WorldWideScience

Sample records for non-methane organic carbon

  1. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NARCIS (Netherlands)

    Zuiderweg, A.T.

    2012-01-01

    Within the realm of volatile organic compounds, hydrocarbons and halocarbons form a sizable proportion of carbon input to the atmosphere. Within these compound categories, the light non-methane hydrocarbons (NMHC, two to seven carbon atoms) and monocarbon halocarbons have a special place as these

  2. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden

    Science.gov (United States)

    Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail; Christensen, Torben R.; Bastviken, David

    2008-04-01

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is need for including NMVOCs in the overall carbon budget. Automatic and manual chamber measurements were used to estimate NMVOC fluxes from three dominating subhabitats on the mire during three growing seasons. Emission rates varied and were related to plant species distribution and seasonal net ecosystem exchange of carbon dioxide. The highest fluxes were observed from wetter sites dominated by Eriophorum and Sphagnum spp. Total NMVOC emissions from the mire (~17 ha) is estimated to consist of ~150 kgC during a growing season with 150 d. NMVOC fluxes can account for ~5% of total net carbon exchange (-3177 kgC) at the mire during the same period. NMVOC emissions are therefore a significant component in a local carbon budget for peatlands.

  3. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden

    OpenAIRE

    Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail; Christensen, Torben R.; Bastviken, David

    2011-01-01

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is ne...

  4. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles...

  5. The carbon isotopic compositions of Non-methane Hydrocarbons in atmosphere

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; ZHANG HuiMin; REN ZhaoFang; MU Ling; SHI RuiLiang; CHANG LiPing; LI Fan

    2009-01-01

    Carbon isotopic compositions of atmospheric Non-methane Hydrocarbons (NMHCs) in the urban areas of Taiyuan and Lanzhou in summer were reported and the sources of NMHCs are discussed.Carbon isotopic ratios (δ13C) of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust were also measured with thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS).δ13C values of NMHCs in the urban areas of Lanzhou and Taiyuan range from -32.3‰ to -22.3‰ and from -32.8‰ to -18.1‰.δ13C values of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust are -32.5‰--21.7‰,-24.5‰--22.3‰,-32.5%--27.4‰ and -31.6‰--24.5‰,respectively.The data indicate that vehicle exhaust and cooking exhaust make a significant contribution to the atmospheric NMHCs.Therefore,to reduce emissions of vehicle exhaust and cook-ing exhaust is critical for controlling atmospheric NMHCs pollution in summer.

  6. Long term trends of methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere.

    Science.gov (United States)

    Ahmed, Ezaz; Kim, Ki-Hyun; Jeon, Eui-Chan; Brown, Richard J C

    2015-06-15

    The concentrations of methane (CH4), non-methane hydrocarbons (NMHC), and carbon monoxide (CO) were measured at two urban locations (Guro (GR) and Nowon (NW)) in Seoul, Korea between 2004 and 2013. The mean amount fractions of CH4, NMHC, and CO, measured at GR over this period were 2.06±0.02, 0.32±0.03, and 0.61±0.05 ppm, respectively, while at NW they were 2.08±0.06, 0.33±0.05, and 0.54±0.06 ppm, respectively. The ratio of CH4 to the total hydrocarbon amount fraction remained constant across the study years: 0.82 to 0.90 at GR and 0.81 to 0.89 at NW. Similarly, stable ratios were also observed between NMHC and THC at the two sites. In contrast, the annual mean ratios for CH4/NMHC showed a larger variation: between 4.55 to 8.67 at GR and 4.25 to 8.45 at NW. The seasonality of CO was characterized by wintertime maxima, while for CH4 and NMHC the highest amount fractions were found in fall. The analysis of their long-term trends based on Mann-Kendall and Sen's methods showed an overall increase of THC and CH4, whereas a decreasing trend was observed for NMHC and CO.

  7. Emissions of non-methane organic compounds from a grassland site

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Yoshiko; Doskey, P.V.

    1996-03-01

    A mixture of oxygenated hydrocarbons (OxHCs), isoprene, and monoterpenes was detected in the emissions from a grassland site in the Midwestern United States. A plot dominated by crown vetch (Coronilla varia) and bluegrass (Poa spp.), exhibited a constant decrease in emissions of total non-methane organic compounds (NMOCs) from 580 {mu}g m{sup -2} hr{sup -1} in June 1992 to 150 {mu}g m{sup - 2} hr{sup -1} in October 1992, except for a slight increase in August. Oxygenated hydrocarbons (methanol, acetaldehyde, and acetone) and terpenes (isoprene, limonene, myrcene, {alpha}-pinene, and {beta}- pinene) composed about 90% and 10% of the identified NMOC emissions, respectively. Isoprene represented about 10% of the terpene emissions. Total NMOC emission rates based on vegetative biomass averaged 2.3 {mu}g g{sup -1} hr{sup -1}, with 10% of the identified NMOCs attributed to monoterpenes and the remainder mainly OxHCs. Over the course of the investigation, the relationship between the monoterpene emission rate and the temperature for a single plot was logarithmic and similar to the one between compound vapor pressure and temperature. However, emission rates normalized to temperature decreased throughout the summer and fall, indicating that parameterizations of emission rates from herbaceous plants must include a factor to compensate for environmental conditions such as soil moisture and nutrient deposition, which affect plant phenology and the seasonal pattern of species dominance.

  8. Total non-methane volatile organic compounds (TNMVOC) in the atmosphere of Delhi

    Science.gov (United States)

    Kumar Padhy, Pratap; Varshney, C. K.

    Volatile organic compounds (VOC), more specifically, non-methane volatile organic compounds (NMVOC) play a critical role in the atmospheric chemistry. NMVOC, through complex photochemical reactions, contribute to the formation of toxic oxidants, such as tropospheric ozone and PAN, which are injurious to health and highly phytotoxic. Certain NMVOC have been shown to be highly toxic, mutagenic and carcinogenic. NMVOC are receiving increasing attention in the west on account of their implication for human health and air quality. On the other hand, information on NMVOC in India and other developing countries is not available. As a result, appreciation of potential threat from NMVOC in relation to air quality and public health is sadly lacking among planners and policy makers. The paper deals with the estimation of total NMVOC at 13 sites in the urban environment of Delhi during November 1994 to June 1995. An inexpensive, labour intensive manual sample collection device was used and the air samples were analysed using GC-FID. The results show that the amount of NMVOC in the ambient environment of Delhi varied between 1.3 and 32.5 ppmv exhibiting wide temporal and seasonal variation. NMVOC levels mostly peaked at 0900 h, which coincide with the peak traffic hour. The implications of NMVOC build-up in the urban atmosphere are obvious for air quality. The results of this preliminary study make out a strong case for developing a regular monitoring programme for NMVOC in the urban environment of Delhi as well as in other major cities in the region.

  9. Performance of commercial non-methane hydrocarbon analyzers in monitoring polar volatile organic compounds

    Science.gov (United States)

    Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile ...

  10. Non-methane volatile organic compounds in Africa: A view from space

    Science.gov (United States)

    Marais, Eloise Ann

    Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics are a large source of isoprene, while Nigeria appears as a large contributor to regional anthropogenic NMVOC emissions. I make extensive use of space-based formaldehyde (HCHO) observations from the Ozone Monitoring Instrument (OMI) and the chemical transport model (CTM) GEOS-Chem to estimate and examine seasonality of isoprene emissions across Africa, and identify sources and air quality consequences of anthropogenic NMVOC emissions in Nigeria. To estimate isoprene emissions I first developed a filtering scheme to remove (1) contamination from biomass burning and anthropogenic influences; and (2) displacement of HCHO from the isoprene emission source diagnosed with the GEOS-Chem CTM. Conversion to isoprene emissions is with NOx-dependent GEOS-Chem HCHO yields, obtained as the local sensitivity S of the HCHO column ΩHCHO to a perturbation Delta in isoprene emissions EISOP (S = DeltaΩHCHO/DeltaE ISOP). The error in OMI-derived isoprene emissions is 40% at low levels of NOx and 40-90% under high-NOx conditions and is reduced by spatial and temporal averaging to the extent that errors are random. Weak isoprene emission seasonality in equatorial forests is driven predominantly by temperature, while large seasonality in northern and southern savannas is driven by temperature and leaf area index. The largest contribution of African isoprene emissions to surface ozone and particulate matter, determined with GEOS-Chem, of 8 ppbv and 1.5 μg m-3, respectively, is over West Africa. The OMI HCHO data feature a large enhancement over Nigeria that is due to anthropogenic NMVOC emissions. With the OMI HCHO data, coincident satellite observations of atmospheric composition, aircraft

  11. Characterizing non-methane volatile organic compounds emissions from a swine concentrated animal feeding operation

    Science.gov (United States)

    Rumsey, Ian C.; Aneja, Viney P.; Lonneman, William A.

    2012-02-01

    Emissions of non-methane volatile organic compounds (NMVOCs) were determined from a swine concentrated animal feeding operation (CAFO) in North Carolina. NMVOCs were measured in air samples collected in SUMMA and fused-silica lined (FSL) canisters and were analyzed using a gas chromatography flame ionization detection (GC-FID) system. Measurements were made from both an anaerobic lagoon and barn in each of the four seasonal sampling periods during the period June 2007 through April 2008. In each sampling period, nine to eleven canister samples were taken from both the anaerobic lagoon and barn over a minimum of four different days during a period of ˜1 week. Measurements of meteorological and physiochemical parameters were also made during the sampling period. In lagoon samples, six NMVOCs were identified that had significantly larger emissions in comparison to other NMVOCs. This included three alcohols (ethanol, 2-ethyl-1-hexanol, and methanol), two ketones (acetone and methyl ethyl ketone (MEK)) and an aldehyde (acetaldehyde). The overall average fluxes for these NMVOCs, ranged from 0.18 μg m -2 min -1 for 2-ethyl-1-hexanol to 2.11 μg m -2 min -1 for acetone, with seasonal fluxes highest in the summer for four (acetone, acetaldehyde, 2-ethyl-1-hexanol and MEK) of the six compounds In barn samples, there were six NMVOCs that had significantly larger concentrations and emissions in comparison to other NMVOCs. These consisted of two alcohols (methanol and ethanol), an aldehyde (acetaldehyde), two ketones (acetone and 2,3-butanedione), and a phenol (4-methylphenol). Overall average barn concentration ranged from 2.87 ppb for 4-methylphenol to 16.12 ppb for ethanol. Overall average normalized barn emission rates ranged from 0.10 g day -1 AU -1 (1 AU (animal unit) = 500 kg of live animal weight) for acetaldehyde to 0.45 g day -1 AU -1 for ethanol. The NMVOCs, 4-methylphenol and 2,3-butanedione, which have low odor thresholds (odor thresholds = 1.86 ppb and 0

  12. A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010

    Directory of Open Access Journals (Sweden)

    S. Tran

    2013-03-01

    Full Text Available During the ARK XXV 1 + 2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO, non-methane hydrocarbons (NMHC and phytoplankton pigments at the sea surface and down to a depth of 100 m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol L−1, 1 to 322 pmol L−1 and 1 to 541 pmol L−1, respectively. The CO and alkene concentrations as well as their sea–air fluxes were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM than typical North Atlantic waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photoproduction in the sea. The vertical distributions of the CO and alkenes were comparable and followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to non-measurable values below 50 m. However, no diurnal variations of CO or alkene concentrations were observed in the stratified and irradiated surface layers. On several occasions, we observed the existence of subsurface CO maxima at the level of the deep chlorophyll maximum. This finding suggests the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. These data support the existence of a dominant photochemical source of CO and light alkenes enhanced in polar waters of the Arctic Ocean, with a minor contribution of a biological source of CO. The biological source of isoprene is observed in the different water masses but significantly

  13. Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors

    Science.gov (United States)

    Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; Veres, Patrick R.; Simpson, Isobel J.; Blake, Donald R.; Orlando, John J.; Barsanti, Kelley C.

    2017-01-01

    Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6-11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55-77 % was associated with compounds for

  14. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors, with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA. Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK as examples.

  15. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    Science.gov (United States)

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  16. Characterizing reduced sulfur compounds and non-methane volatile organic compounds emissions from a swine concentrated animal feeding operation

    Science.gov (United States)

    Rumsey, Ian Cooper

    Reduced sulfur compounds (RSCs) and non-methane volatile organic compounds (NMVOCs) emissions from concentrated animal feeding operations (CAFOs) have become a potential environmental and human health concern. Both RSCs and NMVOCs contribute to odor. In addition, RSCs also have the potential to form fine particulate matter (PMfine) and NMVOCs the potential to form ozone. Measurements of RSCs and NMVOCs emissions were made from both an anaerobic lagoon and barn at a swine CAFO in North Carolina. Emission measurements were made over all four seasonal periods. In each seasonal period, measurements were made from both the anaerobic lagoon and barn for ˜1 week. RSC and NMVOCs samples were collected using passivated canisters. Nine to eleven canister samples were taken from both the lagoon and barn over each sampling period. The canisters were analyzed ex-situ using gas chromatography flame ionization detection (GC-FID). Hydrogen sulfide (H2S) measurements were made in-situ using a pulsed fluorescence H2S/SO2 analyzer. During sampling, measurements of meteorological and physiochemical parameters were made. H2S had the largest RSC flux, with an overall average lagoon flux of 1.33 mug m-2 min-1. The two main RSCs identified by the GC-FID, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), had overall average lagoon fluxes an order of magnitude lower, 0.12 and 0.09 mug m-2 min-1, respectively. Twelve significant NMVOCs were identified in lagoon samples (ethanol, 2-ethyl-1-hexanol, methanol, acetaldehyde, decanal, heptanal, hexanal, nonanal, octanal, acetone, methyl ethyl ketone, and 4-methylphenol). The overall average fluxes for these NMVOCs, ranged from 0.08 mug m-2 min-1 (4-methylphenol) to 2.11 mug m-2 min-1 (acetone). Seasonal H2S barn concentrations ranged from 72-631 ppb. DMS and DMDS seasonal concentrations were 2-3 orders of magnitude lower. There were six significant NMVOCs identified in barn samples (methanol, ethanol, acetone 2-3 butanedione, acetaldehyde

  17. A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010: assessment of the role of phytoplankton

    Directory of Open Access Journals (Sweden)

    S. Tran

    2012-04-01

    Full Text Available During the ARK XXV 1+2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO, non-methane hydrocarbons (NMHC and phytoplankton pigments at the sea surface and down to a depth of 100 m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol l−1, 1 to 322 pmol l−1 and 1 to 541 pmol l−1, respectively. The CO and alkene concentrations were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM than typical North Atlantic waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photo-production in the sea. The vertical distributions of the CO and alkenes followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to non-measurable values below 50 m. However, no diurnal variations of CO or alkene concentrations were observed in the stratified and irradiated surface layers. This finding suggests that the production and removal processes of CO and alkenes were tightly coupled. We tentatively determined a first-order rate constant for the microbial consumption of CO of 0.5 d−1, which is in agreement with previous studies. On several occasions, we observed the existence of subsurface CO maxima at the level of the deep chlorophyll maximum. This finding represents field evidence for the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. Hence, oceanic data

  18. PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; Kato, S.; Suthawaree, J.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Wang, Z.

    2010-08-01

    Owing to recent industrialization, Central East China has become a significant source of air pollutants. To examine the processes controlling the chemistry and transport of tropospheric ozone, we performed on-line measurements of non-methane volatile organic compounds (NMVOCs) as part of an intensive field campaign at Mount Tai, China, in June 2006 (MTX2006), using proton transfer reaction mass spectrometry (PTR-MS). Temporal variations of NMVOCs were recorded in mass-scan mode from m/z17 to m/z 300 during 12-30 June 2006. More than thirty kinds of NMVOCs were detected up to m/z 160, including alkenes, aromatics, alcohols, aldehydes, and ketones. In combination with non-methane hydrocarbon data obtained by a gas chromatography with flame ionization detection, it was found that oxygenated VOCs were the predominant NMVOCs. Diurnal variations depending mainly on local photochemistry were observed during 24-28 June. During the night of 12 June, we observed an episode of high NMVOCs concentrations attributed to the burning of agricultural biomass. The ΔNMVOCs/ΔCO ratios derived by PTR-MS measurements for this episode (with biomass burning (BB) plume) and during 16-23 June (without BB plume) are compared to emission ratios from various types of biomass burning as reviewed by Andreae and Merlet (2001) and to ratios recently measured by PTR-MS in tropical forests (Karl et al., 2007) and at urban sites (Warneke et al., 2007).

  19. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    BVOC groups. Only isoprene emission was significantly increased by warming, parallel to the increased leaf number of the dominant sedge Eriophorum vaginatum. BVOC emissions from peat soil were higher under the control and warming treatments than water table drawdown, suggesting an increased activity...... assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...... and other VOCs were sampled using a conventional chamber technique, collected on adsorbent and analyzed by GC–MS. Carbon emitted as BVOCs was less than 1% of the CO2 uptake and up to 3% of CH4 emission. Water table drawdown surpassed the direct warming effect and significantly decreased the emissions of all...

  20. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site.

    Science.gov (United States)

    Majumdar, Dipanjali; Ray, Sandipan; Chakraborty, Sucharita; Rao, Padma S; Akolkar, A B; Chowdhury, M; Srivastava, Anjali

    2014-07-01

    Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa. Implications: This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric

  1. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs are the key precursors of ozone (O3 and secondary organic aerosol (SOA formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions

  2. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Science.gov (United States)

    Zhao, Yu; Mao, Pan; Zhou, Yaduan; Yang, Yang; Zhang, Jie; Wang, Shekou; Dong, Yanping; Xie, Fangjian; Yu, Yiyong; Li, Wenqing

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography - mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9-29.9, 20.8-23.2 and 18.2-21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years

  3. Soil Organic Carbon Stock

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Soil organic carbon (SOC) is the carbon held within soil organic constituents (i.e., products produced as dead plants and animals decompose and the soil microbial...

  4. Emission inventory of NMVOC (Non Methane Volatile Organic Compounds) and simulations of ozone formation due to emissions of NO{sub x} and NMVOC in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Janhaell, S.; Andersson-Skoeld, Y.

    1997-01-01

    An emission inventory, covering the different source categories of ozone precursors in Sweden, has been performed. The emissions from each category, road traffic, working machinery, other mobile sources, wood combustion, energy production, industry, domestic use and pesticides, have been separated into 81 organic compounds and NO{sub x}. The emission data have been used in model simulations to predict the ozone formation due to the emission from different source categories. Four different ambient conditions have been treated. The results from this study indicate, as expected, that the road traffic is the single most important emitter of precursors significant in regional ozone production. POCP, or Photochemical Ozone Creation Potential, defined as the change in photochemical ozone production due to a change in the emission of that particular VOC, is used to compare different VOC in connection with ozone production. In this study the POCP was calculated for the whole group of compounds emitted from a specific source category. The results indicate that there is a big variety of ozone formation ability among source categories due to differences in composition, which clearly demonstrate the importance of a detailed description of the emissions. 48 refs, 5 figs, 6 tabs

  5. Use of chloroflurocarbons as internal standards for the measurement of atmospheric non-methane volatile organic compounds sampled onto solid adsorbent cartridges.

    Science.gov (United States)

    Karbiwnyk, Christine M; Mills, Craig S; Helmig, Detlev; Birks, John W

    2003-03-01

    Solid adsorbents have proven useful for determining the vertical profiles of volatile organic compounds (VOCs) using sampling platforms such as balloons, kites, and light aircraft, and those profiles provide valuable information about the sources, sinks, transformations, and transport of atmospheric VOCs. One of the largest contributions to error in VOC concentrations is the estimation of the volume of air sampled on the adsorbent cartridge. These errors arise from different sources, such as variations in pumping flow rates from changes in ambient temperature and pressure with altitude, and decrease in the sampling pump battery power. Another significant source for sampling rate variations are differences in the flow resistance of individual sampling cartridges. To improve the accuracy and precision of VOC measurements, the use of ambient chlorofluorocarbons (CFCs) as internal standards was investigated. A multibed solid adsorbent, AirToxic (Supelco), was chosen for its wide sampling range (C3-C12). Analysis was accomplished by thermal desorption and dual detection GC/FID/ECD, resulting in sensitive and selective detection of both VOCs and CFCs in the same sample. Long-lived chlorinated compounds (CFC-11, CFC-12, CFC-113, CCl4 and CH3CCl3) banned by the Montreal Protocol and subsequent amendments were studied for their ability to predict sample volumes using both ground-based and vertical profiling platforms through the boundary layer and free troposphere. Of these compounds, CFC-113 and CCl4 were found to yield the greatest accuracy and precision for sampling volume determination. Use of ambient CFC-113 and CCl4 as internal standards resulted in accuracy and precision of generally better than 10% for the prediction of sample volumes in ground-, balloon-, and aircraft-based measurements. Consequently, use of CFCs as reference compounds can yield a significant improvement of accuracy and precision for ambient VOC measurements in situations where accurate flow

  6. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    Science.gov (United States)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the

  7. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  8. Total organic carbon analyzer

    Science.gov (United States)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  9. Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2010-07-01

    Full Text Available Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September, during which enhancements in a number of atmospheric species were observed in monsoon outflow. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included the non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over Southwest Asia between June and September, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios to carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of LPG and natural gas, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 d in the south and 9–12 d in the north.

  10. Speciation of Total Organic Gas and Particulate Matter Emissions from Onroad Vehicles in the Next Version of MOVES

    Science.gov (United States)

    Calculation of organic gas measures used in MOVES (total hydrocarbons, methane, non-methane hydrocarbons, volatile organic compounds, non-methane organic gases, and total organic gases). Incorporation of speciation within MOVES to produce total organic gas and particulate matte...

  11. Carbon cycle: Ocean dissolved organics matter

    Science.gov (United States)

    Amon, Rainer M. W.

    2016-12-01

    Large quantities of organic carbon are stored in the ocean, but its biogeochemical behaviour is elusive. Size-age-composition relations now quantify the production of tiny organic molecules as a major pathway for carbon sequestration.

  12. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    Science.gov (United States)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is

  13. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  14. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    Directory of Open Access Journals (Sweden)

    D. R. Gentner

    2013-10-01

    Full Text Available Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with

  15. Emissions of non-methane hydrocarbons from cars in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This study investigated the exhaust emission of non-methane hydrocarbons(NMHCs) from cars in China at the Beijing driving cycle on the chassis dynamometer.The emission factor average of NMHCs was 0.9 g/km,which was over twice that from the Australian car fleet and 2-4 times that of the American car emission in the 1990s-2000s.The emission profile of Beijing cars showed higher fractions of aromatics and C4?C7 HCs,and lower percentages of C2?C3 HCs,compared with those of the US car fleet.The average ratio of benzene/toluene for cars tested was 0.5,the average benzene/toluene/ethyl benzene/xylenes(BTEX) ratios were 1/2.2/0.1/1.8,which were consistent with those of the Tanyugou tunnel located in the suburb of Beijing.α-pinene and β-pinene were detected from the exhaust gas on dynamometer for the first time,and had likely similar exhaust emission characteristics with C2?C3 HCs and styrene,giving an evidence that air pinenes may be related to human activities.Isoprene was also detected directly.These observations suggest that the procedure regarding pinenes and isoprene as coming from biologic sources of VOCs in the atmosphere should be applied with great care,especially in the core of the big city like Beijing.The specific reactivity of NMHCs was higher than that of cars of US,and the specific reactivity of volatile aromatic compounds was higher than that of the US SPECIATE database.

  16. Soil organic carbon across scales.

    Science.gov (United States)

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management.

  17. New off-line aircraft instrumentation for non-methane hydrocarbon measurements.

    Science.gov (United States)

    Bechara, Joelle; Borbon, Agnès; Jambert, Corinne; Perros, Pascal E

    2008-11-01

    New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.

  18. Observations of the release of non-methane hydrocarbons from fractured shale.

    Science.gov (United States)

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  19. Black carbon and organic carbon emissions from wildfires in Mexico

    OpenAIRE

    XÓCHITL CRUZ NÚÑEZ; LOURDES VILLERS RUIZ; CARLOS GAY GARCÍA

    2014-01-01

    In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cya - nide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimate...

  20. Dynamics models of soil organic carbon

    Institute of Scientific and Technical Information of China (English)

    YANGLi-xia; PANJian-jun

    2003-01-01

    As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.

  1. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil

    DEFF Research Database (Denmark)

    Edmondson, Jill L.; Stott, Iain; Potter, Jonathan;

    2015-01-01

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical...... increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas....

  2. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  3. Non Methane Hydrocarbons (NMHCs) at the centre of Athens: variability and relative contribution of traffic and wood burning

    Science.gov (United States)

    Panopoulou, Anastasia; Liakakou, Eleni; Psiloglou, Basil; Gros, Valerie; Bonsang, Bernard; Sauvage, Stephane; Locoge, Nadine; Lianou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2016-04-01

    Non-methane hydrocarbons (NMHC) can be found in significant concentrations in urban areas. They are emitted by biogenic and anthropogenic sources like vehicle exhaust, gasoline evaporation and solvent use. Once emitted they mainly react with hydroxyl radicals (OH) and in the presence of nitrogen oxides (NOx) lead to the formation of secondary pollutants such as ozone (O3), peroxy acetyl nitrate (PAN) and secondary organic aerosols. In Great Athens Area (GAA) despite the numerous air quality issues especially with exceedances in ozone and particulate matter (PM), continuous monitoring of NMHCs is absent. This work presents the first results of a ChArMEX/TRANSEMED project dealing with VOC source apportionment and emission inventory evaluation in megacities around the Mediterranean basin. A representative site in the centre of Athens is progressively equipped with high performance instruments in order to measure continuously NMHCs (time resolution of 30 min) over a long period. The main objective of this presentation is the determination of the ambient level and temporal variability of C2-C6 NMHCs, as well as the impact of the sources controlling their variability. The importance of this work is attributed to the high time resolution measurements providing a detailed light hydrocarbons profile of the area for first time in the GAA. An automatic gas chromatograph (airmoVOC C2-C6 Chromatrap GC, Chromatotec, France) equipped with a flame ionization detector (FID) has been used for the in-situ measurements of NMHCS with two to six carbon atoms (C2-C6 NMHCs) during the period from the 16 of October to end of December 2015. In addition, meteorological and auxiliary data for major gases (CO, O3, NOx) and particulates (PM and Black Carbon (BC) are also available. Atmospheric concentrations of NMHCs range from below the detection limit to a few ppbs, for example almost 14 ppb, 20 ppb and 25 ppb for ethane, propane and acetylene respectively. Between the NMHCs being monitored

  4. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  5. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  6. Non-methane hydrocarbons over the Eastern Mediterranean during summer, measured from northwest Cyprus

    Science.gov (United States)

    Sauvage, Carina; Derstroff, Bettina; Bourtsoukidis, Efstratios; Keßel, Stephan; Thorenz, Ute; Baker, Angela; Williams, Jonathan; Lelieveld, Jos

    2015-04-01

    In summer 2014 the CYprus Photochemistry EXperiment (CYPHEX) field campaign took place at an elevated (600m) measurement site in the north western part of Cyprus close (10 km) to the coast (35,96N, 32,4E) in order to investigate the photochemistry and air mass transport of the eastern Mediterranean. Non-methane hydrocarbons were measured with a commercial GC-FID (AMA instruments GmbH, Ulm, Germany) with a final dataset consisting of two weeks of continuous, hourly measurements for 10 NMHC. NMHCs are a class of volatile organic compounds (VOC) which are emitted by both anthropogenic and natural sources. Their predominant sink in the atmosphere is photochemically driven oxidation by OH radicals. Their atmospheric lifetimes, which range from a few days for more reactive compounds such as pentanes and butanes and up to a month for less reactive ones like ethane, make it possible to deduce photochemical histories and transport regimes from NMHC observations. Furthermore, in the presence of NOx they are important precursors for tropospheric ozone. Backward trajectories show that the airmasses reaching the measurement site had been influenced periodically by emissions from western continental Europe (France, Spain) that crossed the Mediterranean Sea and from eastern continental Europe (Greece and Turkey) more recently influenced by industrial emissions. Varying patterns in NMHC data delineates these two regimes very well, with aged western European air masses being characterized by low level ethane and with toluene and benzene being higher and more variable in plumes from eastern Europe. Additionally, atypical n-butane and i-butane ratios suggest a deviation from the expected predominant oxidation by OH, possibly indicating reaction with chlorine radicals (Cl). The dataset has been evaluated with respect to NMHC sources and oxidative history using different methods of approach.

  7. Reburial of fossil organic carbon in marine sediments

    OpenAIRE

    2004-01-01

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. How...

  8. Reburial of fossil organic carbon in marine sediments

    OpenAIRE

    Dickens, Angela F.; Gélinas, Yves; Masiello, Caroline A.; Wakeham, Stuart; Hedges, John I.

    2004-01-01

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. How...

  9. Fertilization increases paddy soil organic carbon density

    Institute of Scientific and Technical Information of China (English)

    Shao-xian WANG; Xiao-jun LI; Xin-qiang LIANG; Qi-xiang LUO; Fang FAN; Ying-xu CHEN; Zu-zhang LI; Huo-xi SUN; Tian-fang DAI; Jun-nan WAN

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC)sequestration.We sampled soils from a long-term (25 years) paddy experiment in subtropical China.The experiment included eight treatments:(1) check,(2) PK,(3) NP,(4) NK,(5) NPK,(6) 7F:3M (N,P,K inorganic fertilizers+30% organic N),(7) 5F:5M (N,P,K inorganic fertilizers+50% organic N),(8) 3F:7M (N,P,K inorganic fertilizers+70% organic N).Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment.The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha.The SOC densities of all fertilizer treatments were greater than that of the check.Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers.The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues.Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization.Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  10. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  11. Atmospheric deposition of organic carbon via precipitation

    Science.gov (United States)

    Iavorivska, Lidiia; Boyer, Elizabeth W.; DeWalle, David R.

    2016-12-01

    Atmospheric deposition is the major pathway for removal of organic carbon (OC) from the atmosphere, affecting both atmospheric and landscape processes. Transfers of OC from the atmosphere to land occur as wet deposition (via precipitation) and as dry deposition (via surface settling of particles and gases). Despite current understanding of the significance of organic carbon inputs with precipitation to carbon budgets, transfers of organic matter between the atmosphere and land are not explicitly included in most carbon cycle models due to limited data, highlighting the need for further information. Studies regarding the abundance of OC in precipitation are relatively sparse, in part due to the fact that concentrations of organics in precipitation and their associated rates of atmospheric deposition are not routinely measured as a part of major deposition monitoring networks. Here, we provide a new data synthesis from 83 contemporary studies published in the peer reviewed literature where organic matter in precipitation was measured around the world. We compiled data regarding the concentrations of organic carbon in precipitation and associated rates of atmospheric deposition of organic carbon. We calculated summary statistics in a common set of units, providing insights into the magnitude and regional variability of OC in precipitation. A land to ocean gradient is evident in OC concentrations, with marine sites generally showing lower values than continental sites. Our synthesis highlights gaps in the data and challenges for data intercomparison. There is a need to concentrate sampling efforts in areas where anthropogenic OC emissions are on the rise (Asia, South America), as well as in remote sites suggesting background conditions, especially in Southern Hemisphere. It is also important to acquire more data for marine rainwater at various distances from the coast in order to assess a magnitude of carbon transfer between the land and the ocean. Our integration of

  12. Soil Organic Carbon Storage in China

    Institute of Scientific and Technical Information of China (English)

    XIE Xian-Li; SUN Bo; ZHOU Hui-Zhen; LI An-Bo

    2004-01-01

    Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (10 15 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature.Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.

  13. Fluvial organic carbon losses from a Bornean black water river

    OpenAIRE

    2010-01-01

    The transport of carbon from terrestrial ecosystems such as peatlands into rivers and out to the oceans plays an important role in the carbon cycle because it provides a link between the terrestrial and marine carbon cycles. Concentrations of dissolved organic carbon (DOC) and particulate organic carbon (POC) were analysed from the source to the mouth of the River Sebangau in Central Kalimantan, Indonesia during the dry and wet seasons in 2008/2009 and an annual total organic carbon (TOC) flu...

  14. Network monitoring of speciated vs. total non-methane hydrocarbon measurements

    Science.gov (United States)

    Chen, Sheng-Po; Liao, Wei-Cheng; Chang, Chih-Chung; Su, Yuan-Chang; Tong, Yu-Huei; Chang, Julius S.; Wang, Jia-Lin

    2014-06-01

    The total non-methane hydrocarbon (TNMHC) level in the atmosphere is defined as the level of total hydrocarbons minus the level of methane. TNMHC observations are made in selected air quality stations (AQS) of Environmental Protection Agency (EPA) across Taiwan. The AQS network is also complemented by a network of photochemical assessment monitoring stations (PAMS) to provide hourly observations of 56 speciated non-methane hydrocarbons (NMHCs). In this study, the relationship between the AQS and PAMS TNMHC values was cross-examined for the period of 2007-2011 at four sites that conducted both types of measurements. Although the two observations differ in their methods of collection, the variations in the two datasets showed high synchronicity. However, because some of the NMHCs were missed in the summation of 56 species, the PAMS TNMHC values were consistently lower than those of the AQS TNMHC by an average of 30%.

  15. Fate of Organic Carbon Deposited in Reservoirs

    Science.gov (United States)

    Huntington, T. G.; Rhoton, F. E.; Bennett, S. J.; Hudnall, W. H.

    2002-05-01

    Sedimentation of soil organic carbon (SOC) eroded from uplands and deposited in reservoirs could be an important mechanism for carbon sequestration provided that it is conserved during transport and burial and that uplands are not experiencing net loss. There are uncertainties in both these assumptions and gaining a better understanding of these processes is a key objective of ongoing carbon-cycle investigations. The U.S. Geological Survey, the U. S. Department of Agriculture, and Louisiana State University Agricultural Center are collaborating on an investigation of soils and sediments in the Yalobusha River Basin in Mississippi. Sediment cores were collected from upland soils and from Grenada Lake, a flood control reservoir, in the basin. Suspended sediments have been collected from the Yalobusha River and one of its tributaries upstream of the lake. We are measuring carbon mineralization potential in conjunction with carbon and nitrogen concentrations, 13C, mineralogy, and texture on sediments and upland soils to determine whether eroding SOC is conserved or oxidized during transport and burial. Differences in mineralization potential and other chemical and physical properties are used to infer net changes in the original eroding SOC. Autochthonous production of SOC within reservoirs could replace labile SOC oxidized during transport and burial thereby masking losses due to oxidation. Autochthonous sources can be evaluated by chemical and physical characterization of the sediments. Stable carbon isotope (13C) geochemistry provides a tool for distinguishing the two primary sources of organic carbon incorporated in lake sediments because allochthonous SOC from the surrounding watershed is, in general, less depleted in stable 13C than autochthonous SOC produced in the lake by aquatic organisms such as macrophytes and phytoplankton. The integration of the 13C signature recorded in the organic fraction of the lake sediments with total organic carbon, C/N ratio

  16. Trends of non-methane hydrocarbons (NMHC emissions in Beijing during 2002–2013

    Directory of Open Access Journals (Sweden)

    M. Wang

    2014-07-01

    Full Text Available Non-methane hydrocarbons (NMHCs play a critical role in the photochemical production of ozone (O3 and organic aerosols. Obtaining an accurate understanding on NMHC emission trends is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, we evaluated temporal trends in NMHC emissions in Beijing based on ambient measurements during the summer at an urban site in Beijing from 2002 to 2013. In contrast to the results of the most recent inventory (Multi-resolution Emission Inventory for China, MEIC, which reported that total NMHC emissions increased at a rate of ~4% yr−1, mixing ratios of NMHCs measured at this urban site displayed an obvious decrease (~30% during the last decade. A Positive Matrix Factorization (PMF model was applied to the NMHC measurements for source apportionment, and the results showed a decrease in the concentrations contributed by transportation-related sources to total NMHC emissions by 66% during 2004–2012, which was comparable to the relative decline of 65% reported by the MEIC inventory. This finding indicates that the implementation of stricter emissions standards and control measures has been effective for reducing transportation-related NMHC emissions. In addition, the PMF results suggested that there were no significant temporal changes in NMHC concentrations from paint and solvent use during 2004–2012, in contrast with the rapid rate of increase (27.5% yr−1 reported by the MEIC inventory. To re-evaluate the NMHC emissions trends for paint and solvent use, annual variations in NMHC / NOx ratios were compared between ambient measurements and the MEIC inventory. In contrast to the significant rise in NMHC / NOx ratios from the inventory, the measured ratios declined by 14% during 2005–2012. However, the inferred NMHC / NOx ratios based on PMF results exhibited a comparable decline of 11% to measurements. These results indicate that the increase

  17. [Effects of different fertilizer application on soil active organic carbon].

