WorldWideScience

Sample records for non-mhd gravity-driven hamiltonian

  1. Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonian of conformal gravity

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    2013-01-01

    In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but PT symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but PT-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With PT symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but PT-symmetric Hamiltonians to physics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Geometry of quantal adiabatic evolution driven by a non-Hermitian Hamiltonian

    International Nuclear Information System (INIS)

    Wu Zhaoyan; Yu Ting; Zhou Hongwei

    1994-01-01

    It is shown by using a counter example, which is exactly solvable, that the quantal adiabatic theorem does not generally hold for a non-Hermitian driving Hamiltonian, even if it varies extremely slowly. The condition for the quantal adiabatic theorem to hold for non-Hermitian driving Hamiltonians is given. The adiabatic evolutions driven by a non-Hermitian Hamiltonian provide examples of a new geometric structure, that is the vector bundle in which the inner product of two parallelly transported vectors generally changes. A new geometric concept, the attenuation tensor, is naturally introduced to describe the decay or flourish of the open quantum system. It is constructed in terms of the spectral projector of the Hamiltonian. (orig.)

  3. New Hamiltonian constraint operator for loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-12-17

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  4. New Hamiltonian constraint operator for loop quantum gravity

    Directory of Open Access Journals (Sweden)

    Jinsong Yang

    2015-12-01

    Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  5. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  6. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  7. Discrete Hamiltonian evolution and quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  8. Time and a physical Hamiltonian for quantum gravity.

    Science.gov (United States)

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  9. On the Hamiltonian formalism of the tetrad-gravity with fermions

    Science.gov (United States)

    Lagraa, M. H.; Lagraa, M.

    2018-06-01

    We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.

  10. Hamiltonian Approach to 2+1 Dimensional Gravity

    Science.gov (United States)

    Cantini, L.; Menotti, P.; Seminara, D.

    2002-12-01

    It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.

  11. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    Science.gov (United States)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  12. New proposal for non-linear ghost-free massive F(R) gravity: Cosmic acceleration and Hamiltonian analysis

    International Nuclear Information System (INIS)

    Klusoň, Josef; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2013-01-01

    We propose new version of massive F(R) gravity which is natural generalization of convenient massive ghost-free gravity. Its Hamiltonian formulation in scalar-tensor frame is developed. We show that such F(R) theory is ghost-free. The cosmological evolution of such theory is investigated. Despite the strong Bianchi identity constraint the possibility of cosmic acceleration (especially, in the presence of cold dark matter) is established. Ghost-free massive F(R,T) gravity is also proposed

  13. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  14. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    International Nuclear Information System (INIS)

    Longhi, Stefano

    2014-01-01

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H -hat (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H -hat (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization

  15. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  16. Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective

    Science.gov (United States)

    Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.

    2018-05-01

    We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.

  17. Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)

    2017-05-15

    A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)

  18. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    Science.gov (United States)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K

  19. Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong [Guizhou University, Department of Physics, Guiyang (China); Academia Sinica, Institute of Physics, Taipei (China); Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)

    2017-04-15

    To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature. (orig.)

  20. Superconformal gravity in Hamiltonian form: another approach to the renormalization of gravitation

    International Nuclear Information System (INIS)

    Kaku, M.

    1983-01-01

    We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24 generators of the group as Dirac constraints on the Hilbert space. From this, we can establish a firm foundation for the canonical quantization of superconformal gravity. The purpose of writing down the Hamiltonian form of the theory is to reexamine the question of renormalization and unitarity. Usually, we start with unitary theories of gravity, such as the Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In this series of papers, we take the opposite approach and start with a theory which is renormalizable but has problems with unitarity. Conformal and superconformal gravity are both plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is difficult to interpret the results of perturbation theory because the asymptotic states have zero norm and the potential between particles grows linearly with the separation distance. The purpose of writing the Hamiltonian form of these theories is to approach the question of unitarity from a different point of view. For example, a strong-coupling approach to these theories may yield a totally different perturbation expansion. We speculate that canonically quantizing the theory by power expanding in the strong-coupling regime may yield a different set of asymptotic states, somewhat similar to the situation in gauge theories. In this series of papers, we wish to reopen the question of the unitarity of conformal theories. We conjecture that ghosts are ''confined.''

  1. Hamiltonian analysis of curvature-squared gravity with or without conformal invariance

    Science.gov (United States)

    KlusoÅ, Josef; Oksanen, Markku; Tureanu, Anca

    2014-03-01

    We analyze gravitational theories with quadratic curvature terms, including the case of conformally invariant Weyl gravity, motivated by the intention to find a renormalizable theory of gravity in the ultraviolet region, yet yielding general relativity at long distances. In the Hamiltonian formulation of Weyl gravity, the number of local constraints is equal to the number of unstable directions in phase space, which in principle could be sufficient for eliminating the unstable degrees of freedom in the full nonlinear theory. All the other theories of quadratic type are unstable—a problem appearing as ghost modes in the linearized theory. We find that the full projection of the Weyl tensor onto a three-dimensional hypersurface contains an additional fully traceless component, given by a quadratic extrinsic curvature tensor. A certain inconsistency in the literature is found and resolved: when the conformal invariance of Weyl gravity is broken by a cosmological constant term, the theory becomes pathological, since a constraint required by the Hamiltonian analysis imposes the determinant of the metric of spacetime to be zero. In order to resolve this problem by restoring the conformal invariance, we introduce a new scalar field that couples to the curvature of spacetime, reminiscent of the introduction of vector fields for ensuring the gauge invariance.

  2. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  3. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  4. Goldstone's theorem and Hamiltonian of multi-Galileon modified gravity

    International Nuclear Information System (INIS)

    Zhou Shuangyong

    2011-01-01

    The Galileon model was recently proposed to locally describe a class of modified gravity theories, including the braneworld Dvali-Gabadadze-Porrati model. We discuss spontaneous symmetry breaking of the self-accelerating branch in a multi-Galileon theory with internal global symmetries. We show that a modified version of Goldstone's theorem is applicable to the symmetry breaking pattern and discuss its implications. We also derive the Hamiltonian of a general multi-Galileon theory and discuss its implications.

  5. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  6. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  7. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  8. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    Science.gov (United States)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  9. Particle-driven gravity currents in non-rectangular cross section channels

    International Nuclear Information System (INIS)

    Zemach, T.

    2015-01-01

    We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model

  10. Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Miloshevich, George, E-mail: gmilosh@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2016-07-15

    Highlights: • Common Hamiltonian structure of the extended MHD models presented. • The generalized helicities of extended MHD shown to be topological invariants analogous to fluid/magnetic helicity. • Generalized helicities can be studied through powerful topological and knot-theoretic methods such as the Jones polynomial. • Each extended MHD model shown to possess two Lie-dragged 2-forms, which are interpreted as the generalized vorticity fluxes. - Abstract: The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.

  11. Consistency of canonical formulation of Horava gravity

    International Nuclear Information System (INIS)

    Soo, Chopin

    2011-01-01

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  12. Consistency of canonical formulation of Horava gravity

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)

    2011-09-22

    Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.

  13. A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Jun-Qing Li

    Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.

  14. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    Science.gov (United States)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  15. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  16. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  17. Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Gao, Sijie; Lemos, Jose P. S.

    2007-01-01

    Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter χ=(-1) k+1 , which gives the character of the vacuum solutions. For χ=1 the solutions, being of the type found in general relativity, have a black hole character. For χ=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty

  18. Non-self-adjoint hamiltonians defined by Riesz bases

    Energy Technology Data Exchange (ETDEWEB)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)

    2014-03-15

    We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.

  19. On the relationship between modifications to the Raychaudhuri equation and the canonical Hamiltonian structures

    International Nuclear Information System (INIS)

    Singh, Parampreet; Soni, S K

    2016-01-01

    The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space. (paper)

  20. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    Science.gov (United States)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  1. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    International Nuclear Information System (INIS)

    Antonowicz, M.; Szczyrba, W.

    1985-01-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space

  2. New formulation of Horava-Lifshitz quantum gravity as a master constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yang Jinsong, E-mail: Yangksong@gmail.com [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Hoi-Lai, E-mail: hlyu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)

    2011-07-04

    Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.

  3. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD

    International Nuclear Information System (INIS)

    Morrison, P.J.; Greene, J.M.

    1980-04-01

    A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables

  4. Quantization of non-Hamiltonian physical systems

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    1998-09-01

    We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)

  5. A simulation of driven reconnection by a high precision MHD code

    International Nuclear Information System (INIS)

    Kusano, Kanya; Ouchi, Yasuo; Hayashi, Takaya; Horiuchi, Ritoku; Watanabe, Kunihiko; Sato, Tetsuya.

    1988-01-01

    A high precision MHD code, which has the fourth-order accuracy for both the spatial and time steps, is developed, and is applied to the simulation studies of two dimensional driven reconnection. It is confirm that the numerical dissipation of this new scheme is much less than that of two-step Lax-Wendroff scheme. The effect of the plasma compressibility on the reconnection dynamics is investigated by means of this high precision code. (author)

  6. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  7. Origin of inflation in CFT driven cosmology: R{sup 2}-gravity and non-minimally coupled inflaton models

    Energy Technology Data Exchange (ETDEWEB)

    Barvinsky, A. O., E-mail: barvin@td.lpi.ru [Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, 119991, Moscow (Russian Federation); Department of Physics, Tomsk State University, Lenin Ave. 36, 634050, Tomsk (Russian Federation); Department of Physics and Astronomy, Pacific Institute for Theoretical Physics, UBC, 6224 Agricultural Road, V6T1Z1, Vancouver, BC (Canada); Kamenshchik, A. Yu., E-mail: kamenshchik@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN, Via Irnerio 46, 40126, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, 119334, Moscow (Russian Federation); Nesterov, D. V., E-mail: nesterov@td.lpi.it [Theory Department, Lebedev Physics Institute, Leninsky Prospect 53, 119991, Moscow (Russian Federation)

    2015-12-11

    We present a detailed derivation of the recently suggested new type of hill-top inflation originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological instantons of topology S{sup 1}×S{sup 3}, which set up these initial conditions, have the shape of a garland with multiple periodic oscillations of the scale factor of the spatial S{sup 3}-section. They describe underbarrier oscillations of the inflaton and scale factor in the vicinity of the inflaton potential maximum, which gives a sufficient amount of inflation required by the known CMB data. We build the approximation of two coupled harmonic oscillators for these garland instantons and show that they can generate inflation consistent with the parameters of the CMB primordial power spectrum in the non-minimal Higgs inflation model and in R{sup 2} gravity. In particular, the instanton solutions provide smallness of inflationary slow-roll parameters ϵ and η<0 and their relation ϵ∼η{sup 2} characteristic of these two models. We present the mechanism of formation of hill-like inflaton potentials, which is based on logarithmic loop corrections to the asymptotically shift-invariant tree-level potentials of these models in the Einstein frame. We also discuss the role of R{sup 2}-gravity as an indispensable finite renormalization tool in the CFT driven cosmology, which guarantees the non-dynamical (ghost free) nature of its scale factor and special properties of its cosmological garland-type instantons. Finally, as a solution to the problem of hierarchy between the Planckian scale and the inflation scale we discuss the concept of a hidden sector of conformal higher spin fields.

  8. Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems

    International Nuclear Information System (INIS)

    Arsie, Alessandro; Lorenzoni, Paolo

    2014-01-01

    In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones

  9. Phase transition in the non-degenerate Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1976-01-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  10. Origin of inflation in CFT driven cosmology. R2-gravity and non-minimally coupled inflaton models

    International Nuclear Information System (INIS)

    Barvinsky, A.O.; Kamenshchik, A.Yu.; Nesterov, D.V.

    2015-01-01

    We present a detailed derivation of the recently suggested new type of hill-top inflation [arXiv:1509.07270] originating from the microcanonical density matrix initial conditions in cosmology driven by conformal field theory (CFT). The cosmological instantons of topology S 1 x S 3 , which set up these initial conditions, have the shape of a garland with multiple periodic oscillations of the scale factor of the spatial S 3 -section. They describe underbarrier oscillations of the inflaton and scale factor in the vicinity of the inflaton potential maximum, which gives a sufficient amount of inflation required by the known CMB data. We build the approximation of two coupled harmonic oscillators for these garland instantons and show that they can generate inflation consistent with the parameters of the CMB primordial power spectrum in the non-minimal Higgs inflation model and in R 2 gravity. In particular, the instanton solutions provide smallness of inflationary slow-roll parameters ε and η < 0 and their relation ε ∝ η 2 characteristic of these two models. We present the mechanism of formation of hill-like inflaton potentials, which is based on logarithmic loop corrections to the asymptotically shift-invariant tree-level potentials of these models in the Einstein frame. We also discuss the role of R 2 -gravity as an indispensable finite renormalization tool in the CFT driven cosmology, which guarantees the nondynamical (ghost free) nature of its scale factor and special properties of its cosmological garland-type instantons. Finally, as a solution to the problem of hierarchy between the Planckian scale and the inflation scale we discuss the concept of a hidden sector of conformal higher spin fields. (orig.)

  11. Hamiltonian Cycles on Random Eulerian Triangulations

    DEFF Research Database (Denmark)

    Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard

    1998-01-01

    . Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...

  12. Hamiltonian analysis of Plebanski theory

    International Nuclear Information System (INIS)

    Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph

    2004-01-01

    We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity

  13. Canonical methods in classical and quantum gravity: An invitation to canonical LQG

    Science.gov (United States)

    Reyes, Juan D.

    2018-04-01

    Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.

  14. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  15. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  16. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    Science.gov (United States)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  17. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  18. Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs

    Directory of Open Access Journals (Sweden)

    Andrey V. Sokolov

    2011-12-01

    Full Text Available This part is a continuation of the Part I where we built resolutions of identity for certain non-Hermitian Hamiltonians constructed of biorthogonal sets of their eigen- and associated functions for the spectral problem defined on entire axis. Non-Hermitian Hamiltonians under consideration are taken with continuous spectrum and the following cases are examined: an exceptional point of arbitrary multiplicity situated on a boundary of continuous spectrum and an exceptional point situated inside of continuous spectrum. In the present work the rigorous proofs are given for the resolutions of identity in both cases.

  19. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    Science.gov (United States)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  20. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  1. Hamiltonian action of spinning particle with gravimagnetic moment

    International Nuclear Information System (INIS)

    Deriglazov, Alexei A; Ramírez, W Guzmán

    2016-01-01

    We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)

  2. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  3. A Hamiltonian driven quantum-like model for overdistribution in episodic memory recollection.

    Science.gov (United States)

    Broekaert, Jan B.; Busemeyer, Jerome R.

    2017-06-01

    While people famously forget genuine memories over time, they also tend to mistakenly over-recall equivalent memories concerning a given event. The memory phenomenon is known by the name of episodic overdistribution and occurs both in memories of disjunctions and partitions of mutually exclusive events and has been tested, modeled and documented in the literature. The total classical probability of recalling exclusive sub-events most often exceeds the probability of recalling the composed event, i.e. a subadditive total. We present a Hamiltonian driven propagation for the Quantum Episodic Memory model developed by Brainerd (et al., 2015) for the episodic memory overdistribution in the experimental immediate item false memory paradigm (Brainerd and Reyna, 2008, 2010, 2015). Following the Hamiltonian method of Busemeyer and Bruza (2012) our model adds time-evolution of the perceived memory state through the stages of the experimental process based on psychologically interpretable parameters - γ_c for recollection capability of cues, κ_p for bias or description-dependence by probes and β for the average gist component in the memory state at start. With seven parameters the Hamiltonian model shows good accuracy of predictions both in the EOD-disjunction and in the EOD-subadditivity paradigm. We noticed either an outspoken preponderance of the gist over verbatim trace, or the opposite, in the initial memory state when β is real. Only for complex β a mix of both traces is present in the initial state for the EOD-subadditivity paradigm.

  4. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  5. Superradiance, disorder, and the non-Hermitian Hamiltonian in open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Celardo, G. L.; Biella, A.; Giusteri, G. G.; Mattiotti, F. [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica, via Musei 41, 25121 Brescia (Italy); Zhang, Y.; Kaplan, L. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States)

    2014-10-15

    We first briefly review the non-Hermitian effective Hamiltonian approach to open quantum systems and the associated phenomenon of superradiance. We next discuss the superradiance crossover in the presence of disorder and the relationship between superradiance and the localization transition. Finally, we investigate the regime of validity of the energy-independent effective Hamiltonian approximation and show that the results obtained by these methods are applicable to realistic physical systems.

  6. Dynamic posturography using a new movable multidirectional platform driven by gravity.

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m2 metal

  7. Dynamic posturography using a new movable multidirectional platform driven by gravity

    NARCIS (Netherlands)

    Commissaris, D.A.C.M.; Nieuwenhuijzen, P.H.J.A.; Overeem, S.; Vos, A. de; Duysens, J.E.J.; Bloem, B.R.

    2002-01-01

    Human upright balance control can be quantified using movable platforms driven by servo-controlled torque motors (dynamic posturography). We introduce a new movable platform driven by the force of gravity acting upon the platform and the subject standing on it. The platform consists of a 1 m(2)

  8. Integrable Time-Dependent Quantum Hamiltonians

    Science.gov (United States)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  9. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-01-01

    The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  10. Studies of energetic-ion-driven MHD instabilities in helical plasmas with low magnetic shear

    International Nuclear Information System (INIS)

    Yamamoto, S.; Ascasibar, E.; Jimenez-Gomez, R.

    2012-11-01

    We discuss the features of energetic-ion-driven MHD instabilities such as Alfvén eigenmodes (AEs) in three-dimensional magnetic configuration with low magnetic shear and low toroidal field period number (N p ) that are characteristic of advanced helical plasmas. Comparison of experimental and numerical studies in Heliotron J with those in TJ-II indicates that the most unstable AE is global AE (GAE) in low magnetic shear configuration in spite of the iota and the helicity-induced AE (HAE) is also the most unstable AE in the high iota configuration. (author)

  11. The Hamiltonian of Einstein affine-metric formulation of general relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.

    2010-01-01

    It is shown that the Hamiltonian of the Einstein affine-metric (first-order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as in the case of the second-order formulation. In the second-order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables (Xiv:0809.0097). For the first-order formulation, the necessity of such a redefinition ''to correspond to diffeomorphism invariance'' (reported by Ghalati, arXiv:0901.3344) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz (Nucl. Phys. B 332:169, 1990), which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani (Ann. Phys. 143:357, 1982) is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second-order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second- and first-order formulations of metric GR. The first-order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed. (orig.)

  12. Asymptotic Stabilization of Non-holonomic Port-controlled Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper; Bendtsen, Jan Dimon; Andersen, Palle

    2004-01-01

    A novel method for asymptotic stabilization of a class of non-holonomic systems is presented. The method is based on the port-controlled Hamiltonian description of electro-mechanical systems. The general system is augmented with so-called kinematic inputs, thus representing a special class of mob...

  13. NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION

    International Nuclear Information System (INIS)

    Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien

    2011-01-01

    Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.

  14. Battery-Powered RF Pre-Ionization System for the Caltech Magnetohydrodynamically-Driven Jet Experiment: RF Discharge Properties and MHD-Driven Jet Dynamics

    Science.gov (United States)

    Chaplin, Vernon H.

    This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel

  15. Gravitational surface Hamiltonian and entropy quantization

    Directory of Open Access Journals (Sweden)

    Ashish Bakshi

    2017-02-01

    Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  16. Extension of the CPT theorem to non-Hermitian Hamiltonians and unstable states

    Energy Technology Data Exchange (ETDEWEB)

    Mannheim, Philip D., E-mail: philip.mannheim@uconn.edu

    2016-02-10

    We extend the CPT theorem to quantum field theories with non-Hermitian Hamiltonians and unstable states. Our derivation is a quite minimal one as it requires only the time-independent evolution of scalar products, invariance under complex Lorentz transformations, and a non-standard but nonetheless perfectly legitimate interpretation of charge conjugation as an antilinear operator. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter two requirements then force this antilinear symmetry to be CPT, while forcing the Hamiltonian to be real rather than Hermitian. Our work justifies the use of the CPT theorem in establishing the equality of the lifetimes of unstable particles that are charge conjugates of each other. We show that the Euclidean time path integrals of a CPT-symmetric theory must always be real. In the quantum-mechanical limit the key results of the PT symmetry program of Bender and collaborators are recovered, with the C-operator of the PT symmetry program being identified with the linear component of the charge conjugation operator.

  17. Hamiltonian constraint in polymer parametrized field theory

    International Nuclear Information System (INIS)

    Laddha, Alok; Varadarajan, Madhavan

    2011-01-01

    Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.

