotic vessels, St3Gal4 deficiency drastically reduced the size, stage, and inflammatory cell content of atherosclerotic lesions in Apoe−/− mice on high-fat diet. Conclusions In summary, these findings identify ST3Gal-IV as a promising target to reduce inflammatory leukocyte recruitment and arrest. PMID:24425712

  20. Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Stordrange Laila

    2009-03-01

    Full Text Available Abstract Background The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response. Methods The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting. Results Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells. Conclusion Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy

  1. Identification of myeloid derived suppressor cells in dogs with naturally occurring cancer.

    Science.gov (United States)

    Goulart, Michelle R; Pluhar, G Elizabeth; Ohlfest, John R

    2012-01-01

    Dogs with naturally occurring cancer represent an important large animal model for drug development and testing novel immunotherapies. However, poorly defined immunophenotypes of canine leukocytes have limited the study of tumor immunology in dogs. The accumulation of myeloid derived suppressor cells (MDSCs) is known to be a key mechanism of immune suppression in tumor-bearing mice and in human patients. We sought to identify MDSCs in the blood of dogs with cancer. Peripheral blood mononuclear cells (PBMCs) from dogs with advanced or early stage cancer and from age-matched healthy controls were analyzed by flow cytometry and microscopy. Suppressive function was tested in T cell proliferation and cytokine elaboration assays. Semi-quantitative RT-PCR was used to identify potential mechanisms responsible for immunosuppression. PBMCs from dogs with advanced or metastatic cancer exhibited a significantly higher percentage of CD11b(+)CD14(-)MHCII(-) cells compared to dogs diagnosed with early stage non-metastatic tumors and healthy dogs. These CD11b(+) CD14(-)MHCII(-) cells constitute a subpopulation of activated granulocytes that co-purify with PBMCs, display polymorphonuclear granulocyte morphology, and demonstrate a potent ability to suppress proliferation and IFN-γ production in T cells from normal and tumor-bearing donors. Furthermore, these cells expressed hallmark suppressive factors of human MDSC including ARG1, iNOS2, TGF-β and IL-10. In summary our data demonstrate that MDSCs accumulate in the blood of dogs with advanced cancer and can be measured using this three-marker immunophenotype, thereby enabling prospective studies that can monitor MDSC burden.

  2. Triggering receptor expressed on myeloid cells-1 and 2 in bronchoalveolar lavage fluid in pulmonary sarcoidosis.

    Science.gov (United States)

    Suchankova, Magda; Bucova, Maria; Tibenska, Elena; Tedlova, Eva; Demian, Juraj; Majer, Ivan; Novosadova, Helena; Tedla, Miroslav; Paulovicova, Ema; Kantarova, Daniela

    2013-04-01

    Pulmonary sarcoidosis (PS) is characterized by the formation of granulomas in the lungs and has been associated with infection by microorganisms. Triggering receptor expressed on the surface of myeloid cells (TREM)-1 is overexpressed in response to infection while TREM-2 is involved in granuloma formation. We hypothesized that these receptors are overexpressed in PS and might be useful for diagnostic testing. Cell surface TREM-1 and TREM-2 expression in cells obtained at bronchoalveolar lavage (BAL) was measured in individuals with sarcoidosis (n = 26) and compared with that seen in individuals with other interstitial lung diseases (ILD) (n = 27). TREM-1 and TREM-2 expression was significantly increased in sarcoidosis compared with other ILD: total number of TREM-1, P = 0.0039 (23.81 vs 13.50 cells/μl), TREM-2, P < 0.0001 (32.81 vs 7.76 cells/μl); percentage of TREM-1: P = 0.0002 (41.30% vs 15.70%), TREM-2: P < 0.0001 (34% vs 9.60%); and mean fluorescence of TREM-1: P = 0.0005 (5.43 vs 1.96), TREM-2: P = 0.0011 (6.85 vs 2.77). Increase in both of these receptors seems to be typical for PS. In discriminating sarcoidosis from other ILD, the specificity (96%) and sensitivity (72%) of the combination of TREM-1 and TREM-2 was high. Increased TREM-1 and TREM-2 cell surface expression is observed in sarcoidosis. Evaluation of BAL cell expression of both of these receptors may serve as a diagnostic marker for sarcoidosis. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  3. Cyanobacteria from terrestrial and marine sources contain apoptogens able to overcome chemoresistance in acute myeloid leukemia cells.

    Science.gov (United States)

    Liu, Liwei; Herfindal, Lars; Jokela, Jouni; Shishido, Tania Keiko; Wahlsten, Matti; Døskeland, Stein Ove; Sivonen, Kaarina

    2014-04-03

    In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  4. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Liu, Liwei; Herfindal, Lars; Jokela, Jouni; Shishido, Tania Keiko; Wahlsten, Matti; Døskeland, Stein Ove; Sivonen, Kaarina

    2014-01-01

    In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells. PMID:24705501

  5. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2014-04-01

    Full Text Available In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81 cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  6. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.

    Science.gov (United States)

    Pai, Tongkun; Chen, Qiuyan; Zhang, Yao; Zolfaghari, Reza; Ross, A Catharine

    2007-12-25

    Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.

  7. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors.

    Science.gov (United States)

    Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A; Rogers, Sally J; Amaral, David; Ashwood, Paul

    2013-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1(-)BDCA1(+)CD11c(+) and Lin-1(-)BDCA3(+)CD123(-)) and plasmacytoid dendritic cells (Lin-1(-)BDCA2(+)CD123(+) or Lin-1(-)BDCA4(+) CD11c(-)) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (pfrequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD.

  8. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  9. Acute Myeloid Leukaemia of Donor Cell Origin Developing 17 Years after Allogenic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukaemia

    Science.gov (United States)

    Jiménez, Pilar; Alvarez, J. Carlos; Garrido, Pilar; Lorente, J. Antonio; Palacios, Jorge; Ruiz-Cabello, Francisco

    2012-01-01

    Donor cell leukaemia (DCL) is a rare complication of allogenic hematopoietic cell transplantation (HCT). We report the case of a female patient with acute promyelocytic leukaemia (APL), FAB type M3, who developed acute myeloid leukaemia (AML) type M5 of donor origin 17 years after allogenic bone marrow transplantation (BMT) from her HLA-matched sister. Morphology and immunophenotyping showed differences with the initial leukaemia, and short tandem repeat (STR) analysis confirmed donor-type haematopoiesis. Interphase fluorescence in situ hybridisation (FISH) showed an 11q23 deletion. Given that the latency period between transplant and development of leukaemia was the longest reported to date, we discuss the mechanisms underlying delayed leukaemia onset. PMID:23675279

  10. FREQUENCIES OF PERIPHERAL BLOOD MYELOID CELLS IN HEALTHY KENYAN CHILDREN WITH α+ THALASSEMIA AND THE SICKLE CELL TRAIT

    Science.gov (United States)

    URBAN, BRITTA C.; SHAFI, MOHAMMED J.; CORDERY, DAMIEN V.; MACHARIA, ALEX; LOWE, BRETT; MARSH, KEVIN; WILLIAMS, THOMAS N.

    2009-01-01

    The high frequencies of both α+ thalassemia and the sickle cell trait (hemoglobin AS [HbAS]) found in many tropical populations are thought to reflect selection pressure from Plasmodium falciparum malaria. For HbAS, but not for α+ thalassemia, protection appears to be mediated by the enhanced phagocytic clearance of ring-infected erythrocytes. We have investigated the genotype-specific distributions of peripheral blood leukocyte populations in two groups of children living on the coast of Kenya: a group of healthy P. falciparum parasite-negative children sampled at cross-sectional survey during a period of low malaria transmission, and a group of children attending the hospital with acute malaria. We report distinctive distributions of peripheral blood myeloid dendritic cells and monocytes in children with α+ thalassemia and HbAS during healthy periods and disease, and suggest ways in which these might relate to the mechanisms of protection afforded by these conditions. PMID:16606987

  11. Activity of Bruton's tyrosine-kinase inhibitor ibrutinib in patients with CD117-positive acute myeloid leukaemia: a mechanistic study using patient-derived blast cells.

    Science.gov (United States)

    Rushworth, Stuart A; Pillinger, Genevra; Abdul-Aziz, Amina; Piddock, Rachel; Shafat, Manar S; Murray, Megan Y; Zaitseva, Lyubov; Lawes, Matthew J; MacEwan, David J; Bowles, Kristian M

    2015-05-01

    Roughly 80% of patients with acute myeloid leukaemia have high activity of Bruton's tyrosine-kinase (BTK) in their blast cells compared with normal haemopoietic cells, rendering the cells sensitive to the oral BTK inhibitor ibrutinib in vitro. We aimed to develop the biological understanding of the BTK pathway in acute myeloid leukaemia to identify clinically relevant diagnostic information that might define a subset of patients that should respond to ibrutinib treatment. We obtained acute myeloid leukaemia blast cells from unselected patients attending our UK hospital between Feb 19, 2010, and Jan 20, 2014. We isolated primary acute myeloid leukaemia blast cells from heparinised blood and human peripheral blood mononuclear cells to establish the activity of BTK in response to CD117 activation. Furthermore, we investigated the effects of ibrutinib on CD117-induced BTK activation, downstream signalling, adhesion to primary bone-marrow mesenchymal stromal cells, and proliferation of primary acute myeloid leukaemia blast cells. We used the Mann-Whitney U test to compare results between groups. We obtained acute myeloid leukaemia blast cells from 29 patients. Ibrutinib significantly inhibited CD117-mediated proliferation of primary acute myeloid leukaemia blast cells (p=0·028). CD117 activation increased BTK activity by inducing phosphorylated BTK in patients with CD117-positive acute myeloid leukaemia. Furthermore, ibrutinib inhibited CD117-induced activity of BTK and downstream kinases at a concentration of 100 nM or more. CD117-mediated adhesion of CD117-expressing blast cells to bone-marrow stromal cells was significantly inhibited by Ibrutinib at 500 nM (p=0·028) INTERPRETATION: As first-in-man clinical trials of ibrutinib in patients with acute myeloid leukaemia commence, the data suggest not all patients will respond. Our findings show that BTK has specific pro-tumoural biological actions downstream of surface CD117 activation, which are inhibited by ibrutinib

  12. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  13. Myeloid zinc finger 1 mediates sulindac sulfide-induced upregulation of death receptor 5 of human colon cancer cells

    OpenAIRE

    Mano Horinaka; Tatsushi Yoshida; Mitsuhiro Tomosugi; Shusuke Yasuda; Yoshihiro Sowa; Toshiyuki Sakai

    2014-01-01

    A combined therapy of sulindac sulfide and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising strategy for the treatment of cancer. Sulindac sulfide had been shown to induce the expression of death receptor 5 (DR5), a receptor for TRAIL, and sensitize cancer cells to TRAIL-induced apoptosis; however, the molecular mechanism underlying the upregulation of DR5 has not yet been elucidated. We demonstrate here that myeloid zinc finger 1 (MZF1) mediates the induction of...

  14. Development of Myelodysplastic Syndrome and Acute Myeloid Leukemia 15 Years after Hydroxyurea Use in a Patient with Sickle Cell Anemia

    OpenAIRE

    2012-01-01

    We report a 41 year old male with sickle cell disease who developed a myelodysplastic syndrome and acute myeloid leukemia with complex karyotype involving chromosomes 5, 7 and 17 after 15 years of hydroxyurea treatment. He responded poorly to induction chemotherapy with cytarabine/idarubicin followed by high dose cytarabine and succumbed to neutropenic sepsis. Multiple systematic reviews, observational studies and clinical trials were conducted to identify the toxicity profile of hydroxurea. ...

  15. An operational definition of primary refractory acute myeloid leukemia allowing early identification of patients who may benefit from allogeneic stem cell transplantation

    DEFF Research Database (Denmark)

    Ferguson, Paul; Hills, Robert K; Grech, Angela

    2016-01-01

    Up to 30% of adults with acute myeloid leukemia fail to achieve a complete remission after induction chemotherapy - termed primary refractory acute myeloid leukemia. There is no universally agreed definition of primary refractory disease, nor have the optimal treatment modalities been defined. We.......0001) cohorts. The utilization of REF1 criteria permits the early identification of patients whose outcome after one course of induction chemotherapy is very poor, and informs a novel definition of primary refractory acute myeloid leukemia. Furthermore, these data demonstrate that allogeneic stem cell...

  16. Silencing of myeloid cell leukemia-1 by small interfering RNA improves chemosensitivity to etoposide in u-937 leukemic cells.

    Science.gov (United States)

    Jafarlou, M; Baradaran, B; Shanehbandi, D; Saedi, T A; Jafarlou, V; Karimi, P; Othman, F

    2016-01-01

    A key issue in the treatment of acute myeloid leukemia (AML) is the development of drug resistance to chemotherapeutic agents. Overexpression of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic protein, is associated with tumor progression and drug resistance in leukemia and several cancers. The purpose of this study was to investigate the effect of specific Mcl-1 small interference RNA (siRNA) on the proliferation and chemosensitivity of U-937 AML cell to etoposide. The siRNA transfection was conducted using Lipofectamine™ 2000. Quantitative real-time RT-PCR (qRT-PCR) and Western blot analysis were employed to measure the expression levels of mRNA and protein, respectively. To evaluate tumor cell growth after siRNA transfection, Trypan blue exclusion assay was conducted. The cytotoxic effects of siRNA and etoposide were determined using MTT assay on their own and in combination. DNA-histone ELISA and annexin-V/FITC assays were performed to study the apoptosis. Mcl-1 siRNA transfection significantly blocked the expression of Mcl-1 mRNA and protein in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P less than 0.05). Furthermore, pretreatment with Mcl-1 siRNA, synergistically enhanced the cytotoxic and apoptotic effects of etoposide (P less than 0.05). Our results demonstrated that Mcl-1 plays a fundamental role in the survival and resistance of U-937 cells to etoposide. Therefore, Mcl-1 can be considered an attractive target in gene therapy of AML patients and siRNA-mediated silencing of this gene may be a novel strategy in AML treatment.

  17. Identification of Extracellular Actin As a Ligand for Triggering Receptor Expressed on Myeloid Cells-1 Signaling

    Directory of Open Access Journals (Sweden)

    Lei Fu

    2017-08-01

    Full Text Available Triggering receptor expressed on myeloid cells-1 (TREM-1 is a potent amplifier of pro-inflammatory innate immune reactions, and it is an essential mediator of death in sepsis. However, the ligand for TREM-1 has not been fully identified. Previous research identified a natural ligand of TREM-1 distributed on platelets that contributed to the development of sepsis. However, the exact signal for TREM-1 recognition remains to be identified. Here, we identified actin as a TREM-1-interacting protein on platelets and found that recombinant actin could interact with recombinant TREM-1 extracellular domain directly. Furthermore, actin co-localized with TREM-1 on the surface of activated mouse macrophage RAW264.7 cells interacting with platelets. In addition, recombinant actin could enhance the inflammatory response of macrophages from wt mice but not from trem1−/− mice, and the enhancement could be inhibited by LP17 (a TREM-1 inhibitor in a dose-dependent manner. Importantly, extracellular actin showed co-localization with TREM-1 in lung tissue sections from septic mice, which suggested that TREM-1 recognized actin during activation in sepsis. Therefore, the present study identified actin as a new ligand for TREM-1 signaling, and it also provided a link between both essential regulators of death in sepsis.

  18. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma.

    Science.gov (United States)

    Yamasaki, S; Suzuki, R; Hatano, K; Fukushima, K; Iida, H; Morishima, S; Suehiro, Y; Fukuda, T; Uchida, N; Uchiyama, H; Ikeda, H; Yokota, A; Tsukasaki, K; Yamaguchi, H; Kuroda, J; Nakamae, H; Adachi, Y; Matsuoka, K-I; Nakamura, Y; Atsuta, Y; Suzumiya, J

    2017-04-03

    Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) represent severe late effects in patients receiving hematopoietic cell transplantation (HCT) for lymphoma. The choice between high-dose therapy with autologous HCT and allogeneic HCT with reduced-intensity conditioning remains controversial in patients with relapsed lymphoma. We retrospectively analyzed incidence and risk factors for the development of t-AML/MDS in lymphoma patients treated with autologous or allogeneic HCT. A total of 13 810 lymphoma patients who received autologous (n=9963) or allogeneic (n=3847) HCT between 1985 and 2012 were considered. At a median overall survival (OS) of 52 and 46 months in autologous and allogeneic HCT groups, respectively, lymphoma patients receiving autologous HCT (1.38% at 3 years after autologous HCT) had a significant risk for developing t-AML/MDS compared to allogeneic HCT (0.37% at 3 years after allogeneic HCT, Pafter autologous and allogeneic HCT were high-stage risk at HCT (P=0.04) or secondary malignancies (P<0.001) and receiving cord blood stem cell (P=0.03) or involved field radiotherapy (P=0.002), respectively. Strategies that carefully select lymphoma patients for autologous HCT, by excluding lymphoma patients with high-stage risk at HCT, may allow the identification of individual lymphoma patients at particular high risk for t-AML/MDS.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.52.

  19. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML.

  20. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function

    Directory of Open Access Journals (Sweden)

    Eunyoung Chun

    2015-07-01

    Full Text Available Our study reveals a non-canonical role for CCL2 in modulating non-macrophage, myeloid-derived suppressor cells (MDSCs and shaping a tumor-permissive microenvironment during colon cancer development. We found that intratumoral CCL2 levels increased in patients with colitis-associated colorectal cancer (CRC, adenocarcinomas, and adenomas. Deletion of CCL2 blocked progression from dysplasia to adenocarcinoma and reduced the number of colonic MDSCs in a spontaneous mouse model of colitis-associated CRC. In a transplantable mouse model of adenocarcinoma and an APC-driven adenoma model, CCL2 fostered MDSC accumulation in evolving colonic tumors and enhanced polymorphonuclear (PMN-MDSC immunosuppressive features. Mechanistically, CCL2 regulated T cell suppression of PMN-MDSCs in a STAT3-mediated manner. Furthermore, CCL2 neutralization decreased tumor numbers and MDSC accumulation and function. Collectively, our experiments support that perturbing CCL2 and targeting MDSCs may afford therapeutic opportunities for colon cancer interception and prevention.

