WorldWideScience

Sample records for non-mevalonate isoprenoid pathway

  1. The Non-Mevalonate Pathway to Isoprenoid Biosynthesis : A Potential Source of New Drug Targets

    NARCIS (Netherlands)

    Hirsch, Anna K.H.; Diederich, François

    2008-01-01

    Isoprenoids are an essential class of natural products with a myriad of biological functions. All isoprenoids are assembled using two common five-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that are biosynthesized via two completely independent routes: the

  2. Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis.

    Science.gov (United States)

    Mueller, C; Schwender, J; Zeidler, J; Lichtenthaler, H K

    2000-12-01

    Enzymes of the 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate (DOXP/MEP) pathway are targets for new herbicides and antibacterial drugs. Until now, no inhibitors for the DOXP synthase have been known of. We show that one of the breakdown products of the herbicide clomazone affects the DOXP synthase. One inhibitor of the non-mevalonate pathway, fosmidomycin, blocks the DOXP reductoisomerase (DXR) of plants and bacteria. The I(50) values of plants are, however, higher than those found for the DXR of Escherichia coli. The DXR of plants, isolated from barley seedlings, shows a pH optimum of 8.1, which is typical for enzymes active in the chloroplast stroma.

  3. The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria.

    Science.gov (United States)

    Zeidler, J; Schwender, J; Mueller, C; Lichtenthaler, H K

    2000-12-01

    Two plant test systems are presented in the search for new inhibitors of the non-mevalonate isoprenoid pathway. A derivative of clomazone appears to be an inhibitor of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (DOXP/MEP) pathway of isoprenoid formation.

  4. Druggability of the enzymes of the non-mevalonate-pathway

    NARCIS (Netherlands)

    Masini, Tiziana; Kroezen, Blijke S.; Hirsch, Anna K.H.

    2013-01-01

    The non-mevalonate pathway constitutes a source of novel drug targets. This biosynthetic route is essential for pathogens but is absent in humans. Our systematic evaluation of the druggability of all enzymes provides a convenient way of selecting targets that should be most easily inhibited by small

  5. Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway.

    Science.gov (United States)

    Knöss, W; Reuter, B; Zapp, J

    1997-09-01

    The biosynthesis of the furanic labdane diterpene marrubiin has been studied in plantlets and shoot cultures of Marrubium vulgare (Lamiaceae). The use of [2-14C]acetate, [2-14C]pyruvate, [2-14C]mevalonic acid and [U-14C]glucose incorporation experiments showed that the labelling of sterols in etiolated shoot cultures of M. vulgare was in accordance with their biosynthesis via the acetate-mevalonate pathway. In contrast, the incorporation rates of these precursors into the diterpene marrubiin could not be explained by biosynthesis of this compound via the acetate-mevalonate pathway. Cultivation of etiolated shoot cultures of M. vulgare on medium containing [1-13C]glucose and subsequent 13C-NMR spectroscopy of marrubiin led to the conclusion that the biosynthesis of marrubiin follows a non-mevalonate pathway. All isoprenic units of 13C-labelled marrubiin were enriched in those carbons that correspond to positions 1 and 5 of a putative precursor isopentenyl diphosphate. This labelling pattern from [1-13C]glucose is consistent with an alternative pathway via trioses, which has already been shown to occur in Eubacteria and Gymnospermae. The labdane skeleton is a precursor of many other skeletal types of diterpenes. Therefore it becomes obvious that in connection with the few known examples of a non-mevalonate pathway to isoprenoids the formation of some isoprenoids in plants via a non-mevalonate pathway might be quite common.

  6. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants

    Indian Academy of Sciences (India)

    Vinod Shanker Dubey; Ritu Bhalla; Rajesh Luthra

    2003-09-01

    Terpenoids are known to have many important biological and physiological functions. Some of them are also known for their pharmaceutical significance. In the late nineties after the discovery of a novel non-mevalonate (non-MVA) pathway, the whole concept of terpenoid biosynthesis has changed. In higher plants, the conventional acetate-mevalonate (Ac-MVA) pathway operates mainly in the cytoplasm and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones predominantly. The plastidic non-MVA pathway however synthesizes hemi-, mono-, sesqui- and di-terpenes, along with carotenoids and phytol chain of chlorophyll. In this paper, recent developments on terpenoids biosynthesis are reviewed with respect to the non-MVA pathway.

  7. The isoprenoid-precursor dependence of Plasmodium spp

    NARCIS (Netherlands)

    van der Meer, Jan-Ytzen; Hirsch, Anna K. H.

    2012-01-01

    Due to the increase in resistance of Plasmodium spp. against available antimalarials, there is a need for new, effective and innovative drugs. The non-mevalonate pathway for the biosynthesis of the universal isoprenoid precursors, which is absent in humans, is suggested as an attractive source of

  8. The isoprenoid-precursor dependence of Plasmodium spp

    NARCIS (Netherlands)

    van der Meer, Jan-Ytzen; Hirsch, Anna K. H.

    2012-01-01

    Due to the increase in resistance of Plasmodium spp. against available antimalarials, there is a need for new, effective and innovative drugs. The non-mevalonate pathway for the biosynthesis of the universal isoprenoid precursors, which is absent in humans, is suggested as an attractive source of ta

  9. Isoprenoid Pathway And Neurological And Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    1999-01-01

    Full Text Available The coexistence of neuronal degeneration, psychiatric manifestation, immune activation and malignant transformation has been documented in literature, suggesting a central dysfunction in the pathophysiology of these disorders. The isoprenoid pathway may be candidate in this respect, in view of the changes in the concentration of some products of this pathway in many of these disorders, however, no detailed study has been carried out in this respect. In view of this, a study was undertaken on the isoprenoid pathway in some of these disorders - primary generalized epilepsy, Parkinson’s disease (PD, schizophrenia, manic depressive psychosis (MDP, CNS glioma, multiple sclerosis, subacute sclerosing panencephalitis (SSPEand a familial group with familial coexistence of schizophrenia, PD, primary generalized epilepsy, malignant neoplasia, rheumatoid arthritis and syndrome-X over three generations. The following parameters were studied in the patients of these disorders as compared to age and sex matched control subjects - ubiquinone dolichol, digoxin, activity of HMG CoA reductase in the plasma and erthyorcyte membrane Na -K--ATpase. Increase in the activity of HMG CoA reductase and in the concentration of plasma digoxin and dolichol was observed in most of these cases. On the other hand, there was decrease in the concentration of plasma ubiquinone. Decrease in the activity of erythrocyte membrane Na-K- ATpase activity for which digoxin is an inhibitor was also observed in all the cases studied. These results indicate an upregulation of the isoprenoid pathway in the neurological and psychiatric disorders studied. The implications of this change is discussed in details.

  10. Structure and Dynamics of the Isoprenoid Pathway Network

    Institute of Scientific and Technical Information of China (English)

    Eva Vranová; Diana Coman; Wilhelm Gruissem

    2012-01-01

    Isoprenoids are functionally and structurally the most diverse group of plant metabolites reported to date.They can function as primary metabolites,participating in essential plant cellular processes,and as secondary metabolites,of which many have substantial commercial,pharmacological,and agricultural value.Isoprenoid end products participate in plants in a wide range of physiological processes acting in them both synergistically,such as chlorophyll and carotenoids during photosynthesis,or antagonistically,such as gibberellic acid and abscisic acid during seed germination.It is therefore expected that fluxes via isoprenoid metabolic network are tightly controlled both temporally and spatially,and that this control occurs at different levels of regulation and in an orchestrated manner over the entire isoprenoid metabolic network.In this review,we summarize our current knowledge of the topology of the plant isoprenoid pathway network and its regulation at the gene expression level following diverse stimuli.We conclude by discussing agronomical and biotechnological applications emerging from the plant isoprenoid metabolism and provide an outlook on future directions in the systems analysis of the plant isoprenoid pathway network.

  11. Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids

    Science.gov (United States)

    Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T

    2014-01-01

    Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443

  12. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  13. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts.

    Science.gov (United States)

    Kumar, Shashi; Hahn, Frederick M; Baidoo, Edward; Kahlon, Talwinder S; Wood, Delilah F; McMahan, Colleen M; Cornish, Katrina; Keasling, Jay D; Daniell, Henry; Whalen, Maureen C

    2012-01-01

    Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.

  14. An enzymatic platform for the synthesis of isoprenoid precursors.

    Directory of Open Access Journals (Sweden)

    Sofia B Rodriguez

    Full Text Available The isoprenoid family of compounds is estimated to contain ∼ 65,000 unique structures including medicines, fragrances, and biofuels. Due to their structural complexity, many isoprenoids can only be obtained by extraction from natural sources, an inherently risky and costly process. Consequently, the biotechnology industry is attempting to genetically engineer microorganisms that can produce isoprenoid-based drugs and fuels on a commercial scale. Isoprenoid backbones are constructed from two, five-carbon building blocks, isopentenyl 5-pyrophosphate and dimethylallyl 5-pyrophosphate, which are end-products of either the mevalonate or non-mevalonate pathways. By linking the HMG-CoA reductase pathway (which produces mevalonate to the mevalonate pathway, these building block can be synthesized enzymatically from acetate, ATP, NAD(PH and CoA. Here, the enzymes in these pathways are used to produce pathway intermediates and end-products in single-pot reactions and in remarkably high yield, ∼ 85%. A strategy for the regio-specific incorporation of isotopes into isoprenoid backbones is developed and used to synthesize a series of isotopomers of diphosphomevalonate, the immediate end-product of the mevalonate pathway. The enzymatic system is shown to be robust and capable of producing quantities of product in aqueous solutions that meet or exceed the highest levels achieved using genetically engineered organisms in high-density fermentation.

  15. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  16. Block of the mevalonate pathway triggers oxidative and inflammatory molecular mechanisms modulated by exogenous isoprenoid compounds.

    Science.gov (United States)

    Tricarico, Paola Maura; Kleiner, Giulio; Valencic, Erica; Campisciano, Giuseppina; Girardelli, Martina; Crovella, Sergio; Knowles, Alessandra; Marcuzzi, Annalisa

    2014-04-22

    Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines' release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  17. Chapter 3: Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Paniagua-Michel, J.; Subramanian, Venkataramanan

    2017-01-01

    In this chapter, the current status of microalgal isoprenoids and the role of omics technologies, or otherwise specified, in bioproducts optimization and applications are reviewed. Emphasis is focused in the metabolic pathways of microalgae involved in the production of commercially important products, namely, hydrocarbons and biofuels, nutraceuticals, and pharmaceuticals.

  18. Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli

    Science.gov (United States)

    Ajikumar, Parayil Kumaran; Xiao, Wen-Hai; Tyo, Keith E. J.; Wang, Yong; Simeon, Fritz; Leonard, Effendi; Mucha, Oliver; Phon, Too Heng; Pfeifer, Blaine; Stephanopoulos, Gregory

    2011-01-01

    Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene—the first committed Taxol intermediate—approximately 1 gram per liter (~15,000-fold) in an engineered Escherichia coli strain. Our approach partitioned the taxadiene metabolic pathway into two modules: a native upstream methylerythritol-phosphate (MEP) pathway forming isopentenyl pyrophosphate and a heterologous downstream terpenoid–forming pathway. Systematic multivariate search identified conditions that optimally balance the two pathway modules so as to maximize the taxadiene production with minimal accumulation of indole, which is an inhibitory compound found here. We also engineered the next step in Taxol biosynthesis, a P450-mediated 5α-oxidation of taxadiene to taxadien-5α-ol. More broadly, the modular pathway engineering approach helped to unlock the potential of the MEP pathway for the engineered production of terpenoid natural products. PMID:20929806

  19. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus.

    Science.gov (United States)

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2015-06-01

    Some lactic acid bacteria that harbour carotenoid biosynthesis genes (crtNM) can produce carotenoids. Although aerobic conditions can increase carotenoid production and crtNM expression levels, their effects on the pathways that synthesize carotenoid precursors such as mevalonate and isoprene are not completely understood. In this study, we investigated whether aerobic conditions affected gene expression levels involved in the isoprenoid biosynthesis pathway that includes the mevalonate and isoprene biosynthesis pathways in Enterococcus gilvus using real-time quantitative reverse transcription PCR. NADH oxidase (nox) and superoxide dismutase (sod) gene expression levels were investigated as controls for aerobic conditions. The expression levels of nox and sod under aerobic conditions were 7.2- and 8.0-fold higher, respectively, than those under anaerobic conditions. Aerobic conditions concomitantly increased the expression levels of crtNM carotenoid biosynthesis genes. HMG-CoA synthase gene expression levels in the mevalonate pathway were only slightly increased under aerobic conditions, whereas the expression levels of HMG-CoA reductase and five other genes in the isoprene biosynthesis pathways were 1.2-2.3-fold higher than those under anaerobic conditions. These results demonstrated that aerobic conditions could increase the expression levels of genes involved in the isoprenoid biosynthesis pathway via mevalonate in E. gilvus.

  20. Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis.

    Science.gov (United States)

    Kobayashi, Keiko; Suzuki, Masashi; Tang, Jianwei; Nagata, Noriko; Ohyama, Kiyoshi; Seki, Hikaru; Kiuchi, Reiko; Kaneko, Yasuko; Nakazawa, Miki; Matsui, Minami; Matsumoto, Shogo; Yoshida, Shigeo; Muranaka, Toshiya

    2007-02-01

    Higher plants have two metabolic pathways for isoprenoid biosynthesis: the cytosolic mevalonate (MVA) pathway and the plastidal non-mevalonate (MEP) pathway. Despite the compartmentalization of these two pathways, metabolic flow occurs between them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cross-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA insertion mutant lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, inhibitors of the MVA and MEP pathways, respectively. The accumulation of the major products of these pathways, i.e. sterols and chlorophyll, was less affected by lovastatin and clomazone, respectively, in loi1 than in the wild type. Furthermore, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity analysis showed higher activity of HMGR in loi1-1 treated with lovastatin than that in the WT. We consider that the lovastatin-resistant phenotype of loi1-1 was derived from this post-transcriptional up-regulation of HMGR. The LOI1 gene encodes a novel pentatricopeptide repeat (PPR) protein. PPR proteins are thought to regulate the expression of genes encoded in organelle genomes by post-transcriptional regulation in mitochondria or plastids. Our results demonstrate that LOI1 is predicted to localize in mitochondria and has the ability to bind single-stranded nucleic acids. Our investigation revealed that the post-transcriptional regulation of mitochondrial RNA may be involved in isoprenoid biosynthesis in both the MVA and MEP pathways.

  1. Staphylococcus aureus mevalonate kinase: isolation and characterization of an enzyme of the isoprenoid biosynthetic pathway.

    Science.gov (United States)

    Voynova, Natalya E; Rios, Sandra E; Miziorko, Henry M

    2004-01-01

    It has been proposed that isoprenoid biosynthesis in several gram-positive cocci depends on the mevalonate pathway for conversion of acetyl coenzyme A to isopentenyl diphosphate. Mevalonate kinase catalyzes a key reaction in this pathway. In this study the enzyme from Staphylococcus aureus was expressed in Escherichia coli, isolated in a highly purified form, and characterized. The overall amino acid sequence of this enzyme was very heterologous compared with the sequences of eukaryotic mevalonate kinases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical gel filtration chromatography suggested that the native enzyme is a monomer with a molecular mass of approximately 33 kDa. The specific activity was 12 U/mg, and the pH optimum was 7.0 to 8.5. The apparent K(m) values for R,S-mevalonate and ATP were 41 and 339 micro M, respectively. There was substantial substrate inhibition at millimolar levels of mevalonate. The sensitivity to feedback inhibition by farnesyl diphosphate and its sulfur-containing analog, farnesyl thiodiphosphate, was characterized. These compounds were competitive inhibitors with respect to ATP; the K(i) values were 46 and 45 micro M for farnesyl diphosphate and its thio analog, respectively. Parallel measurements with heterologous eukaryotic mevalonate kinases indicated that S. aureus mevalonate kinase is much less sensitive to feedback inhibition (K(i) difference, 3 orders of magnitude) than the human enzyme. In contrast, both enzymes tightly bound trinitrophenyl-ATP, a fluorescent substrate analog, suggesting that there are similarities in structural features that are important for catalytic function.

  2. Divergent Isoprenoid Biosynthesis Pathways in Staphylococcus Species Constitute a Drug Target for Treating Infections in Companion Animals

    Science.gov (United States)

    Cain, Christine L.; Morris, Daniel O.; Rankin, Shelley C.

    2016-01-01

    ABSTRACT Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine. PMID:27704053

  3. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

    Science.gov (United States)

    Rasulov, Bahtijor; Talts, Eero; Kännaste, Astrid; Niinemets, Ülo

    2015-06-01

    Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.

  4. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    Directory of Open Access Journals (Sweden)

    Zhou Kang

    2012-11-01

    Full Text Available Abstract Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA, but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.

  5. The Carotenogenesis Pathway via the Isoprenoid-β-carotene Interference Approach in a New Strain of Dunaliella salina Isolated from Baja California Mexico

    Directory of Open Access Journals (Sweden)

    Luis Enrique Gutierrez-Millan

    2009-02-01

    Full Text Available D. salina is one of the recognized natural sources to produce β-carotene, and an useful model for studying the role of inhibitors and enhancers of carotenogenesis. However there is little information in D. salina regarding whether the isoprenoid substrate can be influenced by stress factors (carotenogenic or selective inhibitors which in turn may further contribute to elucidate the early steps of carotenogenesis and biosynthesis of β-carotene. In this study,Dunaliella salina (BC02 isolated from La Salina BC Mexico, was subjected to the method of isoprenoids-β-carotene interference in order to promote the interruption or accumulation of the programmed biosynthesis of carotenoids. When Carotenogenic and non-carotenogenic cells of D. salina BC02 were grown under photoautotrophicgrowth conditions in the presence of 200 µM fosmidomycin, carotenogenesis and the synthesis of β-carotene were interrupted after two days in cultured D. salina cells. This result is an indirect consequence of the inhibition of the synthesis of isoprenoids and activity of the recombinant DXR enzyme thereby preventing the conversionof 1-deoxy-D-xylulose 5-phosphate (DXP to 2-C-methyl-D-erythritol (MEP and consequently interrupts the early steps of carotenogenesis in D. salina. The effect at the level of proteins and RNA was not evident. Mevinolin treated D. salina cells exhibited carotenogenesis and β-carotene levels very similar to those of control cell cultures indicating that mevinolin not pursued any indirect action in the biosynthesis of isoprenoids and had no effect at the level of the HMG-CoA reductase, the key enzyme of the Ac/MVA pathway.

  6. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Jordi Perez-Gil

    Full Text Available A functional 2-C-methyl-D-erythritol 4-phosphate (MEP pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP by the activity of the enzymes DXP synthase (DXS and DXP reductoisomerase (DXR. Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  7. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Science.gov (United States)

    Perez-Gil, Jordi; Uros, Eva Maria; Sauret-Güeto, Susanna; Lois, L Maria; Kirby, James; Nishimoto, Minobu; Baidoo, Edward E K; Keasling, Jay D; Boronat, Albert; Rodriguez-Concepcion, Manuel

    2012-01-01

    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  8. Mechanistic Insights on the Reductive Dehydroxylation Pathway for the Biosynthesis of Isoprenoids Promoted by the IspH Enzyme

    KAUST Repository

    Abdel-Azeim, Safwat

    2015-06-22

    Here, we report an integrated quantum mechanics/molecular mechanics (QM/MM) study of the bio-organometallic reaction pathway of the 2H+/2e- reduction of (E)-4-hydroxy-3-methylbut-2-enyl pyrophosphate (HMBPP) into the so called universal terpenoids precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), promoted by the IspH enzyme. Our results support the viability of the bio-organometallic pathway from rotation of the OH group of HMBPP away from the [Fe4S4] cluster at the core of the catalytic site, to be engaged in a H-bond with Glu126. This rotation is synchronous with π-coordination of the C2=C3 double bond of HMBPP to the apical Fe atom of the [Fe4S4] cluster. Dehydroxylation of HMBPP is triggered by a proton transfer from Glu126 to the OH group of HMBPP. The reaction pathway is completed by competitive proton transfer from the terminal phosphate group to the C2 or C4 atom of HMBPP.

  9. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  10. Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit.

    Science.gov (United States)

    Munné-Bosch, Sergi; Falara, Vasiliki; Pateraki, Irene; López-Carbonell, Marta; Cela, Jana; Kanellis, Angelos K

    2009-01-30

    The goal of the present research was to obtain new insights into the mechanisms underlying drought stress resistance in plants. Specifically, we evaluated changes in the expression of genes encoding enzymes involved in isoprenoid biosynthesis, together with the levels of the corresponding metabolites (chlorophylls, carotenoids, tocopherols and abscisic acid), in a drought-resistant Mediterranean shrub, Cistus creticus grown under Mediterranean field conditions. Summer drought led to reductions in the relative leaf water content (RWC) by 25%, but did not alter the maximum efficiency of PSII, indicating the absence of damage to the photosynthetic apparatus. While the expression of genes encoding C. creticus chlorophyll a oxygenase/chlorophyll b synthase (CAO) and phytoene synthase (PSY) were not affected by water deficit, the genes encoding homogentisate phytyl-transferase (HPT) and 9-cis-epoxycarotenoid dioxygenase (NCED) were induced in water-stressed (WS) plants. Drought-induced changes in gene expression were observed at early stages of drought and were strongly correlated with levels of the corresponding metabolites, with simultaneous increases in abscisic acid and alpha-tocopherol levels of up to 4-fold and 62%, respectively. Furthermore, alpha-tocopherol levels were strongly positively correlated with abscisic acid contents, but not with the levels of jasmonic acid and salicylic acid. We conclude that the abscisic acid and tocopherol biosynthetic pathway may be regulated at the transcript level in WS C. creticus plants, and that the genes encoding HPT and NCED may play a key role in the drought stress resistance of this Mediterranean shrub by modulating abscisic acid and tocopherol biosynthesis.

  11. A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway.

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J

    2006-10-01

    Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing D-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as "xylulose kinase" might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta.

  12. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates.

    Science.gov (United States)

    Bentlage, Bastian; Rogers, Travis S; Bachvaroff, Tsvetan R; Delwiche, Charles F

    2016-01-01

    Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis.

  13. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli.

    Science.gov (United States)

    Wang, Chonglong; Zada, Bakht; Wei, Gongyuan; Kim, Seon-Won

    2017-10-01

    Isoprenoids comprise the largest family of natural organic compounds with many useful applications in the pharmaceutical, nutraceutical, and industrial fields. Rapid developments in metabolic engineering and synthetic biology have facilitated the engineering of isoprenoid biosynthetic pathways in Escherichia coli to induce high levels of production of many different isoprenoids. In this review, the stem pathways for synthesizing isoprene units as well as the branch pathways deriving diverse isoprenoids from the isoprene units have been summarized. The review also highlights the metabolic engineering efforts made for the biosynthesis of hemiterpenoids, monoterpenoids, sesquiterpenoids, diterpenoids, carotenoids, retinoids, and coenzyme Q10 in E. coli. Perspectives and future directions for the synthesis of novel isoprenoids, decoration of isoprenoids using cytochrome P450 enzymes, and secretion or storage of isoprenoids in E. coli have also been included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of temperature and CO2-enrichment on photosynthesis and the levels of carbohydrates and isoprenoid pathway products in guayule, a latex producing shrub

    Science.gov (United States)

    The stems and roots of the desert shrub guayule, Parthenium argentatum, contain a significant amount of latex, a potential source of natural rubber. To determine the factors regulating carbon partitioning, net photosynthesis (Pn) and the levels of carbohydrates and isoprenoid compounds were measured...

  15. Isoprenoid drugs, biofuels, and chemicals--artemisinin, farnesene, and beyond.

    Science.gov (United States)

    George, Kevin W; Alonso-Gutierrez, Jorge; Keasling, Jay D; Lee, Taek Soon

    2015-01-01

    Isoprenoids have been identified and used as natural pharmaceuticals, fragrances, solvents, and, more recently, advanced biofuels. Although isoprenoids are most commonly found in plants, researchers have successfully engineered both the eukaryotic and prokaryotic isoprenoid biosynthetic pathways to produce these valuable chemicals in microorganisms at high yields. The microbial synthesis of the precursor to artemisinin--an important antimalarial drug produced from the sweet wormwood Artemisia annua--serves as perhaps the most successful example of this approach. Through advances in synthetic biology and metabolic engineering, microbial-derived semisynthetic artemisinin may soon replace plant-derived artemisinin as the primary source of this valuable pharmaceutical. The richness and diversity of isoprenoid structures also make them ideal candidates for advanced biofuels that may act as "drop-in" replacements for gasoline, diesel, and jet fuel. Indeed, the sesquiterpenes farnesene and bisabolene, monoterpenes pinene and limonene, and hemiterpenes isopentenol and isopentanol have been evaluated as fuels or fuel precursors. As in the artemisinin project, these isoprenoids have been produced microbially through synthetic biology and metabolic engineering efforts. Here, we provide a brief review of the numerous isoprenoid compounds that have found use as pharmaceuticals, flavors, commodity chemicals, and, most importantly, advanced biofuels. In each case, we highlight the metabolic engineering strategies that were used to produce these compounds successfully in microbial hosts. In addition, we present a current outlook on microbial isoprenoid production, with an eye towards the many challenges that must be addressed to achieve higher yields and industrial-scale production.

  16. Metabolic engineering for isoprenoid-based biofuel production.

    Science.gov (United States)

    Gupta, P; Phulara, S C

    2015-09-01

    Sustainable economic and industrial growth is the need of the hour and it requires renewable energy resources having better performance and compatibility with existing fuel infrastructure from biological routes. Isoprenoids (C ≥ 5) can be a potential alternative due to their diverse nature and physiochemical properties similar to that of petroleum based fuels. In the past decade, extensive research has been done to utilize metabolic engineering strategies in micro-organisms primarily, (i) to overcome the limitations associated with their natural and non-natural production and (ii) to develop commercially competent microbial strain for isoprenoid-based biofuel production. This review briefly describes the engineered isoprenoid biosynthetic pathways in well-characterized microbial systems for the production of several isoprenoid-based biofuels and fuel precursors.

  17. Detection of non-sterol isoprenoids by HPLC-MS/MS

    Science.gov (United States)

    Henneman, Linda; van Cruchten, Arno G.; Denis, Simone W.; Amolins, Michael W.; Placzek, Andrew T.; Gibbs, Richard A.; Kulik, Willem; Waterham, Hans R.

    2012-01-01

    Isoprenoids constitute an important class of biomolecules that participate in many different cellular processes. Most available detection methods only allow the identification of one or two specific non-sterol isoprenoid intermediates following radioactive or fluorescent labeling. We here report a rapid, non-radioactive and sensitive procedure for the simultaneous detection and quantification of the 8 main non-sterol intermediates of the isoprenoid biosynthesis pathway by means of tandem mass spectrometry. Intermediates were analyzed by HPLC-MS/MS in the multiple reaction monitoring mode using a silica-based C18 HPLC column. For quantification, their stable-isotope-labeled analogues were used as internal standards. HepG2 cells were used to validate the method. Mevalonate, phosphomevalonate and the 6 subsequent isoprenoid-pyrophosphates were readily determined with detection limits ranging from 0.03 to 1.0 μmol/L. The intra- and interassay variations for HepG2 cell homogenates supplemented with isoprenoid intermediates were 3.6–10.9% and 4.4–11.9%, respectively. Under normal culturing conditions, isoprenoid intermediates in HepG2 cells were below detection limits. However, incubation of the cells with pamidronate, an inhibitor of farnesyl pyrophosphate synthase, resulted in increased levels of MVA, IPP/DMAPP and GPP. This method will be suitable to measure profiles of isoprenoid intermediates in cells with compromised isoprenoid biosynthesis, and to determine the specificity of potential inhibitors of the pathway. PMID:18782552

  18. Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering.

    Science.gov (United States)

    Morrone, Dana; Lowry, Luke; Determan, Mara K; Hershey, David M; Xu, Meimei; Peters, Reuben J

    2010-02-01

    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product.

  19. Substrate analogues for isoprenoid enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  20. Microbial isoprenoid production: an example of green chemistry through metabolic engineering.

    Science.gov (United States)

    Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens

    2005-01-01

    Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.

  1. Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE : Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues

    NARCIS (Netherlands)

    Schuetz, Andri P.; Osawa, Sho; Mathis, Jennifer; Hirsch, Anna K. H.; Bernet, Bruno; Illarionov, Boris; Fischer, Markus; Bacher, Adelbert; Diederich, Francois; Schütz, Andri P.

    2012-01-01

    The enzymes of the non-mevalonate pathway for the isoprenoid biosynthesis are promising targets for the development of selective drugs for the treatment of important infectious diseases. This pathway is used by plants, many eubacteria, and apicomplexan protozoa, including major human pathogens such

  2. Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE : Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues

    NARCIS (Netherlands)

    Schuetz, Andri P.; Osawa, Sho; Mathis, Jennifer; Hirsch, Anna K. H.; Bernet, Bruno; Illarionov, Boris; Fischer, Markus; Bacher, Adelbert; Diederich, Francois; Schütz, Andri P.

    2012-01-01

    The enzymes of the non-mevalonate pathway for the isoprenoid biosynthesis are promising targets for the development of selective drugs for the treatment of important infectious diseases. This pathway is used by plants, many eubacteria, and apicomplexan protozoa, including major human pathogens such

  3. Inactivation of sll1556 in Synechocystis strain PCC 6803 impairs isoprenoid biosynthesis from pentose phosphate cycle substrates in vitro.

    Science.gov (United States)

    Poliquin, Kelly; Ershov, Yuri V; Cunningham, Francis X; Woreta, Tinsay T; Gantt, R Raymond; Gantt, Elisabeth

    2004-07-01

    In cyanobacteria many compounds, including chlorophylls, carotenoids, and hopanoids, are synthesized from the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate. Isoprenoid biosynthesis in extracts of the cyanobacterium Synechocystis strain PCC 6803 grown under photosynthetic conditions, stimulated by pentose phosphate cycle substrates, does not appear to require methylerythritol phosphate pathway intermediates. The sll1556 gene, distantly related to type 2 IPP isomerase genes, was disrupted by insertion of a Kanr cassette. The mutant was fully viable under photosynthetic conditions although impaired in the utilization of pentose phosphate cycle substrates. Compared to the parental strain the Deltasll1556 mutant (i) is deficient in isoprenoid biosynthesis in vitro with substrates including glyceraldehyde-3-phosphate, fructose-6-phosphate, and glucose-6-phosphate; (ii) has smaller cells (diameter ca. 13% less); (iii) has fewer thylakoids (ca. 30% less); and (iv) has a more extensive fibrous outer wall layer. Isoprenoid biosynthesis is restored with pentose phosphate cycle substrates plus the recombinant Sll1556 protein in the Deltasll1556 supernatant fraction. IPP isomerase activity could not be demonstrated for the purified Sll1556 protein under our in vitro conditions. The reduction of thylakoid area and the effect on outer wall layer components are consistent with an impairment of isoprenoid biosynthesis in the mutant, possibly via hopanoid biosynthesis. Our findings are consistent with an alternate metabolic shunt for biosynthesis of isoprenoids. Copyright 2004 American Society for Microbiology

  4. Increased ratio of electron transport to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought.

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-10-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r(2) > 0.8) and photorespiratory stress (r(2) > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission.

  5. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production.

    Science.gov (United States)

    Zhou, Kang; Zou, Ruiyang; Stephanopoulos, Gregory; Too, Heng-Phon

    2012-01-01

    Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.

  6. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production.

    Directory of Open Access Journals (Sweden)

    Kang Zhou

    Full Text Available Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. These precursors are synthesized either by the mevalonate (MVA pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.

  7. Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria.

    Science.gov (United States)

    Khan, Shams Tabrez; Izumikawa, Miho; Motohashi, Keiichiro; Mukai, Akira; Takagi, Motoki; Shin-Ya, Kazuo

    2010-03-01

    During the course of our screening program to isolate isoprenoids from marine Actinobacteria, 523 actinobacterial strains were isolated from 18 marine sponges, a tunicate, and two marine sediments. These strains belonged to 21 different genera, but most were members of Streptomyces, Nocardia, Rhodococcus, and Micromonospora. Some Actinobacteria have been reported to use the mevalonate pathway for the production of isoprenoids as secondary metabolites. Therefore, we investigated whether these strains possessed the 3-hydroxyl-3-methylglutaryl coenzyme A reductase (hmgr) gene, which indicates the presence of the mevalonate pathway. As a result, six strains belonging to the genera Streptomyces (SpC080624SC-11, SpA080624GE-02, and Sp080513GE-23), Nocardia (Sp080513SC-18), and Micromonospora (Se080624GE-07 and SpC080624GE-05) were found to possess the hmgr gene, and these genes were highly similar to hmgr genes in isoprenoid biosynthetic gene clusters. Among the six strains, the two strains SpC080624SC-11 and SpA080624GE-02 produced the novel isoprenoids, JBIR-46, -47, and -48, which consisted of phenazine chromophores, and Sp080513GE-23 produced a known isoprenoid, fumaquinone. Furthermore, these compounds showed cytotoxic activity against human acute myelogenous leukemia HL-60 cells.

  8. Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates

    OpenAIRE

    Horn, Mary P.; Knecht, Sharmon M.; Rushing, Frances L.; Birdsong, Julie; Siddall, C. Parker; Johnson, Charron M.; Abraham, Terri N.; Brown, Amy; Volk, Catherine B.; Gammon, Kelly; Bishop, Derron L.; McKillip, John L.; McDowell, Susan A.

    2008-01-01

    Patients on a statin regimen are at a decreased risk of death due to bacterial sepsis. We have found that protection by simvastatin includes the inhibition of host cell invasion by Staphylococcus aureus, the most common etiologic agent of sepsis. Inhibition was due in part to depletion of isoprenoid intermediates within the cholesterol biosynthesis pathway and led to the cytosolic accumulation of the small-guanosine triphosphatases (GTPases) CDC42, Rac, and RhoB. Actin stress fiber disassembl...

  9. Directed Evolution towards Increased Isoprenoid Production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Simon; Nielsen, Michael Lynge; Kielland-Brandt, Morten

    population of S. cerevisiae clones will afterwards be screened using the isoprenoid molecule lycopene as a model compound, hereby enabling the isolation of phenotypes producing higher amounts of isoprenoid. The property making lycopene ideal for screening is its system of 11 conjugated double bonds, which...... absorbs light within the visible range resulting in the red color of lycopene. This feature is the cause for the orange/red phenotype of S. cerevisiae strains transformed with the genes encoding lycopene and enables visual screening of yeast colonies, by searching for colonies with more intense red colony...... coloration which is the result of higher amount of lycopene is being produced and hence high amount of isoprenoid precursor being available. This will elucidate novel genetic targets for increasing isoprenoid production in S. cerevisiae...

  10. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids.

    Science.gov (United States)

    Ruiz-Sola, M Águila; Coman, Diana; Beck, Gilles; Barja, M Victoria; Colinas, Maite; Graf, Alexander; Welsch, Ralf; Rütimann, Philipp; Bühlmann, Peter; Bigler, Laurent; Gruissem, Wilhelm; Rodríguez-Concepción, Manuel; Vranová, Eva

    2016-01-01

    Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.

    Science.gov (United States)

    Tang, Jianwei; Kobayashi, Keiko; Suzuki, Masashi; Matsumoto, Shogo; Muranaka, Toshiya

    2010-02-01

    Unlike animals, plants synthesize isoprenoids via two pathways, the cytosolic mevalonate (MVA) pathway and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. Little information is known about the mechanisms that regulate these complex biosynthetic networks over multiple organelles. To understand such regulatory mechanisms of the biosynthesis of isoprenoids in plants, we previously characterized the Arabidopsis mutant, lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, specific inhibitors of the MVA and MEP pathways, respectively. LOI1 encodes a pentatricopeptide repeat (PPR) protein localized in mitochondria that is thought to have RNA binding ability and function in post-transcriptional regulation of mitochondrial gene expression. LOI1 belongs to the DYW subclass of PPR proteins, which is hypothesized to be correlated with RNA editing. As a result of analysis of RNA editing of mitochondrial genes in loi1, a defect in RNA editing of three genes, nad4, ccb203 and cox3, was identified in loi1. These genes are related to the respiratory chain. Wild type (WT) treated with some respiration inhibitors mimicked the loi1 phenotype. Interestingly, HMG-CoA reductase activity of WT treated with lovastatin combined with antimycin A, an inhibitor of complex III in the respiratory chain, was higher than that of WT treated with only lovastatin, despite the lack of alteration of transcript or protein levels of HMGR. These results suggest that HMGR enzyme activity is regulated through the respiratory cytochrome pathway. Although various mechanisms exist for isoprenoid biosynthesis, our studies demonstrate the novel possibility that mitochondrial respiration plays potentially regulatory roles in isoprenoid biosynthesis.

  12. Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis.

    Science.gov (United States)

    Lange, B M; Ketchum, R E; Croteau, R B

    2001-09-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides.

  13. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  14. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  15. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.

    Science.gov (United States)

    Jung, Juyoung; Lim, Jae Hyung; Kim, Se Yeon; Im, Dae-Kyun; Seok, Joo Yeon; Lee, Seung-Jae V; Oh, Min-Kyu; Jung, Gyoo Yeol

    2016-11-01

    Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.

  16. Natural isoprenoids inhibit LPS-induced-production of cytokines and nitric oxide in aminobisphosphonate-treated monocytes.

    Science.gov (United States)

    Marcuzzi, Annalisa; Tommasini, Alberto; Crovella, Sergio; Pontillo, Alessandra

    2010-06-01

    The inhibition of mevalonate pathway through genetic defects (mevalonate kinase deficiency, MKD) or pharmacologic drugs (aminobisphosphonates) causes a shortage of intermediate compounds and, in particular, of geranylgeranyl-pyrophosphate (GGPP) associated to the activation of caspase-1 and IL-1beta release. Geraniol (GOH), farnesol (FOH), geranylgeraniol (GGOH) and menthol (MOH), due to their isoprenoid structure, are supposed to enter the mevalonate pathway and to by-pass the biochemical block, reconstituting the pathway. Considering the already known side effects of aminobisphosphonates, and the lack of a specific treatment for MKD, we evaluated the impact of these natural isoprenoids compounds in a RAW cell lines chemically treated with the aminobisphosphonate alendronate, and in monocytes isolated from 2 patients affected by MKD. GOH, FOH, GGOH and MOH were all capable to diminish inflammatory marker levels induced by LPS. These natural isoprenoids could be proposed as novel therapeutic approach for the still orphan drug MKD, but also considered for the evaluation of possible inflammatory side effects of aminobisphosphonates.