    Science.gov (United States)

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  18. Mini Total Organic Carbon Analyzer (miniTOCA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Total Organic Carbon (TOC) analyzers function by converting (oxidizing) all organic compounds (contaminants) in the water sample to carbon dioxide gas (CO2), then...

  19. Distribution of organic carbon in sediments from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  20. Dispersion and separation of nanostructured carbon in organic solvents

    Science.gov (United States)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  1. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    Science.gov (United States)

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.

  2. Epitaxial Approaches to Carbon Nanotube Organization

    Science.gov (United States)

    Ismach, Ariel

    Carbon nanotubes have unique electronic, mechanical, optical and thermal properties, which make them ideal candidates as building blocks in nano-electronic and electromechanical systems. However, their organization into well-defined geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. In my PhD, we developed a new approach for the organization of carbon nanotubes directed by crystal surfaces. The principle relies on the guided growth of single-wall carbon nanotubes (SWNTs) by atomic features presented on anisotropic substrates. We identified three different modes of surface-directed growth (or 'nanotube epitaxy'), in which the growth of carbon nanotubes is directed by crystal substrates: We first observed the nanotube unidirectional growth along atomic steps ('ledge-directed epitaxy') and nanofacets ('graphoepitaxy') on the surface of miscut C-plane sapphire and quartz. The orientation along crystallographic directions ('lattice-directed epitaxy') was subsequently observed by other groups on different crystals. We have proposed a "wake growth" mechanism for the nanotube alignment along atomic steps and nanofacets. In this mechanism, the catalyst nanoparticle slides along the step or facet, leaving the nanotube behind as a wake. In addition, we showed that the combination of surface-directed growth with external forces, such as electric-field and gas flow, can lead to the simultaneous formation of complex nanotube structures, such as grids and serpentines. The "wake growth" model, which explained the growth of aligned nanotubes, could not explain the formation of nanotube serpentines. For the latter, we proposed a "falling spaghetti" mechanism, in which the nanotube first grows by a free-standing process, aligned in the direction of the gas flow, then followed by absorption on the stepped surface in an oscillatory manner, due to the competition between the drag force caused by the gas flow on the suspended

  3. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  4. Urban tree effects on soil organic carbon.

    Science.gov (United States)

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  5. Methods development for total organic carbon accountability

    Science.gov (United States)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  6. Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland

    Directory of Open Access Journals (Sweden)

    L. J. Kramer

    2014-05-01

    Full Text Available Measurements of atmospheric NOx (NOx = NO + NO2, peroxyacetyl nitrate (PAN, NOy and non-methane hydrocarbons (NMHC were taken at the GEOSummit Station, Greenland (72.34° N, 38.29° W, 3212 m.a.s.l from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site in the free troposphere. Here, the study focused on the seasonal variability of these important ozone (O3 precursors in the Arctic free troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 49% to 78%, however, we find that odd NOy species (odd NOy = NOy − PAN-NOx contribute a large amount to the total NOy speciation with monthly means of up to 95 pmol mol−1 in the winter and ∼40 pmol mol−1 in the summer, and that the level of odd NOy species at Summit during summer is greater than that of NOx. We hypothesize that the source of this odd NOy is most likely alkyl nitrates from transported pollution, and photochemically produced species such as HNO3 and HONO. FLEXPART retroplume analysis and tracers for anthropogenic and biomass burning emissions, were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter and spring months, with up to 82% of the simulated anthropogenic black carbon originating from this region between December 2009 and March 2010, whereas, North America was the primary source of biomass burning emissions. Polluted air masses were typically aged, with median transport times to the site from the source region of 11 days for anthropogenic events in winter, and 14 days for BB plumes. Overall we find that the transport of polluted air masses to the high altitude Arctic typically resulted in high variability in levels of O3 and O3 precursors. During winter

  7. Calculating Organic Carbon Stock from Forest Soils

    Directory of Open Access Journals (Sweden)

    Lucian Constantin DINCĂ

    2015-12-01

    Full Text Available The organic carbon stock (SOC (t/ha was calculated in different approaches in order to enhance the differences among methods and their utility regarding specific studies. Using data obtained in Romania (2000-2012 from 4,500 profiles and 9,523 soil horizons, the organic carbon stock was calculated for the main forest soils (18 types using three different methods: 1 on pedogenetical horizons, by soil bulk density and depth class/horizon thickness; 2 by soil type and standard depths; 3 using regression equations between the quantity of organic C and harvesting depths. Even though the same data were used, the differences between the values of C stock obtained from the three methods were relatively high. The first method led to an overvaluation of the C stock. The differences between methods 1 and 2 were high (and reached 33% for andosol, while the differences between methods 2 and 3 were smaller (a maximum of 23% for rendzic leptosol. The differences between methods 2 and 3 were significantly lower especially for andosol, arenosol and vertisol. A thorough analysis of all three methods concluded that the best method to evaluate the organic C stock was to distribute the obtained values on the following standard depths: 0 - 10 cm; 10 - 20 cm; 20 - 40 cm; > 40 cm. For each soil type, a correlation between the quantity of organic C and the sample harvesting depth was also established. These correlations were significant for all types of soil; however, lower correlation coefficients were registered for rendzic leptosol, haplic podzol and fluvisol.

  8. Microbial formation of labile organic carbon in Antarctic glacial environments

    Science.gov (United States)

    Smith, H. J.; Foster, R. A.; McKnight, D. M.; Lisle, J. T.; Littmann, S.; Kuypers, M. M. M.; Foreman, C. M.

    2017-04-01

    Roughly six petagrams of organic carbon are stored within ice worldwide. This organic carbon is thought to be of old age and highly bioavailable. Along with storage of ancient and new atmospherically deposited organic carbon, microorganisms may contribute substantially to the glacial organic carbon pool. Models of glacial microbial carbon cycling vary from net respiration to net carbon fixation. Supraglacial streams have not been considered in models although they are amongst the largest ecosystems on most glaciers and are inhabited by diverse microbial communities. Here we investigate the biogeochemical sequence of organic carbon production and uptake in an Antarctic supraglacial stream in the McMurdo Dry Valleys using nanometre-scale secondary ion mass spectrometry, fluorescence spectroscopy, stable isotope analysis and incubation experiments. We find that heterotrophic production relies on highly labile organic carbon freshly derived from photosynthetic bacteria rather than legacy organic carbon. Exudates from primary production were utilized by heterotrophs within 24 h, and supported bacterial growth demands. The tight coupling of microbially released organic carbon and rapid uptake by heterotrophs suggests a dynamic local carbon cycle. Moreover, as temperatures increase there is the potential for positive feedback between glacial melt and microbial transformations of organic carbon.

  9. Stocks of organic carbon in Estonian soils

    Directory of Open Access Journals (Sweden)

    Kõlli, Raimo

    2009-06-01

    Full Text Available The soil organic carbon (SOC stocks (Mg ha–1 ofautomorphic mineral (9 soil groups, hydromorphic mineral (7, and lowland organic soils (4 are given for the soil cover or solum layer as a whole and also for its epipedon (topsoil layer. The SOC stocks for forest, arable lands, and grasslands and for the entire Estonian soil cover were calculated on the basis of the mean SOC stock and distribution area of the respective soil type. In the Estonian soil cover (42 400 km2, a total of 593.8 ± 36.9 Tg of SOC is retained, with 64.9% (385.3 ± 27.5 Tg in the epipedon layer (O, H, and A horizons and 35.1% in the subsoil (B and E horizons. The pedo-ecological regularities of SOC retention in soils are analysed against the background of the Estonian soil ordination net.

  10. Organic carbon stock in some forest soils in Serbia

    OpenAIRE

    Kadovic Ratko; Belanovic Snežana; Kneževic Milan; Danilovic Milorad; Košanin Olivera; Beloica Jelena

    2012-01-01

    The content of organic carbon (C) was researched in topsoil layers (0-20 cm) in the most represented soils of forest ecosystems in central Serbia: eutric ranker, eutric cambisol and dystric cambisol. The soils were sampled during 2003, 2004 and 2010. Laboratory analyses included the soil physical and chemical properties necessary for the quantification of the soil organic carbon in organic and mineral layers. Mean values of the soil organic carbon (SOC) sto...

  11. CARIBIC observations of greenhouse gases and non-methane hydrocarbons on flights between Germany and South Africa

    Science.gov (United States)

    Brenninkmeijer, C. A.; Schuck, T. J.; Baker, A. K.; van Velthoven, P.

    2012-12-01

    Since May 2005 the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) has made near-monthly deployments of an atmospheric observatory making measurements from aboard a Lufthansa Airbus A340-600 during routine passenger flights. Flights originate in Frankfurt, Germany and serve a large number of destinations, among them Cape Town and Johannesburg in South Africa. On these flights, which took place primarily during northern hemisphere winter 2010/2011, a near-meridional profile was obtained over Europe and Africa, in similar fashion to HIPPO flight tracks over the Pacific, be it without vertical profiles. Over Central Africa, deep convection transports boundary layer air to the free troposphere, linking observations at cruise altitude to surface emissions and allowing for the investigation of emissions and sources of atmospherically relevant species in Africa. Mixing ratios of greenhouse gases (methane, carbon dioxide, sulfur hexafluoride and nitrous oxide) and a suite of C2-C8 non-methane hydrocarbons (NMHC) are measured from flask samples collected at cruise altitude during flight. Several tracers, for example methane, carbon monoxide, and various NMHC, exhibit enhanced mixing ratios over tropical Africa. Using tracer-tracer correlations to characterize methane emissions from Africa, we find that biomass burning made a major contribution to the methane burden, but that also biogenic sources, such as wetlands, play a significant role. We also compare these measurements to those conducted earlier over India, which were used to investigate sources and emissions of greenhouse gases during the South Asian summer monsoon.

  12. Fate of Organic Micropollutants during Hydrothermal Carbonization

    Science.gov (United States)

    Weiner, B.; Baskyr, I.; Pörschmann, J.; Kopinke, F.-D.

    2012-04-01

    The hydrothermal carbonization (HTC) is an exothermic process, in which biomass in an aqueous suspension is transformed into a bituminous coal-like material (hydrochar) at temperatures between 180-250°C and under moderate pressure. With these process conditions, little gas is generated (1-5%), and a fraction of the organic carbon is dissolved in the aqueous phase (10-30%) but the largest part is obtained as solid char. The respective yields and the molecular composition depend on the choice of educts and the process conditions, such as temperature, pH-value, and reaction time. Various biomass-educts have recently been studied, such as waste materials from agriculture, brewer's spent grains, sewage sludge, as well as wood and paper materials. Besides their use for energy generation, the hydrochars have also been investigated as soil amendments. Prior to addition of the chars to soil, these should be free of toxic components that could be released into the environment as harmful organic pollutants. Herein, the potential for the degradation of trace organic pollutants, such as pesticides and pharmaceuticals, under typical HTC conditions will be presented. The degradation of selected organic pollutants with different polarity and hydrophobicity was investigated. Scope and limitations of the degradation potential of the HTC are discussed on examples of micro pollutants such as hormones, residues of pharmaceuticals and personal care products including their metabolites, and pesticides. We will show that the target analytes are partially and in some cases completely degraded. The degree of degradation depends on the HTC process conditions such as reaction temperature and time, the solution pH value, the presence of catalysts or additional reagents. The biotic and abiotic degradation of chlorinated organic compounds, in particular chlorinated aromatics, has been a well-known environmental problem and remains a challenging issue for the development of a HTC process for

  13. Organic Carbon Dynamics in Glacier Systems

    Science.gov (United States)

    Barker, J.; Sharp, M.; Klassen, J.; Foght, J.; Turner, R.

    2004-12-01

    The biogeochemical cycling of organic carbon (OC) has important implications for aquatic system ecology because the abundance and molecular characteristics of OC influence contaminant transport and bioavailability, and determine its suitability as a substrate for microbial metabolism. There have been few studies of OC cycling in glacier systems, and questions remain regarding the abundance, provenance, and biogeochemical transformations of OC in these environments. To address these questions, the abundance and molecular characteristics of OC is investigated in three glacier systems. These systems are characterized by different thermal and hydrological regimes and have different potential OC sources. John Evans Glacier is a polythermal glacier in arctic Canada. Outre Glacier is a temperate glacier in the Coast Mountains of British Columbia, Canada. Victoria Upper Glacier is a cold-based glacier in the McMurdo Dry Valleys of Antarctica. To provide an indication of the extent to which glacier system OC dynamics are microbially mediated, microbial culturing and identification is performed and organic acid abundance and speciation is determined. Where possible, samples of supraglacial runoff, glacier ice and basal ice and subglacial meltwater were collected. The dissolved organic carbon (DOC) concentration in each sample was measured by combustion/non-dispersive infrared gas analysis. Emission and synchronous fluorescence spectroscopy were used to characterize the molecular properties of the DOC from each environment. When possible, microbial culturing and identification was performed and organic acid identification and quantification was measured by ion chromatography. DOC exists in detectable quantities (0.06-46.6 ppm) in all of the glacier systems that were investigated. The molecular characteristics of DOC vary between glaciers, between environments at the same glacier, and over time within a single environment. Viable microbes are recoverable in significant (ca

  14. Reburial of fossil organic carbon in marine sediments.

    Science.gov (United States)

    Dickens, Angela F; Gélinas, Yves; Masiello, Caroline A; Wakeham, Stuart; Hedges, John I

    2004-01-22

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  15. Reburial of fossil organic carbon in marine sediments

    Science.gov (United States)

    Dickens, Angela F.; Gélinas, Yves; Masiello, Caroline A.; Wakeham, Stuart; Hedges, John I.

    2004-01-01

    Marine sediments act as the ultimate sink for organic carbon, sequestering otherwise rapidly cycling carbon for geologic timescales. Sedimentary organic carbon burial appears to be controlled by oxygen exposure time in situ, and much research has focused on understanding the mechanisms of preservation of organic carbon. In this context, combustion-derived black carbon has received attention as a form of refractory organic carbon that may be preferentially preserved in soils and sediments. However, little is understood about the environmental roles, transport and distribution of black carbon. Here we apply isotopic analyses to graphitic black carbon samples isolated from pre-industrial marine and terrestrial sediments. We find that this material is terrestrially derived and almost entirely depleted of radiocarbon, suggesting that it is graphite weathered from rocks, rather than a combustion product. The widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments. It could be responsible for biasing radiocarbon dating of sedimentary organic carbon, and also reveals a closed loop in the carbon cycle. Depending on its susceptibility to oxidation, this recycled carbon may be locked away from the biologically mediated carbon cycle for many geologic cycles.

  16. Downscaling Digital Soil Organic Carbon Map

    Directory of Open Access Journals (Sweden)

    shahrokh fatehi

    2017-02-01

    Full Text Available Introduction: Spatial scale is a major concept in many sciences concerned with human activities and physical, chemical and biological processes occurring at the earth’s surface. Many environmental problems such as the impact of climate change on ecosystems, food, water and soil security requires not only an understanding of how processes operates at different scales and how they can be linked across scales but also gathering more information at finer spatial resolution. This paper presents results of different downscaling techniques taking soil organic matter data as one of the main and basic environmental piece of information in Mereksubcatchment (covered about 24000 ha located in Kermanshah province. Techniques include direct model and point sampling under generalized linear model, regression tree and artificial neural networks. Model performances with respect to different indices were compared. Materials and Methods: legacy soil data is used in this research, 320 observation points were randomly selected. Soil samples were collected from 0-30 cm of the soil surface layer in 2008 year. After preliminary data processing and point pattern analysis, spatial structure information of organic carbon determined using variography. Then, the support point data were converted to block support of 50 m by using block ordinary kriging. Covariates obtained from three resources including digital elevation model, TM Landsat imagery and legacy polygon maps. 23 relief parameters were derived from digital elevation model with 10m × 10m grid-cell resolution. Environmental information obtained from Landsat imagery included, clay index, normalized difference vegetation index, grain size index. The image data were re-sampled from its original spatial resolution of 30*30m to resolution of 10m*10m. Geomorphology, lithology and land use maps were also included in modelling process as categorical auxiliary variables. All auxiliary variables aggregated to 50*50 grid

  17. Soil organic carbon in eastern Australia

    Science.gov (United States)

    Hobley, E.; Baldock, J.; Hua, Q.; Wilson, B.

    2016-12-01

    We investigated the drivers of SOC dynamics and depth distribution across eastern Australia using laboratory analyses (CN, fractionation, radiocarbon) coupled with modelling and machine learning. At over 1400 sites, surface SOC storage was driven by precipitation, whereas SOC depth distribution (0-30 cm) was influenced by land-use. Based upon these findings, 100 sites were selected for profile analysis (up to 1 m) of SOC and its component fractions - particulate (POC), humus (HOC) and resistant (ROC) organic carbon. Profile SOC content was modelled using an exponential model describing surface SOC content, SOC depth distribution and residual SOC at depth and the drivers of these parameters investigated via machine learning. Corroborating previous findings, surface SOC content was highly influenced by rainfall, whereas SOC depth distribution was influenced by land-use. At depth, site properties were the most important predictors of SOC. Cropped sites had significantly lower SOC content than native and grazed sites at depth, indicating that land-use influences SOC content throughout the profile. The machine learning algorithms identified depth as the key control on the proportion of all three fractions down the profile: POC decreased whereas HOC increased with increasing depth. POC was strongly linked with total SOC but HOC and ROC were driven more by climate and soil physico-chemical properties. Human influences (land-use and management) were not important to the fractions, implying that the controls humans can exert on SOC stability may be limited. A subset of 12 soil profiles was analysed for 14C. Radiocarbon content was affected strongly by land-use, with effects most pronounced at depth. Native systems had the youngest carbon down the profile, cropped systems had the oldest SOC. All fractions reacted to land-use change down the soil profile, indicating a lack of stability when the whole profile is viewed. These results indicate that natural systems act as a

  18. Some Organic Reactions in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    JIANG Huan-feng; YANG Xiao-yue; LI Guo-ping; ZOU Gang

    2004-01-01

    Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years 1. ScCO2, as an environmentally friendly reaction medium, may be a substitute for volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive,nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control of the solvent density by variation of the temperature and pressure enables the solvent properties to be "tuned" to reactants. Finally, separating of CO2 from the reaction mixture is energy-efficient and simple. Here we disclose our new work on some organic reactions involving small molecules in scCO2.The results showed that the upper reactions in scCO2 could be carried out smoothly and thepressure of CO2 had a remarkable effect on the conversion and selectivity.

  19. A method for quantifying bioavailable organic carbon in aquifer sediments

    Science.gov (United States)

    Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.

    2005-01-01

    The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  20. Review of the National Reduction Plan for NMVOM [Non-Methane Volatile Organic Materials]. Sectors industry, energy, TSG [trade, services and government] and building; Terugblik op het Nationaal Reductieplan NMVOS [Niet-Methaan Vluchtige Organische Stoffen]. Industrie, energie, HDO [handel, diensten en overheid] en bouw

    Energy Technology Data Exchange (ETDEWEB)

    Locht, G.

    2012-09-15

    The title project aims to reduce emissions of Volatile Organic Compounds (VOC) from several sectors in the period 2000-2010. This report is a review of the project and is based on the definitive data over these years in the Dutch Pollutant Release and Transfer Register (PRTR). Compared to the start of the NRP-NMVOS, there are now less instruments for environmental policy. There are more general binding environmental rules and less environmental permits. Furthermore, several agreements between governments and branches have ended. May 2012 the Gothenburg protocol was revised. It shows a VOC emission reduction for the Netherlands of 8% in 2020 compared to 2005. It is expected this will be achieved by means of the current policy and legislation [Dutch] Het titel project is opgesteld om de VOS-emissies van deze sectoren tereduceren. Het NRP-NMVOS heeft betrekking op de jaren 2000 tot en met 2010. Dit rapport is een terugblik op het project en gaat uit van de medio 2012 beschikbare definitieve emissiegegevens over al deze jaren. In vergelijking met de start van het NRP-NMVOS zijn er minder milieubeleidsinstrumenten. Er zijn meer algemene milieuregels en minder vergunningen en diverse convenanten tussen overheden en bedrijfsleven zijn afgelopen. In het herziene Gothenburg protocol van mei 2012 is voor Nederland voor 2020 en verder een NMVOS reductie van 8% ten opzichte van het 2005 niveau afgesproken. Het ligt in de verwachting dat dit gehaald gaat worden bij voortzetting van het huidige beleid en instrumentatie.

  1. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign

    Science.gov (United States)

    Jaimes-Palomera, Mónica; Retama, Armando; Elias-Castro, Gabriel; Neria-Hernández, Angélica; Rivera-Hernández, Olivia; Velasco, Erik

    2016-05-01

    With the aim to strengthen the verification capabilities of the local air quality management, the air quality monitoring network of Mexico City has started the monitoring of selected non-methane hydrocarbons (NMHCs). Previous information on the NMHC characterization had been obtained through individual studies and comprehensive intensive field campaigns, in both cases restricted to sampling periods of short duration. This new initiative will address the NMHC pollution problem during longer monitoring periods and provide robust information to evaluate the effectiveness of new control measures. The article introduces the design of the monitoring network and presents results from the first campaign carried out during the first six months of 2012 covering the ozone-season (Mar-May). Using as reference data collected in 2003, results show reductions during the morning rush hour (6-9 h) in the mixing ratios of light alkanes associated with the consumption and distribution of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents, in contrast to olefins from vehicular traffic. The increase in mixing ratios of reactive olefins is of relevance to understand the moderate success in the ozone and fine aerosols abatement in recent years in comparison to other criteria pollutants. In the case of isoprene, the typical afternoon peak triggered by biogenic emissions was clearly observed for the first time within the city. The diurnal profiles of the monitored compounds are analyzed in terms of the energy balance throughout the day as a surrogate of the boundary layer evolution. Particular features of the diurnal profiles and correlation between individual NMHCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here highlight the importance of monitoring NMHCs to better understand the drivers and impacts of air pollution in large cities like Mexico City.

  2. Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration

    DEFF Research Database (Denmark)

    Taghizadeh-Toosi, Arezoo; Olesen, Jørgen Eivind

    2016-01-01

    Soil organic carbon (SOC) is in active exchange with the atmosphere. The amount of organic carbon (OC) input into the soil and SOC turnover rate are important for predicting the carbon (C) sequestration potential of soils subject to changes in land-use and climate. The C-TOOL model was developed...

  3. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  4. Draft Genome Sequence of Methylophaga muralis Bur 1, a Haloalkaliphilic (Non-Methane-Utilizing) Methylotroph Isolated from a Soda Lake

    Science.gov (United States)

    Trotsenko, Yuri A.; Shmareva, Maria N.; Tarlachkov, Sergey V.; Mustakhimov, Ildar I.

    2016-01-01

    The draft genome sequence of Methylophaga muralis strain Bur 1 (VKM B-3046T), a non-methane-utilizing methylotroph isolated from a soda lake, is reported here. Strain Bur 1 possesses genes for methanol and methylamine (methylamine dehydrogenase and N-methylglutamate pathway) oxidation. Genes for the biosynthesis of ectoine were also found. PMID:27811106

  5. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unkn...

  6. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter an

  7. Explorations of soil microbial processes driven by dissolved organic carbon

    NARCIS (Netherlands)

    Straathof, A.L.

    2015-01-01

    Explorations of soil microbial processes driven by dissolved organic carbon Angela L. Straathof June 17, 2015, Wageningen UR ISBN 978-94-6257-327-7 Abstract Dissolved organic carbon (DOC) is a complex, heterogeneous mixture of C compounds which, as

  8. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  9. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin

    2014-01-01

    in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (CNMOCs/CCH4) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills...

  10. Organic carbon inventories in natural and restored Ecuadorian mangrove forests.

    Science.gov (United States)

    DelVecchia, Amanda G; Bruno, John F; Benninger, Larry; Alperin, Marc; Banerjee, Ovik; de Dios Morales, Juan

    2014-01-01

    Mangroves can capture and store organic carbon and their protection and therefore their restoration is a component of climate change mitigation. However, there are few empirical measurements of long-term carbon storage in mangroves or of how storage varies across environmental gradients. The context dependency of this process combined with geographically limited field sampling has made it difficult to generalize regional and global rates of mangrove carbon sequestration. This has in turn hampered the inclusion of sequestration by mangroves in carbon cycle models and in carbon offset markets. The purpose of this study was to estimate the relative carbon capture and storage potential in natural and restored mangrove forests. We measured depth profiles of soil organic carbon content in 72 cores collected from six sites (three natural, two restored, and one afforested) surrounding Muisne, Ecuador. Samples up to 1 m deep were analyzed for organic matter content using loss-on-ignition and values were converted to organic carbon content using an accepted ratio of 1.72 (g/g). Results suggest that average soil carbon storage is 0.055 ± 0.002 g cm(-3) (11.3 ± 0.8% carbon content by dry mass, mean ± 1 SE) up to 1 m deep in natural sites, and 0.058 ± 0.002 g cm(-3) (8.0 ± 0.3%) in restored sites. These estimates are concordant with published global averages. Evidence of equivalent carbon stocks in restored and afforested mangrove patches emphasizes the carbon sink potential for reestablished mangrove systems. We found no relationship between sediment carbon storage and aboveground biomass, forest structure, or within-patch location. Our results demonstrate the long-term carbon storage potential of natural mangroves, high effectiveness of mangrove restoration and afforestation, a lack of predictability in carbon storage strictly based on aboveground parameters, and the need to establish standardized protocol for quantifying mangrove sediment carbon stocks.

  11. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing......, such a change could profoundly affect the global carbon cycle....

  12. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments

    Science.gov (United States)

    Keil, Richard

    2017-01-01

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers—including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments—all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  13. Tillage Effect on Organic Carbon in a Purple Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    HUANG Xue-Xia; GAO Ming; WEI Chao-Fu; XIE De-Ti; PAN Gen-Xing

    2006-01-01

    The distribution and storage of soil organic carbon (SOC) based on a long-term experiment with various tillage systems were studied in a paddy soil derived from purple soil in Chongqing, China. Organic carbon storage in the 0-20and 0-40 cm soil layers under different tillage systems were in an order: ridge tillage with rice-rape rotation (RT-rr)> conventional tillage with rice only (CT-r) > ridge tillage with rice only (RT-r) > conventional tillage with rice-rape rotation (CT-rr). The RT-rr system had significantly higher levels of soil organic carbon in the 0-40 cm topsoil, while the proportion of the total remaining organic carbon in the total soil organic carbon in the 0-10 cm layer was greatest in the RT-rr system. This was the reason why the RT-rr system enhanced soil organic carbon storage. These showed that tillage system type was crucial for carbon storage. Carbon levels in soil humus and crop-yield results showed that the RT-rr system enhanced soil fertility and crop productivity. Adoption of this tillage system would be beneficial both for environmental protection and economic development.

  14. Dissolved organic carbon release by marine macrophytes

    Directory of Open Access Journals (Sweden)

    C. Barrón

    2012-02-01

    Full Text Available Estimates of dissolved organic carbon (DOC release by marine macrophyte communities (seagrass meadows and macroalgal beds were obtained experimentally using in situ benthic chambers. The effect of light availability on DOC release by macrophyte communities was examined in two communities both by comparing net DOC release under light and dark, and by examining the response of net DOC release to longer-term (days experimental shading of the communities. All most 85% of the seagrass communities and almost all of macroalgal communities examined acted as net sources of DOC. There was a weak tendency for higher DOC fluxes under light than under dark conditions in seagrass meadow. There is no relationship between net DOC fluxes and gross primary production (GPP and net community production (NCP, however, this relationship is positive between net DOC fluxes and community respiration. Net DOC fluxes were not affected by shading of a T. testudinum community in Florida for 5 days, however, shading of a mixed seagrass meadow in the Philippines led to a significant reduction on the net DOC release when shading was maintained for 6 days compared to only 2 days of shading. Based on published and unpublished results we also estimate the global net DOC production by marine macrophytes. The estimated global net DOC flux, and hence export, from marine macrophyte is about 0.197 ± 0.015 Pg C yr−1 or 0.212 ± 0.016 Pg C yr−1 depending if net DOC flux by seagrass meadows was estimated by taking into account the low or high global seagrass area, respectively.

  15. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  16. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  17. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget

    NARCIS (Netherlands)

    Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; Kabat, P.; Andreae, M.O.

    2002-01-01

    A substantial amount of carbon is emitted by terrestrial vegetation as biogenic volatile organic compounds (VOC), which contributes to the oxidative capacity of the atmosphere, to particle production and to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a release of

  18. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  19. Tropospheric OH and Cl levels deduced from non-methane hydrocarbon measurements in a marine site

    Directory of Open Access Journals (Sweden)

    C. Arsene

    2007-09-01

    Full Text Available In situ continuous hourly measurements of C2–C8 non-methane hydrocarbons (NMHCS have been performed from March to October 2006 at two coastal locations (natural and rural on the island of Crete, in the Eastern Mediterranean. Well defined diel variations were observed for several short lived NMHCS (including ethene, propene, n-butane, n-pentane, n-hexane, 2-methyl-pentane. The daytime concentration of hydroxyl (OH radicals estimated from these experimental data varied from 1.3×106 to ~4.0×106 radical cm−3, in good agreement with box-model simulations. In addition the relative variability of various hydrocarbon pairs (at least 7 was used to derive the tropospheric levels of Cl atoms. The Cl atom concentration has been estimated to range between 0.6×104 and 4.7×104 atom cm−3, in good agreement with gaseous hydrochloric acid (HCl observations in the area. Such levels of Cl atoms can be of considerable importance for the oxidation capacity of the troposphere on a regional scale.

  20. Seasonal behavior of non-methane hydrocarbons in the firn air at Summit, Greenland

    Science.gov (United States)

    Helmig, D.; Stephens, C. R.; Caramore, J.; Hueber, J.

    2014-03-01

    Non-methane hydrocarbons (NMHC) were measured in the ambient air and in the snowpack interstitial firn air at ˜1 m depth continuously for nearly two years at Summit, Greenland, from fall 2008 through summer 2010. Additionally, five firn air depth profiles were conducted to a depth of 3 m spanning winter, spring, and summer seasons. Here we report measurements of ethane, ethene, ethyne, propane, propene, i-butane, n-butane, i-pentane, n-pentane, and benzene and discuss the seasonal behavior of these species in the ambient and firn air. The alkanes, ethyne, and benzene in the firn air closely reflect the ambient air concentrations during all the seasons of the year. In spring and summer seasons, ethene and propene were enhanced in the near-surface firn over that in the ambient air, indicating a photochemical production mechanism for these species within the snowpack interstitial air. Evaluation of the NMHC ratios of i-butane/n-butane, i-pentane/n-pentane, and benzene/ethyne in both ambient and firn air does not provide evidence for chlorine or bromine radical chemistry significantly affecting these gases, except in a few summer samples, where individual data points may suggest bromine oxidation influence.

  1. Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico

    Science.gov (United States)

    Velasco, Erik

    Biogenic non-methane hydrocarbons (NMHC), 2-methyl-3-buten-2-ol (methylbutenol or MBO) and nitrogen oxide (NO) emissions were estimated for the Valley of Mexico developing a spatially and temporally resolved emission inventory for air quality models. The modeling domain includes all the Metropolitan Mexico City Area, the surrounding forests and agriculture fields. The estimates were based on several sources of land use and land cover data and a biogenic emission model; the biomass density and tree characteristics were obtained from reforestation program data. The biogenic emissions depend also on climatic conditions, mainly temperature and solar radiation. The temperature was obtained from a statistical revision of the last 10 yr data reported by the Mexico City Automatic Atmospheric Monitoring Network, while the solar radiation data were obtained from measurements performed in a typical oak forest in the Valley and from sources of total solar radiation data for Mexico City. The results indicated that 7% of total hydrocarbon emissions in Mexico Valley are due to vegetation and NO emissions from soil contribute with 1% to the total NO x emissions.

  2. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  3. Simple, Micro-Miniature Total Organic Carbon Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a simple method for on-orbit or advanced mission Total Organic Carbon (TOC) monitoring has been a goal for many years. This proposal seeks to develop...

  4. quantifying the stock of soil organic carbon using multiple regression ...

    African Journals Online (AJOL)

    Osondu

    2012-03-15

    Mar 15, 2012 ... present changing climate, healthy forest and land management practices, ... residues, fertilizer application, elongation of fallow periods, and tree planting initiatives in degraded ... to soil erosion; this affects soil organic carbon.

  5. Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.

    Science.gov (United States)

    Kolb, Kenneth E.; Kolb, Doris

    1983-01-01

    Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)

  6. Estimation of soil organic carbon reservoir in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper respectively adopted physio-chemical properties of every soil stratum from 2473 soil profiles of the second national soil survey. The corresponding carbon content of soils is estimated by utilizing conversion coefficient 0.58. In the second soil survey, the total amount of soil organic carbon is about 924.18×108t and carbon density is about 10.53 kgC/m2 in China according to the area of 877.63×106 hm2 surveyed throughout the country. The spatial distribution characteristics of soil organic carbon in China is that the carbon storage increases when latitude increases in eastern China and the carbon storage decreases when longitude reduces in northern China. A transitional zone with great variation in carbon storage exists. Moreover, there is an increasing tendency of carbon density with decrease of latitude in western China. Soil circle is of great significance to global change, but with substantial difference in soil spatial distribution throughout the country. Because the structure of soil is inhomogeneous, it could bring some mistakes in estimating soil carbon reservoirs. It is necessary to farther resolve soil respiration and organic matter conversion and other questions by developing uniform and normal methods of measurement and sampling.

  7. A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland

    Directory of Open Access Journals (Sweden)

    A. Grant

    2011-02-01

    Full Text Available Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009 of eleven non-methane hydrocarbons, namely C2–C5 alkanes, benzene, toluene, ethyl-benzene and the xylenes, have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons, largest elevations (of up to 360 ppt for ethane maxima from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (<6%/year but statistically significant decreases in the butanes, i-pentane and o-xylene between 2005 and 2009 in European air. Toluene was found to have an increasing trend of 34%/year in European air. No significant trends were found for any species in baseline air.

  8. Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2009-10-01

    Full Text Available The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container is a long-term monitoring program making regular atmospheric measurements from an instrument container installed monthly aboard a passenger aircraft. Typical cruising altitudes of the aircraft allow for the study of the free troposphere and the extra-tropical upper troposphere as well as the lowermost stratosphere. CARIBIC measurements include a number of real time analyses as well as the collection of aerosol and whole air samples. These whole air samples are analyzed post-flight for a suite of trace gases, which includes non-methane hydrocarbons (NMHC.