  1. Cytoreduction surgery reduces systemic myeloid suppressor cell populations and restores intratumoral immunotherapy effectiveness

    Directory of Open Access Journals (Sweden)

    Predina Jarrod D

    2012-06-01

    Full Text Available Abstract Background Multiple immunotherapy approaches have improved adaptive anti-tumor immune responses in patients with early stage disease; however, results have been less dramatic when treating patients with late stage disease. These blunted responses are likely due to a host of factors, including changes in the tumor microenvironment and systemic immunosuppressive features, which accompany advanced tumor states. We hypothesized that cytoreductive surgery could control these immunosuppressive networks and restore the potency of immunotherapy in advanced disease scenarios. Methods To test these hypotheses, two representative intratumoral immunotherapies (an adenoviral vector encoding a suicide gene, AdV-tk, or a type-I interferon, Ad.IFNα were tested in murine models of lung cancer. Cytoreductive surgery was performed following treatment of advanced tumors. Mechanistic underpinnings were investigated using flow cytometry, in vivo leukocyte depletion methods and in vivo tumor neutralization assays. Results AdV-tk and Ad.IFNα were effective in treating early lung cancers, but had little anti-tumor effects in late stage cancers. Interestingly, in late stage scenarios, surgical cytoreduction unmasked the anti-tumor potency of both immunotherapeutic approaches. Immune mechanisms that explained restoration in anti-tumor immune responses included increased CD8 T-cell trafficking and reduced myeloid derived suppressor cell populations. Conclusion This study demonstrates that surgical resection combined with immunotherapy may be a rational therapeutic option for patients with advanced stage cancer.

  2. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  3. Antileukemic Potential of Momordica charantia Seed Extracts on Human Myeloid Leukemic HL60 Cells

    Directory of Open Access Journals (Sweden)

    Ramani Soundararajan

    2012-01-01

    Full Text Available Momordica charantia (bitter gourd has been used in the traditional system of medicine for the treatment of various diseases. Anticancer activity of M. charantia extracts has been demonstrated by numerous in vitro and in vivo studies. In the present study, we investigated the differentiation inducing potential of fractionated M. charantia seed extracts in human myeloid HL60 cells. We found that the HL60 cells treated with the fractionated seed extracts differentiated into granulocytic lineage as characterized by NBT staining, CD11b expression, and specific esterase activity. The differentiation inducing principle was found to be heat-stable, and organic in nature. The differentiation was accompanied by a downregulation of c-myc transcript, indicating the involvement of c-myc pathway, at least in part, in differentiation. Taken together these results indicate that fractionated extracts of M. charantia seeds possess differentiation inducing activity and therefore can be evaluated for their potential use in differentiation therapy for leukemia in combination with other inducers of differentiation.

  4. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Science.gov (United States)

    Pitzonka, Laura; Ullas, Sumana; Chinnam, Meenalakshmi; Povinelli, Benjamin J; Fisher, Daniel T; Golding, Michelle; Appenheimer, Michelle M; Nemeth, Michael J; Evans, Sharon; Goodrich, David W

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  5. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Laura Pitzonka

    Full Text Available Co-transcriptionally assembled ribonucleoprotein (RNP complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  6. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin [Xiangya Hospital, Central South University, Changsha (China); Shaoyang Central Hospital, Hunan Province (China); Zhang, Yanan; Gao, Meng [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China); Wang, Guangping, E-mail: wangguangping45@sina.com [Xiangya Hospital, Central South University, Changsha (China); Fu, Yunfeng, E-mail: fuyunfeng33163@163.com [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China)

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  7. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    Science.gov (United States)

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  8. EGFR in Tumor-Associated Myeloid Cells Promotes Development of Colorectal Cancer in Mice and Associates With Outcomes of Patients.

    Science.gov (United States)

    Srivatsa, Sriram; Paul, Mariel C; Cardone, Claudia; Holcmann, Martin; Amberg, Nicole; Pathria, Paulina; Diamanti, Michaela A; Linder, Markus; Timelthaler, Gerald; Dienes, Hans P; Kenner, Lukas; Wrba, Fritz; Prager, Gerald W; Rose-John, Stefan; Eferl, Robert; Liguori, Giuseppina; Botti, Gerardo; Martinelli, Erika; Greten, Florian R; Ciardiello, Fortunato; Sibilia, Maria

    2017-07-01

    Inhibitors of the epidermal growth factor receptor (EGFR) are the first-line therapy for patients with metastatic colorectal tumors without RAS mutations. However, EGFR inhibitors are ineffective in these patients, and tumor level of EGFR does not associate with response to therapy. We screened human colorectal tumors for EGFR-positive myeloid cells and investigated their association with patient outcome. We also performed studies in mice to evaluate how EGFR expression in tumor cells and myeloid cells contributes to development of colitis-associated cancer and Apc(Min)-dependent intestinal tumorigenesis. We performed immunohistochemical and immunofluorescent analyses of 116 colorectal tumor biopsies to determine levels of EGFR in tumor and stroma; we also collected information on tumor stage and patient features and outcomes. We used the Mann-Whitney U and Kruskal-Wallis tests to correlate tumor levels of EGFR with tumor stage, and the Kaplan-Meier method to estimate patients' median survival time. We performed experiments in mice lacking EGFR in intestinal epithelial cells (Villin-Cre; Egfr(f/f) and Villin-CreER(T2); Egfr(f/f) mice) or myeloid cells (LysM-Cre; Egfr(f/f) mice) on a mixed background. These mice were bred with Apc(Min/+) mice; colitis-associated cancer and colitis were induced by administration of dextran sodium sulfate (DSS), with or without azoxymethane (AOM), respectively. Villin-CreER(T2) was activated in developed tumors by administration of tamoxifen to mice. Littermates that expressed full-length EGFR were used as controls. Intestinal tissues were collected; severity of colitis, numbers and size of tumors, and intestinal barrier integrity were assessed by histologic, immunohistochemical, quantitative reverse transcription polymerase chain reaction, and flow cytometry analyses. We detected EGFR in myeloid cells in the stroma of human colorectal tumors; myeloid cell expression of EGFR associated with tumor metastasis and shorter patient

  9. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    Science.gov (United States)

    Scott, Bart L; Pasquini, Marcelo C; Logan, Brent R; Wu, Juan; Devine, Steven M; Porter, David L; Maziarz, Richard T; Warlick, Erica D; Fernandez, Hugo F; Alyea, Edwin P; Hamadani, Mehdi; Bashey, Asad; Giralt, Sergio; Geller, Nancy L; Leifer, Eric; Le-Rademacher, Jennifer; Mendizabal, Adam M; Horowitz, Mary M; Deeg, H Joachim; Horwitz, Mitchell E

    2017-04-10

    Purpose The optimal regimen intensity before allogeneic hematopoietic cell transplantation (HCT) is unknown. We hypothesized that lower treatment-related mortality (TRM) with reduced-intensity conditioning (RIC) would result in improved overall survival (OS) compared with myeloablative conditioning (MAC). To test this hypothesis, we performed a phase III randomized trial comparing MAC with RIC in patients with acute myeloid leukemia or myelodysplastic syndromes. Patients and Methods Patients age 18 to 65 years with HCT comorbidity index ≤ 4 and < 5% marrow myeloblasts pre-HCT were randomly assigned to receive MAC (n = 135) or RIC (n = 137) followed by HCT from HLA-matched related or unrelated donors. The primary end point was OS 18 months post-random assignment based on an intent-to-treat analysis. Secondary end points included relapse-free survival (RFS) and TRM. Results Planned enrollment was 356 patients; accrual ceased at 272 because of high relapse incidence with RIC versus MAC (48.3%; 95% CI, 39.6% to 56.4% and 13.5%; 95% CI, 8.3% to 19.8%, respectively; P < .001). At 18 months, OS for patients in the RIC arm was 67.7% (95% CI, 59.1% to 74.9%) versus 77.5% (95% CI, 69.4% to 83.7%) for those in the MAC arm (difference, 9.8%; 95% CI, -0.8% to 20.3%; P = .07). TRM with RIC was 4.4% (95% CI, 1.8% to 8.9%) versus 15.8% (95% CI, 10.2% to 22.5%) with MAC ( P = .002). RFS with RIC was 47.3% (95% CI, 38.7% to 55.4%) versus 67.8% (95% CI, 59.1% to 75%) with MAC ( P < .01). Conclusion OS was higher with MAC, but this was not statistically significant. RIC resulted in lower TRM but higher relapse rates compared with MAC, with a statistically significant advantage in RFS with MAC. These data support the use of MAC as the standard of care for fit patients with acute myeloid leukemia or myelodysplastic syndromes.

  10. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  11. [Effect of decitabine on immune regulation in patients with acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation].

    Science.gov (United States)

    Wang, Jing; Zhou, Jin; Zheng, Hui-Fei; Fu, Zheng-Zheng

    2014-10-01

    Based on the representative articles in recent years, the different mechanisms of decitabine on immune regulation in patients with acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (HSCT) are summarized. Decitabine improves the expression of WT1 gene to stimulate specific cytotoxic T cells which can enhance graft versus leukemia effect (GVL) and improve the expression of FOXP3 gene to stimulate regulatory T cells so as to inhibit the acute graft versus host disease (GVHD). Through the above-mentimed mechanisms, decitabine can improve both therapeutic effect and quality of life in the patients with AML after allogeneic HSCT.

  12. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    Science.gov (United States)

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  13. Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis.

    Science.gov (United States)

    Fujii, Wataru; Ashihara, Eishi; Hirai, Hideyo; Nagahara, Hidetake; Kajitani, Naoko; Fujioka, Kazuki; Murakami, Ken; Seno, Takahiro; Yamamoto, Aihiro; Ishino, Hidetaka; Kohno, Masataka; Maekawa, Taira; Kawahito, Yutaka

    2013-08-01

    Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. The role of MDSCs in autoimmune diseases remains controversial, and little is known about the function of MDSCs in autoimmune arthritis. In this study, we clarify that MDSCs play crucial roles in the regulation of proinflammatory immune response in a collagen-induced arthritis (CIA) mouse model. MDSCs accumulated in the spleens of mice with CIA when arthritis severity peaked. These MDSCs inhibited the proliferation of CD4(+) T cells and their differentiation into Th17 cells in vitro. Moreover, MDSCs inhibited the production of IFN-γ, IL-2, TNF-α, and IL-6 by CD4(+) T cells in vitro, whereas they promoted the production of IL-10. Adoptive transfer of MDSCs reduced the severity of CIA in vivo, which was accompanied by a decrease in the number of CD4(+) T cells and Th17 cells in the draining lymph nodes. However, depletion of MDSCs abrogated the spontaneous improvement of CIA. In conclusion, MDSCs in CIA suppress the progression of CIA by inhibiting the proinflammatory immune response of CD4(+) T cells. These observations suggest that MDSCs play crucial roles in the regulation of autoimmune arthritis, which could be exploited in new cell-based therapies for human rheumatoid arthritis.

  14. Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Berit Carow

    Full Text Available Suppressor of cytokine signalling 3 (SOCS3 negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3(fl/fl LysM cre, Socs3(fl/fl lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively and gp130(F/F mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3(fl/fl lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3(fl/fl lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms.

  15. Critical and Independent Role for SOCS3 in Either Myeloid or T Cells in Resistance to Mycobacterium tuberculosis

    Science.gov (United States)

    Carow, Berit; Reuschl, Ann-Kathrin; Gavier-Widén, Dolores; Jenkins, Brendan J.; Ernst, Matthias; Yoshimura, Akihiko; Chambers, Benedict J.; Rottenberg, Martin E.

    2013-01-01

    Suppressor of cytokine signalling 3 (SOCS3) negatively regulates STAT3 activation in response to several cytokines such as those in the gp130-containing IL-6 receptor family. Thus, SOCS3 may play a major role in immune responses to pathogens. In the present study, the role of SOCS3 in M. tuberculosis infection was examined. All Socs3fl/fl LysM cre, Socs3fl/fl lck cre (with SOCS3-deficient myeloid and lymphoid cells, respectively) and gp130F/F mice, with a mutation in gp130 that impedes binding to SOCS3, showed increased susceptibility to infection with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells conveyed resistance to M. tuberculosis infection via the regulation of IL-6/STAT3 signalling. SOCS3 was redundant for mycobacterial control by macrophages in vitro. Instead, SOCS3 expression in infected macrophages and DCs prevented the IL-6-mediated inhibition of TNF and IL-12 secretion and contributed to a timely CD4+ cell-dependent IFN-γ expression in vivo. In T cells, SOCS3 expression was essential for a gp130-independent control of infection with M. tuberculosis, but was neither required for the control of infection with attenuated M. bovis BCG nor for M. tuberculosis in BCG-vaccinated mice. Socs3fl/fl lck cre mice showed an increased frequency of γδ+ T cells in different organs and an enhanced secretion of IL-17 by γδ+ T cells in response to infection. Socs3fl/fl lck cre γδ+ T cells impaired the control of infection with M. tuberculosis. Thus, SOCS3 expression in either lymphoid or myeloid cells is essential for resistance against M. tuberculosis via discrete mechanisms. PMID:23853585

  16. Plasticity of Myeloid Cells during Oral Barrier Wound Healing and the Development of Bisphosphonate-related Osteonecrosis of the Jaw.

    Science.gov (United States)

    Sun, Yujie; Kaur, Kawaljit; Kanayama, Keiichi; Morinaga, Kenzo; Park, Sil; Hokugo, Akishige; Kozlowska, Anna; McBride, William H; Li, Jun; Jewett, Anahid; Nishimura, Ichiro

    2016-09-23

    Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing. A bolus intravenous zoledronate (ZOL) injection to female C57Bl/6 mice followed by maxillary first molar extraction resulted in the development of ONJ-like lesion during the second week of wound healing. The multiplex assay of dissociated oral barrier cells exhibited the secretion of cytokines and chemokines, which was significantly modulated in ZOL mice. Tooth extraction-induced distribution of Ly6G+/Gr1+ cells in the oral barrier tissue increased in ZOL mice at week 2. ONJ-like lesion in ZOL mice contained Ly6G+/Gr1+ cells with abnormal size and morphology as well as different flow cytometric staining intensity. When anti-Ly6G (Gr1) antibody was intraperitoneally injected for 5 days during the second week of tooth extraction, CD11b+GR1(hi) cells in bone marrow and Ly6G+ cells in the oral barrier tissue were depleted, and the development of ONJ-like lesion was significantly attenuated. This study suggests that local modulation of myeloid cell plasticity in the oral barrier tissue may provide the basis for pathogenesis and thus therapeutic as well as preventive strategy of ONJ.

  17. Up-front allogeneic hematopoietic cell transplantation in acute myeloid leukemia arising from the myelodysplastic syndrome.

    Science.gov (United States)

    Choi, Yunsuk; Kim, Sung-Doo; Park, Young-Hoon; Lee, Jae Seok; Kim, Dae-Young; Lee, Jung-Hee; Lee, Kyoo-Hyung; Seol, Miee; Lee, Young-Shin; Kang, Young-Ah; Jeon, Mijin; Jung, Ah Rang; Lee, Je-Hwan

    2015-01-01

    In patients with secondary acute myeloid leukemia (s-AML) arising from the myelodysplastic syndrome (MDS), treatment outcome is unsatisfactory. We compared up-front allogeneic hematopoietic cell transplantation (HCT) to induction chemotherapy (IC) as an initial treatment in patients with s-AML arising from MDS. This retrospective study included 85 patients who were diagnosed with s-AML arising from MDS; 11 patients proceeded to up-front HCT without IC (HCT group) and 74 received IC (IC group) as an initial treatment for s-AML, 28 of whom subsequently underwent HCT. In the IC group, 41.9% achieved complete remission (CR) compared to 81.8% in the HCT group (p = 0.013). The HCT group showed a significantly longer event-free survival (EFS) than the IC group (median 29.2 vs. 5.2 months, p = 0.042). Overall survival of the HCT group was higher than that of the IC group, but the difference was not statistically significant (median 34.6 vs. 7.6 months, p = 0.149). After adjustment for other clinical factors, outcome in the HCT group was significantly better than in the IC group in terms of CR rate (hazard ratio, HR, 11.195; p = 0.007) and EFS (HR, 0.384; p = 0.029). Up-front HCT is a viable option in s-AML arising from MDS if an appropriate donor is available.

  18. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia.

    Science.gov (United States)

    Cuenca, Alex G; Cuenca, Angela L; Winfield, Robert D; Joiner, Dallas N; Gentile, Lori; Delano, Matthew J; Kelly-Scumpia, Kindra M; Scumpia, Philip O; Matheny, Michael K; Scarpace, Philip J; Vila, Lizette; Efron, Philip A; LaFace, Drake M; Moldawer, Lyle L

    2014-06-15

    Cancer progression is associated with inflammation, increased metabolic demand, infection, cachexia, and eventually death. Myeloid-derived suppressor cells (MDSCs) commonly expand during cancer and are associated with adaptive immune suppression and inflammatory metabolite production. We propose that cancer-induced cachexia is driven at least in part by the expansion of MDSCs. MDSC expansion in 4T1 mammary carcinoma-bearing hosts is associated with induction of a hepatic acute-phase protein response and altered host energy and fat metabolism, and eventually reduced survival to polymicrobial sepsis and endotoxemia. Similar results are also seen in mice bearing a Lewis lung carcinoma and a C26 colon adenocarcinoma. However, a similar cachexia response is not seen with equivalent growth of the 66C4 subclone of 4T1, in which MDSC expansion does not occur. Importantly, reducing MDSC numbers in 4T1-bearing animals can ameliorate some of these late responses and reduce susceptibility to inflammation-induced organ injury and death. In addition, administering MDSCs from both tumor- and nontumor-bearing mice can produce an acute-phase response. Thus, we propose a previously undescribed mechanism for the development of cancer cachexia, whereby progressive MDSC expansion contributes to changes in host protein and energy metabolism and reduced resistance to infection.