  17. Negative Feedbacks by Isoprenoids on a Mevalonate Kinase Expressed in the Corpora Allata of Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Pratik Nyati

    Full Text Available Juvenile hormones (JH regulate development and reproductive maturation in insects. JHs are synthesized through the mevalonate pathway (MVAP, an ancient metabolic pathway present in the three domains of life. Mevalonate kinase (MVK is a key enzyme in the MVAP. MVK catalyzes the synthesis of phosphomevalonate (PM by transferring the γ-phosphoryl group from ATP to the C5 hydroxyl oxygen of mevalonic acid (MA. Despite the importance of MVKs, these enzymes have been poorly characterized in insects.We functionally characterized an Aedes aegypti MVK (AaMVK expressed in the corpora allata (CA of the mosquito. AaMVK displayed its activity in the presence of metal cofactors. Different nucleotides were used by AaMVK as phosphoryl donors. In the presence of Mg(2+, the enzyme has higher affinity for MA than ATP. The activity of AaMVK was regulated by feedback inhibition from long-chain isoprenoids, such as geranyl diphosphate (GPP and farnesyl diphosphate (FPP.AaMVK exhibited efficient inhibition by GPP and FPP (Ki less than 1 μM, and none by isopentenyl pyrophosphate (IPP and dimethyl allyl pyrophosphate (DPPM. These results suggest that GPP and FPP might act as physiological inhibitors in the synthesis of isoprenoids in the CA of mosquitoes. Changing MVK activity can alter the flux of precursors and therefore regulate juvenile hormone biosynthesis.

  18. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes.

    Science.gov (United States)

    Krits, Pinchas; Fogelman, Edna; Ginzberg, Idit

    2007-12-01

    The potato steroidal glycoalkaloids (SGA) are toxic secondary metabolites, and their total content in tubers should not exceed 20 mg/100 g fresh weight. The two major SGA in cultivated potato (Solanum tuberosum) are alpha-chaconine and alpha-solanine. SGA biosynthetic genes and the genetic factors that control their expression have not yet been determined. In the present study, potato genotypes exhibiting different levels of SGA content showed an association between high SGA levels in their leaves and tubers and high expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (hmg1) and squalene synthase 1 (pss1), genes of the mevalonic/isoprenoid pathway. Transcripts of other key enzymes of branches of the isoprenoid pathway, vetispiradiene/sesquiterpene synthase (pvs1) and sterol C24-methyltransferase type1 (smt1), were undetectable or exhibited stable expression regardless of SGA content, respectively, suggesting facilitated precursor flow to the SGA biosynthetic branch. The transcript ratio of solanidine glucosyltransferase (sgt2) to solanidine galactosyltransferase (sgt1) was correlated to the documented chaconine-to-solanine ratio in the tested genotypes. Significantly higher expression of hmg1, pss1, smt1, sgt1 and sgt2 was monitored in the tuber phelloderm than in the parenchyma of the tuber's flesh, targeting the former as the main SGA-producing tissue in the tuber, in agreement with the known high SGA content in the layers directly under the tuber skin.

  19. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application.

    Science.gov (United States)

    Asensio, Dolores; Rapparini, Francesca; Peñuelas, Josep

    2012-05-01

    Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications

    NARCIS (Netherlands)

    Matsumi, Rie; Atomi, Haruyuki; Driessen, Arnold J. M.; van der Oost, John

    Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea,

  1. Isoprenoid biosynthesis in Archaea - Biochemical and evolutionary implications

    NARCIS (Netherlands)

    Matsumi, Rie; Atomi, Haruyuki; Driessen, Arnold J. M.; van der Oost, John

    2011-01-01

    Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea, is

  2. Metabolic engineering of volatile isoprenoids in plants and microbes

    NARCIS (Netherlands)

    Vickers, C.; Bongers, M.; Liu, Q.; Delatte, T.L.; Bouwmeester, H.J.

    2014-01-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural

  3. Isoprenoid hydrocarbons in oil shales from the Aleksinac deposit

    Energy Technology Data Exchange (ETDEWEB)

    Saban, M.; Tesic, Z.; Vitorovic, D.

    1983-01-01

    It is established that the basic components of the fraction of branched and cyclic alkanes, isolated from shale bitumens, are aliphatic and polycyclic isoprenoid compounds. All members of the homological C15 to C20 series are identified among the aliphatic compounds, except for C17; C27 to C29 stearines and methyl to C29 styrene are discovered among the polycyclic compounds and C27 to C29 triterpenes and bicyclic tetraterpenes are identified among the pentacyclic compounds.

  4. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.

    Science.gov (United States)

    Estévez, J M; Cantero, A; Reindl, A; Reichler, S; León, P

    2001-06-22

    The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.

  5. Increased Expression of RhoA in Epithelium and Smooth Muscle of Obese Mouse Models: Implications for Isoprenoid Control of Airway Smooth Muscle and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Kristie R. Ross

    2013-01-01

    Full Text Available The simultaneous rise in the prevalence of asthma and obesity has prompted epidemiologic studies that establish obesity as a risk factor for asthma. The alterations in cell signaling that explain this link are not well understood and warrant investigation so that therapies that target this asthma phenotype can be developed. We identified a significant increase in expression of the small GTPase RhoA in nasal epithelial cells and tracheal smooth muscle cells from leptin-deficient (ob/ob mice compared to their wild-type counterparts. Since RhoA function is dependent on isoprenoid modification, we sought to determine the role of isoprenoid-mediated signaling in regulating the viability and proliferation of human airway smooth muscle cells (ASM and normal human lung fibroblasts (NHLF. Inhibiting isoprenoid signaling with mevastatin significantly decreased the viability of ASM and NHLF. This inhibition was reversed by geranylgeranyl pyrophosphate (GGPP, but not farnesyl pyrophosphate (FPP, suggesting specificity to the Rho GTPases. Conversely, increasing isoprenoid synthesis significantly increased ASM proliferation and RhoA protein expression. RhoA expression is inherently increased in airway tissue from ob/ob mice, and obesity-entrained alterations in this pathway may make it a novel therapeutic target for treating airway disease in the obese population.

  6. Isoprenoid Biosynthesis. Metabolite Profiling of Peppermint Oil Gland Secretory Cells and Application to Herbicide Target Analysis1

    Science.gov (United States)

    Lange, B. Markus; Ketchum, Raymond E.B.; Croteau, Rodney B.

    2001-01-01

    Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory cells as an experimental model system to study the effects of the herbicides fosmidomycin, phosphonothrixin, methyl viologen, benzyl viologen, clomazone, 2-(dimethylamino)ethyl diphosphate, alendronate, and pamidronate on the pools of metabolites related to monoterpene biosynthesis via the mevalonate-independent pathway. A newly developed isolation protocol for polar metabolites together with an improved separation and detection method based on liquid chromatography-mass spectrometry have allowed assessment of the enzyme targets for a number of these herbicides. PMID:11553758

  7. New insight in isoprenoids biosynthesis process and future prospects for drug designing in Plasmodium

    Directory of Open Access Journals (Sweden)

    Gagandeep Singh Saggu

    2016-09-01

    Full Text Available The MEP (Methyl Erythritol Phosphate isoprenoids biosynthesis pathway is an attractive drug target to combat malaria, due to its uniqueness and indispensability for the parasite. It is functional in the apicoplast of Plasmodium and its products get transported to the cytoplasm, where they participate in glycoprotein synthesis, electron transport chain, tRNA modification and several other biological processes. Several compounds have been tested against the enzymes involved in this pathway and amongst them Fosmidomycin, targeted against IspC (DXP reductoisomerase enzyme and MMV008138 targeted against IspD enzyme have shown good anti-malarial activity in parasite cultures. Fosmidomycin is now-a-days prescribed clinically, however, less absorption, shorter half-life, and toxicity at higher doses, limits its use as an anti-malarial. The potential of other enzymes of the pathway as candidate drug targets has also been determined. This review details the various drug molecules tested against these targets with special emphasis to Plasmodium. We corroborate that MEP pathway functional within the apicoplast of Plasmodium is a major drug target, especially during erythrocytic stages. However, the major bottlenecks, bioavailability and toxicity of the new molecules needs to be addressed, before considering any new molecule as a potent antimalarial.

  8. Hartmut Lichtenthaler: an authority on chloroplast structure and isoprenoid biochemistry.

    Science.gov (United States)

    Sharkey, Thomas D; Govindjee

    2016-05-01

    We pay tribute to Hartmut Lichtenthaler for making important contributions to the field of photosynthesis research. He was recently recognized for ground-breaking discoveries in chloroplast structure and isoprenoid biochemistry by the Rebeiz Foundation for Basic Research (RFBR; http://vlpbp.org/ ), receiving a 2014 Lifetime Achievement Award for Photosynthesis. The ceremony, held in Champaign, Illinois, was attended by many prominent researchers in the photosynthesis field. We provide below a brief note on his education, and then describe some of the areas in which Hartmut Lichtenthaler has been a pioneer.

  9. Distribution and evolution of isoprenoid in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Shanfa, F.; Shanchun, J.; Fenfang, X.

    1981-12-01

    By means of chromatography-mass spectrography and gas chromatography, isoprenoids (i15-i20) have been identified in 49 crude oil samples and 3 rock samples from oil fields in Shengli, Huabei, Subei, Dagang, Liaohe and Daqing and also from Sichuan, Gueizhou etc. The relative contents, in percentage of phytane (Ph), pristane (Pr), norpristane (i18), 2.6.10-trimethyl-tridecane (i16) and farnesane (i15) are determined, as well as the ratios of Pr/Ph, Pr/nC/sub 17/, Ph/nC/sub 18/ and i18 + i16 + i15/Ph + Pr. The curves of the relative contents of Ph, Pr, i18, i16 and i15 may show the character of different oils, useful for correlation purposes. The evolution of isoprenoids in crude oils is divided into sub-mature stage (Pr/Ph < 0.8, i18 + i16 + i15/Ph + Pr = 0.2 - 0.5); mature stage (Pr/Ph > 0.8, i18 + i16 + i15/Ph + Pr = 0.3 - 0.6) and highly mature stage (Pr/Ph > 1.0, i18 + i16 + i15/Ph + Pr > 0.6). 4 figures, 5 tables.

  10. Evolutionary diversification and characterization of the eubacterial gene family encoding DXR type II, an alternative isoprenoid biosynthetic enzyme.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Lipska, Agnieszka; Pérez-Gil, Jordi; Sangari, Félix J; Albert, Victor A; Rodríguez-Concepción, Manuel

    2013-09-03

    Isoprenoids constitute a vast family of natural compounds performing diverse and essential functions in all domains of life. In most eubacteria, isoprenoids are synthesized through the methylerythritol 4-phosphate (MEP) pathway. The production of MEP is usually catalyzed by deoxyxylulose 5-phosphate reductoisomerase (DXR-I) but a few organisms use an alternative DXR-like enzyme (DXR-II). Searches through 1498 bacterial complete proteomes detected 130 sequences with similarity to DXR-II. Phylogenetic analysis identified three well-resolved clades: the DXR-II family (clustering 53 sequences including eleven experimentally verified as functional enzymes able to produce MEP), and two previously uncharacterized NAD(P)-dependent oxidoreductase families (designated DLO1 and DLO2 for DXR-II-like oxidoreductases 1 and 2). Our analyses identified amino acid changes critical for the acquisition of DXR-II biochemical function through type-I functional divergence, two of them mapping onto key residues for DXR-II activity. DXR-II showed a markedly discontinuous distribution, which was verified at several levels: taxonomic (being predominantly found in Alphaproteobacteria and Firmicutes), metabolic (being mostly found in bacteria with complete functional MEP pathways with or without DXR-I), and phenotypic (as no biological/phenotypic property was found to be preferentially distributed among DXR-II-containing strains, apart from pathogenicity in animals). By performing a thorough comparative sequence analysis of GC content, 3:1 dinucleotide frequencies, codon usage and codon adaptation indexes (CAI) between DXR-II sequences and their corresponding genomes, we examined the role of horizontal gene transfer (HGT), as opposed to an scenario of massive gene loss, in the evolutionary origin and diversification of the DXR-II subfamily in bacteria. Our analyses support a single origin of the DXR-II family through functional divergence, in which constitutes an exceptional model of

  11. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes.

    Science.gov (United States)

    Gallagher, Kelley A; Fenical, William; Jensen, Paul R

    2010-12-01

    Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males.

    Science.gov (United States)

    Prchalová, Darina; Buček, Aleš; Brabcová, Jana; Žáček, Petr; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2016-02-02

    Males of the closely related species Bombus terrestris and Bombus lucorum attract conspecific females by completely different marking pheromones. MP of B. terrestris and B. lucorum pheromones contain mainly isoprenoid (ISP) compounds and fatty acid derivatives, respectively. Here, we studied the regulation of ISP biosynthesis in both bumblebees. RNA-seq and qRT-PCR analyses indicated that acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and farnesyl diphosphate synthase (FPPS) transcripts are abundant in the B. terrestris labial gland. Maximal abundance of these transcripts correlated well with AACT enzymatic activity detected in the LG extracts. In contrast, transcript abundances of AACT, HMGR, and FPPS in B. lucorum were low, and AACT activity was not detected in LGs. These results suggest that transcriptional regulation plays a key role in the control of ISP biosynthetic gene expression and ISP pheromone biosynthesis in bumblebee males.

  13. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    Science.gov (United States)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  14. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale;

    2016-01-01

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP...

  15. Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants.

    Science.gov (United States)

    Hasunuma, Tomohisa; Kondo, Akihiko; Miyake, Chikahiro

    2010-01-01

    Plants synthesize a large number of isoprenoid compounds that have diverse structures and functions. All isoprenoids are synthesized through consecutive condensation of five-carbon precursors, isopentenyl diphosphate (IPP) and its allyl isomer dimethylallyl diphosphate (DMAPP). With recent success in the cloning of genes that encode the enzymes of isoprenoid biosynthesis, genetic engineering strategies for the improvement of plant isoprenoid metabolism have emerged. Plastid transformation technology offers attractive features in plant genetic engineering. It has many advantages over nuclear genome transformation: high-level foreign protein expression, no need for a transit peptide, absence of gene silencing, and convenient transgene stacking in operons. We demonstrated that this technology is a remarkable tool for the production of isoprenoids in plants through metabolic engineering. The expression of bacterial genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) or cyanobacterial genes encoding DXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase) in the plastid genome leads to alteration in isoprenoid content of tobacco leaves.

  16. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production

    DEFF Research Database (Denmark)

    Kang, Aram; Meadows, Corey W.; Canu, Nicolas

    2017-01-01

    of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonate monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from...... ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass� isopentenol pathway using the promiscuous activity...... the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains...

  17. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-11-01

    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  18. A photoactive isoprenoid diphosphate analogue containing a stable phosphonate linkage: synthesis and biochemical studies with prenyltransferases

    Science.gov (United States)

    DeGraw, Amanda J.; Zhao, Zongbao; Strickland, Corey L.; Taban, A. Huma; Hsieh, John; Michael, Jefferies; Xie, Wenshuang; Shintani, David; McMahan, Colleen; Cornish, Katrina; Distefano, Mark D.

    2008-01-01

    A number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing. Here, the synthesis of a benzophenone-based farnesyl diphosphate analogue containing a stable phosphonophosphate group is described. Inhibition kinetics, photolabeling experiments, as well as x-ray crystallographic analysis with a protein prenyltransferase are described, verifying this compound as a good isoprenoid mimetic. In addition, the utility of this new analogue was explored by using it to photoaffinity label crude protein extracts obtained from Hevea brasiliensis latex. Those experiments suggest that a small protein, Rubber Elongation Factor, interacts directly with farnesyl diphosphate during rubber biosynthesis. These results indicate that this benzophenone-based isoprenoid analogue will be useful for identifying enzymes that utilize farnesyl diphosphate as a substrate. PMID:17477573

  19. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, James [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Dietzel, Kevin L. [Amyris, inc., Emeryville, CA (United States); Wichmann, Gale [Amyris, inc., Emeryville, CA (United States); Chan, Rossana [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Antipov, Eugene [Amyris, inc., Emeryville, CA (United States); Moss, Nathan [Amyris, inc., Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Jackson, Peter [Amyris, inc., Emeryville, CA (United States); Gaucher, Sara P. [Amyris, inc., Emeryville, CA (United States); Gottlieb, Shayin [Amyris, inc., Emeryville, CA (United States); LaBarge, Jeremy [Amyris, inc., Emeryville, CA (United States); Mahatdejkul, Tina [Amyris, inc., Emeryville, CA (United States); Hawkins, Kristy M. [Amyris, inc., Emeryville, CA (United States); Muley, Sheela [Amyris, inc., Emeryville, CA (United States); Newman, Jack D. [Amyris, inc., Emeryville, CA (United States); Liu, Pinghua [Boston Univ., MA (United States). Dept. of Chemistry; Keasling, Jay D. [Univ. of California, Berkeley, CA (United States). California Institute of Quantitative Biosciences (QB3); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States). Depts. of Chemical & Biomolecular Engineering and Bioengineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems & Engineering Div.; Technical Univ. of Denmark, Hoesholm (Denmark). Novo Nodisk Foundation Center for Biosustainability; Zhao, Lishan [Amyris, inc., Emeryville, CA (United States)

    2016-10-27

    Isoprenoids are made by all free-living organisms and range from essential metabolites like sterols and quinones to more complex compounds like pinene and rubber. They are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway.

  20. Restricted utility of aryl isoprenoids as indicators of photic zone anoxia

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Schouten, S.; Kohnen, M.E.L.

    1996-01-01

    In a North Sea oil, the carotenoid derivatives -carotene, -isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The 13C values of -carotene and -isorenieratane are similar, whereas isoreniera

  1. Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic archaebacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G. (Colorado State Univ., Fort Collins); Langworthy, T.A.; Holzer, G.; Oro, J.

    1979-01-01

    The neutral lipids of nine species of methanogenic bacteria including five methanobacilli, two methanococci, a methanospirillum, one methanosarcina as well as two thermoacidophilic bacteria, Thermoplasma and Sulfolobus, were analyzed. The major components were C/sub 30/, C/sub 25/ and/or C/sub 20/ acyclic isoprenoid hydrocarbons with a continuous range of hydroisoprenoid homologues. The range of acyclic isoprenoids detected were from C/sub 14/ to C/sub 30/. Apart from Methanosarcina barkeri, squalene and/or hydrosqualene derivatives were the predominant components in all species studied. The components of Methanosarcina barkeri were a family of C/sub 25/ homologues. The distribution of the neutral lipid components and their specific variations in relative intensities emphasized the differences between the test organisms while the generic nature of the isoprenoid hydrocarbons demonstrated similarities between the diverse bacteria. The neutral lipid compositions from these bacteria, many of which exist in environmental conditions like those described for the various evolutionary stages of the archean ecology, resemble the isoprenoid distribution isolated from ancient sediments and petroleum. Therefore, these findings may have major implications to biological and biogeochemical evolution.

  2. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts

    NARCIS (Netherlands)

    Muntendam, Remco; Melillo, Elena; Ryden, Annamargareta; Kayser, Oliver

    2009-01-01

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood toda

  3. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli.

    Science.gov (United States)

    George, Kevin W; Thompson, Mitchell G; Kang, Aram; Baidoo, Edward; Wang, George; Chan, Leanne Jade G; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2015-06-08

    Branched five carbon (C5) alcohols are attractive targets for microbial production due to their desirable fuel properties and importance as platform chemicals. In this study, we engineered a heterologous isoprenoid pathway in E. coli for the high-yield production of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3-methyl-1-butanol, three C5 alcohols that serve as potential biofuels. We first constructed a pathway for 3-methyl-3-buten-1-ol, where metabolite profiling identified NudB, a promiscuous phosphatase, as a likely pathway bottleneck. We achieved a 60% increase in the yield of 3-methyl-3-buten-1-ol by engineering the Shine-Dalgarno sequence of nudB, which increased protein levels by 9-fold and reduced isopentenyl diphosphate (IPP) accumulation by 4-fold. To further optimize the pathway, we adjusted mevalonate kinase (MK) expression and investigated MK enzymes from alternative microbes such as Methanosarcina mazei. Next, we expressed a fusion protein of IPP isomerase and the phosphatase (Idi1~NudB) along with a reductase (NemA) to diversify production to 3-methyl-2-buten-1-ol and 3-methyl-1-butanol. Finally, we used an oleyl alcohol overlay to improve alcohol recovery, achieving final titers of 2.23 g/L of 3-methyl-3-buten-1-ol (~70% of pathway-dependent theoretical yield), 150 mg/L of 3-methyl-2-buten-1-ol, and 300 mg/L of 3-methyl-1-butanol.

  4. Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress.

    Science.gov (United States)

    Loyola, J; Verdugo, I; González, E; Casaretto, J A; Ruiz-Lara, S

    2012-01-01

    Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.

  5. Inhibition Studies on Enzymes Involved in Isoprenoid Biosynthesis: Focus on Two Potential Drug Targets: DXR and IDI-2 Enzymes.

    Science.gov (United States)

    de Ruyck, Jérôme; Wouters, Johan; Poulter, C Dale

    2011-07-01

    Isoprenoid compounds constitute an immensely diverse group of acyclic, monocyclic and polycyclic compounds that play important roles in all living organisms. Despite the diversity of their structures, this plethora of natural products arises from only two 5-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This review will discuss the enzymes in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways leading to IPP and DMAPP with a particular focus on MEP synthase (DXR) and IPP isomerase (IDI), which are potential targets for the development of antibiotic compounds. DXR is the second enzyme in the MEP pathway and the only one for which inhibitors with antimicrobial activity at pharmaceutically relevant concentrations are known. All of the published DXR inhibitors are fosmidomycin analogues, except for a few bisphosphonates with moderate inhibitory activity. These far, there are no other candidates that target DXR. IDI was first identified and characterised over 40 years ago (IDI-1) and a second convergently evolved isoform (IDI-2) was discovered in 2001. IDI-1 is a metalloprotein found in Eukarya and many species of Bacteria. Its mechanism has been extensively studied. In contrast, IDI-2 requires reduced flavin mononucleotide as a cofactor. The mechanism of action for IDI-2 is less well defined. This review will describe how lead inhibitors are being improved by structure-based drug design and enzymatic assays against DXR to lead to new drug families and how mechanistic probes are being used to address questions about the mechanisms of the isomerases.

  6. Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties

    Directory of Open Access Journals (Sweden)

    T. Keenan

    2009-03-01

    Full Text Available Large uncertainties exist in our knowledge of regional emissions of non-methane biogenic volatile organic compounds (BVOC. We address these uncertainties through a two-pronged approach by compiling a state of the art database of the emissions potentials for 80 European forest species, and by a model assessment and inter-comparison, both at the local and regional scale, under present and projected future climatic conditions. We coupled three contrasting isoprenoid models with the ecophysiological forest model GOTILWA+ to explore the interactive effects of climate, vegetation distribution, and productivity, on leaf and ecosystem isoprenoid emissions, and to consider model behaviour in present climate and under projected future climate change conditions. Hourly, daily and annual isoprene emissions as simulated by the models were evaluated against flux measurements. The validation highlighted a general model capacity to capture gross fluxes but inefficiencies in capturing short term variability. A regional inventory of isoprenoid emissions for European forests was created using each of the three modelling approaches. The models agreed on an average European emissions budget of 1.03 TgC a−1 for isoprene and 0.97 TgC a−1 for monoterpenes for the period 1960–1990, which was dominated by a few species with largest aerial coverage. Species contribution to total emissions depended both on species emission potential and geographical distribution. For projected future climate conditions, however, emissions budgets proved highly model dependent, illustrating the current uncertainty associated with isoprenoid emissions responses to potential future conditions. These results suggest that current model estimates of isoprenoid emissions concur well, but future estimates are highly uncertain. We conclude that development of reliable models is highly urgent, but for the time being, future BVOC emission scenario estimates should consider

  7. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    Science.gov (United States)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 µm mesh size) or the ingrowth of roots and fungi (1 µm mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 µg m-2 h-1. The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The

  8. Changes in the isoprenoid pathway with transcendental meditation and Reiki healing practices in seizure disorder.

    Science.gov (United States)

    A, R Kumar; Kurup, P A

    2003-06-01

    A quantal perceptive model of brain function has been postulated by several groups. Reiki-like healing practices in seizure disorder (ILAE classification-II E-generalized seizures-tonic clonic), involving transfer of life force or low level of electromagnetic force (EMF) from the healer to the recipient patient, may act via quantal perceptive mechanisms. Increased synthesis of an endogenous membrane Na+-K+ ATPase inhibitor digoxin and a related tyrosine / tryptophan transport defect has been demonstrated in refractory seizure disorder (ILAE classification-II E-generalized seizures-tonic clonic). Reiki-like healing practices in refractory epilepsy results in a reduction in seizure frequency. Reiki-like healing practices produce membrane stabilization and stimulation of membrane Na+-K+ ATPase activity by quantal perception of low levels of EMF. The consequent intracellular hypermagnesemia inhibits HMG CoA reductase activity and digoxin synthesis resulting in the alteration of the neutral amino acid transport (tryptophan / tyrosine) defect. A hypothalamic digoxin-mediated quantal perception model of brain function is proposed. The phenomena of biological transmutation and consequent hypermagnesemia occurring in the resultant neuronal quantal state is also discussed.

  9. Changes in the isoprenoid pathway with transcendental meditation and Reiki healing practices in seizure disorder

    Directory of Open Access Journals (Sweden)

    Kumar R

    2003-04-01

    Full Text Available A quantal perceptive model of brain function has been postulated by several groups. Reiki-like healing practices in seizure disorder (ILAE classification - II E - generalized seizures - tonic clonic, involving transfer of life force or low level of electromagnetic force (EMF from the healer to the recipient patient, may act via quantal perceptive mechanisms. Increased synthesis of an endogenous membrane Na+-K+ ATPase inhibitor digoxin and a related tyrosine / tryptophan transport defect has been demonstrated in refractory seizure disorder (ILAE classification - II E - generalized seizures - tonic clonic. Reiki-like healing practices in refractory epilepsy results in a reduction in seizure frequency. Reiki-like healing practices produce membrane stabilization and stimulation of membrane Na+-K+ ATPase activity by quantal perception of low levels of EMF. The consequent intracellular hypermagnesemia inhibits HMG CoA reductase activity and digoxin synthesis resulting in the alteration of the neutral amino acid transport (tryptophan / tyrosine defect. A hypothalamic digoxin-mediated quantal perception model of brain function is proposed. The phenomena of biological transmutation and consequent hypermagnesemia occurring in the resultant neuronal quantal state is also discussed.

  10. A new C9 nor-isoprenoid glucoside from Rantherium suaveolens.

    Science.gov (United States)

    Oueslati, M Habib; Ben Jannet, H; Mighri, Zine; Matthew, Susan; Abreu, Pedro M

    2007-08-01

    The new C(9) nor-isoprenoid 3-methyl-octa-1,5-diene-7-one-3-O-beta-D-glucopyranoside, named as ranthenone glucoside (1), together with the previously known 9-hydoxylinaloyl glucoside (2), sitosterol-3beta-O-[6'-palmitoyl-beta-D-glucopyranoside] (3), scopoletin (4), fraxetin (5), and scopolin (6), were isolated from the aerial parts of Rantherium suaveolens. The structures of these compounds were elucidated by extensive spectroscopic analysis.

  11. Closed pyrolyses of the isoprenoid algaenan of Botryococcus braunii, L race: geochemical implications for derived kerogens

    Science.gov (United States)

    Behar, F.; Derenne, S.; Largeau, C.

    1995-07-01

    Algaenans, i.e., highly aliphatic, nonhydrolysable, insoluble macromolecular constituents, have been identified in a number of microalga cell walls and their selective preservation shown to play a major role in the formation of numerous kerogens. All the algaenans so far examined comprise a network of long polymethylenic chains, except for the L race of Botryococcus braunii. The resistant macromolecular material isolated from the latter, termed PRB L, is based on C 40 isoprenoid chains with a lycopane-type skeleton. Recent comparative studies of PRB L and of Botryococcus-derived sediments provided the first example of kerogen formation via the selective preservation of an "isoprenoid" algaenan. The present study is concerned with PRB L pyrolyses in sealed gold tubes under various temperature/time conditions (260-350°C, 0.5-69 h). For the conversion rates thus obtained, ranging from 30 to 100%, a complete mass balance of the different families of pyrolysis products was established; most of the C 1 to C 40 pyrolysate constituents were identified and the abundances of the above compounds and their variations with conversion progress were determined. This study thus allowed us (1) to derive further information about PRB L chemical structure (location of the ether bridges, contribution of linear chains and their relationships with the C 40 isoprenoid ones), (2) to determine the behaviour of this isoprenoid algaenan to thermal stress (timing of the formation of the different groups of products then released, nature of the primary cleavages, origin and mode of formation of the secondary products, and further degradations), and (3) to show, in connection with previous studies, that PRB L-derived kerogens should exhibit pronounced differences relative to standard type I kerogens, the latter being based on polymethylenic chains, regarding not only the structure of the generated products but also the timing of oil generation (upward shift of the catagenesis zone).

  12. Restricted utility of aryl isoprenoids as indicators of photic zone anoxia

    OpenAIRE

    Sinninghe Damsté, J.S.; Koopmans, M. P.; S. Schouten; Kohnen, M.E.L.

    1996-01-01

    In a North Sea oil, the carotenoid derivatives -carotene, -isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The 13C values of -carotene and -isorenieratane are similar, whereas isorenieratane is ca. 15% heavier. This suggests that -isorenieratane is not derived from -isorenieratane biosynthesised by Chlorobiaceae, but from aromatisation of -carotene. This was confirmed by laborator...

  13. Structure elucidation and phytotoxicity of C13 nor-isoprenoids from Cestrum parqui.

    Science.gov (United States)

    D'Abrosca, Brigida; DellaGreca, Marina; Fiorentino, Antonio; Monaco, Pietro; Oriano, Palma; Temussi, Fabio

    2004-02-01

    Twelve C(13) nor-isoprenoids have been isolated from the leaves of Cestrum parqui (Solanaceae). The structure (2R,6R,9R)-2,9-dihydroxy-4-megastigmen-3-one has been assigned to the new compound. All the structures have been determined by spectroscopic means and chemical correlations. The compounds showed phytotoxic effect on the germination and growth of Lactuca sativa L.

  14. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    Science.gov (United States)

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  15. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia

    Science.gov (United States)

    Koopmans, Martin P.; Schouten, Stefan; Kohnen, Math E. L.; Sinninghe Damsté, Jaap S.

    1996-12-01

    In a North Sea oil, the carotenoid derivatives β-carotene, β-isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The δ13C values of β-carotene and β-isorenieratane are similar, whereas isorenieratane is ca. 15% heavier. This suggests that β-isorenieratane is not derived from β-isorenieratane biosynthesised by Chlorobiaceae, but from aromatisation of β-carotene. This was confirmed by laboratory aromatisation of partially hydrogenated β-carotene, which yielded β-isorenieratane as the main product. The aryl isoprenoids, which can be formed by Csbnd C bond cleavage of both isorenieratane and β-isorenieratane, have a mixed isotopic signature in the oil. These results indicate that mere identification of aryl isoprenoids, without determination of their δ13C values, cannot be used to assess the presence of Chlorobiaceae, and, thus, photic zone anoxia in the depositional environment.

  16. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

    Science.gov (United States)

    Naik, Vaishali; Delire, Christine; Wuebbles, Donald J.

    2004-03-01

    Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global climate and atmospheric carbon dioxide (CO2) concentration during the period 1971-1990. We integrate surface emission algorithms within the framework of a dynamic global ecosystem model, the Integrated Biospheric Simulator (IBIS), to simulate biogenic fluxes of isoprenoids as a component of the climate-vegetation dynamics. IBIS predicts global land surface isoprene emissions of 454 Tg C and monoterpenes of 72 Tg C annually and captures the spatial and temporal patterns well. The combined fluctuations in climate and atmospheric CO2 during 1971-1990 caused significant interannual and seasonal variability in global biogenic isoprenoid fluxes that was somewhat related to the El Niño-Southern Oscillation. Furthermore, an increasing trend in the simulated emissions was seen during this period that is attributed partly to the warming trend and partly to CO2 fertilization effect. The isolated effect of increasing CO2 during this period was to steadily increase emissions as a result of increases in foliar biomass. These fluctuations in biogenic emissions could have significant impacts on regional and global atmospheric chemistry and the global carbon budget.

  17. Growth regulating properties of isoprene and isoprenoid-based essential oils.

    Science.gov (United States)

    Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K

    2016-01-01

    Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

  18. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-07-01

    Full Text Available The rate of constitutive isoprenoid emissions from plants is driven by plant emission capacity under specified environmental conditions (ES, the emission factor and by responsiveness of the emissions to instantaneous variations in environment. In models of isoprenoid emission, ES has been often considered as intrinsic species-specific constant invariable in time and space. Here we analyze the variations in species-specific values of ES under field conditions focusing on abiotic stresses, past environmental conditions and developmental processes. The reviewed studies highlight strong stress-driven, adaptive (previous temperature and light environment and growth CO2 concentration and developmental (leaf age variations in ES values operating at medium to long time scales. These biological factors can alter species-specific ES values by more than an order of magnitude. While the majority of models based on early concepts still ignore these important sources of variation, recent models are including some of the medium- to long-term controls. However, conceptually different strategies are being used for incorporation of these longer-term controls with important practical implications for parameterization and application of these models. This analysis emphasizes the need to include more biological realism in the isoprenoid emission models and also highlights the gaps in knowledge that require further experimental work to reduce the model uncertainties associated with biological sources of variation.

  19. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  20. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    Directory of Open Access Journals (Sweden)

    Ü. Niinemets

    2010-06-01

    Full Text Available In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993, instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels and various

  1. Remote sensing of plant emissions of volatile isoprenoids with PRI. Prospects for upscaling (Invited)

    Science.gov (United States)

    Penuelas, J.

    2013-12-01

    Josep Peñuelas*1,2, Giovanni Marino1,2,3,4, Joan LLusia1,2, Catherine Morfopoulos1,2,5, Gerard Farre-Armengol1,2, Shawn Kefauver, Alex Guenther6 , Francesca Rapparini7 , Roger Seco1,2,6, Marc Estiarte1,2, Mónica Mejia-Chang1,2, Romà Ogaya1,2, Jordi Sardans1,2 , Andrew Turnipseed6, Peter Harley6, Osvaldo Facini7, Rita Baraldi7, Jim Greenberg6 , Iolanda Filella1,2 1 CSIC, Global Ecology Unit CREAF-CEAB-UAB, Cerdanyola del Vallés 08193, Catalonia, Spain 2 CREAF, Cerdanyola del Vallés 08193, Catalonia, Spain 3 Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy 4 Institute for Plant Protection, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy 5 Division of Ecology and Evolution, Imperial College, Silwood Park, Ascot, SL5 7PY, UK 6 Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA 7 Biometeorology Institute, IBIMET-CNR, Via P. Gobetti 101, Bologna, Italy Abstract Terrestrial plants re-emit around 1-2% of the carbon they fix as isoprene and monoterpenes. These emissions play major roles in the ecological relationships among living organisms and in atmospheric chemistry and climate, and yet their actual quantification at the ecosystem level in different regions is far from being resolved. Phenomenological models are used to estimate the emission rates, but the limited understanding of the function and regulation of these emissions leads to large uncertainties in such estimations. Many measurements have been made at the foliar but few at the ecosystem level, and those that do exist are limited in space and time. We here provide evidence that a simple remote sensing index, the photochemical reflectance index (PRI), which is indicative of light use efficiency (LUE), is a good indirect estimator of foliar isoprenoid emissions and therefore can be used to sense them remotely. These results open

  2. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as chol

  3. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes

    NARCIS (Netherlands)

    Xue, Dan; Abdallah, Ingy I.; de Haan, Ilse E.M.; Sibbald, Mark J.J.B.; Quax, Wim J.

    2015-01-01

    Creating novel biosynthetic pathways and modulating the synthesis of important compounds are one of the hallmarks of synthetic biology. Understanding the key parameters controlling the flux of chemicals throughout a metabolic pathway is one of the challenges ahead. Isoprenoids are the most functiona

  4. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes

    NARCIS (Netherlands)

    Xue, Dan; Abdallah, Ingy I.; de Haan, Ilse E.M.; Sibbald, Mark J.J.B.; Quax, Wim J.

    2015-01-01

    Creating novel biosynthetic pathways and modulating the synthesis of important compounds are one of the hallmarks of synthetic biology. Understanding the key parameters controlling the flux of chemicals throughout a metabolic pathway is one of the challenges ahead. Isoprenoids are the most

  5. Change of isoprenoids, steranes and terpanes during ex situ bioremediation of mazut on industrial level

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2010-01-01

    Full Text Available The paper presents results of the ex situ bioremediation of soil contaminated by mazut (heavy residual fuel oil in the field scale (600 m3. A treatment-bed (thickness 0.4 m consisted of mechanically mixed mazut-contaminated soil, softwood sawdust as the additional carbon source and crude river sand, as bulking and porosity increasing material. The inoculation/reinoculation was conducted periodically using a biomass of a consortium of zymogenous microorganisms isolated from the bioremediation substrate. The biostimulation was performed through addition of nutritious substances (N, P and K. The aeration was improved by systematic mixing of the bioremediation system. After 50 days, the number of hydrocarbon degraders increased 100 times. Based on the changes in the group composition, the average biodegradation rate during bioremediation was 24 mg/kg/day for the aliphatic fraction, 6 mg/kg/day for the aromatic fraction, and 3 mg/kg/day for the nitrogen-sulphuroxygen compounds (NSO-asphaltene fraction. In the saturated hydrocarbon fraction, gas chromatography-mass spectrometry (GC-MS in the single ion-monitoring mode (SIM was applied to analyse isoprenoids pristane and phytane and polycyclic molecules of sterane and triterpane type. Biodegradation occurred during the bioremediation process, as well as reduction of relative quantities of isoprenoids, steranes, tri- and tetracyclic terpanes and pentacyclic terpanes of hopane type.

  6. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    Science.gov (United States)

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  7. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation.

    Science.gov (United States)

    DeGraw, Amanda J; Palsuledesai, Charuta; Ochocki, Joshua D; Dozier, Jonathan K; Lenevich, Stepan; Rashidian, Mohammad; Distefano, Mark D

    2010-12-01

    Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C-termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne-containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated. Derivatization via Cu(I) catalyzed click reaction with a fluorescent azide reagent allows the proteins to be visualized and their relative levels to be analyzed. Simultaneous treatment of cells with these probes and inhibitors of prenylation reveals decreases in the levels of some but not all of the labeled proteins. Two-dimensional electrophoretic separation of these labeled proteins followed by mass spectrometric analysis allowed several labeled proteins to be unambiguously identified. Docking experiments and density functional theory calculations suggest that the substrate specificity of protein farnesyl transferase may vary depending on whether azide- or alkyne-based isoprenoid analogs is employed. These results demonstrate the utility of alkyne-containing analogs for chemical proteomic applications.