    The NMHC measurement system and its analytical performance are described here. Precision was found to vary slightly by compound, and is less than 2% for the C2–C6 alkanes and ethyne, and between 1 and 6% for C7–C8 alkanes and aromatic compounds. Preliminary results from participation in a Global Atmospheric Watch (WMO VOC audit indicate accuracies within the precision of the system. Limits of detection are 1 pptv for most compounds, and up to 3 pptv for some aromatics. These are sufficiently low to measure mixing ratios typically observed in the upper troposphere and lowermost stratosphere for the longer-lived NMHC, however, in air samples from these regions many of the compounds with shorter lifetimes (<5 d were frequently below the detection limit. Observed NMHC concentrations span many orders of magnitude, dependent on atmospheric region and air mass history, with concentrations typically decreasing with shorter chemical lifetimes.

  9. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  10. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe......We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...

  11. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  12. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  13. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon

    Science.gov (United States)

    Schartau, M.; Engel, A.; Schröter, J.; Thoms, S.; Völker, C.; Wolf-Gladrow, D.

    2007-07-01

    During phytoplankton growth a fraction of dissolved inorganic carbon (DIC) assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC), which can be transformed into extracellular particulate organic carbon (POC). A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC) that form from dissolved polysaccharides (PCHO). The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN), called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N) ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON) remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM). The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is applicable

  14. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon

    Directory of Open Access Journals (Sweden)

    M. Schartau

    2007-01-01

    Full Text Available During phytoplankton growth a fraction of dissolved inorganic carbon (DIC assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC, which can be transformed into extracellular particulate organic carbon (POC. A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC that form from dissolved polysaccharides (PCHO. The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN, called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM. The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is

  15. Modelling carbon overconsumption and the formation of extracellular particulate organic carbon

    Directory of Open Access Journals (Sweden)

    C. Völker

    2007-07-01

    Full Text Available During phytoplankton growth a fraction of dissolved inorganic carbon (DIC assimilated by phytoplankton is exuded in the form of dissolved organic carbon (DOC, which can be transformed into extracellular particulate organic carbon (POC. A major fraction of extracellular POC is associated with carbon of transparent exopolymer particles (TEP; carbon content = TEPC that form from dissolved polysaccharides (PCHO. The exudation of PCHO is linked to an excessive uptake of DIC that is not directly quantifiable from utilisation of dissolved inorganic nitrogen (DIN, called carbon overconsumption. Given these conditions, the concept of assuming a constant stoichiometric carbon-to-nitrogen (C:N ratio for estimating new production of POC from DIN uptake becomes inappropriate. Here, a model of carbon overconsumption is analysed, combining phytoplankton growth with TEPC formation. The model describes two modes of carbon overconsumption. The first mode is associated with DOC exudation during phytoplankton biomass accumulation. The second mode is decoupled from algal growth, but leads to a continuous rise in POC while particulate organic nitrogen (PON remains constant. While including PCHO coagulation, the model goes beyond a purely physiological explanation of building up carbon rich particulate organic matter (POM. The model is validated against observations from a mesocosm study. Maximum likelihood estimates of model parameters, such as nitrogen- and carbon loss rates of phytoplankton, are determined. The optimisation yields results with higher rates for carbon exudation than for the loss of organic nitrogen. It also suggests that the PCHO fraction of exuded DOC was 63±20% during the mesocosm experiment. Optimal estimates are obtained for coagulation kernels for PCHO transformation into TEPC. Model state estimates are consistent with observations, where 30% of the POC increase was attributed to TEPC formation. The proposed model is of low complexity and is

  16. Levels of heavy metals, total hydrocarbon and organic carbon ...

    African Journals Online (AJOL)

    Levels of heavy metals, total hydrocarbon and organic carbon contents of sediments from Ikpoba (Edo) and Ethiope (Delta) Rivers of Nigeria. ... THC contents were 6.50mg/kg (Ikpoba river) and 42.10mg/kg (Ethiope river). The organic contents ...

  17. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  18. Organic carbon budget for the Gulf of Bothnia

    Science.gov (United States)

    Algesten, Grete; Brydsten, Lars; Jonsson, Per; Kortelainen, Pirkko; Löfgren, Stefan; Rahm, Lars; Räike, Antti; Sobek, Sebastian; Tranvik, Lars; Wikner, Johan; Jansson, Mats

    2006-12-01

    We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO 2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year - 1 ), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year - 1), sediment burial (1100 Gg C year - 1 ) and evasion to the atmosphere (3610 Gg C year - 1 ). The largest single net flux was the emission of CO 2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO 2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.

  19. Review and suggestions for estimating particulate organic carbon and dissolved organic carbon inventories in the ocean using remote sensing data

    Institute of Scientific and Technical Information of China (English)

    PAN Delu; LIU Qiong; BAI Yan

    2014-01-01

    Dissolved organic carbon (DOC) and particulate organic carbon (POC) are basic variables for the ocean carbon cycle. Knowledge of the distribution and inventory of these variables is important for a better es-timation and understanding of the global carbon cycle. Owing to its considerable advantages in spatial and temporal coverage, remote sensing data provide estimates of DOC and POC inventories, which are able to give a synthetic view for the distribution and transportation of carbon pools. To estimate organic car-bon inventories using remote sensing involves integration of the surface concentration and vertical profile models, and the development of these models is critical to the accuracy of estimates. Hence, the distribu-tion and control factors of DOC and POC in the ocean first are briefly summarized, and then studies of DOC and POC inventories and flux estimations are reviewed, most of which are based on field data and few of which consider the vertical distributions of POC or DOC. There is some research on the estimation of POC inventory by remote sensing, mainly in the open ocean, in which three kinds of vertical profile models have been proposed:the uniform, exponential decay, and Gauss models. However, research on remote-sensing estimation of the DOC inventory remains lacking. A synthetic review of approaches used to estimate the or-ganic carbon inventories is offered and the future development of methods is discussed for such estimates using remote sensing data in coastal waters.

  20. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  1. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems

    Science.gov (United States)

    Lapierre, Jean-François; Guillemette, François; Berggren, Martin; Del Giorgio, Paul A.

    2013-12-01

    The concentrations of terrestrially derived dissolved organic carbon have been increasing throughout northern aquatic ecosystems in recent decades, but whether these shifts have an impact on aquatic carbon emissions at the continental scale depends on the potential for this terrestrial carbon to be converted into carbon dioxide. Here, via the analysis of hundreds of boreal lakes, rivers and wetlands in Canada, we show that, contrary to conventional assumptions, the proportion of biologically degradable dissolved organic carbon remains constant and the photochemical degradability increases with terrestrial influence. Thus, degradation potential increases with increasing amounts of terrestrial carbon. Our results provide empirical evidence of a strong causal link between dissolved organic carbon concentrations and aquatic fluxes of carbon dioxide, mediated by the degradation of land-derived organic carbon in aquatic ecosystems. Future shifts in the patterns of terrestrial dissolved organic carbon in inland waters thus have the potential to significantly increase aquatic carbon emissions across northern landscapes.

  2. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    Science.gov (United States)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  3. A supercritical oxidation system for the determination of carbon isotope ratios in marine dissolved organic carbon

    NARCIS (Netherlands)

    Le Clercq, Martijn; Van der Plicht, Johannes; Meijer, Harro A.J.

    1998-01-01

    An analytical oxidation system employing supercritical oxidation has been developed. It is designed to measure concentration and the natural carbon isotope ratios (C-13, C-14) Of dissolved organic carbon (DOC) and is especially suited for marine samples. The oxidation takes place in a ceramic tube a

  4. Modelling erosion and its interaction with soil organic carbon.

    Science.gov (United States)

    Oyesiku-Blakemore, Joseph; Verrot, Lucile; Geris, Josie; Zhang, Ganlin; Peng, Xinhua; Hallett, Paul; Smith, Jo

    2017-04-01

    Water driven soil erosion removes and relocates a significant quantity of soil organic carbon. In China the quantity of carbon removed from the soil through water erosion has been reported to be 180+/-80 Mt y-1 (Yue et al., 2011). Being able to effectively model the movement of such a large quantity of carbon is important for the assessment of soil quality and carbon storage in the region and further afield. A large selection of erosion models are available and much work has been done on evaluating the performance of these in developed countries (Merritt et al., 2006). Fewer studies have evaluated the application of these models on soils in developing countries. Here we evaluate and compare the performance of two of these models, WEPP (Laflen et al., 1997) and RUSLE (Renard et al., 1991), for simulations of soil erosion and deposition at the slope scale on a Chinese Red Soil under cultivation using measurements taken at the site. We also describe work to dynamically couple the movement of carbon presented in WEPP to a model of soil organic matter and nutrient turnover, ECOSSE (Smith et al., 2010). This aims to improve simulations of both erosion and carbon cycling by using the simulated rates of erosion to alter the distribution of soil carbon, the depth of soil and the clay content across the slopes, changing the simulated rate of carbon turnover. This, in turn, affects the soil carbon available to be eroded in the next timestep, so improving estimates of carbon erosion. We compare the simulations of this coupled modelling approach with those of the unaltered ECOSSE and WEPP models to determine the importance of coupling erosion and turnover models on the simulation of carbon losses at catchment scale.

  5. Anomalous carbon-isotope ratios in nonvolatile organic material.

    Science.gov (United States)

    Kaplan, I R; Nissenbaum, A

    1966-08-12

    Organic mats are associated with sulfur deposits in Upper Pleistocene sand ridges of the coastal plain of southern Israel; black, brittle, and non-volatile, they show parallel layering but no other apparent cellular structure. Two independent carbon-14 determinations yielded ages of 27,750+/-500 and 31,370+/-1400 years. Four carbon-13:carbon-12 determinations fell within the range deltaC(13) =-82.5 to -89.3 per mille relative to the PDB standard; these appear to be the lowest values yet reported for naturally occurring high-molecular-weight organic material. The origin of the carbon is probably complex; it must have passed through at least one biologic cycle before final deposition.

  6. Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008

    Directory of Open Access Journals (Sweden)

    B. Wang

    2010-02-01

    Full Text Available In conjunction with hosting the 2008 Beijing Olympics, the municipal government implemented a series of stringent air quality control measures. To assess the impacts on variation of ambient non-methane hydrocarbons (NMHCs, the whole air was sampled by canisters at one urban site and two suburban sites in Beijing, and 55 NMHC species were quantified by gas chromatography equipped with a quadrupole mass spectrometer and a flame ionization detector (GC/MSD/FID as parts of the field Campaign for the Beijing Olympic Games Air Quality program (CareBeijing. According to the control measures, the data were presented according to four periods: 18–30 June, 8–19 July, 15–24 August (during the Olympic Games, and 6–15 September (during the Paralympic Games. Compared with the levels in June, the mixing ratios of NMHCs obtained in the Olympic and Paralympic Games periods were reduced by 35% and 25%, respectively. Source contributions were calculated using a chemical mass balance model (CMB 8.2. After implementing the control measures, emissions from target sources were obviously reduced, and reductions in vehicle exhaust could explain 48–82% of the reductions of ambient NMHCs. Reductions in emissions from gasoline evaporation, paint and solvent use, and the chemical industry contributed 9–40%, 3–24%, and 1–5%, respectively, to reductions of ambient NMHCs. Sources of liquefied petroleum gas (LPG and biogenic emissions were not controlled, and contributions from these sources from July to September were stable or even higher than in June. Ozone formation potentials (OFPs were calculated for the measured NMHCs. The total OFPs during the Olympic and Paralympic Games were reduced by 48% and 32%, respectively, compared with values in June. Reductions in the OFPs of alkenes and aromatics explained 77–92% of total OFP reductions. The alkenes and aromatics were mainly from vehicle exhausts, and reductions of vehicle exhaust gases explained 67–87% of

  7. The Oxidant Budget of Dissolved Organic Carbon Driven Isotope Excursions

    Science.gov (United States)

    Bristow, T. F.; Kennedy, M. J.

    2008-12-01

    Negative carbon isotope values, falling below the mantle average of about -5 per mil, in carbonate phases of Ediacaran age sedimentary rocks are widely regarded as reflecting negative excursions in the carbon isotopic composition of seawater lasting millions of years. These isotopic signals form the basis of chemostratigraphic correlations between Ediacaran aged sections in different parts of the world, and have been used to track the oxidation of the biosphere. However, these isotopic values are difficult to accommodate within limits prescribed by the current understanding of the carbon cycle, and a hypothetical Precambrian ocean dissolved organic carbon (DOC) pool 100 to 1000 times the size of the modern provides a potential source of depleted carbon not considered in Phanerozoic carbon cycle budgets. We present box model results that show the remineralization of such a DOC pool to drive an isotope excursion of the magnitude observed in the geological record exhausts global budgets of free oxygen and sulfate in 800 k.y. These results are incompatible with the estimated duration of late Ediacaran isotope excursions of more than 10 m.y., as well as geochemical and biological indicators that oceanic sulfate and oxygen levels were maintained or even increased at the same time. Therefore the carbon isotope record is probably not a useful tool for monitoring oxygen levels in the atmosphere and ocean. Covariation between the carbon and oxygen isotope records is often observed during negative excursions and is indicative of local processes or diagenetic overprinting.

  8. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  9. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  10. Effect of organic substituents on the adsorption of carbon dioxide on a metal-organic framework

    Science.gov (United States)

    Thu Ha, Nguyen Thi; Lefedova, O. V.; Ha, Nguyen Ngoc

    2017-01-01

    The adsorption of carbon dioxide on the MOF-5 metal-organic framework and modifications of it obtained by replacing the hydrogen atoms in the organic ligands with electron donor (-CH3,-OCH3) or electron acceptor groups (-CN,-NO2) is investigated using the grand canonical Monte Carlo (GCMC) method and density functional theory (DFT). It is shown that the adsorption of carbon dioxide molecules on the structures of metal-organic frameworks is most likely on Zn4O clusters, and that the adsorption of carbon dioxide is of a physical nature. The presence of substituents-CH3,-OCH3,-CN in metal-organic frameworks increases their capacity to adsorb carbon dioxide, while that of nitro groups (-NO2) has the opposite effect.

  11. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2015-05-01

    Precipitated calcium carbonate particles were obtained during carbonation of calcium hydroxide slurry with carbon dioxide. Aqueous solutions of isopropyl alcohol, n-butanol and glycerol were used as solvents. Concentration of organic additives in the reactive mixture was from 0% to 20% (vol). Precipitation process were performed in a stirred tank reactor equipped with gas distributor. Multimodal courses of particles size distribution were determined for produced CaCO3 particles. Calcium carbonate as calcite was precipitated in all experiments. The mean Sauter diameter of CaCO3 particles decreased when the concentration of all used organic additives increased. The amount of small particle fraction in the product increased with the increasing concentration of organic solvents. Similar physical properties of used liquid phase resulted in the similar characteristics of obtained particles.

  12. Black Carbon in Marine Dissolved Organic Carbon: Abundance and Radiocarbon Measurements in the Global Ocean

    Science.gov (United States)

    Coppola, A. I.; Walker, B. D.; Druffel, E. R. M.

    2014-12-01

    Compound specific radiocarbon analysis is a powerful tool for understanding the cycling of individual components, such as black carbon (BC) produced from biomass burning and fossil fuel combustion, within bulk pools, like the marine dissolved organic carbon pool. Here, we use a solid phase extraction method and a wide range of solvent polarities to concentrate dissolved organic carbon from seawater. Then we isolate BC in sufficient quantities for radiocarbon analysis. We report the radiocarbon age of BC, concentrations and its relative structure, from coastal and open ocean surface samples. We will discuss our progress towards measuring these quantities in dissolved organic carbon collected from the Pacific and Atlantic oceans to understand the fate, transformation and cycling of BC in the world ocean. These measurements are paired with bulk DOC Δ14C profiles, providing insight into the role of BC as a missing sink in the ultra-refractory DOC pool.

  13. Light absorption by organic carbon from wood combustion

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2009-09-01

    Full Text Available Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While BC is highly absorbing, some organic compounds also have significant absorption, which is greater at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to direct aerosol radiative forcing.

    In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble organic carbon contributed to light absorption at both ultraviolet and visible wavelengths. However, a larger portion came from organic carbon that is extractable only by methanol. The spectra of water-soluble organic carbon are similar to others in the literature. We compared spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating organic aerosol with higher absorption, causing about a factor of four increase in mass-normalized absorption at visible wavelengths. A simple model suggests that, despite the absorption, both high-temperature and low-temperature carbon have negative climate forcing over a surface with average albedo.

  14. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  15. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2010-11-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously

  16. Soil Organic Carbon Erosion Assessment by Cesium-137

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yueli; Lal, Rattan; Owens, Lloyd; Izaurralde, Roberto C.

    2001-12-31

    Soil organic carbon (SOC) is a major pool that impacts the global carbon cycle (Lal,1999). Increasing SOC pool is desirable because of its favorable effects on improving soil fertility, decreasing water and air pollution, and mitigating the greenhouse effect caused by various energy utilization activities such as fossil fuel combustion. The amount of SOC depends on kinetic competition between various input and output processes. The input processes include plant growth (plant residue, root excretion, and organic matter through-fall), addition of organic material (manure, sewage sludge, and other organic wastes) through soil management, and deposition through soil erosion. The output processes comprise decomposition into gases, leaching into groundwater, and removal through soil erosion. Assessment of these processes is one of the steps toward adopting the strategy of increasing SOC content.

  17. Azopolymer film as an actuator for organizing multiwall carbon nanotubes

    Science.gov (United States)

    Capeluto, Maria Gabriela; Fernández Salvador, Raquel; Eceiza, Aranxa; Goyanes, Silvia; Ledesma, Silvia Adriana

    2017-04-01

    In this work we show the feasibility of using an azopolymer as an actuator to induce nano- and microscale movements controlled with light from the far field. We study azopolymers and their interaction with multi-walled carbon nanotubes (MWCNTs) by inducing surface relief gratings (SRG) through optical illumination. Upon different optical treatments, the MWCNTs are organized in the troughs or the crests of a surface relief grating. Large scale organization of MWCNTs has potential in applications such as transparent electronics.

  18. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    Science.gov (United States)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  19. Organic carbon production, mineralization and preservation on the Peruvian margin

    Directory of Open Access Journals (Sweden)

    A. W. Dale

    2014-09-01

    Full Text Available Carbon cycling in Peruvian margin sediments (11° S and 12° S was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC content was lowest on the inner shelf and at the deep oxygenated stations (< 5% and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15–20%. The organic carbon burial efficiency (CBE was unexpectedly low on the inner shelf (< 20% when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%. Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09. Yet, mean POC burial rates were 2–5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  20. Model Establishment for Simulating Soil Organic Carbon Dynamics

    Institute of Scientific and Technical Information of China (English)

    HUANG Yao; LIU Shi-liang; SHEN Qi-rong; ZONG Liang-gang

    2002-01-01

    Assuming that decomposition of organic matter in soils follows the first-order kinetics reaction,a computer model was developed to simulate soil organic matter dynamics. Organic matter in soils is divided up into two parts that include incorporated organic carbon from crop residues or other organic fertilizer and soil intrinsic carbon. The incorporated organic carbon was assumed to consist of two components, labile-C and resistant-C. The model was represented by a differential equation of dCi/dt = Ki× fT × fw × fs × Ci ( i = l,r, S ) and an integral equation of Cit = Cio × EXP ( Ki X fT X fw X fs X t ). Effect of soil parameters of temperature, moisture and texture on the decomposition was functioned by the fT, fw and fs, respectively.Data from laboratory incubation experiments were used to determine the first-order decay rate Ki and the fraction of labile-C of crop residues by employing a nonlinear method. The values of K for the components of labile-C and resistant-C and the soil intrinsic carbon were evaluated to be 0. 025,0. 080 × 10-2 and 0. 065 ×10-3d-1, respectively. The labile-C fraction of wheat straw, wheat roots, rice straw and rice roots were0.50, 0.25, 0.40 and 0.20, respectively. These values are related to the initial residue carbon-to-nitrogen ratio ( C/N) and lignin content.

  1. Distribution of particulate organic carbon in the central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Dhople, V.M.; Wagh, A.B.

    Particulate organic carbon (POC) of 161 water samples collected from 8 depths (surface to 1000m) at 21 stations was measured. The POC concentrations ranged from 154 to 554 kappa g per litre at the surface and decreased in the upper 300 m water...

  2. Evidence for a small bacterial contribution to sedimentary organic carbon

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hartgers, W.A.; Requejo, A.G.; Allan, J.; Hayes, J.M.; Leeuw, J.W. de

    1994-01-01

    Because their molecular signatures are often prominent in extracts of sediments, bacteria are thought to be important contributors to petroleum source beds. It has been shown recently, however, that abundances of biomarkers do not always reflect relative contributions to sedimentary organic carbon (

  3. Organic carbon in the sediments of Mandovi estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Total organic carbon (TOC) in surficial sediments in Mandovi Estuary, Goa, India varies widely from 0.1 to 3% (av. 1.05%). Highest values of TOC (2.4-3%) lie close to the mouth region and indicate no definite trend in its variation in the estuarine...

  4. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial patte

  5. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  6. Spatial distribution of soil organic carbon stocks in France

    Science.gov (United States)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  7. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    Science.gov (United States)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  8. [Effects of gaps on distribution of soil aggregates and organic carbon in Pinus massoniana plantation].

    Science.gov (United States)

    Song, Xiao-Yan; Zhang, Dan-Ju; Zhang, Jian; Li, Jian-Ping; Deng, Chang-Chun; Deng, Chao

    2014-11-01

    The effects of forest gap size on the distribution of soil aggregates, organic carbon and labile organic carbon were investigated in a 39-year-old Pinus massoniana plantation in Yibin, Sichuan Province. The results showed that the composition of soil aggregates was dominated by particles > 2 mm, which accounted for 51.7%-78.7% of the whole soil samples under different sized forest gaps and beneath P. massoniana plantation. Soil organic carbon content and labile organic carbon content in > 5 mm aggregates were significantly positively correlated with the soil organic carbon and labile organic carbon contents. Furthermore, the amounts of organic carbon and labile organic carbon storage > 5 mm particles were higher than those in other size particles. Therefore, particles > 5 mm of aggregates dominated the soil carbon pool. Compared with those P. massoniana plantations, the contents of organic carbon in aggregates and total topsoil decreased during the formation of forest gaps, whereas the soil organic carbon storage under 1225 m2 gap was higher. In addition, the soil labile organic carbon content under 225 and 400 m2 gaps and the labile organic carbon storage under 225, 400, 900 and 1225 m2 gaps were higher than those the plantations, but were lower than under the other gaps. It was suggested that an appropriate size of forest gap would increase the accumulation of soil organic carbon and labile organic carbon content. The size of forest gap had significant effects on the distribution of soil aggregates, organic carbon and labile organic carbon. The soil sample under 1225 m2 gap had the highest organic carbon content and storage and a better aggregate proportion, and the higher labile organic carbon storage. Therefore, it was suggested that 1225 m2 gap might be an optimal logging gap size.

  9. Behaviour of Organic Carbon in Nine Contrasting European Estuaries

    Science.gov (United States)

    Abril, G.; Nogueira, M.; Etcheber, H.; Cabeçadas, G.; Lemaire, E.; Brogueira, M. J.

    2002-02-01

    A cross-system comparison of organic carbon origin and behaviour in nine European estuaries is presented. The study sites display a very large range of hydrological and environmental conditions. The watershed of the respective estuaries were characterized by plotting the total organic carbon (TOC) in the rivers versus the inhabitants/discharge ratio. This allows to distinguish four types of watershed with regard to anthropogenic forcing and organic carbon levels: polluted by sewage inputs (Scheldt and to a much lesser extent, Ems, Sado and Thames), decontaminated (Elbe and Rhine), pristine (Gironde and Douro) and eutrophized (Loire and Scheldt). In the estuarine zone, dissolved organic carbon (DOC) almost always decreased linearly with increasing salinity. Exceptions were: the Scheldt, where a net consumption of sewage-derived DOC was observed, the Gironde, where a net production of DOC occurred in the maximum turbidity zone (MTZ) and the Sado and Ems, where DOC was supplied from large intertidal areas. By contrast, a large fraction of the riverine particulate organic carbon (POC) was mineralized in all the estuaries, except the Douro, where residence time of waters is only a few days. A fraction of POC appeared however refractory and accumulated in the MTZs, where terrestrial soil-derived material dominates (Elbe, Ems, Loire, Gironde and Sado). In the marine regions of most estuaries, autochthonous POC was present during spring and summer. The analysis of all river and estuarine data allows estimation of the loss of continental POC occurring in each estuary. It decreases in the following order: Scheldt≫Thames>Ems=Sado=Loire>Gironde>Elbe>Rhine>Douro, which almost corresponds to the anthropogenic pressure in the respective watersheds. Two major variables appear to control the intensity of this mineralization: the origin of the POC, the lability increasing with pollution, and the residence time of particles in the estuarine zone.

  10. Conversion of organic carbon in the decomposable organic wastes in anaerobic lysimeters under different temperatures

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The quantitative fractions of conversion of organic carbon in the decomposable organic wastes with initial moisture of 70% sorted from municipal solid wastes(MSW) in lysimeters into biogas, leachate and solid residue were characterized, under temperatures of 25, 30 and 41℃, respectively, and circulation of leachate generated within the lysimeters. It is found that 27% of organic carbon in the wastes are conversed into gases, 0.8% into leachate, and the other 72% remained in the decomposable solid residues, after 180 days' degradation at 41℃. Higher temperature will lead to more rapid degradation and result to higher conversion of the organic carbon to biogas and lower to both solid residues and leachate, while the pollutant concentrations in leachate will be lower at a higher temperature and the values of COD are quite consistent with TOC.

  11. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  12. Fluorescence characteristics of water soluble organic carbon in eastern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectroscopy. A good linear relationship existed between total organic carbon and excitation in the range of 350 to 450 nm though the content of organic carbon and pH of the samples vary in a wide range. No significant correlation between relative excitation intensity and average molecular weight of WSOC and FA was found, but the partial correlation became significant with pH as the controlling factor for WSOC samples. The relative excitation intensity showed a general trend of increasing from south to north in the study area. The pH value might play an important role in regulating the fluorescent spatial variation of WSOC.

  13. Dynamics of maize carbon contribution to soil organic carbon in association with soil type and fertility level.

    Science.gov (United States)

    Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan

    2015-01-01

    Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.

  14. Soil Organic Carbon and Labile Carbon Along a Precipitation Gradient and Their Responses to Some Environmental Changes

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-Ping; ZHOU Guang-Sheng; GAO Su-Hua; GUO Jian-Ping

    2005-01-01

    Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1 with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distribution of soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses to CO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along the gradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased more rapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease in longitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that for the organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P <0.001) than that of soil labile carbon (0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, the coefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2 concentration (700μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. These indicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.

  15. Methodology guideline. Organization of conference neutral in carbon; Guide methodologique. Organisation de conference neutre en carbone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  16. Prediction of soil organic carbon concentration and soil bulk density of mineral soils for soil organic carbon stock estimation

    Science.gov (United States)

    Putku, Elsa; Astover, Alar; Ritz, Christian

    2016-04-01

    Soil monitoring networks provide a powerful base for estimating and predicting nation's soil status in many aspects. The datasets of soil monitoring are often hierarchically structured demanding sophisticated data analyzing methods. The National Soil Monitoring of Estonia was based on a hierarchical data sampling scheme as each of the monitoring site was divided into four transects with 10 sampling points on each transect. We hypothesized that the hierarchical structure in Estonian Soil Monitoring network data requires a multi-level mixed model approach to achieve good prediction accuracy of soil properties. We used this database to predict soil bulk density and soil organic carbon concentration of mineral soils in arable land using different statistical methods: median approach, linear regression and mixed model; additionally, random forests for SOC concentration. We compared the prediction results and selected the model with the best prediction accuracy to estimate soil organic carbon stock. The mixed model approach achieved the best prediction accuracy in both soil organic carbon (RMSE 0.22%) and bulk density (RMSE 0.09 g cm-3) prediction. Other considered methods under- or overestimated higher and lower values of soil parameters. Thus, using these predictions we calculated the soil organic carbon stock of mineral arable soils and applied the model to a specific case of Tartu County in Estonia. Average estimated SOC stock of Tartu County is 54.8 t C ha-1 and total topsoil SOC stock 1.8 Tg in humus horizon.

  17. Effect of biostimulation on biodegradation of dissolved organic carbon in biological granular activated carbon filters

    Directory of Open Access Journals (Sweden)

    K. Tihomirova

    2012-03-01

    Full Text Available The addition of labile organic carbon (LOC to enhance the biodegradation rate of dissolved organic carbon (DOC in biological columns was studied. Acetate standard solution (NaAc and LB (Luria Bertrani medium were used as LOC as biostimulants in glass column system used for measurements of biodegradable dissolved organic carbon (BDOC. The addition of LOC related with the increase of total DOC in sample. The concentration of BDOC increased up to 7 and 5 times and was utilized after 24 min. contact time. The biodegradation rate constant was increased at least 8 times during adaptation-biostimulation period. There was a strong positive correlation between the biodegradation rate constant and the concentration of BDOC. Biostimulation period ranged from 24 to 53 h for NaAc biostimulant and from 20 to 168 h for LB. The study has shown that LOC could be used as stimulator to enhance the biodegradation rate of DOC during biofiltration.

  18. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    Science.gov (United States)

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment.

  19. Modeling stable isotope and organic carbon in hillslope stormflow

    Science.gov (United States)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  20. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    Science.gov (United States)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future.

  1. Terrestrial organic carbon contributions to sediments on the Washington margin

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, F.G.; Sparrow, M.A.; Eversmeyer, B. (Oregon State Univ., Corvallis, OR (United States)); Ertel, J.R. (Univ. of Georgia, Athens, GA (United States)); Goni, M.A. (Woods Hole Oceanographic Institution, MA (United States))

    1994-07-01

    Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, the authors estimate that the terrestrial contribution to the Washington margin is [approximately] 60% for shelf sediments, [approximately] 30% for slope sediments, and decreases further to [le] 15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that this approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.

  2. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  3. Soil organic carbon pools in olive groves of different age

    Science.gov (United States)

    Massaccesi, Luisa; De Feudis, Mauro; Nasini, Luigi; Regni, Luca; D'Ascoli, Rosaria; Castaldi, Simona; Proietti, Primo; Agnelli, Alberto

    2016-04-01

    In the last years, the practices which favor the increase of soil organic carbon in the agroecosystem have been widely studied because of their influence on the reduction of atmospheric CO2 (Lal, 1993; Schlesinger, 2000). The accumulation of the organic carbon into the soil depends to a great extent upon climate and pedological properties (Burke et al., 1989; Miller et al., 1994), although in the agricultural soils the cultivation system also plays a key role. The olive grove might potentially represent a relevant land use to improve C sequestration in soil, but there are few data available to support this hypothesis. In a study site located in central Italy (Deruta, PG), we analyzed the soil organic carbon (SOC) pools in two olive groves of different age (7 and 30 years) and, as control, in a site adjacent to the groves cropped with cereals for at least 30 years. With the aim to isolate and quantify the active, intermediate and passive functional SOC pools in the olive groves and in the control, we used a combined physical and chemical fractionation method (Zimmermann et al., 2007). The main results shown that the total organic carbon content in the Ap horizons was the highest in the 30-years-old olive grove, followed by the 7-years-old olive grove, and then by the control soil. The content of active C, in form of particulate organic matter (POM) and water soluble organic matter (WEOM), was greater in the olive grove compared to the control soil and increase with the age of the grove. About the amount of C in the intermediate and passive pools, no significant differences were found among the olive groves and the control. These preliminary results indicated that the greater total organic C content occurred in the 30-year-old olive grove with respect to the 7-years-old grove and the control, has to be ascribed to the greater content of active organic matter (POM and WEOM), and not to the accumulation in soil of organic C in a more stabilised form.

  4. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees.

    Science.gov (United States)

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R(2) 0.91 (p organic matter R(2) 0.98 (p organic matter for upper soil horizons in a nondestructive method.

  5. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2017-04-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the micropore-controlled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  6. processes controlling the depth distribution of soil organic carbon

    Science.gov (United States)

    Murphy, Brian; Wilson, Brian; Koen, Terry

    2017-04-01

    Knowledge of the processes controlling the depth distribution of soil organic carbon (SOC) has two major purposes: A. Providing insights into the dynamics of SOC) that can be used for managing soil organic carbon and improving soil carbon sequestration B. The prediction of SOC stocks from surface measurements of soil carbon. We investigated the depth distributions of SOC in a range of soils under a number of land management practices tested how various mathematical models fitted these distributions. The mathematical models included exponential, power functions, inverse functions and multiphase exponential functions. While spline functions have been shown to fit depth distributions of SOC, the use of these functions is largely a data fitting exercise and does not necessarily provide insight into the processes of SOC dynamics. In general soils that were depleted of SOC (under traditional tillage and land management practices that deplete the soil of SOC) had depth distributions that were fitted closely by a number of mathematical functions, including the exponential function. As the amount of SOC in the soil increased, especially in the surface soils, it became clear that the only mathematical function that could reasonably fit the depth distribution of SOC was the multiphase exponential model. To test the mathematical models further, several of the depth distributions were tested with semi-log plots of depth v log (SOC). These plots clearly showed that there were definite phases in the distribution of SOC with depth. The implication is that different processes are occurring in the addition and losses of SOC within each of these phases, and the phases identified by the semi-log plots appear to be equivalent to the zones of SOC cycling postulated by Eyles et al. (2015). The identification of these zones has implications for the management and sequestration of carbon in soils. Eyles, A, Coghlan, G, Hardie, M, Hovenden, M and Bridle, K (2015). Soil carbon sequestration

  7. Erosion of organic carbon from mountain forest by landslides

    Science.gov (United States)

    Hilton, Robert; Meunier, Patrick; Hovius, Niels; Bellingham, Peter; Galy, Albert

    2010-05-01

    Erosion of particulate organic carbon (POC) from mountains is known to occur at very high rates. This is true of both POC from the terrestrial biosphere (vegetation and soil) and that contained in sedimentary rocks of variable geological age. To understand the controls on the carbon transfer from these different reservoirs, and how they might change under evolving tectonic and climatic forcing, it is necessary to examine the mechanisms responsible for erosion of POC in mountains. Here we quantify the role of landslides in the transfer of POC in natural, forested catchments of the western Southern Alps, New Zealand, using remote sensing and measurements of standing biomass density. First, we derive a model to account for variations in biomass density and carbon stock with altitude based on forest plot measurements. This is combined with the probability distribution of landslide area as a function of elevation, derived over the last four decades, to quantify the rate of landslide-driven erosion of biogenic POC. We also quantify the erosion of fossil POC from bedrock using area-volume scaling laws and the organic carbon content of bedrock. Our findings suggest that high fossil and non-fossil POC erosion rates can be sustained by landslides and highlight the importance of landslides for the input of fossil POC to river networks. We also seek to quantify the proportion of the mobilized POC that is delivered directly to the channel thalweg. We find an important fraction of the mobilized carbon remains on hillslopes. The precise role of this transient carbon store within the landscape remains to be assessed, as does the specific nature of the coupling between hillslopes and river channels and its implications for the fate of landslide-mobilized POC.