  18. Fast-ion response to energetic-particle-driven MHD activity in Heliotron J

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, S.; Yamamoto, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Hanatani, K.; Konoshima, S.; Ohshima, S.; Toushi, K.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji (Japan); Nagaoka, K.; Suzuki, Y.; Takeiri, Y.; Yokoyama, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Murakami, S. [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Lee, H.Y.; Nakamura, Y.; Hosaka, K. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji (Japan)

    2010-08-15

    In Heliotron J, low magnetic shear configuration, instabilities with frequency chirping in the frequency range of Alfven eigenmodes have been observed in tangentially injected neutral beam plasmas. These modes are induced by energetic-particle driven magnetohydrodynamic (MHD) instabilities such as global Alfven eigenmode or energetic particle mode. A hybrid directional Langmuir probe system has been installed into Heliotron J to investigate the response of fast-ion fluxes to the MHD modes. A high coherent response of the ion flux to the bursting modes has been observed not only by the co-directed probe but also by the counter-directed one. A linear correlation between the response of the co-directed ion flux and the mode amplitude has been found. The radial profile of the response of the co-directed ions has decreased with the minor radius and has not been obtained significantly outside last closed flux surface. These results indicate that the fast-ion response is due to a resonant convective oscillation. The ion flux response of the counter-directed probe has appeared in the growth phase of the mode burst. Its phase relation is different from that of co-directed one and magnetic probe located at the Heliotron J vacuum vessel. Two candidates of the detected ion flux of the counter-directed probe have been discussed. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Energy principles for linear dissipative systems with application to resistive MHD stability

    International Nuclear Information System (INIS)

    Pletzer, A.

    1997-04-01

    A formalism for the construction of energy principles for dissipative systems is presented. It is shown that dissipative systems satisfy a conservation law for the bilinear Hamiltonian provided the Lagrangian is time invariant. The energy on the other hand, differs from the Hamiltonian by being quadratic and by having a negative definite time derivative (positive power dissipation). The energy is a Lyapunov functional whose definiteness yields necessary and sufficient stability criteria. The stability problem of resistive magnetohydrodynamic (MHD) is addressed: the energy principle for ideal MHD is generalized and the stability criterion by Tasso is shown to be necessary in addition to sufficient for real growth rates. An energy principle is found for the inner layer equations that yields the resistive stability criterion D R <0 in the incompressible limit, whereas the tearing mode criterion Δ'<0 is shown to result from the conservation law of the bilinear concomitant in the resistive layer. (author) 1 fig., 25 refs

  20. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    Science.gov (United States)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  1. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  2. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  3. MHD instabilities and their effects on plasma confinement in the large helical device plasmas

    International Nuclear Information System (INIS)

    Toi, K.

    2002-01-01

    MHD stability of NBI heated plasmas and impacts of MHD modes on plasma confinement are intensively studied in the Large Helical Device (LHD). Three characteristic MHD instabilities were observed, that is, (1) pressure driven modes excited in the plasma edge, (2) pressure driven mode in the plasma core, and (3) Alfven eigenmodes (AEs) driven by energetic ions. MHD mode excited in the edge region accompanies multiple satellites, and is called Edge Harmonic Modes (EHMs). EHM sometimes has a bursting character. The bursting EHM transiently decreases the stored energy by about 15 percent. In the plasma core region, m=2/n=1 pressure driven mode is typically destabilized. The mode often induces internal collapse in the higher beta regime more than 1 percent. The internal collapse appreciably affects the global confinement. Energetic ion driven AEs are often detected in NBI-heated LHD plasmas. Particular AE with the frequency 8-10 times larger than TAE-frequency was detected in high beta plasmas more than 2 percent. The AE may be related to helicity-induced AE. Excitation of these three types of MHD instabilities and their impacts on plasma confinement are discussed. (author)

  4. Geometrodynamics of spherically symmetric Lovelock gravity

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Taves, Tim; Maeda, Hideki

    2012-01-01

    We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)

  5. Gravity-Driven Deposits in an Active Margin (Ionian Sea) Over the Last 330,000 Years

    Science.gov (United States)

    Köng, Eléonore; Zaragosi, Sébastien; Schneider, Jean-Luc; Garlan, Thierry; Bachèlery, Patrick; Sabine, Marjolaine; San Pedro, Laurine

    2017-11-01

    In the Ionian Sea, the subduction of the Nubia plate underneath the Eurasia plate leads to an important sediment remobilization on the Calabrian Arc and the Mediterranean Ridge. These events are often associated with earthquakes and tsunamis. In this study, we analyze gravity-driven deposits in order to establish their recurrence time on the Calabrian Arc and the western Mediterranean Ridge. Four gravity cores collected on ridges and slope basins of accretionary prisms record turbidites, megaturbidites, slumping and micro-faults over the last 330,000 years. These turbidites were dated by correlation with a hemipelagic core with a multi-proxy approach: radiometric dating, δ18O, b* colour curve, sapropels and tephrochronology. The origin of the gravity-driven deposits was studied with a sedimentary approach: grain-size, lithology, thin section, geochemistry of volcanic glass. The results suggest three periods of presence/absence of gravity-driven deposits: a first on the western lobe of the Calabrian Arc between 330,000 and 250,000 years, a second between 120,000 years and present day on the eastern lobe of the Calabrian Arc and over the last 60,000 years on the western lobe, and a third on the Mediterranean Ridge over the last 37,000 years. Return times for gravity-driven deposits are around 1,000 years during the most important record periods. The turbidite activity also highlights the presence of volcaniclastic turbidites that seems to be link to the Etna changing morphology over the last 320,000 years.

  6. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    Science.gov (United States)

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  7. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F

    International Nuclear Information System (INIS)

    Mellet, N.; Maget, P.; Meshcheriakov, D.; Lütjens, H.

    2013-01-01

    The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value. (paper)

  8. Floquet-Green function formalism for harmonically driven Hamiltonians

    International Nuclear Information System (INIS)

    Martinez, D F

    2003-01-01

    A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system

  9. Supersymmetric Extension of Non-Hermitian su(2 Hamiltonian and Supercoherent States

    Directory of Open Access Journals (Sweden)

    Omar Cherbal

    2010-12-01

    Full Text Available A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2 generators in the form H=ωJ_3+αJ_−+βJ_+, α≠β, is analyzed. The metrics which allows the transition to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.

  10. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)

    2015-11-10

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  11. 2d CDT is 2d Horava-Lifshitz quantum gravity

    DEFF Research Database (Denmark)

    Ambjørn, J.; Glaser, L.; Sato, Y.

    2013-01-01

    Causal Dynamical Triangulations (CDT) is a lattice theory where aspects of quantum gravity can be studied. Two-dimensional CDT can be solved analytically and the continuum (quantum) Hamiltonian obtained. In this Letter we show that this continuum Hamiltonian is the one obtained by quantizing two......-dimensional projectable Horava-Lifshitz gravity....

  12. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  13. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  14. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax =3.6 m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  15. Non-disruptive MHD dynamics in inward-shifted LHD configurations

    International Nuclear Information System (INIS)

    Miura, H.; Ichiguchi, K.; Nakajima, N.; Hayashi, T.; Carreras, B.A.

    2005-01-01

    Two kinds of nonlinear simulations are conducted to study behaviors of the pressure-driven modes in the Large Helical Device (LHD) plasma with the vacuum magnetic axis located at R ax = 3.6m (so called inward-shifted configuration). One is the three-field reduced magnetohydrodynamic (RMHD) simulations. The other is the direct numerical simulations (DNS) of fully three-dimensional (3D) compressible MHD equations. The RMHD results suggest that the plasma behavior depends on the strength of the interaction between the unstable modes with different helicity. Similar plasma behaviors are also obtained in the DNS. In addition to some basic coincidence between RMHD and DNS, substantial toroidal flow generation is observed in the DNS. It is shown that toroidal flow can become stronger than the poloidal flow. (author)

  16. Renormalization Group Reduction of Non Integrable Hamiltonian Systems

    International Nuclear Information System (INIS)

    Tzenov, Stephan I.

    2002-01-01

    Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail

  17. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    International Nuclear Information System (INIS)

    Anghaie, S.; Saraph, G.

    1995-01-01

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses

  18. Canonical transformations and hamiltonian path integrals

    International Nuclear Information System (INIS)

    Prokhorov, L.V.

    1982-01-01

    Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms

  19. Distinguishing thrust sequences in gravity-driven fold and thrust belts

    Science.gov (United States)

    Alsop, G. I.; Weinberger, R.; Marco, S.

    2018-04-01

    Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.

  20. Stability of a two-volume MRxMHD model in slab geometry

    Science.gov (United States)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for

  1. Quantum mechanics of non-Hamiltonian and dissipative systems

    CERN Document Server

    Tarasov, Vasily

    2008-01-01

    Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours

  2. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    International Nuclear Information System (INIS)

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs

  3. An MHD Dynamo Experiment.

    Science.gov (United States)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  4. Quantum entropy of systems described by non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Sergi, Alessandro; Zloshchastiev, Konstantin G

    2016-01-01

    We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)

  5. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  6. Nonperturbative loop quantization of scalar-tensor theories of gravity

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Ma Yongge

    2011-01-01

    The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.

  7. Synoptic, Global Mhd Model For The Solar Corona

    Science.gov (United States)

    Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.

    2007-05-01

    The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.

  8. Time dependent drift Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1982-04-01

    The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)

  9. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.; Kessel, C.; Monticello, D.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    2001-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  10. MHD stability calculations of high-β quasi-axisymmetric stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Pomphrey, N.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Hughes, M.; Cooper, W.A.; Nuehrenberg, C.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size. (author)

  11. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Kessel, C.; Fu, G.Y.; Ku, L.P.; Redi, M.H.; Pomphrey, N.

    1999-01-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size

  12. Squeezed states from a quantum deformed oscillator Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)

    2016-03-11

    The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.

  13. Stability issues of black hole in non-local gravity

    Science.gov (United States)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  14. Condensation during gravity driven ECC: Experiments with PACTEL

    Energy Technology Data Exchange (ETDEWEB)

    Munther, R.; Kalli, H. [Lappeenranta Univ. of Technology (Finland); Kouhia, J. [Technical Research Centre of Finland, Lappeenranta (Finland)

    1995-09-01

    This paper provides the results of the second series of gravity driven emergency core cooling (ECC) experiments with PACTEL (Parallel Channel Test Loop). The simulated accident was a small break loss-of-coolant accident (SBLOCA) with a break in a cold leg. The ECC flow was provided from a core makeup tank (CMT) located at a higher elevation than the main part of the primary system. The CMT was pressurized with pipings from the pressurizer and a cold leg. The tests indicated that steam condensation in the CMT can prevent ECC and lead to core uncovery.

  15. Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians

    Science.gov (United States)

    Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan

    2018-01-01

    We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.

  16. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  17. Magnetohydrodynamic (MHD) simulation of solar prominence formation

    International Nuclear Information System (INIS)

    Bao, J.

    1987-01-01

    Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode

  18. Non-isospectrality of the generalized Swanson Hamiltonian and harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Midya, Bikashkali; Dube, P P; Roychoudhury, Rajkumar, E-mail: bikash.midya@gmail.com, E-mail: ppdube1@gmail.com, E-mail: raj@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2011-02-11

    The generalized Swanson Hamiltonian H{sub GS}=w(a-tilde a-tilde{sup {dagger}}+1/2)+{alpha}{alpha}-tilde{sup 2}+{beta}a-tilde{sup {dagger}}{sup 2} with a-tilde = A(x) d/dx + B(x) can be transformed into an equivalent Hermitian Hamiltonian with the help of a similarity transformation. It is shown that the equivalent Hermitian Hamiltonian can be further transformed into the harmonic oscillator Hamiltonian so long as [a-ilde,a-tilde{sup {dagger}}]=constant. However, the main objective of this communication is to show that though the commutator of a-tilde and a-tilde{sup {dagger}} is constant, the generalized Swanson Hamiltonian is not necessarily isospectral to the harmonic oscillator. The reason for this anomaly is discussed in the framework of position-dependent mass models by choosing A(x) as the inverse square root of the mass function. (fast track communication)

  19. Studies of MHD stability using data mining technique in helical plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi; Pretty, David; Blackwell, Boyd

    2010-01-01

    Data mining techniques, which automatically extract useful knowledge from large datasets, are applied to multichannel magnetic probe signals of several helical plasmas in order to identify and classify MHD instabilities in helical plasmas. This method is useful to find new MHD instabilities as well as previously identified ones. Moreover, registering the results obtained from data mining in a database allows us to investigate the characteristics of MHD instabilities with parameter studies. We introduce the data mining technique consisted of pre-processing, clustering and visualizations using results from helical plasmas in H-1 and Heliotron J. We were successfully able to classify the MHD instabilities using the criterion of phase differences of each magnetic probe and identify them as energetic-ion-driven MHD instabilities using parameter study in Heliotron J plasmas. (author)

  20. Non-integrability of the Armbruster-Guckenheimer-Kim quartic Hamiltonian through Morales-Ramis theory

    OpenAIRE

    Acosta-Humánez, P.; Alvarez-Ramírez, M.; Stuchi, T.

    2017-01-01

    We show the non-integrability of the three-parameter Armburster-Guckenheimer-Kim quartic Hamiltonian using Morales-Ramis theory, with the exception of the three already known integrable cases. We use Poincar\\'e sections to illustrate the breakdown of regular motion for some parameter values.

  1. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  2. Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians

    International Nuclear Information System (INIS)

    Ndayiragije, F; Van Assche, W

    2013-01-01

    Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)

  3. An alternative path integral for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Chethan; Kumar, K.V. Pavan; Raju, Avinash [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)

    2016-10-10

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  4. Large Scale Emerging Properties from Non Hamiltonian Complex Systems

    Directory of Open Access Journals (Sweden)

    Marco Bianucci

    2017-06-01

    Full Text Available The concept of “large scale” depends obviously on the phenomenon we are interested in. For example, in the field of foundation of Thermodynamics from microscopic dynamics, the spatial and time large scales are order of fraction of millimetres and microseconds, respectively, or lesser, and are defined in relation to the spatial and time scales of the microscopic systems. In large scale oceanography or global climate dynamics problems the time scales of interest are order of thousands of kilometres, for space, and many years for time, and are compared to the local and daily/monthly times scales of atmosphere and ocean dynamics. In all the cases a Zwanzig projection approach is, at least in principle, an effective tool to obtain class of universal smooth “large scale” dynamics for few degrees of freedom of interest, starting from the complex dynamics of the whole (usually many degrees of freedom system. The projection approach leads to a very complex calculus with differential operators, that is drastically simplified when the basic dynamics of the system of interest is Hamiltonian, as it happens in Foundation of Thermodynamics problems. However, in geophysical Fluid Dynamics, Biology, and in most of the physical problems the building block fundamental equations of motions have a non Hamiltonian structure. Thus, to continue to apply the useful projection approach also in these cases, we exploit the generalization of the Hamiltonian formalism given by the Lie algebra of dissipative differential operators. In this way, we are able to analytically deal with the series of the differential operators stemming from the projection approach applied to these general cases. Then we shall apply this formalism to obtain some relevant results concerning the statistical properties of the El Niño Southern Oscillation (ENSO.

  5. Non-commutative flux representation for loop quantum gravity

    Science.gov (United States)

    Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

    2011-09-01

    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

  6. MHD limits in non-inductive tokamak plasmas: simulations and comparison to experiments on Tore Supra

    International Nuclear Information System (INIS)

    Maget, P.; Huysmans, G.; Ottaviani, M.; Garbet, X.; Moreau, Ph.; Segui, J.-L.; Luetjens, H.

    2008-01-01

    Non-inductive tokamak discharges with a flat or hollow current profile are prone to the triggering of large tearing modes when the minimum of the safety factor is just below a low order rational. This issue is of particular importance for discussing the optimal safety factor for MHD modes avoidance in Steady-State reactor plasmas. Different non-linear regimes of such magnetic configurations in Tore Supra are studied using the full MHD code XTOR. Numerical simulations show that the non-linear stage of the Double-Tearing Mode (DTM) is governed by the full reconnection model, but a single tearing mode in a low magnetic shear configuration can have a similar impact on the confinement. The different regimes observed experimentally are recovered in the simulations: a small amplitude (2,1) DTM for close resonant surfaces as seen in Tore Supra, a sawtooth-like behaviour of the (2,1) Double-Tearing Mode as first seen in TFTR, or a large amplitude (2,1) tearing mode that severely degrades the energy confinement, as reported in Tore Supra, JET or DIII-D. Situations where q min ≅1.5 with a stable n = 1 mode, as seen in Tore Supra longest discharges, seem to put specific constraints on the MHD model that is used. Indeed, curvature stabilisation without transport terms as could explain linear stability, but such effect vanishes in presence of heat transport. Electron diamagnetic rotation effect is investigated as a possible mechanism for n = 1 mode stabilization.

  7. Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Reusch, Joshua

    2017-10-01

    A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  8. n  +  1 formalism of f (Lovelock) gravity

    Science.gov (United States)

    Lachaume, Xavier

    2018-06-01

    In this note we perform the n  +  1 decomposition, or Arnowitt–Deser–Misner (ADM) formulation of gravity theory. The Hamiltonian form of Lovelock gravity was known since the work of Teitelboim and Zanelli in 1987, but this result had not yet been extended to gravity. Besides, field equations of have been recently computed by Bueno et al, though without ADM decomposition. We focus on the non-degenerate case, i.e. when the Hessian of f is invertible. Using the same Legendre transform as for theories, we can identify the partial derivatives of f as scalar fields, and consider the theory as a generalised scalar‑tensor theory. We then derive the field equations, and project them along a n  +  1 decomposition. We obtain an original system of constraint equations for gravity, as well as dynamical equations. We give explicit formulas for the case.

  9. Hamiltonian structure of linearly extended Virasoro algebra

    International Nuclear Information System (INIS)

    Arakelyan, T.A.; Savvidi, G.K.

    1991-01-01

    The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order

  10. f(R) gravity, torsion and non-metricity

    International Nuclear Information System (INIS)

    Sotiriou, Thomas P

    2009-01-01

    For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the outcome in both cases is the same theory, which is dynamically equivalent with an ω 0 = -3/2 Brans-Dicke theory. It is shown here that even for the most general case of an independent connection with both non-metricity and torsion, one arrives at exactly the same theory as in the more restricted cases. This generalizes the previous results and explains why assuming that either the torsion or the non-metricity vanishing ultimately leads to the same theory. It also demonstrates that f(R) actions cannot support an independent connection which carries dynamical degrees of freedom, irrespective of how general this connection is, at least as long as there is no connection-matter coupling. (fast track communication)

  11. Characteristics of laminar MHD fluid hammer in pipe

    International Nuclear Information System (INIS)

    Huang, Z.Y.; Liu, Y.J.

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  12. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  13. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  14. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2007-01-01

    We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)

  15. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.

  16. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    International Nuclear Information System (INIS)

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-01

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry

  17. Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy

    Science.gov (United States)

    Lebiga, O.; Santos-Lima, R.; Yan, H.

    2018-05-01

    The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.

  18. Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy

    International Nuclear Information System (INIS)

    Bogdanov, L V

    2010-01-01

    We consider two-component integrable generalizations of the dispersionless two-dimensional Toda lattice (2DTL) hierarchy connected with non-Hamiltonian vector fields, similar to the Manakov-Santini hierarchy generalizing the dKP hierarchy. They form a one-parametric family connected by hodograph-type transformations. Generating equations and Lax-Sato equations are introduced, and a dressing scheme based on the vector nonlinear Riemann problem is formulated. The simplest two-component generalization of the dispersionless 2DTL equation is derived, and its differential reduction analogous to the Dunajski interpolating system is presented. A symmetric two-component generalization of the dispersionless elliptic 2DTL equation is also constructed.

  19. Hamiltonian reduction of Kac-Moody algebras

    International Nuclear Information System (INIS)

    Kimura, Kazuhiro

    1991-01-01

    Feigin-Fucks construction provides us methods to treat rational conformal theories in terms of free fields. This formulation enables us to describe partition functions and correlation functions in the Fock space of free fields. There are several attempt extending to supersymmetric theories. In this report authors present an explicit calculation of the Hamiltonian reduction based on the free field realization. In spite of the results being well-known, the relations can be clearly understood in the language of bosons. Authors perform the hamiltonian reduction by imposing a constraint with appropriate gauge transformations which preserve the constraint. This approaches enables us to gives the geometric interpretation of super Virasoro algebras and relations of the super gravity. In addition, author discuss the properties of quantum groups by using the explicit form of the group element. It is also interesting to extend to super Kac-Moody algebras. (M.N.)

  20. Contribution from the interaction Hamiltonian to the expectation value of particle number with the non-equilibrium quantum field theory

    International Nuclear Information System (INIS)

    Hotta, Ryuuichi; Morozumi, Takuya; Takata, Hiroyuki

    2012-01-01

    We develop the method analyzing particle number non-conserving phenomena with non-equilibrium quantum field-theory. In this study, we consider a CP violating model with interaction Hamiltonian that breaks particle number conservation. To derive the quantum Boltzmann equation for the particle number, we solve Schwinger-Dyson equation, which are obtained from two particle irreducible closed-time-path (2PI CTP) effective action. In this calculation, we show the contribution from interaction Hamiltonian to the time evolution of expectation value of particle number.

  1. f (T) Non-linear Massive Gravity and the Cosmic Acceleration

    International Nuclear Information System (INIS)

    Wu You; Chen Zu-Cheng; Wei Hao; Wang Jia-Xin

    2015-01-01

    Inspired by the f (R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f (T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f (T) theory. We then investigate the cosmological evolution of f (T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (w_d_e > −1) to the phantom-like one (w_d_e < −1) as redshift decreases. (paper)

  2. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    Science.gov (United States)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  3. Discrete gravity as a topological field theorywith light-like curvature defects

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Wolfgang [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2017-05-29

    I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.