  8. Conversion of Isoprenoid Oil by Catalytic Cracking and Hydrocracking over Nanoporous Hybrid Catalysts

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kimura

    2012-01-01

    Full Text Available In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al2O3 and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT, hydrocracking (HC, and catalytic cracking (CC of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al2O3/H-USY and ns Al2O3/H-GaAlMFI; HC: [Ni-Mo/γ-Al2O3]/ns Al2O3/H-beta were studied. The major product from CC on ns Al2O3/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.

  9. Conversion of isoprenoid oil by catalytic cracking and hydrocracking over nanoporous hybrid catalysts.

    Science.gov (United States)

    Kimura, Toshiyuki; Liu, Chen; Li, Xiaohong; Maekawa, Takaaki; Asaoka, Sachio

    2012-01-01

    In order to produce petroleum alternatives from biomass, a significant amount of research has been focused on oils from microalgae due to their origin, which would not affect food availability. Nanoporous hybrid catalysts composed of ns Al₂O₃ and zeolites have been proven to be very useful compared to traditional catalysts in hydrotreating (HT), hydrocracking (HC), and catalytic cracking (CC) of large molecules. To evaluate the reaction scheme and products from model isoprenoid compounds of microalgae oil, nanoporous hybrid catalyst technologies (CC: ns Al₂O₃/H-USY and ns Al₂O₃/H-GaAlMFI; HC: [Ni-Mo/γ-Al₂O₃]/ns Al₂O₃/H-beta) were studied. The major product from CC on ns Al₂O₃/H-USY was highly aromatic gasoline, while the product from HC was half-isoparaffinic/olefinic kerosene. Although more than 50 wt% of the products from HT/CC on the USY catalyst was liquefied petroleum gas due to overcracking, the product from HT/CC on the MFI catalyst was high-octane-number gasoline. Delightfully, the product from HT/HC was kerosene and its average number was 11, with more than 80 wt% being isoparaffinic. As a result, it was demonstrated that hydrotreating may convert isoprenoid oil from microalgae over nanoporous hybrid catalysts into a variety of products.

  10. Organic geochemical studies of a Messinian evaporitic basin, Northern Apennines (Italy) II. Isoprenoid and n-alkyl thiophenes and thiolanes

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Haven, H.L. ten; Leeuw, J.W. de; Schenck, P.A.

    1986-01-01

    Series of n-alkyl and isoprenoid thiophenes and thiolanes, most of which have not been previously reported, have been identified in an extract from a Messinian (Upper Miocene)layer deposited under hypersaline, euxinic conditions. The identifications were based on mass spectra and chromatographic dat

  11. Identification of long-chain isoprenoid alkylbenzenes in sediments and crude oils

    Science.gov (United States)

    Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. C.; de Leeuw, Jan W.

    1988-11-01

    A series of novel methylated phytanylbenzenes (phytanylbenzene, 1-methyl-3-phytanylbenzene, 1,4-dimethyl-2-phytanylbenzene, 1,2-dimethyl-4-phytanylbenzene and 1,2,4-trimethyl-5-phytanylbenzene) have been identified in sediment extracts and oils ranging in age from Miocene to Permian. Identifications were based on comparison of mass spectra and Chromatographie data of synthetic methylated phytanylbenzenes with those of geologically occurring methylated phytanylbenzenes and by coinjections with the standards. Although methylated phytanylbenzenes are structurally related to the methylated 2-methyl-2-(4,8,12-trimethyltridecyl)chromans, components also present in the samples studied, the former do not appear to be the diagenetic derivatives of the latter. The methylated phytanylbenzenes are thought to be derived diagenetically from isoprenoid quinones or may represent a direct biosynthetic origin from specific archaebacteria.

  12. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli.

    Science.gov (United States)

    Wang, Jian-Feng; Xiong, Zhi-Qiang; Li, Shi-Yuan; Wang, Yong

    2013-09-01

    Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.

  13. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Science.gov (United States)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  14. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel.

    Science.gov (United States)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-05-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni30 and Ni200). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO2] than in control leaves. However chloroplastic [CO2] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A highly spatially resolved GIS-based model to assess the isoprenoid emissions from key Italian ecosystems

    Science.gov (United States)

    Pacheco, Claudia Kemper; Fares, Silvano; Ciccioli, Paolo

    2014-10-01

    The amount of Biogenic Volatile Organic Compounds (BVOC) emitted from terrestrial vegetation is of great importance in atmospheric reactivity, particularly for ozone-forming reactions and as condensation nuclei in aerosol formation and growth. This work presents a detailed inventory of isoprenoid emissions from vegetation in Italy using an original approach which combines state of the art models to estimate the species-specific isoprenoid emissions and a Geographic Information System (GIS) where emissions are spatially represented. Isoprenoid species and basal emission factors were obtained by combining results from laboratory experiments with those published in literature. For the first time, our investigation was not only restricted to isoprene and total monoterpenes, but our goal was to provide maps of isoprene and individual monoterpenes at a high-spatial (˜1 km2) and temporal resolution (daily runs, monthly trends in emissions are discussed in the text). Another novelty in our research was the inclusion of the effects of phenology on plant emissions. Our results show that: a) isoprene, a-pinene, sabinene and b-pinene are the most important compounds emitted from vegetation in Italy; b) annual biogenic isoprene and monoterpene fluxes for the year 2006 were ˜31.30 Gg and ˜37.70 Gg, respectively; and c) Quercus pubescens + Quercus petrea + Quercus robur, Quercus ilex, Quercus suber and Fagus sylvatica are the principal isoprenoid emitting species in the country. The high spatial and temporal resolution, combined with the species-specific emission output, makes the model particularly suitable for assessing local budgets, and for modeling photochemical pollution in Italy.

  16. Applicability of highly branched isoprenoids as a sea ice proxy in the Ross Sea

    Science.gov (United States)

    Kim, Jung-Hyun; Lee, Jae Il; Belt, Simon T.; Gal, Jong-Ku; Smik, Lukas; Shin, Kyung-Hoon

    2016-04-01

    Sea ice is an integral component of the polar climate system, constraining the effect of changing surface albedo, ocean-atmosphere heat exchanges, the formation of deep and intermediate waters that participate in driving the meridional overturning circulation and thus global climate. In recent years, a mono-unsaturated highly branched isoprenoid (HBI) alkene which is biosynthesised by certain sea ice diatoms during the spring bloom and, upon ice melt, deposited into underlying sediments, has been uniquely observed in Arctic sea ice and in Arctic sediments. Hence, the term IP25 (ice proxy with 25 carbon atoms) was proposed to distinguish this compound from other HBI isomers and has become an established proxy for the reconstruction of Arctic sea ice. In contrast, a monounsaturated HBI alkene, i.e. IP25, has not been observed in sea ice or sediments from the Antarctic. Hence, the application of diene and triene HBI concentrations and the resulting diene/triene (D/T) ratio was alternatively introduced as sea ice/open water indicators in the Southern Ocean. However, there is still lack of data covering the wide areas around the Antarctic, especially from the Ross Sea. Hence, we investigated surface sediment samples from the Ross Sea (n=14) collected during the R/V ARAON cruise in 2015 as well as from the Antarctic Peninsula (n=17) collected during several R/V ARAON cruises between 2001 and 2013. We will present our preliminary results and will discuss the applicability of the HBI in the Ross Sea.

  17. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  18. Isoprenoid emission of oak species typical for the Mediterranean area: Source strength and controlling variables

    Science.gov (United States)

    Steinbrecher, Rainer; Hauff, Karin; Rabong, Richard; Steinbrecher, Jutta

    Measurements of isoprenoid emission on five Mediterranean oak species in the field revealed that Quercus frainetto, Quercus petraea and Quercus pubescens are strong emitters of isoprene. In contrast Quercus cerris and Quercus suber emitted no significant amounts of isoprene and monoterpenes. For Q. pubenscens and Q. frainetto median emission factors of 16.68 nmol m -2 s -1 (86.06 μg g -1 dw h -1) and 30.72 nmol m -2 s -1 (133.95 μg g -1 dw h -1 were calculated, respectively. The 25 to 75 percentiles span of the emission factor data sets ranged from - 53% to + 56% of the median values. Light and temperature are the main controlling factors for isoprene emission. The influence of other environmental and plant physiological parameters on the isoprene emission is discussed. The "Guenther" emission algorithm is able to predict the daily maximum of the isoprene emission within the plant specific uncertainty range. However, the morning increase and the afternoon drop in the isoprene emission is not well parameterized. On the basis of process oriented models for the synthesis of isoprene in plants, a further reduction in the uncertainty may be achieved resulting in a more reliable prediction of short-time variation in isoprene emission.

  19. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera.

    Science.gov (United States)

    Ferriols, Victor Marco Emmanuel N; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-05-21

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom.

  20. A model to assess the emission of individual isoprenoids emitted from Italian ecosystems

    Science.gov (United States)

    Kemper Pacheco, C. J.; Fares, S.; Loreto, F.; Ciccioli, P.

    2012-04-01

    The aim of this work was to develop a GIS-based model to estimate the emissions from the Italian forest ecosystems. The model was aimed at generating a species-specific emission inventory for isoprene and individual monoterpenes that could have been validated with experimental data collected in selected sites of the CARBOITALY network. The model was develop for the year 2006. At a resolution of 1 km2 with a daily time resolution. By using the emission rates of individual components obtained through several laboratory and field experiments carried out on different vegetation species of the Mediterranean basin, maps of individual isoprenoids were generated for the Italian ecosystems. The spatial distribution and fractional contents of vegetation species present in the Italian forest ecosystems was obtained by combining the CORINE IV land cover map with National Forest Inventory based on ground observations performed at local levels by individual Italian regions (22) in which the country is divided. In general, basal emission rates for individual isoprenoids was reported by Steinbrecher et al. 1997 and Karl et al. 2009 were used. In this case, classes were further subdivided into T and L+T emitters as functions of the active pool. In many instances, however they were revised based on the results obtained in our Institute through determinations performed at leaf, branch (cuvette method) or ecosystem level (REA and the gradient method). In the latter case, studies performed in Italy and/or Mediterranean countries were used. An empirical light extinction function as a function of the canopy type and structure was introduced. The algorithms proposed by (Guenther et al. 1993) were used, but, they were often adapted to fit with the experimental observations made in the Mediterranean Areas. They were corrected for a seasonality factor (Steinbrecher et al. 2009) taking into account a time lag in leaf sprouting due to the plant elevation. A simple parameterization with LAI was

  1. Role of minerals in the thermal alteration of organic matter. IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, B.J.; Tannenbaum, E.; Kaplan, I.R.

    1987-05-01

    A series of pyrolysis experiments, utilizing two different immature oil-prone kerogens mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the effects of minerals on the generation of n-alkanes, acyclic isoprenoids, and alkenes during laboratory-simulated catagenesis of kerogen. The influence of clay minerals on the aliphatic hydrocarbons is critically dependent on the water concentration during laboratory thermal maturation. Under extremely low contents of water, C/sub 12+/-range n-alkanes and acyclic isoprenoids are mostly destroyed by montmorillonite but undergo only a minor alteration with illite. Both clay minerals significantly reduce alkene formation during dry pyrolysis. Under hydrous conditions (mineral/water = 2:1), the effects of the clay minerals are substantially reduced. In addition, the dry-pyrolysis experiments show that illite and montmorillonite preferentially retain large amounts of the polar constituents of bitumen, but not n-alkanes of acyclic isoprenoids. Therefore, bitumen fractionation according to polarity differences occurs in the presence of these clay minerals. By this process, n-alkanes, and acyclic isoprenoids are concentrated in the bitumen fraction that is not strongly adsorbed on the clay matrices. In contrast, calcite has no significant influence on the thermal evolution of the hydrocarbons. In addition, calcite is incapable of retaining bitumen. Therefore, the fractionation of n-alkanes or acyclic isoprenoids relative to the polar constituents of bitumen is insignificant in the presence of calcite.

  2. Structure elucidation of C80, C81 and C82 isoprenoid tetraacids responsible for naphthenate deposition in crude oil production.

    Science.gov (United States)

    Lutnaes, Bjart F; Krane, Jostein; Smith, Ben E; Rowland, Steven J

    2007-06-21

    A series of C(80) isoprenoid 20-bis-16,16'-biphytanyl tetraacids has previously been found to be responsible for calcium naphthenate scaling in crude oil processing. This paper describes the structure elucidation by high-field NMR spectroscopy of the structures of the series of homologous C(80) tetraacids containing 4-8 five-membered rings. In addition, the structures of methyl-substituted C(81) and C(82) analogues containing 7 and 8 five-membered rings have been determined for the first time. The biosynthetic implications are discussed.

  3. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis.

    Science.gov (United States)

    Kudoh, Kai; Kawano, Yusuke; Hotta, Shingo; Sekine, Midori; Watanabe, Takafumi; Ihara, Masaki

    2014-07-01

    Cyanobacteria have recently been receiving considerable attention owing to their potential as photosynthetic producers of biofuels and biomaterials. Here, we focused on the production of isoprenoids by cyanobacteria, and aimed to provide insight into metabolic engineering design. To this end, we examined the over-expression of a key enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in the cyanobacterium Synechocystis sp. PCC6803. In the DXS-over-expression strain (Dxs_ox), the mRNA and protein levels of DXS were 4-times and 1.5-times the levels in the wild-type (WT) strain, respectively. The carotenoid content of the Dxs_ox strain (8.4 mg/g dry cell weight [DCW]) was also up to 1.5-times higher than that in the WT strain (5.6 mg/g DCW), whereas the glycogen content dramatically decreased to an undetectable level. These observations suggested that the carotenoid content in the Dxs_ox strain was increased by consuming glycogen, which is a C-storage compound in cyanobacteria. We also quantified the total sugar (145 and 104 mg/g DCW), total fatty acids (31 and 24 mg/g DCW) and total protein (200 and 240 mg/g DCW) content in the WT and Dxs_ox strains, respectively, which were much higher than the carotenoid content. In particular, approximately 54% of the proteins were phycobiliproteins. This study demonstrated the major destinations of carbon flux in cyanobacteria, and provided important insights into metabolic engineering. Target yield can be improved through optimization of gene expression, the DXS protein stabilization, cell propagation depression and restriction of storage compound synthesis.

  4. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2'-dirhamnoside.

    Science.gov (United States)

    Takaichi, Shinichi; Maoka, Takashi; Takasaki, Kazuto; Hanada, Satoshi

    2010-03-01

    Gemmatimonas aurantiaca strain T-27(T) is an orange-coloured, Gram-negative, facultatively aerobic, polyphosphate-accumulating bacterium belonging to a recently proposed phylum, Gemmatimonadetes. We purified its pigments and identified them as carotenoids and their glycoside derivatives using spectral data. The major carotenoid was (2S,2' S)-oscillol 2,2'-di-(alpha-l-rhamnoside), and the minor carotenoids were (2S)-deoxyoscillol 2-( alpha-l-rhamnoside) and didemethylspirilloxanthin. Deoxyoscillol 2-rhamnoside is a novel carotenoid. Oscillol 2,2'-diglycosides have hitherto only been reported in a limited number of cyanobacteria, and this is believed to be the first finding of such carotenoids in another bacterial phylum. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence, we propose a biosynthetic pathway for the carotenoids and the corresponding genes and enzymes. We propose the involvement of geranylgeranyl pyrophosphate synthase (CrtE), phytoene synthase (CrtB) and phytoene desaturase (CrtI) for lycopene synthesis; and of carotenoid 1,2-hydratase (CruF) and carotenoid 2-O-rhamnosyltransferase (CruG) for oscillol 2,2'-dirhamnoside synthesis. Further, isopentenyl pyrophosphate could be synthesized by a non-mevalonate pathway (DXP pathway).

  5. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria

    Science.gov (United States)

    Summons, R. E.; Powell, T. G.

    1987-03-01

    A series of C 13 to C 31 aryl isoprenoids (1-alkyl,2,3,6-trimethylbenzenes) have been identified in reef-hosted oils and their source rocks from the Middle and Upper Silurian of the Michigan Basin and Middle Devonian of the Alberta Basin, Canada. Their structure has been confirmed by unambiguous synthesis of the C 14 member of the series. Their structure and isotopic composition indicate that they are derived from isorenieratene from the Chlorobiaceae family of sulphur bacteria. These results are consistent with geological and geochemical studies that show that the source rocks were deposited under metahaline to hypersaline sulphate and sulphide rich water columns. The distribution of other biomarkers in these oils and source rocks indicates that a diverse biota contributed organic matter to the source environment. In conjunction with the aryl isoprenoids, they show that there is a remarkable similarity in composition between the two sets of oils and source rocks despite their great temporal and geographic separation. This reflects the similarity of their environments and emphasizes the importance of sedimentary facies in controlling the composition of organic matter in source rocks and their derived oils.

  6. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway.

    Science.gov (United States)

    Guevara-García, Arturo; San Román, Carolina; Arroyo, Analilia; Cortés, María Elena; de la Luz Gutiérrez-Nava, María; León, Patricia

    2005-02-01

    The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.

  7. Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum

    Science.gov (United States)

    Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada

    The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.

  8. Recognition of n-alkyl and isoprenoid biopolymers in marine sediments by stable carbon isotopic analysis of pyrolysis products of kerogens

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hold, I.M.; Schouten, S.; Kaam-Peters, H.M.E. van

    1998-01-01

    Analysis of the pyrolysis products of several marine kerogens revealed that the stable carbon isotopic composition of the n-alkanes (C10-C25) are quite similar to those of the n-alkenes. This suggests that they have a common origin such as algal biopolymers. The isoprenoid alkanes (C13-C20) also hav

  9. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances.

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-10

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.

  10. Origin and diagenetic transformations of C25 and C30 highly branched isoprenoid sulphur compounds : further evidence for the formation of organic sulphur compounds during early diagenesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Rullkotter, J.; Haven, H.L. ten

    1990-01-01

    A number of C₂₅ and C₃₀ highly branched isoprenoid (HBI) sulphur compounds (e. g. , thiolanes, l-oxo-thiolanes, thiophenes, and benzo[b]thiophenes) with 2, 6, 10, 14-tetramethyl-7-(3-methylpentyl) pentadecane and 2, 6, 10, 14, 18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identif

  11. A C-25 highly branched isoprenoid alkene and C-25 and C-27 n-polyenes in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Sinninghe Damste, J.S; Rijpstra, W.I C; Schouten, S; Peletier, H.; van der Maarel, M.J.E.C.; Gieskes, W.W C

    1999-01-01

    A North Atlantic strain of the marine diatom Rhizosolenia setigera was examined for the presence of hydrocarbons. This strain biosynthesizes a highly branched isoprenoid (HBI) C-25 pentaene, in contrast to Australian strains of R. setigera which produce HBI C-30 alkenes. The more widespread occurren

  12. A C25 highly branched isoprenoid alkene and C25 and C27 n-polyenes in the marine diatom Rhizosolenia setigera

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Schouten, S.; Peletier, H.; Maarel, M.J.E. van der; Gieskes, W.W.C.

    1999-01-01

    A North Atlantic strain of the marine diatom Rhizosolenia setigera was examined for the presence of hydrocarbons. This strain biosynthesizes a highly branched isoprenoid (HBI) C25 pentaene, in contrast to Australian strains of R. setigera which produce HBI C30 alkenes. The more widespread occurrence

  13. Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances

    Science.gov (United States)

    Junker, Laura Verena; Kleiber, Anita; Jansen, Kirstin; Wildhagen, Henning; Hess, Moritz; Kayler, Zachary; Kammerer, Bernd; Schnitzler, Jörg-Peter; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo

    2017-01-01

    For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change. PMID:28071755

  14. Identification and geochemical significance of cyclic di- and trisulphides with linear and acyclic isoprenoid carbon skeletons in immature sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kohnen, M.E.L.; Sinninghe Damste, J.S.; Kock-Van Dalen, A.C.; Schouten, S.; Leeuw, J.W. De. (Delft Univ. of Tech. (Netherlands)); Haven, H.L. Ten (Inst. of Petroleum and Organic Geochemistry, Juelich (Germany))

    1991-12-01

    Homologous series (C{sub 15}-C{sub 24}) of novel 3-n-alkyl-1,2-dithianes and 3-n-alkyl-6-methyl-1,2-dithianes have been identified in immature sediments. The identification of these compounds was based on comparison of mass spectra and chromatographic data with those of synthesized 3-methyl-6-tridecyl-1,2-dithiane. In addition, 4-methyl-3-(3,7,11-trimethyldodecyl)-1,2-dithiane, 4-(4-8,12-trimethyltridecyl)-1,2-dithiane, 5-methyl-4-(3,7,11-trimethyldodecyl)-1,2,3-trithiepane, and a 1,2-dithiane possessing a pentakishomohopane carbon skeleton were tentatively assigned on the basis of mass spectral characteristics, selective chemolysis, and desulfurization. The occurrence of these cyclic di- and trisulfides with linear, acyclic isoprenoid and hopanoid carbon skeletons in thermally immature sediments indicates that inorganic polysulfides are incorporated into functionalized lipids during the early stages of diagenesis.

  15. Identification and geochemical significance of cyclic di-and trisulphides with linear and acyclic isoprenoid carbon skeletons in immature sediments

    Science.gov (United States)

    Kohnen, Math E. L.; Sinninghe Damsté, Jaap S.; ten Haven, H. L.; Van Dalen, A. C. Kock; Schouten, Stefan; De Leeuw, Jan W.

    1991-12-01

    Homologous series (C 15-C 24) of novel 3- n-alkyl-1,2-dithianes and 3- n-alkyl-6-methyl-1,2-di-thianes have been identified in immature sediments. The identification of these compounds was based on comparison of mass spectra and Chromatographie data with those of synthesized 3-methyl-6-tridecyll, 2-dithiane. In addition, 4-methyl-3-(3,7,11-trimethyldodecyl)-1,2-dithiane, 4-(4,8,12-trimethyltridecyl)-1,2-dithiane, 5-methyl-4-(3,7,11-trimethyldodecyl)-1,2,3-trithiepane, and a 1,2-dithiane possessing a pentakishomohopane carbon skeleton were tentatively assigned on the basis of mass spectral characteristics, selective chemolysis, and desulphurisation. The occurrence of these cyclic di-and trisulphides with linear, acyclic isoprenoid and hopanoid carbon skeletons in thermally immature sediments indicates that inorganic polysulphides are incorporated into functionalised lipids during the early stages of diagenesis.

  16. The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis.

    Science.gov (United States)

    Thabet, Insaf; Guirimand, Grégory; Courdavault, Vincent; Papon, Nicolas; Godet, Stéphanie; Dutilleul, Christelle; Bouzid, Sadok; Giglioli-Guivarc'h, Nathalie; Clastre, Marc; Simkin, Andrew J

    2011-11-15

    Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.

  17. The diversion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate from the 2-C-methyl-D-erythritol 4-phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Gonzalez-Cabanelas, D.; Wright, L.P.; Paetz, C.; Onkokesung, N.; Gershenzon, J.; Rodriguez-Concepcion, M.; Phillips, M.A.

    2015-01-01

    2-C-Methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) is an intermediate of the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co-factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds-3

  18. The role of minerals in the thermal alteration of organic matter. IV - Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments

    Science.gov (United States)

    Huizinga, Bradley J.; Tannenbaum, Eli; Kaplan, Isaac R.

    1987-05-01

    The effect of common sedimentary minerals (illite, Na-montmorillonite, or calcite) under different water concentrations on the generation and release of n-alkanes, acyclic isoprenoids, and select alkenes from oil-prone kerogens was investigated. Matrices containing Green River Formation kerogen or Monterey Formation kerogen, alone or in the presence of minerals, were heated at 200 or 300 C for periods of up to 1000 hours, and the pyrolysis products were analyzed. The influence of the first two clay minerals was found to be critically dependent on the water content. Under the dry pyrolysis conditions, both minerals significantly reduced alkene formation; the C12+ n-alkanes and acyclic isoprenoids were mostly destroyed by montmorillonite, but underwent only minor alteration with illite. Under hydrous conditions (mineral/water of 2/1), the effects of both minerals were substantially reduced. Calcite had no significant effect on the thermal evolution of the hydrocarbons.

  19. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production.

    Directory of Open Access Journals (Sweden)

    Adelene Ai-Lian Song

    Full Text Available Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus. A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR, an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.

  20. Changes in photosynthesis, mesophyll conductance to CO{sub 2}, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Violeta, E-mail: violet@obzor.bio21.bas.bg [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Tsonev, Tsonko [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Loreto, Francesco [Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Centritto, Mauro [Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00015 Monterotondo Scalo (RM) (Italy)

    2011-05-15

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 {mu}M Ni (Ni{sub 30} and Ni{sub 200}). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO{sub 2}] than in control leaves. However chloroplastic [CO{sub 2}] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-{beta}-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni{sub 0} (control plants); 2 - Ni{sub 200}; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: > We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. > Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. > Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  1. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis.

    Science.gov (United States)

    Pokhilko, Alexandra; Bou-Torrent, Jordi; Pulido, Pablo; Rodríguez-Concepción, Manuel; Ebenhöh, Oliver

    2015-05-01

    Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-D-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.

  2. Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Huaiwei Liu

    Full Text Available Embden-Meyerhof pathway (EMP in tandem with 2-C-methyl-D-erythritol 4-phosphate pathway (MEP is commonly used for isoprenoid biosynthesis in E. coli. However, this combination has limitations as EMP generates an imbalanced distribution of pyruvate and glyceraldehyde-3-phosphate (G3P. Herein, four glycolytic pathways-EMP, Entner-Doudoroff Pathway (EDP, Pentose Phosphate Pathway (PPP and Dahms pathway were tested as MEP feeding modules for isoprene production. Results revealed the highest isoprene production from EDP containing modules, wherein pyruvate and G3P were generated simultaneously; isoprene titer and yield were more than three and six times higher than those of the EMP module, respectively. Additionally, the PPP module that generates G3P prior to pyruvate was significantly more effective than the Dahms pathway, in which pyruvate production precedes G3P. In terms of precursor generation and energy/reducing-equivalent supply, EDP+PPP was found to be the ideal feeding module for MEP. These findings may launch a new direction for the optimization of MEP-dependent isoprenoid biosynthesis pathways.

  3. Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation.

    Science.gov (United States)

    Junker, Laura V; Ensminger, Ingo

    2016-12-01

    Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C30 -column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies.

  4. Isolation and structure determination of a benzofuran and a bis-nor-isoprenoid from Aspergillus niger grown on the water soluble fraction of Morinda citrifolia Linn. leaves.

    Science.gov (United States)

    Siddiqui, Bina S; Ismail, Fouzia A Sattar; Gulzar, Tahsin; Begum, Sabira

    2003-10-01

    The leaves of Morinda citrifolia, Linn. afforded a new benzofuran and a bis-nor-isoprenoid, blumenol C, hitherto unreported from this source. The structures of these have been elucidated as 5-benzofuran carboxylic acid-6-formyl methyl ester (1) and 4-(3'(R)-hydroxybutyl)-3,5,5, trimethyl-cyclohex-2-en-1-one (2) respectively through spectroscopic studies. The NMR data (including 1D, 2D techniques) and stereochemistry at C-3' of Compound 2 is also being reported for the first time.

  5. Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: carotenoids, tocopherols and chlorophylls.

    Science.gov (United States)

    Stinco, Carla M; Benítez-González, Ana M; Hernanz, Dolores; Vicario, Isabel M; Meléndez-Martínez, Antonio J

    2014-11-28

    A rapid resolution liquid chromatography (RRLC) method was developed and validated for the simultaneous determination of nine carotenoids compounds (violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene, lycopene, phytoene, phytofluene), four tocopherols and four chlorophylls and derivates (chlorophylls and pheophytins). The methodology consisted in a micro-extraction procedure with or without saponification and subsequent analysis by RRLC. The limits of detection were chlorophylls and derivatives. The overall precision values (intra- and inter-day) were lower than 12% when samples were not saponified and <27.6%, when the saponification step was performed. The recovery of the method without the saponification step ranged from 92% to 107%, whilst that when saponification was carried out ranged from 60% for α-tocopherol to 82% for β-carotene. Finally, the applicability of the method was demonstrated by the identification and quantification of isoprenoids in different samples. The methodology is appropriate for the high-throughput screening of dietary isoprenoids in fruits and vegetables.

  6. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers.

    Science.gov (United States)

    Tattini, Massimiliano; Loreto, Francesco; Fini, Alessio; Guidi, Lucia; Brunetti, Cecilia; Velikova, Violeta; Gori, Antonella; Ferrini, Francesco

    2015-08-01

    The hypothesis was tested that isoprenoids and phenylpropanoids play a prominent role in countering photooxidative stress, following the depletion of antioxidant enzyme activity in plants exposed to severe drought stress under high solar irradiance and high temperatures. Platanus × acerifolia, a high isoprene-emitting species, was drought-stressed during summer (WS) and compared with unstressed controls (WW). Water relations and photosynthetic parameters were measured under mild, moderate, and severe drought stress conditions. Volatile and nonvolatile isoprenoids, antioxidant enzymes, and phenylpropanoids were measured with the same time course, but in four different periods of the day. Drought severely inhibited photosynthesis, whereas it did not markedly affect the photochemical machinery. Isoprene emission and zeaxanthin concentration were higher in WS than in WW leaves, particularly at mild and moderate stresses, and during the hottest hours of the day. The activities of catalase and ascorbate peroxidase steeply declined during the day, while the activity of guaiacol peroxidase and the concentration of quercetin increased during the day, peaking in the hottest hours in both WW and WS plants. Our experiment reveals a sequence of antioxidants that were used daily by plants to orchestrate defense against oxidative stress induced by drought and associated high light and high temperature. Secondary metabolites seem valuable complements of antioxidant enzymes to counter oxidative stress during the hottest daily hours.

  7. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  8. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  9. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

    Science.gov (United States)

    García-Alcázar, Manuel; Giménez, Estela; Pineda, Benito; Capel, Carmen; García-Sogo, Begoña; Sánchez, Sibilla; Yuste-Lisbona, Fernando J.; Angosto, Trinidad; Capel, Juan; Moreno, Vicente; Lozano, Rafael

    2017-01-01

    Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants. PMID:28350010

  10. Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -

    Directory of Open Access Journals (Sweden)

    Ayyakkannu Purushothaman

    2017-06-01

    Full Text Available Objectives: Semecarpus anacardium Linn. is a plant well-known for its antimicrobial, antidiabetic and anti-arthritic properties in the Ayurvedic and Siddha system of medicine. This has prompted the screening of this plant for antibacterial activity. The main aims of this study were to isolate compounds from the plant’s seeds and to evaluate their antibacterial effects on clinical bacterial test strains. Methods: The n-butanolic concentrate of the seed extract was subjected to thin layer chromatography (TLC and repeated silica gel column chromatography followed by elution with various solvents. The compound was identified based on observed spectral (IR, 1H NMR, 13C NMR and high-resolution mass spectrometry data. The well diffusion method was employed to evaluate the antibacterial activities of the isolated acyclic isoprenoid compound (final concentration: 5 - 15 μg/mL on four test bacterial strains, namely, Staphylococcus aureus (MTCC 96, Bacillus cereus

  11. Metabolic Control of Avocado Fruit Growth (Isoprenoid Growth Regulators and the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase).

    Science.gov (United States)

    Cowan, A. K.; Moore-Gordon, C. S.; Bertling, I.; Wolstenholme, B. N.

    1997-06-01

    The effect of isoprenoid growth regulators on avocado (Persea americana Mill. cv Hass) fruit growth and mesocarp 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was investigated during the course of fruit ontogeny. Both normal and small-fruit phenotypes were used to probe the interaction between the end products of isoprenoid biosynthesis and the activity of HMGR in the metabolic control of avocado fruit growth. Kinetic analysis of the changes in both cell number and size revealed that growth was limited by cell number in phenotypically small fruit. In small fruit a 70% reduction in microsomal HMGR activity was associated with an increased mesocarp abscisic acid (ABA) concentration. Application of mevastatin, a competitive inhibitor of HMGR, reduced the growth of normal fruit and increased mesocarp ABA concentration. These effects were reversed by co-treatment of fruit with mevalonic acid lactone, isopentenyladenine, or N-(2-chloro-4-pyridyl)-N-phenylurea, but were not significantly affected by either gibberellic acid or stigmasterol. However, stigmasterol appeared to partially restore fruit growth when co-injected with mevastatin in either phase II or III of fruit growth. In vivo application of ABA reduced fruit growth and mesocarp HMGR activity and accelerated fruit abscission, effects that were reversed by co-treatment with isopentenyladenine. Together, these observations indicate that ABA accumulation down-regulates mesocarp HMGR activity and fruit growth, and that in situ cytokinin biosynthesis modulates these effects during phase I of fruit ontogeny, whereas both cytokinins and sterols seem to perform this function during the later phases.

  12. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Hemmerlin, Andréa; Hoeffler, Jean-François; Meyer, Odile; Tritsch, Denis; Kagan, Isabelle A; Grosdemange-Billiard, Catherine; Rohmer, Michel; Bach, Thomas J

    2003-07-18

    In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to growth reduction and induction of apparent HMGR activity, in parallel to an increase in protein representing two HMGR isozymes. Maximum induction was observed at 24 h. 1-Deoxy-d-xylulose (DX), the dephosphorylated first precursor of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, complemented growth inhibition by mevinolin in the low millimolar concentration range. Furthermore, DX partially re-established feedback repression of mevinolin-induced HMGR activity. Incorporation studies with [1,1,1,4-2H4]DX showed that sterols, normally derived from MVA, in the presence of mevinolin are synthesized via the MEP pathway. Fosmidomycin, an inhibitor of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, the second enzyme of the MEP pathway, was utilized to study the reverse complementation. Growth inhibition by fosmidomycin of TBY-2 cells could be partially overcome by MVA. Chemical complementation was further substantiated by incorporation of [2-13C]MVA into plastoquinone, representative of plastidial isoprenoids. Best rates of incorporation of exogenous stably labeled precursors were observed in the presence of both inhibitors, thereby avoiding internal isotope dilution.

  13. The Interleukin-6 inflammation pathway from cholesterol to aging – Role of statins, bisphosphonates and plant polyphenols in aging and age-related diseases

    Directory of Open Access Journals (Sweden)

    Omoigui Sota

    2007-03-01

    Full Text Available Abstract We describe the inflammation pathway from Cholesterol to Aging. Interleukin 6 mediated inflammation is implicated in age-related disorders including Atherosclerosis, Peripheral Vascular Disease, Coronary Artery Disease, Osteoporosis, Type 2 Diabetes, Dementia and Alzheimer's disease and some forms of Arthritis and Cancer. Statins and Bisphosphonates inhibit Interleukin 6 mediated inflammation indirectly through regulation of endogenous cholesterol synthesis and isoprenoid depletion. Polyphenolic compounds found in plants, fruits and vegetables inhibit Interleukin 6 mediated inflammation by direct inhibition of the signal transduction pathway. Therapeutic targets for the control of all the above diseases should include inhibition of Interleukin-6 mediated inflammation.

  14. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    Plants produce more than 10.000 diterpenoid compounds of which the large majority is involved in specialized metabolism, while a few are involved in general metabolism. Specialized metabolism diterpenoids have functions in interactions of plants with other organisms and selected ones are utilized...... and aracterization of diTPSs deriving from the plant kingdom, a plant expression host offers several advantages such as the presence of all relevant compartments (plastids and endoplasmic reticulum) and the universal C5 building blocks for isoprenoid biosynthesis. In addition, a plant based xpression host...... is compatible with native codon usage, and through the conserved mechanisms of protein targeting and posttranslational odifications, has the capacity to produce functional enzymes. To further explore plant based expression and characterization of diterpenoid pathway genes, two different plant expression hosts...

  15. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei.

    Science.gov (United States)

    Piłsyk, Sebastian; Perlińska-Lenart, Urszula; Górka-Nieć, Wioletta; Graczyk, Sebastian; Antosiewicz, Beata; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2014-07-10

    The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.

  16. Source facies of the Paleozoic petroleum systems in the Tabei uplift, Tarim Basin, NW China: implications from aryl isoprenoids in crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Yongge Sun; Shiping Xu; Hong Lu; Pingxia Cuai [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (China). SKLOG

    2003-04-01

    Aryl isoprenoids have been detected for the first time in crude oils from Paleozoic petroleum systems in the Tabei uplift, Tarim Basin, northwestern China. The principal compounds possess the 1-alkyl-2,3,6-trimethyl substitution pattern characteristic of diaromatic carotenoids found in the Chlorobiaceae family of photosynthetic sulfur bacteria, with a predominance of C{sub 13} - C{sub 23} homologues in these samples. Flash pyrolysates of the asphaltene fractions isolated from crude oils show an unusual abundance of 1,2,3,4-tetramethylbenzene, an indicator for a significant contribution of diaromatic carotenoids to the source kerogen of these oils. The wide distribution of these compounds in crude oils reveals that penetration of the photic zone by sulfidic waters during deposition enabled prolific growth of photosynthetic green sulphur bacteria (Chlorobiaceae). This suggests that the source rocks for the Paleozoic petroleum systems in the Tabei uplift were likely deposited under euxinic conditions with sulfate and sulfide-rich water bodies, which doesn't support previously published conclusions of a Middle-Upper Ordovician source that marks the slope facies at the margins of structural uplifts. (author)

  17. MRI study of the cuprizone-induced mouse model of multiple sclerosis: demyelination is not found after co-treatment with polyprenols (long-chain isoprenoid alcohols)

    Science.gov (United States)

    Khodanovich, M.; Glazacheva, V.; Pan, E.; Akulov, A.; Krutenkova, E.; Trusov, V.; Yarnykh, V.

    2016-02-01

    Multiple sclerosis is a neurological disorder with poorly understood pathogenic mechanisms and a lack of effective therapies. Therefore, the search for new MS treatments remains very important. This study was performed on a commonly used cuprizone animal model of multiple sclerosis. It evaluated the effect of a plant-derived substance called Ropren® (containing approximately 95% polyprenols or long-chain isoprenoid alcohols) on cuprizone- induced demyelination. The study was performed on 27 eight-week old male CD-1 mice. To induce demyelination mice were fed 0.5% cuprizone in the standard diet for 10 weeks. Ropren® was administered in one daily intraperitoneal injection (12mg/kg), beginning on the 6th week of the experiment. On the 11th week, the corpus callosum in the brain was evaluated in all animals using magnetic resonance imaging with an 11.7 T animal scanner using T2- weighted sequence. Cuprizone treatment successfully induced the model of demyelination with a significant decrease in the size of the corpus callosum compared with the control group (p<0.01). Mice treated with both cuprizone and Ropren® did not exhibit demyelination in the corpus callosum (p<0.01). This shows the positive effect of polyprenols on cuprizone-induced demyelination in mice.