  8. Soil Organic Carbon Stocks in Depositional Landscapes of Bavaria

    Science.gov (United States)

    Kriegs, Stefanie; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2016-04-01

    Erosion leads to redistribution and accumulation of soil organic matter (SOM) within agricultural landscapes. These fluvic and colluvic deposits are characterized by a highly diverse vertical structure and can contain high amounts of soil organic carbon (SOC) over the whole soil profile. Depositional landscapes are therefore not only productive sites for agricultural use but also influence carbon dynamics which is of great interest with regard on the recent climate change debate. The aim of our study is to elucidate the spatial distribution of organic carbon stocks, as well as its depth function and the role of these landscapes as a reservoir for SOM. Therefore we compare two representative depositional landscapes in Bavaria composed of different parent materials (carbonate vs. granitic). We hypothesize that the soils associated with different depositional processes (fluvial vs. colluvial) differ in SOC contents and stocks, also because of different hydromorphic regimes in fluvic versus colluvic soil profiles. Sampling sites are located in the Alpine Foreland (quaternary moraines with carbonatic parent material) and the foothills of the Bavarian Forest (Granite with Loess) with the main soil types Fluvisols, Gleysols and Luvisols. At both sites we sampled twelve soil profiles up to 150 cm depth, six in the floodplain and six along a vertical slope transect. We took undisturbed soil samples from each horizon and analyzed them for bulk density, total Carbon (OC and IC) and total Nitrogen (N) concentrations. This approach allows to calculate total OC contents and OC stocks and to investigate vertical and horizontal distribution of OC stocks. It will also reveal differences in OC stocks due to the location of the soil profile in fluvic or colluvic deposition scenarios.

  9. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy....... Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...

  10. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  11. Enhanced top soil carbon stocks under organic farming.

    Science.gov (United States)

    Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs

    2012-10-30

    It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

  12. Recent Advances in Carbon Capture with Metal-Organic Frameworks.

    Science.gov (United States)

    Stylianou, Kyriakos C; Queen, Wendy L

    2015-01-01

    The escalating level of CO(2) in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO(2) emissions, however, the energy cost associated with post-combustion carbon capture process alone is ∼30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO(2). In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO(2) adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

  13. Temperature controls organic carbon sequestration in a subarctic lake

    Science.gov (United States)

    Rantala, Marttiina V.; Luoto, Tomi P.; Nevalainen, Liisa

    2016-10-01

    Widespread ecological reorganizations and increases in organic carbon (OC) in lakes across the Northern Hemisphere have raised concerns about the impact of the ongoing climate warming on aquatic ecosystems and carbon cycling. We employed diverse biogeochemical techniques on a high-resolution sediment record from a subarctic lake in northern Finland (70°N) to examine the direction, magnitude and mechanism of change in aquatic carbon pools prior to and under the anthropogenic warming. Coupled variation in the elemental and isotopic composition of the sediment and a proxy-based summer air temperature reconstruction tracked changes in aquatic production, depicting a decline during a cool climate interval between ~1700–1900 C.E. and a subsequent increase over the 20th century. OC accumulation rates displayed similar coeval variation with temperature, mirroring both changes in aquatic production and terrestrial carbon export. Increase in sediment organic content over the 20th century together with high inferred aquatic UV exposure imply that the 20th century increase in OC accumulation is primarily connected to elevated lake production rather than terrestrial inputs. The changes in the supply of autochthonous energy sources were further reflected higher up the benthic food web, as evidenced by biotic stable isotopic fingerprints.

  14. Effects of organic carbon sequestration strategies on soil enzymatic activities

    Science.gov (United States)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  15. Aged Riverine Particulate Organic Carbon in Four UK Catchments

    Science.gov (United States)

    Adams, Jessica; Tipping, Edward; Bryant, Charlotte; Helliwell, Rachel; Toberman, Hannah; Quinton, John

    2016-04-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO14C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO14C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO14C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-14C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO14C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO14C in rivers draining catchments with low erosion rates.

  16. Dispersion of Single-Walled Carbon Nanotubes in Organic Solvents

    OpenAIRE

    Cheng, Qiaohuan

    2010-01-01

    This thesis contains a systematic study of the dispersion of pristine HiPco Single Walled Carbon Nanotubes (SWNTs) in a series of organic solvents. A double beamed UV-Vis-NIR absorption spectrometer coupled with an integrating sphere was employed to demonstrate the dispersibility of SWNTs in different solvents. Raman Spectroscopy and Atomic Force Microscopy (AFM) were used to confirm the debundling and exfoliation of SWNTs aggregates. An investigation of the solubility of SWNTs in four chlori...

  17. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  18. Direct measurement of riverine particulate organic carbon age structure

    Science.gov (United States)

    Rosenheim, Brad E.; Galy, Valier

    2012-10-01

    Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.

  19. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure

    NARCIS (Netherlands)

    Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lessard, R.

    1998-01-01

    More than 19 million Mg of dairy manure are produced annually in the Canadian provinces of Quebec and Ontario, and most of it is spread on agricultural fields. Quantitative information on the impact of manure management practices on levels of soluble organic carbon (SOC) and emissions of CO 2 is

  20. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    Science.gov (United States)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  1. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  2. An Empirical Riverine Carbon Budget for New Zealand: National scale estimate of organic and inorganic carbon.

    Science.gov (United States)

    Scott, D. T.; Baisden, W. T.; Davies-Colley, R.; Trustrum, N.

    2002-12-01

    New Zealand rivers contribute a large amount of sediment to the ocean, partially attributable to tectonic uplift combined with softer rocks under inappropriate land-use and high-frequency rain events. Preliminary calculations suggest that in NZ between 3-11 Mt carbon is transported annually through erosion, compared with about 8.5 Mt per yr released from fossil fuel burning. Therefore, if a large proportion of this erosional carbon is oxidized before sequestration in sedimentary basins, soil erosion may represent a major greenhouse contribution. Our current study aims to refine a national estimate of both particulate and dissolved organic carbon leaving New Zealand through rivers. We are also attempting to understand both the biochemical processing of organic matter in transit to the ocean, as well as the resulting evasional flux of CO2 to the atmosphere. Initial estimates of these fluxes based on measurements collected over a 12-month period from 50 rivers, as well as from a number of flood snapshots around the country, will be presented. Using surrogates such as spectrophotometric absorbance for DOC developed using this year's dataset, these measurements will be used to quantify the annual riverine flux of particulate and organic carbon from a 12-year record. Carbon fluxes from individual catchments will also be compared to landscape properties (soil parent material, slope, climate, and land-use patterns). The relationship between the solute flux from and landscape properties within a catchment is crucial to extending the estimates of carbon flux to ungauged catchments to estimate total carbon flux in river drainage from the NZ landmass.

  3. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    Directory of Open Access Journals (Sweden)

    L. Monika Moskal

    2012-08-01

    Full Text Available The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01 at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01 at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01 at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01 at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method.

  4. Effect of Different Cultivation Periods on Soil Stable Organic Carbon Pool in Citrus Orchard

    Directory of Open Access Journals (Sweden)

    WANG Yi-xiang

    2015-08-01

    Full Text Available Effect of different cultivation periods on soil stable organic carbon pools and fractions in citrus orchard was investigated to provide scientific basis on the study of orchard soil carbon sequestration by the temporal-spatial substitution method and physical and chemical fractionation method. The results showed that the citrus orchard planted in 1954 compared with the citrus orchard planted in 1980, the content of total organic carbon increased by 27.16%, organic carbon content in macro-aggregates increased by 13.59%, organic carbon content in micro-aggregates increased by 80.19%, organic carbon content of heavy fraction increased by 29.25%, resistant organic carbon content increased by 32.00%, black carbon content increased by 4.01%. Organic carbon which combined with micro-aggregates was protected, and resistant organic carbon and black carbon were recalcitrant organic carbon in soil, this indicated that the stable organic carbon fractions gradually enriched in soil with the increase of growing periods, which was conducive to improve carbon sink in citrus orchard soil.

  5. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  6. Primary and secondary organic carbon downwind of Mexico City

    Directory of Open Access Journals (Sweden)

    X.-Y. Yu

    2009-01-01

    Full Text Available In order to study particulate matter transport and transformation in the Megacity environment, fine particulate carbons were measured simultaneously at two supersites, suburban T1 and rural T2, downwind of Mexico City during the MILAGRO field campaign in March 2006. Organic carbon (OC, element carbon (EC, and total carbon (TC=OC+EC were determined in near real-time using a Sunset semi-continuous OC/EC field analyzer. The semi-empirical EC tracer method was used to derive primary organic carbon (POC and secondary organic carbon (SOC. Diurnal variations of primary and secondary carbons were observed at T1 and T2, which resulted from boundary layer inversion and impacted by local traffic patterns. The majority of organic carbon particles at T1 and T2 were secondary. The SOC% (SOC%=SOC/TC×100% at T1 ranged from 1.2–100% with an average of 80.7±14.4%. The SOC% at T2 ranged from 12.8–100% with an average of 80.1±14.0%. The average EC to PM2.5 percentage (ECPM%=EC/PM2.5×100% and OCPM% were 6.0% and 20.0% over the whole sampling time at T1. The POC to PM percentage (POCPM% and SOCPM% were 3.7% and 16.3%, respectively at the same site. The maximum ECPM% was 21.2%, and the maximum OCPM% was 57.2% at T1. The maximum POCPM% was 12.9%, and the maximum SOCPM% was 49.7% at the suburban site. Comparison of SOC and POC at T1 and T2 showed similar characteristics under favorable meteorological conditions, which indicated that transport between the two supersites took place. Strong correlations between EC and carbon monoxide (CO and odd nitrogen species (NO and NOx were observed at T1. This indicated that EC had nearby sources, such as local traffic emissions. The EC/CO ratio derived by linear regression analysis, when parameters in μg C/m3 and μg/m3, respectively, was 0.0045 at T1. Correlations were also seen

  7. Primary and secondary organic carbon downwind of Mexico City

    Directory of Open Access Journals (Sweden)

    X.-Y. Yu

    2009-09-01

    Full Text Available In order to study particulate matter transport and transformation in the Megacity environment, fine particulate carbon was measured simultaneously at two supersites, suburban T1 and rural T2, downwind of Mexico City during the MILAGRO field campaign in March 2006. Organic carbon (OC, element carbon (EC, and total carbon (TC=OC+EC were determined in near real-time using a Sunset semi-continuous OCEC field analyzer. The semi-empirical EC tracer method was used to derive primary organic carbon (POC and secondary organic carbon (SOC. Diurnal variations of primary and secondary carbon were observed at T1 and T2, which resulted from boundary layer inversion and impacted by local traffic patterns. The majority of organic carbon particles at T1 and T2 were secondary. The SOCTC% (SOC%=SOC/TC×100% at T1 ranged from 0.5–93.8% with an average of 63.5±17.2%. The SOCTC% at T2 ranged from 9.3–98.1% with an average of 67.4±12.4%. The average EC to PM2.5 percentage (ECPM%=EC/PM2.5×100% and OCPM% were 6.0% and 20.0% over the whole sampling time at T1. The POC to PM percentage (POCPM% and SOCPM% were 3.7% and 16.3%, respectively at the same site. The maximum ECPM% was 21.2%, and the maximum OCPM% was 57.2% at T1. The maximum POCPM% was 12.9%, and the maximum SOCPM% was 49.7% at T1. Comparison of SOC and POC at T1 and T2 showed similar characteristics under favorable meteorological conditions, which indicated that transport from T1 towards T2 took place. Strong correlations between EC and carbon monoxide (CO and odd nitrogen species (NO and NOx were observed at T1. This indicated that EC had nearby sources, such as local traffic emissions. The EC/CO ratio derived by linear regression analysis, with units of μg C/m3 and μg/m3, respectively, was 0.004 at T1. Correlations were also seen between

  8. Carbon materials as catalysts for the ozonation of organic pollutants in water

    OpenAIRE

    Pereira, M. F. R.; Gonçalves,A.G.; Órfão, J. J. M.

    2014-01-01

    [EN] A brief overview about the use of carbon materials as metal free ozonation catalysts is presented. Carbon materials (activated carbons, carbon xerogels, carbon nanofibers and carbon nanotubes) have been shown to be active catalysts in the ozonation of a wide range of organic pollutants. Carbon materials with surface basic properties (i.e. high electron density) and with large pores are the most promising for this process.

  9. Organic carbon redistribution due to erosion at various spatial scales

    Science.gov (United States)

    Jakab, Gergely; Szabó, Judit; Szalai, Zoltán; Mészáros, Erzsébet; Szabó, Boglárka; Centeri, Csaba

    2016-04-01

    Soil organic carbon (SOC) has a crucial role both in terms of crop production and climate change mitigation. Soil could be an effective sink of atmospheric carbon since in agricultural areas the carbon content of the soil is much lower than its capacity. The main obstacle against carbon charge of the soils is cultivation and erosion. Soil detachment, delivery and deposition are rather scale dependent processes that is why it is difficult to compare or extrapolate results among scales. Present case study aims to compare the SOC content and soil organic matter (SOM) compound of the detached soil particles on the ridge to those that are deposited at the bottom of the catena in order to clarify the role of delivery in soil erosion. Initial soil erosion was modelled using a laboratory rainfall simulator at the point scale. Deposition was surveyed and analysed by 3D sampling from drillings on the sedimentary parts at the field scale. At the detachment phase carbon enrichment (50-100%) and C/N ratio increase were found in each aggregate size class of the detached soil particles. Variations in SOM compounds suggested that a very intensive SOM exchange took place during initial erosion processes and delivery. In addition to the selective erosion selective SOC deposition were also found at the field scale. Two topographical hotspots were identified as the place of SOC surplus deposition. In these patches SOM compounds were deposited separately due to different geomorphologic positions. The lower patch next to the end of an ephemeral gully was dominated by less polymerized more aromatic SOM, while the upper one was ruled by high molecular weighted aliphatic SOM. Difference in SOM compound was manifested also in different sediment morphology. The topographically higher deposition patch were covered by aggregates while the lower one was found to be sealed by individual soil particles. Present study was supported by the National Hungarian Research Found K100180, G. Jakab was

  10. Dissolved organic carbon (DOC in Arctic ground ice

    Directory of Open Access Journals (Sweden)

    M. Fritz

    2015-01-01

    Full Text Available Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC, dissolved inorganic carbon (DIC and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1. Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg and DIC (33.6 Tg pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.

  11. Validation and Scenario Analysis of a Soil Organic Carbon Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Yao; LIU Shi-liang; SHEN Qi-rong; ZONG Liang-gang; JIANG Ding-an; HUANG Hong-guang

    2002-01-01

    A model developed by the authors was validated against independent data sets. The data sets were obtained from field experiments of crop residue decomposition and a 7-year soil improvement in Yixing City, Jiangsu Province. Model validation indicated that soil organic carbon dynamics can be simulated from the weather variables of temperature, sunlight and precipitation, soil clay content and bulk density, grain yield of previous crops, qualities and quantities of the added organic matter. Model simulation in general agreed with the measurements. The comparison between computed and measured resulted in correlation coefficient γ2 values of 0.9291 * * * (n = 48) and 0. 6431 * * (n = 65) for the two experiments, respectively. Model prediction under three scenarios of no additional organic matter input, with an annual incorporation of rice and wheat straw at rates of 6.75t/ha and 9.0t/ha suggested that the soil organic carbon in Wanshi Township of Yixing City would be from an initial value of 7.85g/kg in 1983 to 6.30g/kg, 11.42g/kg and 13g/kg in 2014, respectively. Consequently, total nitrogen content of the soil was predicted to be respectively 0.49g/kg,0.89g/kg and 1.01g/kg under the three scenarios.

  12. Geomorphic controls on riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon

    Science.gov (United States)

    Grabs, T.; Ledesma, J.; Laudon, H.; Seibert, J.; Kohler, S. J.; Bishop, K. H.

    2014-12-01

    Near stream (riparian) zones are an important link between terrestrial and aquatic ecosystems and influence a wide range of processes including solute transport or hydrologic behavior of headwater catchments. Understanding the links between geomorphology and riparian soils, vegetation and hydrology is, thus, a prerequisite for relating small scale processes to observations at the watershed scale. Geographic information systems (GIS) have traditionally been used to study links between geomorphology and properties of terrestrial ecosystems. Applying this approach to riparian zones, however, has only recently become feasible with the availability of high-resolution digital elevation models and the new development of suitable computational methods. In this study we present links between geomorphology and riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon. Geomorphometric attributes were successfully used to predict (1) riparian groundwater levels and flow pathways, (2) the size of riparian soil carbon pools, (3) the vertical variation of dissolved organic carbon (DOC) in riparian soil profiles, as well as (4) riparian carbon fluxes and turnover times.

  13. Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams

    Science.gov (United States)

    Winterdahl, Mattias; Wallin, Marcus B.; Karlsen, Reinert Huseby; Laudon, Hjalmar; Öquist, Mats; Lyon, Steve W.

    2016-10-01

    Streams and rivers emit large quantities of carbon dioxide (CO2) to the atmosphere. The sources of this CO2 are in-stream mineralization of organic carbon (OC) and CO2 input via groundwater inflow, but their relative importance is largely unknown. In this study, we quantified the role of in-stream OC mineralization as a source of CO2 in a number of nested boreal headwater streams. The results showed that mineralization of stream OC contributed 3% of CO2 supersaturation at time scales comparable to the estimated water travel times in the streams (soil respiration.

  14. Soil organic carbon distribution in roadside soils of Singapore.

    Science.gov (United States)

    Ghosh, Subhadip; Scharenbroch, Bryant C; Ow, Lai Fern

    2016-12-01

    Soil is the largest pool of organic carbon in terrestrial systems and plays a key role in carbon cycle. Global population living in urban areas are increasing substantially; however, the effects of urbanization on soil carbon storage and distribution are largely unknown. Here, we characterized the soil organic carbon (SOC) in roadside soils across the city-state of Singapore. We tested three hypotheses that SOC contents (concentration and density) in Singapore would be positively related to aboveground tree biomass, soil microbial biomass and land-use patterns. Overall mean SOC concentrations and densities (0-100 cm) of Singapore's roadside soils were 29 g kg(-1) (4-106 g kg(-1)) and 11 kg m(-2) (1.1-42.5 kg m(-2)) with median values of 26 g kg(-1) and 10 kg m(-2), respectively. There was significantly higher concentration of organic carbon (10.3 g kg(-1)) in the top 0-30 cm soil depth compared to the deeper (30-50 cm, and 50-100 cm) soil depths. Singapore's roadside soils represent 4% of Singapore's land, but store 2.9 million Mg C (estimated range of 0.3-11 million Mg C). This amount of SOC is equivalent to 25% of annual anthropogenic C emissions in Singapore. Soil organic C contents in Singapore's soils were not related to aboveground vegetation or soil microbial biomass, whereas land-use patterns to best explain variance in SOC in Singapore's roadside soils. We found SOC in Singapore's roadside soils to be inversely related to urbanization. We conclude that high SOC in Singapore roadside soils are probably due to management, such as specifications of high quality top-soil, high use of irrigation and fertilization and also due to an optimal climate promoting rapid growth and biological activity.

  15. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties ...... grasslands, which can be explained by lower accumulation of binding agents of microbial origin. This can have implications for the accumulation of atmospheric CO2 in soil and for the susceptibility of SOC to external disturbances such as management and environmental changes.......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy...

  16. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  17. Organic carbon in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  18. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2010-11-01

    Full Text Available Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON and organic carbon (OC as well as isotopic ratios of total nitrogen (TN and total carbon (TC. Increased concentrations of methanesulfonic acid (MSA and diethylammonium (DEA+ at 40–44° N and subtropical regions (10–20° N together with averaged satellite chlorophyll a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited increased concentrations up to 260 ngN m−3 in these marine biologically influenced aerosols. Water-insoluble organic nitrogen (WION was found to be the most abundant nitrogen in the aerosols, accounting for 55 ± 16% of total aerosol nitrogen. In particular, the average WION/ON ratio was as high as 0.93 ± 0.07 at 40–44° N. These results suggest that marine biological sources significantly contributed to ON, a majority of which is composed of water-insoluble fractions in the study region. Analysis of the stable carbon isotopic ratios (δ13C indicated that, on average, marine-derived carbon accounted for ~88 ± 12% of total carbon in the aerosols. In addition, the δ13C increased from −22 to −20‰ when ON/OC ratios increased from 0.15 to 0.35 in marine biologically influenced aerosols. These results clearly show that organic nitrogen is enriched in organic aerosols originated from an oceanic region with high biological productivity, indicating a preferential transfer of nitrogen-containing organic compounds from the sea surface to the marine atmosphere. Both WION concentrations and WION/water-insoluble organic carbon (WIOC ratios showed positive correlations with local wind speeds, suggesting that sea-to-air emissions of ON via sea spray significantly contributes to marine organic aerosols over the

  19. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2011-04-01

    Full Text Available Marine aerosol samples were collected over the western North Pacific along the latitudinal transect from 44° N to 10° N in late summer 2008 for measurements of organic nitrogen (ON and organic carbon (OC as well as isotopic ratios of total nitrogen (TN and total carbon (TC. Increased concentrations of methanesulfonic acid (MSA and diethylammonium (DEA+ at 40–44° N and subtropical regions (10–20° N together with averaged satellite chlorophyll-a data and 5-day back trajectories suggest a significant influence of marine biological activities on aerosols in these regions. ON exhibited increased concentrations up to 260 ngN m−3 in these marine biologically influenced aerosols. Water-insoluble organic nitrogen (WION was found to be the most abundant nitrogen in the aerosols, accounting for 55 ± 16% of total aerosol nitrogen. In particular, the average WION/ON ratio was as high as 0.93 ± 0.07 at 40–44° N. These results suggest that marine biological sources significantly contributed to ON, a majority of which is composed of water-insoluble fractions in the study region. Analysis of the stable carbon isotopic ratios (δ13C indicated that, on average, marine-derived carbon accounted for ~88 ± 12% of total carbon in the aerosols. In addition, the δ13C showed higher values (from −22 to −20‰ when ON/OC ratios increased from 0.15 to 0.35 in marine biologically influenced aerosols. These results clearly show that organic nitrogen is enriched in organic aerosols originated from an oceanic region with high biological productivity, indicating a preferential transfer of nitrogen-containing organic compounds from the sea surface to the marine atmosphere. Both WION concentrations and WION/water-insoluble organic carbon (WIOC ratios tended to increase with increasing local wind speeds, indicating that sea-to-air emissions of ON via sea spray contribute significantly to the marine organic

  20. Highly fluorescent xerogels with entrapped carbon dots for organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.it [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Carturan, S. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Campagnaro, A.; Dalla Palma, M. [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Giarola, M.; Daldosso, N. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy); Maggioni, G. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Mariotto, G. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy)

    2014-02-28

    Organically modified silicate thin film and bulk samples were prepared using [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAP-TMOS) as precursor with the addition of different amounts of AEAP-TMOS functionalized C-dots, prepared by reaction of AEAP-TMOS and citric acid at high temperature. The synthesis of surface functionalized C-dots was followed by Fourier Transform Infrared (FTIR) spectroscopy, and the C-dots optical properties were characterized by optical absorption and UV–vis fluorescence. Thin xerogel films and bulk samples were studied by FTIR, Raman and fluorescence spectroscopy. Intense blue-green emission was observed by UV excitation of functionalized C-dots. Carbon quantum dot (CQD) luminescence was preserved also in the xerogel matrices, and the energy transfer from the matrix to CQDs, which is a key characteristic for scintillation detectors, was investigated in the two systems. - Highlights: • Functionalized carbon dots were synthesized. • Carbon dots were dispersed in hybrid xerogel bulk and thin film. • Carbon dots exhibit a strong tunable blue luminescence. • Xerogels were characterized by FT-IR, Raman and fluorescence spectroscopies. • Energy transfer processes were evidenced between C-dots and xerogel matrix.

  1. Global ocean particulate organic carbon flux merged with satellite parameters

    Science.gov (United States)

    Mouw, Colleen B.; Barnett, Audrey; McKinley, Galen A.; Gloege, Lucas; Pilcher, Darren

    2016-10-01

    Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. The compilation includes six time series locations: CARIACO, K2, OSP, BATS, OFP, and HOT. Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth; thus biologically related parameters able to be estimated from satellite observations were merged at the POC observation sites. Satellite parameters include net primary production, percent microplankton, sea surface temperature, photosynthetically active radiation, diffuse attenuation coefficient at 490 nm, euphotic zone depth, and climatological mixed layer depth. Of the observations across the globe, 85 % are concentrated in the Northern Hemisphere with 44 % of the data record overlapping the satellite record. Time series sites accounted for 36 % of the data, while 71 % of the data are measured at ≥ 500 m with the most common deployment depths between 1000 and 1500 m. This data set is valuable for investigations of CO2 drawdown, carbon export, remineralization, and sequestration. The compiled data can be freely accessed at doi:10.1594/PANGAEA.855600.

  2. Porous Organic Polymers for Post-Combustion Carbon Capture.

    Science.gov (United States)

    Zou, Lanfang; Sun, Yujia; Che, Sai; Yang, Xinyu; Wang, Xuan; Bosch, Mathieu; Wang, Qi; Li, Hao; Smith, Mallory; Yuan, Shuai; Perry, Zachary; Zhou, Hong-Cai

    2017-10-01

    One of the most pressing environmental concerns of our age is the escalating level of atmospheric CO2 . Intensive efforts have been made to investigate advanced porous materials, especially porous organic polymers (POPs), as one type of the most promising candidates for carbon capture due to their extremely high porosity, structural diversity, and physicochemical stability. This review provides a critical and in-depth analysis of recent POP research as it pertains to carbon capture. The definitions and terminologies commonly used to evaluate the performance of POPs for carbon capture, including CO2 capacity, enthalpy, selectivity, and regeneration strategies, are summarized. A detailed correlation study between the structural and chemical features of POPs and their adsorption capacities is discussed, mainly focusing on the physical interactions and chemical reactions. Finally, a concise outlook for utilizing POPs for carbon capture is discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon W.; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  4. Anthropogenic non-methane volatile hydrocarbons at Mt. Cimone (2165 m a.s.l., Italy): Impact of sources and transport on atmospheric composition

    Science.gov (United States)

    Lo Vullo, Eleonora; Furlani, Francesco; Arduini, Jgor; Giostra, Umberto; Graziosi, Francesco; Cristofanelli, Paolo; Williams, Martin L.; Maione, Michela

    2016-09-01

    To advance our understanding of the factors that affect pollution in mountainous areas, long-term, high frequency measurements of thirteen Non Methane Volatile Organic Compounds (NMVOCs) have been carried out at the atmospheric observatory on the top of Mt. Cimone (2165 m a.s.l.), whose location is ideal for sampling both aged air masses representing the regional background and polluted air masses coming from nearby sources of anthropogenic pollution. An analysis of the NMVOC time series available at Mt. Cimone during 2010-2014 was used to examine the influence of transport processes on NMVOC atmospheric composition and to derive information on the emission sources. We performed a multifactor principal component analysis whose results allowed us to identify the source categories emitting the NMVOCs measured at Mt. Cimone as well as to assess transport ranges in winter and summer. Aged air masses, due to long-range transport and related to vehicular traffic exhaust emissions accounted for 78% of the NMVOC variability in winter and 62% in summer, whereas evaporative emissions, likely to be associated with fresh emissions from nearby sources, accounted for 12% of the NMVOC variability and 24% in winter and summer, respectively. Such results have been confirmed by a further analysis in which the NMVOC variability as a function of their atmospheric lifetimes has been evaluated. The ratios of alkane isomers potentially provides a metric to investigate seasonal changes in NMVOCs composition and in the emission fields of butanes and pentanes, suggesting that during the summer the butanes are originating mainly from the European domain and that for pentanes non-anthropogenic sources may be contributing to the measured concentrations.

  5. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (satellite data with carefully developed algorithms can greatly increase

  6. Spatial Characteristics of Soil Organic Carbon Storage in China's Croplands

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-Qiang; YU Gui-Rui; ZHAO Qian-Jun; NIU Dong; CHEN Qing-Mei; WU Zhi-Feng

    2005-01-01

    The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1 546typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.

  7. Organic carbon decomposition rates controlled by water retention time across inland waters

    Science.gov (United States)

    Catalán, Núria; Marcé, Rafael; Kothawala, Dolly N.; Tranvik, Lars. J.

    2016-07-01

    The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical component of the global carbon cycle. Yet, the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question, hampered by the absence of a common predictor of organic carbon decay rates. Here we analyse a compilation of existing field and laboratory measurements of organic carbon decay rates and water residence times across a wide range of aquatic ecosystems and climates. We find a negative relationship between the rate of organic carbon decay and water retention time across systems, entailing a decrease in organic carbon reactivity along the continuum of inland waters. We find that the half-life of organic carbon is short in inland waters (2.5 +/- 4.7 yr) compared to terrestrial soils and marine ecosystems, highlighting that freshwaters are hotspots of organic carbon degradation. Finally, we evaluate the response of organic carbon decay rates to projected changes in runoff. We calculate that regions projected to become drier or wetter as the global climate warms will experience changes in organic carbon decay rates of up to about 10%, which illustrates the influence of hydrological variability on the inland waters carbon cycle.

  8. Burial of organic carbon and carbonate on inner shelf of the northern South China Sea during the postglacial period

    Institute of Scientific and Technical Information of China (English)

    Shouye YANG; Wyss W.-S. YIM; Min TANG; Guangqing HUANG

    2008-01-01

    Two vibrocores from the inner shelf off Hong Kong are investigated to compare the contents of organic and inorganic carbon in postglacial sediments. The com-positions of organic elements and carbonate are highly variable in the core sediments, but overall drop within the compositional ranges of modern seabed sediments in the Zhujiang estuarine and its shelf area. The Holocene sediments in the inner shelf have never been subject to subaerial exposure and the organic matter and carbonate can be preserved well. The burial of carbon in river-domi-nated shelf environments is highly dependent on the river flux with time. Nevertheless, it is difficult to establish a simple relationship between carbon burial in sediments in relation to climatic changes of basin-wide scale due to complex controls of production, transport and deposition of organic matter and carbonate. Our study suggests that the organic carbon to nitrogen ratio can not reliably identify the sources of depositional organic matters because of selective decomposition of organic matter com-ponents during humification and sedimentation. Caution is therefore needed in using organic elemental composi-tions as indicators of organic matter sources and paleoen-vironmental changes in the East Asian continental shelves where intense river-sea interaction and variable carbon flux in geologic record occur.

  9. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  10. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  11. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  12. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.

    Science.gov (United States)

    Brooks, A J; Lim, Hyung-nam; Kilduff, James E

    2012-07-27

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  13. Carbonate and organic carbon content changes over last 20 ka in the Southeastern Arabian Sea: Paleoceanographic implications

    Digital Repository Service at National Institute of Oceanography (India)

    Narayana, A.C.; Naidu, P.D.; Shinu, N.; Nagabhushanam, P.; Sukhija, B.S.

    Two Gravity cores (AAS 38-4 and AAS 38-5) recovered from the eastern Arabian Sea were analyzed for calcium carbonate (CaCO3), organic carbon, aluminium (Al) and titanium (Ti) in order to understand the calcium carbonate and terrigenous fluctuations...

  14. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  15. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  16. Aggregate distribution and associated organic carbon influenced by cover crops

    Science.gov (United States)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  17. Organic carbon concentrations and stocks in Romanian mineral forest soils

    Directory of Open Access Journals (Sweden)

    Lucian C. Dincă

    2012-12-01

    Full Text Available Estimating soils organic carbon stock and its change in time is an actual concern for scientists and climate change policy makers. The present article firstly focus on determination of C stocks in Romania on forest soil types, as well as development of the spatial distribution mapping using a Geographic Information System (GIS and also the secondly on the quantification of uncertainty associated with currently available data on C concentration on forest soils geometrical layers. Determination of C stock was done based on forest management plans database created over 2000-2006. Unlike original database, the data for this study was harmonized on following depths: 0-10 cm, 10-20 cm, 20-40 cm, and > 40 cm. Then, the obtained values were grouped by soil types, resulting average values for the main forest soils from Romania. A soil area weighted average value of 137 t/ha is calculated for Romania, in the range of estimations for other European geographic and climatic areas. The soils that have the largest amount of organic carbon are andosols, vertisols, entic and haplic podzols, whereas the ones that have the smallest values of organic carbon are solonetz and solonchaks. Although current assessment relies on very large number of samples from the forest management planning database, the variability of C concentration remains very large, ~40-50% for coefficient the variation and ~100% of the average, when defining the range of 95% of entire soil population, rather showing the variability than uncertainty of the average estimated. Best fit for C concentration on geometric layers in any forest soil is asymmetric, associated with log-normal distributions.

  18. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    Energy Technology Data Exchange (ETDEWEB)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  19. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands.

  20. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  1. Association of Dissolved Mercury with Dissolved Organic Carbon in Rivers and Streams: The Role of Watershed Soil Organic Carbon

    Science.gov (United States)

    Stoken, O.; Riscassi, A.; Scanlon, T. M.

    2014-12-01

    Surface waters are an important pathway for the transport of atmospherically deposited mercury (Hg) from terrestrial watersheds. Dissolved Hg (HgD) is thought to be more bioavailable than particulate Hg and has been found to be strongly correlated with dissolved organic carbon (DOC) in numerous watersheds. The ratio of HgD to DOC is highly variable from site to site, which we hypothesize is strongly dependent on local environmental factors such as atmospheric deposition and soil organic carbon (SOC). Sixteen watersheds throughout the United States were used in this study to determine the relationship between the ratio of HgD:DOC, Hg wet deposition, and SOC. The Soil Survey Geographic database (SSURGO) and Northern Circumpolar Soil Carbon Database (NCSCD) were used to determine SOC values while HgD:DOC values were obtained from previous studies. Hg wet deposition was reported by the Mercury Deposition Network. There was no correlation found between atmospheric mercury wet deposition and HgD:DOC (r2 = 0.04; p = 0.44) but SOC was able to explain about 71% of the variation in the HgD:DOC ratio (r2 = 0.71; p Hg adsorbed to SOC does not increase in proportion to SOC at high SOC levels and points towards a Hg supply limitation for adsorption to soils with relatively deep carbon pools. Overall, this study identifies SOC as a first-order control on the association of HgD and DOC and indicates that globally available SOC datasets can be utilized to predict Hg transport in stream systems.

  2. Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific).

    Science.gov (United States)

    Kim, Jung-Hyun; Lee, Dong-Hun; Yoon, Suk-Hee; Jeong, Kap-Sik; Choi, Bohyung; Shin, Kyung-Hoon

    2017-02-01

    We investigated molecular distributions and stable carbon isotopic compositions (δ(13)C) of sedimentary n-alkanes (C15C35) in the riverbank and marine surface sediments to trace natural and anthropogenic organic carbon (OC) sources in the eastern Yellow Sea which is a river dominated marginal sea. Molecular distributions of n-alkanes are overall dominated by odd-carbon-numbered high molecular weight n-C27, n-C29, and n-C31. The δ(13)C signatures of n-C27, n-C29, and n-C31 indicate a large contribution of C3 gymnosperms as the main source of n-alkanes, with the values of -29.5 ± 1.3‰, -30.3 ± 2.0‰, and -30.0 ± 1.7‰, respectively. However, the contribution of thermally matured petroleum-derived OC to the sedimentary OC pool is also evident, especially in the southern part of the study area as shown by the low carbon preference index (CPI25-33, petroleum-induced OC on benthic food webs in this ecosystem. However, the relative proportions of the natural and petroleum-derived OC sources are not calculated due to the lack of biogeochemical end-member data in the study area. Hence, more works are needed to constrain the end-member values of the organic material supplied from the rivers to the eastern Yellow Sea and thus to better understand the source and depositional process of sedimentary OC in the eastern Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Linking the lithogenic, atmospheric, and biogenic cycles of silicate, carbonate, and organic carbon in the ocean

    Science.gov (United States)

    Smith, S. V.; Gattuso, J.-P.

    2009-07-01

    Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3- to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3- and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle. While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2 over time, which leads to ocean acidification, alters the relationship between organic and inorganic C reactions and carbon storage in the ocean. Thus, the carbon reactions and ψ can cause large variations in oceanic carbon storage with little exchange with the atmosphere.