  4. Preliminary analysis of 500 MWt MHD power plant with oxygen enrichment

    Science.gov (United States)

    1980-04-01

    An MHD Engineering Test Facility design concept is analyzed. A 500 MWt oxygen enriched MHD topping cycle integrated for combined cycle operation with a 400 MWe steam plant is evaluated. The MHD cycle uses Montana Rosebud coal and air enriched to 35 mole percent oxygen preheated to 1100 F. The steam plant is a 2535 psia/1000 F/1000 F reheat recycle that was scaled down from the Gilbert/Commonwealth Reference Fossil Plant design series. Integration is accomplished by blending the steam generated in the MHD heat recovery system with steam generated by the partial firing of the steam plant boiler to provide the total flow requirement of the turbine. The major MHD and steam plant auxiliaries are driven by steam turbines. When the MHD cycle is taken out of service, the steam plant is capable of stand-alone operation at turbine design throttle flow. This operation requires the full firing of the steam plant boiler. A preliminary feasibility assessment is given, and results on the system thermodynamics, construction scheduling, and capital costs are presented.

  5. Homotopical Dynamics IV: Hopf invariants and hamiltonian flows

    OpenAIRE

    Cornea, Octavian

    2001-01-01

    In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...

  6. Hamiltonian Description of Convective-cell Generation

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kolesnikov, R.A.

    2004-01-01

    The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted

  7. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  8. Zwei-Dreibein Gravity : A Two-Frame-Field Model of 3D Massive Gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; de Haan, Sjoerd; Hohm, Olaf; Merbis, Wout; Townsend, Paul K.

    2013-01-01

    We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how

  9. Effective Hamiltonian theory: recent formal results and non-nuclear applications

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1981-01-01

    Effective Hamiltonian theory is discussed from the points of view of the unitary transformation method and degenerate perturbation theory. It is shown that the two approaches are identical term by term. The main features of a formulation of the coupled-cluster method for open-shell systems are outlined. Finally, recent applications of the many-body linked-cluster form of degenerate perturbation theory are described: the derivation of effective spin Hamiltonians in magnetic insulator systems, the derivation and calculation ab initio of effective π-electron Hamiltonians for planar conjugated hydrocarbon molecules, and understanding the so-called valence fluctuation phenomenon exhibited by certain rare earth compounds

  10. Perspective: Quantum Hamiltonians for optical interactions

    Science.gov (United States)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  11. Hydrodynamic Covariant Symplectic Structure from Bilinear Hamiltonian Functions

    Directory of Open Access Journals (Sweden)

    Capozziello S.

    2005-07-01

    Full Text Available Starting from generic bilinear Hamiltonians, constructed by covariant vector, bivector or tensor fields, it is possible to derive a general symplectic structure which leads to holonomic and anholonomic formulations of Hamilton equations of motion directly related to a hydrodynamic picture. This feature is gauge free and it seems a deep link common to all interactions, electromagnetism and gravity included. This scheme could lead toward a full canonical quantization.

  12. Discrete Approaches to Quantum Gravity in Four Dimensions

    Directory of Open Access Journals (Sweden)

    Loll Renate

    1998-01-01

    Full Text Available The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation; quantum Regge calculus; and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.

  13. Frustration-free Hamiltonians supporting Majorana zero edge modes

    International Nuclear Information System (INIS)

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  14. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Science.gov (United States)

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  15. Dynamics and entanglement in spherically symmetric quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Terno, Daniel R.

    2010-01-01

    The gravity-scalar field system in spherical symmetry provides a natural setting for exploring gravitational collapse and its aftermath in quantum gravity. In a canonical approach, we give constructions of the Hamiltonian operator, and of semiclassical states peaked on constraint-free data. Such states provide explicit examples of physical states. We also show that matter-gravity entanglement is an inherent feature of physical states, whether or not there is a black hole.

  16. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  17. Quantum Hamiltonian reduction in superspace formalism

    International Nuclear Information System (INIS)

    Madsen, J.O.; Ragoucy, E.

    1994-02-01

    Recently the quantum Hamiltonian reduction was done in the case of general sl(2) embeddings into Lie algebras and superalgebras. The results are extended to the quantum Hamiltonian reduction of N=1 affine Lie superalgebras in the superspace formalism. It is shown that if we choose a gauge for the supersymmetry, and consider only certain equivalence classes of fields, then our quantum Hamiltonian reduction reduces to quantum Hamiltonian reduction of non-supersymmetric Lie superalgebras. The super energy-momentum tensor is constructed explicitly as well as all generators of spin 1 (and 1/2); thus all generators in the superconformal, quasi-superconformal and Z 2 *Z 2 superconformal algebras are constructed. (authors). 21 refs

  18. Canonical transformation path to gauge theories of gravity

    Science.gov (United States)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  19. Development of a 3D non-linear implicit MHD code

    International Nuclear Information System (INIS)

    Nicolas, T.; Ichiguchi, K.

    2016-06-01

    This paper details the on-going development of a 3D non-linear implicit MHD code, which aims at making possible large scale simulations of the non-linear phase of the interchange mode. The goal of the paper is to explain the rationale behind the choices made along the development, and the technical difficulties encountered. At the present stage, the development of the code has not been completed yet. Most of the discussion is concerned with the first approach, which utilizes cartesian coordinates in the poloidal plane. This approach shows serious difficulties in writing the preconditioner, closely related to the choice of coordinates. A second approach, based on curvilinear coordinates, also faced significant difficulties, which are detailed. The third and last approach explored involves unstructured tetrahedral grids, and indicates the possibility to solve the problem. The issue to domain meshing is addressed. (author)

  20. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  1. Relating covariant and canonical approaches to triangulated models of quantum gravity

    International Nuclear Information System (INIS)

    Arnsdorf, Matthias

    2002-01-01

    In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory

  2. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  3. Periodic Hamiltonian hierarchies and non-uniqueness of ...

    Indian Academy of Sciences (India)

    2016-12-02

    Dec 2, 2016 ... Ca. 1. Introduction. Through the past few decades, research in supersym- ... The subject of periodic Hamiltonians has been exam- ined for a long time ... The plan of this paper is as follows: In §2, a brief resume of SUSYQM is ...

  4. Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom

    Science.gov (United States)

    Christov, Ognyan

    2012-02-01

    The normal forms of the Hamiltonian 1:2: ω resonances to degree three for ω = 1, 3, 4 are studied for integrability. We prove that these systems are non-integrable except for the discrete values of the parameters which are well known. We use the Ziglin-Morales-Ramis method based on the differential Galois theory.

  5. Generalizing the classical fixed-centres problem in a non-Hamiltonian way

    International Nuclear Information System (INIS)

    Albouy, A; Stuchi, T J

    2004-01-01

    The problem of two gravitational (or Coulombian) fixed centres is a classical integrable problem, stated and integrated by Euler in 1760. The integrability is due to the unexpected first integral G. We introduce some straightforward generalizations of the problem that still have the generalization of G as a first integral, but do not possess the energy integral. We present some numerical integrations showing the main features of their dynamics. In the domain of bounded orbits the behaviour of these a priori non-Hamiltonian systems is very similar to the behaviour of usual near-integrable systems

  6. Non-driven micromechanical gyroscopes and their applications

    CERN Document Server

    Zhang, Fuxue; Wang, Guosheng

    2018-01-01

    This book comprehensively and systematically introduces readers to the theories, structures, performance and applications of non-driven mechanical and non-driven micromechanical gyroscopes. The book is divided into three parts, the first of which mainly addresses mathematic models, precision, performance and operating error in non-driven mechanical gyroscopes. The second part focuses on the operating theory, error, phase shift and performance experiments involving non-driven micromechanical gyroscopes in rotating flight carriers, while the third part shares insights into the application of non-driven micromechanical gyroscopes in control systems for rotating flight carriers. The book offers a unique resource for all researchers and engineers who are interested in the use of inertial devices and automatic control systems for rotating flight carriers.  It can also serve as a reference book for undergraduates, graduates and instructors in related fields at colleges and universities.

  7. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  8. Steiner systems and large non-Hamiltonian hypergraphs

    Directory of Open Access Journals (Sweden)

    Zsolt Tuza

    2006-10-01

    Full Text Available From Steiner systems S(k − 2, 2k − 3, v, we construct k-uniform hyper- graphs of large size without Hamiltonian cycles. This improves previous estimates due to G. Y. Katona and H. Kierstead [J. Graph Theory 30 (1999, pp.  205–212].

  9. QCD string with quarks. 2. Light cone Hamiltonian

    International Nuclear Information System (INIS)

    Dubin, A.Yu.; Kaidalov, A.B.; Simonov, Yu.A.

    1994-01-01

    The light-cone Hamiltonian is derived from the general gauge - and Lorentz - invariant expression for the qq-bar Green function. The resulting Hamiltonian contains in a non-additive way contributions from quark and string degrees of freedom

  10. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  11. Post-Newtonian parameter γ in generalized non-local gravity

    Science.gov (United States)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  12. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    Science.gov (United States)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  13. Theory of collective Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qingying

    1982-02-01

    Starting from the cranking model, we derive the nuclear collective Hamiltonian. We expand the total energy of the collective motion of the ground state of even--even nuclei in powers of the deformation parameter ..beta... In the first approximation, we only take the lowest-order non-vanished terms in the expansion. The collective Hamiltonian thus obtained rather differs from the A. Bohr's Hamiltonian obtained by the irrotational incompressible liquid drop model. If we neglect the coupling term between ..beta..-and ..gamma..-vibration, our Hamiltonian then has the same form as that of A. Bohr. But there is a difference between these collective parameters. Our collective parameters are determined by the state of motion of the nucleous in the nuclei. They are the microscopic expressions. On the contrary, A. Bohr's collective parameters are only the simple functions of the microscopic physical quantities (such as nuclear radius and surface tension, etc.), and independent of the state of motion of the nucleons in the nuclei. Furthermore, there exist the coupling term between ..beta..-and ..gamma..-vibration and the higher-order terms in our expansion. They can be treated as the perturbations. There are no such terms in A. Bohr's Hamiltonian. These perturbation terms will influence the rotational, vibrational spectra and the ..gamma..-transition process, etc.

  14. On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian

    International Nuclear Information System (INIS)

    Badnell, N.R.

    1997-01-01

    We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)

  15. A diagrammatic construction of formal E-independent model hamiltonian

    International Nuclear Information System (INIS)

    Kvasnicka, V.

    1977-01-01

    A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian

  16. Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity

    Science.gov (United States)

    Varadarajan, Madhavan

    2018-05-01

    Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.

  17. MHD induced fast-ion losses on ASDEX Upgrade

    International Nuclear Information System (INIS)

    GarcIa-Munoz, M.; Fahrbach, H.-U.; Bobkov, V.; Bruedgam, M.; Guenter, S.; Igochine, V.; Lauber, Ph.; Mantsinen, M.J.; Maraschek, M.; Poli, E.; Sassenberg, K.; Tardini, G.; Zohm, H.; Pinches, S.D.; Gobbin, M.; Marrelli, L.; Martin, P.; Piovesan, P.

    2009-01-01

    A detailed knowledge of the interplay between MHD instabilities and energetic particles has been gained from direct measurements of fast-ion losses (FILs). Time-resolved energy and pitch angle measurements of FIL caused by neoclassical tearing modes (NTMs) and toroidicity-induced Alfven eigenmodes (TAEs) have been obtained using a scintillator based FIL detector. The study of FIL due to TAEs has revealed the existence of a new core-localized MHD fluctuation, the Sierpes mode. The Sierpes mode is a non-pure Alfvenic fluctuation which appears in the acoustic branch, dominating the transport of fast-ions in ICRF heated discharges. The internal structure of both TAEs and Sierpes mode has been reconstructed by means of highly resolved multichord soft x-ray measurements. A spatial overlapping of their eigenfunctions leads to a FIL coupling, showing the strong influence that a core-localized fast-ion driven MHD instability may have on the fast-ion transport. We have identified the FIL mechanisms due to NTMs as well as due to TAEs. Drift islands formed by fast-ions in particle phase space are responsible for the loss of NBI fast-ions due to NTMs. In ICRF heated plasmas, a resonance condition fulfilled by the characteristic trapped fast-ion orbit frequencies leads to a phase matching between fast-ion orbit and NTM or TAE magnetic fluctuation. The banana tips of a resonant trapped fast-ion bounce radially due to an E x B drift in the TAE case. The NTM radial bounce of the fast-ion banana tips is caused by the radial component of the perturbed magnetic field lines.

  18. Was Newton right? A search for non-Newtonian behavior of weak-field gravity

    Directory of Open Access Journals (Sweden)

    Boynton Paul

    2014-06-01

    Full Text Available Empirical tests of Einstein’s metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton’s theory by assuring that the linearized equations of GTR matched the Newtonian formalism under “classical” conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.

  19. Variational identities and Hamiltonian structures

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2010-01-01

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  20. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  1. Reminimization of energy integral and stability limit for non-ideal MHD (magnetohydrodynamic) plasma

    International Nuclear Information System (INIS)

    Kondoh, Y.

    1988-03-01

    The stability condition of relaxed states is derived from the energy principle for the non-ideal MHD plasma. An Euler equation for the reminimization of energy integral is derived and shown to give the marginal stable, non-singular perturbations for the stability condition. An extended stability limit for the β = 0 relaxed states is derived from the stability condition, with use of the eigenvalue analysis for the Euler equation. By using the perturbation method, the extended stability limit is solved in the 1st order approximation to explain the deviation of the experimental stability limit from the idealized stability limit by Taylor. A procedure to get overall stability limit against both the non-singular and the singular perturbations is discussed. 25 refs

  2. Global solvability, non-resistive limit and magnetic boundary layer of the compressible heat-conductive MHD equations

    OpenAIRE

    Zhang, Jianwen; Zhao, Xiaokui

    2015-01-01

    In general, the resistivity is inversely proportional to the electrical conductivity, and is usually taken to be zero when the conducting fluid is of extremely high conductivity (e.g., ideal conductors). In this paper, we first establish the global well-posedness of strong solution to an initial-boundary value problem of the one-dimensional compressible, viscous, heat-conductive, non-resistive MHD equations with general heat-conductivity coefficient and large data. Then, the non-resistive lim...

  3. Fundamental Structure of Loop Quantum Gravity

    Science.gov (United States)

    Han, Muxin; Ma, Yongge; Huang, Weiming

    In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to

  4. MHD activity in the ISX-B tokamak: experimental results and theoretical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, B.A.; Dunlap, J.L.; Bell, J.D.; Charlton, L.A.; Cooper, W.A.; Dory, R.A.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.

    1982-01-01

    The observed spectrum of MHD fluctuations in the ISX-B tokamak is clearly dominated by the n=1 mode when the q=1 surface is in the plasma. This fact agrees well with theoretical predictions based on 3-D resistive MHD calculations. They show that the (m=1; n=1) mode is then the dominant instability. It drives other n=1 modes through toroidal coupling and n>1 modes through nonlinear couplings. These theoretically predicted mode structures have been compared in detail with the experimentally measured wave forms (using arrays of soft x-ray detectors). The agreement is excellent. More detailed comparisons between theory and experiment have required careful reconstructions of the ISX-B equilibria. The equilibria so constructed have permitted a precise evaluation of the ideal MHD stability properties of ISX-B. The present results indicate that the high ..beta.. ISX-B equilibria are marginally stable to finite eta ideal MHD modes. The resistive MHD calculations also show that at finite ..beta.. there are unstable resistive pressure driven modes.

  5. The Kauffman bracket and the Jones polynomial in quantum gravity

    International Nuclear Information System (INIS)

    Griego, J.

    1996-01-01

    In the loop representation the quantum states of gravity are given by knot invariants. From general arguments concerning the loop transform of the exponential of the Chern-Simons form, a certain expansion of the Kauffman bracket knot polynomial can be formally viewed as a solution of the Hamiltonian constraint with a cosmological constant in the loop representation. The Kauffman bracket is closely related to the Jones polynomial. In this paper the operation of the Hamiltonian on the power expansions of the Kauffman bracket and Jones polynomials is analyzed. It is explicitly shown that the Kauffman bracket is a formal solution of the Hamiltonian constraint to third order in the cosmological constant. We make use of the extended loop representation of quantum gravity where the analytic calculation can be thoroughly accomplished. Some peculiarities of the extended loop calculus are considered and the significance of the results to the case of the conventional loop representation is discussed. (orig.)

  6. A class of minimally modified gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunshan; Mukohyama, Shinji, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-10-01

    We investigate the Hamiltonian structure of a class of gravitational theories whose actions are linear in the lapse function. We derive the necessary and sufficient condition for a theory in this class to have two or less local physical degrees of freedom. As an application we then find several concrete examples of modified gravity theories in which the total number of local physical degrees of freedom in the gravity sector is two.

  7. Studies in gravity and supergravity

    International Nuclear Information System (INIS)

    Castellani, L.

    1981-01-01

    The canonical treatment for theories with local gauge invariances is reviewed and an algorithm for the construction of all the gauge generators is found. This algorithm is then applied to Yang-Mills theories and to (metric) gravity. The first part of the work is concluded with a complete treatment of hamiltonian first order tetrad gravity. In the second part, the geometrical aspects of (super)gravity theories are concentrated on. After an interlude with path integrals in curved space (equivalence is shown with canonical quantization), N = 2 supergravity in superspace, and conformal supergravity in the group manifold scenario are studied. A progress report is added, regarding a study on higher divergences in quantum field theory

  8. Data report for ROSA-IV LSTF gravity-driven safety injection experiment run SB-CL-27

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke; Saitou, Seishi; Kuroda, Takeshi

    1994-03-01

    Experimental data are presented for the passive injection test, Run SB-CL-27, conducted at the ROSA-IV Large Scale Test Facility (LSTF) on September 17, 1992. This experiment simulated thermal-hydraulic behavior of a gravity-driven, passive safety injection system during a small-break loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). The injection system consisted of a gravity-driven injection tank, located above the reactor vessel, with connecting lines. The tank was initially filled with water of room temperature at the same pressure as the pressurizer. The connecting lines to the cold leg and to the vessel downcomer were opened at the test initiation. Then, a natural circulation flow developed in the loop which was formed by these lines and the injection tank. The hot water in the cold leg circulated into the upper part of tank and accumulated there causing a significant thermal stratification. This thermal stratification prevented direct-contact condensation of steam from occurring during the subsequent tank drain-down phase. Therefore, no condensation-induced depressurization of the tank, affecting adversely the injection performance, occurred. (author)

  9. Can chaos be observed in quantum gravity?

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.

    2017-01-01

    Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  10. Can chaos be observed in quantum gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca, E-mail: bdittrich@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Höhn, Philipp A., E-mail: p.hoehn@univie.ac.at [Vienna Center for Quantum Science and Technology, and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Koslowski, Tim A., E-mail: koslowski@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México D.F. 04510 (Mexico); Nelson, Mike I., E-mail: mike@aims.edu.gh [African Institute for Mathematical Sciences, P.O Box LG 197, Legon, Accra (Ghana)

    2017-06-10

    Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  11. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  12. On the dynamics of non-holonomic systems: the construction of a lagrangian and a hamiltonian

    International Nuclear Information System (INIS)

    Galvao, C.A.P.; Negri, L.J.

    1982-01-01

    It is shown that once the motion of a non-holonomic system is known it is possible to reduce the system to the holonomic form. A (singular) Lagrangian function and a Hamiltonian which correctly describe the dynamics of the system can be constructed. This procedure is applied to a well known system. (Author) [pt

  13. Inverse dualization and non-local dualities between Einstein gravity and supergravities

    International Nuclear Information System (INIS)

    Chen Chiangmei; Gal'tsov, Dmitri V; Sharakin, Sergei A

    2002-01-01

    We investigate non-local dualities between suitably compactified higher dimensional Einstein gravity and supergravities which can be revealed if one reinterprets the dualized Kaluza-Klein 2-forms in D>4 as antisymmetric forms belonging to supergravities. We find several examples of such a correspondence including one between the six-dimensional Einstein gravity and the four-dimensional Einstein-Maxwell-dilaton-axion theory (truncated N=4 supergravity), and others between the compactified eleven- and ten-dimensional supergravities and the eight- or ten-dimensional pure gravity. The Killing spinor equation of the D=11 supergravity is shown to be equivalent to the geometric Killing spinor equation in the dual gravity. We give several examples of using new dualities for solution generation and demonstrate how p-branes can be interpreted as non-local duals of pure gravity solutions. New supersymmetric solutions are presented including M2 subset of 5-brane with two rotation parameters

  14. Topspin networks in loop quantum gravity

    International Nuclear Information System (INIS)

    Duston, Christopher L

    2012-01-01

    We discuss the extension of loop quantum gravity to topspin networks, a proposal which allows topological information to be encoded in spin networks. We will show that this requires minimal changes to the phase space, C*-algebra and Hilbert space of cylindrical functions. We will also discuss the area and Hamiltonian operators, and show how they depend on the topology. This extends the idea of ‘background independence’ in loop quantum gravity to include topology as well as geometry. It is hoped this work will confirm the usefulness of the topspin network formalism and open up several new avenues for research into quantum gravity. (paper)

  15. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  16. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  17. MHD equilibrium and pressure driven instability in L=1 heliotron plasmas

    International Nuclear Information System (INIS)

    Nakamura, Y.; Suzuki, Y.; Yamagishi, O.; Kondo, K.; Nakajima, N.; Hayashi, T.; Monticello, D.A.; Reiman, A.H.