  18. Engineering Isoprenoid Biosynthesis in Artemisia annua L. for the Production of Taxadiene: A Key Intermediate of Taxol

    Directory of Open Access Journals (Sweden)

    Meiya Li

    2015-01-01

    Full Text Available Taxadiene is the first committed precursor to paclitaxel, marketed as Taxol, arguably the most important anticancer agent against ovarian and breast cancer. In Taxus, taxadiene is directly synthesized from geranylgeranyl diphosphate (GGPP that is the common precursor for diterpenoids and is found in most plants and microbes. In this study, Artemisia annua L., a Chinese medicinal herb that grows fast and is rich in terpenoids, was used as a genetic engineering host to produce taxadiene. The TXS (taxadiene synthase gene, cloned from Taxus and inserted into pCAMBIA1304, was transformed into Artemisia annua L. using the Agrobacterium tumefaciens-mediated method. Thirty independent transgenic plants were obtained, and GC-MS analysis was used to confirm that taxadiene was produced and accumulated up to 129.7 μg/g dry mass. However, the high expression of TXS did not affect plant growth or photosynthesis in transgenic Artemisia annua L. It is notable that artemisinin is produced and stored in leaves and most taxadiene accumulated in the stem of transgenic Artemisia annua L., suggesting a new way to produce two important compounds in one transgenic plant: leaves for artemisinin and stem for taxadiene. Overall, this study demonstrates that genetic engineering of the taxane biosynthetic pathway in Artemisia annua L. for the production of taxadiene is feasible.

  19. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemotypes, and in Boreal forest ambient air during HUMPPA-COPEC-2010

    Directory of Open Access Journals (Sweden)

    N. Yassaa

    2012-08-01

    Full Text Available Branch enclosure based emission rates of monoterpenes and sesquiterpenes from four Scots pines (Pinus sylvestris and one Norway spruce (Picea abies, as well as the ambient mixing ratios of monoterpenes were determined during the HUMPPA-COPEC 2010 summer campaign. Differences in chemical composition and in emission strength were observed between the different trees, which confirmed that they represented different chemotypes. The chemotypes of Scots pine can be classified according to species with high, no and intermediate content of Δ-3-carene. The "non-Δ-3-carene" chemotype was found to be the strongest emitter of monoterpenes. From this chemotype, β-myrcene, a very reactive monoterpene, was the dominant species accounting for more than 32 % of the total emission rates of isoprenoids followed by β-phellandrene (~27%. Myrcene fluxes ranged from 0.8 to 24 μg g−1 (dw h−1. α-Farnesene was the dominant sesquiterpene species, with average emission rates of 318 ng g−1 (dw h−1. In the high Δ-3-carene chemotype, more than 48% of the total monoterpene emission was Δ-3-carene. The average Δ-3-carene emission rate (from chemotype 3, circa 609 ng g−1 (dw h−1 reported here is consistent with the previously reported summer season value. Daily maximum temperatures varied between 20 and 35 °C during the measurements. The monoterpene emissions from spruce were dominated by limonene (35%, β-phellandrene (15%, α-pinene (14% and eucalyptol (9%. Total spruce monoterpene emissions ranged from 0.55 up to 12.2 μg g−1 (dw h−1. Overall the total terpene flux (monoterpenes + sesquiterpenes from all studied tree species varied from 230 ng g−1 (dw h−1 up to 66 μg g−1 (dw h−1. Total ambient monoterpenes (including α-pinene, Δ-3-carene, β-pinene and β-myrcene measured during the campaign

  20. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Siavash Partow

    Full Text Available Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH.

  1. Mecanismos de acción de isoprenoides naturales y su combinación con estatinas sobre la proliferación y el metabolismo lipídico en distintos modelos celulares

    OpenAIRE

    Rodenak Kladniew, Boris

    2015-01-01

    En el presente trabajo se evaluó la capacidad antiproliferativa, anticolesterogénica y los efectos sobre el metabolismo lipídico de dos isoprenoides de 10 carbonos, linalool (monoterpeno alcohol lineal) y 1,8-cineole (monoterpeno cíclico con grupo éter), sobre células HepG2 (procedentes de un hepatocarcinoma humano) como modelo de célula hepática y A549 (provenientes de adenocarcinoma de pulmón humano) como tipo celular extra-hepático. Se analizaron los mecanismos de acción involucrados y los...

  2. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection...... of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  3. IspE inhibitors identified by a combination of in silico and in vitro high-throughput screening.

    Directory of Open Access Journals (Sweden)

    Naomi Tidten-Luksch

    Full Text Available CDP-ME kinase (IspE contributes to the non-mevalonate or deoxy-xylulose phosphate (DOXP pathway for isoprenoid precursor biosynthesis found in many species of bacteria and apicomplexan parasites. IspE has been shown to be essential by genetic methods and since it is absent from humans it constitutes a promising target for antimicrobial drug development. Using in silico screening directed against the substrate binding site and in vitro high-throughput screening directed against both, the substrate and co-factor binding sites, non-substrate-like IspE inhibitors have been discovered and structure-activity relationships were derived. The best inhibitors in each series have high ligand efficiencies and favourable physico-chemical properties rendering them promising starting points for drug discovery. Putative binding modes of the ligands were suggested which are consistent with established structure-activity relationships. The applied screening methods were complementary in discovering hit compounds, and a comparison of both approaches highlights their strengths and weaknesses. It is noteworthy that compounds identified by virtual screening methods provided the controls for the biochemical screens.

  4. A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community.

    Science.gov (United States)

    Franza, Thierry; Delavenne, Emilie; Derré-Bobillot, Aurélie; Juillard, Vincent; Boulay, Mylène; Demey, Emmanuelle; Vinh, Joelle; Lamberet, Gilles; Gaudu, Philippe

    2016-10-01

    Aerobic respiration metabolism in Group B Streptococcus (GBS) is activated by exogenous heme and menaquinone. This capacity enhances resistance of GBS to acid and oxidative stress and improves its survival. In this work, we discovered that GBS is able to respire in the presence of heme and 1,4-dihydroxy-2-naphthoic acid (DHNA). DHNA is a biosynthetic precursor of demethylmenaquinone (DMK) in many bacterial species. A GBS gene (gbs1789) encodes a homolog of the MenA 1,4-dihydroxy-2-naphthoate prenyltransferase enzyme, involved in the synthesis of demethylmenaquinone. In this study, we showed that gbs1789 is involved in the biosynthesis of long-chain demethylmenaquinones (DMK-10). The Δgbs1789 mutant cannot respire in the presence of heme and DHNA, indicating that endogenously synthesized DMKs are cofactors of the GBS respiratory chain. We also found that isoprenoid side chains from GBS DMKs are produced by the protein encoded by the gbs1783 gene, since this gene can complement an Escherichia coli ispB mutant defective for isoprenoids chain synthesis. In the gut or vaginal microbiote, where interspecies metabolite exchanges occur, this partial DMK biosynthetic pathway can be important for GBS respiration and survival in different niches. © 2016 John Wiley & Sons Ltd.

  5. Designing pathways

    DEFF Research Database (Denmark)

    Scheuer, John Damm

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones....... The illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  6. Designing pathways

    DEFF Research Database (Denmark)

    2010-01-01

    The theoretical background in this chapter is organizational studies and especially theories about design and design processes in organizations. The concept of design is defined as a particular kind of work aimed at making arrangements in order to change existing situations into desired ones....... The illustrative case example is the introduction of clinical pathways in a psychiatric department. The contribution to a general core of design research is the development of the concept of design work and a critical discussion of the role of technological rules in design work....

  7. Pathway collages: personalized multi-pathway diagrams.

    Science.gov (United States)

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  8. Molecular cloning and characterization of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (hmgr1) gene from rubber tree (Hevea brasiliensis Muell. Arg.): A key gene involved in isoprenoid biosynthesis.

    Science.gov (United States)

    Venkatachalam, P; Priya, P; Jayashree, R; Rekha, K; Thulaseedharan, A

    2009-04-01

    Natural rubber (cis-1,4-polyisoprene) is a secondary metabolite produced in the laticiferous tissue of Hevea tree. Mevalonate synthesis, which is the first step in isoprenoid biosynthesis, is catalyzed by the enzyme 3-hydroxy-3-methylglutarylcoenzyme A reductase 1 (hmgr1). We have cloned and characterized a full-length cDNA as well as genomic DNA for hmgr1 gene from an elite Indian rubber clone (RRII 105). The nucleotide sequence of the genomic clone comprises 4 exons and 3 introns, giving a total length of 2440 bp. The sequences of 42 bp 5' UTR and 69 bp of the 3' UTR were also determined. The hmgr1 cDNA contained an open reading frame of 1838 bp coding for 575 amino acid protein with a theoretical pI value of 6.6 and the calculated protein M W was 61.6 kDa. The deduced amino acid sequence showed high identity with other plant hmgr1 sequences. The amino acid sequence of the Hevea hmgr1 revealed several motifs which are highly conserved and common to the other plant species. These sequence conservations suggest a strong evolutionary pressure to maintain amino acid residues at specific positions, indicating that the conserved motifs might play important roles in the structural and/or catalytic properties of the enzyme. Southern blot analysis of genomic DNA from Hevea probed with a genomic fragment indicated that there were at least three isoforms of hmgr in Hevea. This result reveals that hmgr1 is one of the members of a small gene family. (Northern blot analysis showed that hmgr1 mRNA transcripts were noticed in all tissues - latex, leaf, immature leaf, and seedlings), however, the abundance of transcript level was higher in latex cells. As one step towards a better understanding of the role that this enzyme plays in coordinating isoprenoid biosynthesis in plants, hmgr1 cDNA was over expressed in transgenic Arabidopsis plants. Transgenic plants were morphologically distinguishable from control wild-type plants and an increased expression level of hmgr1 mRNA was

  9. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  10. 顶复门原虫类异戊二烯生物合成途径及其关键酶的研究进展%Advance in Isoprenoids Biosynthesis Pathway and DOXP Reductoisomerase in Apicomplexa

    Institute of Scientific and Technical Information of China (English)

    廖申权; 吴彩艳; 戚南山; 吕敏娜; 覃宗华; 孙铭飞

    2012-01-01

    顶复门原虫包括疟原虫(Plasmodium spp.)、刚地弓形虫(Toxoplasma gondii)、艾美耳球虫(Eimeria spp.)、锥虫(Trypanosoma spp.)、泰勒虫(Theileria spp.)及巴贝斯虫(Babesia spp.)等一大类引起严重人畜疾病的寄生性原虫.顶复门原虫利用2C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径合成类异戊二烯前体物质,这些化合物对于维持顶复门原虫的生存具有十分重要的作用.1-脱氧-D-木酮糖-5-磷酸(DOXP)还原异构酶是MEP途径的关键酶,对其作用机理及抑制剂的筛选研究已取得重要进展.论文对顶复门原虫类异戊二烯的MEP途径,DOXP还原异构酶的作用机理及靶标研究进展进行综述.

  11. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps.

    Science.gov (United States)

    Saladié, Montserrat; Wright, Louwrance P; Garcia-Mas, Jordi; Rodriguez-Concepcion, Manuel; Phillips, Michael A

    2014-09-01

    The 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway provides the precursors for the biosynthesis of plastidial isoprenoids, which include the carotenoid pigments of many fruits. We have analysed the genes encoding the seven enzymes of the MEP pathway in melon (Cucumis melo L.) and determined that the first one, 1-deoxyxylulose 5-phosphate synthase (DXS), and the last one, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR), are represented in the genome as a small gene family and paralogous pair, respectively. In the case of DXS, three genes encode functional DXS activities which fall into previously established type I (CmDXS1) and II (CmDXS2a and CmDXS2b) categories, while a fourth DXS-like gene belonging to the type III group did not encode a protein with DXS activity. Their expression patterns and phylogenies suggest that CmDXS1 is functionally specialized for developmental and photosynthetic processes, while CmDXS2a and CmDXS2b are induced in flowers and ripening fruit of orange- (but not white-) fleshed varieties, coinciding with β-carotene accumulation. This is the first instance connecting type II DXS genes to specialized isoprenoid biosynthesis in the fruit of an agronomically important species. Two HDR paralogues were shown to encode functional enzymes, although only CmHDR1 was highly expressed in the tissues and developmental stages tested. Phylogenetic analysis showed that in cucurbits such as melon, these HDR paralogues probably arose through individual gene duplications in a common angiosperm ancestor, mimicking a prior division in gymnosperms, while other flowering plants, including apple, soy, canola, and poplar, acquired HDR duplicates recently as homoeologues through large-scale genome duplications. We report the influence of gene duplication history on the regulation of the MEP pathway in melon and the role of specialized MEP-pathway isoforms in providing precursors for β-carotene production in orange-fleshed melon varieties.

  12. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  13. Impact of seasonal hydrological variation on the distributions of branched and isoprenoid tetraether lipids along the Amazon River in the central Amazon basin: Implications for the MBT/CBT paleothermometer and the BIT index

    Science.gov (United States)

    Zell, Claudia; Kim, Jung-Hyun; Lima Sobrinho, Rodrigo; Moreira-Turcq, Patricia; Abril Abril, Gwenaël; Sinninghe Damsté, Jaap S.

    2013-04-01

    We assessed the effects of hydrodynamical variations on the distributions and sources of branched and isoprenoid glycerol dialkyl glycerol tetraethers (brGDGTs and isoGDGTs, respectively) transported by the Amazon River in the central Amazon basin. Particulate suspended matter was collected in the Amazonian rivers and floodplain lakes at four different seasons (rising water, high water, falling water, and low water) at 6 stations along the main stem of the Amazon River, 3 tributaries (Negro, Madeira, and Tapajós) and 5 floodplain lakes (Manacapuru, Janauacá, Mirituba, Canaçari and Curuai). The concentration and distribution of brGDGTs of both core lipid (CL) and intact polar lipid (IPL)-derived fractions were investigated applying IPL-derived brGDGTs as an indicator of brGDGTs derived from recently-living cells. The organic carbon (OC)-normalized concentrations of CL brGDGTs mimicked the trend of the hydrological variation with highest concentrations during the high water season. The CL brGDGT distributions were most alike those of lowland Amazon (terra firme) soils during the high water season, indicating that input of soil-derived, allochthonous brGDGTs to the Amazon River was highest at that period. Accordingly, the methylation index of branched tetraethers (MBT) and the cyclization ratio of branched tetraethers (CBT) varied corresponding to the hydrological changes, with the increasing influence of in situ produced brGDGTs in rivers and floodplain lakes during the low water season. The concentrations of CL crenarchaeol were highest during the low water season, due to increased autochthonous production. The concentration changes of both brGDGTs and crenarchaeol lead to a variation of the branched and isoprenoid tetraether (BIT) index between 0.4 (low water) and 0.9 (high water). Hence, our study hints at the effect of hydrodynamical variations on the source of brGDGTs and isoGDGTs transported by rivers to the ocean and emphasized the importance of a detailed

  14. Origin and diagenetic transformations of C sub 25 and C sub 30 highly branched isoprenoid sulfur compounds: Further evidence for the formation of organically bound sulfur during early diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kohnen, M.E.L.; Damste, J.S.S.; Kock-Van Dalen, A.C.; de Leeuw, J.W. (Delft Univ. of Technology (Netherlands)); Ten Haven, H.L.; Rullkoetter, J. (Institute of Petroleum and Organic Geochemistry, Juelich (West Germany))

    1990-11-01

    A number of C{sub 25} and C{sub 30} highly branched isoprenoid (HBI) sulfur compounds (e.g., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo(b)thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterization, desulfurization, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C{sub 25} and C{sub 30} HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 {times} 10{sup 3} a) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C{sub 25} and C{sub 30}) and unsaturated HBI thiolanes (C{sub 25} and C{sub 30}) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulfur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulfur compounds is proposed based on the identification of HBI sulfur compounds in sediment samples with different maturity levels.

  15. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jakočiūnas, Tadas; Bonde, Ida; Herrgård, Markus; Harrison, Scott J; Kristensen, Mette; Pedersen, Lasse E; Jensen, Michael K; Keasling, Jay D

    2015-03-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.

  16. Comparative actions of clomazone on beta-carotene levels and growth in rice (Oryza sativa) and watergrasses (Echinochloa spp).

    Science.gov (United States)

    TenBrook, Patti L; Tjeerdema, Ronald S

    2005-06-01

    Seedlings of rice, early watergrass (thiobencarb-resistant and thiobencarb-susceptible biotypes, R and S, respectively), and late watergrass (thiobencarb-resistant and thiobencarb-susceptible biotypes, R and S, respectively) were hydroponically exposed to clomazone at concentrations ranging from 0.08 to 7.9 microM. Whole-plant growth (mg fresh wt) and beta-carotene concentrations (microg g(-1) fresh wt) were measured after a 7-day exposure period. For growth, the no observed effect concentrations (NOECs) were 7.9, 0.21, 0.21, 0.46 and 0.46 microM clomazone for rice, early watergrass (R), early watergrass (S), late watergrass (R) and late watergrass (S), respectively, while the concentrations causing 25% inhibition in response (IC25) were 5.6 (+/-1.6), 0.46 (+/-0.06), 0.42 (+/-0.08), 0.92 (+/-0.45) and 0.79 (+/-0.08) microM clomazone, respectively. Clomazone inhibits beta-carotene synthesis via inhibition of the non-mevalonate isoprenoid synthetic pathway. For assessment of clomazone effects, beta-carotene levels proved to be a more sensitive toxicological endpoint than growth. For rice, early watergrass (R), early watergrass (S), late watergrass (R) and late watergrass (S), the beta-carotene NOECs were 0.21, clomazone respectively, while IC25 values were 0.42 (+/-0.26), 0.08 (+/-0.02), 0.08 (+/-0.02), 0.33 (+/-0.09) and 0.54 (+/-0.15) microM, respectively. No evidence was found that the thiobencarb-resistance mechanisms present in early and late watergrasses impart resistance to clomazone. Due to similar sensitivity between rice and late watergrass, use of clomazone in rice culture will require the use of a safening technique.

  17. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  18. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering.

    Science.gov (United States)

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Li, Leilei; Huang, Shengxiong; Zhang, Tong; Wang, Huizhong; Kai, Guoyin

    2016-03-30

    Tanshinones are health-promoting diterpenoids found in Salvia miltiorrhiza and have wide applications. Here, SmGGPPS (geranylgeranyl diphosphate synthase) and SmDXSII (1-deoxy-D-xylulose-5-phosphate synthase) were introduced into hairy roots of S. miltiorrhiza. Overexpression of SmGGPPS and SmDXSII in hairy roots produces higher levels of tanshinone than control and single-gene transformed lines; tanshinone production in the double-gene transformed line GDII10 reached 12.93 mg/g dry weight, which is the highest tanshinone content that has been achieved through genetic engineering. Furthermore, transgenic hairy root lines showed higher antioxidant and antitumor activities than control lines. In addition, contents of chlorophylls, carotenoids, indoleacetic acid, and gibberellins were significantly elevated in transgenic Arabidopsis thaliana plants. These results demonstrate a promising method to improve the production of diterpenoids including tanshinone as well as other natural plastid-derived isoprenoids in plants by genetic manipulation of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway.

  19. Effect of salt stress on expression of carotenoid pathway genes in tomato

    Directory of Open Access Journals (Sweden)

    Merlene Ann Babu

    2011-09-01

    Full Text Available Carotenoids, the naturally occurring isoprenoids form essential components of photosynthetic antenna and reaction centre complexes. Thus they play a significant role in absorption, dissipation and transfer of light energy for the process of photosynthesis. The effects of salt stress on carotenoid gene expression in tomato leaves were studied. For that tomato plants were subjected to different concentration of salt water. Morphological characters such as plant height, no. of fruits per plant, chlorophyll content and expression of four major carotenoid pathway genes such as phytoene synthase, phytoene desaturase, zeta carotene desaturase and lycopene beta cyclase were analysed. The quantitative expression analysis using real time PCR has shown a decrease in the expression of all the studied genes as the salt concentration increased. Among the different concentrations of NaCl used for the experiment, it was seen that 200 mM was most detrimental for the carotenoid gene expression. Lycopene beta cyclase, the enzyme that converts lycopene to beta carotene was seen to be highly affected compared to other genes studied showing a 1.87 fold inhibition in its expression at 200 mM NaCl.

  20. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Young Philip R

    2012-06-01

    Full Text Available Abstract Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in

  1. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.

    Science.gov (United States)

    2012-01-01

    Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The

  2. Isoprenoid biosynthesis and mevalonate kinase deficiency

    OpenAIRE

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens in de drie tot zes weken op zonder dat goed duidelijk is waarom. Linda Henneman toont aan dat door een tekort van bepaalde metabolieten specifieke signaaleiwitten op de verkeerde plek in de cel ter...

  3. Isoprenoid biosynthesis and mevalonate kinase deficiency

    NARCIS (Netherlands)

    Henneman, L.

    2011-01-01

    Mevalonaat Kinase Deficiëntie (MKD) is een aangeboren ziekte geassocieerd met heftige koortsaanvallen die drie tot vier dagen aanhouden en gepaard gaan met koude rillingen, gewrichtsklachten, huiduitslag, hoofdpijn, duizeligheid, buikpijn, braken en diarree. De koortsaanvallen treden gemiddeld eens

  4. Establishment of Yeast Platform for Isoprenoid Production

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali

    2008-01-01

    genet tHMG1, resulterede også i akkumulering af squalener og højere koncentrationer af cubebol. Videre undersøgelser baseret på anvendelse af in silico metoder (metabolic engineering) identicerede to nye gener, hvis fjernelse kunne forbedre biosyntesen af sesquiterpener i gær. Fjernelsen af genet GDH1...

  5. DMPD: Regulatory pathways in inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17967718 Regulatory pathways in inflammation. Mantovani A, Garlanda C, Locati M, Ro....html) (.csml) Show Regulatory pathways in inflammation. PubmedID 17967718 Title Regulatory pathways in infl

  6. Pathway Commons, a web resource for biological pathway data.

    Science.gov (United States)

    Cerami, Ethan G; Gross, Benjamin E; Demir, Emek; Rodchenkov, Igor; Babur, Ozgün; Anwar, Nadia; Schultz, Nikolaus; Bader, Gary D; Sander, Chris

    2011-01-01

    Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687,000 interactions and will be continually expanded and updated.

  7. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations.

    Science.gov (United States)

    Martínez-Rincón, Raúl O; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis.

  8. Modeling the flux of metabolites in the juvenile hormone biosynthesis pathway using generalized additive models and ordinary differential equations

    Science.gov (United States)

    Martínez-Rincón, Raúl O.; Rivera-Pérez, Crisalejandra; Diambra, Luis; Noriega, Fernando G.

    2017-01-01

    Juvenile hormone (JH) regulates development and reproductive maturation in insects. The corpora allata (CA) from female adult mosquitoes synthesize fluctuating levels of JH, which have been linked to the ovarian development and are influenced by nutritional signals. The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the pathway, which is the outcome of a complex interplay of changes in precursor pools and enzyme levels. A comprehensive study of the changes in enzymatic activities and precursor pool sizes have been previously reported for the mosquito Aedes aegypti JH biosynthesis pathway. In the present studies, we used two different quantitative approaches to describe and predict how changes in the individual metabolic reactions in the pathway affect JH synthesis. First, we constructed generalized additive models (GAMs) that described the association between changes in specific metabolite concentrations with changes in enzymatic activities and substrate concentrations. Changes in substrate concentrations explained 50% or more of the model deviances in 7 of the 13 metabolic steps analyzed. Addition of information on enzymatic activities almost always improved the fitness of GAMs built solely based on substrate concentrations. GAMs were validated using experimental data that were not included when the model was built. In addition, a system of ordinary differential equations (ODE) was developed to describe the instantaneous changes in metabolites as a function of the levels of enzymatic catalytic activities. The results demonstrated the ability of the models to predict changes in the flux of metabolites in the JH pathway, and can be used in the future to design and validate experimental manipulations of JH synthesis. PMID:28158248

  9. Clinical Pathway for Thyroidectomy.

    Science.gov (United States)

    Villar del Moral, Jesús María; Soria Aledo, Víctor; Colina Alonso, Alberto; Flores Pastor, Benito; Gutiérrez Rodríguez, María Teresa; Ortega Serrano, Joaquín; Parra Hidalgo, Pedro; Ros López, Susana

    2015-05-01

    Clinical pathways are care plans applicable to patient care procedures that present variations in practice and a predictable clinical course. They are designed not as a substitute for clinical judgment, but rather as a means to improve the effectiveness and efficiency of the procedures. This clinical pathway is the result of a collaborative work of the Sections of Endocrine Surgery and Quality Management of the Spanish Association of Surgeons. It attempts to provide a framework for standardizing the performance of thyroidectomy, the most frequently performed operation in endocrine surgery. Along with the usual documents of clinical pathways (temporary matrix, variance tracking and information sheets, assessment indicators and a satisfaction questionnaire) it includes a review of the scientific evidence around different aspects of pre, intra and postoperative management. Among others, antibiotic and antithrombotic prophylaxis, preoperative preparation in hyperthyroidism, intraoperative neuromonitoring and systems for obtaining hemostasis are included, along with management of postoperative hypocalcemia.

  10. Pathway analysis of IMC

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya; Nielson, Flemming; Pilegaard, Henrik

    2009-01-01

    We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced into the......We present the ongoing work on the pathway analysis of a stochastic calculus. Firstly we present a particular stochastic calculus that we have chosen for our modeling - the Interactive Markov Chains calculus, IMC for short. After that we specify a few restrictions that we have introduced...

  11. Structure of active IspH enzyme from escherichia coli provides mechanistic insights into substrate reduction

    KAUST Repository

    Gräwert, Tobias

    2009-07-20

    The terminal step of the non-mevalonate pathway of terpene biosynthesis is catalyzed by IspH (see scheme). In the crystal structure of IspH from E. coli, a bound inorganic diphosphate ligand occupies the position of the diphosphate residue of the substrate. Together with mutation studies and theoretical calculations, these data support a mechanism which is analogous to the Birch reduction of allylic alcohols. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Pathways to School Success

    Science.gov (United States)

    University of Pittsburgh Office of Child Development, 2012

    2012-01-01

    In 2006, the University of Pittsburgh Office of Child Development began implementing a multi-year school readiness project in several area schools. Evidence from both research and the field point to several key elements that foster school readiness and create pathways to school success for all children. This paper presents components of a…

  13. Policies built upon pathways

    NARCIS (Netherlands)

    S. Musterd; Z. Kovács

    2013-01-01

    After the general introductions, the first substantive part of this volume (Part II) provides concise research-based discussions of policies developed in recognition of the important role played by the pathways along which city-regions have travelled. Our research has shown that it is highly importa

  14. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  15. Mining biological pathways using WikiPathways web services.

    Directory of Open Access Journals (Sweden)

    Thomas Kelder

    Full Text Available WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process.

  16. Mining biological pathways using WikiPathways web services.

    Science.gov (United States)

    Kelder, Thomas; Pico, Alexander R; Hanspers, Kristina; van Iersel, Martijn P; Evelo, Chris; Conklin, Bruce R

    2009-07-30

    WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process.

  17. DMPD: Antiviral innate immunity pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16474426 Antiviral innate immunity pathways. Seth RB, Sun L, Chen ZJ. Cell Res. 200...6 Feb;16(2):141-7. (.png) (.svg) (.html) (.csml) Show Antiviral innate immunity pathways. PubmedID 16474426 ...Title Antiviral innate immunity pathways. Authors Seth RB, Sun L, Chen ZJ. Publication Cell Res. 2006 Feb;16

  18. Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa.

    Science.gov (United States)

    Seeber, Frank

    2003-06-01

    Apicomplexan parasites are a large phylum of unicellular and obligate intracellular organisms of great medical importance. They include the human pathogens Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, an opportunistic parasite of immunosuppressed individuals and a common cause of congenital disease, together affecting several hundred million people worldwide. The search for new and effective drugs against these pathogens has been boosted during the last years by an unexpected finding. Through molecular and cell biological analysis it was realized that probably most members of this phylum harbor a plastid-like organelle, called the apicoplast, which probably is derived from the engulfment of a red alga in ancient times. Although the apicoplast itself contains a small circular genome, most of the proteome of this organelle is encoded in the nuclear genome, and the proteins are subsequently transported to the apicoplast. It is assumed to contain a number of unique metabolic pathways not found in the vertebrate host, making it an ideal "playground" for those interested in drug targets. Recent reports have shown that the rationale of this approach is valid and that new drugs which are urgently needed especially for plasmodial infections, might be developed in the near future based on these targets. Amongst them are three enzymes of the plant-like fatty acid synthesis machinery and enzymes of the non-mevalonat isoprenoid biosynthesis pathway. From their presence in the apicoplast it can be concluded that fatty acid and lipid biosynthesis seems to be a major function of the apicoplast. Another recently described apicoplast enzyme, ferredoxin-NADP(+)-reductase and its redox partner, ferredoxin, points to another interesting organelle-specific biosynthetic pathway, namely [Fe-S] cluster biosynthesis. In the present review, the fundamental aspects of the apicoplast as drug target will be described, together with the specific pathways and their

  19. Metabolic pathways of trichothecenes.

    Science.gov (United States)

    Wu, Qinghua; Dohnal, Vlastimil; Huang, Lingli; Kuca, Kamil; Yuan, Zonghui

    2010-05-01

    Trichothecenes are a group of mycotoxins mainly produced by the fungi of Fusarium genus. Consumers are particularly concerned over the toxicity and food safety of trichothecenes and their metabolites from food-producing animals. The metabolism of T-2 toxin, deoxynivalenol (DON), nivalenol (NIV), fusarenon-X (FX), diacetoxyscirpenol (DAS), 3-acetyldeoxy-nivalenol (3-aDON), and 15-acetyldeoxynivalenol (15-aDON) in rodents, swine, ruminants, poultry, and humans are reviewed in this article. Metabolic pathways of these mycotoxins are very different. The major metabolic pathways of T-2 toxin in animals are hydrolysis, hydroxylation, de-epoxidation, and conjugation. After being transformed to HT-2 toxin, it undergoes further hydroxylation at C-3' to yield 3'-hydroxy-HT-2 toxin, which is considered as an activation pathway, whereas transformation from T-2 to T-2 tetraol is an inactivation pathway in animals. The typical metabolites of T-2 toxin in animals are HT-2 toxin, T-2 triol, T-2 tetraol, neosolaniol (NEO), 3'-hydroxy-HT-2, and 3'-hydroxy-T-2, whereas HT-2 toxin is the main metabolite in humans. De-epoxidation is an important pathway for detoxification in animals. De-epoxy products, DOM-1, and de-epoxy-NIV are the main metabolites of DON and NIV in most animals, respectively. However, the two metabolites are not found in humans. Deacetyl can occur rapidly on the acetyl derivatives, 3-aDON, 15-aDON, and FX. DAS is metabolized in animals to 15-monoacetoxyscirpenol (15-MAS) via C-4 deacetylation and then transformed to scirpentriol (SCP) via C-15 deacetylation. Finally, the epoxy is lost, yielding de-epoxy-SCP. De-epoxy-15-MAS is also the main metabolite of DAS. 15-MAS is the main metabolite in human skin. The review on the metabolism of trichothecenes will help one to well understand the fate of these toxins' future in animals and humans, as well as provide basic information for the risk assessment of them for food safety.

  20. Identifying dysregulated pathways in cancers from pathway interaction networks

    Directory of Open Access Journals (Sweden)

    Liu Ke-Qin

    2012-06-01

    Full Text Available Abstract Background Cancers, a group of multifactorial complex diseases, are generally caused by mutation of multiple genes or dysregulation of pathways. Identifying biomarkers that can characterize cancers would help to understand and diagnose cancers. Traditional computational methods that detect genes differentially expressed between cancer and normal samples fail to work due to small sample size and independent assumption among genes. On the other hand, genes work in concert to perform their functions. Therefore, it is expected that dysregulated pathways will serve as better biomarkers compared with single genes. Results In this paper, we propose a novel approach to identify dysregulated pathways in cancer based on a pathway interaction network. Our contribution is three-fold. Firstly, we present a new method to construct pathway interaction network based on gene expression, protein-protein interactions and cellular pathways. Secondly, the identification of dysregulated pathways in cancer is treated as a feature selection problem, which is biologically reasonable and easy to interpret. Thirdly, the dysregulated pathways are identified as subnetworks from the pathway interaction networks, where the subnetworks characterize very well the functional dependency or crosstalk between pathways. The benchmarking results on several distinct cancer datasets demonstrate that our method can obtain more reliable and accurate results compared with existing state of the art methods. Further functional analysis and independent literature evidence also confirm that our identified potential pathogenic pathways are biologically reasonable, indicating the effectiveness of our method. Conclusions Dysregulated pathways can serve as better biomarkers compared with single genes. In this work, by utilizing pathway interaction networks and gene expression data, we propose a novel approach that effectively identifies dysregulated pathways, which can not only be used

  1. Mapping Nursing Pathways

    Directory of Open Access Journals (Sweden)

    Melanie Birks

    2015-09-01

    Full Text Available Articulated education pathways between the vocational education training sector and universities provide opportunities for students wishing to progress to higher qualifications. Enrolled nurses seeking to advance their career in nursing can choose to enter baccalaureate degree programs through such alternative entry routes. Awarding of credit for prior studies is dependent on accurate assessment of the existing qualification against that which is sought. This study employed a modified Delphi method to inform the development of an evidence-based, structured approach to mapping the pathway from the nationally consistent training package of the Diploma of Nursing to the diversity of baccalaureate nursing programs across Australia. The findings of this study reflect the practical nature of the role of the enrolled nurse, particularly the greater emphasis placed on direct care activities as opposed to those related to professional development and the generation and use of evidence. These findings provide a valuable summative overview of the relationship between the Diploma of Nursing and the expectations of the registered nurse role.

  2. Pathways to Global Markets

    DEFF Research Database (Denmark)

    Smith, David E.; Mitry, Darryl J.

    2011-01-01

    For marketing and economic researchers, an important aspect of globalization is the degree to which various consumer behavior dimensions and consumption patterns in different parts of the world are becoming similar, and how multinational companies have identified pathways to global success....... An important case study is McDonald‘s corporation, the world‘s largest fast food restaurant chain. This company has employed divergent marketing and economic strategies in both domestic and the international markets to become a leader in the global marketplace. An overview of the company‘s background......, organizational structures, mission and vision illustrate McDonald‘s strategic focus on its proactive evolution from a small drive-through operation to a global fast-food giant. The strategy is based on its ability to adapt to the cultural differences of the markets that McDonald‘s serves while preserving its...

  3. Biochemical, physiological and climatic influence on the emission of isoprenoides from Grey Poplar (Populus x canescens (Aiton) Sm.) and Holm Oak (Quercus ilex L.); Biochemische, physiologische und klimatische Einfluesse auf die Isoprenoidemission der Graupappel (Populus x canescens (Aiton) Sm.) und der Steineiche (Quercus ilex L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, S.

    2007-05-15

    Because of their important role for the atmospheric chemistry, global daily and seasonal emission rates of isoprene and monoterpenes have to be estimated with accuracy. Therefore, detailed knowledge of biochemical and physiological processes within the plant metabolism has to be gathered. Afterwards the gained cognitions are used as information for process-based model calculations. The major scope of the work was therefore to enlarge basic knowledge of the regulation of isoprenoid emission, which is known to be dependent on several environmental factors, especially light and temperature. Measurements of diurnal isoprene emission have been performed in parallel on physiological, translational and transcriptional level on leaves of Grey Poplar (Populus x canescens), a strong isoprene emitting species. Additionally, examinations of diurnal monoterpene emission in connection to physiologic and enzymatic processes was conducted in leaves of Holm Oak (Quercus ilex), which emits a large spectrum of monoterpenes. Furthermore a hypothesis was tested, whether isoprene emission may serve the plant as antioxidative protection mechanism in order to overcome oxidative stress. In main parts, the following results have been reached: 1. In the first part of this work, isolation of PcDXR (DXR of Grey Poplar) from a cDNA-Genbank and heterologous expression of the isolated gene was accomplished. 2. Daytime variation of physiological and biochemical parameters of the isoprene emission of Grey Poplar was measured twice on 2 following days in 2 years. All together, measurements have been performed on 8 representative plants. 3. Quantitative RT-PCR elucidated the gene expression pattern of PcDXR and PcISPS in parallel to diurnal gas exchange measurements. Gene expression of PcISPS showed distinct diurnal courses with maximum values on the late morning, whereas PcDXR transcript levels stayed consistent over the day. No short-term influence of PPFD and leaf temperature has been observed on

  4. A pathway to spirituality.

    Science.gov (United States)

    Shaw, Jon A

    2005-01-01

    The phenomenology of mystical experiences has been described throughout all the ages and in all religions. All mystical traditions identify some sense of union with the absolute as the ultimate spiritual goal. I assume that the pathway to both theistic and secular spirituality and our readiness to seek a solution in a psychological merger with something beyond the self evolves out of our human experience. Spirituality is one of man's strategies for dealing with the limitations of the life cycle, separation and loss, biological fragility, transience, and non-existence. Spirituality may serve as the affective component to a belief system or myth that is not rooted in scientific evidence but is lived as if it is true. Spirituality may take many forms, but I will suggest that in some instances it may serve as a reparative process in which one creates in the external world, through symbolic form, a nuance or facet of an internalized mental representation which has become lost or is no longer available to the self; or it may represent the continuity of the self-representation after death through a self-object merger. Lastly I will illustrate from the writings of two of our greatest poets, Dante Alighieri and William Wordsworth, how their poetry became interwoven with a profound spirituality. In Dante we will see the elaboration of a religious spirituality, while in the writings of Wordsworth a secular spirituality emerges interwoven with nature and belatedly his identification with "tragic man" as his mythos.

  5. Evolution of the TOR Pathway.

    NARCIS (Netherlands)

    Dam, T.J.P. van; Zwartkruis, F.J.; Bos, J.L.; Snel, B.

    2011-01-01

    The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provid

  6. Novel protein regulates ERK pathway

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The ERK (extracellular signal-regulated kinase) pathway plays a critical role in the vital processes of living cells such as proliferation and differentiation.Recently, CAS scientists in Shanghai have discovered a novel mechanism of spatial regulation on ERK pathway. The result was published in the 4 September issue of the Proceedings of National Academy of Sciences(PNAS).

  7. Autism: Many Genes, Common Pathways?

    OpenAIRE

    Geschwind, Daniel H.

    2008-01-01

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  8. Autism: many genes, common pathways?

    Science.gov (United States)

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  9. Evolution of the TOR Pathway.

    NARCIS (Netherlands)

    Dam, T.J.P. van; Zwartkruis, F.J.; Bos, J.L.; Snel, B.