  19. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion.

  20. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs.

  1. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  2. Diagnostic value of soluble triggering receptor expressed on myeloid cells in paediatric sepsis: a systematic review.

    Science.gov (United States)

    Pontrelli, Giuseppe; De Crescenzo, Franco; Buzzetti, Roberto; Calò Carducci, Francesca; Jenkner, Alessandro; Amodio, Donato; De Luca, Maia; Chiurchiù, Sara; Davies, Elin Haf; Simonetti, Alessandra; Ferretti, Elena; Della Corte, Martina; Gramatica, Luca; Livadiotti, Susanna; Rossi, Paolo

    2016-04-27

    Differential diagnosis between sepsis and non-infectious inflammatory disorders demands improved biomarkers. Soluble Triggering Receptor Expression on Myeloid cells (sTREM-1) is an activating receptor whose role has been studied throughout the last decade. We performed a systematic review to evaluate the accuracy of plasma sTREM-1 levels in the diagnosis of sepsis in children with Systemic Inflammatory Response Syndrome (SIRS). A literature search of PubMed, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and ISI Web of Knowledge databases was performed using specific search terms. Studies were included if they assessed the diagnostic accuracy of plasma sTREM-1 for sepsis in paediatric patients with SIRS. Data on sensitivity, specificity, positive predictive value, negative predictive value, area under receiver operating characteristic curve were extracted. The methodological quality of each study was assessed using a checklist based on the Quality Assessment Tool for Diagnostic Accuracy Studies. Nine studies comprising 961 patients were included, four of which were in newborns, three in children and two in children with febrile neutropenia. Some data from single studies support a role of sTREM-1 as a diagnostic tool in pediatric sepsis, but cannot be considered conclusive, because a quantitative synthesis was not possible, due to heterogeneity in studies design. This systematic review suggests that available data are insufficient to support a role for sTREM in the diagnosis and follow-up of paediatric sepsis.

  3. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms

    Science.gov (United States)

    Brenner, Annette K.; Nepstad, Ina; Bruserud, Øystein

    2017-01-01

    Acute myeloid leukemia (AML) is a bone marrow malignancy, and various bone marrow stromal cells seem to support leukemogenesis, including osteoblasts and endothelial cells. We have investigated how normal bone marrow mesenchymal stem cells (MSCs) support the in vitro proliferation of primary human AML cells. Both MSCs and primary AML cells show constitutive release of several soluble mediators, and the mediator repertoires of the two cell types are partly overlapping. The two cell populations were cocultured on transwell plates, and MSC effects on AML cells mediated through the local cytokine/soluble mediator network could thus be evaluated. The presence of normal MSCs had an antiapoptotic and growth-enhancing effect on primary human AML cells when investigating a group of 51 unselected AML patients; this was associated with increased phosphorylation of mTOR and its downstream targets, and the effect was independent of cytogenetic or molecular-genetic abnormalities. The MSCs also supported the long-term proliferation of the AML cells. A subset of the patients also showed an altered cytokine network with supra-additive levels for several cytokines. The presence of cytokine-neutralizing antibodies or receptor inhibitors demonstrated that AML cells derived from different patients were heterogeneous with regard to effects of various cytokines on AML cell proliferation or regulation of apoptosis. We conclude that even though the effects of single cytokines derived from bone marrow MSCs on human AML cells differ among patients, the final cytokine-mediated effects of the MSCs during coculture is growth enhancement and inhibition of apoptosis.

  4. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies

    DEFF Research Database (Denmark)

    Gang, A O; Frøsig, T M; Brimnes, M K

    2014-01-01

    therefore examined potential treatment effects on both immune stimulatory (CD8 and CD4 T cells and Natural Killer (NK) cells) and immune inhibitory cell subsets (myeloid-derived suppressor cells and regulatory T cells). We observed a minor decrease and modulation of NK cells, but for all other populations...... may have a role in this treatment regimen. We show here that 5-Azacytidine treatment leads to increased T-cell recognition of tumor cells. T-cell responses against a large panel of cancer-testis antigens were detected before treatment, and these responses were further induced upon initiation...... of treatment. These characteristics point to an ideal combination of 5-Azacytidine and immune therapy to preferentially boost T-cell responses against cancer-testis antigens. To initiate such combination therapy, essential knowledge is required about the general immune modulatory effect of 5-Azacytidine. We...

  5. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice

    Science.gov (United States)

    Liu, Shihui; Miller-Randolph, Sharmina; Crown, Devorah; Moayeri, Mahtab; Sastalla, Inka; Okugawa, Shu; Leppla, Stephen H.

    2010-01-01

    SUMMARY Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells specifically neutrophils, is essential to anthrax infection. PMID:21075356

  6. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2

    Science.gov (United States)

    Xu, Jianfeng; Li, Jie; Hong, Zaifa; Yin, Zhenyu; Wang, Xiaomin

    2016-01-01

    Hepatic stellate cells (HSCs) are critical mediators of immunosuppression and the pathogenesis of hepatocellular carcinoma (HCC). Our previous work indicates that HSCs promote HCC progression by enhancing immunosuppressive cell populations including myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). MDSCs are induced by inflammatory cytokines (e.g., prostaglandins) and are important in immune suppression. However, how HSCs mediate expansion of MDSCs is uncertain. Thus, we studied activated HSCs that could induce MDSCs from bone marrow cells and noted that HSC-induced MDSCs up-regulated immunosuppressive activity via iNOS, Arg-1, and IL-4Rα. After treating cells with a COX-2 inhibitor or an EP4 antagonist, we established that HSC-induced MDSC accumulation was mediated by the COX2-PGE2-EP4 signaling. Furthermore, in vivo animal studies confirmed that inhibition of HSC-derived PGE2 could inhibit HSC-induced MDSC accumulation and HCC growth. Thus, our data show that HSCs are required for MDSC accumulation mediated by the COX2-PGE2-EP4 pathway, and these data are the first to link HSC and MDSC subsets in HCC immune microenvironment and provide a rationale for targeting PGE2 signaling for HCC therapy. PMID:26758420

  7. Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity

    Directory of Open Access Journals (Sweden)

    Sabina Sangaletti

    2016-09-01

    Full Text Available The extracellular matrix (ECM contributes to the biological and clinical heterogeneity of breast cancer, and different prognostic groups can be identified according to specific ECM signatures. In high-grade, but not low-grade, tumors, an ECM signature characterized by high SPARC expression (ECM3 identifies tumors with increased epithelial-to-mesenchymal transition (EMT, reduced treatment response, and poor prognosis. To better understand how this ECM3 signature is contributing to tumorigenesis, we expressed SPARC in isogenic cell lines and found that SPARC overexpression in tumor cells reduces their growth rate and induces EMT. SPARC expression also results in the formation of a highly immunosuppressive microenvironment, composed by infiltrating T regulatory cells, mast cells, and myeloid-derived suppressor cells (MDSCs. The ability of SPARC to induce EMT depended on the localization and suppressive function of myeloid cells, and inhibition of the suppressive function MDSCs by administration of aminobisphosphonates could revert EMT, rendering SPARC-overexpressing tumor cells sensitive to Doxil. We conclude that that SPARC is regulating the interplay between MDSCs and the ECM to drive the induction of EMT in tumor cells.

  8. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs

    Directory of Open Access Journals (Sweden)

    Sherger Matthew

    2012-10-01

    Full Text Available Abstract Background Myeloid derived suppressor cells (MDSCs are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifcying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11blow/CADO48low cell population that is increased in the peripheral blood of tumor-bearing dogs. Results Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11blow/CADO48Alow cells (7.9% as compared to the control dogs (3.6%. Additionally, sorted CD11blow/CADO48Alow generated in vitro suppressed the proliferation of canine lymphocytes. Conclusions The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11blow/CADO48Alow cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice and utilizes commercially available canine-specific antibodies. Importantly, CD11blow/CADO48Alow from a tumor environment

  9. Immunotherapy against Metastatic Melanoma with Human iPS Cell-Derived Myeloid Cell Lines Producing Type I Interferons.

    Science.gov (United States)

    Miyashita, Azusa; Fukushima, Satoshi; Nakahara, Satoshi; Kubo, Yosuke; Tokuzumi, Aki; Yamashita, Junji; Aoi, Jun; Haruta, Miwa; Senju, Satoru; Nishimura, Yasuharu; Jinnin, Masatoshi; Ihn, Hironobu

    2016-03-01

    In recent years, immunotherapy for advanced melanoma has been gaining increased attention. The efficacy of anti-cytotoxic T-lymphocyte antigen 4 antibodies, anti-programmed cell death 1 antibodies, and the BRAF(V600E) kinase inhibitor has been proven in metastatic melanoma. At the same time, adoptive cell transfer has significant effects against metastatic melanoma; however, it is difficult to apply on a broad scale because of the problems related to cell preparation. To overcome these problems, we developed immune cell therapy using induced pluripotent stem (iPS) cells. The benefit of our method is that a large number of cells can be readily obtained. We focused on macrophages for immune cell therapy because macrophage infiltration is frequently observed in solid cancers. In this study, the efficacy of human iPS cell-derived myeloid cell lines (iPS-ML) genetically modified to express type I IFNs against human melanoma cells was examined. The morphology, phagocytic ability, and surface markers of iPS-ML were similar to those of macrophages. The iPS-ML that express type I IFNs (iPS-ML-IFN) showed significant effects in inhibiting the growth of disseminated human melanoma cells in SCID mice. The infiltration of iPS-ML into the tumor nests was confirmed immunohistologically. The iPS-ML-IFNs increased the expression of CD169, a marker of M1 macrophages that can activate antitumor immunity. The iPS-ML-IFNs could infiltrate into tumor tissue and exert anticancer effects in the local tumor tissue. In conclusion, this method will provide a new therapeutic modality for metastatic melanoma.

  10. Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Directory of Open Access Journals (Sweden)

    Ellrichmann Gisa

    2012-01-01

    Full Text Available Abstract The NF-κB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS. The inactive form of NF-κB consists of a heterodimer which is complexed with its inhibitor, IκB. Conditional knockout-mice for IκBα in myeloid cells (lysMCreIκBαfl/fl have been generated and are characterized by a constitutive activation of NF-κB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, a well established experimental model for autoimmune demyelination of the CNS. In comparison to controls, lysMCreIκBαfl/fl mice developed a more severe clinical course of EAE. Upon histological analysis on day 15 p.i., there was an over two fold increased infiltration of T-cells and macrophages/microglia. In addition, lysMCreIκBαfl/fl mice displayed an increased expression of the NF-κB dependent factor inducible nitric oxide synthase in inflamed lesions. These changes in the CNS are associated with increased numbers of CD11b positive splenocytes and a higher expression of Ly6c on monocytes in the periphery. Well in accordance with these changes in the myeloid cell compartment, there was an increased production of the monocyte cytokines interleukin(IL-12 p70, IL-6 and IL-1beta in splenocytes. In contrast, production of the T-cell associated cytokines interferon gamma (IFN-gamma and IL-17 was not influenced. In summary, myeloid cell derived NF-κB plays a crucial role in autoimmune inflammation of the CNS and drives a pathogenic role of monocytes and macrophages independently from T-cells.

  11. Exogenous antigen targeted to FcgammaRI on myeloid cells is presented in association with MHC class I.

    Science.gov (United States)

    Wallace, P K; Tsang, K Y; Goldstein, J; Correale, P; Jarry, T M; Schlom, J; Guyre, P M; Ernstoff, M S; Fanger, M W

    2001-02-01

    Vaccine therapy is attractive for prostate cancer patients because the tumor is slow growing (allowing time to augment host responses) and occurs in an older population less likely to tolerate more toxic treatments. We have constructed an expression vector based on a monoclonal antibody (mAb) that targets the high affinity receptor for IgG (FcgammaRI, CD64) which is exclusively expressed on myeloid cells including dendritic cells (DC). The heavy chain of mAb H22 CH2 and CH3 domains were removed and replaced with the gene for prostate specific antigen (PSA). Using that vector, we have constructed and purified FPH22.PSA, a fusion protein that targets PSA to FcgammaRI on antigen presenting cells (APC). This fusion protein has an apparent molecular mass of 80-83 kDa, binds to FcgammaRI with high affinity and expresses PSA. We demonstrate that FPH22.PSA targeted PSA was internalized and processed by the human myeloid THP-1 cell line resulting in presentation of MHC class I-associated PSA peptides and lysis of THP-1 by PSA-specific human CTL. Moreover, pretreatment of THP-1 cells with antibodies to block either FcgammaRI or MHC class I, blocked lysis indicating that targeting to FcgammaRI results in presentation of exogenous antigen on MHC class I molecules. These data demonstrate that FPH22.PSA was processed in such a manner by the myeloid cell line to allow for presentation of immunodominant peptides in MHC class I molecules and suggests that uptake of antigen via FcgammaRI results in cross-priming.

  12. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60).

    Science.gov (United States)

    Kachalaki, Saeed; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi; Shanehbandi, Dariush; Mohammadinejad, Sina; Mansoori, Behzad

    2015-10-01

    Overexpression of ATP-binding cassette (ABC) drug transporters is a major barrier in the success of cancer chemotherapy. One way to overcome overexpression of ABC drug transporter-mediated chemoresistance in acute myeloid leukemia is to suppress ABC drug transporter genes expression by small interference RNA (siRNA). In this study was assessed the involvement of ABCB1 gene in the mechanisms of resistance to etoposide in AML cells. The etoposide-resistant HL-60 cells were generated by stepwise exposure increasing concentrations of etoposide. The etoposide-resistant HL-60 cells were transfected with siRNAs using Transfection Reagent. The ABCB1 mRNA expression were assessed by real-time quantitative PCR. The MDR1/P-gp levels were measured by Western blotting. The sensitivity of resistant HL-60 cells to etoposide after transfection was determined using MTT assay. Apoptosis of resistant HL-60 cells after transfection was detected by flow cytometer. It was found that siRNA effectively inhibited ABCB1 expression at both mRNA and protein levels. Knockdown of the ABCB1 gene correlated with increased sensitivity of the resistant HL-60 cells to etoposide and was observed to lower the cytotoxic index (IC50 etoposide value) after transfection. Our results indicate that product of the ABCB1 gene have effective role in resistance to etoposide in acute myeloid leukemia cells. Copyright © 2015. Published by Elsevier Masson SAS.

  13. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  14. A prototype nonpeptidyl, hydrazone class, thrombopoietin receptor agonist, SB-559457, is toxic to primary human myeloid leukemia cells.

    Science.gov (United States)

    Kalota, Anna; Gewirtz, Alan M

    2010-01-07

    Biologic characterization of SB-559457 (SB), a nonpeptidyl hydrazone class of thrombopoietin receptor (Mpl) agonist, revealed toxicity toward human leukemia cells. Antiproliferative effects followed by significant, nonapoptotic, cell death within 72 hours occurred in 24 of 26 acute myeloid leukemia, 0 of 6 acute lymphoblastic leukemia, and 3 of 6 chronic myeloid leukemia patient samples exposed to SB, but not recombinant human thrombopoietin (rhTpo), in liquid suspension culture. Further investigation revealed increased phosphorylation of p70S6/S6 kinases in SB-, but not in rhTpo-, treated cells. Expression profiling of cells exposed to SB versus rhTpo revealed statistically significant, more than 2-fold changes in GAPDH and REDD1 gene expression, confirmed by quantitative reverse-transcribed polymerase chain reaction. These genes, induced in energy or hypoxia stressed cells, have been implicated in cell death pathways, and may provide important clues to the mechanism of SB-induced, leukemic cell death. These results suggest that nonpeptidyl, hydrazone class Mpl agonists may be clinically useful antileukemic agents by virtue of their combined thrombopoietic and antileukemic effects.

  15. CD45/CD8 myeloid histioid antigen and plasma cell antibody immune response in a case of malignant melanoma

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu-Velez

    2012-01-01

    Full Text Available The immune response in metastatic melanoma is not well established and therefore is of particular interest to test for recruitment of immune cells to the tumor. A 46-year-old Caucasian female was evaluated for an asymptomatic right forearm mass. The lesion had been present for at least 4 years and had become painful 4 months ago. Biopsies for hematoxylin and eosin (H and E staining, as well as immunohistochemical analysis were performed on the primary tumor and on sentinel lymph nodes. The H and E staining was consistent with metastatic melanoma. Positive staining was noted on the tumor cells with S-100, Mart-1/Melan A/CD63, PNL2, HMB45, and tyrosinase. Peritumoral and intratumoral inflammatory cells stained positive for CD8, CD45, PCNA, myeloid histoid antigen, antihuman plasma cell antibody, and focal BRCA1. The staining patterns of CD8/CD45, myeloid histoid antigen and plasma cell antibody on inflammatory cells around the melanoma cells suggest an unusual type of immune response.

  16. Increased PRAME-specific CTL killing of acute myeloid leukemia cells by either a novel histone deacetylase inhibitor chidamide alone or combined treatment with decitabine.