  4. Linking the lithogenic, atmospheric, and biogenic cycles of silicate, carbonate, and organic carbon in the ocean

    Directory of Open Access Journals (Sweden)

    S. V. Smith

    2009-07-01

    Full Text Available Geochemical theory describes long term cycling of atmospheric CO2 between the atmosphere and rocks at the Earth surface in terms of rock weathering and precipitation of sedimentary minerals. Chemical weathering of silicate rocks takes up atmospheric CO2, releases cations and HCO3 to water, and precipitates SiO2, while CaCO3 precipitation consumes Ca2+ and HCO3 and releases one mole of CO2 to the atmosphere for each mole of CaCO3 precipitated. At steady state, according to this theory, the CO2 uptake and release should equal one another. In contradiction to this theory, carbonate precipitation in the present surface ocean releases only about 0.6 mol of CO2 per mole of carbonate precipitated. This is a result of the buffer effect described by Ψ, the molar ratio of net CO2 gas evasion to net CaCO3 precipitation from seawater in pCO2 equilibrium with the atmosphere. This asymmetry in CO2 flux between weathering and precipitation would quickly exhaust atmospheric CO2, posing a conundrum in the classical weathering and precipitation cycle.

    While often treated as a constant, Ψ actually varies as a function of salinity, pCO2, and temperature. Introduction of organic C reactions into the weathering-precipitation couplet largely reconciles the relationship. ψ in the North Pacific Ocean central gyre rises from 0.6 to 0.9, as a consequence of organic matter oxidation in the water column. ψ records the combined effect of CaCO3 and organic reactions and storage of dissolved inorganic carbon in the ocean, as well as CO2 gas exchange between the ocean and atmosphere. Further, in the absence of CaCO3 reactions, Ψ would rise to 1.0. Similarly, increasing atmospheric pCO2

  5. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  6. Sources, Subsidies and Sinks: Organic Carbon in Coastal Sediments

    Science.gov (United States)

    Austin, William; Smeaton, Craig

    2017-04-01

    Coastal sedimentary environments such as estuaries, deltas and fjords are sites characterised by high sedimentation rates and effective burial of organic carbon (OC). Fjords in particular have been shown to be hotspots for OC burial and storage. Additionally, the unique geomorphology of fjords and their proximity to the terrestrial environment mean that they are important receptors of terrestrially-derived OC. Such natural 'trapping' mechanisms prevent OC from reaching the open shelf where much of it would potentially be lost to the atmosphere through remineralisation. Though it is well documented that terrestrial OC (OCterr) is buried in fjords, the long-term (interglacial timescale) interactions between the OC stored in the terrestrial environment and in coastal sediments is less well defined. In this review, we outline the current understanding of both OCterr and Blue Carbon sources, subsidies and sinks (i.e. sediment stores) in the coastal sediments of the United Kingdom, with a view to outlining a methodology to establish a national coastal carbon inventory.

  7. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  8. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    Science.gov (United States)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging

  9. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for so

  10. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  12. OCoc-from Ocean Colour to Organic Carbon

    Science.gov (United States)

    Heim, B.; Doerffer, R.; Overduin, P. P.; Lantuit, H.; Hoelemann, J. A.; Kassens, H.; Wegner, C.

    2010-12-01

    The terrigenous carbon export into the Arctic shelf systems is a major component of the Arctic Organic Carbon (OC) cycle. Mac Guire et al.(2009)in their review on the Arctic Carbon Cycle recommendate to strengthen observations and design the research sector of 'scaling' that is a key challenge to link the processes observed and understood on fine scales to larger scales, e.g., needed for modeling. Here, remote sensing observations can become important tools. Recent development of satellite ocean color sensors such as MODIS, SeaWiFS, MERIS has been accompanied by an increased effort to establish Ocean Colour (OC) algorithms (e.g., for chlorophyll, suspended matter, coloured dissolved organic matter). The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses MERIS data for synoptical monitoring of terrigenous suspended and organic matter in the late-summer ice-free waters of the Laptev See region. MERIS Reduced Resolution (RR)-LIB data are processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS Case2 Regional processor for coastal application (C2R). Calculated aquatic parameters are optical coefficients and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. The Laptev Sea is characterized by a very shallow topography and considerable Regions of Fresh water Influence ROFIs. The maximum river discharge of the Lena River, the second largest Arctic river in terms of annual fresh water discharge happens during the spring ice-breakup in June. Fluvial systems serve as point sources for high fluxes of dissolved and particulate terrigenous materials. The Laptev Sea coast is a highly dynamic mainly sedimentary ice-rich system

  13. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2008-01-01

    The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log KOW of the neutral molecule and the dissociation constant pKa were...... calculated by the software ACD/Labs®. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Kd) normalized to organic carbon (KOC) from log KOW and pKa. The log...

  14. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  15. Photochemical Control of Organic Carbon Availability to Coastal Microbial Communities

    Science.gov (United States)

    Miller, W. L.; Reader, H. E.; Powers, L. C.

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) is the fraction of dissolved organic matter that absorbs solar radiation. In terrestrially influenced locations high concentrations of CDOM help to shield the biological community from harmful UV radiation. Although CDOM is largely biologically refractory in nature, photochemistry has the potential to transform biologically refractory carbon into more biolabile forms. Studies suggest that in marine systems, the effect of UVR on carbon availability and subsequent bacterial production varies widely, ranging from a +200% increase to a -75% decrease (Mopper and Kieber, 2002). Evidence suggests that the largely negative or “no-effect” samples are from oligotrophic waters and that terrestrially influenced samples experience a more positive effect on the biolability of carbon after irradiation. To quantify the effects of photochemistry on the biolability of DOC in a terrestrially influenced system, a quarterly sampling effort was undertaken at three estuarine locations off the coast of Georgia, USA for a total of 14 apparent quantum yield (AQY) determinations. Large expanses of salt marsh on the coast of Georgia, create a large non-point source of DOC to the coastal ocean. Sapelo Sound, the northernmost sampling site, is dominated by offshore waters and receives little to no freshwater input throughout the year. Altamaha Sound, the southernmost sampling site, is strongly influenced by the Altamaha River, which drains the largest watershed in the state of Georgia. Doboy Sound, situated between these two sites, is largely marine dominated but is influenced by fresh water during periods of high river flow. Each sample was 0.2um filter-sterilized before irradiation in a Suntest Solar Simulator; using optical filters to create 7 distinct radiance spectra in 15 samples for determination of AQY spectra for release of biolabile DOC. Irradiated samples were consequently inoculated with the natural microbial community concentrated

  16. [Size distributions of organic carbon (OC) and elemental carbon (EC) in Shanghai atmospheric particles].

    Science.gov (United States)

    Wang, Guang-Hua; Wei, Nan-Nan; Liu, Wei; Lin, Jun; Fan, Xue-Bo; Yao, Jian; Geng, Yan-Hong; Li, Yu-Lan; Li, Yan

    2010-09-01

    Size distributions of organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) in atmospheric particles with size range from 7.20 microm, collected in Jiading District, Shanghai were determined. For estimating size distribution of SOC in these atmospheric particles, a method of determining (OC/EC)(pri) in atmospheric particles with different sizes was discussed and developed, with which SOC was estimated. According to the correlation between OC and EC, main sources of the particles were also estimated roughly. The size distributions of OC and SOC showed a bi-modal with peaks in the particles with size of 3.0 microm, respectively. EC showed both of a bi-modal and tri-modal. Compared with OC, EC was preferably enriched in particles with size of particles (particles. OC and EC were preferably enriched in fine particles (particles with different sizes accounted for 15.7%-79.1% of OC in the particles with corresponding size. Concentrations of SOC in fine aerosols ( 3.00 microm) accounted for 41.4% and 43.5% of corresponding OC. Size distributions of OC, EC and SOC showed time-dependence. The correlation between OC and EC showed that the main contribution to atmospheric particles in Jiading District derived from light petrol vehicles exhaust.

  17. Soil organic carbon of an intensively reclaimed region in China: Current status and carbon sequestration potential.

    Science.gov (United States)

    Deng, Xunfei; Zhan, Yu; Wang, Fei; Ma, Wanzhu; Ren, Zhouqiao; Chen, Xiaojia; Qin, Fangjin; Long, Wenli; Zhu, Zhenling; Lv, Xiaonan

    2016-09-15

    Land reclamation has been highly intensive in China, resulting in a large amount of soil organic carbon (SOC) loss to the atmosphere. Evaluating the factors which drive SOC dynamics and carbon sequestration potential in reclaimed land is critical for improving soil fertility and mitigating global warming. This study aims to determine the current status and factors important to the SOC density in a typical reclaimed land located in Eastern China, where land reclamation has been undergoing for centuries. A total of 4746 topsoil samples were collected from 2007 to 2010. The SOC density of the reclaimed land (3.18±0.05kgCm(-2); mean±standard error) is significantly lower than that of the adjacent non-reclaimed land (5.71±0.04kgCm(-2)) (pcarbon sequestration potential of the reclaimed lands may achieve a maximum of 5.80±1.81kgCO2m(-2) (mean±SD) when dryland is converted to flooded land with vegetable-rice cropping system and soil pH of ~5.9. Note that in some scenarios the methane emission substantially offsets the carbon sequestration potential, especially for continuous rice cropping system. With the optimal setting for carbon sequestration, it is estimated that the dryland reclaimed in the last 50years in China is able to sequester 0.12milliontons CO2 equivalent per year.

  18. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Shirodkar, P.V.; Singbal, S.Y.S.

    Sediment organic carbon, total nitrogen, total phosphorous and hydrography of the overlying waters of the estuarine region in Mandovi Estuary, Goa, India have been studied. The relationship of carbon and nutrients with sediment characteristics...

  19. Total organic carbon in aggregates as a soil recovery indicator

    Science.gov (United States)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  20. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway)

    NARCIS (Netherlands)

    Breugel, Y. van; Schouten, S.; Paetzel, M.; Nordeide, R.; Sinninghe Damsté, J.S.

    2005-01-01

    A negative carbon isotope shift in sedimentary organic carbon deposited in stratified marine and lacustrine systems has often been inferred to be a consequence of the process of recycling of respired and, therefore, 13C-depleted, dissolved inorganic carbon (DIC) formed from mineralization of descend

  1. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  2. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  3. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions

    Science.gov (United States)

    Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.

    2012-01-01

    Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031

  4. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  5. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes.

    Science.gov (United States)

    Li, Hao; Zheng, Nan; Liang, Ni; Zhang, Di; Wu, Min; Pan, Bo

    2016-07-01

    Multi-walled carbon nanotubes (MC) were fluorinated by a solid-phase reaction method using polytetrafluoroethylene (PTFE). The surface alteration of carbon nanotubes after fluorination (MC-F) was confirmed based on surface elemental analysis, TEM and SEM. The incorporation of F on MC surface was discussed as F incorporation on carbon defects, replacement of carboxyl groups, as well as surface coating of PTFE. The adsorption performance and mechanisms of MC-F for five kinds of representative organic compounds: sulfamethoxazole (SMX), ofloxacin (OFL), norfloxacin (NOR), bisphenol a (BPA) and phenanthrene (PHE) were investigated. Although BET-N2 surface area of the investigated CNTs decreased after fluorination, the adsorption of all five chemicals increased. Because of the glassification of MC-F surface coating during BET-N2 surface area measurement, the accessible surface area of MC-F was underestimated. Desorption hysteresis was generally observed in all the sorption systems in this study, and the desorption hysteresis of MC-F were stronger than the pristine CNTs. The enhanced adsorption of MC-F may be attributed the pores generated on the coated PTFE and the dispersed CNT aggregates due to the increased electrostatic repulsion after fluorination. The rearrangement of the bundles or diffusion of the adsorbates in MC-F inner pores were the likely reason for the strong desorption hysteresis of MC-F. The butterfly structure of BPA resulted in its high sorption and strong desorption hysteresis. The exothermic sorption character of OFL on CNTs resulted in its strong desorption hysteresis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  7. Satellite observation of particulate organic carbon dynamics in ...

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical processes that influence POC sources and sinks. Using field observations and satellite ocean color products, we developed a nw multiple regression algorithm to estimate POC on the Louisiana Continental Shelf (LCS) from satellite observations. The algorithm had reliable performance with mean relative error (MRE) of ?40% and root mean square error (RMSE) of ?50% for MODIS and SeaWiFS images for POC ranging between ?80 and ?1200 mg m23, and showed similar performance for a large estuary (Mobile Bay). Substantial spatiotemporal variability in the satellite-derived POC was observed on the LCS, with high POC found on the inner shelf (<10 m depth) and lower POC on the middle (10–50 m depth) and outer shelf (50–200 m depth), and with high POC found in winter (January–March) and lower POC in summer to fall (August–October). Correlation analysis between long-term POC time series and several potential influencing factors indicated that river discharge played a dominant role in POC dynamics on the LCS, while wind and surface currents also affected POC spatial patterns on short time scales. This study adds another example where satellite data with carefully developed algorithms can greatly increase

  8. Particulate organic carbon and nitrogen export from major Arctic rivers

    Science.gov (United States)

    McClelland, J. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zhulidov, A. V.; Zimov, S. A.; Zimov, N.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; Gurtovaya, T. Y.; Griffin, C. G.

    2016-05-01

    Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.

  9. Molecular profiling of permafrost soil organic carbon composition and degradation

    Science.gov (United States)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  10. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  11. Dynamics of intracellular polymers in enhanced biological phosphorus removal processes under different organic carbon concentrations.

    Science.gov (United States)

    Xing, Lizhen; Ren, Li; Tang, Bo; Wu, Guangxue; Guan, Yuntao

    2013-01-01

    Enhanced biological phosphorus removal (EBPR) may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs) in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  12. A Predictable Terrestrial Signature to Riverine Dissolved Organic Carbon?

    Science.gov (United States)

    Sanderman, J.; Amundson, R.; Baldock, J. A.

    2007-12-01

    In small mountainous watersheds, the majority of dissolved organic carbon (DOC) is derived from terrigenous sources; however, there is much debate over the age and recalcitrance of these organic materials. To determine controls on the age and recalcitrance of DOC found in stream waters, we measured DOC composition in stream and soil water samples, using isotopic (13C and 14C) and spectroscopic (UV and 13C NMR) analyses, in conjunction with soil hydrometric conditions in two first-order watersheds with contrasting vegetation in northern California. In a low-gradient coastal prairie stream, we found low concentrations of old (Δ14C = -200 permil) DOC that most resembled stabilized soil organic matter found deep within the mineral soil during baseflow. In contrast, during storm events where saturation overland flow dominated runoff, we found high concentrations of young (Δ14C = +75 permil) DOC resembling fresher organic matter. These results contrast with observations from a high-gradient coniferous forest where there is a much narrower range in age and chemistry of stream DOC over time. In the forest, runoff generation is dominated by subsurface stormflow with little if any overland flow and there is a much narrower range of stream DOC concentration, age and chemistry DOC, all of which is comparable to that of older, stabilized soil organic matter. At both of these locations DOC in soil water varies with increasing depth: young to old and labile to recalcitrant - due to rapid exchange with surficially-bound organic matter on soil solids. Given this range in soil DOC properties, it appears that the flowpath of water through soils determines the age and composition of DOC as water enters the stream network. During throughflow conditions, the soil acts as a filter for fresh plant-derived DOC, releasing only aged and highly altered DOC to the stream. Shallow flowpaths will largely bypass this filter, resulting in the export of high concentrations of young and labile DOC

  13. Isolation and Partial Characterization of Bacterial Strains on Low Organic Carbon Medium from Soils Fertilized with Different Organic Amendments

    NARCIS (Netherlands)

    Senechkin, I.V.; Speksnijder, A.G.C.L.; Semenov, A.M.; Bruggen, van A.H.C.; Overbeek, van L.S.

    2010-01-01

    A total of 720 bacterial strains were isolated from soils with four different organic amendment regimes on a low organic carbon (low-C) agar medium (10 mu g C ml(-1)) traditionally used for isolation of oligotrophs. Organic amendments in combination with field history resulted in differences in diss

  14. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Phillips, Jana Randolph [ORNL

    2012-01-01

    Physico-chemical sorption of dissolved organic carbon (DOC) on soil minerals is one of the major processes of organic carbon (OC) stabilization in soils, especially in deeper layers. The attachment of C on soil solids is related to the reactivity of the soil minerals and the chemistry of the sorbate functional groups, but the sorption studies conducted without controlling microbial activity may overestimate the sorption potential of soil. This study was conducted to examine the sorptive characteristics of a diverse functional groups of simple OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols) with and without biological degradative processes. Equilibrium batch experiments were conducted using 0-100 mg C L-1 at a solid-solution ratio of 1:60 for 48 hrs and the sorption parameters were calculated by Langmuir model fitting. The amount of added compounds that remained in the solution phase was detected by high performance liquid chromatography (HPLC) and total organic C (TOC) analysis. Soil sterilization was performed by -irradiation technique and experiments were repeated to determine the contribution of microbial degradation to apparent sorption. Overall, Ultisols did not show a marked preference for apparent sorption of any of the model compounds, as indicated by a narrower range of maximum sorption capacity (Smax) of 173-527 mg kg soil-1 across compounds. Mollisols exhibited a strong preference for apparent sorption of oxalic acid (Smax of 5290 mg kg soil-1) and sinapyl alcohol (Smax of 2031 mg kg soil-1) over the other compounds. The propensity for sorption of oxalic acid is mainly attributed to the precipitation of insoluble Ca-oxalate due to the calcareous nature of most Mollisol subsoils and its preference for sinapyl alcohol could be linked to the polymerization of this lignin monomer on 2:2 mineral dominated soils. The reactivity of Alfisols to DOC was in

  15. Developing an Enzyme Mediated Soil Organic Carbon Decomposition Model

    Science.gov (United States)

    Mayes, M. A.; Post, W. M.; Wang, G.; Jagadamma, S.; Steinweg, J. M.; Schadt, C. W.

    2012-12-01

    We developed the Microbial-ENzyme-mediated Decomposition (MEND) model in order to mechanistically model the decomposition of soil organic carbon (C). This presentation is an overview of the concept and development of the model and of the design of complementary lab-scale experiments. The model divides soil C into five pools of particulate, mineral-associated, dissolved, microbial, and enzyme organic C (Wang et al. 2012). There are three input types - cellulose, lignin, and dissolved C. Decomposition is mediated via microbial extracellular enzymes using the Michaelis-Menten equation, resulting in the production of a common pool of dissolved organic C. Parameters for the Michaelis-Menten equation are obtained through a literature review (Wang and Post, 2012a). The dissolved C is taken up by microbial biomass and proportioned according to microbial maintenance and growth, which were recalculated according to Wang and Post (2012b). The model allows dissolved C to undergo adsorption and desorption reactions with the mineral-associated C, which was also parameterized based upon a literature review and complementary laboratory experiments. In the lab, four 14C-labeled substrates (cellulose, fatty acid, glucose, and lignin-like) were incubated with either the particulate C pool, the mineral-associated C pool, or to bulk soils. The rate of decomposition was measured via the production of 14CO2 over time, along with incorporation into microbial biomass, production of dissolved C, and estimation of sorbed C. We performed steady-state and dynamic simulations and sensitivity analyses under temperature increases of 1-5°C for a period of 100 y. Simulations indicated an initial decrease in soil organic C consisting of both cellulose and lignin pools. Over longer time intervals (> 6 y), however, a shrinking microbial population, a concomitant decrease in enzyme production, and a decrease in microbial carbon use efficiency together decreased CO2 production and resulted in greater

  16. The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland

    DEFF Research Database (Denmark)

    Sowerby, A.; Emmett, B.A.; Williams, D.;

    2010-01-01

    Climate change has been proposed as a driver of carbon (C) loss from the large pool of C held in soils. Aqueous (dissolved organic carbon, DOC) and gaseous (soil respiration or net ecosystem CO2 exchange) forms of C loss from soils have been considered. Under some climate change scenarios, gaseou...

  17. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  18. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration

    Institute of Scientific and Technical Information of China (English)

    PAN Gen-xing; LI Lian-qing; ZHANG Qi; WANG Xu-kui; SUN Xing-bin; XU Xiao-bo; JIANG Ding-an

    2005-01-01

    Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were collected. Statistical analysis of SOC contents and soil properties related to organic carbon storage were performed. The provincial total topsoil SOC stock was estimated to be 0.1 Pg with an extended pool of 0.4 Pg taking soil depth of 1 m, being relatively small compared to its total land area of 101700 km2 . One quarter of this topsoil stock was found in the soils of the Taihu Lake region that occupied 1/6 of the provincial arable area. Paddy soils accounted for over 50% of this stock in terms of SOC distribution among the soil types in the province. Experimental data from experimental farms widely distributed in the province showed that SOC storage increased consistently over the last 20 years despite a previously reported decreasing tendency during the period between 1950-1970. The evidence indicated that agricultural management practices such as irrigation, straw return and rotation of upland crops with rice or wheat crops contributed significantly to the increase in SOC storage. The annual carbon sequestration rate in the soils was in the range of 0.3-3.5 tC/( hm2 · a), depending on cropping systems and other agricultural practices. Thus, the agricultural production in the province, despite the high input, could serve as one of the practical methods to mitigate the increasing air CO2.

  19. Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China

    Science.gov (United States)

    Tang, J. H.; Chan, L. Y.; Chan, C. Y.; Li, Y. S.; Chang, C. C.; Wang, X. M.; Zou, S. C.; Barletta, Barbara; Blake, D. R.; Wu, Dui

    2008-05-01

    Guangzhou (GZ) is one of the highly industrialized and economically vibrant cities in China, yet it remains relatively understudied in terms of its air quality, which has become severely degraded. In this study, extensive air sampling campaigns had been conducted at GZ urban sites and in Dinghu Mountain (DM), a rural site, in the Pearl River Delta (PRD) during the spring of 2001 and 2005. Additionally, roadside and tunnel samples were collected in GZ in 2000 and 2005. Later, exhaust samples from liquefied petroleum gas (LPG)- and gasoline-fueled taxis were collected in 2006. All samples were analyzed for C2-C10 non-methane hydrocarbons (NMHCs). NMHC profiles showed significant differences in the exhaust samples between gasoline- and LPG-fueled taxis. Propane (47%) was the dominant hydrocarbon in the exhaust of the LPG-fueled taxis, while ethene (35%) was the dominant one in that of gasoline-fueled taxis. The use of LPG-fueled buses and taxis since 2003 and the leakage from these LPG-fueled vehicles were the major factors for the much higher level of propane in GZ urban area in 2005 compared to 2001. The mixing ratios of toluene, ethylbenzene, m/p-xylene and o-xylene decreased at the GZ and DM sites between 2001 and 2005, especially for toluene in GZ, despite the sharp increase in the number of registered motor vehicles in GZ. This phenomenon was driven in part by the closure of polluting industries as well as the upgrading of the road network in urban GZ and in part by the implementation of more stringent emission standards for polluting industries and motor vehicles in the PRD region.

  20. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Chelsea R. Thompson

    2014-11-01

    Full Text Available Abstract The Northern Front Range (NFR region of Colorado has experienced rapid expansion of oil and gas extraction from shale and tight sands reservoirs in recent years due to advances in hydraulic fracturing technology, with over 25,000 wells currently in operation. This region has also been designated as a federal ozone non-attainment area by the U.S. EPA. High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of non-methane hydrocarbons (NMHC for residents living near wells. From measurements of ambient atmospheric NMHC present in residential areas located in close proximity to wells in Erie, Colorado, we find that mean mole fractions of the C2–C5 alkanes are enhanced by a factor of 18–77 relative to the regional background, and present at higher levels than typically found in large urban centers. When combined with NMHC observations from downtown Denver and Platteville, it is apparent that these compounds are elevated across the NFR, with highest levels within the Greater Wattenberg Gas Field. This represents a large area source for ozone precursors in the NFR. The BTEX aromatic compounds in Erie were comparable to (e.g., benzene or lower than (e.g., toluene, ethylbenzene, xylene in large urban centers, however, benzene was significantly higher in Platteville, and within the range of chronic health-based exposure levels. An initial look at comparisons with data sets from previous years reveal that ambient levels for oil and gas-related NMHC in Erie, as well as further downwind in Boulder, have not decreased, but appear to have been increasing, despite tightening of emissions standards for the oil and gas industries in 2008.

  1. Carbonate Geochemistry of Marine Authigenic Carbonates and Host Sediments: Exploring Mineral Formation Pathways and Organic Preservation Potential in Modern Sediments

    Science.gov (United States)

    Smirnoff, M. N.; Loyd, S. J.

    2016-12-01

    Ancient authigenic dolomites (e.g., concretions) have been long studied in order to determine formation conditions and provide insight into shallow diagenetic environments. The formation of these dolomites is commonly attributed to the anaerobic microbial degradation of organic matter (a process that can increase the local pore water alkalinity), based on carbon isotope as well as other geochemical data. Authigenic dolomites also occur in modern, "still soft" sediments rich in organic matter. However, a comprehensive carbon isotopic characterization of these precipitates has yet to be conducted. Preliminary data show a wide range of δ13C values (about -11 to +12‰). Positive values that typify dolomites of the Gulf of California and the southwestern African margin indicate methanogenesis. Dolomites of the Peru margin and Cariaco Basin yield negative values that may represent a variety of organic matter degradation mechanisms. Regardless of specific mechanisms, organic matter degradation can promote authigenesis. Ultimately, mineralization encases primary sedimentary components and may act to preserve organic matter from subsequent degradation due to permeability reduction resulting from cementation. Concretionary carbonates have been found to preserve macro and micro fossils, metastable sedimentary grains, magnetic minerals, sedimentary structures, various specific organic compounds, and overmature organic matter exposed in outcrop. However, a similar protective relationship has not been demonstrated for disseminated, bulk organic matter in still-soft sediments. The study of these sediments 1) reveal the relationship between organic carbon degradation and authigenesis and 2) may provide insight into the potential of cementation to preserve organic matter during subsequent burial.

  2. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  3. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    Science.gov (United States)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  4. [Effects of different fertilization modes on paddy field topsoil organic carbon content and carbon sequestration duration in South China].

    Science.gov (United States)

    Zhu, Li-Qun; Yang, Min-Fang; Xu, Min-Lun; Zhang, Wu-Yi; Bian, Xin-Min

    2012-01-01

    Based on the organic carbon data of 222 topsoil samples taken from 38 paddy field experiment sites in South China, calculations were made on the relative annual change of topsoil organic carbon content (RAC) and carbon sequestration duration in the paddy fields in South China under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic plus organic fertilization, OF). The RAC under the fertilizations was 0-0.4 g x kg(-1) x a(-1), with an increment of 0.20 and 0.26 g x kg(-1) x a(-1) in double and triple cropping systems, respectively. The RAC was higher in treatments O and OF than in treatments N, NP, and NPK, being the highest (0.32 g x kg(-1) x a(-1)) in treatment OF. The topsoil organic carbon accumulation rate decreased with increasing time, and the carbon sequestration duration in treatments N, NP, NPK, O, and OF was about 22, 28, 38, 57, and 54 years, respectively. Inorganic plus organic fertilization was the most effective practice for soil carbon sequestration in the paddy fields in South China.

  5. Role of Organic Matter and Carbonates in Soil Aggregation Estimated Using Laser Diffractometry

    Institute of Scientific and Technical Information of China (English)

    I. VIRTO; N. GARTZIA-BENGOETXEA; O. FERN(A)NDEZ-UGALDE

    2011-01-01

    Aggregation in many soils in semi-arid land is affected by their high carbonate contents.The presence of lithogenic and/or primary carbonates can also influence the role of soil organic matter (SOM) in aggregation.The role of carbonates and SOM in aggregation was evaluated by comparing the grain-size distribution in two carbonate-rich soils (15% and 30% carbonates) under conventional tillage after different disaggregating treatments.We also compared the effect of no-tillage and conventional tillage on the role of these two aggregating agents in the soil with 30% of carbonates.Soil samples were treated as four different ways:shaking with water (control),adding hydrochloric acid (HCl) to remove carbonates,adding hydrogen peroxide (H2O2) to remove organic matter,and consecutive removal of carbonates and organic matter (HCl +H2O2),and then analyzed by laser diffraction grain-sizing.The results showed that different contributions of carbonates and SOM to aggregate formation and stability depended not only on their natural proportion,but also on the soil type,as expressed by the major role of carbonates in aggregation in the 15% carbonate-rich soil,with a greater SOC-to-SIC (soil organic C to soil inorganic C) ratio than the 30% carbonate-rich soil.The increased organic matter stocks under no-tillage could moderate the role of carbonates in aggregation in a given soil,which meant that no-tillage could affect the organic and the inorganic C cycles in the soil.In conclusion,the relative role of carbonates and SOM in aggregation could alter the aggregates hierarchy in carbonate-rich soils.

  6. Light absorption by organic carbon from wood combustion

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2010-02-01

    Full Text Available Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC is highly absorbing, some organic carbon (OC also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC.

    In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright

  7. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  8. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-01-11

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha(-1), were higher than 45.90 Mg C ha(-1) in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  9. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    Science.gov (United States)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of

  10. Organic Geochemistry of the Hamersley Province: Relationships Among Organic Carbon Isotopes, Molecular Fossils, and Lithology

    Science.gov (United States)

    Eigenbrode, Jennifer L.

    2012-01-01

    Molecular fossils are particularly valuable ancient biosignatures that can provide key insight about microbial sources and ecology in early Earth studies. In particular, hopanes carrying 2-methyl or 3-methyl substituents are proposed to be derived from cyanobacteria and oxygen-respiring methanotrophs, respectively, based on both their modem occurrences and their Proterozoic and Phanerozoic sedimentary distributions. Steranes are likely from ancestral eukaryotes. The distribution of methylhopanes, steranes, and other biomarkers in 2.72-2.56 billion-year-old rocks from the Hamersley Province, Western Australia show relationships to lithology, facies, and isotopes of macromolecular carbon, and other biomarkers. These observations support biomarker syngenicity and thermal maturity. Moreover, ecological signatures are revealed, including a surprising relationship between isotopic values for bulk macromolecular carbon and the biomarker for methanotrophs. The record suggests that cyanobacteria were likely key organisms of shallow-water microbial ecosystems providing molecular oxygen, fixed carbon, and possibly fixed nitrogen, and methanotrophs were not alone in recycling methane and other C-13-depleted substrates.

  11. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  12. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse

  13. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse

  14. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse effect

  15. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse effect

  16. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  17. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils

    NARCIS (Netherlands)

    Hanke, A.; Cerli, C.; Muhr, J.; Borken, W.; Kalbitz, K.

    2013-01-01

    Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long-term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultiva

  18. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse effect

  19. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse effect

  20. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  1. Clay:organic-carbon and organic carbon as determinants of the soil physical properties: reassessment of the Complexed Organic Carbon concept

    Science.gov (United States)

    Matter, Adrien; Johannes, Alice; Boivin, Pascal

    2016-04-01

    Soil Organic Carbon (SOC) is well known to largely determine the soil physical properties and fertility. Total porosity, structural porosity, aeration, structural stability among others are reported to increase linearly with increasing SOC in most studies. Is there an optimal SOC content as target in soil management, or is there no limit in physical fertility improvement with SOC? Dexter et al. (2008) investigated the relation between clay:SOC ratio and the physical properties of soils from different databases. They observed that the R2 of the relation between SOC and the physical properties were maximized when considering the SOC fraction limited to a clay:SOC ratio of 10. They concluded that this fraction of the SOC was complexed, and that the additional SOC was not influencing the physical properties as strongly as the complexed one. In this study, we reassessed this approach, on a database of 180 undisturbed soil samples collected from cambiluvisols of the Swiss Plateau, on an area of 2400 km2, and from different soil uses. The physical properties were obtained with Shrinkage Analysis, which involved the parameters used in Dexter et al., 2008. We used the same method, but detected biases in the statistical approach, which was, therefore, adapted. We showed that the relation between the bulk density and SOC was changing with the score of visual evaluation of the structure (VESS) (Ball et al., 2007). Therefore, we also worked only on the "good" structures according to VESS. All shrinkage parameters were linearly correlated to SOC regardless of the clay:SOC ratio, with R2 ranging from 0.45 to 0.8. Contrarily to Dexter et al. (2008), we did not observed an optimum in the R2 of the relation when considering a SOC fraction based on the clay:SOC ratio. R2 was increasing until a Clay:SOC of about 7, where it reached, and kept, its maximum value. The land use factor was not significant. The major difference with the former study is that we worked on the same soil group

  2. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  3. Variability of sedimentary organic carbon in patchy seagrass landscapes.

    Science.gov (United States)

    Ricart, Aurora M; York, Paul H; Rasheed, Michael A; Pérez, Marta; Romero, Javier; Bryant, Catherine V; Macreadie, Peter I

    2015-11-15

    Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.

  4. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    Science.gov (United States)

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-07-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

  5. Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A

    2008-10-23

    This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.

  6. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    Science.gov (United States)

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  7. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water colu

  8. Organic carbon and humic acids in sediments of the Arabian Sea and factors governing their distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Organic carbon and humic acids in the sediments of the Arabian Sea show distinct regional variations to the south and north of 15~'N latitude. Significant variations are also observed from the shelf to the slope regions. Organic carbon and humic...

  9. The size distribution of organic carbon in headwater streams in the Amazon basin.

    Science.gov (United States)

    de Paula, Joana D'Arc; Luizão, Flávio Jesus; Piedade, Maria Teresa Fernandez

    2016-06-01

    Despite the strong representativeness of streams in the Amazon basin, their role in the accumulation of coarse particulate organic carbon (CPOC), fine particulate organic carbon (FPOC), and dissolved organic carbon (DOC) in transport, an important energy source in these environments, is poorly known. It is known that the arboreal vegetation in the Amazon basin is influenced by soil fertility and rainfall gradients, but would these gradients promote local differences in organic matter in headwater streams? To answer this question, 14 low-order streams were selected within these gradients along the Amazon basin, with extensions that varied between 4 and 8 km. The efficiency of the transformation of particulate into dissolved carbon fractions was assessed for each stream. The mean monthly benthic organic matter storage ranged between 1.58 and 9.40 t ha(-1) month(-1). In all locations, CPOC was the most abundant fraction in biomass, followed by FPOC and DOC. Rainfall and soil fertility influenced the distribution of the C fraction (p = 0.01), showing differentiated particulate organic carbon (POC) storage and DOC transportation along the basin. Furthermore, the results revealed that carbon quantification at the basin level could be underestimated, ultimately influencing the global carbon calculations for the region. This is especially due to the fact that the majority of studies consider only fine particulate organic matter and dissolved organic matter, which represent less than 50 % of the stored and transported carbon in streambeds.

  10. Vertical distribution characteristics of soil organic carbon content in Caohai wetland ecosystem of Guizhou plateau, China

    Institute of Scientific and Technical Information of China (English)

    Yunjie Wu; Fengyou Wang; Sixi Zhu

    2016-01-01

    We selected four kinds of land use types from Caohai wetlands of Guizhou plateau (a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways of land use, the organic carbon content of soil profiles and organic carbon density show the tendency of decreasing firstly and then increasing from top to bottom. With the increase of depth, the vertical difference becomes smaller first and then starts increasing. Land reclamation reduces the soil organic carbon content and density, changing its distribu-tion structure in topsoil. The average content of organic carbon in Caohai wetlands are as follows: lake bed silt [ marsh wetland [ farmland [ woodland, the average organic carbon content of lake bed silt, marsh wetland, farmland and woodland are 16.40, 2.94, 1.81 and 1.08%, respectively. Land reclamation reduces the organic carbon content of soil, therefore the conversion of cultivated lands to wetlands and the increase of forest coverage will help to fix the organic carbon in soil and increase its reserves.

  11. Soil organic carbon pools in the northern circumpolar permafrost region

    Science.gov (United States)

    C. Tarnocai; J.G. Canadell; E.A.G. Schuur; P. Kuhry; G. Mazhitova; S. Zimov

    2009-01-01

    The Northern Circumpolar Soil Carbon Database was developed to determine carbon pools in soils of the northern circumpolar permafrost region. Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.