    2003-01-01

    Free boundary MHD equilibrium properties of Heliotron J are investigated by VMEC, HINT and PIES codes, and ideal MHD stability properties are studied by the Mercier criterion, the ballooning mode equation and the CAS3D global stability code. It is shown by the equilibrium calculations that the change of the plasma boundary shape is substantial in a low shear helical system even if the beta is relatively low. Preliminary comparison between PIES results and HINT results shows that the beta value at which the magnetic island begin to be perceptible is almost the same in both codes, but the island width seems to be different. From the stability analysis, good correlation is found between local and global analyses for the three dimensional(3D) or helical ballooning mode whose mode structure shows strong poloidal and toroidal mode (helical mode) coupling. In the helical ballooning mode, the Eigenmode is localized within a flux tube. It is also found that the positive shear of the rotational transform is favorable for the 3D ballooning mode stability in a low shear helical system. (author)

  18. Proceedings of the workshop on nonlinear MHD and extended MHD

    International Nuclear Information System (INIS)

    1998-01-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  19. Proceedings of the workshop on nonlinear MHD and extended MHD

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  1. Modelling chaotic Hamiltonian systems as a Markov Chain ...

    African Journals Online (AJOL)

    The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...

  2. Study of critical beta non-circular tokamak equilibria sustained in steady state by beam driven currents

    International Nuclear Information System (INIS)

    Okano, K.; Ogawa, Y.; Naitou, H.

    1988-07-01

    A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)

  3. INCORPORATING AMBIPOLAR AND OHMIC DIFFUSION IN THE AMR MHD CODE RAMSES

    International Nuclear Information System (INIS)

    Masson, J.; Mulet-Marquis, C.; Chabrier, G.; Teyssier, R.; Hennebelle, P.

    2012-01-01

    We have implemented non-ideal magnetohydrodynamics (MHD) effects in the adaptive mesh refinement code RAMSES, namely, ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test, and the Alfvén wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics.

  4. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  5. Role of MHD activity in LH-assisted discharges in the PBX-M tokamak

    International Nuclear Information System (INIS)

    Talvard, M.; Bell, R.E.; Bernabei, S.; Kaye, S.; Okabayashi, M.; Sesnic, S.; von Goeler, S.

    1995-01-01

    A data base for the 1993 run period of PBX-M has been documented (i) to investigate whether it was possible to forecast the development of MHD instabilities often observed in LH assisted discharges and (ii) to detail the origin, the nature and the effects of those instabilities. The deposition radius of the RF current, the plasma internal inductance and the LH power are used to separate MHD active and quiescent regimes prior the MHD onset. 1/1, 2/1, 3/1 global modes driven by the m = 2, n = 1 component are observed in discharges with LHCD. The destabilization is attributed to an increase of the current density gradient within the q = 2 surface. MHD fluctuations reduce the soft x-ray and hard x-ray intensities mainly around the RF current deposition radius. Minor disruptions with large inversion radii and mode locking are analyzed. Pi possible precursor to the MHD is evidenced on the hard x-ray horizontal profiles. A resonance between fast trapped electrons and turbulent waves present in the background plasma is proposed to support the observations

  6. New Hamiltonians for loop quantum cosmology with arbitrary spin representations

    Science.gov (United States)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Geiller, Marc

    2017-04-01

    In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity of which the understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat Friedmann-Lemaître-Robertson-Walker models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple-spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased and the stability of the difference equations in the quantum theory.

  7. Hamiltonian cycles in polyhedral maps

    Indian Academy of Sciences (India)

    We present a necessary and sufficient condition for existence of a contractible, non-separating and non-contractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces.We also present algorithms to construct such cycles whenever it exists where one of them is linear time and another is ...

  8. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  9. whistler oscillitons and capillary-gravity generalized solitons

    African Journals Online (AJOL)

    Nonlinear stationary waveforms in two completely different systems, namely, electromagnetic-fluid waves in a magnetic plasma and capillary-gravity water waves, are compared and contrasted. These systems display common features and are amenable to a Hamiltonian description. More importantly, however, is the fact ...

  10. MHD simulations of DC helicity injection for current drive in tokamaks

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1994-12-01

    MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ''loop voltage'' in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 x 10 3 to 4 x 10 4 indicates that both the fluctuation level and relaxation increase with S

  11. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  12. Influence of hot beam ions on MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1984-01-01

    It has recently been proposed that the presence of high-energy ions from neutral-beam injection can have a strong stabilizing effect on kinetically modified ideal-MHD ballooning modes in tokamaks. To assess realistically the importance of such effects, a comprehensive kinetic stability analysis, which takes into account the integral equation nature of the basic problem, has been applied to this investigation. In the collisionless limit, the effect of adding small fractions of hot beam ions is indeed found to be strongly stabilizing. On the other hand, for somewhat larger fractions of hot ions, a different, beam-driven root of the mode equations is found to occur with a growth rate comparable in magnitude to the growth rate of the usual MHD ballooning mode in the absence of hot ions. This implies that there should be an optimal density of hot particles which minimizes the strength of the relevant instabilities. Employing non-Maxwellian equilibrium distribution functions to model the beam species makes a quantitative, but not qualitative, difference in the results. Adding collisions to the calculation tends to reduce considerably the stabilizing effect of the hot ions. (author)

  13. Influence of hot beam ions on MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1984-07-01

    It has recently been proposed that the presence of high energy ions from neutral beam injection can have a strong stabilizing effect on kinetically-modified ideal MHD ballooning modes in tokamaks. In order to assess realistically the importance of such effects, a comprehensive kinetic stability analysis, which takes into account the integral equation nature of the basic problem, has been applied to this investigation. In the collisionless limit, the effect of adding small fractions of hot beam ions is indeed found to be strongly stabilizing. On the other hand, for somewhat larger fractions of hot ions, a new beam-driven mode is found to occur with a growth rate comparable in magnitude to the growth rate of the MHD ballooning mode in the absence of hot ions. This implies that there should be an optimal density of hot particles which minimizes the strength of the relevant instabilities. Employing non-Maxwellian equilibrium distribution functions to model the beam species makes a quantitative, but not qualitative, difference in the results. Adding collisions to the calculation tends to reduce considerably the stabilizing effect of the hot ions

  14. On local Hamiltonians and dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)

    2006-11-15

    We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.

  15. Hamiltonian dynamics on the symplectic extended phase space for autonomous and non-autonomous systems

    International Nuclear Information System (INIS)

    Struckmeier, Juergen

    2005-01-01

    We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1

  16. Energy conditions of non-singular black hole spacetimes in conformal gravity

    International Nuclear Information System (INIS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Stuchlik, Zdenek

    2017-01-01

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  17. Energy conditions of non-singular black hole spacetimes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Toshmatov, Bobir [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Ahmedov, Bobomurat [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Abdujabbarov, Ahmadjon [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Tashkent University of Information Technologies, Tashkent (Uzbekistan); Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)

    2017-08-15

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  18. Onset of transition from laminar to chaos in MHD mixed convection of a lid-driven trapezoidal cavity filled with Cu-water nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohammad, E-mail: azam09mebuet@gmail.com; Hasanuzzaman, Md., E-mail: hasanuzzaman138@gmail.com; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    The present study investigates the thermal mixing scenarios of steady magneto-hydrodynamic (MHD) mixed convection in a two-dimensional lid-driven trapezoidal cavity filled with Cu-water nanofluid. The top wall of the cavity slides with a uniform velocity from left to right direction, while the other walls are fixed. The bottom wall is kept with a constant higher temperature than the top one. The governing mass, momentum and energy equations are expressed in non-dimensional forms and Galerkin finite element method has been employed to solve these equations. Special attention is paid on investigating the onset of transition from laminar to chaos at pure mixed convection case. Hence, the computations are carried out for a wide range of Reynolds numbers (Re = 0.1 − 400) and Grashof numbers (Gr = 10{sup −2} − 1.6 × 10{sup 5}) at unity Richardson number and fixed Hartmann number (Ha = 10). The variation of average Nusselt number of the bottom heated wall indicates the influence of governing parameters (Re and Gr) on heat transfer characteristics. The results are presented and explained through the visualisation of isotherms, streamlines and heatlines.

  19. Hamiltonian quantum simulation with bounded-strength controls

    International Nuclear Information System (INIS)

    Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza

    2014-01-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)

  20. Diffeomorphism invariance in the Hamiltonian formulation of General Relativity

    International Nuclear Information System (INIS)

    Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.

    2008-01-01

    It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity

  1. Electricity from MHD, 1968. Vol. IV. Open-Cycle MHD. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation held by the IAEA at Warsaw, 24-30 July 1968. The meeting was attended by some 300 participants from 21 countries and three international organizations. In contrast to the Symposium held two years ago, much more emphasis was placed on the economic aspects of using MHD generators in large-scale power generation. Among closed- cycle systems, the prospects of linking an ultra-high-temperature reactor with an MHD generator were explored, and the advantages gained by having a liquid-metal generator as a 'topper' in a conventional steam generating plant were presented. Comments were made about the disproportionate effect of end and boundary conditions in experimental MHD generators on the main plasma parameters, and estimates were made of the interrelationship to be expected in real generators. The estimates will have to await confirmation until results are obtained on large-scale prototype MHD systems. Progress in materials research, in design and construction of auxiliary equipment such as heat exchangers, supercooled magnets (which are- now commercially available), etc., is accompanied by sophisticated ideas of plant design. The Proceedings are complemented by three Round Table Discussions in which chosen experts from various countries discuss the outlook for closed-cycle gas, closed-cycle liquid-metal and open-cycle MHD, and give their views as to the most fruitful course to follow to achieve economic full-scale power generation. Contents: (Vol. I) 1. Closed-Cycle MHD with Gaseous Working Fluids: (a) Diagnostics (3 papers); (b) Steady-state non-equilibrium ionization (8 papers); (c) Transient non-equilibrium ionization (7 papers); (d) Pre-ionization and gas discharge (4 papers); (e) Fields and flow in MHD channels (10 papers); (0 Instabilities (8 papers); (g) Generator design and performance studies (6 papers); (Vol. II) (h) Shock waves (6 papers); (i) Power generation experiments (13 papers

  2. Non extensive statistics and entropic gravity in a non-integer dimensional space

    International Nuclear Information System (INIS)

    Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.

    2013-01-01

    Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)

  3. The geometric role of symmetry breaking in gravity

    International Nuclear Information System (INIS)

    Wise, Derek K

    2012-01-01

    In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry of the homogeneous space G/H. The deep reason for this is Cartan's 'method of equivalence,' giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.

  4. Calculation of three-dimensional MHD equilibria with magnetic islands and chaotic field line trajectories

    International Nuclear Information System (INIS)

    Reiman, A.; Monticello, D.; Pomphrey, N.

    1993-01-01

    The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices

  5. Proposal for testing quantum gravity in the lab

    International Nuclear Information System (INIS)

    Ali, Ahmed Farag; Das, Saurya; Vagenas, Elias C.

    2011-01-01

    Attempts to formulate a quantum theory of gravitation are collectively known as quantum gravity. Various approaches to quantum gravity such as string theory and loop quantum gravity, as well as black hole physics and doubly special relativity theories predict a minimum measurable length, or a maximum observable momentum, and related modifications of the Heisenberg Uncertainty Principle to a so-called generalized uncertainty principle (GUP). We have proposed a GUP consistent with string theory, black hole physics, and doubly special relativity theories and have showed that this modifies all quantum mechanical Hamiltonians. When applied to an elementary particle, it suggests that the space that confines it must be quantized, and in fact that all measurable lengths are quantized in units of a fundamental length (which can be the Planck length). On the one hand, this may signal the breakdown of the spacetime continuum picture near that scale, and on the other hand, it can predict an upper bound on the quantum gravity parameter in the GUP, from current observations. Furthermore, such fundamental discreteness of space may have observable consequences at length scales much larger than the Planck scale. Because this influences all the quantum Hamiltonians in an universal way, it predicts quantum gravity corrections to various quantum phenomena. Therefore, in the present work we compute these corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling current in a scanning tunneling microscope.

  6. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor

    KAUST Repository

    Fortunato, Luca

    2016-10-07

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. © 2016 Elsevier Ltd

  7. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    Science.gov (United States)

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. On gauge invariant cosmological perturbations in UV-modified Hořava gravity

    Science.gov (United States)

    Shin, Sunyoung; Park, Mu-In

    2017-12-01

    We consider gauge invariant cosmological perturbations in UV-modified, z = 3 (non-projectable) Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. In order to exhibit its dynamical degrees of freedom, we consider the Hamiltonian reduction method and find that, by solving all the constraint equations, the degrees of freedom are the same as those of Einstein gravity: one scalar and two tensor (graviton) modes when a scalar matter field presents. However, we confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology. Moreover, we find that tensor and scalar fluctuations travel differently in UV, generally. We present also some clarifying remarks about confusing points in the literatures.

  9. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  10. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    International Nuclear Information System (INIS)

    Hoelzl, M; Merkel, P; Lackner, K; Strumberger, E; Huijsmans, G T A; Aleynikova, K; Liu, F; Atanasiu, C; Nardon, E; Fil, A; McAdams, R; Chapman, I

    2014-01-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described

  11. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    Science.gov (United States)

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven

  12. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  13. The stability of the strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1978-01-01

    The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted

  14. Canonical formulation of supergravity and the quantization of the ultralocal theory of gravity

    International Nuclear Information System (INIS)

    Pilati, M.L.

    1980-01-01

    This thesis consists of two parts whose only common feature is that they are Hamiltonian field theories of geometric interest. The first part is concerned with the canonical formulation of supergravity and other geometrical, supersymmetric theories. The Hamiltonian for supergravity and the spinning membrane are computed, and the possible usefulness of the Hamiltonian formalism for finding the underlying geometry described. The second part attempts to give the quantization of the ultralocal theory of gravity. Classically the ultralocal theory corresponds to dropping g/sup 1/2//sup (3)/R from the Hamiltonian. The speed of light in this theory is zero; there is no propagation of information. It is desired to have the quantum version of this theory play the role that Fock space plays in ordinary quantum field theory, i.e., to the theory about which perturbations are made to obtain the full quantum theory of gravity. The quantum theory is begun by choosing variables consistent with the three-dimensional metric's having positive-definite spectrum. The representation of these operators is then given; it is an exponential representation. The operators script-H/sub perpendicular/ and script-H/sub i/ are constructed in this representation, the properties of script-H/sub i/ implying that the theory is coordinate invariant. It is found that script-H/sub perpendicular/ cannot be realized as a constraint in this theory in the way that one expects of a quantum theory of gravity

  15. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  16. Resistive MHD studies of high-β-tokamak plasmas

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Hicks, H.R.; Holmes, J.A.; Garcia, L.

    1981-01-01

    Numerical calculations have been performed to study the MHD activity in high-β tokamaks such as ISX-B. These initial value calculations built on earlier low β techniques, but the β effects create several new numerical issues. These issues are discussed and resolved. In addition to time-stepping modules, our system of computer codes includes equilibrium solvers (used to provide an initial condition) and output modules, such as a magnetic field line follower and an X-ray diagnostic code. The transition from current driven modes at low β to predominantly pressure driven modes at high β is described. The nonlinear studies yield X-ray emissivity plots which are compared with experiment

  17. Nonlinear MHD dynamo operating at equipartition

    DEFF Research Database (Denmark)

    Archontis, V.; Dorch, Bertil; Nordlund, Åke

    2007-01-01

    Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...

  18. Magnetohydrodynamic (MHD) power generation

    International Nuclear Information System (INIS)

    Chandra, Avinash

    1980-01-01

    The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)

  19. Phase transitions in the Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1977-05-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  20. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  1. Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube

    International Nuclear Information System (INIS)

    Moh, Jeong Hah; Cho, Y. I.

    2014-01-01

    This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady

  2. On the complete and partial integrability of non-Hamiltonian systems

    Science.gov (United States)

    Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B.

    1984-11-01

    The methods of singularity analysis are applied to several third order non-Hamiltonian systems of physical significance including the Lotka-Volterra equations, the three-wave interaction and the Rikitake dynamo model. Complete integrability is defined and new completely integrable systems are discovered by means of the Painlevé property. In all these cases we obtain integrals, which reduce the equations either to a final quadrature or to an irreducible second order ordinary differential equation (ODE) solved by Painlevé transcendents. Relaxing the Painlevé property we find many partially integrable cases whose movable singularities are poles at leading order, with In( t- t0) terms entering at higher orders. In an Nth order, generalized Rössler model a precise relation is established between the partial fulfillment of the Painlevé conditions and the existence of N - 2 integrals of the motion.

  3. Non-perturbative particle dynamics in (2+1)-gravity

    CERN Document Server

    Bellini, A; Valtancoli, P

    1995-01-01

    We construct a non-perturbative, single-valued solution for the metric and the motion of two interacting particles in (2+1)-Gravity, by using a Coulomb gauge of conformal type. The method provides the mapping from multivalued ( minkowskian ) coordinates to single-valued ones, which solves the non-abelian monodromies due to particles's momenta and can be applied also to the general N-body case.

  4. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; He, Qingyun; Ye, Minyou

    2015-11-15

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  5. Further validation of liquid metal MHD code for unstructured grid based on OpenFOAM

    International Nuclear Information System (INIS)

    Feng, Jingchao; Chen, Hongli; He, Qingyun; Ye, Minyou

    2015-01-01

    Highlights: • Specific correction scheme has been adopted to revise the calculating result for non-orthogonal meshes. • The developed MHD code based on OpenFOAM platform has been validated by benchmark cases under uniform and non-uniform magnetic field in round and rectangular ducts. • ALEX experimental results have been used to validate the MHD code based on OpenFOAM. - Abstract: In fusion liquid metal blankets, complex geometries involving contractions, expansions, bends, manifolds are very common. The characteristics of liquid metal flow in these geometries are significant. In order to extend the magnetohydrodynamic (MHD) solver developed on OpenFOAM platform to be applied in the complex geometry, the MHD solver based on unstructured meshes has been implemented. The adoption of non-orthogonal correction techniques in the solver makes it possible to process the non-orthogonal meshes in complex geometries. The present paper focused on the validation of the code under critical conditions. An analytical solution benchmark case and two experimental benchmark cases were conducted to validate the code. Benchmark case I is MHD flow in a circular pipe with arbitrary electric conductivity of the walls in a uniform magnetic field. Benchmark cases II and III are experimental cases of 3D laminar steady MHD flow under fringing magnetic field. In all these cases, the numerical results match well with the benchmark cases.

  6. Conformally-flat, non-singular static metric in infinite derivative gravity

    Science.gov (United States)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  7. 2D higher spin gravity and the multimatrix models

    International Nuclear Information System (INIS)

    Awada, M.; Qiu Zongan

    1990-01-01

    We quantize W-gravity coupled to matter fields in the conformal gauge and obtain the critical exponents. We demonstrate explicitly how the generators of the W-algebra are described by an infinite set of conserved charges of the KdV hierarchy. We obtain the generalized hamiltonian equation of motion and show that it contains the class of universal differential equations of the matrix models. Thus we propose that these models describe pure W-gravity theories of the A-type. Consequently we give a new set of universal equations that correspond to other types of W-gravity theories. (orig.)

  8. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    International Nuclear Information System (INIS)

    Wen Dehua; Li Baoan; Chen Liewen

    2009-01-01

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  9. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    International Nuclear Information System (INIS)

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f NL in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology

  10. Universality of quantum gravity corrections.

    Science.gov (United States)

    Das, Saurya; Vagenas, Elias C

    2008-11-28

    We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.

  11. U(N) tools for loop quantum gravity: the return of the spinor

    Science.gov (United States)

    Borja, Enrique F.; Freidel, Laurent; Garay, Iñaki; Livine, Etera R.

    2011-03-01

    We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.

  12. Quantization of coset space σ-models coupled to two-dimensional gravity

    International Nuclear Information System (INIS)

    Korotkin, D.; Samtleben, H.

    1996-07-01

    The mathematical framework for an exact quantization of the two-dimensional coset space σ-models coupled to dilaton gravity, that arise from dimensional reduction of gravity and supergravity theories, is presented. The two-time Hamiltonian formulation is obtained, which describes the complete phase space of the model in the whole isomonodromic sector. The Dirac brackets arising from the coset constraints are calculated. Their quantization allows to relate exact solutions of the corresponding Wheeler-DeWitt equations to solutions of a modified (Coset) Knizhnik-Zamolodchikov system. On the classical level, a set of observables is identified, that is complete for essential sectors of the theory. Quantum counterparts of these observables and their algebraic structure are investigated. Their status in alternative quantization procedures is discussed, employing the link with Hamiltonian Chern-Simons theory. (orig.)