    Directory of Open Access Journals (Sweden)

    Yushi Yao

    Full Text Available As one of the best known cancer testis antigens, PRAME is overexpressed exclusively in germ line tissues such as the testis as well as in a variety of solid and hematological malignant cells including acute myeloid leukemia. Therefore, PRAME has been recognized as a promising target for both active and adoptive anti-leukemia immunotherapy. However, in most patients with PRAME-expressing acute myeloid leukemia, PRAME antigen-specific CD8(+ CTL response are either undetectable or too weak to exert immune surveillance presumably due to the inadequate PRAME antigen expression and PRAME-specific antigen presentation by leukemia cells. In this study, we observed remarkably increased PRAME mRNA expression in human acute myeloid leukemia cell lines and primary acute myeloid leukemia cells after treatment with a novel subtype-selective histone deacetylase inhibitor chidamide in vitro. PRAME expression was further enhanced in acute myeloid leukemia cell lines after combined treatment with chidamide and DNA demethylating agent decitabine. Pre-treatment of an HLA-A0201(+ acute myeloid leukemia cell line THP-1 with chidamide and/or decitabine increased sensitivity to purified CTLs that recognize PRAME(100-108 or PRAME(300-309 peptide presented by HLA-A0201. Chidamide-induced epigenetic upregulation of CD86 also contributed to increased cytotoxicity of PRAME antigen-specific CTLs. Our data thus provide a new line of evidence that epigenetic upregulation of cancer testis antigens by a subtype-selective HDAC inhibitor or in combination with hypomethylating agent increases CTL cytotoxicity and may represent a new opportunity in future design of treatment strategy targeting specifically PRAME-expressing acute myeloid leukemia.

  17. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming.

    Science.gov (United States)

    Mahadevan, Navin R; Anufreichik, Veronika; Rodvold, Jeffrey J; Chiu, Kevin T; Sepulveda, Homero; Zanetti, Maurizio

    2012-01-01

    Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC), are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR) can function in a cell-extrinsic manner via the transmission of ER stress (TERS) to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+) T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+) T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.

  18. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming.

    Directory of Open Access Journals (Sweden)

    Navin R Mahadevan

    Full Text Available Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC, are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR can function in a cell-extrinsic manner via the transmission of ER stress (TERS to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+ T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+ T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.

  19. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.

    Science.gov (United States)

    Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P

    2017-03-02

    Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions.

  20. Haploidentical Natural Killer Cells Infused before Allogeneic Stem Cell Transplantation for Myeloid Malignancies: A Phase I Trial.

    Science.gov (United States)

    Lee, Dean A; Denman, Cecele J; Rondon, Gabriela; Woodworth, Glenda; Chen, Julianne; Fisher, Tobi; Kaur, Indreshpal; Fernandez-Vina, Marcelo; Cao, Kai; Ciurea, Stefan; Shpall, Elizabeth J; Champlin, Richard E

    2016-07-01

    Allogeneic stem cell transplantation is an effective treatment for high-risk myeloid malignancies, but relapse remains the major post-transplantation cause of treatment failure. Alloreactive natural killer (NK) cells mediate a potent antileukemic effect and may also enhance engraftment and reduce graft-versus-host disease (GVHD). Haploidentical transplantations provide a setting in which NK cell alloreactivity can be manipulated, but they are associated with high rates of GVHD. We performed a phase I study infusing escalating doses of NK cells from an HLA haploidentical-related donor-selected for alloreactivity when possible-as a component of the preparative regimen for allotransplantation from a separate HLA-identical donor. The goal of infusing third-party alloreactive NK cells was to augment the antileukemic effect of the transplantation without worsening GVHD and, thus, improve the overall outcome of hematopoietic transplantation. Twenty-one patients with high-risk acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or chronic myelogenous leukemia refractory or beyond first remission received a preparative regimen with busulfan and fludarabine followed by infusion of apheresis-derived, antibody-selected, and IL-2-activated NK cells. Doses were initially based on total nucleated cell (TNC) content and later based on CD56(+) cells to reduce variability. CD56(+) content ranged from .02 to 8.32 × 10(6)/kg. IL-2, .5 × 10(6) units/m(2) subcutaneously was administered daily for 5 days in the final cohort (n = 10). CD3(+) cells in the NK cell product were required to be transplantation-related causes, and 11 patients died of relapse. Despite the small sample size, survival was highly associated with CD56(+) cells delivered (P = .022) and development of ≥ grade 3 GVHD (P = .006). There were nonsignificant trends toward higher survival rates in those receiving NK cells from KIR ligand-mismatched donors and KIR-B haplotype donors. There was no

  1. Secondary Lymphoid Organ Homing Phenotype of Human Myeloid Dendritic Cells Disrupted by an Intracellular Oral Pathogen

    Science.gov (United States)

    Miles, Brodie; Zakhary, Ibrahim; El-Awady, Ahmed; Scisci, Elizabeth; Carrion, Julio; O'Neill, John C.; Rawlings, Aaron; Stern, J. Kobi; Susin, Cristiano

    2014-01-01

    Several intracellular pathogens, including a key etiological agent of chronic periodontitis, Porphyromonas gingivalis, infect blood myeloid dendritic cells (mDCs). This infection results in pathogen dissemination to distant inflammatory sites (i.e., pathogen trafficking). The alteration in chemokine-chemokine receptor expression that contributes to this pathogen trafficking function, particularly toward sites of neovascularization in humans, is unclear. To investigate this, we utilized human monocyte-derived DCs (MoDCs) and primary endothelial cells in vitro, combined with ex vivo-isolated blood mDCs and serum from chronic periodontitis subjects and healthy controls. Our results, using conditional fimbria mutants of P. gingivalis, show that P. gingivalis infection of MoDCs induces an angiogenic migratory profile. This profile is enhanced by expression of DC-SIGN on MoDCs and minor mfa-1 fimbriae on P. gingivalis and is evidenced by robust upregulation of CXCR4, but not secondary lymphoid organ (SLO)-homing CCR7. This disruption of SLO-homing capacity in response to respective chemokines closely matches surface expression of CXCR4 and CCR7 and is consistent with directed MoDC migration through an endothelial monolayer. Ex vivo-isolated mDCs from the blood of chronic periodontitis subjects, but not healthy controls, expressed a similar migratory profile; moreover, sera from chronic periodontitis subjects expressed elevated levels of CXCL12. Overall, we conclude that P. gingivalis actively “commandeers” DCs by reprogramming the chemokine receptor profile, thus disrupting SLO homing, while driving migration toward inflammatory vascular sites. PMID:24126519

  2. Soluble triggering receptor expressed on myeloid cells-1 for diagnosing empyema.

    Science.gov (United States)

    Bishara, Jihad; Goldberg, Elad; Ashkenazi, Shai; Yuhas, Yael; Samra, Zmira; Saute, Milton; Shaked, Hila

    2009-01-01

    Studies have shown that soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is upregulated by microbial products in the bronchoalveolar lavage fluid, and cerebrospinal fluid of patients with pneumonia and bacterial meningitis, respectively. Our goal was to evaluate whether sTREM-1 in pleural fluid can distinguish pleural empyema from postthoracotomy-related pleural effusion and effusions of other etiologies. Patients who presented with pleural effusion were identified through laboratory records. In addition to routine biochemical markers, differential white blood cells, cytology, Gram stain, and pleural fluid culture, pleural fluid sTREM-1 was measured by enzyme-linked immunosorbent assay using a commercial kit (R&D Systems, Minneapolis, MN). Eighty-nine patients were included in the study: 17 with empyema, 7 simple parapneumonic effusion, 18 transudate, 12 postthoracotomy pleural effusion, 22 malignancy, 1 connective tissue disease, and 12 with undetermined effusion. Mean levels of sTREM-1 were significantly higher in empyema than in postthoracotomy pleural effusion (687 +/- 479 pg/mL vs 34 +/- 81 pg/mL, p < 0.0001, respectively) and in effusions of other etiologies (15 +/- 54 pg/mL, p < 0.0001). A cutoff value of 114 pg/mL for pleural sTREM-1 achieved a sensitivity of 94% and a specificity of 93% in differentiating empyema from pleural effusions of other etiologies. The area under the receiver operating characteristic curve for pleural effusion sTREM-1 as a predictor for empyema was 0.966. Our findings suggest that sTREM-1 in the pleural fluid can potentially assist clinicians in the differentiation of bacterial from nonbacterial pleural effusion, particularly in postthoracotomy pleural effusion.

  3. Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM-Cre mice in myeloid cell research.

    Science.gov (United States)

    Orthgiess, Johannes; Gericke, Martin; Immig, Kerstin; Schulz, Angela; Hirrlinger, Johannes; Bechmann, Ingo; Eilers, Jens

    2016-06-01

    To characterize LysM-Cre mediated gene targeting in mice, we crossed LysM-Cre mice to two independent reporter-mouse lines (tdTomato or YFP). Surprisingly, we found that more than 90% of cells with LysM-Cre mediated recombination in the brain were neurons, rather than myeloid cells, such as microglia. Hence, by using the LysM-Cre mouse line for conditional knockout approaches, a significant neuronal recombination needs to be considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth

    OpenAIRE

    Wallace, Jared; Hu, Ruozhen; Mosbruger, Timothy L.; Dahlem, Timothy J.; Stephens, W. Zac; Rao, Dinesh S.; Round, June L.; O’Connell, Ryan M.

    2016-01-01

    Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that m...

  5. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  6. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate......Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  7. Doxorubicin Eliminates Myeloid-Derived Suppressor Cells and Enhances the Efficacy of Adoptive T Cell Transfer in Breast Cancer

    Science.gov (United States)

    Alizadeh, Darya; Trad, Malika; Hanke, Neale T.; Larmonier, Claire B.; Janikashvili, Nona; Bonnotte, Bernard; Katsanis, Emmanuel; Larmonier, Nicolas

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) expand in tumor-bearing hosts and play a central role in cancer immune evasion by inhibiting adaptive and innate immunity. They therefore represent a major obstacle for successful cancer immunotherapy. Different strategies have thus been explored to deplete and/or inactivate MDSC in vivo. Using a murine mammary cancer model, we demonstrated that doxorubicin selectively eliminates MDSC in the spleen, blood and tumor beds. Furthermore, residual MDSC from doxorubicin-treated mice exhibited impaired suppressive function. Importantly, the frequency of CD4+ and CD8+ T lymphocytes and consequently the effector lymphocytes or natural killer (NK) to suppressive MDSC ratios were significantly increased following doxorubicin treatment of tumor-bearing mice. In addition, the proportion of natural killer (NK) and cytotoxic T cell (CTL) expressing perforin and granzyme B and of CTL producing IFNγ was augmented by doxorubicin administration. Of therapeutic relevance, this drug efficiently combined with Th1 or Th17 lymphocytes to suppress tumor development and metastatic disease. MDSC isolated from patients with different types of cancer were also sensitive to doxorubicin-mediated cytotoxicity in vitro. These results thus indicate that doxorubicin may be used not only as a direct cytotoxic drug against tumor cells, but also as a potent immunomodulatory agent that selectively impairs MDSC-induced immunosuppression, thereby fostering the efficacy of T cell-based immunotherapy. PMID:24197130

  8. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses.

    Directory of Open Access Journals (Sweden)

    Ana Gervassi

    Full Text Available Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC, and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections.

  9. Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses.

    Science.gov (United States)

    Gervassi, Ana; Lejarcegui, Nicholas; Dross, Sandra; Jacobson, Amanda; Itaya, Grace; Kidzeru, Elvis; Gantt, Soren; Jaspan, Heather; Horton, Helen

    2014-01-01

    Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC), and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections.

  10. Monocytoid differentiation of freshly isolated human myeloid leukemia cells and HL-60 cells induced by the glutamine antagonist acivicin.

    Science.gov (United States)

    Nichols, K E; Chitneni, S R; Moore, J O; Weinberg, J B

    1989-10-01

    Previously we showed that starvation of HL-60 promyelocytic leukemia cells for a single essential amino acid induced irreversible differentiation into more mature monocyte-like cells. Although not an essential amino acid, glutamine is important in the growth of normal and neoplastic cells. The glutamine analogue, alpha S,5S-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin) inhibits several glutamine-utilizing enzymes and therefore depletes cells of certain metabolic end products. The current study was designed to examine in vitro the effects of acivicin on growth and differentiation of several established human myeloid leukemia cell lines, including the HL-60 cell line, and of freshly isolated cells from patients with acute nonlymphocytic leukemia (ANLL). Four-day culture of HL-60 cells with acivicin at concentrations of 0.1 to 10.0 micrograms/mL (0.56 to 56 nmol/L) decreased cell growth by 33% to 88% as compared with untreated control cells. Viability of cells was greater than 92% for untreated cells and 93% to 41% for acivicin-treated cells. Cells treated with acivicin differentiated along a monocytic pathway as shown by increased H2O2 production and alpha-naphthyl butyrate esterase (NSE) content. Differentiation was time and dose dependent, and was irreversible. Changes in H2O2 production and NSE content were partially abrogated by co-culture with 10 mmol/L exogenous cytidine and guanosine but not by co-culture with other nucleosides or glutamine. At these concentrations of acivicin, differentiation was associated with expression of the N-formyl-methyl-leucyl-phenylalanine-receptor (FMLP-R) on 8% to 29% of cells as compared with 8% for control cells. Acivicin potentiated the differentiating effects of interferon-gamma, tumor necrosis factor, dihydroxyvitamin D3, dimethylsulfoxide, and retinoic acid. Culture of cells from the U937 (monoblastic), K562 (erythroleukemia), and KG-1 (myeloblastic) cell lines resulted in decreased growth and viability

  11. Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Sonia Mulero-Navarro

    2015-10-01

    Full Text Available Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML. Germline PTPN11 defects cause Noonan syndrome (NS, and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223’s function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.

  12. Provider's and user's perspective about immunization coverage among migratory and non-migratory population in slums and construction sites of Chandigarh.

    Science.gov (United States)

    Sharma, Vikas; Singh, Amarjeet; Sharma, Vijaylakshmi

    2015-04-01

    Strengthening routine immunization is a corner stone for countries to achieve the United Nations Millennium Development Goal 4 (MDG 4) which aims to reduce under-five mortality by two-thirds and MDG 5 improving maternal health compared to 1990 estimates by 2015. The poor urban newborns are more vulnerable to many health and nutrition problems compared to the non-poor urban counterparts. Therefore there is a need to strengthen health system to cater the needs of urban poor. Standardized WHO30*7 cluster sampling for slums and convenience sampling for construction sites. In depth interviews were conducted for user's as well as provider's perspective about immunization coverage. Two hundred ten children and 210 mothers were enrolled in slums and 100 were sampled from construction sites. The slum workers are considered as non-migratory groups whereas construction site workers are considered as migratory population. Among children, 23 % were fully immunized, 73 % were partially immunized and 3 % were unimmunized in non-migratory population whereas 3 % were fully immunized, 91 % were partially immunized and 6 % were unimmunized in migratory population. Among mothers, 43 and 39 % were fully immunized, 13 and 15 % partially immunized and 43 and 46 % were unimmunized in non-migratory and migratory population, respectively. The various reasons attributed for low coverage are (a) dissatisfaction of the users with the service delivery and procedural delays (bureaucracy), (b) lack of faith in health workers,

  13. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  14. Therapeutic effect of human iPS-cell-derived myeloid cells expressing IFN-β against peritoneally disseminated cancer in xenograft models.

    Science.gov (United States)

    Koba, Chihiro; Haruta, Miwa; Matsunaga, Yusuke; Matsumura, Keiko; Haga, Eriko; Sasaki, Yuko; Ikeda, Tokunori; Takamatsu, Koutaro; Nishimura, Yasuharu; Senju, Satoru

    2013-01-01

    We recently developed a method to generate myeloid cells with proliferation capacity from human iPS cells. iPS-ML (iPS-cell-derived myeloid/macrophage line), generated by introducing proliferation and anti-senescence factors into iPS-cell-derived myeloid cells, grew continuously in an M-CSF-dependent manner. A large number of cells exhibiting macrophage-like properties can be readily obtained by using this technology. In the current study, we evaluated the possible application of iPS-ML in anti-cancer therapy. We established a model of peritoneally disseminated gastric cancer by intraperitoneally injecting NUGC-4 human gastric cancer cells into SCID mice. When iPS-ML were injected intraperitoneally into the mice with pre-established peritoneal NUGC-4 tumors, iPS-ML massively accumulated and infiltrated into the tumor tissues. iPS-ML expressing IFN-β (iPS-ML/IFN-β) significantly inhibited the intra-peritoneal growth of NUGC-4 cancer. Furthermore, iPS-ML/IFN-β also inhibited the growth of human pancreatic cancer MIAPaCa-2 in a similar model. iPS-ML are therefore a promising treatment agent for peritoneally disseminated cancers, for which no standard treatment is currently available.

  15. CHANGES OF BUOYANT DENSITY DURING THE S-PHASE OF THE CELL-CYCLE - DIRECT EVIDENCE DEMONSTRATED IN ACUTE MYELOID-LEUKEMIA BY FLOW-CYTOMETRIC

    NARCIS (Netherlands)

    DAENEN, S; HUIGES, W; MODDERMAN, E; HALIE, MR

    Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows

  16. In Vivo Expansion of Co-Transplanted T Cells Impacts on Tumor Re-Initiating Activity of Human Acute Myeloid Leukemia in NSG Mice

    NARCIS (Netherlands)

    M. von Bonin (Malte); M. Wermke (Martin); K.N. Cosgun (Kadriye Nehir); C. Thiede; M. Bornhäuser (Martin); G. Wagemaker (Gerard); C. Waskow (Claudia)

    2013-01-01

    textabstractHuman cells from acute myeloid leukemia (AML) patients are frequently transplanted into immune-compromised mouse strains to provide an in vivo environment for studies on the biology of the disease. Since frequencies of leukemia re-initiating cells are low and a unique cell surface

  17. CHANGES OF BUOYANT DENSITY DURING THE S-PHASE OF THE CELL-CYCLE - DIRECT EVIDENCE DEMONSTRATED IN ACUTE MYELOID-LEUKEMIA BY FLOW-CYTOMETRIC

    NARCIS (Netherlands)

    DAENEN, S; HUIGES, W; MODDERMAN, E; HALIE, MR

    1993-01-01

    Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows

  18. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia

    OpenAIRE

    Zhou, Qing; Bucher, Christoph; Munger, Meghan E.; Highfill, Steven L.; Tolar, Jakub; Munn, David H.; Levine, Bruce L.; Riddle, Megan; June, Carl H.; Vallera, Daniel A.; Weigel, Brenda J.; Blazar, Bruce R.