  12. Dutch (organic) agriculture, carbon sequestration and energy production

    NARCIS (Netherlands)

    Burgt, van der G.J.H.M.; Staps, S.; Timmermans, B.

    2010-01-01

    Carbon sequestration in soils is often mentioned in the discussions about climate changes. In this paper the opportunities for carbon sequestration in Dutch agriculture are discussed at farm and national level. Farm internal carbon sources are already completely used in livestock farming. The effect

  13. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.

    Science.gov (United States)

    Kroll, Jesse H; Donahue, Neil M; Jimenez, Jose L; Kessler, Sean H; Canagaratna, Manjula R; Wilson, Kevin R; Altieri, Katye E; Mazzoleni, Lynn R; Wozniak, Andrew S; Bluhm, Hendrik; Mysak, Erin R; Smith, Jared D; Kolb, Charles E; Worsnop, Douglas R

    2011-02-01

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number.

  14. Mapping organic carbon stocks of Swiss forest soil

    Science.gov (United States)

    Nussbaum, M.; Papritz, A.; Baltensweiler, A.; Walthert, L.

    2012-04-01

    Carbon (C) sequestration into forest sinks offsets greenhouse gas emissions under the Kyoto protocol. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for reporting greenhouse gas emissions. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the above ground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because of its high spatial variability. To date the greenhouse gas inventory relies only on sparse data and regionally differentiated predictions of SOC stocks in forest soils are currently not possible. Recently, more soil data and new explanatory variables for statistical modeling like high resolution elevation data and satellite images became available. Based on data from 1'033 sites, we modeled SOC stocks to a depth of 1 m including the organic layer for the Swiss forested area. We used a novel robust restricted maximum likelihood method to fit a linear regression model with spatially correlated errors to the C stock data. For the regression analysis we used a broad range of covariates derived from climate data (precipitation, temperature, radiation), two elevation models (resolutions 25 and 2 m) and spectral variables representing vegetation. Furthermore, the main cartographic categories of an overview soil map were used to broadly represent the parent material. The numerous covariates, that partly correlated strongly, were reduced to a first subset using LASSO (Least Absolute Shrinkage and Selection Operator). This subset of covariates was then further reduced based on cross validation of the robustly fitted spatial model. The levels of categorical covariates were partly aggregated during this process and interactions between covariates were explored to account for nonlinear dependence of C stocks on the covariates. Using the final model, robust kriging prediction and error maps were computed with a resolution of one hectare.

  15. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  16. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  17. ORGANIC CHELATING REAGENT ON REDOX ADSORPTION OF ACTIVATED CARBON FIBER TOWARDS Au3+

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Organic chelating reagent influences upon the redox adsorption of activated carbon fibertowards Au3- were systematically investigated. The experimental results indicated that the presenceof organic chelating reagent on activated carbon fiber strongly affects adsorption capacity ofactivated carbon fiber towards Au3+. The reduction-adsorption amount of Au3+ increased three timesby the presence of 8-quinolinol. Furthermore, The reduction-adsorption amount of Au3+ depended onthe pH value of adsorption and temperature.

  18. Pacific carbon cycling constrained by organic matter size, age and composition relationships

    Science.gov (United States)

    Walker, Brett D.; Beaupré, Steven R.; Guilderson, Thomas P.; McCarthy, Matthew D.; Druffel, Ellen R. M.

    2016-12-01

    Marine organic matter is one of Earth’s largest actively cycling reservoirs of organic carbon and nitrogen. The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates. Here we analyse existing and new measurements of the carbon:nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon:nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11-0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage.

  19. Role of organic soils in the world carbon cycle: problem analysis and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1980-02-01

    In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

  20. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  1. AC-driven organic light emission devices with carbon nanotubes

    Science.gov (United States)

    Jeon, So-Yeon; Yu, SeGi

    2017-02-01

    We have investigated alternating current (AC)-driven organic light-emitting devices (OLEDs), with carbon nanotubes (CNTs) incorporated within the emission layer. With CNT incorporation, the brightness of the OLEDs was substantially improved, and the turn-on voltage was reduced by at least a factor of five. Furthermore, the current levels of the CNT-incorporated OLEDs were lower than that of the reference device. A roughly 70% decrease in the current level was obtained for a CNT concentration of 0.03 wt%. This was accomplished by keeping the concentration of CNTs low and the length of CNTs short, which helped to suppress the percolation networking of CNTs within the emitting layer. Strong local electric fields near the end-tips of CNTs and micro-capacitors formed by dispersed CNTs might have caused this high brightness and these low currents. CNT incorporation in the emitting layer can improve the characteristics of AC-driven OLEDs, which are considered to be one of the candidates for flat panel displays and lightning devices.

  2. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    The following goals were addressed in the workshop: review and analysis of available data on carbon in organic soils from the past century to the present; assessment of the probable flux of carbon to and from organic soils in the near future; identification of major data inadequacies which preclude reliable analysis of the principal processes influencing carbon flux in organic soils; and proposal of research initiatives which could improve understanding of organic deposits in relation to the carbon cycle within a time frame of two to four years. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  3. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  4. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  5. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  6. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Science.gov (United States)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  7. Second Hydrocarbon—Generation from Organic Matter Trapped in Fluid Inclusions in Carbonate Rocks

    Institute of Scientific and Technical Information of China (English)

    施继锡; 余孝颖

    1999-01-01

    The mechanism and significance of second hydrocarbon-generation from organic matter trapped in fluid inclusions in carbonate rocks are discussed.The types of organic matter and the relationship between them are also reviewed.The organic matter trapped in inclusions and crystals,which account for more than 20%of the total organic matter in carbonate rocks,may be of great significance in the generation of hydrocarbons.High-temperature oil resulting from second hydrocarbon-generation should be an important target,in addition to natural gas,in oilgas prospecting in regions of high-maturity carbonate rocks.

  8. Lunar carbon chemistry - Relations to and implications for terrestrial organic geochemistry.

    Science.gov (United States)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    Survey of the various ways in which studies of lunar carbon chemistry have beneficially affected terrestrial organic geochemistry. A lunar organic gas-analysis operating system is cited as the most important instrumental development in relation to terrestrial organic geochemistry. Improved methods of analysis and handling of organic samples are cited as another benefit derived from studies of lunar carbon chemistry. The problem of controlling contamination and minimizing organic vapors is considered, as well as the possibility of analyzing terrestrial samples by the techniques developed for lunar samples. A need for new methods of analyzing carbonaceous material which is insoluble in organic solvents is indicated.

  9. Spatiotemporal modeling of soil organic carbon stocks across a subtropical region.

    Science.gov (United States)

    Ross, Christopher Wade; Grunwald, Sabine; Myers, David Brenton

    2013-09-01

    Given the significance and complex nature of soil organic carbon in the context of the global carbon cycle, the need exists for more accurate and economically feasible means of soil organic carbon analysis and its underlying spatial variation at regional scale. The overarching goal of this study was to assess both the spatial and temporal variability of soil organic carbon within a subtropical region of Florida, USA. Specifically, the objectives were to: i) quantify regional soil organic carbon stocks for historical and current conditions and ii) determine whether the soils have acted as a net sink or a net source for atmospheric carbon-dioxide over an approximate 40 year time period. To achieve these objectives, geostatistical interpolation models were used in conjunction with "historical" and "current" datasets to predict soil organic carbon stocks for the upper 20 cm soil profile of the study area. Soil organic carbon estimates derived from the models ranged from 102 to 108 Tg for historical conditions and 211 to 320 Tg for current conditions, indicating that soils in the study area have acted as a net sink for atmospheric carbon over the last 40 years. A paired resampling of historical sites supported the geostatistical estimates, and resulted in an average increase of 0.8 g carbon m(-2) yr(-1) across all collocated samples. Accurately assessing the spatial and temporal state of soil organic carbon at regional scale is critical to further our understanding of global carbon stocks and provide a baseline so that the effects sustainable land use policy can be evaluated.

  10. ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO-GAW and EMEP observation networks

    Directory of Open Access Journals (Sweden)

    C. C. Hoerger

    2014-10-01

    Full Text Available The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC measurements within the framework of Global Atmosphere Watch (GAW and European Monitoring and Evaluation Programme (EMEP was assessed with respect to the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network and GAW data quality objectives (DQOs. Compared to previous intercomparisons the DQOs of ACTRIS are much more demanding with deviations to a reference value of less than 5% and repeatability of better than 2% for mole fractions above 0.1 nmol mol−1. The participants were asked to measure both a 30 component NMHC mixture in nitrogen (NMHC_N2 at approximately 1 nmol mol−1 and whole air (NMHC_air, following a standardised operation procedure including zero- and calibration gas measurements. Furthermore, they had to report details on their instruments and they were asked to assess measurement uncertainties. The NMHCs were analysed either by gas chromatography-flame ionisation detection or gas chromatography-mass spectrometer methods. Most systems performed well for the NMHC_N2 measurements (88% of the reported values were within the GAW DQOs and even 58% within the ACTRIS DQOs. For NMHC_air generally more frequent and larger deviations to the assigned values were observed compared to NMHC_N2 (77% of the reported values were within the GAW DQOs, but only 48% within the ACTRIS DQOs. Important contributors to the poorer performance in NMHC_air compared to NMHC_N2 were a more complex matrix and a larger span of NMHC mole fractions (0.03–2.5 nmol mol−1. Issues, which affected both NMHC mixtures, are the usage of direct vs. two-step calibration, breakthrough of C2–C3 hydrocarbons, blank values in zero-gas measurements (especially for those systems using a Nafion® Dryer, adsorptive losses of aromatic compounds, and insufficient chromatographic resolution. Essential for high-quality results are experienced operators, a

  11. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China

    Science.gov (United States)

    Liu, Chengtang; Ma, Zhuobiao; Mu, Yujing; Liu, Junfeng; Zhang, Chenglong; Zhang, Yuanyuan; Liu, Pengfei; Zhang, Hongxing

    2017-09-01

    Atmospheric non-methane hydrocarbon compounds (NMHCs) were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics, and sources. We quantified 53 NMHCs, and the proportions of alkanes, alkenes, acetylene, and aromatics to the total NMHCs were 49.8-55.8, 21.5-24.7, 13.5-15.9, and 9.3-10.7 %, respectively. The variation trends in the NMHC concentrations were basically identical and exhibited remarkable fluctuation, which was mainly ascribed to the variation in meteorological conditions, especially wind speed. The diurnal variations in NMHCs on clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours' peaks diminished or even disappeared on the haze days, implying that the relative contribution of the vehicular emissions to atmospheric NMHCs depended on the pollution status. Two evident peaks of the propane / propene ratios appeared in the early morning before sun rise and at noontime on clear days, whereas only one peak occurred in the afternoon during the haze days, which were attributed to the relatively fast reactions of propene with OH, NO3, and O3. Based on the chemical kinetic equations, the daytime OH concentrations were calculated to be in the range of 3. 47 × 105-1. 04 × 106 molecules cm-3 on clear days and 6. 42 × 105-2. 35 × 106 molecules cm-3 on haze days. The nighttime NO3 concentrations were calculated to be in the range of 2. 82 × 109-4. 86 × 109 molecules cm-3 on clear days. The correlation coefficients of typical hydrocarbon pairs (benzene / toluene, o-xylene / m,p-xylene, isopentane / n-pentane, etc.) revealed that vehicular emissions and coal combustion were important sources for atmospheric NMHCs in Beijing during the wintertime. Five major emission sources for atmospheric NMHCs in Beijing during the wintertime were further identified by positive matrix factorization (PMF), including gasoline-related emissions

  12. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  13. Detailed Carbon Isotopic Characterization of Aerosol-Derived Organic Carbon Deposited to two Temperate Watersheds

    Science.gov (United States)

    Wozniak, A. S.; Bauer, J. E.; Keesee, E. E.; McNichol, A. P.; Xu, L.; Dickhut, R. M.

    2008-12-01

    Atmospheric deposition of carbonaceous aerosols can be a quantitatively significant flux in the carbon budgets of temperate watersheds. Characterizing the sources and fates of this material is therefore critical for assessing its role in carbon and organic matter cycling in these systems. Aerosol samples were collected in the Hudson and York River watersheds throughout 2006-2007 and analyzed for quantities and isotopic signatures (δ13C, Δ14C) of total and water-soluble organic carbon (TOC, WSOC, respectively). On average ~2.4 and 2.1 mg m-2 d-1 of aerosol TOC were deposited to the Hudson and York River watersheds, respectively, and nearly half of this material was water-soluble. δ13C analyses indicated that both the TOC and the WSOC were primarily terrestrial in nature. TOC Δ14C signatures covered a broad range for both watersheds, with calculated contributions from fossil sources (e.g., anthropogenic combustion of petroleum, coal, etc.) ranging from 0% for samples collected during the summer of 2007 to approximately 50% for samples collected in the winter of 2007. Aerosol-derived WSOC Δ14C values were less variable and were nearly always enriched in 14C with respect to the corresponding TOC, indicating that contemporary aerosol material tends to partition into the aqueous phase, while fossil-derived aerosol OC is more likely to remain insoluble. However, WSOC still often showed considerable contributions from fossil OC (up to 20%). Thus, some portion of the anthropogenic fossil-derived aerosol OC is relatively soluble and may be transported hydrologically through watersheds and aquatic systems. A subset of aerosol samples from each watershed was selected for more thorough isotopic analysis of operationally-defined components of the carbonaceous material. Isotopic signatures were obtained for TOC, WSOC, total solvent-extract, and the aliphatic, aromatic, and polar components. Isotopic information on these fractions allows us to determine which components

  14. Decoupling of carbon isotope records between organic matter and carbonate prior to the Toarcian Oceanic Anoxic Event (Early Jurassic)

    Science.gov (United States)

    Bodin, Stephane; Kothe, Tim; Krencker, Francois-Nicolas; Suan, Guillaume; Heimhofer, Ulrich; Immenhauser, Adrian

    2014-05-01

    Across the Pliensbachian-Toarcian boundary (P-To, Early Jurassic), ca. 1 Myr before the Toarcian Oceanic Anoxic Event (T-OAE), an initial negative carbon isotope excursion has been documented in western Tethys sedimentary rocks. In carbonate, its amplitude (2-3 permil) is similar to the subsequent excursion recorded at the onset of the T-OAE. Being also associated with a rapid warming event, the significance of this first carbon isotope shift, in terms of paleoenvironmental interpretation and triggering mechanism, remains however elusive. Taking advantage of expanded and rather continuous sections in the High Atlas of Morocco, several high-resolution, paired organic-inorganic carbon isotope records have been obtained across the Upper Pliensbachian - Lower Toarcian interval. At the onset of the T-OAE, an abrupt 1-2 permil negative shift is recorded in both organic and inorganic phases, succeeded by a relatively longer term 1-2 permil negative trend and a final slow return to pre-excursion conditions. In accordance with previous interpretations, this pattern indicates a perturbation of the entire exogenic carbon isotope reservoir at the onset of the T-OAE by the sudden release of isotopically light carbon into the atmosphere. By contrast, there is no negative shift in carbon isotopes for the P-To event recorded in bulk organic matter of Morocco. Given the strong dominance of terrestrial particles in the bulk organic matter fraction, this absence indicates that massive input of 12C-rich carbon into the atmosphere is not likely to have happened during the P-To event. A pronounced (2 permil) and abrupt negative shift in carbon isotope is however recorded in the bulk carbonate phase. We suggest that this decoupling between organic and inorganic phase is due to changes in the nature of the bulk carbonate phase. Indeed, the negative shift occurs at the lithological transition between Pliensbachian-lowermost Toarcian limestone-marl alternations and the Lower Toarcian marl

  15. Dissolved organic carbon pools and export from the coastal ocean

    KAUST Repository

    Barrón, Cristina

    2015-10-21

    The distribution of dissolved organic carbon (DOC) concentration across coastal waters was characterized based on the compilation of 3510 individual estimates of DOC in coastal waters worldwide. We estimated the DOC concentration in the coastal waters that directly exchange with open ocean waters in two different ways, as the DOC concentration at the edge of the shelf break and as the DOC concentration in coastal waters with salinity close to the average salinity in the open ocean. Using these estimates of DOC concentration in the coastal waters that directly exchange with open ocean waters, the mean DOC concentration in the open ocean and the estimated volume of water annually exchanged between coastal and open ocean, we estimated a median ± SE (and average ± SE) global DOC export from coastal to open ocean waters ranging from 4.4 ± 1.0 Pg C yr−1 to 27.0 ± 1.8 Pg C yr−1 (7.0 ± 5.8 Pg C yr−1 to 29.0 ± 8.0 Pg C yr−1) depending on the global hydrological exchange. These values correspond to a median and mean median (and average) range between 14.7 ± 3.3 to 90.0 ± 6.0 (23.3 ± 19.3 to 96.7 ± 26.7) Gg C yr−1 per km of shelf break, which is consistent with the range between 1.4 to 66.1 Gg C yr−1 per km of shelf break of available regional estimates of DOC export. The estimated global DOC export from coastal to open ocean waters is also consistent with independent estimates of the net metabolic balance of the coastal ocean. The DOC export from the coastal to the open ocean is likely to be a sizeable flux and is likely to be an important term in the carbon budget of the open ocean, potentially providing an important subsidy to support heterotrophic activity in the open ocean.

  16. Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

    2008-02-04

    The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely

  17. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  18. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  19. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years

    Science.gov (United States)

    Gonneea, Meagan Eagle; Paytan, Adina; Herrera-Silveira, Jorge A.

    2004-10-01

    Mangrove ecosystems may be a source of organic carbon and nutrients to adjacent coastal systems on one hand and provide a sedimentary sink for organic carbon on the other. The balance between these two functions may be sensitive to both natural and anthropogenically induced variability, yet these effects have not been thoroughly evaluated in mangrove ecosystems. We determine organic matter sources and carbon burial rates over the past 160 years in three lagoons on the Yucatan Peninsula, Mexico. Carbon isotopes and C/N elemental ratios are utilized to trace the three sources contributing to sedimentary organic matter, mangroves, seagrasses and phytoplankton, while nitrogen isotopes are used to elucidate potential post-depositional biogeochemical transformations in mangrove lagoon sediments. All three organic matter sources contribute to organic carbon burial. Phytoplankton and mangroves are the dominant sources of organic matter in lagoon bank sediments and seagrasses are a significant source to central lagoon sediments. Organic carbon burial rates are higher at the lagoon fringes, where mangrove vegetation dominates, than in seagrass-dominated mid-lagoon areas. A reduction in mangrove contribution to the sedimentary organic matter pool concurrent with reduced total organic carbon burial rates is observed in the recent past at all three lagoons studied. Natural cycles in sediment organic matter source over the past 160 years are observed in a high-resolution core. These fluctuations correspond to climatic variability in this region, as recorded in deep-sea foraminiferal assemblages. Additional work is required in order to differentiate between recent anthropogenic perturbations and natural variability in organic carbon sources and burial rates within these ecosystems.

  20. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  1. Carbon isotopic studies of individual lipids in organisms from the Nansha sea area, China

    Institute of Scientific and Technical Information of China (English)

    DUAN; Yi; SONG; Jinming; ZHANG; Hui

    2004-01-01

    Carbon isotopes of individual lipids in typical organisms from the Nansha sea area were measured by the GC-IRMS analytical technique. δ13C values of saturated fatty acids in different organisms examined are from -25.6‰ to -29.7‰ with the average values ranging from -26.4‰ to -28.2‰ and the variance range of 1.8‰ between different organisms is also observed.Unsaturated fatty acids have heavy carbon isotopic compositions and the mean differences of 2.9‰-6.8‰ compared to the same carbon number saturated fatty acids. δ13C values of n-alkanes range from -27.5‰ to -29.7‰ and their mean values, ranging from -28.6‰ to -28.9‰, are very close in different organisms. The mean difference in δ13C between the saturated fatty acids and n-alkanes is only 1.5‰, indicating that they have similar biosynthetic pathways. The carbon isotopic variations between the different carbon-number lipids are mostly within ±2.0‰, reflecting that they experienced a biosynthetic process of the carbon chain elongation. At the same time, the carbon isotopic genetic relationships between the biological and sedimentary lipids are established by comparative studies of carbon isotopic compositions of individual lipids in organisms and sediments from the Nansha sea area, which provides scientific basis for carbon isotopic applied research of individual lipids.

  2. The fixation of carbon dioxide in inorganic and organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, M. (Universita degli Studi, Bari (Italy). Dispartimento di Chemica e Centro CNR-MISO)

    1993-01-01

    The recovery of carbon dioxide from concentrated sources is currently under evaluation as a technology for the control of the emission into the atmosphere. In order for this option to be operative it is necessary to define the fate of recovered carbon dioxide. Two ways forward are open: disposal in natural fields (oceans, aquifers, deep geological cavities); - utilisation (technological use or chemical conversion). The fixation in chemicals can contribute both to reduce the use of fossil carbon and to cut the emission of carbon dioxide into the atmosphere. 6 refs., 1 fig., 5 tabs.

  3. The energetic and chemical fingerprints of persistent soil organic carbon

    Science.gov (United States)

    Barré, Pierre; Plante, Alain F.; Cécillon, Lauric; Lutfalla, Suzanne; Baudin, François; Bernard, Sylvain; Christensen, Bent T.; Fernandez, Jose M.; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Le Guillou, Corentin; Chenu, Claire

    2016-04-01

    A better understanding of soil organic carbon (SOC) persistence is needed to better predict SOC vulnerability to global change. The absence of convincing physical or chemical procedures to define, characterize or isolate relatively labile versus persistent SOC pools makes the study of persistent SOC difficult. Long-term bare fallow (LTBF) experiments, in which C inputs have been stopped for several decades, provide a unique opportunity to study persistent SOC without the inherent artefacts induced by extraction procedures, the hypothesis being that SOC is gradually enriched in persistent C with time as labile components decompose. We determined the evolution of thermal and chemical characteristics of bulk SOC in five LTBF experiments across Europe: Askov (DK), Grignon (FR), Rothamsted (UK), Ultuna (SW) and Versailles (FR), using a multi-technique approach involving Rock-Eval pyrolysis, thermogravimetry and differential scanning calorimetry (TG-DSC), mid-infrared diffuse reflectance spectroscopy (DRIFT-MIRS), and Near Edge X-Ray Absorption Fine Structure (NEXAFS). Results of Rock-Eval and TG analyses showed that the temperature needed to combust the SOC increased with bare fallow duration at all sites. Conversely, SOC energy density (in mJ mg-1 C) measured by DSC decreased with bare fallow duration. Rock-Eval pyrolysis results showed that hydrogen index (HI) tended to decrease with bare fallow duration whereas the oxygen index (OI) did not show consistent trends across sites. NEXAFS signals presented little differences and were dominated by carboxyl peak. Nonetheless, NEXAFS results showed a trend of increasing carboxyl groups and decreasing ketone and amide groups with bare fallow duration. Due to the mineral matrix, only a reduced part of the DRIFT-MIRS signals has been used. We observed that the bulk chemistry of aliphatic SOC (CH3 vs. CH2 functional groups) showed different trends for the different sites. Our results showed that in spite of the heterogeneity of

  4. Organic Carbon Fluxes in a Stressed Groundwater System

    Science.gov (United States)

    Baker, A.; Graham, P. W.; Grbich, N.; Chinu, K.; Yu, D.

    2013-12-01

    Dissolved Organic Carbon (DOC) flux in groundwater is poorly understood: influenced by recharge, extraction and surface processes. We reviewed existing datasets for DOC concentration and flux in Australian groundwater systems. In a temperate, semi-arid, Australian research site we measured variations in DOC content during a series of high intensity extraction and recovery events in the surrounding aquifer and abstracted groundwater. Groundwater was abstracted from a fractured basalt / metasediment aquifer overlain by residual soils and flanked by a Quaternary alluvial channel. Groundwater systems included the fractured rock system interconnected with the alluvial aquifer through a leaky aquitard and a perched aquifer held at the soil bedrock interface. Prior to and throughout the test, groundwater samples were collected from wells within the fractured rock, alluvial aquifer and soil bedrock interface and analysed for DOC. Initial DOC concentrations in the upper aquifer were ~2 mg/L, following pumping concentrations increased 36 mg/L (ave) peaking at 72 mg/L. In the lower aquifer initial TOC concentrations were ~1.6 mg/L, during pumping levels increased to 3.98 mg/L (ave) peaking at 14.32 mg/L. Results indicate the fractured rock aquifers ability to recharge was exceeded during intense pumping periods and a larger component of water was drawn from the upper aquifer. This increased the volume of water being drawn through the soil profile and increased DOC content in abstracted groundwater. Hydrological setting, well construction and pumping regime are likely to affect the concentration of DOC within abstracted groundwater. Further attention to abstracted groundwater as a component in terrestrial DOC fluxes is warranted.

  5. Organic carbon burial in fjords: Terrestrial versus marine inputs

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Savage, Candida; Smith, Richard W.

    2016-10-01

    Fjords have been identified as sites of enhanced organic carbon (OC) burial and may play an important role in regulating climate change on glacial-interglacial timescales. Understanding sediment processes and sources of sedimentary OC are necessary to better constrain OC burial in fjords. In this study, we use Fiordland, New Zealand, as a case study and present data on surface sediments, sediment down-cores and terrestrial end-members to examine dynamics of sediments and the sources of OC in fjord sediments. Sediment cores showed evidence of multiple particle sources, frequent bioturbation and mass-wasting events. A multi-proxy approach (stable isotopes, lignin-phenols and fatty acids) allowed for separation of marine, soil and vascular plant OC in surface sediments. The relationship between mass accumulation rate (MAR) and OC contents in fjord surface sediments suggested that mineral dilution is important in controlling OC content on a global scale, but is less important for specific regions (e.g., New Zealand). The inconsistency of OC budgets calculated by using MAR weighted %OC and OC accumulation rates (AR; 6 vs 21-31 Tg OC yr-1) suggested that sediment flux in fjords was likely underestimated. By using end-member models, we propose that 55% to 62% of total OC buried in fjords is terrestrially derived, and accounts for 17 ± 12% of the OCterr buried in all marine sediments. The strong correlation between MAR and OC AR indicated that OC flux will likely decrease in fjords in the future with global warming due to decrease in sediment flux caused by glacier denudation.

  6. Organic Carbon Influences on Soil Particle Density and Rheological Properties

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2006-07-01

    Soil particle density (rs) is not routinely measured and is assumed to range between 2.60 and 2.70 Mgm23 or to be a constant (2.65 Mgm23) when estimating essential properties such as porosity, and volumetric water and air relations. Values of rs for the same soil may, however, differ significantly from the standard range due to management induced changes in soil organic carbon (SOC) concentrations. We quantified the rs and Atterberg limits of a Rayne silt loam for five long-term (.22 yr) moldboard-plowed continuous corn (Zea mays L.; MP), no-till continuous corn (NT), no-till continuous corn with beef cattle manure (NTm), pasture, and forest systems.We also assessed the relationships of SOC concentration with rs and the Atterberg limits and the impact of rs on soil porosity. Mean rs across NT, NTm, and pasture (2.35 Mg m23) was |7% lower than that for MP in the 0- to 10-cm soil depth (2.52 Mg m23, P , 0.01). Forest had the lowest rs of all soils (1.79 Mg m23). The NTm caused a greater reduction in rs and a greater increase in SOC concentration, liquid limit (LL), plastic limit (PL), and plasticity index (PI) than NT. Surface soils under MP had the highest rs and rb and the lowest SOC concentration, LL, PL, and PI. The SOC concentration was correlated negatively with rs (r 2 5 0.75) and positively with Atterberg limits (r 2 . 0.64) at .20-cm depth. Estimates of soil porosity for NT, NTm, and pasture using the constant rs overestimated the ''true'' porosity by 12% relative to that using the measured rs.

  7. Soil organic carbon sequestration potential of conservation vs. conventional tillage

    Science.gov (United States)

    Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas

    2017-04-01

    Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.

  8. Soil organic carbon, macropore networks and preferential transport

    Science.gov (United States)

    Larsbo, Mats; Koestel, John; Kätterer, Thomas; Jarvis, Nick

    2016-04-01

    Agricultural management practices such as tillage, crop rotations, residue management and fertilization can have a strong influence on soil organic carbon (SOC) stocks. An increase in SOC content will generally improve soil structure, which in turn determines the solute transport pathways through the soil. The aim of this study was to quantify the architecture of macropore networks in undisturbed soil columns (15 cm high, 12.7 cm diameter) sampled along a transect with natural variations in SOC using X-ray tomography and to relate the network characteristics to the degree of preferential transport in the columns. Two tracer experiments were carried out at constant irrigation rates of 2 and 5 mm h-1. We used the normalised 5% arrival time which reflects the tendency for early arrival of the solutes as a measure of the degree of preferential transport. The soil macropore networks were analysed in cylindrical sub-volumes (8 cm high, 10 cm diameter) located centrally within the soil columns. These sub-volumes were considered unaffected by sampling artefacts. Analyses were also carried out the for whole sample volumes to enable comparisons with the results from the transport experiments. Image processing and analysis were carried out in ImageJ and R. The same grey value threshold was applied to all images after harmonisation of grey values using the PVC column walls and the air outside the columns. This approach resulted in a satisfactory separation between the pore space and the surrounding soil matrix and organic matter. The SOC content along the transect, which varied from 4.2 to 15% , was correlated to all measures of the pore network for the sub-volumes except for the connectivity probability. Columns with high SOC content were associated with large macroporosities (both total and connected), large specific surface areas, large fractal dimensions and small mean pore thicknesses. The SOC content for whole sample volumes was positively correlated to 5% arrival times

  9. Computational evaluation of optoelectronic properties for organic/carbon materials.

    Science.gov (United States)

    Shuai, Zhigang; Wang, Dong; Peng, Qian; Geng, Hua

    2014-11-18

    CONSPECTUS: Organic optoelectronic materials are used in a variety of devices, including light-emitting diodes, field-effect transistors, photovoltaics, thermoelectrics, spintronics, and chemico- and biosensors. The processes that determine the intrinsic optoelectronic properties occur either in the photoexcited states or within the electron-pumped charged species, and computations that predict these optical and electrical properties would help researchers design new materials. In this Account, we describe recent advances in related density functional theory (DFT) methods and present case studies that examine the efficiency of light emission, carrier mobility, and thermoelectric figures of merit by calculation of the electron-vibration couplings. First we present a unified vibrational correlation function formalism to evaluate the excited-state radiative decay rate constant kr, the nonradiative decay rate constant knr, the intersystem crossing rate constant kISC, and the optical spectra. The molecular parameters that appear in the formalism, such as the electronic excited-state energy, vibrational modes, and vibronic couplings, require extensive DFT calculations. We used experiments for anthracene at both low and ambient temperatures to benchmark the calculated photophysical parameters. In the framework of Fermi's golden rule, we incorporated the non-adiabatic coupling and the spin-orbit coupling to evaluate the phosphorescence efficiency and emission spectrum. Both of these are in good agreement with experimental results for anthracene and iridium compounds. Band electron scattering and relaxation processes within Boltzmann theory can describe charge transport in two-dimensional carbon materials and closely packed organic solids. For simplicity, we considered only the acoustic phonon scattering as modeled by the deformation potential approximation coupled with extensive DFT calculations for band structures. We then related the carrier mobility to the band

  10. Impact of film thickness on the morphology of mesoporous carbon films using organic-organic self-assembly.

    Science.gov (United States)

    Vogt, Bryan D; Chavez, Vicki L; Dai, Mingzhi; Arreola, M Regina Croda; Song, Lingyan; Feng, Dan; Zhao, Dongyuan; Perera, Ginusha M; Stein, Gila E

    2011-05-03

    Mesoporous polymer and carbon thin films are prepared by the organic-organic self-assembly of an oligomeric phenolic resin with an amphiphilic triblock copolymer template, Pluronic F127. The ratio of resin to template is selected such that a body-centered cubic (Im3m) mesostructure is formed in the bulk. However, well-ordered mesoporous films are not always obtained for thin films (body-centered cubic symmetry with a preferential orientation of the closest-packed (110) plane parallel to the substrate. Film thickness and initial composition of the carbonizable precursors in the template are critical factors in determining the morphology of mesoporous carbon films. These results provide insight into why difficulties have been reported in producing ultrathin ordered mesoporous carbon films using cooperative organic-organic self-assembly.

  11. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    Findings and recommendations of the workshop on organic soils are summarized. The major finding of the workshop is that organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. If half of the released carbon remains airborne, organic soils contribute 0.6% to 8.0% of the annual rise in CO/sub 2/. Uncertainties in data suggest the actual release could lie outside the range. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. When combined with additional carbon release from other known drainage programs and the possibility of major drainage activity in the tropics, this figure suggests that the lower limit of the world estimate of carbon release from organic soils is too low. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. This estimate is based on only a few studies, however, and precision is probably no better than an order of magnitude. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  12. Mapping soil organic carbon stock in the area of Neamtu Catchment, Northeastern Romania

    Science.gov (United States)

    Breaban, Ana-Ioana; Bobric, Elena-Diana; Breaban, Iuliana-Gabriela; Rusu, Eugen

    2017-04-01

    The quantification of soil organic carbon stocks and its spatial extent is directly influenced by the land cover. The aim of the study is to quantify both the spatial distribution of soil organic carbon and stocks under different soil types and land uses in an area of 41.808,04 ha in northeastern part of Romania. It has been studied the evolution of carbon stocks over time, taking into account the change of land use between 1990-2012 under 5 classes: forests, pastures, arable land, orchard and built spaces. Common soils are Cambisols, Fluvisols, Phaezems, and Luvisols, forest being the predominant land use. The most important loss of soil organic carbon occurs as a result of changes in the supply of biomass supplying litter and therefore the process of bioaccumulation. The samples were collected from 100 representative soil profiles and analyzed with Analytik Jena multi N/C 2100 with HT 1300 solid module. Based on the soil organic carbon, C/N ratio and texture the values of those parameters varied from high values in Ao and Bv horizons to lower values in C horizon. In order to model soil organic carbon concentration were used different interpolation techniques (regression and ordinary -kriging, IDW) at different sampling densities for each depth to 100 cm, using a Gaussian approach to estimate the uncertainty. It is noticeable that soil organic carbon had a positive correlation with different types of land uses and a negative correlation with the elevation, being a decreasing trend of the carbon stocks sequestered in biomass, litter and soil. In the upper part of the profiles, the soil organic carbon stock considerably varied for forest land between 6.5-7.23 kg C/sqm) and agricultural land (3.67-4.65 kg C/sqm). The kriging regression evidenced a good variability of the calculated root mean square errors of the predicted soil organic carbon stocks.

  13. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...... a core-shell formation of COP material grafted to the outer layers of activated carbon. This general method brings features of both COPs and porous carbons together for target-specific environmental remediation applications, which was corroborated with successful adsorption tests for organic dyes...

  14. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    Science.gov (United States)

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (Psoil organic carbon concentration (r=0.838, Psoil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.

  15. Chemical extraction of organic carbon to reduce the leaching potential risk from MSWI bottom ash.

    Science.gov (United States)

    Guimaraes, A L; Okuda, T; Nishijima, W; Okada, M

    2005-10-17

    The performance of extraction solvents, including organic and inorganic solvents, for organic carbon extraction from municipal solid waste incinerator (MSWI) bottom ash was evaluated. The total carbon (TC) extracted was used to ascertain the efficiency of extraction solvents and the reduction of dissolved organic carbon (DOC) leaching potential was used to evaluate the capacity of solvents to minimize environmental impacts of MSWI bottom ash over short- and long-term considerations in landfill sites. Extract final pH value was a prominent parameter affecting TC extraction. The higher efficiency was obtained at the lower extract final pH and acid or neutral condition was necessary to achieve approximately 30% of TC extraction from bottom ash. On the basis of the results of TC extraction, the efficiency of organic carbon reduction was evaluated using organic carbon leaching potential. Hydrochloric acid was the best solvent to extract organic carbon in controlled pH conditions. Hydrochloric acid reduced the organic carbon leaching potential of MSWI bottom ash by about 68% at neutral leaching pH.