    2011-01-01

    The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provid

  10. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Biogenetic Pathways for Marine Terpenoids

    Institute of Scientific and Technical Information of China (English)

    郑其煌; 苏镜娱; 黄起鹏; 王植材; 刘璇; 高碧; 曾陇梅; 郑德炫

    1994-01-01

    A reasonable theoretical elucidation of biogenetic pathways is given for marine ter-penoids——halogenated terpenoids,cernbranolides and tetracyclic tetraterpenoids in marine organisms ac-cording to biogenesis,and the possibility of studying biogenetic pathways by chemical synthesis and molecu-lar probe method is discussed.

  12. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin;

    2016-01-01

    We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...

  13. Refining the quantitative pathway of the Pathways to Mathematics model.

    Science.gov (United States)

    Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda

    2015-03-01

    In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Pathways Intern Report

    Science.gov (United States)

    Bell, Evan A.

    2015-01-01

    During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.

  15. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  16. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.

  17. Protein Design for Pathway Engineering

    Science.gov (United States)

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  18. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  19. Neuroinflammation pathways: a general review.

    Science.gov (United States)

    Shabab, Tara; Khanabdali, Ramin; Moghadamtousi, Soheil Zorofchian; Kadir, Habsah Abdul; Mohan, Gokula

    2017-07-01

    Activated microglial cells play an important role in immune and inflammatory responses in central nervous system and neurodegenerative diseases. Many pro-apoptotic pathways are mediated by signaling molecules that are produced during neuroinflammation. In glial cells, NF-κB, a transcription factor, initiates and regulates the expression of several inflammatory processes during inflammation which are attributed to the pathology of the several neurodegenerative diseases. In this review, we discuss the most important neuroinflammatory mediators with their pathways. Attenuating cytokines production and controlling microglial inflammatory response, which are the result of understanding neuroinflammation pathways, are considered therapeutic strategies for treating neurodegenerative diseases with an inflammatory component.

  20. PaxtoolsR: pathway analysis in R using Pathway Commons.

    Science.gov (United States)

    Luna, Augustin; Babur, Özgün; Aksoy, Bülent Arman; Demir, Emek; Sander, Chris

    2016-04-15

    PaxtoolsR package enables access to pathway data represented in the BioPAX format and made available through the Pathway Commons webservice for users of the R language to aid in advanced pathway analyses. Features include the extraction, merging and validation of pathway data represented in the BioPAX format. This package also provides novel pathway datasets and advanced querying features for R users through the Pathway Commons webservice allowing users to query, extract and retrieve data and integrate these data with local BioPAX datasets. The PaxtoolsR package is compatible with versions of R 3.1.1 (and higher) on Windows, Mac OS X and Linux using Bioconductor 3.0 and is available through the Bioconductor R package repository along with source code and a tutorial vignette describing common tasks, such as data visualization and gene set enrichment analysis. Source code and documentation are at http://www.bioconductor.org/packages/paxtoolsr This plugin is free, open-source and licensed under the LGPL-3. paxtools@cbio.mskcc.org or lunaa@cbio.mskcc.org. © The Author 2015. Published by Oxford University Press.

  1. Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs

    Directory of Open Access Journals (Sweden)

    Pia eStaehr

    2014-04-01

    Full Text Available Phosphoenolpyruvate (PEP serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT specific for PEP (PPT. A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1 mutant, which is characterised by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signalling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signalling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding aromatic amino acids (AAA, the cytokinin trans-zeatin (tZ, or the putative signalling molecule dehydrodiconiferyl alcohol glucoside (DCG. Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1 mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in

  2. Multiple pathways regulate shoot branching

    Directory of Open Access Journals (Sweden)

    Catherine eRameau

    2015-01-01

    Full Text Available Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TCP transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply.

  3. The Oxylipin Pathway in Arabidopsis

    OpenAIRE

    Creelman, Robert A.; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on...

  4. Session on computation in biological pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, P.D. [SRI International, Menlo Park, CA (United States); Riley, M. [Marine Biological Lab., Woods Hole, MA (United States)

    1996-12-31

    The papers in this session focus on the development of pathway databases and computational tools for pathway analysis. The discussion involves existing databases of sequenced genomes, as well as techniques for studying regulatory pathways.

  5. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50 of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose polymerase (PARP cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  6. LXR signaling pathways and atherosclerosis

    Science.gov (United States)

    Calkin, Anna; Tontonoz, Peter

    2010-01-01

    First discovered as orphan receptors, liver X receptors (LXRs) were subsequently identified as the nuclear receptor target of the cholesterol metabolites, oxysterols.1 There are 2 LXR receptors encoded by distinct genes: LXRα is most highly expressed in the liver, adipose, kidney, adrenal tissues and macrophages, and LXRβ is ubiquitously expressed. Despite differential tissue distribution, these isoforms have 78% homology in their ligand-binding domain and appear to respond to the same endogenous ligands. Work over the past 10 years has shown that the LXR pathway regulates lipid metabolism and inflammation via both the induction and repression of target genes. Given the importance of cholesterol regulation and inflammation in the development of cardiovascular disease, it is not surprising that activation of the LXR pathway attenuates various mechanisms underlying atherosclerotic plaque development.2 In this minireview we will discuss the impact of the LXR pathway on both cholesterol metabolism and atherosclerosis. PMID:20631351

  7. Tissue factor pathway inhibitor endocytosis.

    Science.gov (United States)

    Schwartz, A L; Broze, G J

    1997-10-01

    Tissue factor pathway inhibitor (TFPI), a 42 kD protein, provides the physiological inhibition of tissue factor initiated coagulation by inhibition of both factor Xa and factor VIIa/tissue factor. In plasma, most TFPI is lipoprotein bound with an additional "releasable" pool bound to the endothelial cell surface. TFPI clearance is via receptor mediated endocytosis into liver. Heparin sulfate proteoglycans and LRP (low density lipoprotein receptor-related protein), an extremely large (∼600 kD) cell surface protein, primarily mediate this clearance, although additional TFPI binding sites and endocytosis pathways exist. (Trends Cardiovasc Med 1997; 7:234-239). © 1997, Elsevier Science Inc.

  8. [Pathways of flowering regulation in plants].

    Science.gov (United States)

    Liu, Yongping; Yang, Jing; Yang, Mingfeng

    2015-11-01

    Flowering, the floral transition from vegetative growth to reproductive growth, is induced by diverse endogenous and exogenous cues, such as photoperiod, temperature, hormones and age. Precise flowering time is critical to plant growth and evolution of species. The numerous renewal molecular and genetic results have revealed five flowering time pathways, including classical photoperiod pathway, vernalization pathway, autonomous pathway, gibberellins (GA) pathway and newly identified age pathway. These pathways take on relatively independent role, and involve extensive crosstalks and feedback loops. This review describes the complicated regulatory network of this floral transition to understand the molecular mechanism of flowering and provide references for further research in more plants.

  9. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  10. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  11. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  12. Loco signaling pathway in longevity.

    Science.gov (United States)

    Lin, Yuh-Ru; Parikh, Hardik; Park, Yongkyu

    2011-05-01

    Despite the various roles of regulator of G protein signaling (RGS) protein in the G protein signaling pathway that have been defined, the function of RGS has not been characterized in longevity signaling pathways. We found that reduced expression of Loco, a Drosophila RGS protein, resulted in a longer lifespan of flies with stronger resistance to stress, higher MnSOD activity and increased fat content. In contrast, overexpression of the loco gene shortened the fly lifespan significantly, lowered stress resistance and reduced fat content, also indicating that the RGS domain containing GTPase-activating protein (GAP) activity is related to the regulation of longevity. Interestingly, expressional changes of yeast RGS2 and rat RGS14, homologs to the fly Loco, also affected oxidative stress resistance and longevity in the respective species. It is known that Loco inactivates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase (AC) and RGS14 interacts with activated H-Ras and Raf-1 kinases, which subsequently inhibits ERK phosphorylation. We propose that Loco/RGS14 protein may regulate stress resistance and longevity as an activator in AC-cAMP-PKA pathway and/or as a molecular scaffold that sequesters active Ras and Raf from Ras•GTP-Raf-MEK-ERK signaling pathway. Consistently, our data showed that downregulation of Loco significantly diminishes cAMP amounts and increases p-ERK levels with higher resistance to the oxidative stress.

  13. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  14. Critical nodes in signalling pathways

    DEFF Research Database (Denmark)

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...

  15. Reverse Engineering Adverse Outcome Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  16. The Phenylpropanoid Pathway in Arabidopsis

    Science.gov (United States)

    Fraser, Christopher M.; Chapple, Clint

    2011-01-01

    The phenylpropanoid pathway serves as a rich source of metabolites in plants, being required for the biosynthesis of lignin, and serving as a starting point for the production of many other important compounds, such as the flavonoids, coumarins, and lignans. In spite of the fact that the phenylpropanoids and their derivatives are sometimes classified as secondary metabolites, their relevance to plant survival has been made clear via the study of Arabidopsis and other plant species. As a model system, Arabidopsis has helped to elucidate many details of the phenylpropanoid pathway, its enzymes and intermediates, and the interconnectedness of the pathway with plant metabolism as a whole. These advances in our understanding have been made possible in large part by the relative ease with which mutations can be generated, identified, and studied in Arabidopsis. Herein, we provide an overview of the research progress that has been made in recent years, emphasizing both the genes (and gene families) associated with the phenylpropanoid pathway in Arabidopsis, and the end products that have contributed to the identification of many mutants deficient in the phenylpropanoid metabolism: the sinapate esters. PMID:22303276

  17. The oxylipin pathway in Arabidopsis.

    Science.gov (United States)

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  18. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  19. DMPD: Pathways connecting inflammation and cancer. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18325755 Pathways connecting inflammation and cancer. Allavena P, Garlanda C, Borre...) (.csml) Show Pathways connecting inflammation and cancer. PubmedID 18325755 Title Pathways connecting infl

  20. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  1. Identification of Metabolic Pathway Systems

    Directory of Open Access Journals (Sweden)

    Sepideh eDolatshahi

    2016-02-01

    Full Text Available The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems.

  2. Dual pathways to prospective remembering

    Science.gov (United States)

    McDaniel, Mark A.; Umanath, Sharda; Einstein, Gilles O.; Waldum, Emily R.

    2015-01-01

    According to the multiprocess framework (McDaniel and Einstein, 2000), the cognitive system can support prospective memory (PM) retrieval through two general pathways. One pathway depends on top–down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom–up) spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically, spontaneous retrieval is assumed not to require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom–up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM. PMID:26236213

  3. Dual Pathways to Prospective Remembering

    Directory of Open Access Journals (Sweden)

    Mark A Mcdaniel

    2015-07-01

    Full Text Available According to the multiprocess framework (McDaniel & Einstein, 2000, the cognitive system can support prospective memory (PM retrieval through two general pathways. One pathway depends on top-down attentional control processes that maintain activation of the intention and/or monitor the environment for the triggering or target cues that indicate that the intention should be executed. A second pathway depends on (bottom-up spontaneous retrieval processes, processes that are often triggered by a PM target cue; critically spontaneous retrieval is assumed to not require monitoring or active maintenance of the intention. Given demand characteristics associated with experimental settings, however, participants are often inclined to monitor, thereby potentially masking discovery of bottom-up spontaneous retrieval processes. In this article, we discuss parameters of laboratory PM paradigms to discourage monitoring and review recent behavioral evidence from such paradigms that implicate spontaneous retrieval in PM. We then re-examine the neuro-imaging evidence from the lens of the multiprocess framework and suggest some critical modifications to existing neuro-cognitive interpretations of the neuro-imaging results. These modifications illuminate possible directions and refinements for further neuro-imaging investigations of PM.

  4. Imbalanced kynurenine pathway in schizophrenia.

    Science.gov (United States)

    Kegel, Magdalena E; Bhat, Maria; Skogh, Elisabeth; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schwieler, Lilly; Engberg, Göran; Schuppe-Koistinen, Ina; Erhardt, Sophie

    2014-01-01

    Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.

  5. Pathways to Shape the Bioeconomy

    Directory of Open Access Journals (Sweden)

    Carmen Priefer

    2017-02-01

    Full Text Available In view of the increasing depletion of fossil fuel resources, the concept “bioeconomy” aims at the gradual replacement of fossil fuels by renewable feedstock. Seen as a comprehensive societal transition, the bioeconomy is a complex field that includes a variety of sectors, actors, and interests and is related to far-reaching changes in today’s production systems. While the objectives pursued—such as reducing dependence on fossil fuels, mitigating climate change, ensuring global food security, and increasing the industrial use of biogenic resources—are not generally contentious, there is fierce controversy over the possible pathways for achieving these objectives. Based on a thorough literature review, the article identifies major lines of conflict in the current discourse. Criticism of the prevalent concept refers mainly to the strong focus on technology, the lack of consideration given to alternative implementation pathways, the insufficient differentiation of underlying sustainability requirements, and the inadequate participation of societal stakeholders. Since today it cannot be predicted which pathway will be the most expedient—the one already being taken or one of the others proposed—this paper suggests pursuing a strategy of diversity concerning the approaches to shape the bioeconomy, the funding of research topics, and the involvement of stakeholders.

  6. Identification of Metabolic Pathway Systems.

    Science.gov (United States)

    Dolatshahi, Sepideh; Voit, Eberhard O

    2016-01-01

    The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems.

  7. The updated RGD Pathway Portal utilizes increased curation efficiency and provides expanded pathway information.

    Science.gov (United States)

    Hayman, G Thomas; Jayaraman, Pushkala; Petri, Victoria; Tutaj, Marek; Liu, Weisong; De Pons, Jeff; Dwinell, Melinda R; Shimoyama, Mary

    2013-02-05

    The RGD Pathway Portal provides pathway annotations for rat, human and mouse genes and pathway diagrams and suites, all interconnected via the pathway ontology. Diagram pages present the diagram and description, with diagram objects linked to additional resources. A newly-developed dual-functionality web application composes the diagram page. Curators input the description, diagram, references and additional pathway objects. The application combines these with tables of rat, human and mouse pathway genes, including genetic information, analysis tool and reference links, and disease, phenotype and other pathway annotations to pathway genes. The application increases the information content of diagram pages while expediting publication.

  8. Antiproliferative effects of isoprenoids from Sarcophyton glaucum on ...

    African Journals Online (AJOL)

    Al-Footy4, Mohamed Halid4, Sultan S Al-Lihaibi1 and Hajer S Alorfi4 ... Flow cytometric analysis was used to assess their impact on cell cycle of MCF-7. ..... aMCF-7 (human breast Cancer cell line); b IC50 of the combination of ¼ IC50 of doxorubicin and ¼ IC50 of the ... Chemical investigation of Red Sea marine animal.

  9. KEGG PATHWAY / Acute myeloid leukemia [KEGG

    Lifescience Database Archive (English)

    Full Text Available PATHWAY: map05221 Entry map05221Pathway Name Acute myeloid leukemia Description Acute...Class Human Diseases; Cancers Pathwaymap map05221Acute myeloid leukemia Disease H00003Acute myeloid leukemia...inkDB DBGET integrated database retrieval system KEGG PATHWAY / Acute myeloid leukemia ...

  10. A brain cancer pathway in clinical practice

    DEFF Research Database (Denmark)

    Laursen, Emilie Lund; Rasmussen, Birthe Krogh

    2012-01-01

    Danish healthcare seeks to improve cancer survival through improved diagnostics, rapid treatment and increased focus on cancer prevention and early help-seeking. In neuro-oncology, this has resulted in the Integrated Brain Cancer Pathway (IBCP). The paper explores how the pathway works...... in the initial phase in a clinical setting with emphasis on pathway criteria....

  11. Primary Metabolic Pathways and Metabolic Flux Analysis

    DEFF Research Database (Denmark)

    2015-01-01

    his chapter introduces the metabolic flux analysis (MFA) or stoichiometry-based MFA, and describes the quantitative basis for MFA. It discusses the catabolic pathways in which free energy is produced to drive the cell-building anabolic pathways. An overview of these primary pathways provides...

  12. Apoptotic engulfment pathway and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Xiangning Chen

    Full Text Available BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively. We sought replication in independent samples for this marker and found highly significant association (p = 0.0003 in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075 interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022 and a 3-marker interaction (rs246896 * rs4522565 * rs3858075 amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120. Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  13. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  14. New clinical pathways for keratoconus

    Science.gov (United States)

    Gore, D M; Shortt, A J; Allan, B D

    2013-01-01

    Pre-2000, the clinical management of keratoconus centred on rigid contact lens fitting when spectacle corrected acuity was no longer adequate, and transplantation where contact lens wear failed. Over the last decade, outcome data have accumulated for new interventions including corneal collagen crosslinking, intracorneal ring implantation, topographic phototherapeutic keratectomy, and phakic intraocular lens implantation. We review the current evidence base for these interventions and their place in new management pathways for keratoconus under two key headings: corneal shape stabilisation and visual rehabilitation. PMID:23258309

  15. Fibromyalgia and the serotonin pathway.

    Science.gov (United States)

    Juhl, J H

    1998-10-01

    Fibromyalgia syndrome is a musculoskeletal pain and fatigue disorder manifested by diffuse myalgia, localized areas of tenderness, fatigue, lowered pain thresholds, and nonrestorative sleep. Evidence from multiple sources support the concept of decreased flux through the serotonin pathway in fibromyalgia patients. Serotonin substrate supplementation, via L-tryptophan or 5-hydroxytryptophan (5-HTP), has been shown to improve symptoms of depression, anxiety, insomnia and somatic pains in a variety of patient cohorts. Identification of low serum tryptophan and serotonin levels may be a simple way to identify persons who will respond well to this approach.

  16. Oxylipin Pathway in Rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    E. Wassim Chehab; John V. Perea; Banu Gopalan; Steve Theg; Katayoon Dehesh

    2007-01-01

    Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental information. The oxylipin pathway is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxylipin pathway induces the de novo synthesis of biologically active metabolltes called "oxylipins". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxylipln pathway, allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are responsible for production of the signaling compounds,jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways in rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations in monocots and dicots.

  17. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  18. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  19. Nucleation pathway in coherent precipitation

    Science.gov (United States)

    Philippe, T.; Blavette, D.

    2011-12-01

    The non-classical nucleation pathway of coherent precipitates has been computed through minimisation of the nucleation barrier in the composition (c)-size (R) space to predict the evolution of nucleus composition. The generalized Gibbs model, developed by Schmelzer et al. [J. Chem. Phys. 112 (2000) p.3820; J. Colloid Interface Sci. 272 (2004) p.109], has been extended to include misfit elastic energy. The composition of critical embryos c* was found to be independent of the interfacial constant. The composition of critical nuclei (c*) decreased with supersaturation. The elastic energy increased both c* and the nucleation barrier, as well as R*. The evolution of nucleus composition (c) as a function of size (R) along the minimum energy pathway was computed. Nucleation only starts when a size threshold is exceeded. Then, rapid enrichment to the expected composition (c β) precedes a constant composition regime. However, for small supersaturations, the change in cluster composition can occur sharply for a very small radius and then the composition slowly increased with a significant change in size. Coherency misfit energy was found to slow down the evolution of nuclei composition with R. The model was compared to experimental results.

  20. Central neural pathways for thermoregulation

    Science.gov (United States)

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  1. Reconstruction of Metabolic Pathways, Protein Expression, and Homeostasis Machineries across Maize Bundle Sheath and Mesophyll Chloroplasts: Large-Scale Quantitative Proteomics Using the First Maize Genome Assembly1[W][OA

    Science.gov (United States)

    Friso, Giulia; Majeran, Wojciech; Huang, Mingshu; Sun, Qi; van Wijk, Klaas J.

    2010-01-01

    Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C4 photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database. PMID:20089766

  2. Pathways towards ferroelectricity in hafnia

    Science.gov (United States)

    Huan, Tran Doan; Sharma, Vinit; Rossetti, George A.; Ramprasad, Rampi

    2014-08-01

    The question of whether one can systematically identify (previously unknown) ferroelectric phases of a given material is addressed, taking hafnia (HfO2) as an example. Low free energy phases at various pressures and temperatures are identified using a first-principles based structure search algorithm. Ferroelectric phases are then recognized by exploiting group theoretical principles for the symmetry-allowed displacive transitions between nonpolar and polar phases. Two orthorhombic polar phases occurring in space groups Pca21 and Pmn21 are singled out as the most viable ferroelectric phases of hafnia, as they display low free energies (relative to known nonpolar phases), and substantial switchable spontaneous electric polarization. These results provide an explanation for the recently observed surprising ferroelectric behavior of hafnia, and reveal pathways for stabilizing ferroelectric phases of hafnia as well as other compounds.

  3. Post-Communist Welfare Pathways

    DEFF Research Database (Denmark)

    Cerami, Alfio; Vanhuysse, Pieter

    This collection adopts novel theoretical approaches to study the diverse welfare state pathways that have evolved across Central and Eastern Europe since the fall of communism in 1989. Going beyond existing path dependency and neo-institutionalist explanations, it highlights the role of explanatory...... factors such as micro-causal mechanisms, ideas, discourses, path departures, power politics, and elite strategies. This book includes contributions from leading international Experts such as Claus Offe, Robert Kaufman, Stefan Haggard, Tomasz Inglot, and Mitchell Orenstein, to examine welfare in specific...... or oppose reform, and national or supranational ideas and discourse that frame those reform efforts.' - Vivien A. Schmidt, Jean Monnet Professor of European Integration, Boston University ‘Quite an extraordinary book. One rarely reads an edited volume in which contributors engage each other the way they do...

  4. Longevity pathways and memory ageing

    Directory of Open Access Journals (Sweden)

    Ilias eGkikas

    2014-06-01

    Full Text Available The ageing process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of ageing. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviours. Age-related memory impairment is an important phenotype of brain ageing. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of ageing and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both ageing and memory formation and consolidation.

  5. The SUMO Pathway in Mitosis.

    Science.gov (United States)

    Mukhopadhyay, Debaditya; Dasso, Mary

    2017-01-01

    Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.

  6. Signalling pathways in pemphigus vulgaris.

    Science.gov (United States)

    Li, Xiaoguang; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-03-01

    Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.

  7. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  8. Fuel Dependence of Benzene Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  9. Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris.

    Science.gov (United States)

    Bajguz, Andrzej; Asami, Tadao

    2004-03-01

    Treatment of cultured Chlorella vulgaris Beijerinck cells with 0.1-10 microM brassinazole (Brz2001), an inhibitor of brassinosteroid (BR) biosynthesis, inhibits their growth during the first 48 h of cultivation in the light. This inhibition is prevented by the co-application of BR. This result suggests that the presence of endogenous BRs during the initial steps of the C. vulgaris cell cycle is indispensable for their normal growth in the light. In darkness, a treatment with 10 nM brassinolide (BL) promotes growth through the first 24 h of culture, but during the following 24 h the cells undergo complete stagnation. Treatment of dark-grown cells with either Brz2001 alone, or a mixture of 10 nM BL and 0.1/10 microM Brz2001, also stimulates their growth. The effects of treatment with 10 nM BL mixed with 0.1-10 microM of a mevalonate-pathway inhibitor (mevinolin), or a non-mevalonate-pathway inhibitor (clomazone), were also investigated. Mevinolin at these concentrations did not inhibit growth of C. vulgaris; however, clomazone did. Addition of BL overcame the inhibition. These results suggest that the mevalonate pathway does not function in C. vulgaris, and that the non-mevalonate pathway for isopentenyl diphosphate biosynthesis is responsible for the synthesis of one of the primary precursors in BR biosynthesis.

  10. The pathway ontology - updates and applications.

    Science.gov (United States)

    Petri, Victoria; Jayaraman, Pushkala; Tutaj, Marek; Hayman, G Thomas; Smith, Jennifer R; De Pons, Jeff; Laulederkind, Stanley Jf; Lowry, Timothy F; Nigam, Rajni; Wang, Shur-Jen; Shimoyama, Mary; Dwinell, Melinda R; Munzenmaier, Diane H; Worthey, Elizabeth A; Jacob, Howard J

    2014-02-05

    The Pathway Ontology (PW) developed at the Rat Genome Database (RGD), covers all types of biological pathways, including altered and disease pathways and captures the relationships between them within the hierarchical structure of a directed acyclic graph. The ontology allows for the standardized annotation of rat, and of human and mouse genes to pathway terms. It also constitutes a vehicle for easy navigation between gene and ontology report pages, between reports and interactive pathway diagrams, between pathways directly connected within a diagram and between those that are globally related in pathway suites and suite networks. Surveys of the literature and the development of the Pathway and Disease Portals are important sources for the ongoing development of the ontology. User requests and mapping of pathways in other databases to terms in the ontology further contribute to increasing its content. Recently built automated pipelines use the mapped terms to make available the annotations generated by other groups. The two released pipelines - the Pathway Interaction Database (PID) Annotation Import Pipeline and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation Import Pipeline, make available over 7,400 and 31,000 pathway gene annotations, respectively. Building the PID pipeline lead to the addition of new terms within the signaling node, also augmented by the release of the RGD "Immune and Inflammatory Disease Portal" at that time. Building the KEGG pipeline lead to a substantial increase in the number of disease pathway terms, such as those within the 'infectious disease pathway' parent term category. The 'drug pathway' node has also seen increases in the number of terms as well as a restructuring of the node. Literature surveys, disease portal deployments and user requests have contributed and continue to contribute additional new terms across the ontology. Since first presented, the content of PW has increased by over 75%. Ongoing development of

  11. Pathway-Based Functional Analysis of Metagenomes

    Science.gov (United States)

    Bercovici, Sivan; Sharon, Itai; Pinter, Ron Y.; Shlomi, Tomer

    Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.

  12. Reconstructing fungal natural product biosynthetic pathways.

    Science.gov (United States)

    Lazarus, C M; Williams, K; Bailey, A M

    2014-10-01

    Large scale fungal genome sequencing has revealed a multitude of potential natural product biosynthetic pathways that remain uncharted. Here we describe some of the methods that have been used to explore them via heterologous gene expression. We focus on filamentous fungal hosts and discuss the technological challenges and successes behind the reconstruction of fungal natural product pathways. Optimised, efficient heterologous expression of reconstructed biosynthetic pathways promises progress in the discovery of novel compounds that could be utilised by the pharmaceutical and agrochemical industries.

  13. Coherent band pathways between knots and links

    CERN Document Server

    Buck, Dorothy

    2014-01-01

    We categorise coherent band (aka nullification) pathways between knots and 2-component links. Additionally, we characterise the minimal coherent band pathways (with intermediates) between any two knots or 2-component links with small crossing number. We demonstrate these band surgeries for knots and links with small crossing number. We apply these results to place lower bounds on the minimum number of recombinant events separating DNA configurations, restrict the recombination pathways and determine chirality and/or orientation of the resulting recombinant DNA molecules.

  14. Method for determining heterologous biosynthesis pathways

    KAUST Repository

    Gao, Xin

    2017-08-10

    The present invention relates to a method and system for dynamically analyzing, determining, predicting and displaying ranked suitable heterologous biosynthesis pathways for a specified host. The present invention addresses the problem of finding suitable pathways for the endogenous metabolism of a host organism because the efficacy of heterologous biosynthesis is affected by competing endogenous pathways. The present invention is called MRE (Metabolic Route Explorer), and it was conceived and developed to systematically and dynamically search for, determine, analyze, and display promising heterologous pathways while considering competing endogenous reactions in a given host organism.

  15. Effects of PDT on the endocytic pathway

    Science.gov (United States)

    Kessel, David

    2010-02-01

    Two lines of evidence point to an early effect of photodamage on membrane trafficking. [1] Internalization of a fluorescent probe for hydrophobic membrane loci was impaired by prior photodamage. [2] Interference with the endocytic pathway by the PI-3 kinase antagonist wortmannin led to accumulation of cytoplasmic vacuoles suggesting a block in the recycling of plasma membrane components. Prior photodamage blocked this pathway so that no vacuoles were formed upon exposure of cells to wortmannin. In a murine hepatoma line, the endocytic pathway was preferentially sensitive to lysosomal photodamage. The role of photodamage to the endocytic pathway as a factor in PDT efficacy remains to be assessed.

  16. Female offenders’ pathways to prison in Belgium

    Directory of Open Access Journals (Sweden)

    Nuytiens An

    2012-01-01

    Full Text Available This paper examines some results of a research on female offenders’ life histories and pathways to prison in Belgium. Women’s pathways into crime will be presented and the connection of these pathways to their life histories will be explored. The study reveals that the greater part of the research population are adult-onset offenders. The authors argue that the importance of adult-onset pathways for female offenders might be explained by the emergence of (gendered vulnerabilities within the women’s lives, often accumulated not before adulthood.

  17. Correcting ligands, metabolites, and pathways

    Directory of Open Access Journals (Sweden)

    Vriend Gert

    2006-11-01

    Full Text Available Abstract Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry and that a considerable number (about one third had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and

  18. Computing Pathways for Urban Decarbonization.

    Science.gov (United States)

    Cremades, R.; Sommer, P.

    2016-12-01

    Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban

  19. The pathway ontology – updates and applications

    Science.gov (United States)

    2014-01-01

    Background The Pathway Ontology (PW) developed at the Rat Genome Database (RGD), covers all types of biological pathways, including altered and disease pathways and captures the relationships between them within the hierarchical structure of a directed acyclic graph. The ontology allows for the standardized annotation of rat, and of human and mouse genes to pathway terms. It also constitutes a vehicle for easy navigation between gene and ontology report pages, between reports and interactive pathway diagrams, between pathways directly connected within a diagram and between those that are globally related in pathway suites and suite networks. Surveys of the literature and the development of the Pathway and Disease Portals are important sources for the ongoing development of the ontology. User requests and mapping of pathways in other databases to terms in the ontology further contribute to increasing its content. Recently built automated pipelines use the mapped terms to make available the annotations generated by other groups. Results The two released pipelines – the Pathway Interaction Database (PID) Annotation Import Pipeline and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation Import Pipeline, make available over 7,400 and 31,000 pathway gene annotations, respectively. Building the PID pipeline lead to the addition of new terms within the signaling node, also augmented by the release of the RGD “Immune and Inflammatory Disease Portal” at that time. Building the KEGG pipeline lead to a substantial increase in the number of disease pathway terms, such as those within the ‘infectious disease pathway’ parent term category. The ‘drug pathway’ node has also seen increases in the number of terms as well as a restructuring of the node. Literature surveys, disease portal deployments and user requests have contributed and continue to contribute additional new terms across the ontology. Since first presented, the content of PW has increased by

  20. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  1. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks...... several network perturbation techniques and over a range of perturbation degrees. In addition, users may now provide a gold-standard set to determine how enriched extracted pathways are with relevant genes compared to randomized versions of the original network....

  2. Melanin biosynthesis pathway in Agaricus bisporus mushrooms

    NARCIS (Netherlands)

    Weijn, A.; Bastiaan-Net, S.; Wichers, H.J.; Mes, J.J.

    2013-01-01

    With the full genome sequence of Agaricus bisporus available, it was possible to investigate the genes involved in the melanin biosynthesis pathway of button mushrooms. Based on different BLAST and alignments, genes were identified in the genome which are postulated to be involved in this pathway.

  3. Mining the Wnt pathway for cancer therapeutics.

    NARCIS (Netherlands)

    Barker, N.; Clevers, J.C.

    2006-01-01

    Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics design

  4. Modeling cancer progression via pathway dependencies.

    Directory of Open Access Journals (Sweden)

    Elena J Edelman

    2008-02-01

    Full Text Available Cancer is a heterogeneous disease often requiring a complexity of alterations to drive a normal cell to a malignancy and ultimately to a metastatic state. Certain genetic perturbations have been implicated for initiation and progression. However, to a great extent, underlying mechanisms often remain elusive. These genetic perturbations are most likely reflected by the altered expression of sets of genes or pathways, rather than individual genes, thus creating a need for models of deregulation of pathways to help provide an understanding of the mechanisms of tumorigenesis. We introduce an integrative hierarchical analysis of tumor progression that discovers which a priori defined pathways are relevant either throughout or in particular steps of progression. Pathway interaction networks are inferred for these relevant pathways over the steps in progression. This is followed by the refinement of the relevant pathways to those genes most differentially expressed in particular disease stages. The final analysis infers a gene interaction network for these refined pathways. We apply this approach to model progression in prostate cancer and melanoma, resulting in a deeper understanding of the mechanisms of tumorigenesis. Our analysis supports previous findings for the deregulation of several pathways involved in cell cycle control and proliferation in both cancer types. A novel finding of our analysis is a connection between ErbB4 and primary prostate cancer.

  5. Optic pathway degeneration in Japanese black cattle.

    Science.gov (United States)

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  6. Fuel Pathway Integration Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  7. Opportunities for pharmaceutical care with critical pathways.

    Science.gov (United States)

    Koch, K E

    1995-01-01

    Critical pathways are multidisciplinary tools designed to improve patient care and efficiency. Almost every path requires some type of pharmacotherapeutic intervention, from selection of surgical prophylaxis to management of anticoagulation. Pharmacists should become involved with the critical pathway process because it offers an excellent opportunity to incorporate pharmaceutical care and to meet Joint Commission on Accreditation of Healthcare Organization compliance criteria.

  8. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I

    1996-01-01

    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...

  9. A brain cancer pathway in clinical practice

    DEFF Research Database (Denmark)

    Laursen, Emilie Lund; Rasmussen, Birthe Krogh

    2012-01-01

    Danish healthcare seeks to improve cancer survival through improved diagnostics, rapid treatment and increased focus on cancer prevention and early help-seeking. In neuro-oncology, this has resulted in the Integrated Brain Cancer Pathway (IBCP). The paper explores how the pathway works...

  10. DMPD: Parallel pathways of virus recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16713969 Parallel pathways of virus recognition. Tenoever BR, Maniatis T. Immunity.... 2006 May;24(5):510-2. (.png) (.svg) (.html) (.csml) Show Parallel pathways of virus recognition. PubmedID 1...6713969 Title Parallel pathways of virus recognition. Authors Tenoever BR, Maniatis T. Publication Immunity.

  11. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  12. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathwa...ys activated by microorganisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  13. DMPD: All is not Toll: new pathways in DNA recognition. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16446382 All is not Toll: new pathways in DNA recognition. Wagner H, Bauer S. J Exp... Med. 2006 Feb 20;203(2):265-8. Epub 2006 Jan 30. (.png) (.svg) (.html) (.csml) Show All is not Toll: new pa...thways in DNA recognition. PubmedID 16446382 Title All is not Toll: new pathways in DNA recognition. Authors

  14. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  15. DMPD: Afferent pathways of pyrogen signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9917870 Afferent pathways of pyrogen signaling. Blatteis CM, Sehic E, Li S. Ann N Y... Acad Sci. 1998 Sep 29;856:95-107. (.png) (.svg) (.html) (.csml) Show Afferent pathways of pyrogen signaling.... PubmedID 9917870 Title Afferent pathways of pyrogen signaling. Authors Blatteis CM, Sehic E, Li S. Publica

  16. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...csml) Show Signalling pathways mediating type I interferon gene expression. PubmedID 17904888 Title Signalli...ng pathways mediating type I interferon gene expression. Authors Edwards MR, Slat

  17. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard;

    does however often depend on both heterologous and host enzymes. In this case, no spatial coordination of the biosynthetic enzymes can be expected to be in place. Presumably this contributes to the low productivity regularly observed for heterologous pathways. In one test case, we investigated whether...... of the spatial organization of biosynthetic pathways. Several natural systems for ensuring optimal spatial arrangement of biosynthetic enzymes exist. Sequentially acting enzymes can for example be positioned in close proximity by attachment to cellular structures, up-concentration in membrane enclosed organelles......, as enzyme fusion combined with down-regulation of a competing pathway and up-regulation of a selected pathway enzyme resulted in a five-fold higher sesquiterpene production. This simple test case demonstrates that engineering of the spatial organization of pathways has great potential for diverting flux...

  18. Ordering the multiple pathways of apoptosis.

    Science.gov (United States)

    Park, D S; Stefanis, L; Greene, L A

    1997-11-01

    Apoptosis plays an important role in development, homeostasis, and disease. Current work has suggested that apoptosis can be evoked by multiple stimuli that, in turn, initiate distinct death pathways. Recently, exciting advances have been made in the understanding of biochemical pathways that regulate apoptotic processes. These pathways contain both evolutionarily conserved elements and components that are dependent on the death stimulus and cell context. Accordingly, this review focuses on the compositions and relative ordering of the apoptotic pathways in four different death paradigms: activation of receptors of the Fas ligand, destruction by cytotoxic T lymphocytes, exposure to DNA damaging agents, and loss of support by neurotrophic factors. These examples illustrate the conservation and divergence in the ways that death pathways are composed and ordered. (Trends Cardiovasc Med 1997;7:294-301). © 1997, Elsevier Science Inc.

  19. Tapping RNA silencing pathways for plant biotechnology.

    Science.gov (United States)

    Frizzi, Alessandra; Huang, Shihshieh

    2010-08-01

    Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.

  20. Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API.

    Directory of Open Access Journals (Sweden)

    Nobuaki Kono

    Full Text Available BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1 availability of large integrated maps showing genes, enzymes, and metabolites; (2 comprehensive search features and data access; (3 data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4 easy exchange of pathway data; and (5 intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/.

  1. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis

    DEFF Research Database (Denmark)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan

    2016-01-01

    . Methods: We propose that higher-order functional representation of metabolomics data, such as pathway-based metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new computational method that uses personalized pathway dysregulation scores for disease...... the Curve, a receiver operating characteristic curve) of 0.968 and 0.934, sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models are further validated by RNA-Seq-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and 0.......993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. Conclusions: We have successfully developed a new type of pathway-based model to study...

  2. Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-D-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development

    National Research Council Canada - National Science Library

    Steinbacher, Stefan; Kaiser, Johannes; Eisenreich, Wolfgang; Huber, Robert; Bacher, Adelbert; Rohdich, Felix

    2003-01-01

    2-C-Methyl-d-erythritol 4-phosphate synthase (IspC) is the first enzyme committed to isoprenoid biosynthesis in the methylerythritol phosphate pathway, which represents an alternative route to the classical mevalonate pathway...

  3. A markov classification model for metabolic pathways

    Directory of Open Access Journals (Sweden)

    Mamitsuka Hiroshi

    2010-01-01

    Full Text Available Abstract Background This paper considers the problem of identifying pathways through metabolic networks that relate to a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built using information specific to each path and combined into an ensemble prediction for the response. Results We compared the performance of HME3M with logistic regression and support vector machines (SVM for both simulated pathways and on two metabolic networks, glycolysis and the pentose phosphate pathway for Arabidopsis thaliana. We use AltGenExpress microarray data and focus on the pathway differences in the developmental stages and stress responses of Arabidopsis. The results clearly show that HME3M outperformed the comparison methods in the presence of increasing network complexity and pathway noise. Furthermore an analysis of the paths identified by HME3M for each metabolic network confirmed known biological responses of Arabidopsis. Conclusions This paper clearly shows HME3M to be an accurate and robust method for classifying metabolic pathways. HME3M is shown to outperform all comparison methods and further is capable of identifying known biologically active pathways within microarray data.