    2009-01-01

    Tumor-induced immune suppression can permit tumor cells to escape host immune resistance. To elucidate host factors contributing to the poor response of adoptively transferred tumor-reactive cytotoxic T lymphocytes (CTLs), we used a systemic model of murine acute myeloid leukemia (AML). AML progression resulted in a progressive regulatory T-cell (Treg) accumulation in disease sites. The adoptive transfer of in vitro–generated, potently lytic anti–AML-reactive CTLs failed to reduce disease bur...

  19. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Frank Zach

    Full Text Available In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from

  20. Runx1 Regulates Myeloid Precursor Differentiation Into Osteoclasts Without Affecting Differentiation Into Antigen Presenting or Phagocytic Cells in Both Males and Females

    Science.gov (United States)

    Paglia, David N.; Yang, Xiaochuan; Kalinowski, Judith; Jastrzebski, Sandra

    2016-01-01

    Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1fl/fl mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1fl/fl mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1fl/fl mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2–3 times) (P LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1fl/fl mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function. PMID:27267711

  1. Immunophenotypic, cytogenetic, and mutational characterization of cell lines derived from myelodysplastic syndrome patients after progression to acute myeloid leukemia.

    Science.gov (United States)

    Palau, Anna; Mallo, Mar; Palomo, Laura; Rodríguez-Hernández, Ines; Diesch, Jeannine; Campos, Diana; Granada, Isabel; Juncà, Jordi; Drexler, Hans G; Solé, Francesc; Buschbeck, Marcus

    2017-03-01

    Leukemia cell lines have been widely used in the hematology field to unravel mechanistic insights and to test new therapeutic strategies. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases that are characterized by ineffective hematopoiesis and frequent progress to acute myeloid leukemia (AML). A few cell lines have been established from MDS patients after progression to AML but their characterization is incomplete. Here we provide a detailed description of the immunophenotypic profile of the MDS-derived cell lines SKK-1, SKM-1, F-36P; and MOLM-13. Specifically, we analyzed a comprehensive panel of markers that are currently applied in the diagnostic routine for myeloid disorders. To provide high-resolution genetic data comprising copy number alterations and losses of heterozygosity we performed whole genome single nucleotide polymorphism-based arrays and included the cell line OHN-GM that harbors the frequent chromosome arm 5q deletion. Furthermore, we assessed the mutational status of 83 disease-relevant genes. Our results provide a resource to the MDS and AML field that allows researchers to choose the best-matching cell line for their functional studies. © 2016 Wiley Periodicals, Inc.

  2. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.

    Science.gov (United States)

    Kenderian, S S; Ruella, M; Shestova, O; Klichinsky, M; Aikawa, V; Morrissette, J J D; Scholler, J; Song, D; Porter, D L; Carroll, M; June, C H; Gill, S

    2015-08-01

    Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.

  3. [Role of Bone Marrow Mesenchymal Stem Cells in Resistance of Chronic Myeloid Leukemia to Tyrosine Kinase Inhibitors -Review].

    Science.gov (United States)

    Zhang, Xiao-Yan; Wan, Qian; Fang, Li-Jun; Li, Jian

    2016-12-01

    Chronic myeloid leukemia (CML) is a disease originated from malignant hematopoietic stem cell disorder. In CML, mesenchymal stem cells(MSC) have been changed in the bone marrow microenvironment, which can protect the leukemia cells from apoptosis induced by tyrosine kinase inhibitors (TKI) and lead to the resistance to TKI by the secretion of soluble factors, involvement in cell-cell adhesion, and so on. This review mainly focuses on the changes of the bone marrow mesenchymal stem cells in CML, as well as the role and mechanism of MSC in the CML resistance of TKI. The concrete probrems dicussing in this review are role of MSC in bone marrow microenviroment, characteristics of MSC in CML, the related mechanisms of MSC in drug resistance and so on.

  4. Role of soluble triggering receptor expressed on myeloid cells in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Michalis Tzivras; Vassilios Koussoulas; Evangelos J Giamarellos-Bourboulis; Dimitrios Tzivras; Thomas Tsaganos; Pantelis Koutoukas; Helen Giamarellou; Athanasios Archimandritis

    2006-01-01

    AIM: To investigate the probable role of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in the pathogenesis of inflammatory bowel disease (IBD).METHODS: Fifty-eight patients were enrolled; nineteen healthy volunteers served as controls; 8 patients were diagnosed with Crohn's disease, and 31 with ulcerative colitis. Clinical and endoscopic activity indexes of patients with Crohn's disease and ulcerative colitis respectively were estimated. Upon admission blood was sampled;sTREM-1 and TNFα were measured by an immunoassay and malondialdehyde (MDA) by the thiobarbitourate assay, after passage through an HPLC system.RESULTS: Median ± SE of TNFα of controls, patients with Crohn's disease and patients with ulcerative colitis were 6.02 ± 3.94, 7.98 ± 5.08 (P = NS vs controls), and 8.45±4.15 ng/L (P = 0.018 vs controls) respectively.Respective values of sTREM-1 were 53.31 ± 32.93,735.10 ± 197.17 (P = 0.008 vs controls) and 435.82 ±279.71 ng/L (P = 0.049 vs controls), sTREM-1 was positively correlated with Crohn's disease activity index and clinical and endoscopic activity indexes of ulcerative colitis (P = 0.002, 0.001 and 0.009, respectively), sTREM-1 of patients with ulcerative colitis was positively correlated with TNFα (P = 0.001).CONCLUSION: sTREM-1 seems to behave as a novel mediator in IBD in correlation with the degree of the inflammatory reaction of the intestinal mucosa.

  5. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia in older adults.

    Science.gov (United States)

    Sorror, Mohamed L; Estey, Elihu

    2014-12-01

    Acute myeloid leukemia (AML) is primarily a disease of the elderly and the numbers of these patients are increasing. Patients ≥60 years of age continue to have poor prognosis. Preliminary results suggest benefit from reduced-intensity allogeneic hematopoietic cell transplantation (HCT) in selected patients 60-80 years of age. However, although patients in this age range comprise >50% of those with AML, they currently constitute only 17% of those offered HCT. In the absence of prospective randomized studies comparing HCT and chemotherapy, the decision to recommend HCT rests on retrospective analyses of the risks of relapse and nonrelapse mortality after each approach. There is strong evidence that pre-HCT comorbidities can predict HCT-related morbidity and mortality. Age alone does not appear predictive and, particularly if the risk of relapse with chemotherapy is high, should not be the sole basis for deciding against HCT. Use of geriatric assessment tools, inflammatory biomarkers, and genetic polymorphism data may further aid in predicting nonrelapse mortality after HCT. Disease status and pretreatment cytogenetics with FLT3-TID, NPM-1, and CEBP-α status are the main factors predicting relapse and these are likely to be supplemented by incorporation of other molecular markers and the level of minimal residual disease after chemotherapy. HLA-matched related and unrelated donor grafts seem preferable to those from other donor sources. Donor age is of no clear significance. Models combining comorbidities with AML risk factors are useful in risk assessment before HCT. In this chapter, we integrated information on AML-specific, HCT-specific, and patient-specific risk factors into a risk-adapted approach to guide decisions about HCT versus no HCT.

  6. Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice.

    Science.gov (United States)

    Tsiganov, Evgeny N; Verbina, Elena M; Radaeva, Tatiana V; Sosunov, Vasily V; Kosmiadi, George A; Nikitina, Irina Yu; Lyadova, Irina V

    2014-05-15

    Tuberculosis (TB) disease may progress at different rates and have different outcomes. Neutrophils have been implicated in TB progression; however, data on their role during TB are controversial. In this study, we show that in mice, TB progression is associated with the accumulation of cells that express neutrophilic markers Gr-1 and Ly-6G but do not belong to conventional neutrophils. The cells exhibit unsegmented nuclei, have Gr-1(dim)Ly-6G(dim)CD11b(+) phenotype, and express F4/80, CD49d, Ly-6C, CD117, and CD135 markers characteristic not of neutrophils but of immature myeloid cells. The cells accumulate in the lungs, bone marrow, spleen, and blood at the advanced (prelethal) stage of Mycobacterium tuberculosis infection and represent a heterogeneous population of myeloid cells at different stages of their differentiation. The accumulation of Gr-1(dim)CD11b(+) cells is accompanied by the disappearance of conventional neutrophils (Gr-1(hi)Ly-6G(hi)-expressing cells). The Gr-1(dim)CD11b(+) cells suppress T cell proliferation and IFN-γ production in vitro via NO-dependent mechanisms, that is, they exhibit characteristics of myeloid-derived suppressor cells. These results document the generation of myeloid-derived suppressor cells during TB, suggesting their role in TB pathogenesis, and arguing that neutrophils do not contribute to TB pathology at the advanced disease stage.

  7. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  8. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals.

    Science.gov (United States)

    Wang, Ling; Zhao, Juan; Ren, Jun P; Wu, Xiao Y; Morrison, Zheng D; Elgazzar, Mohamed A; Ning, Shun B; Moorman, Jonathan P; Yao, Zhi Q

    2016-06-19

    Regulatory T cells (Tregs) contribute to HIV-1 disease progression by impairing antiviral immunity; however, the precise mechanisms responsible for the development of Tregs in the setting of HIV-1 infection are incompletely understood. In this study, we provide evidence that HIV-induced expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) promote the differentiation of Foxp3 Tregs. We measured MDSC induction and cytokine expression by flow cytometry and analyzed their functions by coculturing experiments. We observed a dramatic increase in M-MDSC frequencies in the peripheral blood of HIV-1 seropositive (HIV-1) individuals, even in those on antiretroviral therapy with undetectable viremia, when compared with healthy participants. We also observed increases in M-MDSCs after incubating healthy peripheral mononuclear cells (PBMCs) with HIV-1 proteins (gp120 or Tat) or Toll-like receptor 4 ligand lipopolysaccharides in vitro, an effect that could be abrogated in the presence of the phosphorylated signal transducer and activator of transcription 3 inhibitor, STA-21. Functional analyses indicated that M-MDSCs from HIV-1 individuals express higher levels of IL-10, tumor growth factor-β, IL-4 receptor α, p47, programmed death-ligand 1, and phosphorylated signal transducer and activator of transcription 3 - all of which are known mediators of myelopoiesis and immunosuppression. Importantly, incubation of healthy CD4 T cells with MDSCs derived from HIV-1 individuals significantly increased differentiation of Foxp3 Tregs. In addition, depletion of MDSCs from PBMCs of HIV-1 individuals led to a significant reduction of Foxp3 Tregs and increase of IFNγ production by CD4 T effector cells. These results suggest that HIV-induced MDSCs promote Treg cell development and inhibit T cell function - a hallmark of many chronic infectious diseases.

  9. Induced differentiation of human myeloid leukemia cells into M2 macrophages by combined treatment with retinoic acid and 1α,25-dihydroxyvitamin D3.

    Directory of Open Access Journals (Sweden)

    Hiromichi Takahashi

    Full Text Available Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH2D3 induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA, which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA plus 1,25(OH2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH2D3.

  10. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice.

    Directory of Open Access Journals (Sweden)

    Heidi E Godoy

    Full Text Available The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47 (phox-/- mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT and p47 (phox-/- mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.

  11. In vitro effects of imatinib on CD34+ cells of patients with chronic myeloid leukemia in the megakaryocytic crisis phase

    Science.gov (United States)

    MENG, FANKAI; ZENG, WEN; HUANG, LIFANG; QIN, SHUANG; MIAO, NINGNING; SUN, HANYING; LI, CHUNRUI

    2014-01-01

    Imatinib is a tailored drug for the treatment of chronic myeloid leukemia (CML), and has substantial activity and a favorable safety profile when used as a single agent in patients with CML in myeloid blast crisis. The megakaryocytic blast crisis in CML occurs rarely and carries a poor prognosis. The aim of the present study was to investigate the effects of imatinib on cluster of differentiation (CD)34+ cells from patients with CML in the megakaryocytic crisis phase. Bone marrow mononuclear cells (BMNCs) were isolated from patients with CML in the megakaryocytic crisis phase. CD34+ cells were selected from BMNCs by positive immunomagnetic column separation. Imatinib significantly induced G1 arrest, reduced the phosphorylation of cyclin-dependent kinase 1 and retinoblastoma proteins and inhibited the proliferation of CD34+ cells from patients with CML in the megakaryocytic crisis phase. Annexin V/propidium iodide and caspase-3 activity showed that imatinib induced apoptosis. Western blot analysis and protein tyrosine kinase activity assays showed that imatinib inhibited BCR-ABL protein tyrosine kinase activity. The in vitro data thus markedly indicate a potential clinical application of imatinib for patients with CML in the megakaryocytic crisis phase. PMID:24527087

  12. In vitro effects of imatinib on CD34(+) cells of patients with chronic myeloid leukemia in the megakaryocytic crisis phase.

    Science.gov (United States)

    Meng, Fankai; Zeng, Wen; Huang, Lifang; Qin, Shuang; Miao, Ningning; Sun, Hanying; Li, Chunrui

    2014-03-01

    Imatinib is a tailored drug for the treatment of chronic myeloid leukemia (CML), and has substantial activity and a favorable safety profile when used as a single agent in patients with CML in myeloid blast crisis. The megakaryocytic blast crisis in CML occurs rarely and carries a poor prognosis. The aim of the present study was to investigate the effects of imatinib on cluster of differentiation (CD)34(+) cells from patients with CML in the megakaryocytic crisis phase. Bone marrow mononuclear cells (BMNCs) were isolated from patients with CML in the megakaryocytic crisis phase. CD34(+) cells were selected from BMNCs by positive immunomagnetic column separation. Imatinib significantly induced G1 arrest, reduced the phosphorylation of cyclin-dependent kinase 1 and retinoblastoma proteins and inhibited the proliferation of CD34(+) cells from patients with CML in the megakaryocytic crisis phase. Annexin V/propidium iodide and caspase-3 activity showed that imatinib induced apoptosis. Western blot analysis and protein tyrosine kinase activity assays showed that imatinib inhibited BCR-ABL protein tyrosine kinase activity. The in vitro data thus markedly indicate a potential clinical application of imatinib for patients with CML in the megakaryocytic crisis phase.

  13. Asymmetry in Erythroid-Myeloid differentiation switch and the role of timing in a binary cell fate decision

    Directory of Open Access Journals (Sweden)

    Afnan eAlagha

    2013-12-01

    Full Text Available GATA1-PU.1 genetic switch is a paradigmatic genetic switch that governs the differentiation of progenitor cells into two different fates, erythroid and myeloid fates. In terms of dynamical model representation of these fates or lineages corresponds to stable attractor and choosing between the attractors. Small asymmetries and stochasticity intrinsically present in all genetic switches lead to the effect of delayed bifurcation which will change the differentiation result according to the timing of the process and affect the proportion of erythroid versus myeloid cells. We consider the differentiation bifurcation scenario in which there is a symmetry-breaking in the bifurcation diagrams as a result of asymmetry in external signalling. We show that the decision between two alternative cell fates in this structurally symmetric decision circuit can be biased depending on the speed at which the system is forced to go through the decision point. The parameter sweeping speed can also reduce the effect of asymmetry and produce symmetric choice between attractors, or convert the favourable attractor. This conversion may have important contributions to the immune system when the bias is in favor of the attractor which gives rise to non-immune cells.

  14. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    Science.gov (United States)

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A

    1990-06-01

    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  15. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).

  16. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia

    DEFF Research Database (Denmark)

    Baron, F; Labopin, M; Niederwieser, D;

    2012-01-01

    This report investigated the impact of graft-versus-host disease (GVHD) on transplantation outcomes in 1859 acute myeloid leukemia patients given allogeneic peripheral blood stem cells after reduced-intensity conditioning (RIC allo-SCT). Grade I acute GVHD was associated with a lower risk of rela...... of relapse (hazards ratio (HR)=0.7, P=0.02) translating into a trend for better overall survival (OS; HR=1.3; P=0.07). Grade II acute GVHD had no net impact on OS, while grade III-IV acute GVHD was associated with a worse OS (HR=0.4, P...

  17. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk.