  16. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenju; Xu, Minggang [Chinese Academy of Agricultural Sciences, Beijing (China). Ministry of Agriculture Key Lab. of Crop Nutrition and Fertilization; Wang, Xiujun [Chinese Academy of Sciences, Urumqi (China). Xinjiang Inst. of Ecology and Geography; Maryland Univ., College Park, MD (United States). Earth System Science Interdisciplinary Centre; Huang, Qinhai [National Engineering and Technology Research Center for Red Soil Improvement, Jinxian (China). Jiangxi Inst. of Red Soils; Nie, Jun [Soil and Fertilizer Institute of Hunan Province, Changsha (China); Li, Zuzhang [Jiangxi Academy of Agricultural Sciences, Nanchang (China). Inst. of Soils and Fertilizers and Agricultural Resources; Li, Shuanglai [Hubei Academy of Agricultural Sciences, Wuhan (China). Inst. of Plant Protection and Soil Science; Hwang, Seon Woong; Lee, Kyeong Bo [National Institute of Crop Sciences, Iksan (Korea, Republic of). Dept. of Rice and Winter Cereal Crop

    2012-04-15

    Purpose: Although organic amendments have been recommended as one of the practices for crop production and soil carbon sequestration, little has been done to evaluate soil organic carbon (SOC) dynamics following long-term application of organic amendments. The objective of this research were to (1) assess the effect of long-term organic amendments on SOC dynamics in rice-based systems; (2) evaluate the relationship between soil carbon sequestration and carbon input based on various mineral and organic fertilization treatments. Materials and methods: A multi-sites analysis was conducted on four long-term experiments with double-rice (three sites) and rice-wheat (one site) cropping systems which started in the 1980s in Southern China. We selected three groups of treatments in common at each site: (1) control (no fertilizer), (2) mineral nitrogen-phosphorus with and without potassium (NPK/NP), and (3) the combined treatments of mineral NP/NPK with pig manure (M), green manure (G, Astragalus sinicus L.), rice straw (S), and/or their combinations. Harvestable crop biomass was annually recorded for all plots. SOC in topsoil was determined in 1-5 yearly intervals after rice harvest. Results and discussion: Analysis showed that organic amendments sustained or significantly increased carbon biomass, but had little effects on the coefficient of variance (CV) of the carbon biomass production compared with the mineral NPK/NP treatments. With additional carbon input, organic amendments increased SOC significantly by 7-45% after 25-28 years of fertilization compared with the mineral treatments. These combined treatments sequestered carbon at a rate from 0.20 to 0.48 tha{sup -1} year{sup -1} under the double-rice and 0.70 to 0.88 t ha{sup -1} year{sup -1} under rice-wheat cropping system. The estimated annual SOC decomposition rate ranged from 0.15 to 0.82 tha{sup -1} at these studied sites. Our analyses revealed strong positive correlations between soil carbon sequestration and

  17. Influence of marginal highs on the accumulation of organic carbon along the continental slope off western India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.R.; Veerayya, M.

    between 250 and 2050 m. The sediments were studied to assess the relative importance of productivity, oxygen minima, grain size and bathymetry on organic carbon accumulation/preservation. The total organic carbon (TOC) content in the study area varies from...

  18. [Study on adsorption properties of organic vapor on activated carbons].

    Science.gov (United States)

    Cai, Dao-Fei; Huang, Wei-Qiu; Wang, Dan-Li; Zhang, Lin; Yang, Guang

    2013-12-01

    Adsorption technology is widely used in oil vapor recovery, and adsorbents have decisive effect on separation. Three kinds of activated carbon (AC) were chosen to study their adsorption properties and adsorption energy, where n-hexane and n-heptane acted as adsorbate and adsorption experiments were conducted at 293.15 K. At the same time, regression formula of Logistic model was used to fit the throughout curves of active carbons. The results showed that: surface area and pore volume of activated carbon were the main factors affecting its adsorption properties; the adsorption behavior of n-hexane and n-heptane were corresponding to Langmuir adsorption isotherm model; adsorption energy of these three kinds of activated carbon became greater with increasing specific surface area. Fitting curve of Logistic model had high similarity with the experimental results, which could be used in the prediction of breakthrough curves of activated carbons.

  19. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  20. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Directory of Open Access Journals (Sweden)

    Qingqing Cao

    Full Text Available Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types. However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  1. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    Science.gov (United States)

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  2. Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Miyazaki, Y.; Pongkiatkul, Prapat; Kim Oanh, N. T.

    2011-08-01

    Measurements of black carbon (BC) and organic carbon (OC) were conducted in Bangkok during 2007-2008. Annual trends of BC and OC show strong seasonality with lower and higher concentrations during wet and dry seasons, respectively. Flow of cleaner air, wet removal, and negligible biomass burning resulted in the lowest concentrations of aerosols in the wet season. In addition to anthropogenic sources, long-range transport and biomass burning caused higher concentrations in the dry and hot seasons, respectively. Despite extensive biomass burning in the hot season, moderate levels of aerosols were due to the mixing with air masses from the Pacific Ocean. Diurnal distributions exhibit peaks during rush hour marked by minima in the OC/BC ratio and stagnant wind flow. The lowest concentrations in the afternoon hours could be due to deeper planetary boundary layer and reduced traffic. Overall, the concentrations of both BC and OC decrease with the increase in wind speed. The weekend effects, due to reduced emission during weekends, in the concentrations of both BC and OC were significant. Therefore, stricter abatement in vehicular emissions could substantially reduce pollution. A slope of ΔBC/ΔCO of 9.8 ngm-3 ppbv-1 for the wet season represents the emission ratio from vehicular sources. The highest of ΔOC/ΔBC (3 μg μg-1) in the hot season was due to the predominant influence of biomass burning and significant formation of secondary OC. The levels of BC and OC in Bangkok fall within the ranges of their concentrations measured in the major cities of East Asia.

  3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.

  4. Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots.

    Science.gov (United States)

    Sahu, Sushant; Liu, Yamin; Wang, Ping; Bunker, Christopher E; Fernando, K A Shiral; Lewis, William K; Guliants, Elena A; Yang, Fan; Wang, Jinping; Sun, Ya-Ping

    2014-07-22

    Carbon "quantum" dots (or carbon dots) have emerged as a new class of optical nanomaterials. Beyond the widely reported bright fluorescence emissions in carbon dots, their excellent photoinduced redox properties that resemble those found in conventional semiconductor nanostructures are equally valuable, with photon-electron conversion applications from photovoltaics to CO2 photocatalytic reduction. In this work we used gold-doped carbon dots from controlled synthesis as water-soluble catalysts for a closer examination of the visible-light photoconversion of CO2 into small organic acids, including acetic acid (for which the reduction requires many more electrons than that for formic acid) and, more interestingly, for the significantly enhanced photoconversion with higher CO2 pressures over an aqueous solution of the photocatalysts. The results demonstrate the nanoscale semiconductor-equivalent nature of carbon dots, with excellent potential in energy conversion applications.

  5. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].

    Science.gov (United States)

    Pang, Bo; Ji, Dong-sheng; Liu, Zi-rui; Zhu, Bin; Wang, Yue-si

    2016-04-15

    Accurate measurement of organic carbon (OC) and elemental carbon (EC) in atmospheric fine particulate is an important scientific basis for studying the formation and source apportionment of carbonaceous aerosol. The selection of different analysis programs will lead to difference in the OC and EC concentrations, and further result in the misjudgment of the results. The OC and EC concentrations observed using three temperature protocols including RT-Quartz ( R) , NIOSH 5040 (N) and Fast-TC (F) were compared and analyzed in combination with the degree of air pollution in Beijing. The results showed that there was no significant difference in the TC (TC = OC + EC), OC and EC concentrations observed using R, N and F protocols and certain deviation was found among the TC (TC = OC + EC) , OC and EC concentrations. For TC, the results observed using R protocol were 5% lower than those using N protocol; hut 1% higher than those using F protocol. For OC, the results obtained using R were 9% lower than those using N protocol and 1% higher than those using F protocol. For EC, the results obtained using R were 20% higher than those using N protocol and 11% lower than those using F protocol. The variation coefficients for TC, OC and EC obtained based on R protocol were less than the other two temperature protocols under different air quality degrees. The slopes of regression curves of TC, OC and EC between on-line analysis using R protocol and off-line analysis were 1.21,1. 14 and 1.35, respectively. The correlation coefficients of TC, OC and EC were 0.99, 0.99 and 0.98, respectively. In contrast with the Black carbon ( BC) concentrations monitored by multi-angle absorption spectrophotometer (MAAP), the EC concentrations measured by on-line OC/EC analyzer using R protocol were obviously lower. When the BC concentrations were less than or equal to 8 gg*m3, the EC/BC ratio was 0.39. While the EC/BC ratio was 0.88, when the BC concentrations were greater than 8 ggm3. The variation

  6. Spatial variability of total carbon and soil organic carbon in agricultural soils in Baranja region, Croatia

    Science.gov (United States)

    Bogunović, Igor; Trevisani, Sebastiano; Pereira, Paulo; Šeput, Miranda

    2017-04-01

    Climate change is expected to have an important influence on the crop production in agricultural regions. Soil carbon represents an important soil property that contributes to mitigate the negative influence of climate change on intensive cropped areas. Based on 5063 soil samples sampled from soil top layer (0-30 cm) we studied the spatial distribution of total carbon (TC) and soil organic carbon (SOC) content in various soil types (Anthrosols, Cambisols, Chernozems, Fluvisols, Gleysols, Luvisols) in Baranja region, Croatia. TC concentrations ranged from 2.10 to 66.15 mg/kg (with a mean of 16.31 mg/kg). SOC concentrations ranged from 1.86 to 58.00 mg/kg (with a mean of 13.35 mg/kg). TC and SOC showed moderate heterogeneity with coefficient of variation (CV) of 51.3% and 33.8%, respectively. Average concentrations of soil TC vary in function of soil types in the following decreasing order: Anthrosols (20.9 mg/kg) > Gleysols (19.3 mg/kg) > Fluvisols (15.6 mg/kg) > Chernozems (14.2 mg/kg) > Luvisols (12.6 mg/kg) > Cambisols (11.1 mg/kg), while SOC concentrations follow next order: Gleysols (15.4 mg/kg) > Fluvisols (13.2 mg/kg) = Anthrosols (13.2 mg/kg) > Chernozems (12.6 mg/kg) > Luvisols (11.4 mg/kg) > Cambisols (10.5 mg/kg). Performed geostatistical analysis of TC and SOC; both the experimental variograms as well as the interpolated maps reveal quite different spatial patterns of the two studied soil properties. The analysis of the spatial variability and of the spatial patterns of the produced maps show that SOC is likely influenced by antrophic processes. Spatial variability of SOC indicates soil health deterioration on an important significant portion of the studied area; this suggests the need for future adoption of environmentally friendly soil management in the Baranja region. Regional maps of TC and SOC provide quantitative information for regional planning and environmental monitoring and protection purposes.

  7. Microbially driven export of labile organic carbon from the Greenland ice sheet

    Science.gov (United States)

    Musilova, Michaela; Tranter, Martyn; Wadham, Jemma; Telling, Jon; Tedstone, Andrew; Anesio, Alexandre M.

    2017-04-01

    Glaciers and ice sheets are significant sources of dissolved organic carbon and nutrients to downstream subglacial and marine ecosystems. Climatically driven increases in glacial runoff are expected to intensify the impact of exported nutrients on local and regional downstream environments. However, the origin and bioreactivity of dissolved organic carbon from glacier surfaces are not fully understood. Here, we present simultaneous measurements of gross primary production, community respiration, dissolved organic carbon composition and export from different surface habitats of the Greenland ice sheet, throughout the ablation season. We found that microbial production was significantly correlated with the concentration of labile dissolved organic species in glacier surface meltwater. Further, we determined that freely available organic compounds made up 62% of the dissolved organic carbon exported from the glacier surface through streams. We therefore conclude that microbial communities are the primary driver for labile dissolved organic carbon production and recycling on glacier surfaces, and that glacier dissolved organic carbon export is dependent on active microbial processes during the melt season.

  8. Solid phase extraction method for the study of black carbon cycling in dissolved organic carbon using radiocarbon

    OpenAIRE

    2015-01-01

    © 2015 Elsevier B.V.. Radiocarbon analysis is a powerful tool for understanding the cycling of individual components within carbon pools, such as black carbon (BC) in dissolved organic carbon (DOC). Radiocarbon (δ14C) measurements of BC in DOC provide insight into one source of aged, recalcitrant DOC. We report a modified solid phase extraction (SPE) method to concentrate 43±6% of DOC (SPE-DOC) from seawater. We used the Benzene Polycarboxylic Acid (BPCA) method to isolate BC from SPE-DOC (SP...

  9. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  10. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  11. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  12. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China.

    Science.gov (United States)

    Zhang, Shiping; Wang, Lei; Hu, Jiajun; Zhang, Wenquan; Fu, Xiaohua; Le, Yiquan; Jin, Fangming

    2011-01-01

    We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B.

  13. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China

    Institute of Scientific and Technical Information of China (English)

    Shiping Zhang; Lei Wang; Jiajun Hu; Wenquan Zhang; Xiaohua Fu; Yiquan Le; Fangming Jin

    2011-01-01

    We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alternifiora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs.This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity.Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity,organic carbon output and organic carbon accumulation capability between site A and site B.

  14. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Science.gov (United States)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  15. The role of calcareous and biosiliceous organisms in the organic carbon export rates of the NW Iberian coastal upwelling system

    Science.gov (United States)

    Zuniga, D.; Santos, C.; Frójan, M.; Salgueiro, E.; Cavaleiro, C. D.; Alonso-Perez, F.; Silva, A.; Flores, J. A.; Figueiras, F.; Abrantes, F. F. G.; Castro, C. G.

    2016-02-01

    Understanding ocean carbon cycling must include determining the efficiency of the biological pump, expressed as the fraction of the total carbon produced through photosynthesis that is exported from the surface layer. To assess the organic carbon export rates in the highly productive NW Iberian coastal upwelling system, a mooring line dotted with an automated PPS 4/3 sediment trap was deployed off Cape Silleiro at the base of the photic zone. The samples were collected from November 2008 through June 2012 to determine major biogenic compounds (organic carbon (OC), calcium carbonate (CaCO3) and biogenic silica (bSiO2)) of the total mass flux. In addition, water column samples for phytoplankton counting were also recovered during monthly cruises. Strong positive correlations between OC fluxes and both CaCO3 and bSiO2 fluxes (r=0.96 and r=0.95, respectively) point that OC export rates in this coastal upwelling system are seasonally controlled by siliceous (diatoms) and calcareous (coccolitophorids) phytoplankton blooms. The higher contribution of CaCO3 (10 ± 6%) to the vertical fluxes compared to bSiO2 share (6 ± 2%) mirrored the higher abundances of coccolitophorids respect to diatoms observed in the upper layer, highlighting the role of carbonate organisms as ballast minerals for OC. Otherwise, in terms of carbon units, OC preferentially co-sedimented with bSiO2 as occurred in diatom dominated production regimes, where stronger seasonality and a more event-driven export or pulsed sedimentation occurred. In this regard, we observed how the evolution of environmental conditions during the productive upwelling seasons modified the diatom community structure in the upper water column with the subsequent alteration of organic carbon export. Overall, we found a succession from well adapted to turbulent conditions Chaetoceros sp. to Leptocylindrus danicus blooms that mainly occurred under stratified water column conditions.

  16. Interannual stability of organic to inorganic carbon production on a coral atoll

    Science.gov (United States)

    Kwiatkowski, Lester; Albright, Rebecca; Hosfelt, Jessica; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken

    2016-04-01

    Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.

  17. Biospheric and petrogenic organic carbon flux along southeast Alaska

    Science.gov (United States)

    Cui, Xingqian; Bianchi, Thomas S.; Jaeger, John M.; Smith, Richard W.

    2016-10-01

    Holocene fjords store ca. 11-12% of the total organic carbon (OC) buried in marine sediments with fjords along southeast (SE) Alaska possibly storing half of this OC (Smith et al., 2015). However, the respective burial of biospheric (OCbio) and petrogenic OC (OCpetro) remains poorly constrained, particularly across glaciated versus non-glaciated systems. Here, we use surface sediment samples to quantify the sources and burial of sedimentary OC along SE Alaska fjord-coastal systems, and conduct a latitudinal comparison across a suite of fjords and river-coastal systems with distinctive OC sources. Our results for SE Alaska show that surface sediments in northern fjords (north of Icy Strait) with headwater glaciers are dominated by OCpetro, in contrast to marine and terrestrially-derived fresh OC in non-glaciated southern fjords. Along the continental shelf of the Gulf of Alaska, terrestrial OC is exported from rivers. Using end-member mixing models, we determine that glaciated fjords have significantly higher burial rates of OCpetro (∼ 1.1 ×103 gOC m-2yr-1) than non-glaciated fjords and other coastal systems, making SE Alaska potentially the largest sink of OCpetro in North America. In contrast, non-glaciated fjords in SE Alaska are effective in burying marine OC (OCbio-mari) (13-82 g OC m-2yr-1). Globally, OC in fjord sediments are comprised of a mixture of OCpetro and fresh OCbio, in contrast to the pre-aged OC from floodplain river-coastal systems. We find that there may be a general latitudinal trend in the role of fjords in processing OC, where high-latitude temperate glacial fjords (e.g., Yakutat Bay, SE Alaska) rebury OCpetro and non-glacial mid-latitude fjords (e.g., Doubtful Sound, Fiordland) sequester CO2 from phytoplankton and/or temperate forests. Overall, we propose that fjords are effective in sequestering OCbio and re-burying OCpetro. Based on our study, we hypothesize that climate change will have a semi-predictable impact on fjords' OC cycling in

  18. Assimilation of aged organic carbon in a glacial river food web

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  19. Estimating organic micro-pollutant removal potential of activated carbons using UV absorption and carbon characteristics.

    Science.gov (United States)

    Zietzschmann, Frederik; Altmann, Johannes; Ruhl, Aki Sebastian; Dünnbier, Uwe; Dommisch, Ingvild; Sperlich, Alexander; Meinel, Felix; Jekel, Martin

    2014-06-01

    Eight commercially available powdered activated carbons (PAC) were examined regarding organic micro-pollutant (OMP) removal efficiencies in wastewater treatment plant (WWTP) effluent. PAC characteristic numbers such as B.E.T. surface, iodine number and nitrobenzene number were checked for their potential to predict the OMP removal of the PAC products. Furthermore, the PAC-induced removal of UV254 nm absorption (UVA254) in WWTP effluent was determined and also correlated with OMP removal. None of the PAC characteristic numbers can satisfactorily describe OMP removal and accordingly, these characteristics have little informative value on the reduction of OMP concentrations in WWTP effluent. In contrast, UVA254 removal and OMP removal correlate well for carbamazepine, diclofenac, and several iodinated x-ray contrast media. Also, UVA254 removal can roughly describe the average OMP removal of all measured OMP, and can accordingly predict PAC performance in OMP removal. We therefore suggest UVA254 as a handy indicator for the approximation of OMP removal in practical applications where direct OMP concentration quantification is not always available. In continuous operation of large-scale plants, this approach allows for the efficient adjustment of PAC dosing to UVA254, in order to ensure reliable OMP removal whilst minimizing PAC consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Metal-organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes.

    Science.gov (United States)

    Wang, Luhuan; Ke, Fei; Zhu, Junfa

    2016-03-21

    Magnetic porous carbon composites are promising materials in various applications, such as adsorbents, supercapacitors and catalyst supports, due to their high surface area, thermal and chemical stability, and easy separation. However, despite the increasing number of reports of magnetic porous carbon composites, the preparation of these materials with environmentally friendly procedures still remains a great challenge. Herein, we report a facile method to prepare a magnetic porous carbon composite with high surface area from a Fe-based metal-organic gel (MOG) template, an extended structure of a metal-organic framework (MOF). The obtained magnetic porous carbon composite was applied to remove organic dyes from an aqueous solution by selecting methyl orange (MO) as a model molecule. It exhibits excellent adsorption capacity (182.82 mg g(-1)), fast adsorption kinetics (8.13 × 10(-3) g mg(-1) min(-1)), and a perfect magnetic separation performance for the MO removal. This study demonstrates a new way to achieve clean synthesis of magnetic porous carbon materials, and opens a new door for the application of MOGs in organic dye removal.

  1. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios.

  2. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; HE Xin-hua; GAO Ren; MA Hong-liang; YANG Yu-sheng

    2014-01-01

    Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC;microbial biomass C, MBC;and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil);(2) soil plus 13C-labelled rice straw (Soil+Straw);(3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742-1 877‰). Among treatments, signiifcant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst signiifcant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, signiifcant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst signiifcant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.

  3. Evolutionary and geologic consequences of organic carbon fixing in the primitive anoxic ocean

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W. B.N. [Univ. of California, Berkeley, CA (United States). Dept. of Paleontology; Wilde, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Paleontology

    1983-01-01

    A model is proposed for a group of Archean pre-prokaryotes primary producers (termed Anoxium), that derived their energy from geothermal hydrogen sulfide discharged at oceanic vents. With time, competition developed for available S= due to organic oxidation and loss of sulfur to sediments. As a consequence, evolutionary advantage shifted to Anoxium isolates that could use alternative energy sources such as light to supplement diminished supplies of S=. Subsequent carbon fixing and deposition of organic carbon improved both the quality and quantity of light reaching the ocean surface so that eventually photosynthesis replaced sulfur chemosynthesis as the primary carbon dioxide-fixing mechanism. Organisms occupying niches similar to those of modern purple and green sulfur bacteria, thiobacilli and cyanobacteria could have evolved from the Anoxium complex as the environment was organically modified by the consequences of carbon fixing.

  4. Phosphate, carbonate and organic matter distribution in sediment cores off Bombay-Saurashtra coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Rao, Ch.M.

    Phosphate, organic matter and calcium carbonate content in five sediment cores (three from the outer shelf one from the slope and one from the basin) from the Arabian Sea have been determined. The distribution pattern indicates their close genetic...

  5. Distribution of phosphorus and organic carbon in the nearshore sediments of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Rajamanickam, G.V.; Setty, M.G.A.P.

    Samples collected from sediment water interface from the inner shelf region of Goa coast are examined for their phosphorus and organic carbon, which indicate the geochemical environment under which the present day deposits are laid down...

  6. Organic carbon in the sediments of the lower reaches of Periar River

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.; Venugopal, P.; Sankaranarayanan, V.N.

    Sediments are indicators of the quality of water overlying them and hence, useful in the assessment of environmental pollution. Temporal and spatial variations in sediment characteristics and organic carbon content from 9 stations in the lower...

  7. Particulate organic carbon and particulate humic material in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  8. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  9. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; DeSousa, S.N.

    Dissolved organic carbon (DOC) concentrations at the Indian Deep-Sea Environment Experiment (INDEX) site of the Central Indian Basin can be divided into three depth intervals. The subsurface layer (25-200 m) shows highly variable distribution...

  10. VIIRSN Level-3 Standard Mapped Image, Particulate Organic Carbon, 8-Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Organic Carbon data from the NPP-Suomi Spacecraft Measurements are gathered by the VIIRS instrument carried aboard the...

  11. VIIRSN Level-3 Standard Mapped Image, Particulate Organic Carbon, Monthly, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Particulate Organic Carbon data from ther NPP-Suomi spacecraft. Measurements are gathered by VIIRS instrument carried aboard the...

  12. APPLICATION OF MICROWAVE IRRADIATION FOR THE TREATMENT OF ADSORBED VOLATILE ORGANIC COMPOUNDS ON GRANULAR ACTIVATED CARBON

    National Research Council Canada - National Science Library

    A Dehdashti; A Khavanin; A Rezaee; H Assilian; M Motalebi

    2011-01-01

      The purpose of this laboratory scale experimental research was to investigate the application of integrated microwave irradiation and granular activated carbon adsorption for removing volatile organic compounds (VOCs...

  13. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon.

    Science.gov (United States)

    Dinn, Pamela M; Johannessen, Sophia C; Ross, Peter S; Macdonald, Robie W; Whiticar, Michael J; Lowe, Christopher J; van Roodselaar, Albert

    2012-12-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation.

  14. Foraminiferal assemblages and organic carbon relationship in benthic marine ecosystem of Western Indian Continental Shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.; Nigam, R.

    Foraminiferal assemblages in the sediment and their relation to organic carbon have been studied in selected nearshore areas on the west coast, namely, Gulf of Kutch, Bombay-Daman sector, Vengurla-Dabhol sector, Cola Bay and Karwar. Study reveals...

  15. Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ward, B.B.; Tuit, C.B.; Jayakumar, A.; Rich, J.J.; Moffett, J.; Naqvi, S.W.A.

    Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors...

  16. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release.

  17. Satellite observation of particulate organic carbon dynamics in two river-dominated estuaries

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  18. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  19. Robust Means for Estimating Black Carbon-Water Sorption Coefficients of Organic Contaminants in Sediments

    Science.gov (United States)

    2015-07-01

    include "black carbons" (BCs) such as soots and biomass chars, and that 4 these special components of the organic carbon content must be distinguished... disadvantages of the traditional batch method: difficult soot-water separation, long equilibrium time, high sorbents consumption, and uncertainty

  20. Stock characteristics of soil organic carbon pools under three subtropical forests in South China

    Science.gov (United States)

    Zhang, X. Y.; Guan, D. S.; Xiao, M. Z.

    2016-08-01

    Vegetation biomass and soil organic carbon (SOC) pools for the three representative forest types, i.e. conifer forest (CF), mixed conifer and broad-leaf forest (CBF), evergreen broad-leaf forest (EBF) in South China were investigated. We found that SOC stock of the three chief forest ranged from 55.54 to 151.16 MgC·ha-1, and it increased with increasing vegetation biomass under the same type forest within 100cm depth. The organic carbon contents at an equivalent level of forest maturity tended to be in the following decreasing order: EBF > CBF > CF, various active organic carbon (AOC) fractions in the 0-20cm topsoil layer tended to be in the following decreasing order: light fraction carbon (LFC) ≈ particulate organic carbon (POC) > easily oxidisable carbon (EOC) > microbial biomass carbon (MBC) > water-soluble carbon (WSC). At an equivalent level of forest maturity, there was a trend that each of these five AOC fractions increased from CF to CBF to the EBF.

  1. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization

    NARCIS (Netherlands)

    Huang, N.; Chen, X.; Krishna, R.; Jiang, D.

    2015-01-01

    Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks' dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a

  2. Satellite observation of particulate organic carbon dynamics in two river-dominated estuaries

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  3. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    Science.gov (United States)

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change.

  4. The carbon copy of human activities : how long-term land use explains spatial variability of soil organic carbon stocks at multiple scales

    NARCIS (Netherlands)

    Schulp, C.J.E.

    2009-01-01

    Invloed van landgebruik, landgebruik-geschiedenis en management op de koolstofvoorraad in de bodem in Nederland.The carbon copy of human activities - how long-term land use explains spatial variability of soil organic carbon stocks at multiple scales.

  5. Total Observed Organic Carbon (TOOC): A synthesis of North American observations

    OpenAIRE

    Heald, C. L.; Goldstein, A. H.; Allan, J. D.; Aiken, A. C.; Apel, E.; Atlas, E. L.; Baker, A. K; T. S. Bates; Beyersdorf, A. J.; Blake, D. R.; CAMPOS, T. de; Coe, H; Crounse, J. D.; P. F. DeCarlo; J. A. de Gouw

    2007-01-01

    Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air ...

  6. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization

    Institute of Scientific and Technical Information of China (English)

    SHAO Xing-hua; ZHENG Jian-wei

    2014-01-01

    The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy ifeld was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha-1 yr-1; P, 45 kg triple superphosphate-P2O5 ha-1 yr-1; K, 75 kg potassium chloride-K2O ha-1 yr-1;and pig manure, 22 500 kg ha-1 yr-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was signiifcantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no signiifcant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was signiifcantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not signiifcantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and signiifcantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was signiifcantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not signiifcantly correlated with one another. No signiifcant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.

  7. Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology

    DEFF Research Database (Denmark)

    Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi

    2017-01-01

    Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full fac...... characteristics of flooding and irrigation water in rice fields, and surfactants from pollution increase the problem with desorption of legacy pesticides in the rice fields....... caused the minimum desorption. This point at conditions of concern for flooding water is high content of organic compounds causing potentially high contamination by desorption, and the remarkably lower desorption at organic matter-free conditions. The suspended organic matter is one of the common...

  8. Carbon conductor- and binder-free organic electrode for flexible organic rechargeable batteries with high energy density

    Science.gov (United States)

    Kim, Tae Sin; Lim, Ji-Eun; Oh, Min-Suk; Kim, Jae-Kwang

    2017-09-01

    For the first time, we report a poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-based organic electrode with 100 wt% active material loading. The electrochemical performance of the PTMA electrode for organic batteries was improved by replacing the aluminum current collector by graphite ones. The use of graphite current collector reduces the cell weight and increases its mechanical flexibility. The resulting battery with the new carbon conductor- and binder-free organic electrode with polyimide-based gel polymer electrolyte (GPE) displayed significantly higher increased energy density (470 Wh kg-1vs. cell weight), which is essential for making organic batteries competitive with conventional Li ion batteries.

  9. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  10. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations

    NARCIS (Netherlands)

    Chen, Xinli; Chen, Han Y.H.; Chen, Xin; Wang, Jing; Chen, Bin; Wang, Dong; Guan, Qingwei

    2016-01-01

    Thinning is a silvicultural tool that is used to facilitate the growth of timber plantations worldwide. Plantations are important CO2 sinks, but the mechanism by which thinning affects the quantity and stability of soil organic carbon (SOC) is poorly understood. In this study, we

  11. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations

    NARCIS (Netherlands)

    Chen, Xinli; Chen, Han Y.H.; Chen, Xin; Wang, Jing; Chen, Bin; Wang, Dong; Guan, Qingwei

    2016-01-01

    Thinning is a silvicultural tool that is used to facilitate the growth of timber plantations worldwide. Plantations are important CO2 sinks, but the mechanism by which thinning affects the quantity and stability of soil organic carbon (SOC) is poorly understood. In this study, we exami

  12. Depositional environments inferred from variations of calcium carbonate, organic carbon, and sulfide sulfur: a core from southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A; Iyer, S.D.; Chauhan, O.S; PrakashBabu, C.

    The variations in CaCO3 and organic carbon and their inter-relationship in a core from the southeastern Arabian Sea (water depth 2,212 m) have been used to demarcate the Holocene/Pleistocene boundary; an increased terrigenous deposition during Late...

  13. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  14. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    Science.gov (United States)

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  15. Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss.

    Science.gov (United States)

    Wilson, Lorraine; Wilson, Jared; Holden, Joseph; Johnstone, Ian; Armstrong, Alona; Morris, Michael

    2011-05-01

    The potential for restoration of peatlands to deliver benefits beyond habitat restoration is poorly understood. There may be impacts on discharge water quality, peat erosion, flow rates and flood risk, and nutrient fluxes. This study aimed to assess the impact of drain blocking, as a form of peatland restoration, on an upland blanket bog, by measuring water chemistry and colour, and loss of both dissolved (DOC) and particulate organic carbon (POC). The restoration work was designed to permit the collection of a robust experimental dataset over a landscape scale, with data covering up to 3 years pre-restoration and up to 3 years post-restoration. An information theoretic approach to data analyses provided evidence of a recovery of water chemistry towards more 'natural' conditions, and showed strong declines in the production of water colour. Drain blocking led to increases in the E4:E6 ratio, and declines in specific absorbance, suggesting that DOC released from blocked drains consisted of lighter, less humic and less decomposed carbon. Whilst concentrations of DOC showed slight increases in drains and streams after blocking, instantaneous yields of both DOC and POC declined markedly in streams over the first year post-restoration. Attempts were made to estimate total annual fluvial organic carbon fluxes for the study site, and although errors around these estimates remain considerable, there is strong evidence of a large reduction in aquatic organic carbon flux from the peatland following drain-blocking. Potential mechanisms for the observed changes in water chemistry and organic carbon release are discussed, and we highlight the need for more detailed information, from more sites, to better understand the full impacts of peatland restoration on carbon storage and release.

  16. Organic carbon isotope ratios of recent sediments from coastal lagoons of the Gulf of Mexico, Mexico

    Science.gov (United States)

    Botello, Alfonso V.; Mandelli, Enrique F.; Macko, Steve; Parker, Patrick L.

    1980-03-01

    The stable carbon isotope composition sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the δ13C values for sediments ranged from -20.1 to -23.9%. Anomalously low values, -26.8 to 29.3%. were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The δ13C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments.

  17. Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India

    Science.gov (United States)

    Bikkina, Srinivas; Andersson, August; Sarin, M. M.; Sheesley, R. J.; Kirillova, E.; Rengarajan, R.; Sudheer, A. K.; Ram, K.; Gustafsson, Örjan

    2016-05-01

    Large-scale emissions of carbonaceous aerosols (CA) from South Asia impact both regional climate and air quality, yet their sources are not well constrained. Here we use source-diagnostic stable and radiocarbon isotopes (δ13C and Δ14C) to characterize CA sources at a semiurban site (Hisar: 29.2°N, 75.2°E) in the NW Indo-Gangetic Plain (IGP) and a remote high-altitude location in the Himalayan foothills (Manora Peak: 29.4°N, 79.5°E, 1950 m above sea level) in northern India during winter. The Δ14C of total aerosol organic carbon (TOC) varied from -178‰ to -63‰ at Hisar and from -198‰ to -1‰ at Manora Peak. The absence of significant differences in the 14C-based fraction biomass of TOC between Hisar (0.81 ± 0.03) and Manora Peak (0.82 ± 0.07) reveals that biomass burning/biogenic emissions (BBEs) are the dominant sources of CA at both sites. Combining this information with δ13C, other chemical tracers (K+/OC and SO42-/EC) and air mass back trajectory analyses indicate similar source regions in the IGP (e.g., Punjab and Haryana). These results highlight that CA from BBEs in the IGP are not only confined to the atmospheric boundary layer but also extend to higher elevations of the troposphere, where the synoptic-scale circulations could substantially influence their abundances both to the Himalayas and over the downwind oceanic regions such as the Indian Ocean. Given the vast emissions of CA from postharvest crop residue combustion practices in the IGP during early Northeast Monsoon, this information is important for both improved process and model understanding of climate and health effects, as well as in guiding policy decision aiming at reducing emissions.

  18. Characterization of Dissolved Organic Carbon in Deep Groundwater from the Witwatersrand Basin

    Science.gov (United States)

    Pullin, M. J.; Hendrickson, S.; Simon, P.; Sherwood Lollar, B.; Wilkie, K.; Onstott, T. C.; Washton, N.; Clewett, C.

    2013-12-01

    This work describes the isolation, fractionation, and chemical analysis of dissolved organic carbon (DOC) in deep groundwater in the Witwatersrand Basin, South Africa. The groundwater was accessed through mining boreholes in gold and diamond mine shafts. Filtered water samples were collected and preserved for later analysis. In some cases, the organic carbon was also collected on DAX-8 and XAD-4 adsorption resins in situ and then transported to the surface for removal, clean-up, and lyophilization. Solid state C-13 NMR analysis of that organic carbon was conducted. Organic compounds were also isolated from the water using solid phase extraction cartridges for later analysis by GC-MS. Absorbance, fluorescence, and HPLC analyses was were used to analyze the DOC in the filtered water samples. C-14 and C-13 isotopic analysis of the organic carbon was also conducted. Identifiable components of the DOC include both organic acids and amino acids. However, initial results indicate that the majority of the subsurface DOC is a complex heterogeneous mixture with an average molecular weight of approximately 1000 Da, although this DOC is less complex than that found in soils or surface water. Finally, we will discuss possible sources of the organic carbon and its biogeochemical cycling in the subsurface.