  4. Targeting the TGFβ pathway for cancer therapy.

    Science.gov (United States)

    Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Cohen, Romain; Cros, Jérôme; Faivre, Sandrine; Raymond, Eric; de Gramont, Armand

    2015-03-01

    The TGFβ signaling pathway has pleiotropic functions regulating cell growth, differentiation, apoptosis, motility and invasion, extracellular matrix production, angiogenesis, and immune response. TGFβ signaling deregulation is frequent in tumors and has crucial roles in tumor initiation, development and metastasis. TGFβ signaling inhibition is an emerging strategy for cancer therapy. The role of the TGFβ pathway as a tumor-promoter or suppressor at the cancer cell level is still a matter of debate, due to its differential effects at the early and late stages of carcinogenesis. In contrast, at the microenvironment level, the TGFβ pathway contributes to generate a favorable microenvironment for tumor growth and metastasis throughout all the steps of carcinogenesis. Then, targeting the TGFβ pathway in cancer may be considered primarily as a microenvironment-targeted strategy. In this review, we focus on the TGFβ pathway as a target for cancer therapy. In the first part, we provide a comprehensive overview of the roles played by this pathway and its deregulation in cancer, at the cancer cell and microenvironment levels. We go on to describe the preclinical and clinical results of pharmacological strategies to target the TGFβ pathway, with a highlight on the effects on tumor microenvironment. We then explore the perspectives to optimize TGFβ inhibition therapy in different tumor settings.

  5. Driving and dementia: a clinical decision pathway

    Science.gov (United States)

    Carter, Kirsty; Monaghan, Sophie; O'Brien, John; Teodorczuk, Andrew; Mosimann, Urs; Taylor, John-Paul

    2015-01-01

    Objective This study aimed to develop a pathway to bring together current UK legislation, good clinical practice and appropriate management strategies that could be applied across a range of healthcare settings. Methods The pathway was constructed by a multidisciplinary clinical team based in a busy Memory Assessment Service. A process of successive iteration was used to develop the pathway, with input and refinement provided via survey and small group meetings with individuals from a wide range of regional clinical networks and diverse clinical backgrounds as well as discussion with mobility centres and Forum of Mobility Centres, UK. Results We present a succinct clinical pathway for patients with dementia, which provides a decision-making framework for how health professionals across a range of disciplines deal with patients with dementia who drive. Conclusions By integrating the latest guidance from diverse roles within older people's health services and key experts in the field, the resulting pathway reflects up-to-date policy and encompasses differing perspectives and good practice. It is potentially a generalisable pathway that can be easily adaptable for use internationally, by replacing UK legislation for local regulations. A limitation of this pathway is that it does not address the concern of mild cognitive impairment and how this condition relates to driving safety. © 2014 The Authors. International Journal of Geriatric Psychiatry published by John Wiley & Sons, Ltd. PMID:24865643

  6. Logical modelling of Drosophila signalling pathways.

    Science.gov (United States)

    Mbodj, Abibatou; Junion, Guillaume; Brun, Christine; Furlong, Eileen E M; Thieffry, Denis

    2013-09-01

    A limited number of signalling pathways are involved in the specification of cell fate during the development of all animals. Several of these pathways were originally identified in Drosophila. To clarify their roles, and possible cross-talk, we have built a logical model for the nine key signalling pathways recurrently used in metazoan development. In each case, we considered the associated ligands, receptors, signal transducers, modulators, and transcription factors reported in the literature. Implemented using the logical modelling software GINsim, the resulting models qualitatively recapitulate the main characteristics of each pathway, in wild type as well as in various mutant situations (e.g. loss-of-function or gain-of-function). These models constitute pluggable modules that can be used to assemble comprehensive models of complex developmental processes. Moreover, these models of Drosophila pathways could serve as scaffolds for more complicated models of orthologous mammalian pathways. Comprehensive model annotations and GINsim files are provided for each of the nine considered pathways.

  7. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis?

    Science.gov (United States)

    Lapébie, Pascal; Borchiellini, Carole; Houliston, Evelyn

    2011-10-01

    Planar cell polarity (PCP), the alignment of cells within 2D tissue planes, involves a set of core molecular regulators highly conserved between animals and cell types. These include the transmembrane proteins Frizzled (Fz) and VanGogh and the cytoplasmic regulators Dishevelled (Dsh) and Prickle. It is widely accepted that this core forms part of a 'PCP pathway' for signal transduction, which can affect cell morphology through activation of an evolutionary ancient regulatory module involving Rho family GTPases and Myosin II, and/or the JNK kinase cascade. We have re-examined the evidence for interactions between the proposed PCP pathway components, and question the placing of the cell morphology regulators in the same pathway as the PCP core. While Fz and Dsh are clearly involved in both PCP and Rho-based cell morphology regulation, available evidence cannot currently discriminate whether these processes are linked mechanistically by a shared Fz/Dsh population, or pass by two distinct pathways.

  8. Role of care pathways in interprofessional teamwork.

    Science.gov (United States)

    Scaria, Minimol Kulakkottu

    2016-08-24

    Cohesive interprofessional teamwork is essential to successful healthcare services. Interprofessional teamwork is the means by which different healthcare professionals - with diverse knowledge, skills and talents - collaborate to achieve a common goal. Several interventions are available to improve teamwork in the healthcare setting. This article explores the role of care pathways in improving interprofessional teamwork. Care pathways enhance teamwork by promoting coordination, collaboration, communication and decision making to achieve optimal healthcare outcomes. They result in improved staff knowledge, communication, documentation and interprofessional relations. Care pathways also contribute to patient-centred care and increase patient satisfaction.

  9. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  10. Cancer and deregulation of stem cells pathways

    Directory of Open Access Journals (Sweden)

    Filipe Correia Martins

    2011-12-01

    Full Text Available Stem cells may have an important etiological role in cancer. Their classic regulatory pathways are deregulated in tumors, strengthening the stem cell theory of cancer. In this manuscript, we review Wnt, Notch and Hedhehog pathways, describing which of their factors may be responsible for the neoplastic development. Furthermore, we classify these elements as oncogenes or tumor suppressor genes, demonstrating their mutation implications in cancer. The activation of these pathways is associated with the expression of certain genes which maintain proliferation and apoptosis inhibition. Further work should be carried out in the future in order to control tumor development by controlling these signaling cascades.

  11. New pathway for the metabolism of pentitols

    Science.gov (United States)

    London, Jack; Chace, Nina M.

    1977-01-01

    Certain strains of Lactobacillus casei can grow at the expense of one or more pentitols. These microorganisms possess a pentitol phosphate pathway that appears to be analogous to the hexitol phosphate pathway found in many facultatively anaerobic bacteria. Pentitol is transported into the cell by a phospho enolpyruvate phosphotransferase system that converts it to pentitol phosphate, whereupon a specific dehydrogenase oxidizes the intermediate product to ketopentose phosphate. The ketopentose phosphate is subsequently converted to xylulose-5-P and enters one of the pathways of central metabolism. Images PMID:16592445

  12. Amygdalar vocalization pathways in the squirrel monkey.

    Science.gov (United States)

    Jürgens, U

    1982-06-10

    In 22 squirrel monkeys (Saimiri sciureus) vocalization-eliciting electrodes were implanted into the amygdala and along the trajectory of the stria terminalis. Then, lesions were placed in the stria terminalis, its bed nucleus, the ventral amygdalofugal pathway and several di- and mesencephalic structures in order to find out the pathways along which the amygdala exerts its vocalization-controlling influence. It was found that different call types are controlled by different pathways. Purring and chattering calls, which express a self-confident, challenging attitude and an attempt to recruit fellow-combatants in intra-specific mobbing, respectively, are controlled via the stria terminalis; alarm peep and groaning calls, in contrast, which indicate flight motivation and resentment, respectively, are triggered via the ventral amygdalofugal fibre bundle. Both pathways traverse the dorsolateral and dorsomedial hypothalamus, respectively, and unite in the periaqueductal grey of the midbrain.

  13. The Pentose Phosphate Pathway in Parasitic Trypanosomatids.

    Science.gov (United States)

    Kovářová, Julie; Barrett, Michael P

    2016-08-01

    Parasitic trypanosomatids cause important diseases. Dissecting the biochemistry of these organisms offers a means of discovering targets against which inhibitors may be designed and developed as drugs. The pentose phosphate pathway is a key route of glucose metabolism in most organisms, providing NADPH for use as a cellular reductant and various carbohydrate intermediates used in cellular metabolism. The pathway and its enzymes have been studied in Trypanosoma brucei, Trypanosoma cruzi, and various Leishmania species. Its functions in these parasites are becoming clear. Some enzymes of the pathway are essential to the parasites and have structural features distinguishing them from their mammalian counterparts, and this has stimulated several programs of inhibitor discovery with a view to targeting the pathway with new drugs.

  14. The Wnt signaling pathway in cancer.

    Science.gov (United States)

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  15. Clinical implications of hedgehog signaling pathway inhibitors

    Institute of Scientific and Technical Information of China (English)

    Hailan Liu; Dongsheng Gu; Jingwu Xie

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nusslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation,proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hhmediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.

  16. Imaging the Visual Pathway in Neuromyelitis Optica

    Directory of Open Access Journals (Sweden)

    Caspar F. Pfueller

    2011-01-01

    Full Text Available The focus of this paper is to summarize the current knowledge on visual pathway damage in neuromyelitis optica (NMO assessed by magnetic resonance imaging (MRI and optical coherence tomography (OCT.

  17. Imaging the visual pathway in neuromyelitis optica

    OpenAIRE

    Pfueller, Caspar F.; Friedemann Paul

    2011-01-01

    The focus of this paper is to summarize the current knowledge on visual pathway damage in neuromyelitis optica (NMO) assessed by magnetic resonance imaging (MRI) and optical coherence tomography (OCT).

  18. Genetic dissection of cardiac growth control pathways

    Science.gov (United States)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  19. The Notch pathway in colorectal cancer.

    Science.gov (United States)

    Vinson, Kaitlyn E; George, Dennis C; Fender, Alexander W; Bertrand, Fred E; Sigounas, George

    2016-04-15

    Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. It is also the third most common cancer diagnosis among men, and the second most common cancer diagnosis among women. Globally, CRC can account for nearly 694,000 annual deaths. It is widely appreciated that CRC is the result of dysregulated cellular pathways that promote an inappropriate stem-cell-like phenotype, apoptotic resistance, unchecked proliferation and metastatic spread. While no single pathway is responsible for all of these attributes, an array of recent studies suggests a pivotal role for abnormal Notch-1 signaling in CRC, in part due to interconnectivity of Notch with other pathways. This review will summarize recent evidence for a role of Notch signaling in CRC, will consider interconnectivity between Notch and other pathways involved in CRC and will discuss the possible utility of targeting Notch as a CRC therapeutic.

  20. Periodic fever and mevalonate kinase deficiency

    NARCIS (Netherlands)

    Frenkel, Joost

    2002-01-01

    Mevalonate kinase (MK) deficiency is an autosomal recessive disorder, caused by mutations in the MVK-gene on chromosome 12q24. The affected enzyme catalyzes an early step in isoprenoid biosynthesis, the pathway that produces cholesterol and several non-sterol isoprenoids. The clinical spectrum inclu

  1. Salicylic acid-independent plant defence pathways

    OpenAIRE

    Pieterse, C.M.J.; Loon, L. C. Van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicy...

  2. Pathway Model and Nonextensive Statistical Mechanics

    Science.gov (United States)

    Mathai, A. M.; Haubold, H. J.; Tsallis, C.

    2015-12-01

    The established technique of eliminating upper or lower parameters in a general hypergeometric series is profitably exploited to create pathways among confluent hypergeometric functions, binomial functions, Bessel functions, and exponential series. One such pathway, from the mathematical statistics point of view, results in distributions which naturally emerge within nonextensive statistical mechanics and Beck-Cohen superstatistics, as pursued in generalizations of Boltzmann-Gibbs statistics.

  3. Genes and (common pathways underlying drug addiction.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2008-01-01

    Full Text Available Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addiction-related genes and developed KARG (http://karg.cbi.pku.edu.cn, the first molecular database for addiction-related genes with extensive annotations and a friendly Web interface. We then performed a meta-analysis of 396 genes that were supported by two or more independent items of evidence to identify 18 molecular pathways that were statistically significantly enriched, covering both upstream signaling events and downstream effects. Five molecular pathways significantly enriched for all four different types of addictive drugs were identified as common pathways which may underlie shared rewarding and addictive actions, including two new ones, GnRH signaling pathway and gap junction. We connected the common pathways into a hypothetical common molecular network for addiction. We observed that fast and slow positive feedback loops were interlinked through CAMKII, which may provide clues to explain some of the irreversible features of addiction.

  4. Matrix metalloproteinase-2 mediates a mechanism of metabolic cardioprotection consisting of negative regulation of the sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-CoA reductase pathway in the heart.

    Science.gov (United States)

    Wang, Xiang; Berry, Evan; Hernandez-Anzaldo, Samuel; Takawale, Abhijit; Kassiri, Zamaneh; Fernandez-Patron, Carlos

    2015-04-01

    Previously, we reported that cardiac matrix metalloproteinase (MMP)-2 is upregulated in hypertensive mice. How MMP-2 affects the development of cardiac disease is unclear. Here, we report that MMP-2 protects from hypertensive cardiac disease. In mice infused with angiotensin II, the lack of MMP-2 (Mmp2(-/-)) did not affect the severity of the hypertension but caused cardiac hypertrophy to develop earlier and to a greater extent versus wild-type (Mmp2(+/+)) mice, as measured by heart weight:body weight ratio and upregulation of hypertrophy and fibrosis markers. We further found numerous metabolic and inflammatory gene expression abnormalities in the left ventricle of Mmp2(-/-) mice. Interestingly, Mmp2(-/-) mice expressed greater amounts of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (a target of sterol regulatory element-binding protein-2-mediated transcription and rate limiting enzyme in cholesterol and isoprenoids biosynthesis) in addition to markers of inflammation including chemokines of the C-C motif ligand family. We focused on the functionally related genes for sterol regulatory binding protein-2 and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, lovastatin, attenuated angiotensin II-induced cardiac hypertrophy and fibrosis in Mmp2(-/-) and wild-type (Mmp2(+/+)) mice, with Mmp2(-/-) mice showing resistance to cardioprotection by lovastatin. MMP-2 deficiency predisposes to cardiac dysfunction as well as metabolic and inflammatory gene expression dysregulation. This complex phenotype is, at least in part, because of the cardiac sterol regulatory element-binding protein-2/3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway being upregulated in MMP-2 deficiency.

  5. Pathway and Enzyme Redundancy in Putrescine Catabolism in Escherichia coli

    OpenAIRE

    Schneider, Barbara L.; Reitzer, Larry

    2012-01-01

    Putrescine as the sole carbon source requires a novel catabolic pathway with glutamylated intermediates. Nitrogen limitation does not induce genes of this glutamylated putrescine (GP) pathway but instead induces genes for a putrescine catabolic pathway that starts with a transaminase-dependent deamination. We determined pathway utilization with putrescine as the sole nitrogen source by examining mutants with defects in both pathways. Blocks in both the GP and transaminase pathways were requir...

  6. Subpathway Analysis based on Signaling-Pathway Impact Analysis of Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Xianbin Li

    Full Text Available Pathway analysis is a common approach to gain insight from biological experiments. Signaling-pathway impact analysis (SPIA is one such method and combines both the classical enrichment analysis and the actual perturbation on a given pathway. Because this method focuses on a single pathway, its resolution generally is not very high because the differentially expressed genes may be enriched in a local region of the pathway. In the present work, to identify cancer-related pathways, we incorporated a recent subpathway analysis method into the SPIA method to form the "sub-SPIA method." The original subpathway analysis uses the k-clique structure to define a subpathway. However, it is not sufficiently flexible to capture subpathways with complex structure and usually results in many overlapping subpathways. We therefore propose using the minimal-spanning-tree structure to find a subpathway. We apply this approach to colorectal cancer and lung cancer datasets, and our results show that sub-SPIA can identify many significant pathways associated with each specific cancer that other methods miss. Based on the entire pathway network in the Kyoto Encyclopedia of Genes and Genomes, we find that the pathways identified by sub-SPIA not only have the largest average degree, but also are more closely connected than those identified by other methods. This result suggests that the abnormality signal propagating through them might be responsible for the specific cancer or disease.

  7. Neural pathways for visual speech perception

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-12-01

    Full Text Available This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1 The visual perception of speech relies on visual pathway representations of speech qua speech. (2 A proposed site of these representations, the temporal visual speech area (TVSA has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS. (3 Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  8. Neural pathways for visual speech perception.

    Science.gov (United States)

    Bernstein, Lynne E; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA.

  9. Bacterial variations on the methionine salvage pathway

    Directory of Open Access Journals (Sweden)

    Haas Dieter

    2004-03-01

    Full Text Available Abstract Background The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. Results This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase, belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate. Conclusion A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya, with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and Ru

  10. JNK pathway in osteosarcoma: pathogenesis and therapeutics.

    Science.gov (United States)

    Li, Yu-Sheng; Deng, Zhen-Han; Zeng, Chao; Lei, Guang-Hua

    2016-10-01

    The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase super family. JNK can phosphorylate a number of activator protein-1 components, activating several transcription factors, and thus, JNK signaling pathway is being involved in several carcinogenic mechanisms. In this study, we have reviewed the recent updates of the association of JNK pathway with osteosarcoma (OS), which is one of the most common and aggressive bone malignancies. In this review, we have explored the databases like PubMed, Google Scholar, MEDLINE, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OS. Evidence showed that JNK is a master protein kinase that plays an important role in osteoblast proliferation, differentiation and apoptosis. Interesting reports showed that chemical JNK inhibitors reduce OS cell proliferation and metastasis. Many of the components of this pathway have now been identified and the application of JNK inhibitors has been proven to work in vivo in human and in animal models; however, JNK pathway has not been translated into clinical use. Therapeutic interventions of potent and selective inhibitors of JNK might provide promising therapeutic approaches for the treatment of OS, and could improve the survival rate and quality of life of OS patients.

  11. Persisting eicosanoid pathways in rheumatic diseases.

    Science.gov (United States)

    Korotkova, Marina; Jakobsson, Per-Johan

    2014-04-01

    An unmet clinical need exists for early treatment of rheumatic diseases and improved treatment strategies that can better maintain remission with reduced ongoing subclinical inflammation and bone destruction. Eicosanoids form one of the most complex networks in the body controlling many physiological and pathophysiological processes, including inflammation, autoimmunity and cancer. Persisting eicosanoid pathways are thought to be involved in the development of rheumatic diseases, and targeting this pathway might enable improved treatment strategies. Several enzymes of the arachidonic acid cascade as well as eicosanoid receptors (all part of the eicosanoid pathway) are today well-recognized targets for anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases. In this Review, we outline the evidence supporting pivotal roles of eicosanoid signalling in the pathogenesis of rheumatic diseases and discuss findings from studies in animals and humans. We focus first on rheumatoid arthritis and discuss the upregulation of the cyclooxygenase and lipoxygenase pathways as most data are available in this condition. Research into the roles of eicosanoids in other rheumatic diseases (osteoarthritis, idiopathic inflammatory myopathies, systemic lupus erythematosus and gout) is also progressing rapidly and is discussed. Finally, we summarize the prospects of targeting eicosanoid pathways as anti-inflammatory treatment strategies for patients with rheumatic diseases.

  12. Leptin signalling pathways in hypothalamic neurons.

    Science.gov (United States)

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  13. Signaling Pathways in Cardiac Myocyte Apoptosis

    Science.gov (United States)

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  14. Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer.

    Science.gov (United States)

    Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L; Sood, Anil K

    2015-03-01

    Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and cross-talk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3-4, Jagged 1-2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Because the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA-approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK-0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway.

  15. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    Science.gov (United States)

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P psoriasis susceptibility.

  16. Exergetical Evaluation of Biobased Synthesis Pathways

    Directory of Open Access Journals (Sweden)

    Philipp Frenzel

    2014-01-01

    Full Text Available The vast majority of today’s chemical products are based on crude oil. An attractive and sustainable alternative feedstock is biomass. Since crude oil and biomass differ in various properties, new synthesis pathways and processes have to be developed. In order to prioritize limited resources for research and development (R & D, their economic potential must be estimated in the early stages of development. A suitable measure for an estimation of the economic potential is based on exergy balances. Different structures of synthesis pathways characterised by the chemical exergy of the main components are evaluated. Based on a detailed evaluation of the underlying processes, general recommendations for future bio-based synthesis pathways are derived.

  17. Lectin Complement Pathway Proteins in Healthy Individuals

    DEFF Research Database (Denmark)

    Troldborg, Anne; Hansen, Annette; Hansen, Søren W K

    2017-01-01

    Since the discovery of the lectin pathway of complement activation, numerous clinical cohorts have been examined for one or more of the proteins, with the intention of uncovering the functions of the proteins or with the aim of discovering new biomarkers or diagnostic tools. To unveil the abnormal......, it is pivotal to know the normal. Our aim was to describe the concentrations of the eleven known proteins of the lectin pathway in serum and plasma and to uncover possible gender differences, age and diurnal variations, which must be taken into account for investigations in different cohorts. We examined...... the concentrations of all lectin pathway proteins (mannan-binding lectin (MBL), H-ficolin, L-ficolin, M-ficolin, collectin-K1, collectin-L1, MBL-associated serine protease 2 (MASP-2), MASP-3, MBL associated protein of 44 kDa (MAp44) and MAp19 in 300 Danish blood donors in serum and EDTA plasma in established assays...

  18. The Lectin Pathway of Complement and Biocompatibility

    DEFF Research Database (Denmark)

    Hein, Estrid; Garred, Peter

    2015-01-01

    In modern health technologies the use of biomaterials in the form of stents, haemodialysis tubes, artificial implants, bypass circuits etc. is rapidly expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the host, calls for strict biocompatibility in respect to contac...... been broadly documented. However, the specific role of lectin pathway and the pattern recognition molecules initiating the pathway has only been transiently investigated. Here we review the current data on the field....... activation, the coagulation system and the complement system. The complement system is an important part of the initial immune response and consists of fluid phase molecules in the blood stream. Three different activation pathways can initiate the complement system, the lectin, the classical...

  19. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  20. Roles of RUNX in Hippo Pathway Signaling.

    Science.gov (United States)

    Passaniti, Antonino; Brusgard, Jessica L; Qiao, Yiting; Sudol, Marius; Finch-Edmondson, Megan

    2017-01-01

    The Runt-domain (RD) transcription factors (RUNX genes) are an important family of transcriptional mediators that interact with a variety of proteins including the Hippo pathway effector proteins, YAP and TAZ. In this chapter we focus on two examples of RUNX-TAZ/YAP interactions that have particular significance in human cancer. Specifically, recent evidence has found that RUNX2 cooperates with TAZ to promote epithelial to mesenchymal transition mediated by the soluble N-terminal ectodomain of E-Cadherin, sE-Cad. Contrastingly, in gastric cancer, RUNX3 acts as a tumor suppressor via inhibition of the YAP-TEAD complex and disruption of downstream YAP-mediated gene transcription and the oncogenic phenotype. The reports highlighted in this chapter add to the growing repertoire of instances of Hippo pathway crosstalk that have been identified in cancer. Elucidation of these increasingly complex interactions may help to identify novel strategies to target Hippo pathway dysregulation in human cancer.

  1. NOTCH pathway inactivation promotes bladder cancer progression.

    Science.gov (United States)

    Maraver, Antonio; Fernandez-Marcos, Pablo J; Cash, Timothy P; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M; Real, Francisco X; Serrano, Manuel

    2015-02-01

    NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features.

  2. Research Resources for Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Amino Acid Biosynthesis Pathways in Diatoms

    Directory of Open Access Journals (Sweden)

    Mariusz A. Bromke

    2013-04-01

    Full Text Available Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity.

  4. JNK pathway:diseases and therapeutic potential

    Institute of Scientific and Technical Information of China (English)

    Jie CUI; Ming ZHANG; Yong-qing ZHANG; Zhi-heng XU

    2007-01-01

    c-Jun N-terminal protein kinases (JNK), also known as stress-activated protein kinases, were originally identified by their ability to phosphorylate the N-terminal of the transcription factor c-Jun and by their activation in response to a variety of stresses. JNK are multifunctional kinases involved in many physiological processes. The JNK pathway has been shown to play a major role in apoptosis in many cell death paradigms and its association with a variety of pathological pro-cesses is gradually been recognized. This review will concentrate on describing the involvement of the JNK pathway in the context of different diseases and the potential to adopt the JNK pathway components as therapeutic targets.

  5. Targeting Specific Immunologic Pathways in Crohn's Disease.

    Science.gov (United States)

    Ramos, Guilherme Piovezani; Faubion, William A; Papadakis, Konstantinos A

    2017-09-01

    Understanding the immunologic pathways in intestinal inflammation is crucial for the development of new therapies that can maximize patient response and minimize toxicity. Targeting integrins and cytokines is intended to control leukocyte migration to effector sites or inhibit the action of proinflammatory cytokines. New approaches to preventing leukocyte migration may target integrin receptors expressed on the intestinal vascular endothelium. The interleukin (IL)-12/IL-23 pathway has been a therapeutic target of interest in controlling active Crohn's disease (CD). New therapeutic approaches in CD may involve the enhancement of anti-inflammatory cytokine pathways and modulation of cellular responses and intranuclear signals associated with intestinal inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Understanding trade pathways to target biosecurity surveillance

    Directory of Open Access Journals (Sweden)

    Manuel Colunga-Garcia

    2013-09-01

    Full Text Available Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species (IS. Establishing early detection strategies thus becomes an important part of the continuum used to reduce the introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume and frequency, the number and type of pathways with a similar destination, and the number of different ecological regions that serve as the source for imports to the same destination. As these factors increase, pressure typically intensifies because of increasing a propagule pressure, b likelihood of transporting pests with higher intrinsic invasion potential, and c likelihood of transporting pests into ecosystems with higher invasibility. We used maritime containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosystems with high potential invasibility. Our results illustrated the importance of how a pathway-centred model could be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred conceptual models to a better understand the role of human-mediated pathways in pest establishment, b enhance current

  7. Teaching Biochemical Pathways Using Concept Maps

    OpenAIRE

    Simon Brown

    2013-01-01

    The interesting paper by Dinarvand and Vaisi-Raygan (1) makes valuable points about a particularly challenging aspect of biochemistry learning and teaching. Their work prompts me to ask two questions and make a comment. First, what do the authors mean by a concept map (CM)? A pathway map could be considered a CM, but a CM could cover modes of regulation and kinetics in relation to particular reactions or pathways and there are many other possibilities. Irrespective of this, a CM can get extre...

  8. Supporting liver transplantation by clinical pathway intelligence.

    Science.gov (United States)

    Kirchner, K; Malessa, Ch; Herzberg, N; Krumnow, S; Habrecht, O; Scheuerlein, H; Bauschke, A; Settmacher, U

    2013-06-01

    A reproducible and transparent quality of clinical treatments plays an important role in the performance of a hospital. In liver transplantation (LT), this is particularly important for patient safety, resource planning, documentation, and quality management. Thus, the clinical pathway for LT was documented in an electronic format within our research project PIGE. Data from clinical information systems were linked to this pathway, which allows for process monitoring (the assessment of the current state for every patient in the LT process) and a retrospective analysis of all treatments in addition to all data pertaining to the treatment, for example, cost, time, number of personnel, etc.

  9. Pathways for scaling up public health interventions.

    Science.gov (United States)

    Indig, Devon; Lee, Karen; Grunseit, Anne; Milat, Andrew; Bauman, Adrian

    2017-08-01

    To achieve population-wide health improvement, public health interventions found effective in selected samples need to be 'scaled up' and implemented more widely. The pathways through which interventions are scaled up are not well characterised. The aim of this paper is to identify examples of public health interventions which have been scaled up and to develop a conceptual framework which quantifies and describes this process. A multi-stage international literature search was undertaken to identify examples of public health interventions in high income countries that have been scaled up or implemented at scale. Initial abstract review identified articles which met all the criteria of being a: 1) public health intervention; 2) chronic disease prevention focus; 3) program delivered at a wide geographical scale (state, national or international). Interventions were reviewed and coded into a conceptual framework pathway to document their scaling up process. For each program, an in-depth review of the identified articles was undertaken along with a broad internet based search to determine the outcomes of the dissemination process. A conceptual framework of scaling up pathways was developed that involved four stages (development, efficacy testing, real world trial and dissemination) to which the 40 programs were mapped. The search identified 40 public health interventions that showed evidence of being scaled up. Four pathways were identified to capture the different scaling up trajectories taken which included: 'Type I - Comprehensive' (55%) which passed through all four stages, 'Type II - Efficacy omitters' (5%) which did not conduct efficacy testing, 'Type III - Trial omitters' (25%) which did not conduct a real world trial, and 'Type IV - At scale dissemination' (15%) which skipped both efficacy testing and a real world trial. This is the first study to classify and quantify the potential pathways through which public health interventions in high income countries are

  10. PI3K pathway in NSCLC

    Directory of Open Access Journals (Sweden)

    Alex eMartínez Martí

    2012-01-01

    Full Text Available The phosphatidylinositol 3-kinases (PI3Ks are members of a family of intracellular lipid kinases that phosphorylate the 3’-hydroxyl group of phosphatidylinositol and phosphoinositides. PI3K regulate signaling pathways for neoplasia, including cell proliferation, adhesion, survival and motility. Different classes of PI3K have distinct roles in cellular signal transduction. PI3K pathway is activated by several different mechanisms in cancers, including, somatic mutation and gene amplification. In this review, we examine the literature addressing PI3K mutation status and gene amplification, with an emphasis on non-small cell lung cancer (NSCLC.

  11. Imaging neuronal pathways with 52Mn PET

    DEFF Research Database (Denmark)

    Napieczynska, Hanna; Severin, Gregory; Fonslet, Jesper

    2017-01-01

    tomography (PET) neuronal tract tracer. We used 52Mn for imaging dopaminergic pathways after a unilateral injection into the ventral tegmental area (VTA), as well as the striatonigral pathway after an injection into the dorsal striatum (STR) in rats. Furthermore, we tested potentially noxious effects...... of the radioactivity dose with a behavioral test and histological staining. 24 h after 52Mn administration, the neuronal tracts were clearly visible in PET images and statistical analysis confirmed the observed distribution of the tracer. We noticed a behavioral impairment in some animals treated with 170 kBq of 52Mn...... for PET imaging....

  12. Developmental pathways to antisocial behavior: the delayed-onset pathway in girls.

    Science.gov (United States)

    Silverthorn, P; Frick, P J

    1999-01-01

    Recent research has suggested that there are two distinct trajectories for the development of antisocial behavior in boys: a childhood-onset pathway and an adolescent-onset pathway. After reviewing the limited available research on antisocial girls, we propose that this influential method of conceptualizing the development of severe antisocial behavior may not apply to girls without some important modifications. Antisocial girls appear to show many of the correlates that have been associated with the childhood-onset pathway in boys, and they tend to show impaired adult adjustment, which is also similar to boys in the childhood-onset pathway. However, antisocial girls typically show an adolescent-onset to their antisocial behavior. We have proposed that these girls show a third developmental pathway which we have labeled the "delayed-onset" pathway. This model rests on the assumption that many of the putative pathogenic mechanisms that contribute to the development of antisocial behavior in girls, such as cognitive and neuropsychological deficits, a dysfunctional family environment, and/or the presence of a callous and unemotional interpersonal style, may be present in childhood, but they do not lead to severe and overt antisocial behavior until adolescence. Therefore, we propose that the delayed-onset pathway for girls is analogous to the childhood-onset pathway in boys and that there is no analogous pathway in girls to the adolescent-onset pathway in boys. Although this model clearly needs to be tested in future research, it highlights the need to test the applicability of current theoretical models for explaining the development of antisocial behavior in girls.

  13. Evolution of Ras-like GTPase signaling pathways

    NARCIS (Netherlands)

    van Dam, T.J.P.

    2011-01-01

    Signalling pathways are networks of interacting proteins that measure and integrate internal and external stimuli and regulate critical cellular processes accordingly. In these pathways intricate feedback loops are often observed and as a result signalling pathways are very complex. Pathways did not

  14. Discovery of Host Factors and Pathways Utilized in Hantaviral Infection

    Science.gov (United States)

    2015-09-01

    cellular pathways, and broadly effective inhibitors targeting these pathways, that impact numerous hantaviruses. In the longer run , we hypothesize...common cellular pathways, and broadly effective inhibitors targeting these pathways, that impact numerous hantaviruses. In the longer run , we...the Venus fluorescent protein via an internal ribosome entry site. The sequence and orientation of the insert was verified by complete sequencing

  15. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix

    2015-04-11

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  16. Hippo pathway in mammary gland development and breast cancer.

    Science.gov (United States)

    Shi, Peiguo; Feng, Jing; Chen, Ceshi

    2015-01-01

    Accumulated evidence suggests that the Hippo signaling pathway plays crucial roles in mammary gland development and breast cancer. Key components of the Hippo pathway regulate breast epithelial cell proliferation, migration, invasion, and stemness. Additionally, the Hippo pathway regulates breast tumor growth, metastasis, and drug resistance. It is expected that the Hippo pathway will provide novel therapeutic targets for breast cancer. This review will discuss and summarize the roles of several core components of the Hippo pathway in mammary gland development and breast cancer.

  17. PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways.

    Science.gov (United States)

    Mlecnik, Bernhard; Scheideler, Marcel; Hackl, Hubert; Hartler, Jürgen; Sanchez-Cabo, Fatima; Trajanoski, Zlatko

    2005-07-01

    While generation of high-throughput expression data is becoming routine, the fast, easy, and systematic presentation and analysis of these data in a biological context is still an obstacle. To address this need, we have developed PathwayExplorer, which maps expression profiles of genes or proteins simultaneously onto major, currently available regulatory, metabolic and cellular pathways from KEGG, BioCarta and GenMAPP. PathwayExplorer is a platform-independent web server application with an optional standalone Java application using a SOAP (simple object access protocol) interface. Mapped pathways are ranked for the easy selection of the pathway of interest, displaying all available genes of this pathway with their expression profiles in a selectable and intuitive color code. Pathway maps produced can be downloaded as PNG, JPG or as high-resolution vector graphics SVG. The web service is freely available at https://pathwayexplorer.genome.tugraz.at; the standalone client can be downloaded at http://genome.tugraz.at.

  18. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    Science.gov (United States)

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.

  19. Robust de novo pathway enrichment with KeyPathwayMiner 5

    DEFF Research Database (Denmark)

    Alcaraz, Nicolas; List, Markus; Dissing-Hansen, Martin;

    2016-01-01

    Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks tha...... several network perturbation techniques and over a range of perturbation degrees. In addition, users may now provide a gold-standard set to determine how enriched extracted pathways are with relevant genes compared to randomized versions of the original network.......Identifying functional modules or novel active pathways, recently termed de novo pathway enrichment, is a computational systems biology challenge that has gained much attention during the last decade. Given a large biological interaction network, KeyPathwayMiner extracts connected subnetworks...... that are enriched for differentially active entities from a series of molecular profiles encoded as binary indicator matrices. Since interaction networks constantly evolve, an important question is how robust the extracted results are when the network is modified. We enable users to study this effect through...

  20. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    Science.gov (United States)

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  1. Crowding in the S-cone pathway.

    Science.gov (United States)

    Coates, Daniel R; Chung, Susana T L

    2016-05-01

    The spatial extent of interference from nearby object or contours (the critical spacing of "crowding") has been thoroughly characterized across the visual field, typically using high contrast achromatic stimuli. However, attempts to link this measure with known properties of physiological pathways have been inconclusive. The S-cone pathway, with its ease of psychophysical isolation and known anatomical characteristics, offers a unique tool to gain additional insights into crowding. In this study, we measured the spatial extent of crowding in the S-cone pathway at several retinal locations using a chromatic adaptation paradigm. S-cone crowding was evident and extensive, but its spatial extent changed less markedly as a function of retinal eccentricity than the extent found using traditional achromatic stimuli. However, the spatial extent agreed with that of low contrast achromatic stimuli matched for isolated resolvability. This suggests that common cortical mechanisms mediate the crowding effect in the S-cone and achromatic pathway, but contrast is an important factor. The low contrast of S-cone stimuli makes S-cone vision more acuity-limited than crowding-limited.

  2. Exergetical evaluation of biobased synthesis pathways

    NARCIS (Netherlands)

    Frenzel, P.; Hillerbrand, R.; Pfennig, A.

    2014-01-01

    The vast majority of today’s chemical products are based on crude oil. An attractive and sustainable alternative feedstock is biomass. Since crude oil and biomass differ in various properties, new synthesis pathways and processes have to be developed. In order to prioritize limited resources for res

  3. Pathways to deep decarbonization in India

    DEFF Research Database (Denmark)

    Shukla, P.; Dhar, Subash; Pathak, Minal

    This report is a part of the global Deep Decarbonisation Pathways (DDP) Project. The analysis consider two development scenarios for India and assess alternate roadmaps for transiting to a low carbon economy consistent with the globally agreed 2°C stabilization target. The report does not consider...

  4. Salicylic acid-independent plant defence pathways

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Loon, L.C. van

    1999-01-01

    Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independen

  5. Pathways to Authenticity in Operatic Interpretation

    DEFF Research Database (Denmark)

    Grund, Cynthia M.; Westney, WIlliam

    through physically interactive and expressive warm-up exercises that break down barriers at the start of the session, and through interactive and experimental techniques in response to the performances themselves. On this approach, physicality and interactivity provide pathways to authenticity on the part...

  6. The Student Affairs Pathway to the Presidency

    Science.gov (United States)

    Putman, Jeffrey Scott

    2011-01-01

    The purpose of this study is to determine the pathway issues supporting or challenging the advancement of student affairs officers to college and university presidencies and the experiences and skills student affairs officers must have to be competitive candidates in searches for presidencies. There is an impending serious gap between the number…

  7. Use of pathway information in molecular epidemiology

    Directory of Open Access Journals (Sweden)

    Thomas Duncan C

    2009-10-01

    Full Text Available Abstract Candidate gene studies are generally motivated by some form of pathway reasoning in the selection of genes to be studied, but seldom has the logic of the approach been carried through to the analysis. Marginal effects of polymorphisms in the selected genes, and occasionally pairwise gene-gene or gene-environment interactions, are often presented, but a unified approach to modelling the entire pathway has been lacking. In this review, a variety of approaches to this problem is considered, focusing on hypothesis-driven rather than purely exploratory methods. Empirical modelling strategies are based on hierarchical models that allow prior knowledge about the structure of the pathway and the various reactions to be included as 'prior covariates'. By contrast, mechanistic models aim to describe the reactions through a system of differential equations with rate parameters that can vary between individuals, based on their genotypes. Some ways of combining the two approaches are suggested and Bayesian model averaging methods for dealing with uncertainty about the true model form in either framework is discussed. Biomarker measurements can be incorporated into such analyses, and two-phase sampling designs stratified on some combination of disease, genes and exposures can be an efficient way of obtaining data that would be too expensive or difficult to obtain on a full candidate gene sample. The review concludes with some thoughts about potential uses of pathways in genome-wide association studies.