  13. Possible evidence for non-Newtonian gravity in the Greenland ice gap

    International Nuclear Information System (INIS)

    Ander, M.E.

    1988-01-01

    An Airy-type geophysical experiment was conducted down a 2 km deep hole in the Greenland ice cap in order to test for possible violations of Newton's inverse square law by making gravity measurements over a range of 213 m to 1460 m. A significant departure from Newtonian gravity was observed. This result can be explained by the existence of an attractive non-Newtonian component of gravity with a strength of about 3.4% that of Newtonian gravity at a scale of 1460 m. Unfortunately, we cannot completely, unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that lateral density variations in the bedrock beneath the ice can cause such apparent departures. If such variations existed, they would have to be rather unusual but certainly no impossible. 8 refs

  14. Nonlinear MHD dynamics of tokamak plasmas on multiple time scales

    International Nuclear Information System (INIS)

    Kruger, S.E.; Schnack, D.D.; Brennan, D.P.; Gianakon, T.A.; Sovinec, C.R.

    2003-01-01

    Two types of numerical, nonlinear simulations using the NIMROD code are presented. In the first simulation, we model the disruption occurring in DIII-D discharge 87009 as an ideal MHD instability driven unstable by neutral-beam heating. The mode grows faster than exponential, but on a time scale that is a hybrid of the heating rate and the ideal MHD growth rate as predicted by analytic theory. The second type of simulations, which occur on a much longer time scale, focus on the seeding of tearing modes by sawteeth. Pressure effects play a role both in the exterior region solutions and in the neoclassical drive terms. The results of both simulations are reviewed and their implications for experimental analysis is discussed. (author)

  15. Field evidences and theoretical analysis of the gravity-driven wetting front instability of water runoffs on concrete structures

    NARCIS (Netherlands)

    Kuntz, M.; Van Mier, J.G.M.

    1997-01-01

    A series of field observations of the evolution of water runoffs over several vertical concrete walls directly exposed to rain falls is reported in this note. In all the cases, the main water flow originated from the top horizontal surface of the walls. The observations show that the gravity-driven

  16. The bi-Hamiltonian structures of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1992-05-01

    We consider the ''even-time'' flow of the Manin-Radul supersymmetric KP hierarchy and show that it possesses bi-Hamiltonian structures by deriving two distinct Gelfand-Dikii brackets corresponding to two successive Hamiltonians of the system. A recursion relation involving them is also obtained. We observe that the first Hamiltonian structure defines a supersymmetric Lie algebra since it is a linear algebra among the super fields appearing in the Lax operator whereas the second Hamiltonian structure is a non-linear algebra and so it does not define a Lie algebra. (author). 25 refs

  17. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  18. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  19. Wigner-Smith delay times and the non-Hermitian Hamiltonian for the HOCl molecule

    International Nuclear Information System (INIS)

    Barr, A.M.; Reichl, L.E.

    2013-01-01

    We construct the scattering matrix for a two-dimensional model of a Cl atom scattering from an OH dimer. We show that the scattering matrix can be written in terms of a non-Hermitian Hamiltonian whose complex energy eigenvalues can be used to compute Wigner-Smith delay times for the Cl-OH scattering process. We compute the delay times for a range of energies, and show that the scattering states with the longest delay times are strongly influenced by unstable periodic orbits in the classical dynamics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. A Non-Polynomial Gravity Formulation for Loop Quantum Cosmology Bounce

    Directory of Open Access Journals (Sweden)

    Stefano Chinaglia

    2017-09-01

    Full Text Available Recently the so-called mimetic gravity approach has been used to obtain corrections to the Friedmann equation of General Relativity similar to the ones present in loop quantum cosmology. In this paper, we propose an alternative way to derive this modified Friedmann equation via the so-called non-polynomial gravity approach, which consists of adding geometric non-polynomial higher derivative terms to Hilbert–Einstein action, which are nonetheless polynomials and lead to a second-order differential equation in Friedmann–Lemaître–Robertson–Walker space-times. Our explicit action turns out to be a realization of the Helling proposal of effective action with an infinite number of terms. The model is also investigated in the presence of a non-vanishing cosmological constant, and a new exact bounce solution is found and studied.

  1. Non-ideal magnetohydrodynamics on a moving mesh

    Science.gov (United States)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  2. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  3. Cosmological perturbations in non-local higher-derivative gravity

    International Nuclear Information System (INIS)

    Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.

    2014-01-01

    We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model

  4. MHD Program Plan, FY 1992

    International Nuclear Information System (INIS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector

  5. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Aiba, N.; Tokuda, S.; Oyama, N.; Ozeki, T.; Furukawa, M.

    2009-01-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  6. Bäcklund transformations and Hamiltonian flows

    International Nuclear Information System (INIS)

    Zullo, Federico

    2013-01-01

    In this work we show that, under certain conditions, parametric Bäcklund transformations for a finite dimensional integrable system can be interpreted as solutions to the equations of motion defined by an associated non-autonomous Hamiltonian. The two systems share the same constants of motion. This observation leads to the identification of the Hamiltonian interpolating the iteration of the discrete map defined by the transformations, which indeed in numerical applications can be considered a linear combination of the integrals appearing in the spectral curve of the Lax matrix. An example with the periodic Toda lattice is given. (paper)

  7. Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 potential

    International Nuclear Information System (INIS)

    Jones, H.F.; Mateo, J.

    2006-01-01

    The potential V(x)=-x 4 , which is unbounded below on the real line, can give rise to a well-posed bound state problem when x is taken on a contour in the lower-half complex plane. It is then PT-symmetric rather than Hermitian. Nonetheless it has been shown numerically to have a real spectrum, and a proof of reality, involving the correspondence between ordinary differential equations and integrable systems, was subsequently constructed for the general class of potentials -(ix) N . For such Hamiltonians the natural PT metric is not positive definite, but a dynamically-defined positive-definite metric can be defined, depending on an operator Q. Further, with the help of this operator an equivalent Hermitian Hamiltonian h can be constructed. This programme has been carried out exactly for a few soluble models, and the first few terms of a perturbative expansion have been found for the potential m 2 x 2 +igx 3 . However, until now, the -x 4 potential has proved intractable. In the present paper we give explicit, closed form expressions for Q and h, which are made possible by a particular parametrization of the contour in the complex plane on which the problem is defined. This constitutes an explicit proof of the reality of the spectrum. The resulting equivalent Hamiltonian has a potential with a positive quartic term together with a linear term

  8. Nonlinear quantum gravity on the constant mean curvature foliation

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2005-01-01

    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory

  9. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)

    2013-01-15

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)

  10. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

    International Nuclear Information System (INIS)

    Barik, R.N.; Dash, G.C.; Rath, P.K.

    2013-01-01

    Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)

  11. Astrophysical flows near f(T) gravity black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Baglica Campus, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); INFN Sezione di Napoli, Naples (Italy)

    2016-05-15

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f(T) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f(T) and f(R) gravity. (orig.)

  12. Loop quantum gravity: an outside view

    International Nuclear Information System (INIS)

    Nicolai, Hermann; Peeters, Kasper; Zamaklar, Marija

    2005-01-01

    We review aspects of loop quantum gravity in a pedagogical manner, with the aim of enabling a precise but critical assessment of its achievements so far. We emphasize that the off-shell ('strong') closure of the constraint algebra is a crucial test of quantum spacetime covariance, and thereby of the consistency, of the theory. Special attention is paid to the appearance of a large number of ambiguities, in particular in the formulation of the Hamiltonian constraint. Developing suitable approximation methods to establish a connection with classical gravity on the one hand, and with the physics of elementary particles on the other, remains a major challenge. (topical review)

  13. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    International Nuclear Information System (INIS)

    Dewar, R. L.; Cuthbert, P.; Ball, R.

    2000-01-01

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  14. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  15. Neutrino oscillations in magnetically driven supernova explosions

    Science.gov (United States)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  16. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  17. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    Science.gov (United States)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  18. Non - minimal interaction of gravity with other physical fields: an overview

    International Nuclear Information System (INIS)

    Novello, M.; Oliveira, L.A.R. de.

    1986-01-01

    A review on some modern developments concerning the interaction of gravity with other physical fields. It is argued that a suitable context for an account of their dynamical interplay is that of the non-minimal (e.g., conformal) coupling of these fields to gravity. Some interesting features of non-minimal coupling, such as the connection with Weyl-integrable spacetime (WIST) structure, the generation of eternal Universes, the appearance of a cosmological constant and the possible induction of repulsive gravity via spontaneous symmetry breaking (SSB) mechanisms, are discussed. In particular, examines a simple case of strong interacting scalar particles (such as the well-Known elastic reaction ΠK → ΠK), in a curved background, thereby obtaining the curious result that the actual, observed value of the strong coupling constant and the minimum value allowable, in order to preclude antigravity, are related by Eddington's number 10 39 . (Author) [pt

  19. Non-nominal interaction of gravity with other physical fields: An overiview

    International Nuclear Information System (INIS)

    Novello, M.; Oliveira, L.A.R. de

    1987-01-01

    A review is presented of some modern developments concerning the interaction of gravity with other physical fields. It is argued that a suitable context for an account of their dynamical interplay is that of the non-minimal (e.g. conformal) coupling of these fields to gravity. Some interesting features of non-minimal coupling, such as the connection with Weyl-integrable spacetime (WIST) structure, the generation of eternal Universes, the appearance of a cosmological constant and the possible induction of repulsive gravity via spontaneous breaking (SSB) mechanisms, are discussed. In particular, a simple case of strong-interacting scalar particles is examined (such as the well-Known elastic reaction ΠK -> ΠK), in a curved background, thereby obtaining the curious resul that the actual, observed value of the strong coupling constant and the minimum allowable value, in order to preclude antigravity, are related by Eddington's number 10 39 . (author) [pt

  20. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  1. Boundary modulation effects on MHD instabilities in Heliotrons

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.; Nakamura, Y.

    2005-01-01

    In three-dimensional configurations, the confinement region is surrounded by the stochastic magnetic field lines related to magnetic islands or separatrix, leading to the fact that the plasma-vacuum boundary is not so definite compared with tokamaks that the various modulations of the plasma-vacuum boundary will be induced around the stochastic region by a large Shafranov shift of the whole plasma, in especially high-β operations. To examine such the modulation effects of the plasma boundary on MHD instabilities, high-β plasmas allowing a large Shafranov shift are considered in the inward-shifted LHD configurations with the vacuum magnetic axis R ax of 3.6m, for which previous theoretical analyses indicate that pressure-driven modes are significantly more unstable compared with experimental observations. It is shown that the boundary modulation due to a free motion of the equilibrium plasma has not only significant stabilizing effects on ideal MHD instabilities, but also characteristics consistent to experimental observations. (author)

  2. A partial Hamiltonian approach for current value Hamiltonian systems

    Science.gov (United States)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  3. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  4. Analyses of MHD instabilities

    International Nuclear Information System (INIS)

    Takeda, Tatsuoki

    1985-01-01

    In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)

  5. Particle production after inflation with non-minimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei

    2015-01-01

    We study cosmological evolution after inflation in models with non-minimal derivative coupling to gravity. The background dynamics is solved and particle production associated with rapidly oscillating Hubble parameter is studied in detail. In addition, production of gravitons through the non-minimal derivative coupling with the inflaton is studied. We also find that the sound speed squared of the scalar perturbation oscillates between positive and negative values when the non-minimal derivative coupling dominates over the minimal kinetic term. This may lead to an instability of this model. We point out that the particle production rates are the same as those in the Einstein gravity with the minimal kinetic term, if we require the sound speed squared is positive definite

  6. MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions

  7. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy

    International Nuclear Information System (INIS)

    Wu, Guo-cheng; Zhang, Sheng

    2011-01-01

    In this Letter, a generalized Tu formula is firstly presented to construct Hamiltonian structures of fractional soliton equations. The obtained results can be reduced to the classical Hamiltonian hierarchy of AKNS in ordinary calculus. -- Highlights: → A generalized Tu formula is first established based on the fractional variational theory for non-differentiable functions. → Hamiltonian structures of fractional AKNS hierarchy are obtained. → The classical AKNS hierarchy is just a special case of the fractional hierarchy.

  8. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guo-cheng, E-mail: wuguocheng2002@yahoo.com.cn [Key Laboratory of Numerical Simulation of Sichuan Province, Neijiang, Sichuan 641112 (China); College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112 (China); Zhang, Sheng, E-mail: zhshaeng@yahoo.com.cn [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China)

    2011-10-03

    In this Letter, a generalized Tu formula is firstly presented to construct Hamiltonian structures of fractional soliton equations. The obtained results can be reduced to the classical Hamiltonian hierarchy of AKNS in ordinary calculus. -- Highlights: → A generalized Tu formula is first established based on the fractional variational theory for non-differentiable functions. → Hamiltonian structures of fractional AKNS hierarchy are obtained. → The classical AKNS hierarchy is just a special case of the fractional hierarchy.

  9. Covariant constraints for generic massive gravity and analysis of its characteristics

    DEFF Research Database (Denmark)

    Deser, S.; Sandora, M.; Waldron, A.

    2014-01-01

    We perform a covariant constraint analysis of massive gravity valid for its entire parameter space, demonstrating that the model generically propagates 5 degrees of freedom; this is also verified by a new and streamlined Hamiltonian description. The constraint's covariant expression permits...

  10. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  11. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  12. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    Science.gov (United States)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  13. Renormalization of Hamiltonians

    International Nuclear Information System (INIS)

    Glazek, S.D.; Wilson, K.G.

    1993-01-01

    This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method

  14. Connection dynamics of a gauge theory of gravity coupled with matter

    International Nuclear Information System (INIS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-01-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert–Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero–Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert–Palatini term and the quadratic torsion term in this gauge theory of gravity. (paper)

  15. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  16. An approach to verification and validation of MHD codes for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Badia, S. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat (India); Bühler, L. [Karlsruhe Institute of Technology (Germany); Chen, L. [University of Chinese Academy of Sciences, Beijing (China); Huang, Q. [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui (China); Jin, H.-G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Krasnov, D. [Technische Universität Ilmenau (Germany); Lee, D.-W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mas de les Valls, E. [Centre Internacional de Mètodes Numèrics en Enginyeria, Barcelona (Spain); Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Mistrangelo, C. [Karlsruhe Institute of Technology (Germany); Munipalli, R. [HyPerComp, Westlake Village (United States); Ni, M.-J. [University of Chinese Academy of Sciences, Beijing (China); Pashkevich, D. [St. Petersburg State Polytechnical University (Russian Federation); Patel, A. [Universitat Politècnica de Catalunya – Barcelona Tech (Spain); Pulugundla, G. [University of California, Los Angeles (United States); Satyamurthy, P. [Bhabha Atomic Research Center (India); Snegirev, A. [St. Petersburg State Polytechnical University (Russian Federation); Sviridov, V. [Moscow Power Engineering Institute (Russian Federation); Swain, P. [Bhabha Atomic Research Center (India); and others

    2015-11-15

    Highlights: • Review of status of MHD codes for fusion applications. • Selection of five benchmark problems. • Guidance for verification and validation of MHD codes for fusion applications. - Abstract: We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.

  17. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  18. MHD channel performance for potential early commercial MHD power plants

    International Nuclear Information System (INIS)

    Swallom, D.W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation

  19. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  20. Hamiltonian Anomalies from Extended Field Theories

    Science.gov (United States)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  1. Recent Progress in MHD Stability Calculations of Compact Stellarators

    International Nuclear Information System (INIS)

    Fu, G.Y.; Ku, L.P.; Redi, M.H.; Kessel, C.; Monticello, D.A.; Reiman, A.; Cooper, W.A.; Nuehrenberg, C.; Sanchez, R.; Ware, A.; Hirshman, S.P.; Spong, D.A.

    2000-01-01

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism for external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length

  2. Outline of fast analyzer for MHD equilibrium 'FAME'

    International Nuclear Information System (INIS)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto.

    1994-03-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author)

  3. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.

    1996-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data

  4. Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis

    Science.gov (United States)

    Li, G.; Zhao, L.; Jin, M.

    2017-12-01

    In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.

  5. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  6. Observation of SOL Current Correlated with MHD Activity in NBI-heated DIII-D Tokamak Discharges

    International Nuclear Information System (INIS)

    Takahashi, H.; Fredrickson, E.D.; Schaffer, M.J.; Austin, M.E.; Evans, T.E.; Lao, L.L.; Watkins, J.G.

    2004-01-01

    This work investigates the potential roles played by the scrape-off-layer current (SOLC) in MHD activity of tokamak plasmas, including effects on stability. SOLCs are found during MHD activity that are: (1) slowly growing after a mode-locking-like event, (2) oscillating in the several kHz range and phase-locked with magnetic and electron temperature oscillations, (3) rapidly growing with a sub-ms time scale during a thermal collapse and a current quench, and (4) spiky in temporal behavior and correlated with spiky features in Da signals commonly identified with the edge localized mode (ELM). These SOLCs are found to be an integral part of the MHD activity, with a propensity to flow in a toroidally non-axisymmetric pattern and with magnitude potentially large enough to play a role in the MHD stability. Candidate mechanisms that can drive these SOLCs are identified: (a) toroidally non-axisymmetric thermoelectric potential, (b) electromotive force (EMF) from MHD activity, and (c) flux swing, both toroidal and poloidal, of the plasma column. An effect is found, stemming from the shear in the field line pitch angle, that mitigates the efficacy of a toroidally non-axisymmetric SOLC to generate a toroidally non-axisymmetric error field. Other potential magnetic consequences of the SOLC are identified: (i) its error field can introduce complications in feedback control schemes for stabilizing MHD activity and (ii) its toroidally non-axisymmetric field can be falsely identified as an axisymmetric field by the tokamak control logic and in equilibrium reconstruction. The radial profile of a SOLC observed during a quiescent discharge period is determined, and found to possess polarity reversals as a function of radial distance

  7. Non-Hermitian Hamiltonians with a real spectrum and their physical ...

    Indian Academy of Sciences (India)

    We present an evaluation of some recent attempts to understand the role of pseudo-Hermitian and P T -symmetric Hamiltonians in modelling unitary quantum systems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex scattering potentials.

  8. Calculation of three-dimensional MHD equilibria with islands and stochastic regions

    International Nuclear Information System (INIS)

    Reiman, A.; Greenside, H.

    1986-08-01

    A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands

  9. Astrophysical flows near [Formula: see text] gravity black holes.

    Science.gov (United States)

    Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.

  10. Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file

    International Nuclear Information System (INIS)

    Ghita, G.; Ionescu, S.; Prisecaru, I.

    2016-01-01

    The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)

  11. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  12. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  13. MHD pilot industrial applications

    International Nuclear Information System (INIS)

    Freeman, M.; Riviere-Wekstein, G.

    1994-01-01

    MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun

  14. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  15. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid

    2011-01-01

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the

  16. Integrable and nonintegrable non-KAM Hamiltonians and magnetic field topology

    International Nuclear Information System (INIS)

    Salat, A.

    1986-01-01

    The integrability of Hamiltonians H(P 1 , P 2 , Q 1 , Q 2 )=P 1 G 1 (Q 1 ,Q 2 )+P 2 G 2 (Q 1 ,Q 2 ), with arbitrary analytic G 1 and G 2 , 2π-periodic in Q 1 and Q 2 , is analytically investigated. Such H cannot be separated into two parts, H=H 0 +H 21 , such that the KAM theorem would apply for vertical strokeH 1 vertical stroke 0 vertical stroke. For G 2 =const such Hamiltonians correspond to toroidal magnetic fields with constant rotational transform. Integrability is then equivalent to the existence of closed magnetic surfaces. The winding number w of the Q 1 , Q 2 flow (i.e. the rotational transform) is rational in 'tongue'-like domains in (ω 2 /ω 1 ,A) diagrams. Here ω i = i > is the average over both Q 1 and Q 2 , G i =ω i +F i , i=1, 2, and A is an amplitude parameter of F i (F i =0 for A=0). Integrability is proved almost everywhere in the complementary domains, namely where w is sufficiently irrational. In the generic case ('conditional') nonintegrability is proved for the class dG 1 /dQ 1 +dG 2 /dQ 2 =0 in the tongues, which in this case shrink to lines with w=ω 1 /ω 2 . It is shown that if the number of dimensions in the Hamiltonian were larger than two, qualitatively different results would be expected. (orig.)

  17. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  18. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    Science.gov (United States)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  19. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  20. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  1. Quadratic time dependent Hamiltonians and separation of variables

    Science.gov (United States)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  2. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  3. New variables for classical and quantum gravity

    Science.gov (United States)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  4. Scattering theory of infrared divergent Pauli-Fierz Hamiltonians

    CERN Document Server

    Derezinski, J

    2003-01-01

    We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.