  19. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input.

    Science.gov (United States)

    Stibal, Marek; Tranter, Martyn; Benning, Liane G; Rehák, Josef

    2008-08-01

    Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 mug C g(-1) year(-1)) and the high content of organic carbon within the debris (1.7-4.5%, equivalent to 8500-22 000 mug C g(-1) debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity.

  20. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    KAUST Repository

    Pinho, L.

    2016-02-15

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  1. Electrochemiluminescent Properties of Organic Films with Incorporated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu.T. Zholudov

    2012-06-01

    Full Text Available This work describes the study of the electrochemical and electrochemiluminescent properties of electrodes modified by films of polyvinyl alcohol containing luminophor tris-bipyridine ruthenium and carbon nanotubes. Studied electrode structures showed good applicability for the development of nanotechnological ECL-sensors intended for the assay in aqueous mediums.

  2. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  3. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    Science.gov (United States)

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  4. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells

    Science.gov (United States)

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-04-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  5. A Simple Approach to Estimate Soil Organic Carbon and Soil CO2 Emission

    Directory of Open Access Journals (Sweden)

    Farhat Abbas

    2013-01-01

    Full Text Available SOC (Soil Organic Carbon and soil CO 2 (Carbon Dioxide emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO 2 emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO 2 emission over short- and long-term basis for global climate change assessment studies.

  6. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research.

  7. Soil organic carbon storage and soil CO2 flux in the alpine meadow ecosystem

    Institute of Scientific and Technical Information of China (English)

    TAO Zhen; SHEN ChengDe; GAO QuanZhou; SUN YanMin; YI WeiXi; LI YingNian

    2007-01-01

    High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12(104 kg C hm-2 to 30.75(104 kg C hm-2 in the alpine meadow ecosystems, with an average of 26.86(104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1, with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%-81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.

  8. A Raman Study of Carbonates and Organic Contents in Five CM Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2016-01-01

    Carbonates comprise the second most abundant class of carbon-bearing phases in carbonaceous chondrites after organic matter (approximately 2 wt.%), followed by other C-bearing phases such as diamond, silicon carbide, and graphite. Therefore, understanding the abundances of carbonates and the associated organic matter provide critical insight into the genesis of major carbonaceous components in chondritic materials. Carbonates in CM chondrites mostly occur as calcite (of varying composition) and dolomite. Properly performed, Raman spectroscopy provides a non-destructive technique for characterizing meteorite mineralogy and organic chemistry. It is sensitive to many carbonaceous phases, allows the differentiation of organic from inorganic materials, and the interpretation of their spatial distribution. Here, with the use of Raman spectroscopy, we determine the structure of the insoluble organic matter (IOM) in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range (WIS) 91600, and interpret the relative timing of carbonate precipitation and the extent of the associated alteration events.

  9. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2007-04-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, 40.8 t organic carbon (OC is exported from the catchment, which represents an areal value of 107 gC m−2 a−1. POC was the most significant form of organic carbon export, accounting for ~82% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  10. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  11. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the

  12. Partitioning carbon dioxide emission and assessing dissolved organic carbon leaching of a drained peatland cultivated with pineapple at Saratok, Malaysia.

    Science.gov (United States)

    Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna

    2014-01-01

    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  13. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    Directory of Open Access Journals (Sweden)

    Liza Nuriati Lim Kim Choo

    2014-01-01

    Full Text Available Pineapples (Ananas comosus (L. Merr. cultivation on drained peats could affect the release of carbon dioxide (CO2 into the atmosphere and also the leaching of dissolved organic carbon (DOC. Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr than under bare peat treated with chloroform (205 t CO2 ha/yr, and they were the lowest (179.6 t CO2 ha/yr under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.

  14. Emission of carbon dioxide influenced by different water levels from soil incubated organic residues.

    Science.gov (United States)

    Hossain, M B; Puteh, A B

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO₂-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO₂-C emission. Poultry litter with soil mixture increased 121% cumulative CO₂-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO₂-C. Maximum CO₂-C was found in 7 days after incubation and thereafter CO₂-C emission was decreased with the increase of time. Control produced the lowest CO₂-C (158.23 mg). Poultry litter produced maximum cumulative CO₂-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO₂-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d⁻¹) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon.

  15. Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns

    NARCIS (Netherlands)

    Sagrilo, E.

    2014-01-01

    Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns Edvaldo Sagrilo Summary Pyrogenic organic matter (PyOM), also known as biochar, is the product of biomass combustion under low oxygen concentration. There

  16. Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns

    NARCIS (Netherlands)

    Sagrilo, E.

    2014-01-01

    Soil and plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns Edvaldo Sagrilo Summary Pyrogenic organic matter (PyOM), also known as biochar, is the product of biomass combustion under low oxygen concentration. There

  17. Kinetics of continuous biodegradation of pesticide organic wastewater by activated carbon-activated sludge

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Organic triazophos wastewater was continuously treated with Rhodopseudomonas capsulatus and activated carbon and activated sludge system(PACT-AS) in a plug bioreactor. A kinetic model of PACT-AS wastewater treatment system was established to provide an useful basis for further simulate scale-up treatment of toxic organic wastewater.

  18. Adopting soil organic carbon management practices in soils of varying quality

    NARCIS (Netherlands)

    Merante, Paolo; Dibari, Camilla; Ferrise, Roberto; Sánchez, Berta; Iglesias, Ana; Lesschen, Jan Peter; Kuikman, Peter; Yeluripati, Jagadeesh; Smith, Pete; Bindi, Marco

    2017-01-01

    Soil organic carbon (SOC) content can greatly affect soil quality by determining and maintaining important soil physical conditions, properties and soil functions. Management practices that maintain or enhance SOC affect soil quality and may favour the capacity of soils to sequester further organ

  19. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-Surface Martian Materials?

    Science.gov (United States)

    Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen

    2015-01-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  20. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    Science.gov (United States)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  1. On the relation between organic and inorganic carbon in the Weddell Sea

    Science.gov (United States)

    Wedborg, Margareta; Hoppema, Mario; Skoog, Annelie

    1998-11-01

    Carbon cycling in the Weddell Sea was investigated during the ANT X/7 cruise with `FS Polarstern' December 1992-January 1993. Samples were taken on a cross section from Kapp Norvegia to Joinville Island, and on a section from the Larsen Ice Shelf to the northeast. The following quantities were measured: total carbon dioxide (TCO 2), fluorescence from humic substances and total organic carbon. The distribution of TCO 2 was strongly positively correlated to the time elapsed since the various water masses were last ventilated. In general, humic substance fluorescence was positively correlated with TCO 2, with the exception of the productive part of the western Weddell Sea, where the correlation was negative in the surface mixed layer. The increased fluorescence at the surface is suggested to be a result of biological production. The distribution of total organic carbon showed less structure, since this quantity includes a particulate component, which is subject to dispersion processes different from those of the dissolved components TCO 2 and humic substances. The mean total organic carbon concentration below the surface mixed layer was 50 μmol l -1. At some stations, a steep TOC maximum around 2000 m depth was observed. This was interpreted to result from mass sinking of phytoplankton blooms. Total organic carbon had a maximum in surface water, and at some stations also a second subsurface maximum. In the Warm Deep Water (WDW), TCO 2 and fluorescence had their maximum values, while total organic carbon tended to be low. In low productivity surface water in the eastern part of the Kapp Norvegia-Joinville Island section, the lowest flourescence was found. Surface water is eventually formed from Warm Deep Water, which had the highest fluorescence values, and therefore it is concluded that humic substances were removed in situ from surface water. In the central area of the Weddell Sea, TCO 2 and fluorescence showed the highest Warm Deep Water maxima, while total organic

  2. Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality

    Science.gov (United States)

    Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus

    2015-04-01

    The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic

  3. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    Science.gov (United States)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  4. Is marine dissolved organic matter the "missing sink" for soil-derived black carbon?

    Science.gov (United States)

    Dittmar, Thorsten; Suryaputra, I. Gusti N. A.; Niggemann, Jutta

    2010-05-01

    The thermal alteration of biomass during wildfires can be an important factor for the stabilization of organic matter in soils. Black carbon, i.e. biochars and soot, is more resistant to biodegradation than unaltered biomass, and it can therefore accumulate in soils and sediments. Our knowledge on the turnover of black carbon is still very fragmentary, and the known loss rates do not account for the estimated production rates. Major loss mechanisms remain unidentified or have been underestimated. Recently, we have identified a major thermogenic component in dissolved organic matter (DOM) of the deep ocean. We hypothesize that black carbon in soils is solubilized over time, probably via microbial interaction, and transported via rivers into the ocean. DOM, one of the largest organic carbon pools on earth, could therefore be an important transport medium of soil-derived black carbon. A case study was performed in the Suwannee River estuary and adjacent oceanic shelf (Florida, USA). The Suwannee River drains extensive wetlands and fire-impacted forests. The fate of dissolved black carbon was traced from the river through its estuary into the open Gulf of Mexico. Black carbon was molecularly quantified as benzenepolycarboxylic acids after nitric acid oxidation via a new UPLC method (ultra-performance liquid chromatography). The molecular analysis was accompanied by optical (excitation-emission matrix fluorescence and absorbance spectroscopy) and elemental characterization of DOM. A major component (approx. 10% on a carbon basis) of Suwannee River DOM could be identified as black carbon. The concentration of black carbon decreased offshore, and on the open ocean only about 1% of DOM could be identified as black carbon. In the deep ocean, the thermogenic component of DOM is higher and approx. 2.4% of DOM. The surface ocean must therefore be an efficient sink for dissolved black carbon. We hypothesize that sunlight may initiate photochemical reactions that cause a loss of

  5. Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Yigini, Yusuf; Dunbar, Martha B

    2013-01-01

    Under the European Union Thematic Strategy for Soil Protection, the European Commission Directorate-General for the Environment and the European Environmental Agency (EEA) identified a decline in soil organic carbon and soil losses by erosion as priorities for the collection of policy relevant soil data at European scale. Moreover, the estimation of soil organic carbon content is of crucial importance for soil protection and for climate change mitigation strategies. Soil organic carbon is one of the attributes of the recently developed LUCAS soil database. The request for data on soil organic carbon and other soil attributes arose from an on-going debate about efforts to establish harmonized datasets for all EU countries with data on soil threats in order to support modeling activities and display variations in these soil conditions across Europe. In 2009, the European Commission's Joint Research Centre conducted the LUCAS soil survey, sampling ca. 20,000 points across 23 EU member states. This article describes the results obtained from analyzing the soil organic carbon data in the LUCAS soil database. The collected data were compared with the modeled European topsoil organic carbon content data developed at the JRC. The best fitted comparison was performed at NUTS2 level and showed underestimation of modeled data in southern Europe and overestimation in the new central eastern member states. There is a good correlation in certain regions for countries such as the United Kingdom, Slovenia, Italy, Ireland, and France. Here we assess the feasibility of producing comparable estimates of the soil organic carbon content at NUTS2 regional level for the European Union (EU27) and draw a comparison with existing modeled data. In addition to the data analysis, we suggest how the modeled data can be improved in future updates with better calibration of the model.

  6. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    Science.gov (United States)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  7. Nitrogen and dissolved organic carbon (DOC losses from an artificially drained grassland on organic soils

    Directory of Open Access Journals (Sweden)

    B. Tiemeyer

    2014-02-01

    Full Text Available Nitrate-nitrogen (NO3-N as well as dissolved organic carbon (DOC and nitrogen (DON concentrations and losses were studied for three respectively two years in a small catchment dominated by a degraded peatland used as intensive grassland. Concentrations in the shallow groundwater were spatially and temporally very variable with NO3-N being the most dynamic component (7.3 ± 12.5 mg L–1. Average NO3-N concentrations of 10.3 ± 5.4 mg L–1 in the ditch draining the catchment and annual NO3-N losses of 19, 35 and 26 kg ha–1 confirmed drained peatlands as an important source of diffuse N pollution. The highest NO3-N losses occurred during the wettest year. Resulting from concentrations of 2.4 ± 0.8 mg L–1, DON added further 4.5 to 6.4 kg ha–1 to the N losses and thus formed a relevant component of the total N losses. Ditch DOC concentrations of 24.9 ± 5.9 mg L–1 resulted in DOC losses of 66 kg ha–1 in the wet year 2006/07 and 39 kg ha–1 in the dry year 2007/08. Both DOC and N concentrations were governed by hydrological conditions, but NO3-N reacted much faster and clearer on rising discharge rates than DOC which tended to be higher under dryer conditions. In the third year of the study, the superposition of a very wet summer and land use changes from grassland to arable land in a part of the catchment suggests that under re-wetting conditions with a high groundwater table in summer, NO3-N would diminish quickly, while DOC would remain on a similar level. Further intensification of the land use, on the other hand, would increase N losses to receiving water bodies.

  8. A comparison of soil organic carbon stock in ancient and modern land use systems in Denmark

    DEFF Research Database (Denmark)

    Breuning-Madsen, Henrik; Elberling, Bo; Balstrøm, Thomas

    2009-01-01

    During the South Scandinavian Early Bronze Age about 3300 years ago, thousands of burial mounds were constructed of sods from fallow ground used for grazing in Denmark and northern Germany. In some of these mounds a wet, anaerobic core developed, preventing the decomposition of organic matter....... A comparison of the organic matter content in these mound cores and the plough layer in modern farmland offers an opportunity to compare the soil organic carbon (SOC) stocks in ancient and modern land use systems and to evaluate the long-term trends in carbon (C) sequestration in relation to modern farmland...

  9. Role of Black Carbon and Absorbing Organic Carbon Aerosols in Surface Dimming Trends

    Science.gov (United States)

    Feng, Y.; Ramanathan, V.; Kotamarthi, V. R.

    2010-12-01

    Solar radiation reaching at the Earth’s surface plays an essential role in driving both atmosphere hydrological and land/ocean biogeochemical processes. Measurements have shown significant decreases in surface solar radiation (dimming) in many regions since 1960s. At least half of the observed dimming could be linked to the direct radiative effect of anthropogenic aerosols, especially absorbing aerosols like black carbon (BC) due to their strong atmospheric absorption. However, previous model-data comparisons indicate that absorption by aerosols is commonly and significantly underestimated in current GCM simulations by several factors over regions. Using a global chemical transport model coupled with a radiative transfer model, we include a treatment for absorbing organic carbons (OC) from bio-fuel and open biomass burnings in optical calculations and estimate aerosol radiative forcings for two anthropogenic aerosol emission scenarios representative of 1975 and 2000. Assumptions about aerosol mixing and the OC absorption spectrum are examined by comparing simulated atmospheric heating against aircraft optical and radiation measurements. The calculated aerosol single scattering albedo distribution (0.93+/-0.044) is generally comparable to the AERONET data (0.93+/-0.030) for year 2001, with best agreements in Europe and N. America, while overestimated in E. Asia and underestimated in the S. American biomass burning areas. On a global scale, inclusion of absorbing OC enhances the absorption in the atmosphere by 11% for July. The estimated aerosol direct radiative forcing at TOA (-0.24 W/m2) is similar to the average value of the AeroCom models based on the same 2000 emissions, but significantly enhanced negatively at surface by about 53% (-1.56 W/m2) and the atmosphere absorption is increased by +61% (+1.32 W/m2). About 87% of the estimated atmosphere absorption and 42% of the surface dimming is contributed by BC. Between 1975 and 2000, the calculated all-sky flux

  10. The contribution of biological particles to observed particulate organic carbon at a remote high altitude site

    Science.gov (United States)

    Wiedinmyer, Christine; Bowers, Robert M.; Fierer, Noah; Horanyi, Eszter; Hannigan, Michael; Hallar, A. Gannet; McCubbin, Ian; Baustian, Kelly

    Although a significant fraction of atmospheric particulate mass is organic carbon, the sources of particulate organic carbon (POC) are not always apparent. One potential source of atmospheric POC is biological particles, such as bacteria, pollen, and fungal spores. Measurements of POC and biological particles, including bacteria, fungal spores, and pollen, were made as part of the Storm Peak Aerosol and Cloud Characterization Study in Steamboat Springs, CO in March-April 2008. Biological particles were identified and characterized using several methods. The results suggest that biological particles could account for an average of 40% of the organic carbon mass in particles with aerodynamic diameters less than 10 μm. These estimates of POC mass from biological particles are highly uncertain; however, the results suggest that biological particles could be a significant source of organic aerosol in the background continental atmosphere and further observations are needed to better constrain these estimates.

  11. Drivers for spatial variability in agricultural soil organic carbon stocks in Germany

    Science.gov (United States)

    Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette

    2017-04-01

    Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description

  12. The influence of land use on soil organic carbon and nitrogen content and redox potential

    DEFF Research Database (Denmark)

    Kusliene, Gedrime

    2010-01-01

    The aim of the research was to evaluate organic matter status in the soil according to the organic carbon content, total and mineral nitrogen amounts, carbon to nitrogen (C:N) ratio and redox potential depending on land usage and plant spieces. Soil samples were taken from the fields under...... different farming systems (conventional and organic) as well as abandoned lands. We choose the plants of two botanical species (Poaceae and Fabaceae) in organic and conventional farming systems as well as abandoned lands. Experimental results show that the best soil organic matter status according...... to the investigated indexes is in the soils of conventional and orgaic farming systems occupied with mixtures of Poaceae and Fabaceae and the worst - in the soils of abandoned Poaceae meadowa. In the abandoned lands, Fabaceae (galega) had better influence on soil organic matter status than Poaceae....

  13. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  14. Bacterial survival governed by organic carbon release from senescent oceanic phytoplankton

    Directory of Open Access Journals (Sweden)

    S. Lasternas

    2013-10-01

    Full Text Available Bacteria recycle vast amounts of organic carbon, playing key biogeochemical and ecological roles in the ocean. Bacterioplankton dynamics are expected to be dependent on phytoplankton primary production, but there is a high diversity of processes (e.g. sloppy feeding, cell exudation, viral lysis involved in the transference of primary production to dissolved organic carbon available to bacteria. Here we show cell survival of heterotrophic bacterioplankton in the subtropical Atlantic Ocean to be determined by phytoplankton extracellular carbon release (PER. PER represents the fraction of primary production released as dissolved organic carbon, and changes in the PER variability was explained by phytoplankton cell death, with the communities experiencing the highest phytoplankton cell mortality showing a larger proportion of extracellular carbon release. Both PER and the percent of dead phytoplankton cells increased from eutrophic to oligotrophic waters, while heterotrophic bacteria communities, including 60 to 95% of living cells (%LC, increased from the productive to the most oligotrophic waters. The percentage of living heterotrophic bacterial cells increased with increasing phytoplankton extracellular carbon release, across oligotrophic to productive waters in the NE Atlantic, where lower PER have resulted in a decrease in the flux of phytoplankton DOC per bacterial cell. The results highlight phytoplankton cell death as a process influencing the flow of dissolved photosynthetic carbon in the NE Atlantic Ocean, and demonstrated a close coupling between the fraction of primary production released and heterotrophic bacteria survival.

  15. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  16. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  17. Ancient soil organic carbon in glaciers supports downstream metabolism in the European Alps

    Science.gov (United States)

    Fasching, C.; Singer, G.; Steier, P.; Niggemann, J.; Dittmar, T.; Battin, T. J.

    2012-04-01

    Mountain glaciers and ice caps shrink at unprecedented pace with major implications for macroscale runoff patterns and sea-level rise. Building evidence suggests that glaciers, beside their prominent role in the hydrological cycle, are place for microbial and biogeochemical processes. In the Gulf of Alaska, glacial runoff was shown to be a quantitatively important source of ancient and labile organic carbon to marine ecosystems. However, both origin and chemical composition of glacial organic carbon nurturing downstream ecosystems remain elusive. This makes it difficult to understand the role of glaciers in carbon cycling. Here we present first evidence from 26 Alpine glaciers that glacial dissolved organic carbon (DOC), although very low in concentration (138±96 μg C L-1), contributes to carbon cycling in pro-glacial streams. We found that the bioavailability of glacial DOC (25 to 86 % labile) for microbial heterotrophs increased with its proteinaceous content and with age. Black carbon did not explain the variation in DOC age (600 to 8500 years), suggesting that ancient organic carbon other than black carbon contributes to DOC bioavailability. Proteinaceous moieties from glacial DOC were rapidly removed in the pro-glacial stream, where DOC bioavailability rather than physical processes drove excess pCO2 (EpCO2) in the streamwater as a proxy for in situ metabolism. Using mass loss data and carbon use efficiency (19.4±7.2 %) data from glacial ice, we estimate that glaciers in the European Alps deliver 340 tons C yr-1, of which 162 tons C are potentially respired as CO2 to the atmosphere. These fluxes are small compared to those from high-mass-loss glaciers, such in Alaska, but they are unexpected biogeochemical links between low-DOC glaciers and the smallest of the headwaters in alpine fluvial networks.

  18. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    Science.gov (United States)

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  19. Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-07-01

    Full Text Available The content of volatile and semivolatile organic compounds (VOC and SOC, measured as exchangeable dissolved organic carbon (EDOC, was quantified in 9 phytoplanktonic species that spanned 4 orders of magnitude in cell volume, by disrupting the cells and quantifying the gaseous organic carbon released. EDOC content varied 4 orders of magnitude, from 0.0015 to 14.12 pg C cell-1 in the species studied and increased linearly with increasing phytoplankton cell volume following the equation EDOC (pg C cell-1 = -2.35 x cellular volume (CV, µm3 cell-1 0.90 (± 0.3, with a slope (0.90 not different from 1 indicating a constant increase in volatile carbon as the cell size of phytoplankton increased. The percentage of EDOC relative to total cellular carbon was small but varied 20 fold from 0.28 % to 5.17 %, and no obvious taxonomic pattern in the content of EDOC was appreciable for the species tested. The cell release rate of EDOC is small compared to the amount of carbon in the cell and difficult to capture. Nonetheless, the results point to a potential flux of volatile and semivolatile phytoplankton-derived organic carbon to the atmosphere that has been largely underestimated and deserves further attention in the future.

  20. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon

    Science.gov (United States)

    Daines, Stuart J.; Mills, Benjamin J. W.; Lenton, Timothy M.

    2017-01-01

    It is unclear why atmospheric oxygen remained trapped at low levels for more than 1.5 billion years following the Paleoproterozoic Great Oxidation Event. Here, we use models for erosion, weathering and biogeochemical cycling to show that this can be explained by the tectonic recycling of previously accumulated sedimentary organic carbon, combined with the oxygen sensitivity of oxidative weathering. Our results indicate a strong negative feedback regime when atmospheric oxygen concentration is of order pO2∼0.1 PAL (present atmospheric level), but that stability is lost at pO2<0.01 PAL. Within these limits, the carbonate carbon isotope (δ13C) record becomes insensitive to changes in organic carbon burial rate, due to counterbalancing changes in the weathering of isotopically light organic carbon. This can explain the lack of secular trend in the Precambrian δ13C record, and reopens the possibility that increased biological productivity and resultant organic carbon burial drove the Great Oxidation Event. PMID:28148950

  1. Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents.

    Science.gov (United States)

    Abiko, Hironobu; Furuse, Mitsuya; Takano, Tsuguo

    2010-01-01

    In occupational hygiene, activated carbon produced from coconut shell is a common adsorbent material for harmful substances including organic vapors due to its outstanding adsorption capacity and cost advantage. However, moisture adsorption of the carbon generally decreases the adsorption capacity for organic vapors. In a previous report, we prepared several coconut shell activated carbons which had been preconditioned by equilibration with moisture at different relative humidities and measured the breakthrough times for 6 kinds of organic vapor, in order to clarify the effect of preliminary moisture content in activated carbon on the adsorption capacity in detail. We found that the relative percent weight increase due to moisture adsorption of the carbon specimen had a quantitative effect, reducing the breakthrough time. In this report, we carried out further measurements of the effect of moisture content on the adsorption of 13 kinds of organic vapor, and investigated the relationship between moisture adsorption and the reduction of the breakthrough time of activated carbon specimens. We also applied the data to the Wood's breakthrough time estimation model which is an extension of the Wheeler-Jonas equation.

  2. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  3. Ocean-atmosphere exchange of organic carbon and CO2 surrounding the Antarctic Peninsula

    Science.gov (United States)

    Ruiz-Halpern, S.; Calleja, M. Ll.; Dachs, J.; Del Vento, S.; Pastor, M.; Palmer, M.; Agustí, S.; Duarte, C. M.

    2014-05-01

    Exchangeable organic carbon (OC) dynamics and CO2 fluxes in the Antarctic Peninsula during austral summer were highly variable, but the region appeared to be a net sink for OC and nearly in balance for CO2. Surface exchangeable dissolved organic carbon (EDOC) measurements had a 43 ± 3 (standard error, hereafter SE) μmol C L-1 overall mean and represented around 66% of surface non-purgeable dissolved organic carbon (DOC) in Antarctic waters, while the mean concentration of the gaseous fraction of organic carbon (GOC H-1) was 46 ± 3 SE μmol C L-1. There was a tendency towards low fugacity of dissolved CO2 (fCO2-w) in waters with high chlorophyll a (Chl a) content and high fCO2-w in areas with high krill densities. However, such relationships were not found for EDOC. The depth profiles of EDOC were also quite variable and occasionally followed Chl a profiles. The diel cycles of EDOC showed two distinct peaks, in the middle of the day and the middle of the short austral dark period, concurrent with solar radiation maxima and krill night migration patterns. However, no evident diel pattern for GOC H-1 or CO2 was observed. The pool of exchangeable OC is an important and active compartment of the carbon budget surrounding the Antarctic Peninsula and adds to previous studies highlighting its importance in the redistribution of carbon in marine environments.

  4. Organic carbon sequestration and discharge from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2009-10-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the sequestration and discharge of dissolved organic carbon (DOC and particulate organic carbon (POC in forested catchments. Both DOC and POC are highly concentrated in the soil surface in most forest ecosystems and their discharge may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: 1 how does stream discharge respond to storm events in a forest catchment? and 2 how much DOC and POC are discharged from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers for a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual discharge of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual discharge of organic carbon was estimated to be 4 to 14% of the net ecosystem carbon exchange (NEE obtained by eddy covariance technique at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon discharge from forest ecosystems would result in an overestimation (underestimation of the strength of forests

  5. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  6. Organic Carbon Accumulation during the Holocene in the Southeastern Brazilian Shelf: its Paleoceanographic Significance

    Science.gov (United States)

    Albuquerque, A.; Belém, A. L.; Meyers, P. A.; Sifeddine, A.; Gurgel, M.; Lessa, D.; Barbosa, C. F.; Capilla, R.

    2011-12-01

    The continental shelf plays a fundamental role in the transfer of organic matter between continental margins and the deep sea. In this context its role as sink or source of organic matter has been widely discussed in recent years. This scientific discussion is based on the important role of coastal zones as carbon producers and potential accumulators, both of which may affect the global carbon cycle. A large number of studies have been carried out on organic matter accumulation in continental shelves sediments all over the world. However, the western margin of the South Atlantic, especially the southeastern Brazilian coast, remains poorly studied. Oceanographic dynamics in this region promote the occurrence of a seasonal upwelling in the Cabo Frio upwelling system. Variability in this system throughout the Holocene has probably been the main controller of organic carbon accumulation on a large part of the southeastern Brazilian shelf. Our main objective has been to examine the history of organic carbon accumulation on the Cabo Frio shelf during the Holocene and its relation with the oceanographic dynamics that are responsible for the local upwelling. To this end, we have collected sediment cores from various sectors of the upwelling system and used to measure organic carbon mass accumulation rates from the latest Pleistocene to modern times. The results show three principal phases of marine-derived carbon accumulation over the last 13 kyrs cal BP. The first phase, from the latest Pleistocene to 7 cal kyrs BP, is marked by the effects of the post-glacial sea level low stand that included organic matter oxidation and reworking in a very shallow environment. In the second phase, between 7 cal kyrs BP and ca. 3 cal kyrs BP, higher carbon accumulation values were observed. Despite the higher organic carbon accumulation in the sediments, a paleoceanographic reconstruction based on the planktonic foraminifers Globerinoides ruber and Globerigerina bulloides indicates a

  7. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in organic carbon and nitrogen (C(stable)/N(stable)) were 9.50-22.0 in 2-250 microm particles and 7.43-11.54 in organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  8. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    Directory of Open Access Journals (Sweden)

    Yuguo Liu

    Full Text Available Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG, thorn shrubbery (TS, forest - shrub transition (FS and secondary forest (F. The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  9. New insights into the organic carbon export in the Mediterranean Sea from 3-D modeling

    Directory of Open Access Journals (Sweden)

    A. Guyennon

    2015-04-01

    Full Text Available The Mediterranean Sea is one of the most oligotrophic regions of the oceans, and nutrients have been shown to limit both phytoplankton and bacterial activities. This has direct implications on the stock of dissolved organic carbon (DOC, whose high variability has already been well-documented even if measurements are still sparse and are associated with important uncertainties. We here propose a Mediterranean Basin-scale view of the export of organic carbon, under its dissolved and particulate forms. For this purpose, we have used a coupled model combining a mechanistic biogeochemical model (Eco3M-MED and a high-resolution (eddy-resolving hydrodynamic simulation (NEMO-MED12. This is the first Basin-scale application of the biogeochemical model Eco3M-MED and is shown to reproduce the main spatial and seasonal biogeochemical characteristics of the Mediterranean Sea. Model estimations of carbon export are of the same order of magnitude as estimations from in situ observations, and their respective spatial patterns are consistent with each other. As for surface chlorophyll, nutrient concentrations, and productivity, strong differences between the Western and Eastern Basins are evidenced by the model for organic carbon export, with only 39% of organic carbon (particulate and dissolved export taking place in the Western Basin. The major result is that except for the Alboran Sea, dissolved organic carbon (DOC contribution to organic carbon export is higher than that of particulate (POC in the whole Basin, especially in the Eastern Basin. This paper also investigates the seasonality of DOC and POC exports as well as the differences in the processes involved in DOC and POC exports.

  10. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    Science.gov (United States)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  11. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-09-01

    We can effectively monitor soil condition-and develop sound policies to offset the emissions of greenhouse gases-only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C in the soil of Australia. We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C at the continental scale. We describe how we made it by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of stock were predicted at the nodes of a 3-arc-sec (approximately 90 m) grid and mapped together with their uncertainties. We then calculated baselines of soil organic C storage over the whole of Australia, its states and territories, and regions that define bioclimatic zones, vegetation classes and land use. The average amount of organic C in Australian topsoil is estimated to be 29.7 t ha(-1) with 95% confidence limits of 22.6 and 37.9 t ha(-1) . The total stock of organic C in the 0-30 cm layer of soil for the continent is 24.97 Gt with 95% confidence limits of 19.04 and 31.83 Gt. This represents approximately 3.5% of the total stock in the upper 30 cm of soil worldwide. Australia occupies 5.2% of the global land area, so the total organic C stock of Australian soil makes an important contribution to the global carbon cycle, and it provides a significant potential for sequestration. As the most reliable approximation of the stock of organic C in Australian soil in 2010, our estimates have important applications. They could support

  12. Simultaneous monitoring of atmospheric methane and speciated non-methane hydrocarbon concentrations using Peltier effect sub-ambient pre-concentration and gas chromatography.

    Science.gov (United States)

    Harrison, D; Seakins, P W; Lewis, A C

    2000-02-01

    Sub-ambient trapping, used to pre-concentrate atmospheric samples for non-methane hydrocarbon (NMHC) analysis by gas chromatography, can also be used to measure ambient methane concentrations. Above a sample volume of 40 ml, a dynamic equilibrium is established between ambient and trapped methane allowing for simultaneous quantitative determinations of methane and NMHC. The temperature stability of the trap is critical for quantitative methane analysis and this can be achieved by Peltier effect cooling. Simultaneous measurements of methane and NMHC reduce the equipment required for field trips and can ease the interpretation and modelling of atmospheric data. The feasibility for deployment of the system in remote locations was demonstrated by running the apparatus virtually unattended for a 5-day period. The correlations between the concentrations of methane, ethane and ethene measured during this period are discussed.

  13. Soil carbon stock increases in the organic layer of boreal middle-aged stands

    Science.gov (United States)

    Häkkinen, M.; Heikkinen, J.; Mäkipää, R.

    2011-05-01

    Changes in the soil carbon stock can potentially have a large influence on global carbon balance between terrestrial ecosystems and atmosphere. Since carbon sequestration of forest soils is influenced by human activities, reporting of the soil carbon pool is a compulsory part of the national greenhouse gas (GHG) inventories. Various soil carbon models are applied in GHG inventories, however, the verification of model-based estimates is lacking. In general, the soil carbon models predict accumulation of soil carbon in the middle-aged stands, which is in good agreement with chronosequence studies and flux measurements of eddy sites, but they have not been widely tested with repeated measurements of permanent plots. The objective of this study was to evaluate soil carbon changes in the organic layer of boreal middle-aged forest stands. Soil carbon changes on re-measured sites were analyzed by using soil survey data that was based on composite samples as a first measurement and by taking into account spatial variation on the basis of the second measurement. By utilizing earlier soil surveys, a long sampling interval, which helps detection of slow changes, could be readily available. The range of measured change in the soil organic layer varied from -260 to 1260 g m-2 over the study period of 16-19 years and 23 ± 2 g m-2 per year, on average. The increase was significant in 6 out of the 38 plots from which data were available. Although the soil carbon change was difficult to detect at the plot scale, the overall increase measured across the middle-aged stands agrees with predictions of the commonly applied soil models. Further verification of the soil models is needed with larger datasets that cover wider geographical area and represent all age classes, especially young stands with potentially large soil carbon source.

  14. Soil carbon stock increases in the organic layer of boreal middle-aged stands

    Directory of Open Access Journals (Sweden)

    M. Häkkinen

    2011-05-01

    Full Text Available Changes in the soil carbon stock can potentially have a large influence on global carbon balance between terrestrial ecosystems and atmosphere. Since carbon sequestration of forest soils is influenced by human activities, reporting of the soil carbon pool is a compulsory part of the national greenhouse gas (GHG inventories. Various soil carbon models are applied in GHG inventories, however, the verification of model-based estimates is lacking. In general, the soil carbon models predict accumulation of soil carbon in the middle-aged stands, which is in good agreement with chronosequence studies and flux measurements of eddy sites, but they have not been widely tested with repeated measurements of permanent plots. The objective of this study was to evaluate soil carbon changes in the organic layer of boreal middle-aged forest stands. Soil carbon changes on re-measured sites were analyzed by using soil survey data that was based on composite samples as a first measurement and by taking into account spatial variation on the basis of the second measurement. By utilizing earlier soil surveys, a long sampling interval, which helps detection of slow changes, could be readily available.

    The range of measured change in the soil organic layer varied from −260 to 1260 g m−2 over the study period of 16–19 years and 23 ± 2 g m−2 per year, on average. The increase was significant in 6 out of the 38 plots from which data were available. Although the soil carbon change was difficult to detect at the plot scale, the overall increase measured across the middle-aged stands agrees with predictions of the commonly applied soil models. Further verification of the soil models is needed with larger datasets that cover wider geographical area and represent all age classes, especially young stands with potentially large soil carbon source.

  15. Soil carbon stock increases in the organic layer of boreal middle-aged stands

    Directory of Open Access Journals (Sweden)

    M. Häkkinen

    2011-02-01

    Full Text Available Changes in the soil