  8. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...

  9. Final report on the Pathway Analysis Task

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, F.W.; Kirchner, T.B. [Colorado State Univ., Fort Collins, CO (United States)

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  10. Vitamins and aging: pathways to NAD+ synthesis.

    Science.gov (United States)

    Denu, John M

    2007-05-04

    Recent genetic evidence reveals additional salvage pathways for NAD(+) synthesis. In this issue, Belenky et al. (2007) report that nicotinamide riboside, a new NAD(+) precursor, regulates Sir2 deacetylase activity and life span in yeast. The ability of nicotinamide riboside to enhance life span does not depend on calorie restriction.

  11. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  12. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  13. Learning figurative idioms via cognitive semantic pathway

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In FTL contexts, traditional view treats idiomatic language as essentially arbitrary, which has typically led to the belief that they can only be learned through blind memoriztion. However, the cognitive semantic idea considers that idioms are typically motivated, which can help learners to identify their senses. This paper demonstrates how to learn figurative idioms through cognitive semantic pathway by taking anger as one example.

  14. Oxidative stress: Biomarkers and novel therapeutic pathways.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  15. Pathway Analysis: State of the Art

    Science.gov (United States)

    García-Campos, Miguel A.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-01-01

    Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale. PMID:26733877

  16. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...

  17. Novel inositol catabolic pathway in Thermotoga maritima.

    Science.gov (United States)

    Rodionova, Irina A; Leyn, Semen A; Burkart, Michael D; Boucher, Nathalie; Noll, Kenneth M; Osterman, Andrei L; Rodionov, Dmitry A

    2013-08-01

    myo-inositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol-based phospholipids that are abundant in animal and plant cells. The seven-step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412-TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo-inositol dehydrogenase IolG followed by three novel reactions. The first 2-keto-myo-inositol intermediate is oxidized by another, previously unknown NAD-dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5-keto-l-gluconate. The fourth step involves epimerization of 5-keto-l-gluconate to d-tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo-inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418-TM0421) transporter to myo-inositol-phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.

  18. Fetal and neonatal pathways to obesity.

    Science.gov (United States)

    Gluckman, Peter D; Hanson, Mark A; Beedle, Alan S; Raubenheimer, David

    2008-01-01

    Evolutionary and developmental perspectives add considerably to our understanding of the aetiology of obesity and its related disorders. One pathway to obesity represents the maladaptive consequences of an evolutionarily preserved mechanism by which the developing mammal monitors nutritional cues from its mother and adjusts its developmental trajectory accordingly. Prediction of a nutritionally sparse environment leads to a phenotype that promotes metabolic parsimony by favouring fat deposition, insulin resistance, sarcopenia and low energy expenditure. But this adaptive mechanism evolved to accommodate gradual changes in nutritional environment; rapid transition to a situation of high energy density results in a mismatch between predicted and actual environments and increased susceptibility to metabolic disease. This pathway may also explain why breast and bottle feeding confer different risks of obesity. We discuss how early environmental signals act through epigenetic mechanisms to alter metabolic partitioning, glucocorticoid action and neuroendocrine control of appetite. A second pathway involves alterations in fetal insulin levels, as seen in gestational diabetes, leading to increased prenatal fat mass which is subsequently amplified by postnatal factors. Both classes of pathway may coexist in an individual. This developmental approach to obesity suggests that potential interventions will vary according to the target population.

  19. Notch pathway is dispensable for adipocyte specification.

    Science.gov (United States)

    Nichols, Amy M; Pan, Yonghua; Herreman, An; Hadland, Brandon K; De Strooper, Bart; Kopan, Raphael; Huppert, Stacey S

    2004-09-01

    In the past decade we have witnessed an epidemic of obesity in developed countries. Therefore, understanding the mechanisms involved in regulation of body weight is becoming an increasingly important goal shared by the public and the scientific community. The key to fat deposition is the adipocyte, a specialized cell that plays a critical role in energy balance and appetite regulation. Much of our knowledge of adipogenesis comes from studies using preadipocytic cell lines that have provided important information regarding molecular control of adipocyte differentiation. However, they fall short of revealing how naive cells acquire competence for adipogenesis. Studies in preadipocytes indicate that the Notch pathway plays a role in regulating adipogenesis (Garces et al.: J Biol Chem 272:29729-29734, 1997). Given the known biological functions of Notch in mediating cell fate decisions (Artavanis-Tsakonas et al.: Science 284:770-776, 1999), we wished to test the hypothesis that the Notch pathway is required for this cellular program by examining adipogenesis in several genetic loss-of-function models that encompass the entire pathway. We conclude that the "canonical" Notch signaling pathway is dispensable for adipocyte specification and differentiation from either mesenchymal or epithelial progenitors.

  20. Students' Perspectives of an EAP Pathway Program

    Science.gov (United States)

    Dooey, Patricia

    2010-01-01

    Increasing numbers of overseas students are applying to study at universities in Australia. Many students who meet all of the university's academic entry requirements except English language proficiency are offered pathway programs which prepare them for their tertiary studies. To date, much of the research relating to international students…

  1. TGF-β signaling pathways in cancers

    Directory of Open Access Journals (Sweden)

    Beata Talar

    2013-09-01

    Full Text Available TGF-β is a multifunctional cytokine involved in growth, cell differentiation and maintenanceof tissue homeostasis. In addition, TGF-β plays a key role in the pathogenesis of many diseases, including cancer. TGF-β-induced signaling pathways have either tumor-suppression or tumor-promoting effects in a cancer-type-specific and stage-dependent manner. TGF-β at an early stage of cancer development induces signaling pathways involved in inhibitionof cell proliferation, induction of differentiation, apoptosis or autophagy, suppression of angiogenesis and inflammation. At a later stage of disease, TGF-β exerts metastasis-promoting activity associated with epithelial-to-mesenchymal transition, modulation of cancer microenvironment and extracellular matrix components, inflammation and immune suppression. Furthermore, the TGF-β pathways play a pivotal role in the maintenance of stem cell-like properties of tumor cells. The pleiotropic action of TGF-β during tumorigenesis depends on interactions with different signaling pathways, including Hedgehog, WNT, PI3K--AKT, NOTCH, INF-γ, TNF-α, and RAS-ERK.

  2. Pathways to Postsecondary: Indiana Career Majors

    Science.gov (United States)

    Schulz, Terri

    2007-01-01

    Education today for the work of tomorrow must take on an entirely new look if the United States is to remain competitive in the global economy. Today, students need to be critical thinkers and problem solvers, have excellent communication and digital literacy skills and master challenging core content. This paper presents "Pathways to…

  3. The Ran pathway in Drosophila melanogaster mitosis

    Directory of Open Access Journals (Sweden)

    James G Wakefield

    2015-11-01

    Full Text Available Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance and regulation of the microtubule (MT-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs - a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that, far from being superfluous, it can provide important insights into the conserved functions on Ran during spindle formation.

  4. Disentangling Adolescent Pathways of Sexual Risk Taking

    Science.gov (United States)

    Brookmeyer, Kathryn A.; Henrich, Christopher C.

    2009-01-01

    Using data from the National Longitudinal Survey of Youth, the authors aimed to describe the pathways of risk within sexual risk taking, alcohol use, and delinquency, and then identify how the trajectory of sexual risk is linked to alcohol use and delinquency. Risk trajectories were measured with adolescents aged 15-24 years (N = 1,778). Using…

  5. Macropinocytosis: a pathway to protozoan infection

    Directory of Open Access Journals (Sweden)

    Tecia Maria Ulisses Carvalho

    2015-04-01

    Full Text Available Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis.

  6. Macropinocytosis: a pathway to protozoan infection

    Science.gov (United States)

    de Carvalho, Tecia M. U.; Barrias, Emile S.; de Souza, Wanderley

    2015-01-01

    Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis. PMID:25914647

  7. Using biological pathway data with paxtools.

    Directory of Open Access Journals (Sweden)

    Emek Demir

    Full Text Available A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL, which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0 can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.

  8. Policy Pathways: Energy Performance Certification of Buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Improving energy efficiency is one of the most effective measures to address energy security, climate change and economic objectives. The Policy Pathways series can help countries capture this potential by assisting with the implementation of the 25 energy efficiency policy recommendations that were published by the International Energy Agency (IEA) in 2008. This policy pathway on energy performance certification of buildings is the second in the series. It aims to provide a 'how-to' guide to policy makers and relevant stakeholders on the essential elements in implementing energy performance certification of buildings programmes. Energy performance certification of buildings is a way to rate the energy efficiency of individual buildings -- whether they be residential, commercial or public. It is a key policy instrument that can assist governments in reducing energy consumption in buildings. This policy pathway showcases experiences from countries around the world to show examples of good practice and delivers a pathway of ten critical steps to implement energy performance certification of buildings programmes.

  9. On the origin of metabolic pathways

    Science.gov (United States)

    Lazcano, A.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The heterotrophic theory of the origin of life is the only proposal available with experimental support. This comes from the ease of prebiotic synthesis under strongly reducing conditions. The prebiotic synthesis of organic compounds by reduction of CO(2) to monomers used by the first organisms would also be considered an heterotrophic origin. Autotrophy means that the first organisms biosynthesized their cell constituents as well as assembling them. Prebiotic synthetic pathways are all different from the biosynthetic pathways of the last common ancestor (LCA). The steps leading to the origin of the metabolic pathways are closer to prebiotic chemistry than to those in the LCA. There may have been different biosynthetic routes between the prebiotic and the LCAs that played an early role in metabolism but have disappeared from extant organisms. The semienzymatic theory of the origin of metabolism proposed here is similar to the Horowitz hypothesis but includes the use of compounds leaking from preexisting pathways as well as prebiotic compounds from the environment.

  10. Regulatory pathways in the European Union.

    Science.gov (United States)

    Kohler, Manuela

    2011-01-01

    In principle, there are three defined procedures to obtain approval for a medicinal product in the European Union. As discussed in this overview of the procedures, the decision on which regulatory pathway to use will depend on the nature of the active substance, the target indication(s), the history of product and/or the marketing strategy.

  11. Pathways to Relationship Aggression between Adult Partners

    Science.gov (United States)

    Busby, Dean M.; Holman, Thomas B.; Walker, Eric

    2008-01-01

    In this study, the pathways to adult aggression beginning in the family of origin (FOO) and continuing through adult relationships were investigated. With a sample of 30,600 individuals, a comprehensive model was evaluated that included the unique influences of violent victimization in the family, witnessing parental violence, perpetrating…

  12. Alternative Certification Pathways: Filling a Gap?

    Science.gov (United States)

    Ludlow, Carlyn

    2013-01-01

    The purpose of this article is to examine the proliferation of alternative certification pathways through an analysis of the role and history of teacher certification and supply followed by a synthesis of national, regional, and state research studies on alternative routes to certification programs and a review of studies conducted on well-known…

  13. Wnt/Ca2+ signaling pathway: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Antara De

    2011-01-01

    The non-canonical Wnt/Ca2+ signaling cascade is less characterized than their canonical counterpart,the Wnt/β-catenin pathway.The non-canonical Wnt signaling pathways are diverse,defined as planer cell polarity pathway,Wnt-RAP1 signaling pathway,Wnt-Ror2 signaling pathway,Wnt-PKA pathway,Wnt-GSK3MT pathway,Wnt-aPKC pathway,Wnt-RYK pathway,Wnt-mTOR pathway,and Wnt/calcium signaling pathway.All these pathways exhibit a considerable degree of overlap between them.The Wnt/Ca2+ signaling pathway was deciphered as a crucial mediator in development.However,now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena.Many aspects of Wnt/Ca2+ pathway are yet enigmatic.This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca2+ signaling pathway.

  14. Pathway analyses implicate glial cells in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Laramie E Duncan

    Full Text Available BACKGROUND: The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge. METHOD: Ten publically available gene sets (pathways related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls, and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls. RESULTS: The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance and also achieved nominal levels of significance with INRICH (p = 0.0057 and ALIGATOR (p = 0.022. For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002. CONCLUSIONS: Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or

  15. e-Science and biological pathway semantics

    Directory of Open Access Journals (Sweden)

    Luciano Joanne S

    2007-05-01

    Full Text Available Abstract Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.

  16. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  17. Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast.

    Science.gov (United States)

    Tang, Man-Cheng; Lin, Hsiao-Ching; Li, Dehai; Zou, Yi; Li, Jian; Xu, Wei; Cacho, Ralph A; Hillenmeyer, Maureen E; Garg, Neil K; Tang, Yi

    2015-11-01

    The structural diversity and biological activities of fungal indole diterpenes (IDTs) are generated in large part by the IDT cyclases (IDTCs). Identifying different IDTCs from IDT biosynthetic pathways is therefore important toward understanding how these enzymes introduce chemical diversity from a common linear precursor. However, IDTCs involved in the cyclization of the well-known aflavinine subgroup of IDTs have not been discovered. Here, using Saccharomyces cerevisiae as a heterologous host and a phylogenetically guided enzyme mining approach, we combinatorially assembled IDT biosynthetic pathways using IDTCs homologues identified from different fungal hosts. We identified the genetically standalone IDTCs involved in the cyclization of aflavinine and anominine and produced new IDTs not previously isolated. The cyclization mechanisms of the new IDTCs were proposed based on the yeast reconstitution results. Our studies demonstrate heterologous pathway assembly is a useful tool in the reconstitution of unclustered biosynthetic pathways.

  18. Oncogenic pathways implicated in ovarian epithelial cancer.

    Science.gov (United States)

    Nicosia, Santo V; Bai, Wenlong; Cheng, Jin Q; Coppola, Domenico; Kruk, Patricia A

    2003-08-01

    Characterization of intracellular signaling pathways should lead to a better understanding of ovarian epithelial carcinogenesis and provide an opportunity to interfere with signal transduction targets involved in ovarian tumor cell growth, survival, and progression. Challenges toward such an effort are significant because many of these signals are part of cascades within an intricate and likely redundant intracellular signaling network (Fig.1). For instance, a given signal may activate a dual intracellular pathway (ie, MEK1-MAPK and PI3K/Akt required for fibronectin-dependent activation of matrix metalloproteinase 9). A single pathway also may transduce more than one biologic or oncogenic signal (ie, PI3K signaling in epithelial and endothelial cell growth and sprouting of neovessels). Despite these challenges, evidence for therapeutic targeting of signal transduction pathways is accumulating in human cancer. For instance, the EGF-specific tyrosine kinase inhibitor ZD 1839 (Iressa) may have a beneficial therapeutic effect on ovarian epithelial cancer. Therapy of this cancer may include inhibitors of PI kinase (quercetin), ezrin and PIP kinase (genistein). The G protein-coupled family of receptors, including LPA, also is an attractive target to drugs, although their frequent pleiotropic functions may be at times toxic and lack specificity. Because of the lack of notable toxicity, PI3K/Akt pathway inhibitors such as FTIs are a promising targeted therapy of ovarian epithelial cancer. Increasing insight into the oncogenic pathways involved in ovarian epithelial cancer also is helping clinicians to understand better the phenomenon of chemoresistance in this malignancy. Oncogenic activation of gamma-synuclein promotes cell survival and provides resistance to paclitaxel, but such a resistance is partially overcome by an MEK inhibitor that suppresses ERK activity. Ovarian epithelial cancer is a complex group of neoplasms with an overall poor prognosis. Comprehension of

  19. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  20. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology.

    Science.gov (United States)

    Karp, Peter D; Paley, Suzanne M; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M; Lee, Thomas J; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry.

  1. Construction and engineering of large biochemical pathways via DNA assembler.

    Science.gov (United States)

    Shao, Zengyi; Zhao, Huimin

    2013-01-01

    DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated.

  2. A Pathway Idea in Model Building

    Science.gov (United States)

    Mathai, A. M.; Haubold, H. J.

    2014-01-01

    The pathway idea is a way of going from one family of functions to another family of functions and yet another family of functions through a parameter in the mode l so that a switching mechanism is introduced into the model through a parameter. The advantage of the idea is that the model can cover the ideal or stable situation in a physical situation as well as cover the unstable neighborhoods or move from unstable neighborhoods to the stable situation. The basic idea is illustrated for the real scalar case here and its connections to topics in astrophysics and non-extens ive statistical mechanics, namely superstatistics and Tsallis statistics, Mittag-Leffler models, hypergeometric functions and generalized special functions such as the H-function etc are pointed out. The pathway idea is available for the real and complex rectangular matrix variate cases but only the real scalar case is illustrated here.

  3. Arbovirus-mosquito interactions: RNAi pathway.

    Science.gov (United States)

    Olson, Ken E; Blair, Carol D

    2015-12-01

    Arthropod-borne (arbo) viruses infect hematophagous arthropods (vectors) to maintain virus transmission between vertebrate hosts. The mosquito vector actively controls arbovirus infection to minimize its fitness costs. The RNA interference (RNAi) pathway is the major antiviral response vectors use to restrict arbovirus infections. We know this because depleting RNAi gene products profoundly impacts arbovirus replication, the antiviral RNAi pathway genes undergo positive, diversifying selection and arboviruses have evolved strategies to evade the vector's RNAi responses. The vector's RNAi defense and arbovirus countermeasures lead to an arms race that prevents potential virus-induced fitness costs yet maintains arbovirus infections needed for transmission. This review will discuss the latest findings in RNAi-arbovirus interactions in the model insect (Drosophila melanogaster) and in specific mosquito vectors.

  4. Autophagy as a pro-death pathway.

    Science.gov (United States)

    Denton, Donna; Xu, Tianqi; Kumar, Sharad

    2015-01-01

    The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.

  5. How expectation works: psychologic and physiologic pathways.

    Science.gov (United States)

    Brown, Walter A

    2015-05-01

    Although expectation has been the most widely studied of the mechanisms that drive the placebo effect, we still don't know how it works. We don't know how the thought that one will respond to a substance in a certain way is converted to symptom relief, intoxication, or airway resistance; the pathway between expectation of a response and the response itself remains uncharted. Nonetheless, in the last decade, brain-imaging studies have begun to uncover this pathway. This paper reviews both long-standing psychologic concepts about the underpinnings of expectation and some of the contemporary brain imaging research, which shows that when expectation alleviates depression, produces pain relief or improves parkinsonian symptoms, these effects come with relevant changes in brain activity and chemistry. These findings oblige us to reevaluate some of the traditional common sense notions of how expectation brings about its effects and how placebos work.

  6. Obesity-Induced Hypertension: Brain Signaling Pathways

    Science.gov (United States)

    da Silva, Alexandre A.; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E. P.; Hall, John E.

    2017-01-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review high-lights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  7. Lung carcinoma signaling pathways activated by smoking

    Institute of Scientific and Technical Information of China (English)

    Jing Wen; Jian-Hua Fu; Wei Zhang; Ming Guo

    2011-01-01

    Lung cancer is the leading cause of cancer death in men and women worldwide, with over a million deaths annually. Tobacco smoke is the major etiologic risk factor for lung cancer in current or previous smokers and has been strongly related to certain types of lung cancer, such as small cell lung carcinoma and squamous cell lung carcinoma. In recent years, there has been an increased incidence of lung adenocarcinoma. This change is strongly associated with changes in smoking behavior and cigarette design. Carcinogens present in tobacco products and their intermediate metabolites can activate multiple signaling pathways that contribute to lung cancer carcinogenesis. In this review, we summarize the smoking-activated signaling pathways involved in lung cancer.

  8. Targeting the EGFR pathway for cancer therapy

    DEFF Research Database (Denmark)

    Johnston, JB; Navaratnam, S; Pitz, MW

    2006-01-01

    provided the rationale for the targeting of the components of the EGFR signaling pathways for cancer therapy. Below we discuss various aspects of EGFR-targeted therapies mainly in hematologic malignancies, lung cancer and breast cancer. Beside novel therapeutic approaches, we also discuss specific side......Clinical studies have shown that HER-2/Neu is over-expressed in up to one-third of patients with a variety of cancers, including B-cell acute lymphoblastic leukemia (B-ALL), breast cancer and lung cancer, and that these patients are frequently resistant to conventional chemo-therapies. Additionally...... effects associated with the therapeutic inhibition of components of the EGFR-pathways. Alongside small inhibitors, such as Lapatinib (Tykerb, GW572016), Gefitinib (Iressa, ZD1839), and Erlotinib (Tarceva, OSI-774), a significant part of the review is also dedicated to therapeutic antibodies (e...

  9. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  10. Molecular neurodegeneration: basic biology and disease pathways.

    Science.gov (United States)

    Vassar, Robert; Zheng, Hui

    2014-09-23

    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.

  11. Pathways: Strategies for Susceptibility Genes in SLE

    Science.gov (United States)

    Kelley, James M.; Edberg, Jeffrey C.; Kimberly, Robert P.

    2010-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disorder marked by an inappropriate immune response to nuclear antigens. Recent whole genome association and more focused studies have revealed numerous genes implicated in this disease process, including ITGAM, Fc gamma receptors, complement components, C-reactive protein, and others. One common feature of these molecules is their involvement in the immune opsonins pathway and phagocytic clearing of nuclear antigens and apoptotic debris which provide excessive exposure of lupus-related antigens to immune cells. Analysis of gene-gene interactions in the opsonin pathway and its relationship to SLE may provide a systems-based approach to identify additional candidate genes associated with disease able to account for a larger part of lupus susceptibility. PMID:20144911

  12. Augmented reality approach for metabolic pathways teaching

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vega Garzón

    2014-12-01

    Full Text Available A glycolysis paper puzzle has been used as strategy to teach metabolic pathways, but this kind of game demands a higher number of instructors and limits the follow up of the students’ difficulties. A technology called Augmented Reality (AR was applied to enable the puzzle usage in large audiences, and to provid feedback to students and instructors. Drafted as flashcards readable by an app installed in tablets, it conveys information as molecules 3D-structure, clues for correct assembling of the metabolic pathway and results of student progression in the activity. Such technological improvement brought more autonomy to students for solving proposed exercises and an embedded performance data collection system helpful to understand,and after to unravel students’ difficulties.

  13. When RNA and protein degradation pathways meet

    Directory of Open Access Journals (Sweden)

    Pascal eGENSCHIK

    2014-04-01

    Full Text Available RNA silencing has become a major focus of molecular and biomedical research in the last decade. This mechanism, which is conserved in most eukaryotes, has been extensively studied and is associated to various pathways implicated in the regulation of development, in the control of transposition events, heterochromatin maintenance and also playing a role in defense against viruses. Despite of its importance, the regulation of the RNA silencing machinery itself remains still poorly explored. Recently several reports in both plants and metazoans revealed that key components of RNA silencing, such as RNA-induced silencing complex (RISC component ARGONAUTE proteins, but also the endonuclease Dicer are subjected to proteasomal and autophagic pathways. Here we will review these post-translational proteolytic regulations with a special emphasis on plant research and also discuss their functional relevance.

  14. Partitioning of genomic variance using biological pathways

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Janss, Luc; Madsen, Per

    and that these variants are enriched for genes that are connected in biological pathways or for likely functional effects on genes. These biological findings provide valuable insight for developing better genomic models. These are statistical models for predicting complex trait phenotypes on the basis of SNP......-data and trait phenotypes and can account for a much larger fraction of the heritable component. A disadvantage is that this “black-box” modelling approach conceals the biological mechanisms underlying the trait. We propose to open the “black-box” by building SNP-set genomic models that evaluate the collective...... action of multiple SNPs in genes, biological pathways or other external findings on the trait phenotype. As proof of concept we have tested the modelling framework on several traits in dairy cattle....

  15. Constraints on mutational pathways of hemoglobin evolution

    DEFF Research Database (Denmark)

    Kumar, Amit; Natarajan, Chandrasekhar; Moriyama, Hideaki

    2016-01-01

    When an evolutionary transition in protein function involves multiple mutational steps, a number of important questions can be addressed by experimentally examining the full set of possible intermediate genotypes that connect the ancestral starting point and the evolved endpoint. For example......, if the functional effects of mutations depend on the sequential order in which they occur, then evolution may be more likely to follow some pathways (those involving onotonic increases in fitness) rather than others (those involving low-fitness intermediates). Here we report an experimental analysis of multiple...... nightjar Hb, we used a combinatorial protein engineering approach to synthesize genotypes representing each of the 16 possible multi-site combinations.We discovered that all possible mutational pathways connecting the high-affinity ancestor and the low-affinity, wild-type Hb may not be equally accessible...

  16. Stochastic Processes via the Pathway Model

    Directory of Open Access Journals (Sweden)

    Arak M. Mathai

    2015-04-01

    Full Text Available After collecting data from observations or experiments, the next step is to analyze the data to build an appropriate mathematical or stochastic model to describe the data so that further studies can be done with the help of the model. In this article, the input-output type mechanism is considered first, where reaction, diffusion, reaction-diffusion, and production-destruction type physical situations can fit in. Then techniques are described to produce thicker or thinner tails (power law behavior in stochastic models. Then the pathway idea is described where one can switch to different functional forms of the probability density function through a parameter called the pathway parameter. The paper is a continuation of related solar neutrino research published previously in this journal.

  17. Metabolism pathways in chronic lymphocytic leukemia.

    Science.gov (United States)

    Rozovski, Uri; Hazan-Halevy, Inbal; Barzilai, Merav; Keating, Michael J; Estrov, Zeev

    2016-01-01

    Alterations in chronic lymphocytic leukemia (CLL) cell metabolism have been studied by several investigators. Unlike normal B lymphocytes or other leukemia cells, CLL cells, like adipocytes, store lipids and utilize free fatty acids (FFA) to produce chemical energy. None of the recently identified mutations in CLL directly affects metabolic pathways, suggesting that genetic alterations do not directly contribute to CLL cells' metabolic reprogramming. Conversely, recent data suggest that activation of STAT3 or downregulation of microRNA-125 levels plays a crucial role in the utilization of FFA to meet the CLL cells' metabolic needs. STAT3, known to be constitutively activated in CLL, increases the levels of lipoprotein lipase (LPL) that mediates lipoprotein uptake and shifts the CLL cells' metabolism towards utilization of FFA. Herein, we review the evidence for altered lipid metabolism, increased mitochondrial activity and formation of reactive oxygen species (ROS) in CLL cells, and discuss the possible therapeutic strategies to inhibit lipid metabolism pathways in patient with CLL.

  18. Mathematical modeling of the Phoenix Rising pathway.

    Directory of Open Access Journals (Sweden)

    Chad Liu

    2014-02-01

    Full Text Available Apoptosis is a tightly controlled process in mammalian cells. It is important for embryogenesis, tissue homoeostasis, and cancer treatment. Apoptosis not only induces cell death, but also leads to the release of signals that promote rapid proliferation of surrounding cells through the Phoenix Rising (PR pathway. To quantitatively understand the kinetics of interactions of different molecules in this pathway, we developed a mathematical model to simulate the effects of various changes in the PR pathway on the secretion of prostaglandin E2 (PGE2, a key factor for promoting cell proliferation. These changes include activation of caspase 3 (C3, caspase 7 (C7, and nuclear factor κB (NFκB. In addition, we simulated the effects of cyclooxygenase-2 (COX2 inhibition and C3 knockout on the level of secreted PGE2. The model predictions on PGE2 in MEF and 4T1 cells at 48 hours after 10-Gray radiation were quantitatively consistent with the experimental data in the literature. Compared to C7, the model predicted that C3 activation was more critical for PGE2 production. The model also predicted that PGE2 production could be significantly reduced when COX2 expression was blocked via either NFκB inactivation or treatment of cells with exogenous COX2 inhibitors, which led to a decrease in the rate of conversion from arachidonic acid to prostaglandin H2 in the PR pathway. In conclusion, the mathematical model developed in this study yielded new insights into the process of tissue regrowth stimulated by signals from apoptotic cells. In future studies, the model can be used for experimental data analysis and assisting development of novel strategies/drugs for improving cancer treatment or normal tissue regeneration.

  19. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  20. The sensory transduction pathways in bacterial chemotaxis

    Science.gov (United States)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  1. Modulation of neurotrophic signaling pathways by polyphenols.

    Science.gov (United States)

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the

  2. A case study in pathway knowledgebase verification

    Directory of Open Access Journals (Sweden)

    Shah Nigam H

    2006-04-01

    Full Text Available Abstract Background Biological databases and pathway knowledgebases are proliferating rapidly. We are developing software tools for computer-aided hypothesis design and evaluation, and we would like our tools to take advantage of the information stored in these repositories. But before we can reliably use a pathway knowledgebase as a data source, we need to proofread it to ensure that it can fully support computer-aided information integration and inference. Results We design a series of logical tests to detect potential problems we might encounter using a particular knowledgebase, the Reactome database, with a particular computer-aided hypothesis evaluation tool, HyBrow. We develop an explicit formal language from the language implicit in the Reactome data format and specify a logic to evaluate models expressed using this language. We use the formalism of finite model theory in this work. We then use this logic to formulate tests for desirable properties (such as completeness, consistency, and well-formedness for pathways stored in Reactome. We apply these tests to the publicly available Reactome releases (releases 10 through 14 and compare the results, which highlight Reactome's steady improvement in terms of decreasing inconsistencies. We also investigate and discuss Reactome's potential for supporting computer-aided inference tools. Conclusion The case study described in this work demonstrates that it is possible to use our model theory based approach to identify problems one might encounter using a knowledgebase to support hypothesis evaluation tools. The methodology we use is general and is in no way restricted to the specific knowledgebase employed in this case study. Future application of this methodology will enable us to compare pathway resources with respect to the generic properties such resources will need to possess if they are to support automated reasoning.

  3. Uracil Excision for Assembly of Complex Pathways

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Nielsen, Morten Thrane; Kim, Se Hyeuk

    2015-01-01

    inexpensive technologies available. Here, we describe four different protocols for uracil excision-based DNA editing: one for simple manipulations such as site-directed mutagenesis, one for plasmid-based multigene assembly in Escherichia coli, one for one-step assembly and integration of single or multiple...... genes into the genome, and a standardized assembly pipeline using benchmarked oligonucleotides for pathway assembly and multigene expression optimization....

  4. Eicosanoid pathway in colorectal cancer: Recent updates

    OpenAIRE

    Tuncer, Sinem; Banerjee, Sreeparna

    2015-01-01

    Enzymatic metabolism of the 20C polyunsaturated fatty acid (PUFA) arachidonic acid (AA) occurs via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways, and leads to the production of various bioactive lipids termed eicosanoids. These eicosanoids have a variety of functions, including stimulation of homeostatic responses in the cardiovascular system, induction and resolution of inflammation, and modulation of immune responses against diseases associated with chronic inflammation, such as ...

  5. Enzymology of the carnitine biosynthesis pathway.

    Science.gov (United States)

    Strijbis, Karin; Vaz, Frédéric M; Distel, Ben

    2010-05-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides their capacity to take up carnitine from the diet or extracellular medium through plasma membrane transporters. This review discusses the current knowledge on carnitine homeostasis with special emphasis on the enzymology of the four steps of the carnitine biosynthesis pathway.

  6. Signaling Pathways Involved in Cardiac Hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Tao Zewei; Li Longgui

    2006-01-01

    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  7. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  8. Loss of vision: imaging the visual pathways

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.R. [Institute of Neurology, Lysholm Department of Neuroradiology, London (United Kingdom)

    2005-03-01

    This is an overview of diseases presenting with visual impairment, which aims to provide an understanding of the anatomy and pathology of the visual pathways. It discusses the relevant clinical background and neuroimaging findings on CT and standard and advanced MRI of diseases affecting the globe; optic nerve/sheath complex; optic chiasm, tract and radiation; and visual cortex. The overview covers common tumours, trauma, inflammatory and vascular pathology, and conditions such as benign intracranial hypertension and posterior reversible leukoencephalopathy syndrome. (orig.)

  9. Innate immunity in Drosophila: Pathogens and pathways

    OpenAIRE

    Govind, Shubha

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derive...

  10. Fast track pathway for perforated appendicitis.

    Science.gov (United States)

    Frazee, Richard; Abernathy, Stephen; Davis, Matthew; Isbell, Travis; Regner, Justin; Smith, Randall

    2017-04-01

    Perforated appendicitis is associated with an increased morbidity and length of stay. "Fast track" protocols have demonstrated success in shortening hospitalization without increasing morbidity for a variety of surgical processes. This study evaluates a fast track pathway for perforated appendicitis. In 2013, a treatment pathway for perforated appendicitis was adopted by the Acute Care Surgery Service for patients having surgical management of perforated appendicitis. Interval appendectomy was excluded. Patients were treated initially with intravenous antibiotics and transitioned to oral antibiotics and dismissed when medically stable and tolerating oral intake. A retrospective review of patients managed on the fast track pathway was undertaken to analyze length of stay, morbidity, and readmissions. Thirty-four males and twenty-one females with an average age of 46.8 years underwent laparoscopic appendectomy for perforated appendicitis between January 2013 and December 2014. Pre-existing comorbidities included hypertension 42%, diabetes mellitus 11%, COPD 5% and heart disease 2%. No patient had conversion to open appendectomy. Average length of stay was 2.67 days and ranged from 1 to 12 days (median 2 days). Postoperative morbidity was 20% and included abscess (6 patients), prolonged ileus (3 patients), pneumonia (1 patient), and congestive heart failure (1 patient). Five patients were readmitted for abscess (3 patients), congestive heart failure (1 patient), and pneumonia (1 patient). A fast track pathway for perforated appendicitis produced shorter length of stay and acceptable postoperative morbidity and readmission. This offers the potential for significant cost savings over current national practice patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Genes and (Common) Pathways Underlying Drug Addiction

    OpenAIRE

    Chuan-Yun Li; Xizeng Mao; Liping Wei

    2008-01-01

    Drug addiction is a serious worldwide problem with strong genetic and environmental influences. Different technologies have revealed a variety of genes and pathways underlying addiction; however, each individual technology can be biased and incomplete. We integrated 2,343 items of evidence from peer-reviewed publications between 1976 and 2006 linking genes and chromosome regions to addiction by single-gene strategies, microrray, proteomics, or genetic studies. We identified 1,500 human addict...

  12. Exploring the folate pathway in Plasmodium falciparum.

    Science.gov (United States)

    Hyde, John E

    2005-06-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.

  13. Pathways, Networks and Systems Medicine Conferences

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, Joseph H. [Pacific Northwest Research Institute

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  14. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  15. Targeting autophagic pathways for cancer drug discovery

    Institute of Scientific and Technical Information of China (English)

    Bo Liu; Jin-Ku Bao; Jin-Ming Yang; Yan Cheng

    2013-01-01

    Autophagy,an evolutionarily conserved lysosomal degradation process,has drawn an increasing amount of attention in recent years for its role in a variety of human diseases,such as cancer.Notably,autophagy plays an important role in regulating several survival and death signaling pathways that determine cell fate in cancer.To date,substantial evidence has demonstrated that some key autophagic mediators,such as autophagy-related genes (ATGs),PI3K,mTOR,p53,and Beclin-1,may play crucial roles in modulating autophagic activity in cancer initiation and progression.Because autophagy-modulating agents such as rapamycin and chloroquine have already been used clinically to treat cancer,it is conceivable that targeting autophagic pathways may provide a new opportunity for discovery and development of more novel cancer therapeutics.With a deeper understanding of the regulatory mechanisms governing autophagy,we will have a better opportunity to facilitate the exploitation of autophagy as a target for therapeutic intervention in cancer.This review discusses the current status of targeting autophagic pathways as a potential cancer therapy.

  16. Nonlinear fitness landscape of a molecular pathway.

    Directory of Open Access Journals (Sweden)

    Lilia Perfeito

    2011-07-01

    Full Text Available Genes are regulated because their expression involves a fitness cost to the organism. The production of proteins by transcription and translation is a well-known cost factor, but the enzymatic activity of the proteins produced can also reduce fitness, depending on the internal state and the environment of the cell. Here, we map the fitness costs of a key metabolic network, the lactose utilization pathway in Escherichia coli. We measure the growth of several regulatory lac operon mutants in different environments inducing expression of the lac genes. We find a strikingly nonlinear fitness landscape, which depends on the production rate and on the activity rate of the lac proteins. A simple fitness model of the lac pathway, based on elementary biophysical processes, predicts the growth rate of all observed strains. The nonlinearity of fitness is explained by a feedback loop: production and activity of the lac proteins reduce growth, but growth also affects the density of these molecules. This nonlinearity has important consequences for molecular function and evolution. It generates a cliff in the fitness landscape, beyond which populations cannot maintain growth. In viable populations, there is an expression barrier of the lac genes, which cannot be exceeded in any stationary growth process. Furthermore, the nonlinearity determines how the fitness of operon mutants depends on the inducer environment. We argue that fitness nonlinearities, expression barriers, and gene-environment interactions are generic features of fitness landscapes for metabolic pathways, and we discuss their implications for the evolution of regulation.

  17. Hippo pathway effector Yap promotes cardiac regeneration.

    Science.gov (United States)

    Xin, Mei; Kim, Yuri; Sutherland, Lillian B; Murakami, Masao; Qi, Xiaoxia; McAnally, John; Porrello, Enzo R; Mahmoud, Ahmed I; Tan, Wei; Shelton, John M; Richardson, James A; Sadek, Hesham A; Bassel-Duby, Rhonda; Olson, Eric N

    2013-08-20

    The adult mammalian heart has limited potential for regeneration. Thus, after injury, cardiomyocytes are permanently lost, and contractility is diminished. In contrast, the neonatal heart can regenerate owing to sustained cardiomyocyte proliferation. Identification of critical regulators of cardiomyocyte proliferation and quiescence represents an important step toward potential regenerative therapies. Yes-associated protein (Yap), a transcriptional cofactor in the Hippo signaling pathway, promotes proliferation of embryonic cardiomyocytes by activating the insulin-like growth factor and Wnt signaling pathways. Here we report that mice bearing mutant alleles of Yap and its paralog WW domain containing transcription regulator 1 (Taz) exhibit gene dosage-dependent cardiac phenotypes, suggesting redundant roles of these Hippo pathway effectors in establishing proper myocyte number and maintaining cardiac function. Cardiac-specific deletion of Yap impedes neonatal heart regeneration, resulting in a default fibrotic response. Conversely, forced expression of a constitutively active form of Yap in the adult heart stimulates cardiac regeneration and improves contractility after myocardial infarction. The regenerative activity of Yap is correlated with its activation of embryonic and proliferative gene programs in cardiomyocytes. These findings identify Yap as an important regulator of cardiac regeneration and provide an experimental entry point to enhance this process.

  18. Cytoplasmic permeation pathway of neurotransmitter transporters.

    Science.gov (United States)

    Rudnick, Gary

    2011-09-06

    Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.