  5. Gauss–Bonnet cosmology with induced gravity and a non-minimally coupled scalar field on the brane

    International Nuclear Information System (INIS)

    Nozari, Kourosh; Fazlpour, Behnaz

    2008-01-01

    We construct a cosmological model with a non-minimally coupled scalar field on the brane, where Gauss–Bonnet and induced gravity effects are taken into account. This model has 5D character at both high and low energy limits but reduces to 4D gravity for intermediate scales. While induced gravity is a manifestation of the IR limit of the model, the Gauss–Bonnet term and non-minimal coupling of the scalar field and induced gravity are essentially related to the UV limit of the scenario. We study the cosmological implications of this scenario focusing on the late time behavior of the solutions. In this setup, non-minimal coupling plays the role of an additional fine-tuning parameter that controls the initial density of the predicted finite density big bang. Also, non-minimal coupling has important implications for the bouncing nature of the solutions

  6. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  7. 3D simulation studies of tokamak plasmas using MHD and extended-MHD models

    International Nuclear Information System (INIS)

    Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.

    1997-01-01

    The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data

  8. Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves

    Science.gov (United States)

    Pécseli, Hans; Engvold, OddbjØrn

    2000-05-01

    The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is ω~ 2 rad s^-1 (f~0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma - neutral gas mixtures.

  9. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.

  10. Quantum dilaton gravity in two dimensions with matter

    International Nuclear Information System (INIS)

    Grumiller, D.M.L.

    2001-05-01

    One of the main goals of 20 th century physics was the quantization of gravity. Despite of 70 years of research a comprehensive theory fulfilling this task could not be obtained. There are various explanations for this failure: gravity is a non-linear theory and as opposed to other field theories which are defined on a fixed background manifold, geometry becomes dynamical in general relativity. It is perturbatively non-renormalizable in contrast to the Standard Model of particle physics. Experimental evidence for quantum gravity is scarce due to its sheer weakness. Therefore, physicists have considered various toy models -- among them the so-called dilaton models in two dimensions -- in order to separate technical problems from conceptual ones. Unfortunately, most of them lack a certain feature present in ordinary gravity: they contain no continuous physical degrees of freedom. One way to overcome this without leaving the comfortable realm of two dimensions is the inclusion of matter. In this thesis special emphasis is put on the spherically reduced Einstein-massless-Klein-Gordon model using a first order approach for geometric quantities, because phenomenologically it is probably the most relevant of all dilaton models with matter. After a Hamiltonian BRST analysis path integral quantization is performed using temporal gauge for the Cartan variables. Retrospectively, the simpler Faddeev-Popov approach turns out to be sufficient. It is possible to eliminate all unphysical and geometric quantities establishing a non-local and non-polynomial action depending solely on the scalar field and on some integration constants, fixed by suitable boundary conditions on the asymptotic effective line element. Then, attention is turned to the evaluation of the (two) lowest order tree vertices, explicitly assuming a perturbative expansion in the scalar field being valid. Each of them diverges, but unexpected cancellations yield a finite 'S'-matrix element when both contributions

  11. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    International Nuclear Information System (INIS)

    Prieto-Martinez, Pedro Daniel; Roman-Roy, Narciso

    2011-01-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view. (paper)

  12. Stability of a non-commutative Jackiw-Teitelboim gravity

    Energy Technology Data Exchange (ETDEWEB)

    Vassilevich, D.V. [Universitaet Leipzig, Institut fuer Theoretische Physik, Postfach 100 920, Leipzig (Germany); St. Petersburg University, V.A. Fock Institute of Physics, St. Petersburg (Russian Federation); Fresneda, R.; Gitman, D.M. [Sao Paulo Univ. (Brazil). Inst. de Fisica

    2006-07-15

    We start with a non-commutative version of the Jackiw-Teitelboim gravity in two dimensions which has a linear potential for the dilaton fields. We study whether it is possible to deform this model by adding quadratic terms to the potential but preserving the number of gauge symmetries. We find that no such deformation exists (provided one does not twist the gauge symmetries). (orig.)

  13. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Ghosh, Avik W.; Sajjad, Redwan N.

    2016-01-01

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  14. Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: masum.habib@virginia.edu; Ghosh, Avik W. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sajjad, Redwan N. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-03-14

    Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.

  15. Hamiltonian dynamics of preferential attachment

    International Nuclear Information System (INIS)

    Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2016-01-01

    Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)

  16. Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    CERN Document Server

    Iizuka, Norihiro; Narayan, Prithvi; Trivedi, Sandip P

    2012-01-01

    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.

  17. MHD Generating system

    Science.gov (United States)

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  18. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    International Nuclear Information System (INIS)

    Schubert, G.; Walterscheid, R.L.; Hickey, M.P.

    1991-01-01

    The theory of gravity wave-driven fluctuations in the OH nightglow from an extended source region is generalized to account for effects of eddy kinematic viscosity v and eddy thermal diffusivity κ. In the nondiffusive case, the amplitudes and phases of vertically integrated normalized intensity (δI)/(bar I) and temperature (δT 1 )/(bar T 1 ) perturbations and vertically integrated Krassovsky's ratio (η) as functions of period are influenced by the upper limit of vertical integration of the extended source, especially at long periods when vertical wavelengths γ v are small. The effects, which include oscillations in (δT)/(bar I), (δT 1 )/(bar T 1 ), and (η), particularly at long periods, are due to constructive and destructive interference of nightglow signals from vertically separated levels of the OH emitting region that occur when γ v is comparable to or smaller than the thickness of the main emission region. The sensitivity of these ratios to the upper limit of vertical integration occurs because of the relatively small rate of decay of the intensity of OH emission with height above the peak emission level and the exponential growth with altitude of nondissipative gravity waves. Because eddy diffusion increases γ v , especially at long periods, and reduces wave growth with height compared with the case v = κ = 0, inclusion of eddy diffusion removes the sensitivity of (η) and the other ratios ot the maximum height of vertical integration. It is essential to account for both eddy diffusion and emission from the entire vertically extended emission region to correctly predict (η), (δI)/(bar I), and (δT 1 )/(bar T 1 ) at long gravity wave periods

  19. Hamiltonian description of the ideal fluid

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems

  20. Topological color codes and two-body quantum lattice Hamiltonians

    Science.gov (United States)

    Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.

    2010-02-01

    Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the

  1. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    Science.gov (United States)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  2. NON-HAMILTONIAN QUANTUM MECHANICS AND THE NUMERICAL RESEARCHES OF THE ATTRACTOR OF A DYNAMICAL SYSTEM.

    Directory of Open Access Journals (Sweden)

    A. Weissblut

    2012-03-01

    Full Text Available This article – introduction to the structural theory of general view dynamical systems, based on construction of dynamic quantum models (DQM, offered by the author. This model is simply connected with traditional model of quantum mechanics (i.e. with the Schrodinger equation. At the same time obtained thus nonHamiltonian quantum dynamics is easier than classical one: it allow building the clear structural theory and effective algorithms of research for concrete systems. This article is devoted mainly to such task. The algorithm of search for DQM attractors, based on this approach, is offered here.

  3. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A. [Trinum Research, Inc., San Diego, CA (United States)

    2016-08-08

    Global interactions of energetic ions with magnetoplasmas and neutral gases lie at the core of many space and laboratory plasma phenomena ranging from solar wind entry into and transport within planetary magnetospheres and exospheres to fast-ion driven instabilities in fusion devices to astrophysics-in-lab experiments. The ability of computational models to properly account for physical effects that underlie such interactions, namely ion kinetic, ion cyclotron, Hall, collisional and ionization processes is important for the success and planning of experimental research in plasma physics. Understanding the physics of energetic ions, in particular their nonlinear resonance interactions with Alfvén waves, is central to improving the heating performance of magnetically confined plasmas for future energy generation. Fluid models are not adequate for high-beta plasmas as they cannot fully capture ion kinetic and cyclotron physics (e.g., ion behavior in the presence of magnetic nulls, shock structures, plasma interpenetration, etc.). Recent results from global reconnection simulations show that even in a MHD-like regime there may be significant differences between kinetic and MHD simulations. Therefore, kinetic modeling becomes essential for meeting modern day challenges in plasma physics. The hybrid approximation is an intermediate approximation between the fluid and fully kinetic approximations. It eliminates light waves, removes the electron inertial temporal and spatial scales from the problem and enables full-orbit ion kinetics. As a result, hybrid codes have become effective tools for exploring ion-scale driven phenomena associated with ion beams, shocks, reconnection and turbulence that control the large-scale behavior of laboratory and space magnetoplasmas. A number of numerical issues, however, make three-dimensional (3D) large-scale hybrid simulations of inhomogeneous magnetized plasmas prohibitively expensive or even impossible. To resolve these difficulties

  4. Study of non-inductive current drive using high energy neutral beam injection on JT-60U

    International Nuclear Information System (INIS)

    Oikawa, Toshihiro

    2004-01-01

    The negative ion based neutral beam (N-NB) current drive was experimentally studied. The N-NB driven current density was determined over a wide range of electron temperatures by using the motional Stark effect spectroscopy. Theoretical prediction of the NB current drive increasing with beam energy and electron temperature was validated. A record value of NB current drive efficiency 1.55 x 10 19 Am -2 W -1 was achieved simultaneously with high confinement and high beta at at a plasma current of 1.5 MA under a fully non-inductively current driven condition. The experimental validation of NB current drive theory for MHD quiescent plasmas gives greater confidence in predicting the NB current drive in future reactors. However, it was also found that MHD instabilities caused a degradation of NB current drive. A beam-driven instability expelled N-NB fast ions carrying non-inductive current from the central region. The lost N-NB driven current was estimated to be 7% of the total N-NB driven current. For the neoclassical tearing mode (NTM), comparisons of the measured neutron yield and fast ion pressure profile with transport code calculations revealed that the loss of fast ions increases with the NTM activity and that fast ions at higher energies suffer larger transport than at lower energies. (author)

  5. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  6. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  7. Direct numerical simulation of MHD flow with electrically conducting wall

    International Nuclear Information System (INIS)

    Satake, S.; Kunugi, T.; Naito, N.; Sagara, A.

    2006-01-01

    The 2D vortex problem and 3D turbulent channel flow are treated numerically to assess the effect of electrically conducting walls on turbulent MHD flow. As a first approximation, the twin vortex pair is considered as a model of a turbulent eddy near the wall. As the eddy approaches and collides with the wall, a high value electrical potential is induced inside the wall. The Lorentz force, associated with the potential distribution, reduces the velocity gradient in the near-wall region. When considering a fully developed turbulent channel flow, a high electrical conductivity wall was chosen to emphasize the effect of electromagnetic coupling between the wall and the flow. The analysis was performed using DNS. The results are compared with a non-MHD flow and MHD flow in the insulated channel. The mean velocity within the logarithmic region in the case of the electrically conducting wall is slightly higher than that in the non-conducting wall case. Thus, the drag is smaller compared to that in the non-conducting wall case due to a reduction of the Reynolds stress in the near wall region through the Lorentz force. This mechanism is explained via reduction of the production term in the Reynolds shear stress budget

  8. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  9. Hamiltonian structure for rescaled integrable Lorenz systems

    International Nuclear Information System (INIS)

    Haas, F.; Goedert, J.

    1993-01-01

    It is shown that three among the known invariants for the Lorenz system recast the original equations into a Hamiltonian form. This is made possible by an appropriate time-dependent rescaling and the use of a generalized formalism with non-trivial structure functions. (author)

  10. Outline of fiscal 1970 achievements in research on MHD power generation; 1970 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-07-01

    Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)

  11. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  12. Hamiltonian formulation of QCD in the Schwinger gauge

    International Nuclear Information System (INIS)

    Schutte, D.

    1989-01-01

    The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed

  13. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  14. Random walks and a simple chirally invariant lattice Hamiltonian without fermion doubling

    International Nuclear Information System (INIS)

    Belyea, C.I.

    1992-01-01

    It is shown that there is a simple chirally-invariant lattice Hamiltonian for fermions which is doubling-free but non-Hermitian and which may be valuable in lattice Hamiltonian studies of quantum chromodynamics. A connection is established between the existence of random walk representations of spinor propagators and this doubling-free formulation, in analogy with Wilson fermions. 15 refs

  15. Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories

    Science.gov (United States)

    Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez

    1995-02-01

    We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.

  16. MHD program plan, FY 1991

    Science.gov (United States)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  17. Global MHD modes excited by energetic ions in heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Toi, K.; Takechi, M.; Takagi, S.

    1999-01-01

    In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes(TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs(m,n:poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)

  18. Global MHD modes excited by energetic ions in heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Toi, K.; Takechi, M.; Takagi, S.

    2001-01-01

    In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes (TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs (m,n: poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)

  19. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  20. Area law from loop quantum gravity

    Science.gov (United States)

    Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi

    2018-03-01

    We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.

  1. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  2. Blocking Radial Diffusion in a Double-Waved Hamiltonian Model

    International Nuclear Information System (INIS)

    Martins, Caroline G L; De Carvalho, R Egydio; Marcus, F A; Caldas, I L

    2011-01-01

    A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.

  3. Noether symmetries and integrability in time-dependent Hamiltonian mechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Božidar

    2016-01-01

    Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

  4. Route analysis for MHD equilibria

    International Nuclear Information System (INIS)

    Kikuchi, Fumio; Aizawa, Tatsuhiko

    1982-01-01

    In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)

  5. Particle orbits and non-ideal MHD stability of Z-pinches

    International Nuclear Information System (INIS)

    Faghihi, M.

    1987-01-01

    Particle orbits in a linear EXTRAP vacuum magnetic field configuration are computed. The results indicate that, with an applied electric field along the axis, the particles starting near the magnetic stagnation line would gain substantial energy in the 'free fall', and are the most efficient ones to participate in the ionization process. The acquired energy depends on the electric field strength; the required value of the field is determined. The influence of the pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-pinch, using a generalization of Freidbergs perpendicular MHD model, is investigated. It is found that the stability criterion can not be fulfilled without violation of the fire hose stability condition. This investigation is also performed using the double-adiabatic theory. A finite Larmor radius treatment of the small wavelength kink instabilities for a Z-pinch geometry is presented. It is shown that, when the gyroviscosity is included in the perpendicular MHD model, exponentially growing Alfven waves are predicted even in a homogeneous static equilibrium with isotropic plasma pressure. The Hall effect in the incompressible Hall fluid model is considered. It is found that the Hall parameter reduces the growth rates of the kink modes, but it does not yield complete stabilization (author)

  6. Particle orbits and non-ideal MHD stability of Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, M.

    1987-01-01

    Particle orbits in a linear EXTRAP vacuum magnetic field configuration are computed. The results indicate that, with an applied electric field along the axis, the particles starting near the magnetic stagnation line would gain substantial energy in the 'free fall', and are the most efficient ones to participate in the ionization process. The acquired energy depends on the electric field strength; the required value of the field is determined. The influence of the pressure anisotropy on the small wavelength internal kink (m=1) mode instability in a Z-pinch, using a generalization of Freidbergs perpendicular MHD model, is investigated. It is found that the stability criterion can not be fulfilled without violation of the fire hose stability condition. This investigation is also performed using the double-adiabatic theory. A finite Larmor radius treatment of the small wavelength kink instabilities for a Z-pinch geometry is presented. It is shown that, when the gyroviscosity is included in the perpendicular MHD model, exponentially growing Alfven waves are predicted even in a homogeneous static equilibrium with isotropic plasma pressure. The Hall effect in the incompressible Hall fluid model is considered. It is found that the Hall parameter reduces the growth rates of the kink modes, but it does not yield complete stabilization

  7. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Ribeiro, Raquel H.; Xing, Yu-Hang; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2015-01-01

    In de Rham–Gabadadze–Tolley (dRGT) massive gravity and bi-gravity, a non-minimal matter coupling involving both metrics generically reintroduces the Boulware–Deser (BD) ghost. A non-minimal matter coupling via a simple, yet specific composite metric has been proposed, which eliminates the BD ghost below the strong coupling scale. Working explicitly in the metric formulation and for arbitrary spacetime dimensions, we show that this composite metric is the unique consistent non-minimal matter coupling below the strong coupling scale, which emerges out of two diagnostics, namely, the absence of Ostrogradski ghosts in the decoupling limit and the absence of the BD ghost from matter quantum loop corrections

  8. Towards loop quantum gravity without the time gauge.

    Science.gov (United States)

    Cianfrani, Francesco; Montani, Giovanni

    2009-03-06

    The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.

  9. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  10. Gravity-driven granular flow in a silo: Characterizing local forces and rearrangements

    Directory of Open Access Journals (Sweden)

    Thackray Emma

    2017-01-01

    Full Text Available While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not wellunderstood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. In this paper, we present our results thus far.

  11. Approximate Integrals of rf-driven Particle Motion in Magnetic Field

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2004-01-01

    For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion

  12. General technique to produce isochronous Hamiltonians

    International Nuclear Information System (INIS)

    Calogero, F; Leyvraz, F

    2007-01-01

    We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra

  13. Hamiltonian PDEs and Frobenius manifolds

    International Nuclear Information System (INIS)

    Dubrovin, Boris A

    2008-01-01

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  14. Hamiltonian PDEs and Frobenius manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-12-31

    In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.

  15. R 2 inflation to probe non-perturbative quantum gravity

    Science.gov (United States)

    Koshelev, Alexey S.; Sravan Kumar, K.; Starobinsky, Alexei A.

    2018-03-01

    It is natural to expect a consistent inflationary model of the very early Universe to be an effective theory of quantum gravity, at least at energies much less than the Planck one. For the moment, R + R 2, or shortly R 2, inflation is the most successful in accounting for the latest CMB data from the PLANCK satellite and other experiments. Moreover, recently it was shown to be ultra-violet (UV) complete via an embedding into an analytic infinite derivative (AID) non-local gravity. In this paper, we derive a most general theory of gravity that contributes to perturbed linear equations of motion around maximally symmetric space-times. We show that such a theory is quadratic in the Ricci scalar and the Weyl tensor with AID operators along with the Einstein-Hilbert term and possibly a cosmological constant. We explicitly demonstrate that introduction of the Ricci tensor squared term is redundant. Working in this quadratic AID gravity framework without a cosmological term we prove that for a specified class of space homogeneous space-times, a space of solutions to the equations of motion is identical to the space of backgrounds in a local R 2 model. We further compute the full second order perturbed action around any background belonging to that class. We proceed by extracting the key inflationary parameters of our model such as a spectral index ( n s ), a tensor-to-scalar ratio ( r) and a tensor tilt ( n t ). It appears that n s remains the same as in the local R 2 inflation in the leading slow-roll approximation, while r and n t get modified due to modification of the tensor power spectrum. This class of models allows for any value of r complete R 2 gravity a natural target for future CMB probes.

  16. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    In this thesis, we investigate different aspects of gravity as an effective field theory. Building on the arguments of self-completeness of Einstein gravity, we argue that any sensible theory, which does not propagate negative-norm states and reduces to General Relativity in the low energy limit is self-complete. Due to black hole formation in high energy scattering experiments, distances smaller than the Planck scale are shielded from any accessibility. Degrees of freedom with masses larger than the Planck mass are mapped to large classical black holes which are described by the already existing infrared theory. Since high energy (UV) modifications of gravity which are ghost-free can only produce stronger gravitational interactions than Einstein gravity, the black hole shielding is even more efficient in such theories. In this light, we argue that conventional attempts of a Wilsonian UV completion are severely constrained. Furthermore, we investigate the quantum picture for black holes which emerges in the low energy description put forward by Dvali and Gomez in which black holes are described as Bose-Einstein condensates of many weakly coupled gravitons. Specifically, we investigate a non-relativistic toy model which mimics certain aspects of the graviton condensate picture. This toy model describes the collapse of a condensate of attractive bosons which emits particles due to incoherent scattering. We show that it is possible that the evolution of the condensate follows the critical point which is accompanied by the appearance of a light mode. Another aspect of gravitational interactions concerns the question whether quantum gravity breaks global symmetries. Arguments relying on the no hair theorem and wormhole solutions suggest that global symmetries can be violated. In this thesis, we parametrize such effects in terms of an effective field theory description of three-form fields. We investigate the possible implications for the axion solution of the strong CP

  17. MHD instabilities in heliotron/torsatron

    International Nuclear Information System (INIS)

    Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji

    1992-01-01

    Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)

  18. MHD phenomena in advanced scenarios on ASDEX upgrade and the influence of localised electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Peeters, A.G.; Pinches, S.D.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    MHD instabilities in advanced tokamak scenarios on the one hand are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers. In particular fishbone oscillations driven by fast particles arising from neutral beam injection (NBI) are shown to trigger internal transport barriers in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour is explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive is shown to significantly affect the MHD stability of this type of discharges. (author)

  19. MHD phenomena in advanced scenarios on ASDEX Upgrade and the influence of localized electron heating and current drive

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Hobirk, J.; Maraschek, M.; Schade, S.; Wolf, R.C.; Saarelma, S.