    Science.gov (United States)

    Zhao, Ai-Min; Xu, Hai-Jing; Kang, Xiao-Min; Zhao, Ai-Min; Lu, Li-Ming

    2016-02-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that suppress both innate and adaptive immune responses through multiple mechanisms. In recent years, much of our knowledge of the function of MDSCs has come from cancer studies. However, a few recent advances have begun to characterize MDSCs in feto-maternal immune cross-talk. The microenvironment at the fetal-maternal interface is a complex milieu of trophoblasts and maternally-derived cells, which are biased to tolerogenic and Th2-type responses. Current data reveal that MDSCs accumulate at the fetal-maternal interface in healthy pregnancies. Yet, little is known about how MDSCs develop and why the response of MDSCs is heavily granulocytic. In this review, we discuss recent findings on the molecular mechanisms that regulate the expansion and function of MDSCs, in addition to various roles of MDSCs implicated in the modulation of feto-maternal immune cross-talk. Understanding the roles of MDSCs in inducing maternal-fetal tolerance, which is compromised in patients suffering from pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, and preterm birth, we thus propose that the immunomodulatory activity of MDSCs should be carefully considered for the therapeutic approaches targeting pregnancy complications. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Flow cytometry assay of myeloid dendritic cells (mDCs) in peripheral blood during acute hepatitis C: Possible pathogenetic mechanisms

    Institute of Scientific and Technical Information of China (English)

    Alessandro Perrella; Oreste Perrella; Luigi Atripaldi; Pasquale Bellopede; Tommaso Patarino; Costanza Sbreglia; Giovanni Tarantino; Paolo Sorrentino; Paolo Conca; Luca Ruggiero

    2006-01-01

    AIM: To asses the expression of myeloid dendritic cells (CD11c+) subset during acute HCV hepatitis and its possible involvement in natural history of the infection.METHODS: We enrolled 11 patients with acute hepatitis C (AHC) (Group A), 10 patients with acute hepatitis A (AHA) (as infective control-Group B) and 10 healthy donors (group C) in this study. All patients underwent selective flow cytometry gating strategies to assess the peripheral number of the myeloid dendritic cells (mDCs)to understand the possible role and differences during acute hepatitis.RESULTS: Eight of 11 patients with acute HCV hepatitis did not show any increase of mDCs compared to healthy individuals, while a significant decrease of mDCs was found in absolute cell count (z=-2.37; P<0.05) and percentage (z=-2.30; P<0.05) as compared with AHA.On the contrary, The remaining three patients of the group A had a higher mDCs number and percentage as occur in group B. Interestingly, after six months, those patients did not show any increase of mDCs subset were chronically infected. while the three subjects with an increase of peripheral mDCs, as in HAV acute infection,resolved the illness.CONCLUSION: The lack of increase of mDCs during acute hepatitis C might be an important factor involved in chronicization of the infection.

  19. Prognostic impact of white blood cell count in intermediate risk acute myeloid leukemia : relevance of mutated NPM1 and FLT3-ITD

    NARCIS (Netherlands)

    de Jonge, Hendrik J. M.; Valk, Peter J. M.; de Bont, Eveline S. J. M.; Schuringa, Jan Jacob; Ossenkoppele, Gert; Vellenga, Edo; Huls, Gerwin

    2011-01-01

    Background High white blood cell count at presentation is an unfavorable prognostic factor for treatment outcome in intermediate cytogenetic risk acute myeloid leukemia. Since the impact of white blood cell count on outcome of subgroups defined by the molecular markers NPMc(+) and FLT3-internal tand

  20. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Directory of Open Access Journals (Sweden)

    Zaborski Margarete

    2009-01-01

    Full Text Available Abstract Background SET-NUP214 fusion resulting from a recurrent cryptic deletion, del(9(q34.11q34.13 has recently been described in T-cell acute lymphoblastic leukemia (T-ALL and in one case of acute myeloid leukemia (AML. The fusion protein appears to promote elevated expression of HOXA cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for SET-NUP214 expression to find model systems that might help to elucidate the cellular function of this fusion gene. Results Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the SET(TAF-Iβ-NUP214 fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two TAF-I isoforms revealed that the cell lines also expressed TAF-Iα-NUP214 mRNA. Results of fluorescence in situ hybridization (FISH and array-based copy number analysis were both consistent with del(9(q34.11q34.13 as described. Quantitative genomic PCR also confirmed loss of genomic material between SET and NUP214 in both cell lines. Genomic sequencing localized the breakpoints of the SET gene to regions downstream of the stop codon and to NUP214 intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein. Conclusion Cell lines LOUCY and MEGAL express the recently described SET-NUP214 fusion gene. Of special note is that the formation of the SET exon 7/NUP214 exon 18 gene transcript requires alternative splicing as the SET breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for SET-NUP214 studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.

  1. Bcl-xL and Myeloid cell leukaemia-1 contribute to apoptosis resistance of colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Henning Schulze-Bergkamen; Steffen Heeger; Peter R Galle; Markus Moehler; Roland Ehrenberg; Lothar Hickmann; Binje Vick; Toni Urbanik; Christoph C Schimanski; Martin R Berger; Arno Schad; Achim Weber

    2008-01-01

    AIM: To explore the role of Bd-x,and Myeloid cell leukaemia (Mcl)-1 for the apoptosis resistance of colorectal carcinoma (CRC) cells towards current treatment modalities.METHODS: BCl-XL and Mcl-1 mRNA and protein expression were analyzed in CRC cell lines as well as human CRC tissue by Western blot,quantitative PCR and immunohistochemistry.Bcl-x,and Mcl-1 protein expression was knocked down or increased in CRC cell lines by applying specific siRNAs or expression plasmids,respectively.After modulation of protein expression,CRC cells were treated with chemotherapeutic agents,an antagonistic epidermal growth factor receptor (EGFR1) antibody,an EGFR1 tyrosine kinase inhibitor,or with the death receptor ligand TRAIL.Apoptosis induction and cell viability were analyzed.RESULTS: Here we show that in human CRC tissue and various CRC cell lines both Bcl-x,and Mcl-1 are expressed.Bcl-x,expression was higher in CRC tissue than in surrounding non-malignant tissue,both on protein and mRNA level.Mcl-1 mRNA expression was significantly lower in malignant tissues.However,protein expression was slightly higher.Viability rates of CRC cells were significantly decreased after knock down of Bcl-XL expression,and,to a lower extent,after knock down of Mcl-1 expression.Furthermore,cells with reduced Bcl-xL or Mcl-1 expression was more sensitive towards oxaliplatin- and irinotecan-induced apoptosis,and in the case of Bcl-xL also towards 5-FU-induced apoptosis.On the other hand,upregulation of Bcl-XL by transfection of an expression plasmid decreased chemotherapeutic drug-induced apoptosis.EGF treatment clearly induced Bcl-xL and Mcl-1 expression in CRC cells.Apoptosis induction upon EGFR1 blockage by cetuximab or PD168393 was increased by inhibiting Hcl-1 and Bcl-xL expression.More strikingly,CD95- and TRAIL-induced apoptosis was increased by Bcl-xL knock down.CONCLUSION: Our data suggest that Bcl-xL and,to a lower extent,Mcl-1,are important anti-apoptotic factors in CRC

  2. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

    Science.gov (United States)

    Nonami, Atsushi; Weisberg, Ellen L.; Bonal, Dennis; Kirschmeier, Paul T.; Salgia, Sabrina; Podar, Klaus; Galinsky, Ilene; Chowdary, Tirumala K.; Neuberg, Donna; Tonon, Giovanni; Stone, Richard M.; Asara, John; Griffin, James D.; Sattler, Martin

    2015-01-01

    The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMPK (AMP kinase), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism. PMID:25703587

  3. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias.

    Science.gov (United States)

    Crescenzi, Barbara; Nofrini, Valeria; Barba, Gianluca; Matteucci, Caterina; Di Giacomo, Danika; Gorello, Paolo; Beverloo, Berna; Vitale, Antonella; Wlodarska, Iwona; Vandenberghe, Peter; La Starza, Roberta; Mecucci, Cristina

    2015-07-01

    We assessed lineage involvement by NUP98 translocations in myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML), and T-cell acute lymphoblastic leukaemia (T-ALL). Single cell analysis by FICTION (Fluorescence Immunophenotype and Interphase Cytogenetics as a Tool for Investigation of Neoplasms) showed that, despite diverse partners, i.e. NSD1, DDX10, RAP1GDS1, and LNP1, NUP98 translocations always affected a CD34+/CD133+ hematopoietic precursor. Interestingly the abnormal clone included myelomonocytes, erythroid cells, B- and T- lymphocytes in MDS/AML and only CD7+/CD3+ cells in T-ALL. The NUP98-RAP1GDS1 affected different hematopoietic lineages in AML and T-ALL. Additional specific genomic events, were identified, namely FLT3 and CEBPA mutations in MDS/AML, and NOTCH1 mutations and MYB duplication in T-ALL.

  4. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1.

    Science.gov (United States)

    Szczepanski, Miroslaw J; Szajnik, Marta; Welsh, Ann; Whiteside, Theresa L; Boyiadzis, Michael

    2011-09-01

    Natural killer cell cytotoxicity is decreased in patients with acute myeloid leukemia in comparison to that in normal controls. Tumor-derived microvesicles present in patients' sera exert detrimental effects on immune cells and may influence tumor progression. We investigated the microvesicle protein level, molecular profile and suppression of natural killer cell activity in patients with newly diagnosed acute myeloid leukemia. The patients' sera contained higher levels of microvesicles compared to the levels in controls (Pmicrovesicles had a distinct molecular profile: in addition to conventional microvesicle markers, they contained membrane-associated transforming growth factor-β1, MICA/MICB and myeloid blasts markers, CD34, CD33 and CD117. These microvesicles decreased natural killer cell cytotoxicity (Pmicrovesicles further increased the levels of this protein. Neutralizing anti-transforming growth factor-β1 antibodies inhibited microvesicle-mediated suppression of natural killer cell activity and NKG2D down-regulation. Interleukin-15 protected natural killer cells from adverse effects of tumor-derived microvesicles. We provide evidence for the existence in acute myeloid leukemia of a novel mechanism of natural killer cell suppression mediated by tumor-derived microvesicles and for the ability of interleukin-15 to counteract this suppression.

  5. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1

    Science.gov (United States)

    Szczepanski, Miroslaw J.; Szajnik, Marta; Welsh, Ann; Whiteside, Theresa L.; Boyiadzis, Michael

    2011-01-01

    Background Natural killer cell cytotoxicity is decreased in patients with acute myeloid leukemia in comparison to that in normal controls. Tumor-derived microvesicles present in patients’ sera exert detrimental effects on immune cells and may influence tumor progression. Design and Methods We investigated the microvesicle protein level, molecular profile and suppression of natural killer cell activity in patients with newly diagnosed acute myeloid leukemia. Results The patients’ sera contained higher levels of microvesicles compared to the levels in controls (Pmicrovesicles had a distinct molecular profile: in addition to conventional microvesicle markers, they contained membrane-associated transforming growth factor-β1, MICA/MICB and myeloid blasts markers, CD34, CD33 and CD117. These microvesicles decreased natural killer cell cytotoxicity (Pmicrovesicles further increased the levels of this protein. Neutralizing anti-transforming growth factor-β1 antibodies inhibited microvesicle-mediated suppression of natural killer cell activity and NKG2D down-regulation. Interleukin-15 protected natural killer cells from adverse effects of tumor-derived microvesicles. Conclusions We provide evidence for the existence in acute myeloid leukemia of a novel mechanism of natural killer cell suppression mediated by tumor-derived microvesicles and for the ability of interleukin-15 to counteract this suppression. PMID:21606166

  6. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation.

    Science.gov (United States)

    Stuart, Lynda M; Lucas, Mark; Simpson, Cathy; Lamb, Jonathan; Savill, John; Lacy-Hulbert, Adam

    2002-02-15

    Dendritic cells (DCs) are the sentinels of the immune system, able to interact with both naive and memory T cells. The recent observation that DCs can ingest cells dying by apoptosis has raised the possibility that DCs may, in fact, present self-derived Ags, initiating both autoimmunity and tumor-specific responses, especially if associated with appropriate danger signals. Although the process of ingestion of apoptotic cells has not been shown to induce DC maturation, the exact fate of these phagocytosing DCs remains unclear. In this paper we demonstrate that DCs that ingest apoptotic cells are able to produce TNF-alpha but have a diminished ability to produce IL-12 in response to external stimuli, a property that corresponds to a failure to up-regulate CD86. By single-cell analysis we demonstrate that these inhibitory effects are restricted to those DCs that have engulfed apoptotic cells, with bystander DCs remaining unaffected. These changes were independent of the production of anti-inflammatory cytokines TGF-beta1 and IL-10 and corresponded with a diminished capacity to stimulate naive T cells. Thus, the ingestion of apoptotic cells is not an immunologically null event but is capable of modulating DC maturation. These results have important implications for our understanding of the role of clearance of dying cells by DCs not only in the normal resolution of inflammation but also in control of subsequent immune responses to apoptotic cell-derived Ags.

  7. Early myeloid dendritic cell dysregulation is predictive of disease progression in simian immunodeficiency virus infection.

    Directory of Open Access Journals (Sweden)

    Viskam Wijewardana

    Full Text Available Myeloid dendritic cells (mDC are lost from blood in individuals with human immunodeficiency virus (HIV infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis.

  8. VEGFR1 activity modulates myeloid cell infiltration in growing lung metastases but is not required for spontaneous metastasis formation.

    Directory of Open Access Journals (Sweden)

    Michelle R Dawson

    Full Text Available The role of vascular endothelial growth factor receptor 1 (VEGFR1/Flt1 in tumor metastasis remains incompletely characterized. Recent reports suggested that blocking VEGFR1 activity or the interaction with its ligands (VEGF and PlGF has anti-tumor effects. Moreover, several studies showed that VEGFR1 mediates tumor progression to distant metastasis. All these effects may be exerted indirectly by recruitment of bone marrow-derived cells (BMDCs, such as myeloid cells. We investigated the role of VEGFR1 activity in BMDCs during the pre-metastatic phase, i.e., prior to metastatic nodule formation in mice after surgical removal of the primary tumor. Using pharmacologic blockade or genetic deletion of the tyrosine kinase domain of VEGFR1, we demonstrate that VEGFR1 activity is not required for the infiltration of de novo myeloid BMDCs in the pre-metastatic lungs in two tumor models and in two mouse models. Moreover, in line with emerging clinical observations, we show that blockade of VEGFR1 activity neither prevents nor changes the rate of spontaneous metastasis formation after primary tumor removal. Prevention of metastasis will require further identification and exploration of cellular and molecular pathways that mediate the priming of the metastatic soil.

  9. Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes.

    Science.gov (United States)

    Kanterman, Julia; Sade-Feldman, Moshe; Biton, Moshe; Ish-Shalom, Eliran; Lasry, Audrey; Goldshtein, Aviya; Hubert, Ayala; Baniyash, Michal

    2014-11-01

    Colorectal cancer is associated with chronic inflammation and immunosuppression mediated by myeloid-derived suppressor cells (MDSC). Although chemotherapy reduces tumor burden at early stages, it tends to have limited effect on a progressive disease, possibly due to adverse effects on the immune system in dictating disease outcome. Here, we show that patients with advanced colorectal cancer display enhanced MDSC levels and reduced CD247 expression and that some conventional colorectal cancer chemotherapy supports the immunosuppressive tumor microenvironment. A FOLFOX combined therapy reduced immunosuppression, whereas a FOLFIRI combined therapy enhanced immunosuppression. Mechanistic studies in a colorectal cancer mouse model revealed that FOLFIRI-like therapy including the drugs CPT11 and 5-fluorouracil (5FU) damaged host immunocompetence in a manner that limits treatment outcomes. CPT11 blocked MDSC apoptosis and myeloid cell differentiation, increasing MDSC immunosuppressive features and mouse mortality. In contrast, 5FU promoted immune recovery and tumor regression. Thus, CPT11 exhibited detrimental immunoregulatory effects that offset 5FU benefits when administered in combination. Our results highlight the importance of developing therapeutic regimens that can target both the immune system and tumor towards improved personalized treatments for colorectal cancer.

  10. ChIP-seq Analysis of Human Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Anders, Lars; Li, Zhaodong

    2016-01-01

    Many transcription factors, chromatin-associated proteins and regulatory DNA elements are genetically and/or epigenetically altered in cancer, including Chronic Myeloid Leukemia (CML). This leads to deregulation of transcription that is often causally linked to the tumorigenic state. Chromatin-immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is the key technology to study transcription as it allows in vivo whole-genome mapping of epigenetic modifications and interactions of proteins with DNA or chromatin. However, numerous DNA/chromatin-binding proteins, including EZH2, remain difficult to "ChIP," thus yielding genome-wide binding maps of only suboptimal quality. Here, we describe a ChIP-seq protocol optimized for high-quality protein-genome binding maps that have proven especially useful for studying difficult to 'ChIP' transcription regulatory factors in Chronic Myeloid Leukemia (CML) and related malignancies.

  11. Prognostic Limitations of Donor T Cell Chimerism after Myeloablative Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    Science.gov (United States)

    Wong, Eric; Mason, Kate; Collins, Jenny; Hockridge, Barbara; Boyd, Janis; Gorelik, Alexandra; Szer, Jeffrey; Ritchie, David S

    2017-02-06

    Donor T cell chimerism is associated with relapse outcomes after allogeneic stem cell transplantation (alloSCT) for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). However, measures of statistical association do not adequately assess the performance of a prognostic biomarker, which is best characterized by its sensitivity and specificity for the chosen outcome. We analyzed donor T cell chimerism results at day 100 (D100chim) after myeloablative alloSCT for AML or MDS in 103 patients and determined its sensitivity and specificity for relapse-free survival at 6 months (RFS6) and 12 months (RFS12) post-alloSCT. The area under the receiver operating characteristic curve for RFS6 was .68, demonstrating only modest utility as a predictive biomarker, although this was greater than RFS12 at .62. Using a D100chim threshold of 65%, the specificity for RFS6 was 96.6%; however, sensitivity was poor at 26.7%. This equated to a negative predictive value of 88.5% and positive predictive value of 57.1%. Changing the threshold for D100chim to 75% or 85% modestly improved the sensitivity of D100chim for RFS6; however, this was at the expense of specificity. D100chim is specific but lacks sensitivity as a prognostic biomarker of early RFS after myeloablative alloSCT for AML or MDS. Caution is required when using D100chim to guide treatment decisions including immunologic manipulation, which may expose patients to unwarranted graft-versus-host disease.

  12. Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals

    Institute of Scientific and Technical Information of China (English)

    SUYing; WANGZhen; WUXiuli; HUANGMeijuan; CHENShaohua; YANGLijian; LIYangqiu

    2005-01-01

    Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis.