  19. Alternative pathway for atmospheric particles growth.

    Science.gov (United States)

    Monge, Maria Eugenia; Rosenørn, Thomas; Favez, Olivier; Müller, Markus; Adler, Gabriela; Abo Riziq, Ali; Rudich, Yinon; Herrmann, Hartmut; George, Christian; D'Anna, Barbara

    2012-05-01

    Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth's radiative balance due to direct interaction with radiation and because they modify clouds' properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models.

  20. Putative adverse outcome pathways relevant to neurotoxicity

    Science.gov (United States)

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  1. Illuminating the Reaction Pathways of Viromimetic Assembly

    Science.gov (United States)

    2017-01-01

    The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.

  2. The glyoxalase pathway in protozoan parasites.

    Science.gov (United States)

    Sousa Silva, Marta; Ferreira, António E N; Gomes, Ricardo; Tomás, Ana M; Ponces Freire, Ana; Cordeiro, Carlos

    2012-10-01

    The glyoxalase system is the main catabolic route for methylglyoxal, a non-enzymatic glycolytic byproduct with toxic and mutagenic effects. This pathway includes two enzymes, glyoxalase I and glyoxalase II, which convert methylglyoxal to d-lactate by using glutathione as a catalytic cofactor. In protozoan parasites the glyoxalase system shows marked deviations from this model. For example, the functional replacement of glutathione by trypanothione (a spermidine-glutathione conjugate) is a characteristic of trypanosomatids. Also interesting are the lack of glyoxalase I and the presence of two glyoxalase II enzymes in Trypanosoma brucei. In Plasmodium falciparum the glyoxalase pathway is glutathione-dependent, and glyoxalase I is an atypical monomeric enzyme with two active sites. Although it is tempting to exploit these differences for their potential therapeutic value, they provide invaluable clues regarding methylglyoxal metabolism and the evolution of protozoan parasites. Glyoxalase enzymes have been characterized in only a few protozoan parasites, namely Plasmodium falciparum and the trypanosomatids Leishmania and Trypanosoma. In this review, we will focus on the key features of the glyoxalase pathway in major human protozoan parasites, with particular emphasis on the characterized systems in Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. We will also search for genes encoding glyoxalase I and II in Toxoplasma gondii, Entamoeba histolytica, and Giardia lamblia.

  3. Proton transfer pathways in Photosystem II

    Science.gov (United States)

    Ishikita, Hiroshi

    2014-03-01

    Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II (Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Nature 473, 55-60), we investigated the H-bonding environment of the redox active tyrosine, TyrD and obtained insights that help explain its slow redox kinetics and the stability of TyrD radical. The water molecule distal to TyrD, 4 Å away from the phenolic O of TyrD (OTyrD) , corresponds to the presence of the tyrosyl radical state. The water molecule proximal to TyrD, in H-bonding distance to OTyrD, corresponds to the presence of the unoxidised tyrosine. The H+ released upon oxidation of TyrD is transferred to the proximal water, which shifts to the distal position, triggering a concerted proton transfer pathway involving D2-Arg180 and a series of waters, through which the proton reaches the aqueous phase at D2-His61. The water movement linked to the ejection of the proton from the hydrophobic environment near TyrD makes oxidation slow and quasi-irreversible, explaining the great stability of the TyrD radical. A symmetry-related proton pathway associated with TyrZ is pointed out and this is associated with one of the Cl- sites. This may represent a proton pathway functional in the water oxidation cycle.

  4. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  5. The NEDD8 modification pathway in plants

    Directory of Open Access Journals (Sweden)

    Claus eSchwechheimer

    2014-03-01

    Full Text Available NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB, is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a posttranslational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.

  6. Exploring pathway interactions in insulin resistant mouse liver

    Directory of Open Access Journals (Sweden)

    Kelder Thomas

    2011-08-01

    Full Text Available Abstract Background Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset. Results We developed an analysis approach to study interactions between pathways by integrating gene and protein interaction networks, biological pathway information and high-throughput data. This approach was applied to a transcriptomics dataset to investigate pathway interactions in insulin resistant mouse liver in response to a glucose challenge. We identified regulated pathway interactions at different time points following the glucose challenge and also studied the underlying protein interactions to find possible mechanisms and key proteins involved in pathway cross-talk. A large number of pathway interactions were found for the comparison between the two diet groups at t = 0. The initial response to the glucose challenge (t = 0.6 was typed by an acute stress response and pathway interactions showed large overlap between the two diet groups, while the pathway interaction networks for the late response were more dissimilar. Conclusions Studying pathway interactions provides a new perspective on the data that complements established pathway analysis methods such as enrichment analysis. This study provided new insights in how interactions between pathways may be affected by insulin resistance. In addition, the analysis approach described here can be generally applied to different types of high-throughput data and will therefore be useful for analysis of other complex datasets as well.

  7. Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways.

    Science.gov (United States)

    Gao, Feng; Yao, Min; Shi, Yonghong; Hao, Jun; Ren, Yunzhuo; Liu, Qingjuan; Wang, Xiaomeng; Duan, Huijun

    2013-05-01

    Recent studies have shown that Notch pathway plays a key role in the pathogenesis of diabetic nephropathy (DN), however, the exact mechanisms remain elusive. Here we demonstrated that high glucose (HG) upregulated Notch pathway in podocytes accompanied with the alteration of Bcl-2 and p53 pathways, subsequently leading to podocytes apoptosis. Inhibition of Notch pathway by chemical inhibitor or specific short hairpin RNA (shRNA) vector in podocytes prevented Bcl-2- and p53-dependent cell apoptosis. These findings suggest that Notch pathway mediates HG-induced podocytes apoptosis via Bcl-2 and p53 pathways.

  8. The Smad pathway in transforming growth factor-β signaling

    Institute of Scientific and Technical Information of China (English)

    林海燕; 王红梅; 祝诚

    2003-01-01

    The Smad pathway is involved in transforming growth factor-β (TGF-β) signal transduction. The Smad complex binds with the promoter of target gene to modulate gene transcription. Various transcriptional coactivators and corepressors associate directly with Smads for appropriate binding of Smads to target promoters and regulation of Smads transcriptional activities. The ultimate degradation of Smads mediated by the ubiquitin-proteasome pathway (UPP) has been established as a mechanism to shut off the Smad pathway. In addition to the Smad pathway, TGF-β can also activate other signaling pathway such as the MAPK pathway. The cross-talk of the Smad pathway with other signaling pathways constitutes an important mechanism for the regulatory network of TGF-β Signaling.

  9. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Science.gov (United States)

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  10. Alcohol consumption and distinct molecular pathways to colorectal cancer

    NARCIS (Netherlands)

    Bongaerts, B.W.C.; Goeij, A.F.P.M. de; Vogel, S. de; Brandt, P.A. van den; Goldbohm, R.A.; Weijenberg, M.P.

    2007-01-01

    High alcohol consumption is related to colorectal cancer (CRC). Our objective was to study associations between alcohol consumption and risk of CRC according to characteristics of aetiological pathways: the chromosomal instability (CIN) and the microsatellite instability (MIN) pathway. We classified

  11. Non-Smad pathways in TGF-β signaling

    Institute of Scientific and Technical Information of China (English)

    Ying E Zhang

    2009-01-01

    Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to reg-ulate a wide array of cellular functions.These non-canonical,non-Smad pathways are activated directly by ligand-occupied receptors to reinforce,attenuate,or otherwise modulate downstream cellular responses.These non-Smad pathways include various branches of MAP kinase pathways,Rho-like GTPase signaling pathways,and phosphati-dylinositol-3-kinase/AKT pathways.This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways.In addition.functions of these non-Smad pathways are also discussed.

  12. Finding dominant transition pathways via global optimization of action

    CERN Document Server

    Lee, Juyong; Joung, InSuk; Lee, Jooyoung; Brooks, Bernard R

    2016-01-01

    We present a new computational approach, Action-CSA, to sample multiple reaction pathways with fixed initial and final states through global optimization of the Onsager-Machlup action using the conformational space annealing method. This approach successfully samples not only the most dominant pathway but also many other possible paths without initial guesses on reaction pathways. Pathway space is efficiently sampled by crossover operations of a set of paths and preserving the diversity of sampled pathways. The sampling ability of the approach is assessed by finding pathways for the conformational changes of alanine dipeptide and hexane. The benchmarks demonstrate that the rank order and the transition time distribution of multiple pathways identified by the new approach are in good agreement with those of long molecular dynamics simulations. We also show that the lowest action folding pathway of the mini-protein FSD-1 identified by the new approach is consistent with previous molecular dynamics simulations a...

  13. Alcohol consumption and distinct molecular pathways to colorectal cancer

    NARCIS (Netherlands)

    Bongaerts, B.W.C.; Goeij, A.F.P.M. de; Vogel, S. de; Brandt, P.A. van den; Goldbohm, R.A.; Weijenberg, M.P.

    2007-01-01

    High alcohol consumption is related to colorectal cancer (CRC). Our objective was to study associations between alcohol consumption and risk of CRC according to characteristics of aetiological pathways: the chromosomal instability (CIN) and the microsatellite instability (MIN) pathway. We classified

  14. Teaching Biochemical Pathways Using Concept Maps

    Directory of Open Access Journals (Sweden)

    Simon Brown

    2013-08-01

    Full Text Available The interesting paper by Dinarvand and Vaisi-Raygan (1 makes valuable points about a particularly challenging aspect of biochemistry learning and teaching. Their work prompts me to ask two questions and make a comment. First, what do the authors mean by a concept map (CM? A pathway map could be considered a CM, but a CM could cover modes of regulation and kinetics in relation to particular reactions or pathways and there are many other possibilities. Irrespective of this, a CM can get extremely complex if more than a few concepts are involved (2, as can be seen in examples given by Novak (3. This is the fundamental problem of teaching and learning biochemistry (4, which combines the network of pathways, compartmentation, macromol¬ecular structure, regulation, kinetics and some fairly sophisticated chemical concepts.Second, how did the students go about preparing CMs? My experience is that students prefer to use a computer for most tasks, but standard CM software (5 may not be suitable. For example, they often struggle unnec¬essarily to use software to prepare a graphical summary of the structural features of a protein, its precursors and the gene encoding it. This distracts them from the material. My suggestions that pencil and paper might be sufficient are usually met with amazement. Third, as Dinarvand and Vaisi-Raygan (1 make clear, a coherent summary of the metabolism considered in a course in metabolic biochemistry is crucial if students are to appreciate the pathways and their interconn-ection and regulation. For many years I have used an approach in which students collaborate in tutorials to achieve this. The sessions are usually initiated by me drawing the plasma membrane and the mitochondrial membranes on a large board and inviting the students to fill in the blanks (I provide large sheets of paper so that students can make copies. With coaxing, someone volunteers and I explain that the volunteer is not alone because everyone is

  15. Upregulation of Notch pathway molecules in oral squamous cell carcinoma

    OpenAIRE

    2010-01-01

    The constitutive activation of the Notch pathway has been demonstrated in various types of malignancies. However, it remains unclear how the Notch pathway is involved in the pathogenesis of oral squamous cell carcinoma (OSCC). We investigated the expression of Notch pathway molecules in OSCC cell lines and biopsy specimens and examined the effect of Notch pathway inhibition. Reverse transcription-polymerase chain reaction revealed upregulation of Notch1, Notch2, Jagged1, HES1 and HEY1 in both...

  16. Axon Regeneration Requires A Conserved MAP Kinase Pathway

    OpenAIRE

    Hammarlund, Marc; Nix, Paola; Hauth, Linda; Jorgensen, Erik M.; Bastiani, Michael

    2009-01-01

    Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. Thus, these pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 MAP kinase pathway is essential for regeneration in C. elegans motor neurons. Loss of this pathway eliminates regeneration...

  17. PathwayBooster: a tool to support the curation of metabolic pathways.

    Science.gov (United States)

    Liberal, Rodrigo; Lisowska, Beata K; Leak, David J; Pinney, John W

    2015-03-15

    Despite several recent advances in the automated generation of draft metabolic reconstructions, the manual curation of these networks to produce high quality genome-scale metabolic models remains a labour-intensive and challenging task. We present PathwayBooster, an open-source software tool to support the manual comparison and curation of metabolic models. It combines gene annotations from GenBank files and other sources with information retrieved from the metabolic databases BRENDA and KEGG to produce a set of pathway diagrams and reports summarising the evidence for the presence of a reaction in a given organism's metabolic network. By comparing multiple sources of evidence within a common framework, PathwayBooster assists the curator in the identification of likely false positive (misannotated enzyme) and false negative (pathway hole) reactions. Reaction evidence may be taken from alternative annotations of the same genome and/or a set of closely related organisms. By integrating and visualising evidence from multiple sources, PathwayBooster reduces the manual effort required in the curation of a metabolic model. The software is available online at http://www.theosysbio.bio.ic.ac.uk/resources/pathwaybooster/ .

  18. Validation of signalling pathways: Case study of the p16-mediated pathway.

    Science.gov (United States)

    Akçay, Nimet İlke; Bashirov, Rza; Tüzmen, Şükrü

    2015-04-01

    p16 is recognized as a tumor suppressor gene due to the prevalence of its genetic inactivation in all types of human cancers. Additionally, p16 gene plays a critical role in controlling aging, regulating cellular senescence, detection and maintenance of DNA damage. The molecular mechanism behind these events involves p16-mediated signaling pathway (or p16- Rb pathway), the focus of our study. Understanding functional dependence between dynamic behavior of biological components involved in the p16-mediated pathway and aforesaid molecular-level events might suggest possible implications in the diagnosis, prognosis and treatment of human cancer. In the present work, we employ reverse-engineering approach to construct the most detailed computational model of p16-mediated pathway in higher eukaryotes. We implement experimental data from the literature to validate the model, and under various assumptions predict the dynamic behavior of p16 and other biological components by interpreting the simulation results. The quantitative model of p16-mediated pathway is created in a systematic manner in terms of Petri net technologies.

  19. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2015-01-01

    Full Text Available Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2, physioxia or physoxia (∼1–13%, and normoxia (∼20% are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia or excess oxygen (hyperoxia could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction. Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s (HIFs are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  20. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Science.gov (United States)

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  1. Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway

    Directory of Open Access Journals (Sweden)

    Valérie de Crécy-Lagard

    2014-06-01

    Full Text Available The availability of thousands of sequenced genomes has revealed the diversity of biochemical solutions to similar chemical problems. Even for molecules at the heart of metabolism, such as cofactors, the pathway enzymes first discovered in model organisms like Escherichia coli or Saccharomyces cerevisiae are often not universally conserved. Tetrahydrofolate (THF (or its close relative tetrahydromethanopterin is a universal and essential C1-carrier that most microbes and plants synthesize de novo. The THF biosynthesis pathway and enzymes are, however, not universal and alternate solutions are found for most steps, making this pathway a challenge to annotate automatically in many genomes. Comparing THF pathway reconstructions and functional annotations of a chosen set of folate synthesis genes in specific prokaryotes revealed the strengths and weaknesses of different microbial annotation platforms. This analysis revealed that most current platforms fail in metabolic reconstruction of variant pathways. However, all the pieces are in place to quickly correct these deficiencies if the different databases were built on each other's strengths.

  2. SPIKE: a database of highly curated human signaling pathways.

    Science.gov (United States)

    Paz, Arnon; Brownstein, Zippora; Ber, Yaara; Bialik, Shani; David, Eyal; Sagir, Dorit; Ulitsky, Igor; Elkon, Ran; Kimchi, Adi; Avraham, Karen B; Shiloh, Yosef; Shamir, Ron

    2011-01-01

    The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community. SPIKE (Signaling Pathways Integrated Knowledge Engine; http://www.cs.tau.ac.il/&~spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction. To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator’s understanding and make the utilization of the pathways easy. The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways. Pathways are regularly updated, and additional pathways are gradually added. The complete database and the individual maps are freely exportable in several formats. The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.

  3. Development of Network Analysis and Visualization System for KEGG Pathways

    Directory of Open Access Journals (Sweden)

    Dongmin Seo

    2015-07-01

    Full Text Available Big data refers to informationalization technology for extracting valuable information through the use and analysis of large-scale data and, based on that data, deriving plans for response or predicting changes. With the development of software and devices for next generation sequencing, a vast amount of bioinformatics data has been generated recently. Also, bioinformatics data based big-data technology is rising rapidly as a core technology by the bioinformatician, biologist and big-data scientist. KEGG pathway is bioinformatics data for understanding high-level functions and utilities of the biological system. However, KEGG pathway analysis requires a lot of time and effort because KEGG pathways are high volume and very diverse. In this paper, we proposed a network analysis and visualization system that crawl user interest KEGG pathways, construct a pathway network based on a hierarchy structure of pathways and visualize relations and interactions of pathways by clustering and selecting core pathways from the network. Finally, we construct a pathway network collected by starting with an Alzheimer’s disease pathway and show the results on clustering and selecting core pathways from the pathway network.

  4. Businesses Partner with Schools, Community to Create Alternative Career Pathways

    Science.gov (United States)

    Overman, Stephenie

    2012-01-01

    Business, education and community leaders are working together to create alternative career pathways for young people who are not profiting from the four-year college track. The new Pathways to Prosperity Network brings together the Pathways to Prosperity Project at Harvard Graduate School of Education (HGSE), Jobs for the Future (JFF) and six…

  5. "Distal common pathway in atrioventricular node reentrant tachycardia "

    Directory of Open Access Journals (Sweden)

    "Moghaddam M

    2001-06-01

    Full Text Available Anotomical boundary of atrioventricular node reentrant tachycardia (AVNRT is composed of fast and slow pathways right atrium in upper turnaround and common distal pathway in lower turnaround. We performed electophsiologic study (EPS in 152 patients and could show the existence of distal common pathway with decremental conduction properties in approximately 40 patients.

  6. An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway

    OpenAIRE

    Bijveld, M.M.C.; Kappers, A.M.L.; Riemslag, F C C; Hoeben, F.P.; Vrijling, A.C.L.; Genderen, M.M.

    2011-01-01

    The minimum in the amplitude versus flash strength curve of dark-adapted 15 Hz electroretinograms (ERGs) has been attributed to interactions between the primary and secondary rod pathways. The 15 Hz ERGs can be used to examine the two rod pathways in patients. However, previous studies suggested that the cone-driven pathway also contributes to the 15 Hz ERGs for flash strengths just above that of the minimum. We investigated cone pathway contributions to improve upon the interpretation of (ab...

  7. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    Directory of Open Access Journals (Sweden)

    Josep Roma

    2012-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed.

  8. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway.

    Science.gov (United States)

    Chaveroux, Cédric; Sarcinelli, Carmen; Barbet, Virginie; Belfeki, Sofiane; Barthelaix, Audrey; Ferraro-Peyret, Carole; Lebecque, Serge; Renno, Toufic; Bruhat, Alain; Fafournoux, Pierre; Manié, Serge N

    2016-06-03

    The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.

  9. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  10. [Analysis of dissemination pathways for poliovirus].

    Science.gov (United States)

    Ohka, Seii

    2009-06-01

    Poliomyelitis is an acute disease of the central nervous system (CNS) caused by poliovirus (PV). In humans, an infection is initiated by oral ingestion of the virus, followed by multiplication in the alimentary mucosa, from which the virus spreads through the bloodstream. Paralytic poliomyelitis initiates from the invasion of the central nervous system by circulating poliovirus, probably via the blood-brain barrier. After the virus enters the central nervous system, it replicates in neurons, especially in motor neurons, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, a neuron-specific pathway has been reported in humans, monkeys, and PV-sensitive transgenic (Tg) mice carrying the PV receptor (hPVR/CD155) gene. It is important for the efficient virus dissemination to overcome the barriers as follows; i) to access the target tissue, ii) to enter the cells, iii) to reach the place for the replication, iv) to replicate efficiently. PV is easily transferred to humans orally; however, no rodent model for oral infections has been developed. We analyzed the each barrier above, and showed that PV is inactivated by the low pH of the gastric contents in mice. We also demonstrated that type 1 interferon signaling plays an important role in determining permissivity in the alimentary tract. As for the neural pathway, we demonstrated that direct efficient interaction between the cytoplasmic domain and cytoplasmic dynein is essential for the efficient retrograde transport of PV-containing vesicles along microtubules for the hPVR-dependent PV transport. On the other hand, we found that hPVR-independent axonal transport of PV was also observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist.

  11. Integrated care pathways and task shifting

    Directory of Open Access Journals (Sweden)

    Linda Panton

    2014-11-01

    Full Text Available Delivery of HIV care has evolved over the last 10 years, and nurse specialists are a driving force in developing new pathways to enhance patient care. Despite the continued rise in numbers of people living with HIV, the financial constraints on the NHS have unfortunately resulted in a reduction in service provision. Experienced nurses are integral to patient care management. They not only provide standardized care for stable patients, therefore increasing consultant capacity for the more complex medical patient, but have a degree of flexibility that allows newly diagnosed patients quick access to care and support. With a strong emphasis being placed on an integrated and collaborative multidisciplinary team approach, to ensure patients receive the same standard of care, Scotland's HIV centres follow an integrated care pathway. The nurse oversees the completion of this document and co-ordinates the pathway of care depending on the clinical need. Nurses develop and maintain necessary partnerships between primary care, specialist care, psychological services, social care and third sector support services. The nurse case load continues to expand and diversify. Stable patients may be maintained on therapy but are living with a stigmatized long-term chronic condition and rely on the nurse as a point of contact to access advice and support readily. The more chaotic and vulnerable clients with complex care needs require the nurse to co-ordinate their care, ensuring the appropriate agencies remain involved. Overseeing the transition of care to other units and tracing patients who are lost to follow up is also a necessity, as retention in care is paramount for the continued improvement in clinical outcomes. The contribution that specialist nurses make to the provision of HIV care is valuable and will continue to play a large role in the delivery of such care.

  12. Policy Pathways: Modernising Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Buildings are the largest consumers of energy worldwide and will continue to be a source of increasing energy demand in the future. Globally, the sector’s final energy consumption doubled between 1971 and 2010 to reach 2 794 million tonnes of oil equivalent (Mtoe), driven primarily by population increase and economic growth. Under current policies, the global energy demand of buildings is projected by the IEA experts to grow by an additional 838 Mtoe by 2035 compared to 2010. The challenges of the projected increase of energy consumption due to the built environment vary by country. In IEA member countries, much of the future buildings stock is already in place, and so the main challenge is to renovate existing buildings stock. In non-IEA countries, more than half of the buildings stock needed by 2050 has yet to be built. The IEA and the UNDP partnered to analyse current practices in the design and implementation of building energy codes. The aim is to consolidate existing efforts and to encourage more attention to the role of the built environment in a low-carbon and climate-resilient world. This joint IEA-UNDP Policy Pathway aims to share lessons learned between IEA member countries and non-IEA countries. The objective is to spread best practices, limit pressures on global energy supply, improve energy security, and contribute to environmental sustainability. Part of the IEA Policy Pathway series, Modernising building energy codes to secure our global energy future sets out key steps in planning, implementation, monitoring and evaluation. The Policy Pathway series aims to help policy makers implement the IEA 25 Energy Efficiency Policy Recommendations endorsed by IEA Ministers (2011).

  13. Pediatric bariatric surgery: the clinical pathway.

    Science.gov (United States)

    Alqahtani, Aayed R; Elahmedi, Mohamed O

    2015-05-01

    Despite the rising interest in bariatric surgery (BS) for children and adolescents, algorithms that incorporate BS in weight management (WM) programs are lacking. This study presents the results of the pediatric bariatric surgery clinical pathway employed in our institution. Starting March 2008, we enrolled obese children and adolescents in a standardized multidisciplinary obesity management program. Weight loss, complications, comorbidities, and growth results of those who eventually underwent BS were compared with a matched (age, gender, and height z-score) group of patients on non-surgical WM only. Up to July 2014, a total of 659 patients received care through the pathway, of whom 291 patients underwent laparoscopic sleeve gastrectomy (LSG). Mean age and pre-LSG body mass index (BMI) were 14.4 ± 4.0 years (range; 5 to 21 years) and 48.3 ± 10.0 (range; 31.8-109.6). Mean BMI change (% excess weight loss) at 1, 2, 3, and 4 postoperative years was -16.9 ± 4.9 (56.6 ± 22.6), -17.5 ± 5.2 (69.8 ± 22.5), -18.9 ± 4.3 (75.1 ± 26.8), and -19.6 ± 6.4 (73.6 ± 24.3), respectively. Postoperatively, complications occurred in 12 patients (4.1%), with no leaks or mortality, and more than 90% of comorbidities were resolved or improved without recurrence. Additionally, LSG patients exhibited significantly higher postoperative growth velocity compared to WM patients. Applying this standardized clinical pathway with its BS component results in safe and successful weight loss for pediatric patients, with low complication rates, maximum comorbidity resolution, and minimum morbidity.

  14. Unconventional Pathways of Secretion Contribute to Inflammation

    Science.gov (United States)

    Daniels, Michael J. D.; Brough, David

    2017-01-01

    In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER) and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL)-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1). In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation. PMID:28067797

  15. CAETS 2015 Convocation on Pathways to Sustainability

    CERN Document Server

    Ghosh, Purnendu; Shorey, Rajeev; Tandon, Mahesh; v.1 Energy engineering; v.2 Healthcare engineering; v.3 Mobility engineering

    2017-01-01

    This book contains the proceedings of CAETS 2015 Convocation on ‘Pathways to Sustainability: Energy, Mobility and Healthcare Engineering’ that was held on October 13-14, 2015 in New Delhi. This 3 volume proceedings provide an international forum for discussion and communication of engineering and technological issues of common concern. This volume talks about ‘Energy’ and includes 22 chapters on diverse topics like renewable energy, advances and applications of bio-energy and bio-refinery, energy options and scenarios, wind energy for buildings and transportation, etc. The contents of this volume will be useful to researchers, professionals, and policy makers alike.

  16. The pentose phosphate pathway and cancer.

    Science.gov (United States)

    Patra, Krushna C; Hay, Nissim

    2014-08-01

    The pentose phosphate pathway (PPP), which branches from glycolysis at the first committed step of glucose metabolism, is required for the synthesis of ribonucleotides and is a major source of NADPH. NADPH is required for and consumed during fatty acid synthesis and the scavenging of reactive oxygen species (ROS). Therefore, the PPP plays a pivotal role in helping glycolytic cancer cells to meet their anabolic demands and combat oxidative stress. Recently, several neoplastic lesions were shown to have evolved to facilitate the flux of glucose into the PPP. This review summarizes the fundamental functions of the PPP, its regulation in cancer cells, and its importance in cancer cell metabolism and survival.

  17. A common pathway in periodic fever syndromes.

    Science.gov (United States)

    McDermott, Michael F

    2004-09-01

    Familial Mediterranean fever (FMF) is an autosomal recessive disease due to mutations in pyrin, which normally inhibits pro-interleukin-1beta (IL-1beta) cytokine processing to the active form. A novel role for pyrin has been proposed by Shoham et al., who studied patients with an autosomal dominant disease called pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. They demonstrated an interaction between pyrin and proline serine threonine phosphatase-interacting protein 1 (PSTPIP1), the protein involved in PAPA, and thus revealed a biochemical pathway common to both FMF and PAPA.

  18. Policy Pathways: Monitoring, Verification and Enforcement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA estimates that, if implemented globally without delay, the 25 IEA Energy Efficiency recommendations could save 8.2 Gt CO2 per year by 2030. Yet many governments struggle with their implementation and thus miss a great part of the energy efficiency potential. The new IEA series Policy Pathways: Showing the way to energy efficiency implementation now aims to assist countries with improving energy efficiency policies. It features practical 'how-to' guides for designing, implementing and evaluating energy efficiency policies and achieving greater improvement.

  19. Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  20. Ontology modeling for generation of clinical pathways

    Directory of Open Access Journals (Sweden)

    Jasmine Tehrani

    2012-12-01

    Full Text Available Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the

  1. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  2. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    Directory of Open Access Journals (Sweden)

    Cohen Jonathan C

    2006-01-01

    Full Text Available Abstract Background Analysis of High Throughput (HTP Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS, for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes and Biocarta, GO (Gene Ontology terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs. WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at http://www.abcc.ncifcrf.gov/wps/wps_index.php.

  3. Pathway-based screening strategy for multitarget inhibitors of diverse proteins in metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Hsu

    Full Text Available Many virtual screening methods have been developed for identifying single-target inhibitors based on the strategy of "one-disease, one-target, one-drug". The hit rates of these methods are often low because they cannot capture the features that play key roles in the biological functions of the target protein. Furthermore, single-target inhibitors are often susceptible to drug resistance and are ineffective for complex diseases such as cancers. Therefore, a new strategy is required for enriching the hit rate and identifying multitarget inhibitors. To address these issues, we propose the pathway-based screening strategy (called PathSiMMap to derive binding mechanisms for increasing the hit rate and discovering multitarget inhibitors using site-moiety maps. This strategy simultaneously screens multiple target proteins in the same pathway; these proteins bind intermediates with common substructures. These proteins possess similar conserved binding environments (pathway anchors when the product of one protein is the substrate of the next protein in the pathway despite their low sequence identity and structure similarity. We successfully discovered two multitarget inhibitors with IC50 of <10 µM for shikimate dehydrogenase and shikimate kinase in the shikimate pathway of Helicobacter pylori. Furthermore, we found two selective inhibitors (IC50 of <10 µM for shikimate dehydrogenase using the specific anchors derived by our method. Our experimental results reveal that this strategy can enhance the hit rates and the pathway anchors are highly conserved and important for biological functions. We believe that our strategy provides a great value for elucidating protein binding mechanisms and discovering multitarget inhibitors.

  4. DMPD: TLR pathways and IFN-regulatory factors: to each its own. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17273997 TLR pathways and IFN-regulatory factors: to each its own. Colonna M. Eur J... Immunol. 2007 Feb;37(2):306-9. (.png) (.svg) (.html) (.csml) Show TLR pathways and IFN-regulatory factors: ...to each its own. PubmedID 17273997 Title TLR pathways and IFN-regulatory factors: to each its own. Authors C

  5. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg

  6. A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer.

    Science.gov (United States)

    Slattery, Martha L; Wolff, Roger K; Lundgreen, Abbie

    2015-01-01

    Inflammation, hormones and energy-related factors have been associated with colorectal cancer (CRC) and it has been proposed that convergence and interactions of these factors importantly influence CRC risk. We have previously hypothesized that genetic variation in the CHIEF (convergence of hormones, inflammation and energy-related factors) pathway would influence risk of CRC. In this paper, we utilize an Adaptive Rank Truncation Product (ARTP) statistical method to determine the overall pathway significance and then use that method to identify the key elements within the pathway associated with disease risk. Data from two population-based case-control studies of colon (n = 1555 cases and 1956 controls) and rectal (n = 754 cases and 959 controls) cancer were used. We use ARTP to estimate pathway and gene significance and polygenic scores based on ARTP findings to further estimate the risk associated with the pathway. Associations were further assessed based on tumor molecular phenotype. The CHIEF pathway was statistically significant for colon cancer (P(ARTP)= 0.03) with the most significant interferons (P(ARTP) = 0.0253), JAK/STAT/SOCS (P(ARTP) = 0.0111), telomere (P(ARTP) = 0.0399) and transforming growth factor β (P(ARTP) = 0.0043) being the most significant subpathways for colon cancer. For rectal cancer, interleukins (P(ARTP) = 0.0235) and selenoproteins (P ARTP = 0.0047) were statistically significant although the pathway overall was of borderline significance (P(ARTP) = 0.06). Interleukins (P(ARTP) = 0.0456) and mitogen-activated protein kinase (P(ARTP) = 0.0392) subpathways were uniquely significant for CpG island methylator phenotype-positive colon tumors. Increasing number of at-risk alleles was significantly associated with both colon [odds ratio (OR) = 6.21, 95% confidence interval (CI): 4.72, 8.16] and rectal (OR = 7.82, 95% CI: 5.26, 11.62) cancer. We conclude that elements of the CHIEF pathway are important for CRC risk.

  7. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  8. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    Science.gov (United States)

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  9. BowTieBuilder: modeling signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Schröder Adrian

    2009-06-01

    Full Text Available Abstract Background Sensory proteins react to changing environmental conditions by transducing signals into the cell. These signals are integrated into core proteins that activate downstream target proteins such as transcription factors (TFs. This structure is referred to as a bow tie, and allows cells to respond appropriately to complex environmental conditions. Understanding this cellular processing of information, from sensory proteins (e.g., cell-surface proteins to target proteins (e.g., TFs is important, yet for many processes the signaling pathways remain unknown. Results Here, we present BowTieBuilder for inferring signal transduction pathways from multiple source and target proteins. Given protein-protein interaction (PPI data signaling pathways are assembled without knowledge of the intermediate signaling proteins while maximizing the overall probability of the pathway. To assess the inference quality, BowTieBuilder and three alternative heuristics are applied to several pathways, and the resulting pathways are compared to reference pathways taken from KEGG. In addition, BowTieBuilder is used to infer a signaling pathway of the innate immune response in humans and a signaling pathway that potentially regulates an underlying gene regulatory network. Conclusion We show that BowTieBuilder, given multiple source and/or target proteins, infers pathways with satisfactory recall and precision rates and detects the core proteins of each pathway.

  10. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  11. Metabolic Pathways in Anopheles stephensi mitochondria

    Science.gov (United States)

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A.; Luckhart, Shirley

    2017-01-01

    No studies have been performed on mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that significantly impact malaria parasite transmission in endemic regions. Here, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells (ASE line) from Anopheles stephensi, a major vector of malaria in India, Southeast Asia and parts of the Middle East. ASE cell mitochondria shared many features in common with mammalian muscle mitochondria, despite the fact that these cells have a larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays a major role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize Pro at a rate comparable with that of α-glycerophosphate. However, the Pro pathway appeared to differ from the currently accepted pathway, in that ketoglutarate could be catabolyzed completely by the Krebs cycle or via transamination depending on the ATP need. PMID:18588503

  12. Signaling pathways in a Citrus EST database

    Directory of Open Access Journals (Sweden)

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  13. Programming biomolecular self-assembly pathways.

    Science.gov (United States)

    Yin, Peng; Choi, Harry M T; Calvert, Colby R; Pierce, Niles A

    2008-01-17

    In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

  14. Pathways of birnessite formation in alkali medium

    Institute of Scientific and Technical Information of China (English)

    FENG Xionghan; TAN Wenfeng; LIU Fan; HUANG Qiaoyun; LIU Xiangwen

    2005-01-01

    Birnessite is a common weathering and oxidation product of manganese-bearing rocks. An O2 oxidation procedure of Mn(OH)2 in the alkali medium has been used to synthesize birnessite. Fast and powder X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), energy dispersed X-ray analysis (EDAX), infrared spectroscopy (IR) techniques and chemical composition analysis, Eh-pH equilibrium diagram approaches were employed to investigate the reaction process and pathways of birnessite formation. Results showed that the process of the birnessite formation could be divided into four stages: (1) formation stage for hausmannite and feitknechtite, (2) stage of transformation of hausmannite and feitknechtite to buserite, (3) buserite crystal growing stage, and (4) stage of conversion of buserite into birnessite. Mn(OH)2 was mainly present as amorphous state only for a short initial time of oxidation reaction. In the oxidation process, buserite formed following two pathways by recrystallization after dissolution of the intermediates, and the transformations of the minerals depended on the Eh determined by the dissolved O2 concentration on their surfaces. The results are fundamental in further exploration on the mechanism of birnessite formation in the alkali medium. A great practical significance would also be expected with respect to the areas of material sciences.

  15. Exercise for the heart: signaling pathways.

    Science.gov (United States)

    Tao, Lichan; Bei, Yihua; Zhang, Haifeng; Xiao, Junjie; Li, Xinli

    2015-08-28

    Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.

  16. Developing integrated patient pathways using hybrid simulation

    Science.gov (United States)

    Zulkepli, Jafri; Eldabi, Tillal

    2016-10-01

    Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.

  17. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  18. West Florida shelf upwelling: Origins and pathways

    Science.gov (United States)

    Weisberg, Robert H.; Zheng, Lianyuan; Liu, Yonggang

    2016-08-01

    Often described as oligotrophic, the west Florida continental shelf supports abundant fisheries, experiences blooms of the harmful alga, Karenia brevis, and exhibits subsurface chlorophyll maxima evident in shipboard and glider surveys. Renewal of inorganic nutrients by the upwelling of deeper ocean water onto the shelf may account for this, but what are the origins and pathways by which such new water may broach the shelf break and advance toward the shoreline? We address these questions via numerical model simulations of pseudo-Lagrangian, isopycnic water parcel trajectories. Focus is on 2010, when the west Florida shelf was subjected to an anomalously protracted period of upwelling caused by Gulf of Mexico Loop Current interactions with the shelf slope. Origins and pathways are determined by integrating trajectories over successive 45 day intervals, beginning from different locations along the shelf break and at various locations and depths along the shelf slope. Waters upwelling across the shelf break are found to originate from relatively shallow depths along the shelf slope. Even for the anomalous 2010 year, much of this upwelling occurs from about 150 m and above, although waters may broach the shelf break from 300 m depth, particularly in the Florida Panhandle. Such interannual renewal of west Florida shelf waters appears to have profound effects on west Florida shelf ecology.

  19. Eicosanoid pathway in colorectal cancer: Recent updates.

    Science.gov (United States)

    Tuncer, Sinem; Banerjee, Sreeparna

    2015-11-07

    Enzymatic metabolism of the 20C polyunsaturated fatty acid (PUFA) arachidonic acid (AA) occurs via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways, and leads to the production of various bioactive lipids termed eicosanoids. These eicosanoids have a variety of functions, including stimulation of homeostatic responses in the cardiovascular system, induction and resolution of inflammation, and modulation of immune responses against diseases associated with chronic inflammation, such as cancer. Because chronic inflammation is essential for the development of colorectal cancer (CRC), it is not surprising that many eicosanoids are implicated in CRC. Oftentimes, these autacoids work in an antagonistic and highly temporal manner in inflammation; therefore, inhibition of the pro-inflammatory COX-2 or 5-LOX enzymes may subsequently inhibit the formation of their essential products, or shunt substrates from one pathway to another, leading to undesirable side-effects. A better understanding of these different enzymes and their products is essential not only for understanding the importance of eicosanoids, but also for designing more effective drugs that solely target the inflammatory molecules found in both chronic inflammation and cancer. In this review, we have evaluated the cancer promoting and anti-cancer roles of different eicosanoids in CRC, and highlighted the most recent literature which describes how those molecules affect not only tumor tissue, but also the tumor microenvironment. Additionally, we have attempted to delineate the roles that eicosanoids with opposing functions play in neoplastic transformation in CRC through their effects on proliferation, apoptosis, motility, metastasis, and angiogenesis.

  20. Light-sensitive brain pathways and aging.

    Science.gov (United States)

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.