    2001-01-01

    On the one hand, MHD instabilities in advanced tokamak scenarios are favourable as they can contribute to the stationarity of the current profiles and act as a trigger for the formation of internal transport barriers (ITBs). In particular, fishbone oscillations driven by fast particles arising from NBI are shown to trigger ITBs in low and reversed magnetic shear discharges. During the whistling down period of the fishbone oscillation the transport is reduced around the corresponding rational surface, leading to an increased pressure gradient. This behaviour could be explained by the redistribution of the resonant fast particles resulting in a sheared plasma rotation due to the return current in the bulk plasma, which is equivalent to a radial electric field. On the other hand, MHD instabilities limit the accessible operating regime. Ideal and resistive MHD modes such as double tearing modes, infernal modes and external kinks degrade the confinement or even lead to disruptions in ASDEX Upgrade reversed shear discharges. Localized electron cyclotron heating and current drive are shown to significantly affect the MHD stability of this type of discharge. (author)

  20. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran; Fortunato, Luca; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  1. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  2. An attempt at MHD mode control by feedback modulation of L.H. driven current

    International Nuclear Information System (INIS)

    Parlange, F.; Vallet, J.C

    1986-01-01

    MHD activity in Tokamak discharges with lower hybrid current drive has distinct features which can be used to stabilize tearing modes. A way of reducing the m=2 tearing mode was recently proposed, consisting in driving more current at the 0 point of the islands than at the X point, by means of amplitude modulated lower hybrid waves. The way it was tested in Petula is presented here

  3. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  4. Condensation for non-relativistic matter in Hořava–Lifshitz gravity

    Directory of Open Access Journals (Sweden)

    Jiliang Jing

    2015-10-01

    Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.

  5. Linear ideal MHD stability calculations for ITER

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1988-01-01

    A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs

  6. Models of non-relativistic quantum gravity: the good, the bad and the healthy

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2011-01-01

    Horava's proposal for non-relativistic quantum gravity introduces a preferred time foliation of space-time which violates the local Lorentz invariance. The foliation is encoded in a dynamical scalar field which we call `khronon'. The dynamics of the khronon field is sensitive to the symmetries and other details of the particular implementations of the proposal. In this paper we examine several consistency issues present in three non-relativistic gravity theories: Horava's projectable theory, the healthy non-projectable extension, and a new extension related to ghost condensation. We find that the only model which is free from instabilities and strong coupling is the non-projectable one. We elaborate on the phenomenology of the latter model including a discussion of the couplings of the khronon to matter. In particular, we obtain the parameters of the post-Newtonian expansion in this model and show that they are compatible with current observations.

  7. Geometric flows in Horava-Lifshitz gravity

    CERN Document Server

    Bakas, Ioannis; Lust, Dieter; Petropoulos, Marios

    2010-01-01

    We consider instanton solutions of Euclidean Horava-Lifshitz gravity in four dimensions satisfying the detailed balance condition. They are described by geometric flows in three dimensions driven by certain combinations of the Cotton and Ricci tensors as well as the cosmological-constant term. The deformation curvature terms can have competing behavior leading to a variety of fixed points. The instantons interpolate between any two fixed points, which are vacua of topologically massive gravity with Lambda > 0, and their action is finite. Special emphasis is placed on configurations with SU(2) isometry associated with homogeneous but generally non-isotropic Bianchi IX model geometries. In this case, the combined Ricci-Cotton flow reduces to an autonomous system of ordinary differential equations whose properties are studied in detail for different couplings. The occurrence and stability of isotropic and anisotropic fixed points are investigated analytically and some exact solutions are obtained. The correspond...

  8. The configuration-driven table CI method and comparison with integral-driven CI procedures

    International Nuclear Information System (INIS)

    Buenker, R.J.

    1980-01-01

    A new configuration-driven CI algorithm is outlined which eliminates the need for explicit comparison of pairs of Slater determinants through the use of a series of compact tables. In this scheme each pair of configurations is either shown to be non-interacting or to fall into one of nine cases, each of which is characterized fully once certain orbital permutations are determined. The program is divided into three parts: a case structure analysis step including integral label generation, a sort of the required electron repulsion integrals, and finally a procedure in which the foregoing information is combined with tabulated directions for the evaluation of the necessary Hamiltonian matrix elements over spin-adapted functions. Timing improvements of up to more than a factor of four have been achieved with the new algorithm

  9. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity

    Directory of Open Access Journals (Sweden)

    Qing-Guo Huang

    2015-09-01

    Full Text Available In de Rham–Gabadadze–Tolley (dRGT massive gravity and bi-gravity, a non-minimal matter coupling involving both metrics generically reintroduces the Boulware–Deser (BD ghost. A non-minimal matter coupling via a simple, yet specific composite metric has been proposed, which eliminates the BD ghost below the strong coupling scale. Working explicitly in the metric formulation and for arbitrary spacetime dimensions, we show that this composite metric is the unique consistent non-minimal matter coupling below the strong coupling scale, which emerges out of two diagnostics, namely, the absence of Ostrogradski ghosts in the decoupling limit and the absence of the BD ghost from matter quantum loop corrections.

  10. Hamiltonian and physical Hilbert space in polymer quantum mechanics

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A

    2007-01-01

    In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so-called polymer representation of the Heisenberg-Weyl (HW) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed

  11. Outline of fiscal 1969 achievements in research on MHD power generation; 1969 nendo MHD hatsuden kenkyu seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)

  12. Predesign of an experimental (5 to 10 MWt) disk MHD facility and prospects of commercial (1,000 MWt) MHD/steam systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)

  13. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    International Nuclear Information System (INIS)

    He, Qingyun; Chen, Hongli; Feng, Jingchao

    2015-01-01

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  14. Acceleration of the OpenFOAM-based MHD solver using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Feng, Jingchao

    2015-12-15

    Highlights: • A 3D PISO-MHD was implemented on Kepler-class graphics processing units (GPUs) using CUDA technology. • A consistent and conservative scheme is used in the code which was validated by three basic benchmarks in a rectangular and round ducts. • Parallelized of CPU and GPU acceleration were compared relating to single core CPU in MHD problems and non-MHD problems. • Different preconditions for solving MHD solver were compared and the results showed that AMG method is better for calculations. - Abstract: The pressure-implicit with splitting of operators (PISO) magnetohydrodynamics MHD solver of the couple of Navier–Stokes equations and Maxwell equations was implemented on Kepler-class graphics processing units (GPUs) using the CUDA technology. The solver is developed on open source code OpenFOAM based on consistent and conservative scheme which is suitable for simulating MHD flow under strong magnetic field in fusion liquid metal blanket with structured or unstructured mesh. We verified the validity of the implementation on several standard cases including the benchmark I of Shercliff and Hunt's cases, benchmark II of fully developed circular pipe MHD flow cases and benchmark III of KIT experimental case. Computational performance of the GPU implementation was examined by comparing its double precision run times with those of essentially the same algorithms and meshes. The resulted showed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread CPU (Intel Core i7-4770k) by a factor of 2 at least.

  15. Calculation code NIRVANA for free boundary MHD equilibrium

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa

    1975-03-01

    The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)

  16. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    Science.gov (United States)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  17. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Science.gov (United States)

    Bellan, Paul

    2017-10-01

    MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical

  18. Renormalization of Hamiltonian QCD

    International Nuclear Information System (INIS)

    Andrasi, A.; Taylor, John C.

    2009-01-01

    We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.

  19. GLOBAL GALACTIC DYNAMO DRIVEN BY COSMIC RAYS AND EXPLODING MAGNETIZED STARS

    International Nuclear Information System (INIS)

    Hanasz, Michal; Woltanski, Dominik; Kowalik, Kacper

    2009-01-01

    We report the first results of the first global galactic-scale cosmic ray (CR)-MHD simulations of CR-driven dynamo. We investigate the dynamics of magnetized interstellar medium (ISM), which is dynamically coupled with CR gas. We assume that exploding stars deposit small-scale, randomly oriented, dipolar magnetic fields into the differentially rotating ISM, together with a portion of CRs, accelerated in supernova shocks. We conduct numerical simulations with the aid of a new parallel MHD code PIERNIK. We find that the initial magnetization of galactic disks by exploding magnetized stars forms favorable conditions for the CR-driven dynamo. We demonstrate that dipolar magnetic fields supplied on small supernova remnant scales can be amplified exponentially by the CR-driven dynamo, to the present equipartition values, and transformed simultaneously to large galactic scales. The resulting magnetic field structure in an evolved galaxy appears spiral in the face-on view and reveals the so-called X-shaped structure in the edge-on view.

  20. HPC parallel programming model for gyrokinetic MHD simulation

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Yamada, Yusuke; Tokuda, Shinji; Ishii, Yasutomo; Yagi, Masatoshi

    2011-01-01

    The 3-dimensional gyrokinetic PIC (particle-in-cell) code for MHD simulation, Gpic-MHD, was installed on SR16000 (“Plasma Simulator”), which is a scalar cluster system consisting of 8,192 logical cores. The Gpic-MHD code advances particle and field quantities in time. In order to distribute calculations over large number of logical cores, the total simulation domain in cylindrical geometry was broken up into N DD-r × N DD-z (number of radial decomposition times number of axial decomposition) small domains including approximately the same number of particles. The axial direction was uniformly decomposed, while the radial direction was non-uniformly decomposed. N RP replicas (copies) of each decomposed domain were used (“particle decomposition”). The hybrid parallelization model of multi-threads and multi-processes was employed: threads were parallelized by the auto-parallelization and N DD-r × N DD-z × N RP processes were parallelized by MPI (message-passing interface). The parallelization performance of Gpic-MHD was investigated for the medium size system of N r × N θ × N z = 1025 × 128 × 128 mesh with 4.196 or 8.192 billion particles. The highest speed for the fixed number of logical cores was obtained for two threads, the maximum number of N DD-z , and optimum combination of N DD-r and N RP . The observed optimum speeds demonstrated good scaling up to 8,192 logical cores. (author)

  1. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  2. Geometry of Hamiltonian chaos

    DEFF Research Database (Denmark)

    Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir

    2007-01-01

    The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...

  3. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  4. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    International Nuclear Information System (INIS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-01-01

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in β∼1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a g 2 =V A 2 where a g is the gas sound speed and V A is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation

  5. arXiv Lightcone Effective Hamiltonians and RG Flows

    CERN Document Server

    Fitzpatrick, A. Liam; Katz, Emanuel; Vitale, Lorenzo G.; Walters, Matthew T.

    We present a prescription for an effective lightcone (LC) Hamiltonian that includes the effects of zero modes, focusing on the case of Conformal Field Theories (CFTs) deformed by relevant operators. We show how the prescription resolves a number of issues with LC quantization, including i) the apparent non-renormalization of the vacuum, ii) discrepancies in critical values of bare parameters in equal-time vs LC quantization, and iii) an inconsistency at large N in CFTs with simple AdS duals. We describe how LC quantization can drastically simplify Hamiltonian truncation methods applied to some large N CFTs, and discuss how the prescription identifies theories where these simplifications occur. We demonstrate and check our prescription in a number of examples.

  6. Operations involving momentum variables in non-Hamiltonian evolution equations

    International Nuclear Information System (INIS)

    Benatti, F.; Ghirardi, G.C.; Rimini, A.; Weber, T.

    1988-02-01

    Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among this type of equations the class which has been more extensively studied is the one usually referred to as Quantum Dynamical Semigroup equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called Quantum Mechanics with Spontaneous Localization (QMSL), which has been shown to exhibit some very interesting features allowing to overcome most of the conceptual difficulties of standard quantum theory, QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper, we investigate the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaeous occurrence of approximate momentum and of simultaneous position and momentum measurements. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modifications in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements. (author). 14 refs

  7. Operations involving momentum variables in non-Hamiltonian evolution equation

    International Nuclear Information System (INIS)

    Benatti, F.; Ghirardi, G.C.; Weber, T.; Rimini, A.

    1988-01-01

    Non-Hamiltonian evolution equations have been recently considered for the description of various physical processes. Among these types of equations the class which has been more extensively studied is the one usually referred to as quantum-dynamical semi-group equations (QDS). In particular an equation of the QDS type has been considered as the basis for a model, called quantum mechanics with spontaneous localization (QMSL), which has been shown to exhibit some very interesting features allowing us to overcome most of the conceptual difficulties of standard quantum theory. QMSL assumes a modification of the pure Schroedinger evolution by assuming the occurrence, at random times, of stochastic processes for the wave function corresponding formally to approximate position measurements. In this paper the consequences of modifying and/or enlarging the class of the considered stochastic processes, by considering the spontaneous occurrence of approximate momentum and of simultaneous position and momentum measurements, are investigated. It is shown that the considered changes in the elementary processes have unacceptable consequences. In particular they either lead to drastic modification in the dynamics of microsystems or are completely useless from the point of view of the conceptual advantages that one was trying to get from QMSL. The present work supports therefore the idea that QMSL, as originally formulated, can be taken as the basic scheme for the generalizations which are still necessary in order to make it appropriate for the description of systems of identical particles and to meet relativistic requirements

  8. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry

    International Nuclear Information System (INIS)

    Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.

    2014-01-01

    We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.

  9. Symplectic Structure of Intrinsic Time Gravity

    Directory of Open Access Journals (Sweden)

    Eyo Eyo Ita

    2016-08-01

    Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.

  10. MHD saga in the gases

    International Nuclear Information System (INIS)

    Petit, J.P.

    1995-01-01

    Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes

  11. Theory of many-body localization in periodically driven systems

    International Nuclear Information System (INIS)

    Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François

    2016-01-01

    We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.

  12. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  13. Inclusion of pressure and flow in the KITES MHD equilibrium code

    International Nuclear Information System (INIS)

    Raburn, Daniel; Fukuyama, Atsushi

    2013-01-01

    One of the simplest self-consistent models of a plasma is single-fluid magnetohydrodynamic (MHD) equilibrium with no bulk fluid flow under axisymmetry. However, both fluid flow and non-axisymmetric effects can significantly impact plasma equilibrium and confinement properties: in particular, fluid flow can produce profile pedestals, and non-axisymmetric effects can produce islands and stochastic regions. There exist a number of computational codes which are capable of calculating equilibria with arbitrary flow or with non-axisymmetric effects. Previously, a concept for a code to calculate MHD equilibria with flow in non-axisymmetric systems was presented, called the KITES (Kyoto ITerative Equilibrium Solver) code. Since then, many of the computational modules for the KITES code have been completed, and the work-in-progress KITES code has been used to calculate non-axisymmetric force-free equilibria. Additional computational modules are required to allow the KITES code to calculate equilibria with pressure and flow. Here, the authors report on the approaches used in developing these modules and provide a sample calculation with pressure. (author)

  14. Hamiltonian description of non-reciprocal light propagation in nonlinear chiral fibers

    International Nuclear Information System (INIS)

    Trendafilov, S.; Khudik, V.; Tokman, M.; Shvets, G.

    2010-01-01

    We introduce a novel type of a nonlinear optical isolator based on adiabatic time-irreversible mode conversion of a tightly confined core mode of an optical fiber into a loosely confined cladding mode of the same fiber. A simple model is developed, describing this device in terms of the time evolution of a driven nonlinear oscillator. Non-reciprocity is shown to be related to the combination of the phase space bifurcation and weak dissipation.

  15. Generation of compressible modes in MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)

    2005-05-01

    Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)

  16. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    Science.gov (United States)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the

  17. Gravity Dual for Reggeon Field Theory and Non-linear Quantum Finance

    OpenAIRE

    Yu Nakayama

    2009-01-01

    We study scale invariant but not necessarily conformal invariant deformations of non-relativistic conformal field theories from the dual gravity viewpoint. We present the corresponding metric that solves the Einstein equation coupled with a massive vector field. We find that, within the class of metric we study, when we assume the Galilean invariance, the scale invariant deformation always preserves the non-relativistic conformal invariance. We discuss applications to scaling regime of Reggeo...

  18. On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammed Almakki

    2017-07-01

    Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.

  19. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  20. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  1. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  2. Symplectic topology of integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Nguyen Tien Zung.

    1993-08-01

    We study the topology of integrable Hamiltonian systems, giving the main attention to the affine structure of their orbit spaces. In particular, we develop some aspects of Fomenko's theory about topological classification of integrable non-degenerate systems, and consider some relations between such systems and ''pure'' contact and symplectic geometry. We give a notion of integrable surgery and use it to obtain some interesting symplectic structures. (author). Refs, 10 figs

  3. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  4. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  5. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  6. Noncanonical Hamiltonian methods in plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1981-11-01

    A Hamiltonian approach to plasma dynamics has numerous advantages over equivalent formulations which ignore the underlying Hamiltonian structure. In addition to achieving a deeper understanding of processes, Hamiltonian methods yield concise expressions (such as the Kubo form for linear susceptibility), greatly shorten the length of calculations, expose relationships (such as between the ponderomotive Hamiltonian and the linear susceptibility), determine invariants in terms of symmetry operations, and cover situations of great generality. In addition, they yield the Poincare invariants, in particular Liouville volume and adiabatic actions

  7. Convective heat transfer in MHD channels and its influence on channel performance

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Doss, E.D.

    1980-01-01

    The limitations of the integral boundary layer methods and the potential of the differential boundary layer method in analyzing MHD channel flows are assessed. The sensitivity of results from the integral method to the parametrization of boundary layer profiles and calculation of wall heat transfer is established. A mixing-length type turbulence model for flow on rough walls is developed and validated by comparison with experimental data. The turbulence model is used in a quasi-three-dimensional boundary layer model to evaluate the influence of wall roughness and pressure gradients on the flow characteristics and performance of MHD channels. The behaviors of skin friction and Stanton number calculated from the analytical model are found to differ considerably from the empirical correlations valid for non-MHD flows without pressure gradients

  8. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  9. Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity

    Directory of Open Access Journals (Sweden)

    S. M. Ahmed

    2005-01-01

    Full Text Available The aim of this paper is to investigate the Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of a gravity field. The frequency equation obtained, in the form of a sixth-order determinantal expression, is in agreement with the corresponding result when both media are elastic. The frequency equation when the gravity field is neglected has been deduced as a particular case.

  10. Simulation study of MHD relaxation and reconnection processes in RFP plasma

    International Nuclear Information System (INIS)

    Kusano, Kanya; Kunimoto, Kaito; Suzuki, Yoshio; Tamano, Teruo; Sato, Tetsuya

    1991-01-01

    The authors have studied several nonlinear processes in RFP plasma through the use of 3D MHD simulations. In particular, they have shed light on: (1) dynamo and self-sustainment in reversed-field pinch (RFP), (2) phase locking process in MHD relaxation, and (3) the heating and acceleration in magnetic reconnection process. First, the contributions of the kink (m = 1) mode (linearly unstable) and of the m = 0 mode (driven by nonlinear coupling) to the dynamo are qualitatively evaluated using a high accuracy simulation. It is found that, if the free energy to drive kink instabilities is as small as that in the actual experimental plasma, the m = 0 modes, driven nonlinearly, play a more important role for the flux generation than the kink modes. Secondly, numerical simulations of the self-sustainment process in a RFP are performed. It is confirmed that the self-sustainment process is a coherent oscillating process composed of the MHD relaxation and the resistive diffusion processes. Toroidal phase locking process of kink modes is numerically observed in simulations of self-reversal and self-sustainment processes. It has characteristics similar to the slinky mode observed in the OHTE experiment. A detailed investigation reveals that nonlinear coupling between the most unstable two kink modes governs the entire dynamics in all kink modes and leads to the phase locking process. They find that reconnection can accelerate plasma over a local Alfven speed. This is a result of the fact that the magnetic field in the downstream area plays a similar role to de Laval nozzle. They also investigate the heating mechanisms in reconnection process. It is revealed that the viscous heating rate is as large as the joule heating rate in the reconnection process. This result implies that the viscous heating in the reconnection process is an important candidate for the mechanism to explain the RFP experiments where the ion temperatures is higher than the electron temperature

  11. Collective Hamiltonians for dipole giant resonances

    International Nuclear Information System (INIS)

    Weiss, L.I.

    1991-07-01

    The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)

  12. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  13. On the domain of the Nelson Hamiltonian

    Science.gov (United States)

    Griesemer, M.; Wünsch, A.

    2018-04-01

    The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.

  14. On a numerical strategy to compute gravity currents of non-Newtonian fluids

    International Nuclear Information System (INIS)

    Vola, D.; Babik, F.; Latche, J.-C.

    2004-01-01

    This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework

  15. Ab initio Hamiltonian approach to light nuclei and quantum field theory

    International Nuclear Information System (INIS)

    Vary, James P.

    2009-01-01

    A basis-function approach that has proven successful for solving the nonrelativistic strongly interacting nuclear many-body problem and appears promising for solving relativistic field theory in a light-front Hamiltonian framework is presented. Both conventional nuclear manybody theory and light-front field theory face common issues within the Hamiltonian approach - i.e. how to; (1) define the Hamiltonian; (2) renormalize to a finite space; (3) solve for non-perturbative observables, preserving as many symmetries as possible; and (4) take the continuum limit. Each of these challenges requires a substantial undertaking but appears solvable. Advances in computational physics, both algorithms and parallel computers, have proven essential to the recent progress. I will present results that illustrate the recent advances and indicate the path forward to ever more realistic applications

  16. Experiments and models of MHD jets and their relevance to astrophysics and solar physics

    Science.gov (United States)

    Bellan, Paul M.