  13. Cytotoxicity of RNase Sa to the acute myeloid leukemia Kasumi-1 cells depends on the net charge.

    Science.gov (United States)

    Mitkevich, Vladimir A; Burnysheva, Ksenia M; Ilinskaya, Olga N; Pace, C Nick; Makarov, Alexander A

    2014-01-01

    The majority of known cytotoxic RNases are basic proteins which destroy intracellular RNA. Cationization of RNases is considered to be an effective strategy for strengthening their antitumor properties. We constructed a set of RNase Sa variants consisting of charge reversal mutants, charge neutralization mutants, and variants with positively charged cluster at the N-terminus. All constructs retain a high level of catalytic activity and differ in net charge. Using acute myeloid leukemia cells Kasumi-1 we have shown that (i) cytotoxicity of RNase Sa mutants is linearly enhanced by cationization, (ii) the ability of cytotoxic mutants to induce cell death is caused by induction of apoptosis and (iii) localization of positive charge on N-terminus does not contribute to RNase Sa cytotoxicity. Capacity to induce apoptosis in malignant cells and the absence of necrotic effects make the RNase Sa mutants with high positive charge a suitable anti-cancer agent.

  14. [Dendritic cells (DC) induced from acute myeloid leukemia (AML) cells with cytokine cocktails].

    Science.gov (United States)

    Yan, Kuang-hua; You, Sheng-guo; Bian, Shou-geng; Ma, Guan-jie; Ge, Wei; Ma, Shuang; Liu, Shi-he; Zhao, Chun-hua

    2003-07-01

    To explore the feasibility of DC being in vitro induced from AML cells with cytokine cocktails and their biological properties. AML cells were cultured in either presence or absence of cytokine cocktails. DC were studied for morphology, and cytochemical and immunofluorescent staining. Functions of DC were examined by MLC, FITC-conjugated dextran uptake test, and LDH release assay. RT-PCR and FISH were used to analyze the specific fusion genes of culture-derived DC. Classical DC morphological changes occurred in all 15 cultured AML cells. DC-associated surface molecules such as CD(1a), CD(80), CD(86), CD(106), CD(83) and HLA-DR were upregulated (P AML cells uncultured or cultured in the absence of cytokines (P CTL assay was performed in 5 of the 15 samples. At effector/target ratio of 20:1, auto-T lymphocytes primed with the culture-derived DC exhibited no more killing activity to auto-AML cells than those stimulated by IL-2 or uncultured AML cells. Culture-derived DC presenced the native AML-specific aberrant karyotype and related fusion gene. Cytokine cocktails could in vitro induce AML cells into DC with classical morphology, immunophenotype and function. DC maturity induced by different cytokine cocktails could be variable. Culture-derived DC were originated from the native AML cells. AML cells could make the auto-T lymphocyte anergy.

  15. Rac2-MRC-cIII–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors

    Science.gov (United States)

    Nieborowska-Skorska, Margaret; Kopinski, Piotr K.; Ray, Regina; Hoser, Grazyna; Ngaba, Danielle; Flis, Sylwia; Cramer, Kimberly; Reddy, Mamatha M.; Koptyra, Mateusz; Penserga, Tyrone; Glodkowska-Mrowka, Eliza; Bolton, Elisabeth; Holyoake, Tessa L.; Eaves, Connie J.; Cerny-Reiterer, Sabine; Valent, Peter; Hochhaus, Andreas; Hughes, Timothy P.; van der Kuip, Heiko; Sattler, Martin; Wiktor-Jedrzejczak, Wieslaw; Richardson, Christine; Dorrance, Adrienne; Stoklosa, Tomasz; Williams, David A.

    2012-01-01

    Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability, leading to disease relapse and/or malignant progression to a fatal blast phase. In the present study, we show that Rac2 GTPase alters mitochondrial membrane potential and electron flow through the mitochondrial respiratory chain complex III (MRC-cIII), thereby generating high levels of reactive oxygen species (ROS) in CML-CP LSCs and primitive LPCs. MRC-cIII–generated ROS promote oxidative DNA damage to trigger genomic instability, resulting in an accumulation of chromosomal aberrations and tyrosine kinase inhibitor–resistant BCR-ABL1 mutants. JAK2(V617F) and FLT3(ITD)–positive polycythemia vera cells and acute myeloid leukemia cells also produce ROS via MRC-cIII. In the present study, inhibition of Rac2 by genetic deletion or a small-molecule inhibitor and down-regulation of mitochondrial ROS by disruption of MRC-cIII, expression of mitochondria-targeted catalase, or addition of ROS-scavenging mitochondria-targeted peptide aptamer reduced genomic instability. We postulate that the Rac2-MRC-cIII pathway triggers ROS-mediated genomic instability in LSCs and primitive LPCs, which could be targeted to prevent the relapse and malignant progression of CML. PMID:22411871

  16. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    NARCIS (Netherlands)

    Heinig, Kristina; Sage, Fanny; Robin, Catherine; Sperandio, Markus

    2015-01-01

    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra-and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by

  17. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    NARCIS (Netherlands)

    Heinig, Kristina; Sage, Fanny; Robin, Catherine; Sperandio, Markus

    2015-01-01

    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra- and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by

  18. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Tea Soon Park

    Full Text Available Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC occurs in only rare fractions (~0.001%-0.5% of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+CD45(+CD34(- myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+TRA-1-81(+ hiPSC was mediated by synergies between hematopoietic growth factor (GF, stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC. Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly

  19. Non-myeloid Cells are Major Contributors to Innate Immune Responses via Production of Monocyte Chemoattractant Protein- 1(MCP-1/CCL2

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2014-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 is a chemokine regulating the recruitment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the hypothesis, however, there was no significant reduction in MCP-1 protein or the number of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Furthermore, injection of LPS into skin air pouch also had no effect on local MCP-1 production in myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury. These results indicate that non-myeloid cells, in response to a variety of stimulants, play a previously unappreciated role in innate immune responses as the primary source of MCP-1.

  20. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  1. A Myeloid Progenitor Cell Line Capable of Supporting Human Cytomegalovirus Latency and Reactivation, Resulting in Infectious Progeny

    Science.gov (United States)

    O'Connor, Christine M.

    2012-01-01

    Human cytomegalovirus (HCMV) is a herpesvirus that establishes a lifelong, latent infection within a host. At times when the immune system is compromised, the virus undergoes a lytic reactivation producing infectious progeny. The identification and understanding of the biological mechanisms underlying HCMV latency and reactivation are not completely defined. To this end, we have developed a tractable in vitro model system to investigate these phases of viral infection using a clonal population of myeloid progenitor cells (Kasumi-3 cells). Infection of these cells results in maintenance of the viral genome with restricted viral RNA expression that is reversed with the addition of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, also known as PMA). Additionally, a latent viral transcript (LUNA) is expressed at times where viral lytic transcription is suppressed. Infected Kasumi-3 cells initiate production of infectious virus following TPA treatment, which requires cell-to-cell contact for efficient transfer of virus to other cell types. Importantly, lytically infected fibroblast, endothelial, or epithelial cells can transfer virus to Kasumi-3 cells, which fail to initiate lytic replication until stimulated with TPA. Finally, inflammatory cytokines, in addition to the pharmacological agent TPA, are sufficient for transcription of immediate-early (IE) genes following latent infection. Taken together, our findings argue that the Kasumi-3 cell line is a tractable in vitro model system with which to study HCMV latency and reactivation. PMID:22761372

  2. Intestinal CX3C chemokine receptor 1(high) (CX3CR1(high)) myeloid cells prevent T-cell-dependent colitis.

    Science.gov (United States)

    Kayama, Hisako; Ueda, Yoshiyasu; Sawa, Yukihisa; Jeon, Seong Gyu; Ma, Ji Su; Okumura, Ryu; Kubo, Atsuko; Ishii, Masaru; Okazaki, Taku; Murakami, Masaaki; Yamamoto, Masahiro; Yagita, Hideo; Takeda, Kiyoshi

    2012-03-27

    Adequate activation of CD4(+) T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4(+) T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood. Here, we report that intestinal CX(3)C chemokine receptor 1(high) (CX(3)CR1(high)) CD11b(+) CD11c(+) cells are responsible for prevention of intestinal inflammation through inhibition of T-cell responses. These cells inhibit CD4(+) T-cell proliferation in a cell contact-dependent manner and prevent T-cell-dependent colitis. The suppressive activity is abrogated in the absence of the IL-10/Stat3 pathway. These cells inhibit T-cell proliferation by two steps. Initially, CX(3)CR1(high) CD11b(+) CD11c(+) cells preferentially interact with T cells through highly expressed intercellular adhesion molecule-1/vascular cell adhesion molecule-1; then, they fail to activate T cells because of defective expression of CD80/CD86. The IL-10/Stat3 pathway mediates the reduction of CD80/CD86 expression. Transfer of wild-type CX(3)CR1(high) CD11b(+) CD11c(+) cells prevents development of colitis in myeloid-specific Stat3-deficient mice. Thus, these cells are regulatory myeloid cells that are responsible for maintaining intestinal homeostasis.

  3. Intestinal CX3C chemokine receptor 1high (CX3CR1high) myeloid cells prevent T-cell-dependent colitis

    Science.gov (United States)

    Kayama, Hisako; Ueda, Yoshiyasu; Sawa, Yukihisa; Jeon, Seong Gyu; Ma, Ji Su; Okumura, Ryu; Kubo, Atsuko; Ishii, Masaru; Okazaki, Taku; Murakami, Masaaki; Yamamoto, Masahiro; Yagita, Hideo; Takeda, Kiyoshi

    2012-01-01

    Adequate activation of CD4+ T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4+ T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood. Here, we report that intestinal CX3C chemokine receptor 1high (CX3CR1high) CD11b+ CD11c+ cells are responsible for prevention of intestinal inflammation through inhibition of T-cell responses. These cells inhibit CD4+ T-cell proliferation in a cell contact-dependent manner and prevent T-cell-dependent colitis. The suppressive activity is abrogated in the absence of the IL-10/Stat3 pathway. These cells inhibit T-cell proliferation by two steps. Initially, CX3CR1high CD11b+ CD11c+ cells preferentially interact with T cells through highly expressed intercellular adhesion molecule-1/vascular cell adhesion molecule-1; then, they fail to activate T cells because of defective expression of CD80/CD86. The IL-10/Stat3 pathway mediates the reduction of CD80/CD86 expression. Transfer of wild-type CX3CR1high CD11b+ CD11c+ cells prevents development of colitis in myeloid-specific Stat3-deficient mice. Thus, these cells are regulatory myeloid cells that are responsible for maintaining intestinal homeostasis. PMID:22403066

  4. Fusion of dendritic cells and CD34+CD38- acute myeloid leukemia (AML) cells potentiates targeting AML-initiating cells by specific CTL induction.

    Science.gov (United States)

    Lei, Zhang; Zhang, Gui-Mei; Hong, Mei; Feng, Zuo-Hua; Huang, Bo

    2009-05-01

    Distinct leukemia-initiating cells (L-ICs) represent a critical target for therapeutic intervention of acute myeloid leukemia (AML). A potential strategy to eradicate L-ICs is to generate L-IC-specific cytotoxic T lymphocytes (CTLs). However, owing to rarity and immortality of L-ICs, it is difficult for antigen-presenting cells to capture L-ICs for specific antigen presentation. Here, we report a novel approach by fusing allogeneic dendritic cells (DCs) and CD34CD38 AML progenitor cells, through which specific CTLs were effectively induced, leading to the cytolysis to AML-initiating cells. Fusion of either DC/CD34CD38 AML cell or DC/CD34 AML cell could effectively induce the proliferation and activation of CTLs. However, only the former CTLs could effectively attack AML progenitor cells, and result in the unkilled progenitor/initiating cells losing the abilities of active proliferation in vitro and engraftment in NOD-SCID mice. These findings suggest that AML progenitor/initiating cell-specific CTLs may be generated based on allogeneic DC/progenitor cell fusion strategy; the induced CTLs may potentially eradicate AML by targeting L-ICs directly or indirectly.

  5. Daunorubicin, Cytarabine, and Cladribine Regimen Plus Radiotherapy and Donor Lymphocyte Infusion for Extramedullary Relapse of Acute Myeloid Leukemia after Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Marco Sanna

    2013-01-01

    Full Text Available Myeloid sarcoma is a rare tumor consisting of myeloid blasts that involve anatomic sites outside the bone marrow. Fatal prognosis is inevitable in patients with extramedullary relapse after hematopoietic stem cell transplantation (HSCT, and no standard treatments are available yet. We report the first case of extramedullary relapse after HSCT treated with a combination of daunorubicin, cytarabine, and cladribine (DAC regimen plus radiotherapy and donor lymphocyte infusion (DLI. This treatment induced a new and durable remission in our patient. The favorable toxicity profile and the reduced cost make this combination worthy of further investigations.

  6. Reduced-intensity stem cell transplantation from an HLA-identical sibling donor in patients with myeloid malignancies.

    Science.gov (United States)

    Hamaki, T; Kami, M; Kim, S-W; Onishi, Y; Kishi, Y; Murashige, N; Hori, A; Kojima, R; Sakiyama, M; Imataki, O; Heike, Y; Tanosaki, R; Masuo, S; Miyakoshi, S; Taniguchi, S; Tobinai, K; Takaue, Y

    2004-05-01

    The purpose of this study was to evaluate the feasibility and efficacy of allogeneic hematopoietic stem cell transplantation with a reduced-intensity regimen (RIST) in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). In all, 36 patients (median age 55 years) underwent RIST from an HLA-matched related donor between September 1999 and December 2002. The diagnoses included AML (n=14), leukemia evolving from MDS (n=10), and MDS (refractory anemia with excess blasts n=6, refractory anemia n=6). The RIST regimen consisted of purine analog (cladribine or fludarabine)/busulfan, with or without antithymocyte globulin. The regimen was well tolerated, and 34 patients achieved durable engraftment and most achieved remission after RIST. A total of 17 patients developed grade II-IV acute GVHD, and 27 developed chronic GVHD. Eight patients relapsed, and five of them received antithymocyte globulin (ATG) as part of the preparative regimen. A total of 12 patients died (four disease progression, six transplantation-related complications, and two others). Estimated 1-year disease-free survival (DFS) in low- and high-risk groups was 85 and 64%, respectively. We conclude that RIST can be performed safely in elderly patients with myeloid malignancies, and has therapeutic potential for those who fail conventional chemotherapy. In view of the significant association between GVHD or ATG and DFS, defined management of GVHD following RIST should become a major target of clinical research.

  7. Conditional Knockout of Src Homology 2 Domain-containing Protein Tyrosine Phosphatase-2 in Myeloid Cells Attenuates Renal Fibrosis after Unilateral Ureter Obstruction

    Institute of Scientific and Technical Information of China (English)

    Jing-Fei Teng; Kai Wang; Yao Li; Fa-Jun Qu; Qing Yuan; Xin-Gang Cui; Quan-Xing Wang

    2015-01-01

    Background:Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) is a kind of intracellular protein tyrosine phosphatase.Studies have revealed its roles in various disease,however,whether SHP-2 involves in renal fibrosis remains unclear.The aim of this study was to explore the roles of myeloid cells SHP-2 in renal interstitial fibrosis.Methods:Myeloid cells SHP-2 gene was conditionally knocked-out (CKO) in mice using loxP-Cre system,and renal interstitial fibrosis was induced by unilateral ureter obstruction (UUO).The total collagen deposition in the renal interstitium was assessed using picrosirius red stain.F4/80 immunostaing was used to evaluate macrophage infiltration in renal tubular interstitium.Quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay were used to analyze the production of cytokines in the kidney.Transferase-mediated dUTP nick-end labeling stain was used to assess the apoptotic renal tubular epithelial cells.Results:Src homology 2 domain-containing protein tyrosine phosphatase-2 gene CKO in myeloid cells significantly reduced collagen deposition in the renal interstitium after UUO.Macrophage infiltration was evidently decreased in renal tubular interstitium of SHP-2 CKO mice.Meanwhile,the production of pro-inflammatory cytokines was significantly suppressed in SHP-2 CKO mice.However,no significant difference was observed in the number of apoptotic renal tubular epithelial cells between wild-type and SHP-2 CKO mice.Conclusions:Our observations suggested that SHP-2 in myeloid cells plays a pivotal role in the pathogenesis of renal fibrosis,and that silencing of SHP-2 gene in myeloid cells may protect renal from inflammatory damage and prevent renal fibrosis after renal injury.

  8. Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasL.

    Science.gov (United States)

    Sinha, Pratima; Chornoguz, Olesya; Clements, Virginia K; Artemenko, Konstantin A; Zubarev, Roman A; Ostrand-Rosenberg, Suzanne

    2011-05-19

    Myeloid-derived suppressor cells (MDSCs) inhibit adaptive and innate immunity and accumulate in the blood of persons with cancer, chronic inflammation, trauma, infection, and stress. Some of the factors inducing their accumulation are known; however, mechanisms regulating their turnover have not been identified. Mass spectrometry showed prominent expression of apoptosis pathway proteins, suggesting that MDSC turnover may be regulated by Fas-FasL-mediated apoptosis. This hypothesis was confirmed by showing that blood MDSCs induced by 3 mouse tumors were Fas(+) and apoptosed in response to Fas agonist in vitro and to activated FasL(+) T cells in vivo. FasL-deficient mice contained significantly more blood MDSCs than FasL(+/+) mice, and after removal of primary tumors MDSCs regressed in STAT6(-/-) and CD1(-/-) mice but not in STAT6(-/-)FasL(-/-) or CD1(-/-)FasL(-/-) mice. Fas(+) macrophages and dendritic cells did not apoptose in response to activated T cells, indicating that Fas-FasL regulation of myeloid cells was restricted to MDSCs. These results identify a new mechanism regulating MDSC levels in vivo and show a retaliatory relationship between T cells and MDSCs in that MDSCs suppress T-cell activation; however, once activated, T cells mediate MDSC apoptosis.