    2018-05-01

    Magnetohydrodynamic (MHD)-driven jets involve poloidal and toroidal magnetic fields, finite pressure gradients, and unbalanced forces. The mechanism driving these jets is first discussed qualitatively by decomposing the magnetic force into a curvature and a gradient component. The mechanism is then considered quantitatively by consideration of all terms in the three components of the MHD equation of motion and in addition, the implications of Ampere's law, Faraday's law, the ideal Ohm's law, and the equation of continuity. The analysis shows that jets are self-collimating with the tip of the jet moving more slowly than the main column of the jet so there is a continuous stagnation near the tip in the jet frame. Experiments supporting these conclusions are discussed and it is shown how this mechanism relates to jets in astrophysical and solar corona contexts.

  17. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  18. Experimental apparatus and its operational characteristics for MHD rotating machine with superconducting rotor

    International Nuclear Information System (INIS)

    Katsurai, Makoto; Karasaki, Takashi; Sekiguchi, Tadashi; Matsuda, Shoji; Ichikawa, Hayao.

    1976-01-01

    This paper presents the construction and operational characteristics of the experimental apparatus of MHD rotating machine with superconducting rotor, which has the electromechanical energy conversion function based on the inductive interactions between travelling magnetic field produced by the rotor and MHD working fluid. The machine consists of a rotating-dewar type superconducting rotor and a coaxially rotating metal cylinder which simulates the liquid metal MHD working fluid, and the both of them are driven separately by speed-controlled driving motors. The superconducting magnets installed in the rotor has the 8 shaped winding whose outer diameter is 11 cm and hight is 11 cm, and with the excitation current of 200 A (rating), it produces screw type magnetic field in the inductive interaction region of the cylinder with the peak value of 0.2 Wb/m 2 , whereas the average field strength reaches almost 4 Wb/m 2 inside the winding. In this condition, mutual interaction force is 30 N in the peripheral direction and 8 N in the axial direction and the total driving power of motors is 1,300 W when the relative rotation speed of the rotor and the cylinder is 800 rpm. Observed characteristics of this machine are for the most part in agreement with those estimated by the theoretical analysis. (auth.)

  19. The Hamiltonian structures of the super KP hierarchy associated with an even parity superlax operator

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Ghosh, S.; Roy, S.

    1993-07-01

    We consider the even parity superLax operator for the supersymmetric KP hierarchy of the form L = D 2 + Σ ∞ i=0 u i-2 D -i+1 and obtain the two Hamiltonian structures following the standard method of Gelfand and Dikii. We observe that the first Hamiltonian structure is local and linear whereas the second Hamiltonian structure is non-local and nonlinear among the superfields appearing in the Lax operator. We discuss briefly on their connections with the super ω ∞ algebra. (author). 23 refs

  20. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  1. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  2. Single-particle dynamics - Hamiltonian formulation

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)

  3. MHD power generation for the synthetic-fuels industry

    International Nuclear Information System (INIS)

    Jones, M.S. Jr.

    1982-01-01

    The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD

  4. Electric dipole induced by gravity in fat branes

    Energy Technology Data Exchange (ETDEWEB)

    Dahia, F. [Dep. of Physics, Univ. Fed. da Paraíba, João Pessoa, Paraíba (Brazil); Dep. of Physics, Univ. Fed. de Campina Grande, Campina Grande, Paraíba (Brazil); Albuquerque Silva, Alex de [Dep. of Physics, Univ. Fed. da Paraíba, João Pessoa, Paraíba (Brazil); Dep. of Physics, Univ. Fed. de Campina Grande, Sumé, Paraíba (Brazil); Romero, C. [Dep. of Physics, Univ. Fed. da Paraíba, João Pessoa, Paraíba (Brazil)

    2014-05-01

    In the fat brane model, also known as the split fermion model, it is assumed that leptons and baryons live in different hypersurfaces of a thick brane in order to explain the proton stability without invoking any symmetry. It turns out that, in the presence of a gravity source M, particles will see different four-dimensional (4D) geometries and hence, from the point of view of 4D-observers, the equivalence principle will be violated. As a consequence, we show that a hydrogen atom in the gravitational field of M will acquire a radial electric dipole. This effect is regulated by the Hamiltonian H{sub d}=−μA⋅δr, which is the gravitational analog of the Stark Hamiltonian, where the electric field is replaced by the tidal acceleration A due to the split of fermions in the brane and the atomic reduced mass μ substitutes the electric charge.

  5. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  6. Quantum Gravity (2nd edn)

    International Nuclear Information System (INIS)

    Husain, Viqar

    2008-01-01

    There has been a flurry of books on quantum gravity in the past few years. The first edition of Kiefer's book appeared in 2004, about the same time as Carlo Rovelli's book with the same title. This was soon followed by Thomas Thiemann's 'Modern Canonical Quantum General Relativity'. Although the main focus of each of these books is non-perturbative and non-string approaches to the quantization of general relativity, they are quite orthogonal in temperament, style, subject matter and mathematical detail. Rovelli and Thiemann focus primarily on loop quantum gravity (LQG), whereas Kiefer attempts a broader introduction and review of the subject that includes chapters on string theory and decoherence. Kiefer's second edition attempts an even wider and somewhat ambitious sweep with 'new sections on asymptotic safety, dynamical triangulation, primordial black holes, the information-loss problem, loop quantum cosmology, and other topics'. The presentation of these current topics is necessarily brief given the size of the book, but effective in encapsulating the main ideas in some cases. For instance the few pages devoted to loop quantum cosmology describe how the mini-superspace reduction of the quantum Hamiltonian constraint of LQG becomes a difference equation, whereas the discussion of 'dynamical triangulations', an approach to defining a discretized Lorentzian path integral for quantum gravity, is less detailed. The first few chapters of the book provide, in a roughly historical sequence, the covariant and canonical metric variable approach to the subject developed in the 1960s and 70s. The problem(s) of time in quantum gravity are nicely summarized in the chapter on quantum geometrodynamics, followed by a detailed and effective introduction of the WKB approach and the semi-classical approximation. These topics form the traditional core of the subject. The next three chapters cover LQG, quantization of black holes, and quantum cosmology. Of these the chapter on LQG is

  7. Thermodynamics of a periodically driven qubit

    Science.gov (United States)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  8. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  9. One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Cognola, Guido; Zerbini, Sergio [Universita di Trento (Italy); Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Trento, Dipartimento di Fisica, Trento (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Odintsov, Sergei D. [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); ICREA, Barcelona (Spain); TSPU, Center of Theor. Phys., Tomsk (Russian Federation)

    2009-12-15

    We discuss the classical and quantum properties of non-local modified Gauss-Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss-Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution - the one with the smallest Hubble rate - describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss-Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem. (orig.)

  10. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2018-01-15

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)

  11. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Science.gov (United States)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  12. The Hamiltonian of QED. Zero mode

    International Nuclear Information System (INIS)

    Zastavenko, L.G.

    1990-01-01

    We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs

  13. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    Science.gov (United States)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  14. Report of results of contract research. 'Research on magneto hydrodynamic (MHD) generation'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)

  15. On the definition of the time evolution operator for time-independent Hamiltonians in non-relativistic quantum mechanics

    Science.gov (United States)

    Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.

    2017-09-01

    The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.

  16. Constraint propagation equations of the 3+1 decomposition of f(R) gravity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Shapiro, Stuart L; Halataei, Seyyed M H; Sawicki, Ignacy

    2011-01-01

    Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term (ω = 0). Using this equivalence and a 3+1 decomposition of the theory, it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (Hamiltonian and momentum) constraints. In this paper, we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.

  17. Modeling and analysis of the disk MHD generator component of a gas core reactor/MHD Rankine cycle space power system

    International Nuclear Information System (INIS)

    Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.

    1990-01-01

    A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed

  18. Dynamical structure of pure Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera

    2016-03-01

    We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.

  19. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD

    Science.gov (United States)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.

    2017-10-01

    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  20. Dissipative systems and Bateman's Hamiltonian

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1983-01-01

    It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt

  1. A non-perturbative definition of 2D quantum gravity by the fifth time action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Greensite, J.; Varsted, S.

    1990-07-01

    The general formalism for stabilizing bottomless Euclidean field theories (the 'fifth-time' action) provides a natural non-perturbative definition of matrix models corresponding to 2d quantum gravity. The formalism allows, in principle, the use of lattice Monte Carlo techniques for non-perturbative computation of correlation functions. (orig.)

  2. Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

    Science.gov (United States)

    Cremaschini, Claudio; Tessarotto, Massimo

    2017-05-01

    A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.

  3. Hamiltonian approach to GR. Pt. 1. Covariant theory of classical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)

    2017-05-15

    A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor g(r) ≡ {g_μ_ν(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x ≡ {g,π} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations. (orig.)

  4. Technical support for open-cycle MHD program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.

  5. Diagonalization of Hamiltonian; Diagonalization of Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, L M; Pascual, P

    1960-07-01

    We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.

  6. Axion dark matter and Planck favor non-minimal couplings to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah, E-mail: sarah.folkerts@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Germani, Cristiano, E-mail: cristiano.germani@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Redondo, Javier, E-mail: javier.redondo@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-01-20

    Constraints on inflationary scenarios and isocurvature perturbations have excluded the simplest and most generic models of dark matter based on QCD axions. Considering non-minimal kinetic couplings of scalar fields to gravity substantially changes this picture. The axion can account for the observed dark matter density avoiding the overproduction of isocurvature fluctuations. Finally, we show that assuming the same non-minimal kinetic coupling to the axion (dark matter) and to the standard model Higgs boson (inflaton) provides a minimal picture of early time cosmology.

  7. Neoclassical MHD descriptions of tokamak plasmas

    International Nuclear Information System (INIS)

    Callen, J.D.; Kim, Y.B.; Sundaram, A.K.

    1988-01-01

    Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs

  8. Advanced Monitoring and Characterization of Biofouling in Gravity-driven Membrane Filtration

    KAUST Repository

    Wang, Yiran

    2016-05-01

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) technologies. It operates at a low pressure by gravity, requiring a minimal energy. Thus, it exhibits a great potential for a decentralized system, conducting household in developing and transition countries. Biofouling is a universal problem in almost all membrane filtration applications, leading to the decrease in flux or the increase in transmembrane pressure depending on different operation mode. Air scoring or regular membrane cleaning has been utilized for fouling mitigation, which requires increased energy consumption as well as complicated operations. Besides, repeating cleaning will trigger the deterioration of membranes and shorten their lifetime, elevating cost expenditures accordingly. In this way, GDM filtration stands out from conventional MBR technologies in a long-term operation with relative stable flux, which has been observed in many studies. The objective of this study was to monitor the biofilm development on a flat sheet membrane submerged in a GDM reactor with constant gravitational pressure. Morphology of biofilm layer in a fixed position was acquired by an in-situ and on-line OCT (optical coherence tomography) scanning at regular intervals for both visual investigation and structure analysis. The calculated thickness and roughness were compared to the variation of flux, fouling resistance and permeate quality, showing expected consistency. At the end of experiment, the morphology of entire membrane surface was scanned and recorded by OCT. Membrane autopsy was carried out for biofilm composition analysis by total organic carbon (TOC) and liquid chromatography with organic carbon detection (LC-OCD). In addition, biomass concentration was obtained by flow cytometer and adenosine tri-phosphate (ATP) method. The data of biofilm components indicated a homogeneous biofilm structure formed after a long-term running of the GDM system, based on the morphology

  9. MHD stability of JET high performance discharges. Comparison of MHD calculations with experimental observations

    International Nuclear Information System (INIS)

    Huysmans, G.

    1998-03-01

    One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption

  10. Linear stability of resistive MHD modes: axisymmetric toroidal computation of the outer region matching data

    International Nuclear Information System (INIS)

    Pletzer, A.; Bondeson, A.; Dewar, R.L.

    1993-11-01

    The quest to determine accurately the stability of tearing and resistive interchange modes in two-dimensional toroidal geometry led to the development of the PEST-3 code, which is based on solving the singular, zero-frequency ideal MHD equation in the plasma bulk and determining the outer data Δ', Γ' and A' needed to match the outer region solutions to those arising in the inner layers. No assumption regarding the aspect ratio, the number of rational surfaces or the pressure are made a priori. This approach is numerically less demanding than solving the full set of resistive equations, and has the major advantage of non-MHD theories of the non-ideal layers. Good convergence is ensured by the variational Galerkin scheme used to compute the outer matching data. To validate the code, we focus on the growth rate calculations of resistive kink modes which are reproduced in good agreement with those obtained by the full resistive MHD code MARS. (author) 11 figs., 27 refs

  11. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    Science.gov (United States)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  12. Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER

    International Nuclear Information System (INIS)

    Zohm, H.; Gantenbein, G.; Leuterer, F.; Manini, A.; Maraschek, M.; Yu, Q.

    2007-01-01

    The requirements for control of MHD instabilities by electron cyclotron current drive (ECCD) are reviewed. It is shown that a localized current drive is needed for control of both sawteeth and neoclassical tearing modes (NTMs). In the case of NTMs, the deposition width should be smaller than the island width for efficient control. At island widths smaller than the deposition width, as is predicted to occur in ITER, theory suggests that efficient control is possible only by modulating the ECCD power in phase with the island. These predictions are experimentally confirmed in ASDEX Upgrade for NTM control. Narrow deposition has also been used to extend the operational range of NTM stabilization in ASDEX Upgrade to lower q 95 and in the improved H-mode scenario. Our results suggest that, for the ITER ECCD system, good localization of the driven current profile as well as the capability to modulate the ECCD in phase with rotating modes will be needed for efficient MHD control by ECCD

  13. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  14. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  15. Report on results of contract research. 'Research on MHD generation system'; MHD hatsuden system no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)

  16. Numerical study of shock waves in non-ideal magnetogasdynamics (MHD

    Directory of Open Access Journals (Sweden)

    Addepalli Ramu

    2016-01-01

    Full Text Available One-dimensional unsteady adiabatic flow of strong converging shock waves in cylindrical or spherical symmetry in MHD, which is propagating into plasma, is analyzed. The plasma is assumed to be non-ideal gas whose equation of state is of Mie–Gruneisen type. Suitable transformations reduce the governing equations into ordinary differential equations of Poincare type. In the present work, McQueen and Royce equations of state (EOS have been considered with suitable material constants and the spherical and cylindrical cases are worked out in detail to investigate the behavior and the influence on the shock wave propagation by energy input and β(ρ/ρ0, the measure of shock strength. The similarity solution is valid for adiabatic flow as long as the counter pressure is neglected. The numerical technique applied in this paper provides a global solution to the implosion problem for the flow variables, the similarity exponent α for different Gruneisen parameters. It is shown that increasing β(ρ/ρ0 does not automatically decelerate the shock front but the velocity and pressure behind the shock front increases quickly in the presence of the magnetic field and decreases slowly and become constant. This becomes true whether the piston is accelerated, is moving at constant speed or is decelerated. These results are presented through the illustrative graphs and tables. The magnetic field effects on the flow variables through a medium and total energy under the influence of strong magnetic field are also presented.

  17. MHD stability of (2,1) tearing mode: an issue for the preforming phase of Tore Supra non-inductive discharges

    International Nuclear Information System (INIS)

    Maget, P.; Luetjens, H.; Huysmans, G.; Moreau, Ph.; Schunke, B.; Segui, J.-L.; Garbet, X.; Joffrin, E.; Luciani, J.F.

    2007-01-01

    The early phase of a tokamak plasma discharge can have a dramatic impact on the main heating phase. This has been a persistent problem for the development of the steady state, fully non-inductive scenario using lower hybrid current drive (LHCD) on Tore Supra. The present paper reports on recent experimental and numerical investigations showing that a tearing mode coupled to the internal kink grows on q = 2 in the ohmic phase when the total current is too low, due to the weakening of field line curvature stabilization. Then, the application of LHCD drives the island to a larger size and undermines the development of the non-inductive phase. Decreasing the edge safety factor or increasing the Lundquist number S is found to be beneficial in both the linear and non-linear MHD analyses. The experimental database, which allows covering the edge safety factor dependence, supports this interpretation

  18. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  19. NUMERICAL SIMULATION OF EXCITATION AND PROPAGATION OF HELIOSEISMIC MHD WAVES: EFFECTS OF INCLINED MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Kosovichev, A. G.

    2009-01-01

    Investigation of propagation, conversion, and scattering of MHD waves in the Sun is very important for understanding the mechanisms of observed oscillations and waves in sunspots and active regions. We have developed a three-dimensional linear MHD numerical model to investigate the influence of the magnetic field on excitation and properties of the MHD waves. The results show that surface gravity waves (f-modes) are affected by the background magnetic field more than acoustic-type waves (p-modes). Comparison of our simulations with the time-distance helioseismology results from Solar and Heliospheric Observatory/MDI shows that the amplitude of travel time variations with azimuth around sunspots caused by the inclined magnetic field does not exceed 25% of the observed amplitude even for strong fields of 1400-1900 G. This can be an indication that other effects (e.g., background flows and nonuniform distribution of the magnetic field) can contribute to the observed azimuthal travel time variations. The azimuthal travel time variations caused by the wave interaction with the magnetic field are similar for simulated and observed travel times for strong fields of 1400-1900 G if Doppler velocities are taken at the height of 300 km above the photosphere where the plasma parameter β << 1. For the photospheric level the travel times are systematically smaller by approximately 0.12 minutes than for the height of 300 km above the photosphere for all studied ranges of the magnetic field strength and inclination angles. Numerical MHD wave modeling and new data from the HMI instrument of the Solar Dynamics Observatory will substantially advance our knowledge of the wave interaction with strong magnetic fields on the Sun and improve the local helioseismology diagnostics.

  20. Gravity localization in non-minimally coupled scalar thick braneworlds with a Gauss-Bonnet term

    International Nuclear Information System (INIS)

    Malagon-Morejon, D; Quiros, I; Herrera-Aguilar, A

    2011-01-01

    We consider a warped five-dimensional thick braneworld with a four-dimensional Poincare invariant space-time in the framework of scalar matter non-minimally coupled to gravity plus a Gauss-Bonnet term in the bulk. Scalar field and higher curvature corrections to the background equations as well as the perturbed equations are shown. A relationship between 4-dimensional and 5-dimensional Planck masses is studied in general terms. By imposing finiteness of the 4-dimensional Planck mass and regularity of the geometry, the localization properties of the tensor modes of the first order perturbed geometry are analized for an important class of solutions motivated by models with scalar fields which are minimally coupled to gravity. In order to study the gravity localization properties for this model, the normalizability condition for the lowest level of the tensor fluctuations is analized. We see that for the class of solutions examined, gravity in 4 dimensions is recovered if the curvature invariants are regular and Planck masses are finite.

  1. Observable traces of non-metricity: New constraints on metric-affine gravity

    Science.gov (United States)

    Delhom-Latorre, Adrià; Olmo, Gonzalo J.; Ronco, Michele

    2018-05-01

    Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.

  2. Non-Solenoidal Startup via Helicity Injection in the Pegasus ST

    Science.gov (United States)

    Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.

    2017-10-01

    Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip =Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  3. Overview of liquid-metal MHD

    International Nuclear Information System (INIS)

    Dunn, P.F.

    1978-01-01

    The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser

  4. Elms: MHD Instabilities at the transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Huysmans, G.T.A

    2005-07-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.

  5. Elms: MHD Instabilities at the transport barrier

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.

    2005-01-01

    Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER

  6. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  7. Generalized oscillator representations for Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Tyutin, I V; Voronov, B L

    2013-01-01

    This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)

  8. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Science.gov (United States)

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  9. Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary

    Directory of Open Access Journals (Sweden)

    Fitkevich Maxim

    2016-01-01

    Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.

  10. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  11. Neoclassical MHD equations for tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.; Shaing, K.C.

    1986-03-01

    The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion

  12. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  13. Ab-initio Hamiltonian approach to light nuclei and to quantum field ...

    Indian Academy of Sciences (India)

    A successful microscopic non-perturbative Hamiltonian approach to low- ... sparse matrix eigenvalue problem with the Lanczos algorithm on leadership class .... which allows for an arbitrary phase factor eiα that we have taken to be unity. The.

  14. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  15. Newton algorithm for Hamiltonian characterization in quantum control

    International Nuclear Information System (INIS)

    Ndong, M; Sugny, D; Salomon, J

    2014-01-01

    We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank–Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown parameters are obtained in some cases. We discuss the numerical limits of the algorithm in terms of the basin of convergence and the non-uniqueness of the solution. (paper)

  16. On the physical applications of hyper-Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Gaeta, Giuseppe; Rodriguez, Miguel A

    2008-01-01

    An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin

  17. Comments on a direct approach to finding exact invariants for one-dimensional time-dependent classical hamiltonian

    International Nuclear Information System (INIS)

    Castro Moreira, I. de.

    1983-01-01

    A method introduced by Lewis and Leach for the obtention of exact invariants of the form I = Σ p sup(n) F sub(n) (q,t) for hamiltonian systems, is generalized and applied directly on the equations of motion. It gives us a general procedure to generates exact invariants also for non hamiltonian systems. (Author) [pt

  18. Oscillator representations for self-adjoint Calogero Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)

    2011-10-21

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  19. Oscillator representations for self-adjoint Calogero Hamiltonians

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2011-01-01

    In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)

  20. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.