  9. No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    DEFF Research Database (Denmark)

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I

    2016-01-01

    tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype......BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic......, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association study (VEGAS) and the Admixture Likelihood method (AML), were used to test gene and pathway associations with survival. RESULTS: We did not identify individual SNPs...

  10. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  11. Immunotherapy with natural killer cells: a possible approach for the treatment of Acute Myeloid Leukemia also in Brazil

    Directory of Open Access Journals (Sweden)

    Lúcia Silla

    Full Text Available SUMMARY The allogeneic hematopoietic stem cell transplantation (HSCT can cure intermediate and high-risk acute myeloid leukemia. Even with the development of strategies to reduce HSCT toxicity, this is still a complex treatment with high morbidity and mortality. Knowledge of the graft versus leukemia effect of HSCT has prepared the way for the development of Adoptive Immunotherapy or in vitro expansion of activated lymphocytes without alloreactivity, with subsequent intravenous infusion. The infusion of genetically modified T lymphocytes and haploidentical natural killer cells has been tested as an alternative to HSCT with very interesting results worldwide and in Brazil, as we not only have the technology of in vitro expansion of clinical grade lymphocytes available, but also do it according to the Good Manufacturing Practices that have been determined internationally.

  12. Allogeneic stem cell transplantation for patients with acute myeloid leukemia or myelodysplastic syndrome who have chromosome 5 and/or 7 abnormalities.

    NARCIS (Netherlands)

    Straaten, H.M. van der; Biezen, A. van; Brand, R.; Schattenberg, A.V.M.B.; Egeler, R.M.; Barge, R.M.; Cornelissen, J.J.L.M.; Schouten, H.C.; Ossenkoppele, G.J.; Verdonck, L.F.

    2005-01-01

    BACKGROUND AND OBJECTIVES: Chromosome 5 and/or 7 abnormalities are cytogenetic findings indicative of a poor prognosis in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). The only potential cure for such patients is allogeneic stem cell transplantation (SCT). As data on

  13. Mixed phenotype acute leukemia with t(9;22): success with nonacute myeloid leukemia-type intensive induction therapy and stem cell transplantation.

    Science.gov (United States)

    Chan, Onyee; Jamil, Abdur Rehman; Millius, Rebecca; Kaur, Ramandeep; Anwer, Faiz

    2017-04-01

    Mixed phenotype acute leukemia with t(9;22) is a rare disease with poor prognosis, and information on optimal treatment is limited. We describe a case where our patient experienced positive outcome after nonacute myeloid leukemia-type intensive induction therapy followed by postremission therapy with stem cell transplant.

  14. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  15. Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4(+) T-cell responses

    NARCIS (Netherlands)

    van Luijn, M.M.; Chamuleau, M.E.D.; Thompson, J.A.; Ostrand-Rosenberg, S.; Westers, T.M.; Souwer, Y.; Ossenkoppele, G.J.; Ham, S.M.; van de Loosdrecht, A.A.

    2010-01-01

    Background Disease recurrence in patients with acute myeloid leukemia may be partially explained by the escape of leukemic blasts from CD4(+) T-cell recognition. The current study investigates the role of aberrant HLA class II antigen presentation on leukemic blasts by determining both the clinical

  16. Small molecule inhibition of cAMP response element binding protein in human acute myeloid leukemia cells.

    Science.gov (United States)

    Mitton, B; Chae, H-D; Hsu, K; Dutta, R; Aldana-Masangkay, G; Ferrari, R; Davis, K; Tiu, B C; Kaul, A; Lacayo, N; Dahl, G; Xie, F; Li, B X; Breese, M R; Landaw, E M; Nolan, G; Pellegrini, M; Romanov, S; Xiao, X; Sakamoto, K M

    2016-12-01

    The transcription factor CREB (cAMP Response-Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell-cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell-cycle and survival pathways, which may represent a novel approach for AML therapy.

  17. Identification and functional characterization of the miRNA-gene regulatory network in chronic myeloid leukemia lineage negative cells

    Science.gov (United States)

    Agatheeswaran, S.; Pattnayak, N. C.; Chakraborty, S.

    2016-09-01

    Chronic myeloid leukemia (CML) is maintained by leukemic stem cells (LSCs) which are resistant to the existing TKI therapy. Hence a better understanding of the CML LSCs is necessary to eradicate these cells and achieve complete cure. Using the miRNA-gene interaction networks from the CML lin(-) cells we identified a set of up/down-regulated miRNAs and corresponding target genes. Association studies (Pearson correlation) from the miRNA and gene expression data showed that miR-1469 and miR-1972 have significantly higher number of target genes, 75 and 50 respectively. We observed that miR-1972 induces G2-M cell cycle arrest and miR-1469 moderately arrested G1 cell cycle when overexpressed in KCL22 cells. We have earlier shown that a combination of imatinib and JAK inhibitor I can significantly bring down the proliferation of CML lineage negative cells. Here we observed that imatinib and JAK inhibitor I combination restored the expression pattern of the down-regulated miRNAs in primary CML lin(-) cells. Thus effective manipulation of the deregulated miRNAs can restore the miRNA-mRNA networks that can efficiently inhibit CML stem and progenitor cells and alleviate the disease.

  18. A Novel Function for P2Y2 in Myeloid Recipient-Derived Cells during Graft-versus-Host Disease.

    Science.gov (United States)

    Klämbt, Verena; Wohlfeil, Sebastian A; Schwab, Lukas; Hülsdünker, Jan; Ayata, Korcan; Apostolova, Petya; Schmitt-Graeff, Annette; Dierbach, Heide; Prinz, Gabriele; Follo, Marie; Prinz, Marco; Idzko, Marco; Zeiser, Robert

    2015-12-15

    Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. During the initiation phase of acute GvHD, endogenous danger signals such as ATP are released and inform the innate immune system via activation of the purinergic receptor P2X7 that a noninfectious damage has occurred. A second ATP-activated purinergic receptor involved in inflammatory diseases is P2Y2. In this study, we used P2y2(-/-) mice to test the role of this receptor in GvHD. P2y2(-/-) recipients experienced reduced GvHD-related mortality, IL-6 levels, enterocyte apoptosis, and histopathology scores. Chimeric mice with P2y2 deficiency restricted to hematopoietic tissues survived longer after GvHD induction than did wild-type mice. P2y2 deficiency of the recipient was connected to lower levels of myeloperoxidase in the intestinal tract of mice developing GvHD and a reduced myeloid cell signature. Selective deficiency of P2Y2 in inflammatory monocytes decreased GvHD severity. Mechanistically, P2y2(-/-) inflammatory monocytes displayed defective ERK activation and reactive oxygen species production. Compatible with a role of P2Y2 in human GvHD, the frequency of P2Y2(+) cells in inflamed GvHD lesions correlated with histopathological GvHD severity. Our findings indicate a novel function for P2Y2 in ATP-activated recipient myeloid cells during GvHD, which could be exploited when targeting danger signals to prevent GvHD.

  19. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    2008-08-01

    Full Text Available Faten Merhi1, Jacques Auger2, Francine Rendu1, Brigitte Bauvois11UMR 7131 UPMC Paris Universitas/CNRS, Groupe Hospitalier Broussais-HEGP, Paris, France; 2University F. Rabelais, IRBI, UPRESA CNRS 6035, Tours, FranceAbstract: Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS, diallyl TS (All2TS, dipropyl TS (Pr2TS and dimethyl TS (Me2TS, are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6 in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide. As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1 inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2 induced macrophage maturation, and 3 inhibited the levels of secreted MMP-9 (protein and activity and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML.Keywords: acute myeloid leukemia, thiosulfinate, proliferation, differentiation, matrix metalloproteinase-9

  20. A method for enriching myeloid (CFU-GM) and erythroid (BFU-E) progenitor cells from human cord blood by accessory cell depletion.

    Science.gov (United States)

    Dowton, L A; Ma, D D

    1992-10-01

    Human cord blood provides a convenient alternative to bone marrow as a rich source of hemopoietic progenitor cells. This study reports a simple means for enriching a cord blood progenitor cell population by accessory cell depletion. Two methods of monocyte depletion were tested. A Cytodex 3 microcarrier system using collagen coated dextran beads was compared to the more commonly used method of plastic plate adhesion. The method of plastic plate adhesion gave a significantly higher cell recovery. T cell depletion using a recently characterized rat monoclonal antibody which fixes human complement was also investigated. A combined method of monocyte depletion by plate adhesion and T cell depletion resulted in the removal of > 96% of monocytes and > 98% of T cells. This led to a significant enrichment of myeloid (CFU-GM) and erythroid (BFU-E) colony growth. Such enriched progenitor cell populations provide a useful starting population for any study on hemopoiesis.

  1. Busulfan, Etoposide, and Intensity-Modulated Radiation Therapy Followed By Donor Stem Cell Transplant in Treating Patients With Advanced Myeloid Cancer

    Science.gov (United States)

    2016-10-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  2. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells.

    Science.gov (United States)

    Chen, Yan; Hui, Hui; Li, Zheng; Wang, Hong-Mei; You, Qi-Dong; Lu, Na

    2014-10-01

    Gambogic acid (GA) is the major active ingredient of gamboges, a brownish to orange resin product from Garcinia hanburyi tree in Southeast Asia. This compound exhibits anti-cancer effect on solid tumors. In this study, we investigated the effects of GA on the growth and differentiation of acute myeloid leukemia cells by growth-inhibition detection, morphological changes observation, nitroblue tetrazolium reduction, and the expression of the relative cell-surface differentiation markers. The results showed that GA could inhibit cell growth and promote differentiation in U937 and HL-60 cells. In addition, GA upregulated the expression of p21waf1/cip1 in the two cell lines. Finally, downregulating the p21waf1/cip1 expression with small interfering RNA partially blocked GA-induced cell growth inhibition and differentiation. These results of this study revealed that GA may be used as one of the investigational drugs for acute myeloid leukemia.

  3. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  4. HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells.

    Directory of Open Access Journals (Sweden)

    Shao-Ming Lu

    Full Text Available Despite the ability of combination antiretroviral treatment (cART to reduce viral burden to nearly undetectable levels in cerebrospinal fluid and serum, HIV-1 associated neurocognitive disorders (HAND continue to persist in as many as half the patients living with this disease. There is growing consensus that the actual substrate for HAND is destruction of normal synaptic architecture but the sequence of cellular events that leads to this outcome has never been resolved. To address whether central vs. peripheral myeloid lineage cells contribute to synaptic damage during acute neuroinflammation we injected a single dose of the HIV-1 transactivator of transcription protein (Tat or control vehicle into hippocampus of wild-type or chimeric C57Bl/6 mice genetically marked to distinguish infiltrating and resident immune cells. Between 8-24 hr after injection of Tat, invading CD11b(+ and/or myeloperoxidase-positive leukocytes with granulocyte characteristics were found to engulf both microglia and synaptic structures, and microglia reciprocally engulfed invading leukocytes. By 24 hr, microglial processes were also seen ensheathing dendrites, followed by inclusion of synaptic elements in microglia 7 d after Tat injection, with a durable microgliosis lasting at least 28 d. Thus, central nervous system (CNS exposure to Tat induces early activation of peripheral myeloid lineage cells with phagocytosis of synaptic elements and reciprocal microglial engulfment of peripheral leukocytes, and enduring microgliosis. Our data suggest that a single exposure to a foreign antigen such as HIV-1 Tat can lead to long-lasting disruption of normal neuroimmune homeostasis with deleterious consequences for synaptic architecture, and further suggest a possible mechanism for enduring neuroinflammation in the absence of productive viral replication in the CNS.

  5. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  6. Stat 6-dependent induction of myeloid derived suppressor cells after physical injury regulates nitric oxide response to endotoxin.

    Science.gov (United States)

    Munera, Veronica; Popovic, Petar J; Bryk, Jodie; Pribis, John; Caba, David; Matta, Benjamin M; Zenati, Mazen; Ochoa, Juan B

    2010-01-01

    To delineate the role of T-helper 2 (Th2) cytokines in the induction of trauma induced myeloid suppressor cells (TIMSC) and the regulation of nitric oxide production. Trauma induces myeloid cells that express CD11b+/Gr1+ and arginase 1 and exhibit an immune suppressing activity. This article explores the mechanisms that induce TIMSC and the effects on nitric oxide production in response to endotoxin. TIMSC were studied in response to Th2 cytokines and a subsequent challenge to endotoxin. The role of Th2 cytokines was studied in STAT6-/- mice. Accumulation of TIMSC in spleens was studied using flow cytometry and immunhistochemistry. Plasma was recovered to measure accumulation of nitric oxide metabolites. TIMSC accumulated in the spleen of injured mice and were particularly sensitive to IL-4 and IL-13 with large inductions of arginase activity. Significant blunting in both the accumulation of TIMSC in the spleen and induction of arginase 1 was observed in STAT6-/- mice after physical injury. Accumulation of nitric oxide metabolites to endotoxin was observed in STAT6-/- mice. This study shows that induction of CD11b+/Gr1+ cells after physical injury play an essential role in the regulation of nitric oxide production after a septic challenge. The accumulation and induction of arginase 1 in TIMSC is Th2 cytokine dependent. To our knowledge, the role of TIMSC in the regulation of nitric oxide is a novel finding. This observation adds to the possibility that TIMSC could play an important role in immunosuppression observed after physical injury.

  7. TGFbeta-mediated formation of pRb-E2F complexes in human myeloid leukemia cells.

    Science.gov (United States)

    Hu, Xiao Tang

    2008-05-01

    TGFbeta is well known for its inhibitory effect on cell cycle G1 checkpoint kinases. However, its role in the control of pRb-E2F complexes is not well established. TGFbeta inhibits phosphorylation of pRb at several serine and threonine residues and regulates the association of E2F transcription factors with pRb family proteins. Recent studies found that predominantly E2F-4, p130, and histone deacetylase (HDAC) are found to bind to corresponding E2F-responsive promoters in G0/G1 phase. As cells progress through mid-G1, p130-E2F4 complex are replaced by p107-E2F4 followed by activators E2F1, 2, and 3. pRb was not detectable in the promoters containing the E2F-responsive site in cycling cells but was associated with E2F4-p130 complexes or E2F4-p107 complexes during G0/G1 phase. In human myeloid leukemia cell line, MV4-11, TGFbeta upregulated pRb-E2F-4 and p130-E2F-4, and downregulated p107-E2F-4 complexes. However, pRB-E2F1 and pRb-E2F3 complexes were found in proliferating cells but not in TGFbeta arrested G1 cells. In addition, electrophoretic gel mobility shift assay (EMSA) could not detect pRb-E2F DNA-binding activities either in S or G1 phase but exhibited the existence of p107-E2F4 in proliferating cells and p130-E2F4 complexes in TGFbeta-arrested G1 cells, respectively. Our data suggest that p107 and p130, but not pRb, and the repressor E2F, but not activator E2Fs, play a critical role in regulating E2F-responsive gene expression in TGFbeta-mediated cell cycle control in human myeloid leukemia cells.

  8. Cell-based evaluation of changes in coagulation activity induced by antineoplastic drugs for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Tsunaka, Misae; Shinki, Haruka; Koyama, Takatoshi

    2017-01-01

    Idarubicin (IDR), cytarabine (AraC), and tamibarotene (Am80) are effective for treatment of acute myeloid leukemia (AML). In acute leukemia, the incidence of venous thromboembolism or disseminated intravascular coagulation is associated with induction chemotherapy. Procoagulant effects of IDR, AraC, and Am80 were investigated in a vascular endothelial cell line EAhy926 and AML cell lines HL60 (AML M2), NB4 (AML M3, APL), and U937 (AML M5), focusing on tissue factor (TF), phosphatidylserine (PS), and thrombomodulin (TM). IDR induced procoagulant activity on the surface of vascular endothelial and AML cell lines. Expression of TF antigen, TM antigen, and PS were induced by IDR on the surface of each cell line, whereas expression of TF and TM mRNAs were unchanged. Conversely, Am80 decreased TF exposure and procoagulant activity, and increased TM exposure on NB4 cells. In NB4 cells, we observed downregulation of TF mRNA and upregulation of TM mRNA. These data suggest IDR may induce procoagulant activity in vessels by apoptosis through PS exposure and/or TF expression on vascular endothelial and AML cell lines. Am80 may suppress blood coagulation through downregulation of TF expression and induction of TM expression. Our methods could be useful to investigate changes in procoagulant activity induced by antineoplastic drugs.

  9. Immune Responses to RHAMM in Patients with Acute Myeloid Leukemia after Chemotherapy and Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    R. Casalegno-Garduño

    2012-01-01

    Full Text Available Leukemic blasts overexpress immunogenic antigens, so-called leukemia-associated antigens like the receptor for hyaluronan acid-mediated motility (RHAMM. Persistent RHAMM expression and decreasing CD8+ T-cell responses to RHAMM in the framework of allogeneic stem cell transplantation or chemotherapy alone might indicate the immune escape of leukemia cells. In the present study, we analyzed the expression of RHAMM in 48 patients suffering from acute myeloid leukemia (AML and myelodysplastic syndrome (MDS. Furthermore, we correlated transcripts with the clinical course of the disease before and after treatment. Real-time quantitative reverse transcriptase polymerase chain reaction was performed from RNA of peripheral blood mononuclear cells. T cell responses against RHAMM were assessed by tetramer staining (flow cytometry and enzyme-linked immunospot (ELISPOT assays. Results were correlated with the clinical outcome of patients. The results of the present study showed that almost 60% of the patients were RHAMM positive; specific T-cells recognizing RHAMM could be detected, but they were nonfunctional in terms of interferon gamma or granzyme B release as demonstrated by ELISPOT assays. Immunotherapies like peptide vaccination or adoptive transfer of RHAMM-specific T cells might improve the immune response and the outcome of AML/MDS patients.

  10. The bone marrow microenvironment enhances multiple myeloma progression by